Claude Delannoy

EXercices en

EYROLLES
— -

Résumé

175 exercices corrigés pour maitriser Java

Congu pour les étudiants en informatique, ce recueil d’exercices corrigés est le
complément idéal de Programmer en Java du méme auteur ou de tout autre ouvrage
d’initiation au langage Java.

Cette nouvelle édition tient compte des nouveautés de Java 8, publié en mars 2014,
avec un nouveau chapitre sur les expressions lambda et les streams.

Les 175 exercices sont classés par themes en 18 chapitres. Chaque chapitre débute
par la liste des notions nécessaires a la résolution des exercices (section Prérequis).
Certains exercices portent sur une notion précise indiquée dans 1’énoncé. D’autres,
appelés exercices de synthese, font appel a la mise en ceuvre de plusieurs notions
étudiées dans les exercices ou chapitres précédents, et nécessitent donc un effort de
réflexion plus fourni.

Chaque énoncé d’exercice est suivi d’une ou plusieurs solutions détaillées. Leur
code source est fourni sur le site www.editions-eyrolles.com.

Au sommaire

Les opérateurs et expressions (10 exercices) * Les instructions de controle : if,
switch, for, while, do... while (12 exercices) ¢ Les classes et les objets Java
(23 exercices) « Les tableaux (14 exercices) ¢ L’héritage et le polymorphisme
(14 exercices) « La classe String et les chaines de caracteres (9 exercices) *
Les types énumérés (7 exercices) * La gestion des exceptions (10 exercices) *
Les bases de la programmation événementielle (12 exercices) ¢ Les principaux
controles de Swing (9 exercices) ¢ Les boites de dialogue (6 exercices) ¢ Les
menus et les actions (7 exercices) * Les événements de bas niveau : souris et
clavier (8 exercices) ¢ Les applets Java (6 exercices) * Les fichiers (5
exercices) * Les génériques (10 exercices) ¢ Les collections (5 exercices) ¢ Les
expressions lambda et les streams (9 exercices). Annexes. Les constantes et
fonctions mathématiques * Les composants graphiques et leurs méthodes ¢ Les
événements et leurs écouteurs ¢ La classe Clavier.

Biographie auteur

Claude Delannoy

Ingénieur informaticien au CNRS, Claude Delannoy possede une grande pratique de

http://www.editions-eyrolles.com

la formation continue et de 1’enseignement supérieur. Réputés pour la qualité de leur
démarche pédagogique, ses ouvrages sur les langages et la programmation totalisent
plus de 300 000 exemplaires vendus.

www.editions-eyrolles.com

http://www.editions-eyrolles.com

Claude Delannoy

Exercices en Java

Troisieme tirage 2017, avec nouvelle présentation

EYR?LLES

EDITIONS EYROLLES
61, bd Saint-Germain
75240 Paris Cedex 05

www.editions-eyrolles.com

AUX EDITIONS EYROLLES
Du méme auteur

C. DELANNOY. — Programmer en Java.Java 5 a 8.
N°11889, 9° édition, 2014, 948 pages (réédition avec nouvelle présentation, 2016).

C. DELANNOY. — Programmer en langage C++.
N°14008, 8° édition, 2011, 820 pages.

C. DELANNOY. — Exercices en langage C++.
N°12201, 3¢ édition, 2007, 336 pages (réédition avec nouvelle présentation, 2016).

C. DELANNOY. — Le guide complet du langage C.
N°14020, 2014, 844 pages.

C. DELANNQY. — S’initier a la programmation et a I’orienté objet.
Avec des exemples en C, C++, C#, Python, Java et PHP.

N°14011, 2° édition, septembre 2014, 360 pages environ.

En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement ou partiellement le présent ouvrage,
sur quelque support que ce soit, sans ’autorisation de 1’Editeur ou du Centre Frangais d’exploitation du droit de copie,
20, rue des Grands Augustins, 75006 Paris.

La quatriéme édition du présent ouvrage est parue en 2014 sous I'ISBN 978-2-212-14009-5. A I’occasion de ce
troisiéme tirage, elle bénéficie d’une nouvelle couverture. Le texte reste inchangé.

© Groupe Eyrolles, 2001-2014, pour le texte de la présente édition.
© Groupe Eyrolles, 2017, ISBN : 978-2-212-67385-2.

http://www.editions-eyrolles.com

Table des matieres

Avant-propos

1. Les opérateurs et les expressions

Exercice 1.
Exercice 2.
Exercice 3.
Exercice 4.
Exercice 5.
Exercice 6.
Exercice 7.
Exercice 8.
Exercice 9.

Exercice 10

2. Lesin

Exercice 11.
Exercice 12.
Exercice 13.
Exercice 14.
Exercice 15.
Exercice 16.
Exercice 17.
Exercice 18.
Exercice 19.

Exercice 20.

Priorités des opérateurs arithmétiques et parentheses

Conversions implicites

Exceptions flottantes et conventions IEEE 754

Le type char

Opérateurs logiques a "court circuit"”

Priorités des opérateurs

Affectation et conversion

Opérateurs d’incrémentation, de décrémentation et d’affectation élargie
Opérateurs d’incrémentation et d’affectation élargie

. Opérateur conditionnel

structions de controle

Syntaxe de if et de switch

Role de I’instruction switch

Syntaxe des boucles

Comparaison entre for, while et do... while

Rupture de séquence avec break et continue

Boucle while, opérateurs d’affectation élargie et d’incrémentation (1)
Boucle while, opérateurs d’affectation élargie et d’incrémentation (2)
Syntaxe générale des trois parties d’une boucle for

Synthese : calcul d’une suite de racines carrées

Synthese : calcul de la valeur d’une série

Exercice 21.

Exercice 22.

Synthése : dessin d’un triangle en mode texte

Synthese : calcul de combinaisons

3. Les classes et les objets

Exercice 23.
Exercice 24.
Exercice 25.
Exercice 26.
Exercice 27.
Exercice 28.
Exercice 29.
Exercice 30.
Exercice 31.
Exercice 32.
Exercice 33.
Exercice 34.
Exercice 35.
Exercice 36.
Exercice 37.
Exercice 38.
Exercice 39.
Exercice 40.
Exercice 41.
Exercice 42.
Exercice 43.
Exercice 44.

Exercice 45.

Création et utilisation d’une classe simple
Initialisation d’un objet

Champs constants

Affectation et comparaison d’objets

Meéthodes d’acces aux champs privés

Conversions d’arguments

Champs et méthodes de classe (1)

Champs et méthodes de classe (2)

Champs et méthodes de classe (3)

Bloc d’initialisation statique

Surdéfinition de méthodes

Recherche d’une méthode surdéfinie (1)

Recherche d’une méthode surdéfinie (2)

Recherche d’une méthode surdéfinie (3)
Surdéfinition et droits d’acces

Emploi de this

Récursivité des méthodes

Mode de transmission des arguments d’une méthode
Objets membres

Synthese : repéres cartésiens et polaires

Synthése : modification de 1’implémentation d’une classe
Synthese : vecteurs a trois composantes

Synthése : nombres sexagésimaux

4. Les tableaux

Exercice 46.

Exercice 47.

Déclaration et initialisation de tableau
Utilisation usuelle d’un tableau (1)

Exercice 48.
Exercice 49.
Exercice 50.
Exercice 51.
Exercice 52.
Exercice 53.
Exercice 54.
Exercice 55.
Exercice 56.
Exercice 57.
Exercice 58.

Exercice 59.

Utilisation usuelle d’un tableau (2)
Affectation de tableaux (1)

Affectation de tableaux (2)

Affectation de tableaux (3)

Tableau en argument (1)

Tableau en argument (2)

Tableau en valeur de retour

Tableaux de tableaux

Synthése : nombres aléatoires et histogramme
Synthese : calcul vectoriel

Synthese : utilitaires pour des tableaux de tableaux

Synthese : crible d’Eratosthene

5. L’héritage et le polymorphisme

Exercice 60.
Exercice 61.
Exercice 62.
Exercice 63.
Exercice 64.
Exercice 65.
Exercice 66.
Exercice 67.
Exercice 68.
Exercice 69.
Exercice 70.
Exercice 71.
Exercice 72.

Exercice 73.

Définition d’une classe dérivée, droits d’acces (1)
Définition d’une classe dérivée, droits d’acces (2)
Héritage et appels de constructeurs

Redéfinition

Construction et initialisation d’une classe dérivée
Dérivations successives et redéfinition
Dérivations successives et surdéfinition

Les bases du polymorphisme

Polymorphisme et surdéfinition

Les limites du polymorphisme

Classe abstraite

Classe abstraite et polymorphisme

Interface

Synthese : comparaison entre héritage et objet membre

6. La classe String et les chaines de caracteres

Exercice 74.

Construction et affectation de chaines

Exercice 75.
Exercice 76.
Exercice 77.
Exercice 78.
Exercice 79.
Exercice 80.
Exercice 81.

Exercice 82.

Acces aux caracteres d’une chaine
Conversion d’un entier en chaine
Comptage des voyelles d’un mot
Arguments de la ligne de commande
Redéfinition de toString

Synthese : conjugaison d’un verbe
Synthese : tri de mots

Synthese : gestion d’un répertoire

7. Les types énumeérés

Exercice 83.
Exercice 84.
Exercice 85.
Exercice 86.
Exercice 87.
Exercice 88.

Exercice 89.

Définition et utilisation d’un type énuméré simple
Itération sur les valeurs d’un type énuméré

Acces par leur rang aux valeurs d’un type énuméré (1)
Lecture de valeurs d’un type énuméré

Ajout de méthodes et de champs a une énumération (1)
Ajout de méthodes et de champs a une énumération (2)

Synthese : gestion de résultats d’examens

8. Les exceptions

Exercice 90.
Exercice 91.
Exercice 92.
Exercice 93.
Exercice 94.
Exercice 95.
Exercice 96.
Exercice 97.
Exercice 98.

Exercice 99.

Déclenchement et traitement d’une exception
Transmission d’information au gestionnaire

Cheminement des exceptions

Cheminement des exceptions et choix du gestionnaire
Cheminement des exceptions

Instruction return dans un gestionnaire

Redéclenchement d’une exception et choix du gestionnaire
Bloc finally

Redéclenchement et finally

Synthese : entiers naturels

9. Les bases de la programmation événementielle

Exercice 100. Ecouteurs de clics d’une fenétre

Exercice 101. Ecouteurs de clics de plusieurs fenétres

Exercice 102. Ecouteur commun a plusieurs fenétres

Exercice 103. Création de boutons et choix d’un gestionnaire FlowLayout
Exercice 104. Gestion de plusieurs boutons d’une fenétre avec un seul écouteur
Exercice 105. Synthese : création et suppression de boutons (1)

Exercice 106. Synthese : création et suppression de boutons (2)

Exercice 107. Dessin permanent dans une fenétre

Exercice 108. Synthese : dessin permanent et changement de couleur

Exercice 109. Synthese : dessin permanent, coloration et adaptation a la taille d’une
fenétre

Exercice 110. Dessin a la volée

Exercice 111. Synthese : ardoise magique en couleur

10. Les principaux controles de Swing

Exercice 112. Cases a cocher

Exercice 113. Cases a cocher en nombre quelconque
Exercice 114. Boutons radio en nombre quelconque
Exercice 115. Champs de texte

Exercice 116. Champ de texte et événements Action et Focus
Exercice 117. Ecoute permanente d’un champ de texte
Exercice 118. Synthese : série harmonique

Exercice 119. Gestion d’une boite de liste

Exercice 120. Synthese : pendule

11. Les boites de dialogue

Exercice 121. Utilisation de boites de message et de confirmation

Exercice 122. Utilisation de boites de message, de confirmation et de saisie
Exercice 123. Programmation d’une boite de message

Exercice 124. Programmation d’une boite de confirmation

Exercice 125. Programmation d’une boite de saisie

Exercice 126. Synthese : saisie d’une heure

12. Les menus

Exercice 127. Création d’un menu déroulant usuel

Exercice 128. Gestion des actions sur les options d’un menu

Exercice 129. Activation, désactivation d’options

Exercice 130. Synthese : calculs sur des rectangles

Exercice 131. Synthese : coloration par boutons radio

Exercice 132. Synthese : choix de couleur de fond et de forme par des menus composés

Exercice 133. Synthese : choix de couleurs et de dimensions par des menus surgissants

13. Les événements de bas niveau

Exercice 134. Identification des boutons de la souris
Exercice 135. Vrais doubles-clics

Exercice 136. Suivi des déplacements de la souris (1)
Exercice 137. Suivi des déplacements de la souris (2)
Exercice 138. Dessin par le clavier (1)

Exercice 139. Synthese : dessin par le clavier (2)
Exercice 140. Sélection d’un composant par le clavier

Exercice 141. Mise en évidence d’un composant sélectionné

14. Les applets

Exercice 142. Comptage des arréts d’une applet

Exercice 143. Dessin dans une applet

Exercice 144. Synthese : dessin paramétré dans une applet
Exercice 145. Synthese : tracé de courbe dans une applet

Exercice 146. Différences entre applet et application

15. Les flux et les fichiers
Exercice 147. Création séquentielle d’un fichier binaire
Exercice 148. Liste séquentielle d’un fichier binaire

Exercice 149. Synthese : consultation d’un répertoire en acces direct

10

Exercice 150. Synthese : liste d’un fichier texte avec numérotation des lignes

Exercice 151. Liste d’un répertoire

16. La programmation générique

Exercice 152. Classe générique a un parametre de type

Exercice 153. Classe générique a plusieurs parametres de type
Exercice 154. Conséquences de 1’effacement (1)

Exercice 155. Conséquences de 1’effacement (2)

Exercice 156. Méthode générique a un argument

Exercice 157. Méthode générique et effacement

Exercice 158. Dérivation de classes génériques

Exercice 159. Les différentes sortes de relation d’héritage
Exercice 160. Limitations des parametres de type d’une méthode

Exercice 161. Redéfinition de la méthode compareTo

17. Les collections et les tables associatives
Exercice 162. Dépendance ou indépendance d’un itérateur
Exercice 163. Manipulation d’un tableau de type ArrayList
Exercice 164. Tri d’une collection (1)

Exercice 165. Tri d’une collection (2)

Exercice 166. Réalisation d’une liste triée en permanence
Exercice 167. Création d’un index

Exercice 168. Inversion d’un index

18. Les expressions lambda et les streams
Exercice 169. Lambda et interfaces prédéfinies
Exercice 170. Lambda et références

Exercice 171. L’interface Comparator

Exercice 172. Les méthodes usuelles des streams
Exercice 173. Traitement de liste avec un stream

Exercice 174. Répertoire

11

Exercice 175. Répertoire (bis)
Exercice 176. Reduce
Exercice 177. Collect et Collectors

A. Les constantes et fonctions mathématiques

B. Les composants graphiques et leurs méthodes

Exercice 1. Les classes de composants

Exercice 2. Les méthodes

C. Les événements et les éecouteurs

Exercice 3. Les événements de bas niveau
Exercice 4. Les événements sémantiques

Exercice 5. Les méthodes des événements

D. La classe Clavier

12

Avant-propos

N A
Uy~

Que 1’on soit débutant ou programmeur chevronné, la maitrise d’un nouveau langage de
programmation passe obligatoirement par la pratique.

Cet ouvrage est destiné a accompagner et a prolonger votre étude de Java. Sa structure
correspond a la progression classique d’un cours : les opérateurs et les expressions,
les instructions de contrdle, les classes et les objets, les tableaux, 1’héritage et le
polymorphisme, la classe String, les types énumérés, les exceptions, les bases de la
programmation événementielle, les principaux controles de Swing, les boites de
dialogue, les menus, les événements de bas niveau, les applets, les fichiers, la
programmation générique, les collections et les tables associatives, les expressions
lambda et les streams.

En début de chaque chapitre, vous trouverez la liste des connaissances nécessaires a la
résolution des exercices. Ces connaissances peuvent étre acquises a 1’aide du manuel
Programmer en Java, du méme auteur, ou de tout autre ouvrage d’apprentissage de ce
langage.

Nous avons prévu deux sortes d’exercices : les exercices d’application et les exercices
de synthese.

Chaque exercice d’application a été congcu pour vous entrainer a mettre en ceuvre une
ou plusieurs notions qui sont clairement indiquées dans 1’intitulé méme de 1’exercice.
Nous avons tout particulierement cherché a équilibrer la répartition de ces exercices.
D’une part, nous avons évité la prolifération d’exercices semblables sur un méme
theme. D’autre part, nous couvrons la plupart des aspects du langage, qu’il s’agisse des
fondements de la programmation orientée objet ou de caractéristiques plus techniques
et plus spécifiques a Java.

Les exercices de synthese, quant a eux, sont destinés a favoriser 1’intégration des
connaissances que vous apprendrez a mettre en ceuvre dans des contextes variés. Les

13

notions a utiliser n’étant indiquées ni dans 1’intitulé, ni dans 1’énoncé de ces exercices
de synthese, leur résolution vous demandera plus de réflexion que celle des exercices
d’application.

L’ouvrage, J2SE et Swing

Si les instructions de base de Java n’ont pratiquement pas évolué depuis sa naissance,
il n’en va pas de méme de ses bibliotheques standards. Tres tot, le modele de gestion
des événements a été fortement modifié (version 1.1). Puis, de nombreux composants
graphiques dits Swing sont apparus avec la version 1.2, renommée a cette occasion
J2SE (Java 2 Standard Edition). Un peu plus récemment, la version 5.0 de J2SE (dite
aussi Java 5) a introduit d’importantes nouveautés, notamment la programmation
générique et son application aux collections, la nouvelle boucle dite for... each, les
types énumérés. Enfin, la version Java SE8' (dite aussi Java 8) a introduit, entre autres,
les importantes notions d’expressions lambda et de streams.

Cette nouvelle édition de I’ouvrage se fonde sur la version Java SE 8. La plupart du
temps, nous avons fait en sorte que les corrigés d’exercices restent compatibles avec
les versions antérieures (y compris celles précédent Java 5), en utilisant des
commentaires appropriés exprimant les différences éventuelles. Seuls font exception
les chapitres relatifs aux types énumérés et a la programmation générique (qui n’ont pas
d’équivalent dans les versions antérieures a Java 5), le chapitre relatif aux collections
et aux tables associatives (ajouté dans une précédente édition), ainsi que le nouveau
chapitre de cette derniere édition relatif aux expressions lambda et aux streams.

Par ailleurs, et conformément aux recommandations d’Oracle, nous nous appuyons
entierement sur les composants Swing introduits avec Java 2, ceci aussi bien pour les
applications autonomes que pour les applets.

La classe Clavier

Alors que Java dispose de méthodes d’affichage d’information dans la fenétre console,
rien n’est prévu pour la lecture au clavier. Bien entendy, il est toujours possible de
développer soi-méme une classe offrant les services de base que sont la lecture d’un
entier, d’un flottant, d’un caractere ou d’une chaine. Pour vous faciliter la résolution de
certains exercices, vous trouverez une telle classe (nommée Clavier.java) sur le site
Web d’accompagnement ; sa liste est également fournie en Annexe D. Ses méthodes se
nomment lireChar, lirelnt, lireFloat, lireDouble et lireString.

Par exemple, pour lire une valeur entiére et la placer dans la variable nb, vous pourrez
procéder ainsi (notez bien que les parentheses sont obligatoires dans 1’appel d’une
méthode sans arguments) :

n = Clavier.lireInt() ;

Notez que, depuis Java 5, il existe une classe nommée Scanner qui offre des

14

possibilités d’analyse de chaines de caracteres. Par exemple, avec :
Scanner clavier = new Scanner (System.in) ;

on construit un objet clavier associé a 1’entrée standard System.in. La lecture des
informations peut alors se faire a 1’aide de méthodes telles que nexInt, nextFloat,
nextDouble de la classe Scanner. Par exemple :

double ht = clavier.nextDouble () ;

Nous avons ici préféré éviter de recourrir a ces possibilités, car le formatage des
informations y fait appel a certaines caractéristiques dites de « localisation »
spécifiques a chaque pays.

Le site Web d’accompagnement

Le code source des corrigés d’exercices est fourni sur le site Web d’accompagnement a
I’adresse www.editions-eyrolles.com. Pour accéder a I’espace de téléchargement, il
vous suffit de taper le nom de 1’auteur (Delannoy) dans le formulaire de recherche
rapide et de sélectionner I’ouvrage Exercices en Java.

Il existe souvent plusieurs manieres de résoudre le méme exercice et il se peut donc
que votre solution differe de celle présentée dans le corrigé sans étre incorrecte pour
autant. En cas de doute, vous pouvez contacter I’auteur par e-mail a 1’adresse suivante :
delannoy@eyrolles.com.

1. La dénomination des différentes versions de Java a évolué avec le temps de JDKxx a Java SExx, en passant
par J2SExx, mais on parle aussi de Javaxx

15

http://www.editions-eyrolles.com
mailto:delannoy@eyrolles.com

Chapitre 1

Les opérateurs et les expressions

— T | e ——— 0
' — S
/
)

=

0000 |
|
&

Connaissances requises

* Ecriture d’un programme principal, c’est-a-dire formé d’une classe
comportant une seule méthode nommée main

* Regles générales d’écriture : identificateurs, mots clés, séparateurs, format
libre, commentaires

* Les types primitifs : entiers (byte, short, int et long), flottants (float, double),
caracteres (char) et booléens (boolean).

» Déclaration de variables d’un type primitif ; les possibilités d’initialisation ;
role de final ; notion d’expression constante

» Affichage d’informations avec System.out.print et System.out.printin

* Les opérateurs arithmétiques ; conversions implicites dans les expressions
(ajustement de type, promotion numérique) ; comportement en cas d’exception ;
existence des valeurs Infinity et NaN

* Les opérateurs relationnels ; conversions implicites des opérandes

* Les opérateurs logiques ; cas particulier des opérateurs dits "de court-circuit"
&& et ||

* Les opérateurs d’affectation simple ou élargie ; conversions forcées par
affectation

* Les opérateurs d’incrémentation et de décrémentation

* ’opérateur de cast

16

Priorités des opérateurs
arithmeétiques et parentheses

Eliminer les parentheses superflues dans les expressions suivantes (I’ordre des
calculs devant rester le méme) :

(a+b) - (2 * c) // expression 1
(2 * x) / (y * z) // expression 2
(x + 3) * (n%p) // expression 3
(-a) /7 (-(b + c)) // expression 4
(x/y)%(-2) // expression 5
x/(y%(-z)) // expression 6

a+b-2%*c // expression 1

2 *x / (y * z) // expression 2

On pourrait aussi écrire cette expression 2*x/y/z mais |’ordre des calculs sera
différent, ce qui peut avoir une légere incidence sur le résultat.

(x + 3) * (n%p) // expression 3
Ici aucune parenthese ne peut étre supprimée car * et % sont de méme priorité ; la
suppression de la seconde paire de parentheses conduirait a une expression équivalent
a: ((x+3)*n)%p.

-a/ -(b + c) // expression 4
Ne pas oublier que 1’opérateur unaire - est prioritaire sur tous les opérateurs
arithmétiques a deux opérandes.

X/y%-z // expression 5

x/(y%-2) // expression 6

17

Conversions implicites

Soit ces déclarations :
byte bli = 160, b2 = 20 ;
short p = 200 ;
int n = 500 ;
long q = 100 ;
float x = 2.5f ;
double y = 5.25 ;

Donner le type et la valeur des expressions arithmétiques suivantes :
bi+b2 // 1

p+b1 // 2
b1*b2 // 3
q+p* (b1+b2); // 4
x+q*n // 5
bi1*q/x // 6
bi1*q*2./x // 7
bi1*q*2.f/x // 8
bi+b2 = 30 // 1

[’ opérateur + soumet les valeurs de b1 et b2 a la promotion numérique de byte en int.
Le résutat est de type int.
p+b1 = 210 // 2

[’ opérateur + soumet ses opérandes a des promotions numériques : de short en int pour
p et de byte en int pour bl. Le résultat est de type int.
bi*b2 = 200 // 3

La encore, avant d’effectuer le produit, les valeurs de b1 et de b2 sont soumises a la
promotion numérique de byte en int. Le résultat est de type int.
q+p*(b1+b2) = 6100 // 4

On évalue tout d’abord la somme s=bl+b2, en soumettant les valeurs des deux
opérandes aux promotions numériques de byte en int. La valeur de s est de type int.
Puis on effectue la somme g+p en soumettant le second opérande a une conversion

18

d’ajustement de type de short en long (type de q). Le résultat est de type long. 1l faut
maintenant le multiplier par s, ce qui se fait en soumettant la valeur de s a une
conversion d’ajustement de type de int en long. Le résultat final est de type long.

x+q*n =50002.5 // 5

On évalue tout d’abord le produit g*n en soumettant la valeur de n a une conversion
d’ajustement de type de int en long. Le résultat est de type long. Pour pouvoir 1’ajouter
a la valeur de x, on le soumet a une conversion d’ajustement de type de long en float.
Le résultat est de type float.

b1*q/x=400.0 // 6

On évalue tout d’abord le quotient g/x en soumettant la valeur de g a une conversion
d’ajustement de type de long en float. Le résultat est de type float. Pour pouvoir lui
ajouter la valeur de b1, on soumet cette derniere a une conversion d’ajustement de type
de byte en float (ou, ce qui revient au méme, d’abord a une promotion numérique de
byte en int, puis a une conversion d’ajustement de type de int en float). Le résultat est
de type float.

bi1*q*2./x=800.0 // 7

On évalue tout d’abord le produit g*2., en soumettant la valeur de g a une conversion
d’ajustement de type de long en double (attention, la constante 2. est de type double et
non de type float). Le résultat est de type double. 1l est divisé par la valeur obtenue par
conversion d’ajustement de type de x de float en double. Le résultat, de type double est
alors multiplié par la valeur obtenue par conversion d’ajustement de type de bl en
double. Le résultat est de type double.

bi1*q*2.f/x=800.0 // 8

Il s’agit de I’expression précédente, dans laquelle la constante 2. (de type double) est
remplacée par 2.f de type float. La méme démarche s’applique, en substituant le type
float au type double. Le résultat final est de type float.

19

Exceptions flottantes et conventions
IEEE 754

Quels résultats fournit ce programme ?
public class Excep

{ public static void main (String args[])

{ double x1 = 1e200,

double y, z ;
y = Xx1*x2 ;

System.out.println ("valeur de y " + y)

X2 = x1 ;
z = y/(x2-x1) ;

System.out.println (y +

z) ;
y =15 ;
z = y/(x2-x1) ;

System.out.println (y +

z) ;

z = (x2-x1)/(x2-x1)
System.out.println ((x2-x1) + " divise par " + (x2-x1) + " ="

+z) ;

System.out.println (z + "+1 = " + (z+1))

x1
X2
z = x1/x2 ;

divise par

divise par

Float.POSITIVE_ INFINITY ;
Double.NEGATIVE_INFINITY ;

+ (x2-x1) +

+ (x2-x1) +

System.out.println (x1 + "/" + x2 + " =" + z) ;

Infinity divise par 0.0
15.0 divise par 0.0 = Infinity

Infinity

0.0 divise par 0.0 = NaN
NaN+1 = NaN
Infinity/-Infinity = NaN

Rappelons qu’en Java aucune opération sur les flottants ne conduit a un arrét de
I’exécution. En revanche, les nombres flottants respectent les conventions IEEE 754 qui
imposent 1’existence d’un motif particulier représentant les valeurs infinies, lequel
s’imprime sous la forme Infinity ou -Infinity. Les constantes correspondantes se notent
Float.Infinity ou Double.Infinity. De méme, il existe un motif particulier représentant
une valeur non calculable ; il peut s’obtenir par Float.NaN ou Double.NaN et il
s’imprime sous la forme NaN.

21

Le type char

Soit ces déclarations :
char c = 60, ce = 'e', ¢cg = 'g' ;
byte b = 10 ;
Donner le type et la valeur des expressions suivantes :
c +1
2 *c
cg - ce
b *c

c +1 =61

[’ opérateur + soumet ici son premier opérande a la promotion numérique de char en
int, ce qui fournit la valeur 60'. Le résultat est de type int.

2 * ¢ = 120
[’ opérateur * soumet ici son second opérande a la promotion numérique de char en int,
ce qui fournit la valeur 60°. Le résultat est de type int.

cg - ce = 2
[’ opérateur - soumet ici ses deux opérandes a la promotion numérique de char en int.
On obtient un résultat de type int qui représente 1’écart entre les codes des caracteres g
et e (dans le code Unicode, les lettres consécutives d’une méme casse ont des codes
consécutifs).

b * c = 600
[’ opérateur * soumet ici ses deux opérandes aux promotions numériques : de byte en
int pour le premier, de char en int pour le second. On notera qu’aucun probleme de
dépassement de capacité n’apparait puisque le produit est bien effectué dans le type int
(il en irait différemment s’il était effectué dans le type byte puisque 600 n’est pas
représentable dans ce type).

22

Operateurs logiques a "court

circuit"”

Quels résultats fournit ce programme ?
public class CourCir
{ public static void main (String args[])
{ int i=10, j=5 ;

if (i<5 && j++<10) System.out.println ("&&1 vrai")

System.out.println ("i = " + 1 + " j =" + j)

else System.out.println ("&&1 faux")

4

.
14

if (i<5 & j++<10) System.out.println ("& vrai")

System.out.println ("i = " + 1 + " j =" + j)

if (i<15 && j++<10) System.out.println ("&&2 vrai")

else System.out.println ("& faux") ;

else System.out.println ("&&2 faux")

4

.
14

14

4

System.out.println ("i = " + i+ " j =" + j) ;
if (i<15 || j++<10) System.out.println ("[|| vrai") ;
else System.out.println ("|| faux") ;
System.out.println ("i = " + i+ " j =" + j) ;
}
}
&&1 faux
i=10 j
& faux
i=10 j
&&2 vrai
i=10 j
|| vrai
i=10 j

23

4

Il faut simplement tenir compte de la proprité particuliere dont bénéficient les
opérateurs && et | dits a court-circuit. Ils n’évaluent leur second opérande que lorsque
cela est nécessaire.

24

n Priorités des opérateurs

a = x+5 // 1
a = (x=y)+ 2 // 2
a = X = y+2 // 3
a<b && c<d // 4
i++ * (n+p) // 5
X += n%p // 6
n = (p+=5) // 7

25

Affectation et conversion

Soit ces déclarations :
byte b ; short p ; int n ; long q ;
final int N=10 ;
float x ; double y ;
Parmi les expressions suivantes, lesquelles sont incorrectes et pourquoi ? Lorsque

1’expression est correcte, citer les conversions éventuellement mises en jeu.
b =n // 1

b = 25 // 2
b = 500 // 3
X = 2*q // 4
y = b*b // 5
p = b*b // 6
b = b+5 // 7
p =5*N-3 // 8
b =n; // 1 Erreur

La conversion de int en byte n’est pas autorisée par affectation.
b = 25 ; // 2 OK

D’une maniere générale, la conversion de int en byte n’est pas acceptée par affectation.
Mais une exception a lieu pour les expressions constantes (calculables a la
compilation), a condition que leur valeur soit représentable dans le type d’arrivée, ce
qui est manifestement le cas ici.

b = 500 ; // 3 Erreur

On est dans la méme situation que précédemment, avec cette différence que la valeur
500 n’est pas représentable dans le type byte.
X = 2*q ; // 4 OK

Ici, I’expression 2*q est évaluée en effectuant la conversion d’ajustement de type de 2
en long. Puis le résultat, de type long, est converti dans le type float avant d’étre
affecté a x.

y = b*b ; // 5 0K

26

La valeur de I’expression b*b est évaluée en effectuant la promotion numeérique de b en
int. Le résultat, de type int, est converti dans le type double avant d’étre affecté a y.
p = b*b ; // 6 Erreur

La encore, la valeur de 1’expression b*b est de type int. La conversion de int en short
est illégale par affectation.
b = b+5 ; // 7 Erreur

La valeur de I’expression b+5 est de type int. La conversion de int en short est illégale
par affectation.

p =5*N-3; // 8 0K
[’expression 5*N-3 est de type int. Mais comme il s’agit d’une expression constante
(calculable a la compilation), sa conversion en short est 1égale par affectation pour peu
que sa valeur soit représentable dans ce type, ce qui est le cas ici.

27

n Opérateurs d’incrementation, de
decréementation et d’affectation
elargie

Quels résultats fournit ce programme ?
public class OpIncr
{ public static void main(String[] args)
{ int i, j, n ;

i=0; n=1i++ ;
System.out.println ("A : 1 ="+ i+ " n="4+4+n) ;

i=10; n=++ 1 ;
System.out.println ("B : 1 =" + i+ " n="4+4+n) ;

i=20; j=5; n=i1i++ * ++ j ;
System.out.println ("C : 1 ="+ i+ " j="+3j+"n="4+n

)

i=15; n =1 += 3 ;

System.out.println ("D : 1 =" + i+ " n=" 4+ n) ;
i=3;Jj=5;n=1i%=--3

System.out.println ("E : i =" + i+ " j ="+ 3+ " n="+
n) ;

A:1=1n=20

B :1i=11n = 11
C:1=213j=6n=120
D :i=18 n = 18
E:1=12 j =4 n = 12

28

Opérateurs d’incrémentation et
d’affectation élargie

Soit ces déclarations :
byte b ; short p ; char ¢ ; int n ; float x ;

Parmi les expressions suivantes, lesquelles sont incorrectes et pourquoi ?

c=c+1 // 1
c++ // 2
c += 3 // 3
b += ¢ // 4
p +=b // 5
p=p+D>Hb // 6
h += X // 7
h=n+ X // 8
X++ ; // 9
c=c+1 // 1 Erreur

[’ expression c+1 est du type int qui ne peut pas étre converti en char par affectation.
C++ // 2 0K

Ici, I’opérateur ++ applique son incrémentation de 1 directement a la variable c de type
char. Aucune conversion n’est mise en jeu.
c += 3 // 3 OK

Cette expression est en fait équivalente a c=(char) (c+3) et non simplement a c=c+3.

Dans ces conditions, elle évalue bien I’expression c+3 dans le type int mais elle en

force ensuite la conversion en char. Notez bien que 1’affectation c=c+3 serait illégale.
b += ¢ // 4 OK

Cette expression est équivalente a b = (byte) (b+c).
p+= b // 5 OK

Cette expression est équivalente a p = (short) (p+b).
p=p+Db // 6 Erreur

La valeur de I’expression p+b est de type int (les deux opérandes de + sont soumis aux

29

promotions numériques en int). Elle ne peut pas étre convertie en short par affectation.
Notez la différence avec 1’expression précédente.
n += x // 7 OK

Cette expression est équivalente a n = (int) (n+x). Notez cependant qu’on emploie
rarement |1’ opérateur += de cette maniere.
n=n+ X // 8 Erreur

[’expression n+x est de type float et sa valeur ne peut pas étre convertie par
affectation en int.

X++ // 9 OK

Cette expression joue le méme role que x=x+1. En pratique, on emploie rarement les
opérateurs d’incrémentation ou de décrémentation sur des variables flottantes.

30

Operateur conditionnel

Quels résultats fournit ce programme ?
public class OpCond
{ public static void main(String[] args)
{ int n=10, p=5, =10 ;

n:p:q:5;

n+=p +=4q ;
System.out.println ("A : n
q) ;

n + n + n p - n + p + n q - n

q=n<p? nt+ : pt+ ;

4

System.out.println ("B : n =" + n+ " p="+p+ " q="
q) ;
q=n>p ? nt+ ! p++ ;
System.out.println ("C : n =" + n+ " p="+p+ " q="
q) ;
}
}
A :n=15p =10 q = 5
B:n=15p = 11 q = 10
C:n=16p = 11 q = 15

1. En toute rigueur, la valeur de la variable c est non pas 60, mais I’entier dont le code (Unicode) est égal a 60.
2. Méme remarque que précédemment.

31

Chapitre 2

Les instructions de controle

-mf;—-'"r ...'/r'.ih II_

—-G U | ——

- N

Connaissances requises

» Instructions simples, instructions structurées, instructions composées (bloc)
* L’instruction if ; cas des if imbriqués

» L’instruction switch ; 1’ étiquette default

* L’instruction do while

* L’instruction while

* L’instruction for ; initialisation avec éventuelle déclaration, condition d’arrét,
incrémentation

* Les instructions de branchement inconditionnel break et continue avec ou
sans étiquette

Note : on suppose qu’on dispose d’une classe nommée Clavier, comportant (entre
autres) des méthodes (statiques) de lecture au clavier d’informations de type int
(lireInt), float (lireFloat), double (lireDouble) et char (lireChar). Cette classe est
présente sur le site Web d’accompagnement et sa liste est fournie en Annexe D.

32

Syntaxe de if et de switch

Quelles erreurs ont été commises dans chacun des groupes d’instructions suivants.
On suppose que les variables concernées sont d’un type primitif numérique et
qu’elles ont été correctement déclarées (un groupe ne comporte aucune erreur) :
// groupe 1
if (a < b) System.out.println ("ascendant")
else System.out.println ("non ascendant")

4

// groupe 2

if (a < b) { System.out.println ("ascendant) ; max = b }

// groupe 3

int n, p ;

switch (n) { case 2 : System.out.println ("petit") ; break ;
case p : System.out.println ("limite") ; break ;

}

// groupe 4

int n ;

final int LIMITE = 20 ;

switch (n) { case LIMITE-1 : System.out.println ("un peu trop
petit") ; break ;

case LIMITE : System.out.println ("OK") ; break ;

case LIMITE+1 : System.out.println ("un peu trop
grand") ; break ;
}

Groupe 1

Il manque un point-virgule a la fin du premier appel de System.out.printin :
if (a < b) System.out.println ("ascendant")
else System.out.println ("non ascendant")

4

4

33

Groupe 2

Il manque un point-virgule a la fin de la deuxieme instruction du bloc :
if (a < b) { System.out.println ("ascendant) ; max = b ; }

Groupe 3

Les valeurs utilisées dans les étiquettes de la forme case xxx doivent étre des
expressions constantes, ce qui n’est pas le cas de p.

Groupe 4

Aucune erreur. Les expressions telles que LIMITE-1 étant bien cette fois des
expressions constantes.

34

Role de P’instruction switch

Soit le programme suivant® :
public class ExoII2
{ public static void main(String[] args)
{ int n ;
n = Clavier.lireInt() ;
switch (n)
{ case 0 : System.out.println ("Nul") ;

case 1 :

case 2 : System.out.println ("Petit") ;
break ;

case 3 :

case 4 :

case 5 : System.out.println ("Moyen") ;
default : System.out.println ("Grand") ;

}
}
}

Quels résultats affiche-t-il lorsqu’on lui fournit en donnée :
1. 1a valeur O,

2. la valeur 1,

3. la valeur 4,

4. la valeur 10,

5. la valeur -5.

a. Il utilise la classe Clavier (voir note en début de chapitre).

// avec la valeur 0
Nul
Petit

// avec la valeur 1

35

Petit

// avec la valeur 4
Moyen
Grand

// avec la valeur 10
Grand

// avec la valeur -5
Grand

36

Syntaxe des boucles

Quelles erreurs ont été commises dans chacune des instructions suivantes ?

do n++ while (n<10) ; // instruction 1
do while ((n = Clavier.lireInt()) != 10) ; // instruction 2
do ; while (true) ; // instruction 3
do {} while (false) ; // instruction 4

Instruction 1
Il manque un point-virgule :
do n++ ; while (n<10) ;

Instruction 2

Il manque une instruction (méme vide) apres le mot do, par exemple :
do ; while ((n = Clavier.lireInt()) !'= 10) ;

ou:
do {} while ((n = Clavier.lireInt()) != 10) ;

Instruction 3

Aucune erreur de compilation ne sera détectée. Mais on est en présence d’une boucle
infinie.

Instruction 4
Aucune erreur de compilation ne sera détectée. Mais 1’instruction ne sert a rien.

37

Comparaison entre for, while et
do... while

Soit le programme suivant® :

public class ExoII4a

{ public static void main(String[] args)

{ int i, n, som ;

som = 0 ;

for (i=0 ; i<4 ; i++)
{ System.out.println ("donnez un entier ")
n = Clavier.lireInt()
som += n ;

/4
}
System.out.println ("Somme : " + som)

}
}

Ecrire un programme réalisant la méme chose en employant a la place de
I’instruction for :

1. une instruction while,

2. une instruction do. .. while.

4

.
4

.
14

a. Il utilise la classe Clavier (voir note en début de chapitre).

Avec une instruction while :
public class ExoII4b
{ public static void main(String[] args)
{ int i, n, som ;
som = 0
i=20;
while (i<4)

4

{ System.out.println ("donnez un entier ")

n = Clavier.lireInt()

4

14

38

som += n ;
i++
}
System.out.println ("Somme : " + som)
}
¥

4

Avec une instruction do. .. while :

public class ExoII4c
{ public static void main(String[] args)
{ int i, n, som ;

som = 0 ;
i=0;
do

{ System.out.println ("donnez un entier ")

n = Clavier.lireInt() ;
som += n ;

i++
¥
while (i<4) ;
System.out.println ("Somme : " + som)
}
¥

39

l4

l4

4

Rupture de séquence avec break et
continue

Quels résultats fournit le programme suivant ?
public class ExoII5
{ public static void main(String[] args)
{ int n=0 ;
do
{ if (n%2==0) { System.out.println (n + " est pair")
n += 3 ;
continue ;

4

}
if (n%3==0) { System.out.println (n + " est multiple de 3") ;
n += 5 ;
}
if (n%5==0) { System.out.println (n + " est multiple de 5") ;
break ;
}
n+:1;
}
while (true) ;
}
}

0 est pair

3 est multiple de 3
9 est multiple de 3
15 est multiple de 3
20 est multiple de 5

40

Boucle while, opérateurs
d’affectation elargie et
d’incréementation (1)

Quels résultats fournit le programme suivant ?
public class ExoII6
{ public static void main(String[] args)
{ int n, p ;

n =20,
while (n<=5) n++ ;
System.out.println ("A : n =" + n) ;
n=p=20,
while (n<=8) n += p++ ;
System.out.println ("B : n =" + n) ;
n=p=20,
while (n<=8) n += ++p ;
System.out.println ("C : n =" + n) ;
n=p=20,
while (p<=5) n += p++ ;
System.out.println ("D : n =" + n) ;
n=p=20,
while (p<=5) n+= ++p ;
System.out.println ("D : n =" + n) ;
}
}
A n =26
B n = 10

41

10
15
21

42

Boucle while, operateurs
d’affectation élargie et
d’incrémentation (2)

Quels résultats fournit le programme suivant ?
public class ExoII7
{ public static void main(String[] args)
{ int n, p ;

n=p=0 ;
while (n<5) n+=2 ; p++ ;
System.out.println ("A : n="+n+ ", p="+ p) ;
n=p=0 ;
while (n<5) { n+=2 ; p++ ; }
System.out.println ("B : n="+n+ ", p=" + p) ;
}
}
A:n=6,p=1
B n =6, p=3

43

Syntaxe générale des trois parties
d’une boucle for

Quels résultats fournit le programme suivant ?
public class ExoIIS8
{ public static void main (String[] args)
{ int i, n ;

for (i=0, n=0 ; i<5 ; i++) n++ ;
System.out.println ("A : 1 =" +1i + ", n = + n) ;

for (i=0, n=0 ; i<5 ; i++, n++) {}
System.out.println ("B : 1 =" +1i + ", n=" + n) ;

for (i=0, n=50 ; n>10 ; i++, n-= 1) {}
System.out.println ("C : 1 =" +1i + ", n=" + n) ;

for (i=0, n=0 ;

i<3 ; i++, n+=i, System.out.println ("D : i =" + i + ",
"+ n));
System.out.println ("E : i ="+ 1+ ", n=" + n) ;
}
}
A i=5 n=25
B i=5 n=25
C i=9, n=5
D:i=1, n=1
D i=2, n=3
D i1=3, n=26
E i1=3, n=26

~

44

Synthese : calcul d’une suite de
racines carrees

Ecrire un programme qui calcule les racines carrées de nombres fournis en donnée.
Il s’arrétera lorsqu’on lui fournira la valeur 0% II refusera les valeurs négatives. Son
exécution se présentera ainsi :

donnez un nombre positif : 2

sa racine carree est : 1.4142135623730951

donnez un nombre positif : -3

svp positif

donnez un nombre positif : 5

sa racine carree est : 2.23606797749979

donnez un nombre positif : 0

a. Rappelons que la méthode Math.sqrt fournit un résultat de type double correspondant a la valeur de type double
fournie en argument.

Il existe beaucoup de rédactions possibles. En voici trois :

public class RacCara
{ public static void main (String[] args)
{ double x ;
do
{ System.out.print ("donnez un nombre positif : ") ;
X = Clavier.lireDouble () ;
if (x < 0) System.out.println ("svp positif") ;
if (x <=0) continue ;
System.out.println ("sa racine carree est : " + Math.sqrt (x)

)
}
while (x !'= 0) ;
}
}

45

public class RacCarb
{ public static void main (String[] args)
{ double x ;
do
{ System.out.print ("donnez un nombre positif : ") ;
X = Clavier.lireDouble() ;
if (x < 0) { System.out.println ("svp positif") ;
continue ;

}

if (x>0) System.out.println ("sa racine carree est
Math.sqgrt (x)) ;

}
while (x !'= 0) ;
}
}

public class RacCarc
{ public static void main (String[] args)
{ double x ;
do
{ System.out.print ("donnez un nombre positif : ") ;
X = Clavier.lireDouble() ;
if (x < 0) { System.out.println ("svp positif ") ;
continue ;

}

if (x>0) System.out.println ("sa racine carree est
Math.sqrt (x)) ;

if (x==0) break ;
}

while (true) ;

b
b

46

Synthese : calcul de la valeur
d’une seérie

Ecrire un programme calculant la somme des n premiers termes de la "série
harmonique", c’est-a-dire la somme :

1+1/2+1/3+1/4+ ... +1/n

La valeur de n sera lue en donnée®.

a. On pourra utiliser la classe Clavier (voir note en début de chapitre).

public class Serie
{ public static void main (String[] args)

{ int nt ; // nombre de termes de la serie harmonique
float som ; // pour la somme de la serie
int i ;
do
{ System.out.print ("combien de termes : ") ;
nt = Clavier.lireInt() ;
}

while (nt<1) ;
for (i=1, som=0 ; i<=nt ; i++) som += (float)l/i ;

System.out.println ("Somme des " + nt + " premiers termes = " +
som) ;

1. Rappelons que dans :
som += (float)1/i

1’opérateur float porte sur 1’entier 1. Le premier opérande de 1’opérateur / est donc de
type float ; par conséquent, son second opérande sera soumis a une promotion

47

numérique en float, avant qu’on ne procede a la division.
Notez qu’il faut éviter d’écrire :
som += 1/1i
En effet dans ce cas I’opérateur / porterait sur deux entiers et correspondrait a la
division entiere. Le résultat serait toujours nul (sauf pour i = 1).
De méme, en écrivant :
som += (float)(1/1i)
le résultat ne serait pas plus satisfaisant puisque la conversion en flottant n’aurait lieu
qu’apres la division (en entier).
En revanche, on pourrait écrire :
som += 1.0f/i

2. On peut améliorer la précision du résultat en effectuant la somme "a 1’envers",
c’est-adire en allant de n vers 1 et non pas de 1 vers n. La différence ne deviendra
cependant perceptible que pour de grandes valeurs de n.

48

Synthese : dessin d’un triangle en
mode texte

Ecrire un programme qui affiche un triangle isocéle formé d’étoiles. La hauteur du
triangle (c’est-a-dire son nombre de lignes) sera fourni en donnée?, comme dans
1’exemple ci-dessous. On s’arrangera pour que la derniere ligne du triangle s’affiche
sur le bord gauche de 1’écran.

combien de lignes ? 8
*

* % %
* %% %%
%k k% k%%
kkkkkkkk*k
E Rk kO O O o o o
kR kO o o S S S S O

E Rk kO Ok S S S S S R

a. On pourra utiliser la classe Clavier (voir note en début de chapitre).

public class Dessin

{
public static void main (String[] args)
{
int nLignes ; // nombre total de lignes
int numLigne ; // compteur de ligne
int nEspaces ; // nombre d'espaces precedent une
etoile
final char cRempli = '*' ; // caractere de remplissage (ici
etoile)
int j ;

System.out.print ("combien de lignes ? ") ;
nLignes = Clavier.lireInt () ;

49

for (numLigne=0 ; numLigne<nLignes ; numLigne++)

{ nEspaces = nLignes - numLigne - 1 ;

for (j=0 ; j<nEspaces ; j++) System.out.print (' ') ;

for (j=0 ; j<2*numLigne+1 ; j++) System.out.print (cRempli) ;
System.out.println () ;

}

50

Synthese : calcul de combinaisons

Ecrire un programme qui affiche toutes les maniéres possibles d’obtenir un franc
avec des pieces de 2 centimes, 5 centimes et 10 centimes. Dire combien de
possibilités ont ainsi été trouvées. Les résultats seront présentés ainsi :

1 F =50 X 2¢c

1F =45 X 2c + 2 X 5¢
1F =40 X 2c + 4 X 5¢
1 F=235X2c + 6 X 5¢
1F=230X2c + 8 X 5¢
1 F =25 X 2c + 10 X 5¢C
1 F =20 X 2c + 12 X 5¢C
1 F =15 X 2c + 14 X 5¢C

1 F =15 X 2c + 7 X 10c

1F=10 X2c + 2 X 5¢c + 7 X 10c
1F=5X2c+ 4X5c+ 7 X 10c
1F=6X5c+ 7 X 10c

1 F =10 X 2c + 8 X 10c

1 F=5X2c+ 2 X5c + 8 X 10c
1F=4X5c+ 8 X 10c

1 F=5X2c + 9 X 10c

1 F=2X5c+ 9 X 10c

1F =10 X 10c

En tout, il y a 66 facons de faire 1 F

public class Combis

{

public static void main (String[] args)

{

int nbf ; /* compteur du nombre de facons de faire 1 F */
int n10 ; /* nombre de piéces de 10 centimes */
int n5 ; /* nombre de piéces de 5 centimes */

51

int n2 ; /* nombre de piéces de 2 centimes */

nbf = 0 ;

for (n10=0 ; nl1l0<=10 ; nlO++)
for (n5=0 ; n5<=20 ; n5++)
for (n2=0 ; n2<=50 ; n2++)

if (2*n2 + 5*n5 + 10*n10 == 100)
{ nbf ++ ;
System.out.print ("1 F = ") ;

if (n2 !'= 0) System.out.print (n2 + " X 2c") ;
if (n5 !'= 0) { if (n2 != 0) System.out.print (" + ") ;
System.out.print (n5 + " X 5c") ;

¥
if (n1e '= 0) { if ((n2 !'= Q) || (n5 != 0)) System.out.print
(II + II) ;

System.out.print (n10 + " 10c") ;

¥
System.out.println () ;

}

System.out.println ("En tout, il y a " + nbf + " facons de faire 1
F')

52

Chapitre 3

Les classes et les objets

' — N
= W<y

Connaissances requises

* Notion de classe : définition des champs et des méthodes, acces privés ou
publics aux membres, utilisation d’une classe

» Mise en oeuvre d’un programme comportant plusieurs classes, a raison d’une
ou plusieurs classes par fichier source

* Notion de constructeur ; regles d’écriture et d’utilisation

* Les différentes étapes de la création d’un objet : initialisation par défaut,
initialisation explicite, appel du constructeur ; cas particulier des champs
déclarés avec I’ attribut final

» Affectation et comparaison d’objets
* Notion de ramasse-miettes

* Regles d’écriture d’une méthode ; méthode fonction, arguments muets ou
effectifs, regles de conversion des arguments effectifs, propriétés des variables
locales

» Champs et méthodes de classe ; initialisation des champs de classe, bloc
d’initialisation statique
* Surdéfinition de méthodes

* Le mot clé this ; cas particulier de 1’appel d’un constructeur au sein dun autre
constructeur

» Récursivité des méthodes

53

* Mode de transmission des arguments et de la valeur de retour
* Objets membres

* Paquetages

54

Creation et utilisation d’une
classe simple

Réaliser une classe Point permettant de représenter un point sur un axe. Chaque
point sera caractérisé par un nom (de type char) et une abscisse (de type double).
On prévoira :

* un constructeur recevant en arguments le nom et 1’abscisse d’un point,

» une méthode affiche imprimant (en fenétre console) le nom du point et son
abscisse,

» une méthode translate effectuant une translation définie par la valeur de son
argument.

Ecrire un petit programme utilisant cette classe pour créer un point, en afficher les
caractéristiques, le déplacer et en afficher a nouveau les caractéristiques.

Ici, notre programme d’essai (méthode main) est séparé de la classe Point, mais placé
dans le méme fichier source. La classe Point ne peut donc pas étre déclarée publique.
Rappelons que, dans ces conditions, elle reste utilisable depuis n’importe quelle classe
du paquetage par défaut.

class Point

{ public Point (char c, double x) // constructeur
{ nom = c ;
abs = x ;

}

public void affiche ()

{ System.out.println ("Point de nom " + nom + " d'abscisse " +
abs) ;

}
public void translate (double dx)

{ abs += dx ;

}

55

private char nom ; // nom du point
private double abs ; // abscisse du point
}
public class TstPtAxe
{ public static void main (String args[])
{ Point a = new Point ('C', 2.5) ;
a.affiche() ;
Point b = new Point ('D', 5.25) ;
b.affiche() ;
b.translate(2.25) ;
b.affiche() ;

b
b

Point de nom C d'abscisse 2.5
Point de nom D d'abscisse 5.25
Point de nom D d'abscisse 7.5

56

Initialisation d’un objet

Que fournit le programme suivant ?
class A
{ public A (int coeff)
{ nbre *= coeff ;
nbre += decal ;

}

public void affiche ()
{ System.out.println ("nbre = " + nbre + " decal = " + decal) ;
}

private int nbre = 20 ;
private int decal ;

}

public class InitChmp

{ public static void main (String args[])
{ Aa=new A (5) ; a.affiche() ;

}

}

La création d’un objet de type A entraine successivement :

* ’initialisation par défaut de ses champs nbre et decal a une valeur "nulle" (ici
I’entier 0),

« ’initialisation explicite de ses champs lorsqu’elle existe ; ici nbre prend la valeur
20,

 I’appel du constructeur : nbre est multiplié par la valeur de coeff (ici 5), puis
incrémenté de la valeur de decal (0).

En définitive, le programme affiche :
nbre = 100 decal = 0

57

Champs constants

Quelle erreur a été commise dans cette définition de classe ?
class ChCt
{ public ChCt (float r)
{x=r;

private final float x ;
private final int n 10 ;
private final int p ;

Le champ p déclaré final doit étre initialisé au plus tard par le constructeur, ce qui
n’est pas le cas. En revanche, les autres champs déclarés final sont correctement
initialisés, n de facon explicite et x par le constructeur.

58

Affectation et comparaison d’objets

Que fournit le programme suivant ?

class Entier

{ public Entier (int nn) { n = nn ; }

public void incr (int dn) { n += dn ; }

public void imprime () { System.out.println (n) ; }
private int n ;

nl
nl
nl
nl
n2
nl
nl

L’ opérateur

}

public class TstEnt
{ public static void main (String args[])

{ Entier nl1 = new Entier (2) ; System.out.print ("n1 = ") ;
ni.imprime() ;

Entier n2 = new Entier (5) ; System.out.print ("n1 = ") ;
n2.imprime() ;

nl.incr(3) ; System.out.print ("ni1 = ") ; nl.imprime() ;
System.out.println ("nl1 == n2 est " + (n1 == n2)) ;

ni = n2 ; n2.incr(12) ; System.out.print ("n2 = ") ;

n2.imprime() ;

System.out.print ("n1 = ") ; nl.imprime() ;

System.out.println ("n1 == n2 est " + (n1 == n2)) ;

17
n2

est false

est true

== appliqué a des objets compare leurs références (et non leurs valeurs).

C’est pourquoi la premiere comparaison (n1 == n2) est fausse alors que les objets ont
la méme valeur. La méme reflexion s’applique a I’opérateur d’affectation. Apres

59

exécution de n1 = n2, les références contenues dans les variables nl et n2 sont les
mémes. L’objet anciennement référencé par n2 n’étant plus référencé par ailleurs, il
devient candidat au ramasse-miettes.

Dorénavant nl1 et n2 référencent un seul et méme objet. L'incrémentation de sa valeur
par le biais de n1 se retrouve indifféremment dans nl.imprime et dans n2.imprime. De
méme, la comparaion nl == n2 a maintenant la valeur vrai.

60

Methodes d’acces aux champs
prives

Soit le programme suivant comportant la définition d’une classe nommée Point et
son utilisation :
class Point
{ public Point (int abs, int ord) { x = abs ; y = ord ; }
public void deplace (int dx, int dy) { x += dx ; y +=dy ; }
public void affiche ()

{ System.out.println ("Je suis un point de coordonnees " + x +
n n + y) ;

}

private double x ; // abscisse
private double y ; // ordonnee
}
public class TstPnt
{ public static void main (String args[])
{ Point a ;
a = new Point(3, 5) ; a.affiche() ;
a.deplace(2, 0) ; a.affiche() ;
Point b = new Point(6, 8) ; b.affiche() ;

}
}

Modifier la définition de la classe Point en supprimant la méthode affiche et en
introduisant deux méthodes d’acces nommées abscisse et ordonnee fournissant
respectivement 1’abscisse et I’ordonnée d’un point. Adapter la méthode main en
conséquence.

class Point

{ public Point (int abs, int ord) { x = abs ; y = ord ; }
public void deplace (int dx, int dy) { x +=dx ; y +=dy ; }
public double abscisse () { return x ; }

61

public double ordonnee () { returny ; }
private double x ; // abscisse
private double y ; // ordonnee
}
public class TstPntl
{ public static void main (String args[])
{ Point a ;
a = new Point(3, 5) ;
System.out.println ("Je suis un point de coordonnees "
+ a.abscisse() + " " + a.ordonnee()) ;
a.deplace(2, 0) ;
System.out.println ("Je suis un point de coordonnees "
+ a.abscisse() + " " + a.ordonnee()) ;
Point b = new Point(6, 8) ;
System.out.println ("Je suis un point de coordonnees "
+ b.abscisse() + " " + b.ordonnee()) ;

Cet exemple était surtout destiné a montrer que les méthodes d’acces permettent de
respecter 1’encapsulation des données. Dans la pratique, la classe disposera

probablement d’une méthode affiche en plus des méthodes d’acces.

62

Conversions d’arguments

On suppose qu’on dispose de la classe A ainsi définie :

class A

{ void f (int n, float x) { }
void g (byte b) { }

}

Soit ces déclarations :
A a ; int n ; byte b ; float x ; double y ;

Dire si les appels suivants sont corrects et sinon pourquoi.
a.f (n, x) ;

(b+3, x) ;

(b, x) ;

(n, y) ;

(n, (float)y) ;

(n, 2*x) ;

(n+5, x+0.5) ;

(b) ;

(b+1) ;

(b++) ;

(3)

VR T I)
@ @ @ @ =h =h =h -h -h -h

. (n, x) ; // OK : appel normal
f (b+3, x) ; // OK : b+3 est déja de type int
f (b, x) ; // OK : b de type byte sera converti en int

. (n, vy) ; // erreur : y de type double ne peut étre
converti en float

a.f (n, (float)y) ; // OK
a.f (n, 2*x) ; // OK : 2*x est de type float

a.f (n+5, x+0.5) ; // erreur : 0.5 est de type double, donc x+0.5
est de

v v O

// type double, lequel ne peut pas étre converti en

63

float

a.g (b) ; // OK : appel normal
a.g (b+1) ; // erreur : bl+l de type int ne peut étre
converti en byte
a.g (b++) ; // OK : bl++ est de type int

// (mais peu conseillé : on a modifié la valeur de b1l)
a.g (3) ; // erreur : 3 de type int ne peut étre

convertie en byte

64

Champs et méthodes de classe (1)

Quelles erreurs ont été commises dans la définition de classe suivante et dans son
utilisation ?
class A
{ static int f (int n)
{a=n;
}
void g (int n)
{a=n;
p=n,
}
static private final int p = 20 ;
private int q ;
}
public class EssaiA
{ public static void main (String args[])
{ Aa=new A() ; int n = 5 ;
a.g(n) ;
a.f(n) ;
f(n) ;
}
}

La méthode statique f de A ne peut pas agir sur un champ non statique ; 1’affectation
g=n est incorrecte.

Dans la méthode g de A, I’affectation g=n n’est pas usuelle mais elle est correcte. En
revanche, 1’affectation p=n ne 1’est pas puisque p est final (il doit donc étre initialisé
au plus tard par le constructeur et il ne peut plus étre modifié par la suite).

Dans la méthode main, 1’appel a.f(n) se réfere a un objet, ce qui est inutile mais toléré.
Il serait cependant préférable de 1’écrire A.f(n). Quant a 1’appel f(n) il est incorrect
puisqu’il n’existe pas de méthode f dans la classe EssaiA'. 1l est probable que ’on a
voulu écrire A.f(n).

65

Champs et meéthodes de classe (2)

Créer une classe permettant de manipuler un point d’un axe, repéré par une abscisse
(de type int). On devra pouvoir effectuer des changements d’origine, en conservant
en permanence 1’abscisse d’une origine courante (initialement 0). On prévoira
simplement les méthodes suivantes :

* constructeur, recevant en argument 1’abscisse "absolue" du point (c’est-a-dire
repérée par rapport au point d’origine 0 et non par rapport a 1’origine courante),

* dffiche qui imprime a la fois 1’abscisse de 1’origine courante et 1’abscisse du
point par rapport a cette origine,

* setOrigine qui permet de définir une nouvelle abscisse pour 1’origine (exprimée
de facon absolue et non par rapport a 1’origine courante),

* getOrigine qui permet de connaitre 1’abscisse de 1’origine courante.

Ecrire un petit programme de test fournissant les résultats suivants :
Point a - abscisse = 3
relative a une origine d'abscisse 0
Point b - abscisse = 12
relative a une origine d'abscisse 0
On place 1l'origine en 3
Point a - abscisse = 0
relative a une origine d'abscisse 3
Point b - abscisse = 9
relative a une origine d'abscisse 3

[’abscisse de I’origine courante est une information qui concerne tous les points de la
classe. On en fera donc un champ de classe en le déclarant static. De la méme manieére,
les méthodes setOrigine et getOrigine concernent non pas un point donné, mais la
classe. On en fera des méthodes de classe en les déclarant static.

class Point
{ public Point (int xx) { x = xx ; }
public void affiche ()

66

{ System.out.println ("abscisse = " + (x-origine)) ;
System.out.println (" relative a wune origine d'abscisse " +
origine) ;

}

public static void setOrigine (int org) { origine = org ; }

public static int getOrigine() { return origine ; }

private static int origine ; // abscisse absolue de 1l'origine
courante

private int x ; // abscisse absolue du point

}

public class TstOrig
{ public static void main (String args[])

{ Point a = new Point (3) ; System.out.print ("Point a - ") ;
a.affiche() ;
Point b = new Point (12) ,; System.out.print ("Point b - ") ;

b.affiche() ;
Point.setOrigine(3) ;

System.out.println ("on place 1'origine en " +
Point.getOrigine()) ;
System.out.print ("Point a - ") ; a.affiche() ;
System.out.print ("Point b - ") ; b.affiche() ;
}
}

67

Champs et meéthodes de classe (3)

Réaliser une classe qui permet d’attribuer un numéro unique a chaque nouvel objet
créé (1 au premier, 2 au suivant...). On ne cherchera pas a réutiliser les numéros
d’objets éventuellement détruits. On dotera la classe uniquement d’un constructeur,
d’une méthode getldent fournissant le numéro attribué a 1’objet et d’une méthode
getldentMax fournissant le numéro du dernier objet créé.

Ecrire un petit programme d’essai.

Chaque objet devra disposer d’un champ (de préférence privé) destiné a conserver son
numeéro. Par ailleurs, le constructeur d’un objet doit étre en mesure de connaitre le
dernier numéro attribué. La démarche la plus naturelle consiste a le placer dans un
champ de classe (nommé ici numCour). La méthode getldentMax est indépendante
d’un quelconque objet ; il est préférable d’en faire une méthode de classe.

class Ident
{ public Ident ()
{ numCour++ ;
num = numCour ;
}
public int getIdent()
{ return num ;
}
public static int getIdentMax()
{ return numCour ;

}
private static int numCour=0 ; // dernier numero attribué
private int num ; // numero de l'objet

}

public class TstIdent

{ public static void main (String args[])

{ Ident a = new Ident(), b = new Ident() ;
System.out.println ("numero de a : " + a.getIdent()) ;

68

System.out.println ("numero de b : " + b.getIdent()) ;
System.out.println ("dernier numero " + Ident.getIdentMax()) ;
Ident ¢ = new Ident() ;

System.out.println ("dernier numero " + Ident.getIdentMax()) ;

b
b

Ce programme fournit les résultats suivants :
numero de a : 1
numero de b : 2
dernier numero 2
dernier numero 3

Si I’on souhaitait récupérer les identifications d’objets détruits, on pourrait exploiter le
fait que Java appelle la méthode finalize d’un objet avant de le soumettre au ramasse-
miettes. Il faudrait alors redéfinir cette méthode en conservant les numéros ainsi
récupérés et en les réutilisant dans une construction ultérieure d’objet, ce qui
compliquerait quelque peu la définition de la classe. De plus, il ne faudrait pas perdre
de vue qu’un objet n’est soumis au ramasse-miettes qu’en cas de besoin de mémoire et
non pas nécessairement des qu’il n’est plus référencé.

69

Bloc d’initialisation statique

Adapter la classe précédente, de maniére que le numéro initial des objets soit lu au
clavier®. On devra s’assurer que la réponse de 1’utilisateur est strictement positive.

a. On pourra utiliser la méthode lireInt de la classe Clavier fournie sur le site Web d’accompagnement et dont la liste
figure en Annexe D

S’il n’était pas nécessaire d’effectuer un test sur la valeur fournie au clavier, on
pourrait se contenter de modifier ainsi la classe Ident précédente :

public Ident ()
{ num = numCour ;
numCour++

private static int numCour=Clavier.lireInt() ; // dernier numero
attribué

Notez cependant que 1’utilisateur ne serait pas informé que le programme attend qu’il
frappe au clavier.

Mais ici, I’initialisation de numCour n’est plus réduite a une simple expression. Elle
fait donc obligatoirement intervenir plusieurs instructions et il est nécessaire de
recourir a un bloc d’initialisation statique en procédant ainsi :

class Ident

{ public Ident ()

{ num = numCour ;

numCour++ ;

}

public int getIdent()

{ return num ;

}

public static int getIdentMax()
{ return numCour-1 ;

70

}

private static int numCour ; // prochain numero a attribuer
private int num ; // numero de l'objet

static

{ System.out.print ("donnez le premier identificateur : ") ;

do numCour = Clavier.lireInt() ; while (numCour <= 0)

b
b

4

A titre indicatif, avec le méme programme (main) que dans ’exercice précédent, on
obtient ces résultats :

donnez le premier identificateur : 12
numero de a : 12
numero de b : 13
dernier numero 13
dernier numero 14

1. Les instructions d’un bloc d’initialisation statique ne concernent aucun objet en
particulier ; elles ne peuvent donc accéder qu’a des champs statiques. En outre, et
contrairement a ce qui se produit pour les instructions des méthodes, ces champs
doivent avoir été déclarés avant d’etre utilisés. Ici, il est donc nécessaire que la
déclaration du champ statique numCour figure avant le bloc statique (en pratique, on
a tendance a placer ces blocs en fin de définition de classe).

2. Les instructions d’un bloc d’initialisation sont exécutées avant toute création d’un
objet de la classe. Méme si notre programme ne créait aucun objet, il demanderait a
I’utilisateur de lui founir un numéro.

71

Surdéfinition de méthodes

Quelles erreurs figurent dans la définition de classe suivante ?
class Surdef

{ public void f (int n) { }
public int f (int p) {..... }
public void g (float x) {..... }
public void g (final double y) { }
public void h (long n) {..... }
public int h (final long p) {..... }

}

Les deux méthodes f ont des arguments de méme type (la valeur de retour n’intervenant
pas dans la surdéfinition des fonctions). Il y a donc une ambiguité qui sera détectée des
la compilation de 1a classe, indépendamment d’une quelconque utilisation.

La surdéfinition des méthodes g ne présente pas d’anomalie, leurs arguments étant de
types différents.

Enfin, les deux méthodes h ont des arguments de méme type (long), le qualificatif final
n’intervenant pas ici. La compilation signalera également une ambiguité a ce niveau.

72

Recherche d’une methode
surdéfinie (1)

Soit la définition de classe suivante :
class A
{ public void f (int n) { }
public void f (int n, int q) { }
public void f (int n, double y) { }
}

Avec ces déclarations :
A a ; byte b ; short p ; int n ; long q ; float x ; double y ;

Quelles sont les instructions correctes et, dans ce cas, quelles sont les méthodes
appelées et les éventuelles conversions mises en jeu ?

a.f(n);
a.f(n, q) ;
a.f(q) ;
a.f(p, n) ;
a.f(b, x) ;
a.f(q, x) ;
a.f(n); // appel f(int)
a.f(n, q) ; // appel f(int, double) aprés conversion de q en
double
a.f(q) ; // erreur : aucune méthode acceptable
a.f(p, n) ; // appel f(int, int) aprés conversion de p en int
a.f(b, x) ; // appel f(int, double) aprés conversion de b en int
// et de x en double
a.f(q, x) ; // erreur : aucune méthode acceptable

73

Recherche d’une meéthode surdéfinie
(2)

Soit la définition de classe suivante :

class A

{ public void f (byte b) { }
public void f (int n) { }
public void f (float x) { }
public void f (double y) { }
}

Avec ces déclarations :
A a ; byte b ; short p ; int n ; long q ; float x ; double y ;

Quelles sont les méthodes appelées et les éventuelles conversions mises en jeu dans
chacune des instructions suivantes ?

a.f(b) ;
a.f(p) ;
a.f(q) ;
a.f(x) ;
a.f(y) ;
a.f(2.*x) ;
a.f(b+1) ;
a.f(b++) ;
a.f(b) ; // appel de f(byte)
a.f(p) ; // appel de f(int)
a.f(q) ; // appel de f(float) aprés conversion de g en float
a.f(x) ; // appel de f(float)
a.f(y) ; // appel de f(double)
a.f(2.*x) ; // appel de f(double) car 2. est de type double ;
// l'expression 2.*x est de type double
a.f(b+1) ; // appel de f(int) car l'expression b+l est de type
int

74

a.f(b++) ; // appel de f(byte) car l'expression b++ est de type
byte

75

Recherche d’une meéthode surdéfinie
3)

Soit la définition de classe suivante :

class A
{ public void f (int n, float x)
{ }
public void f (float x1, float x2)
{ }
public void f (float x, int n)
{ }
}

Avec ces déclarations :
A a ; short p ; int n1, n2 ; float x ;

Quelles sont les instructions correctes et, dans ce cas, quelles sont les méthodes
appelées et les éventuelles conversions mises en jeu ?

a.f(n1, x) ;

a.f(x, n1) ;

a.f(p, x) ;

a.f(n1, n2) ;

a.f(n1, x) ;
Les méthodes f(int, float) et f(float, float) sont acceptables mais la seconde est moins
bonne que la premiere. Il y a donc appel de f(int, float).

a.f(x, n1) ;
Les méthodes f(float, float) et f(float, int) sont acceptables mais la premiere est moins
bonne que la seconde. Il y a donc appel de f(float, int).

a.f(p, x) ;
Les trois méthodes sont acceptables. La seconde et la troisieme sont moins bonnes que

la premiere. Il y a donc appel de f(int, float) apres conversion de p en int.
a.f(n1, n2) ;

76

Les trois méthodes sont acceptables. Seule la seconde est moins bonne que les autres.
Comme aucune des deux méthodes f(int, float) et f(float, int) n'est meilleure que les
autres, il y a erreur.

77

Surdefinition et droits d’acces

Quels résultats fournit ce programme ?
class A
{ public void f(int n, float x)
{ System.out.println ("f(int n, float x) n =" + n + " x = " +
X) ;
}
private void f(long q, double y)

{ System.out.println ("f(long q, double y) q =" + q + " y
ty)
}
public void f(double y1, double y2)
{ System.out.println ("f(double y1, double y2) y1 = " + y1 + "
y2 =" +y2) ;
}
public void g()
{ int n=1 ; long q=12 ; float x=1.5f ; double y = 2.5 ;
System.out.println ("--- dans g ") ;
f(n, q) ;
f(q, n) ;
f(n, x) ;
f(n, y) ;
}

}
public class SurdfAcc

{ public static void main (String args[])
{ A a=new A() ;
a.g() ;
System.out.println ("--- dans main") ;
int n=1 ; long =12 ; float x=1.5f ; double y = 2.5 ;
a.f(n, q) ;
a.f(q, n) ;
a.f(n, x) ;
a.f(n, y) ;

78

--- dans g

f(int n, float x) n =1 x = 12.0
f(long q, double y) g = 12 y = 1.0
f(int n, float x) n =1 x = 1.5
f(long q, double y) g =1y = 2.5
--- dans main

f(int n, float x) n =1 x = 12.0

f(double y1, double y2) y1 = 12.0 y2 = 1.0

f(int n, float x) n =1 x = 1.5

f(double y1, double y2) y1 = 1.0 y2 = 2.5
La méthode f(long, double) étant privée, elle n’est accessible que depuis les méthodes
de la classe. Ici, elle est donc accessible depuis g et elle intervient dans la recherche
de la meilleure correspondance dans un appel de f. En revanche, elle ne I’est pas
depuis main. Ceci explique les différences constatées dans les deux séries d’appels
identiques, 1’une depuis g, 1’autre depuis main.

79

Emploi de this

Soit la classe Point ainsi définie :

class Point

{ public Point (int abs, int ord) { x = abs ; y = ord ; }
public void affiche ()

{ System.out.println ("Coordonnees " + x + " " + vy) ;

}

private double x ; // abscisse

private double y ; // ordonnee

}

Lui ajouter une méthode maxNorme déterminant parmi deux points lequel est le plus
éloigné de 1’origine et le fournissant en valeur de retour. On donnera deux
solutions :

» maxNorme est une méthode statique de Point,

* maxNorme est une méthode usuelle de Point.

Avec une méthode statique

La méthode maxNorme va devoir disposer de deux arguments de type Point. Ici, nous
nous contentons de calculer le carré de la norme du segment joignant I’origine au point
concerné. Il suffit ensuite de fournir comme valeur de retour celui des deux points pour
lequel cette valeur est la plus grande. Voici la nouvelle définition de la classe Point,
accompagnée d’un programme de test et des résultats fournis par son exécution :

class Point
{ public Point (int abs, int ord) { x = abs ; y = ord ; }
public void affiche ()
{ System.out.println ("Coordonnees " + x + " " + vy) ;
}
public static Point MaxNorme (Point a, Point b)
{ double na = a.x*a.x + a.y*a.y ;
double nb = b.x*b.x + b.y*b.y ;

80

if (na>nb) return a ;
else return b ;

}

private double x ; // abscisse

private double y ; // ordonnee
}

public class MaxNorme
{ public static void main (String args[])

{ Point p1 = new Point (2, 5) ; System.out.print ("pi1 : ") ;
pl.affiche() ;
Point p2 = new Point (3, 1) ; System.out.print ("p2 : ") ;

p2.affiche() ;
Point p = Point.MaxNorme (pl1, p2) ;
System.out.print ("Max de pl et p2 : ") ; p.affiche() ;

b
b

pl : Coordonnees 2.0 5.0
p2 : Coordonnees 3.0 1.0
Max de pl et p2 : Coordonnees 2.0 5.0

Avec une méthode usuelle

Cette fois, la méthode ne dispose plus que d’un seul argument de type Point, le second
point concerné étant celui ayant appelé la méthode et dont la référence se note
simplement this.

Voici la nouvelle définition de la classe et 1’adaptation du programme d’essai (qui
fournit les mémes résultats que précédemment) :

class Point
{ public Point (int abs, int ord) { x = abs ; y = ord ; }
public void affiche ()

{ System.out.println ("Coordonnees " + x + " " + vy) ;

}

public Point MaxNorme (Point b)

{ double na = x*x + y*y ; // ou encore this.x*this.x +

this.y*this.y
double nb = b.x*b.x + b.y*b.y ;
if (na>nb) return this ;

else return b ;

}

private double x ; // abscisse

81

private double y ; // ordonnee

¥
public class MaxNorm2
{ public static void main (String args[])
{ Point p1 = new Point (2, 5) ; System.out.print ("p1l
pl.affiche() ;
Point p2 = new Point (3, 1) ; System.out.print ("p2
p2.affiche() ;
Point p = pl.MaxNorme (p2) ; // ou p2.maxNorme(pl)
System.out.print ("Max de pl1 et p2 : ") ; p.affiche() ;
}

}

82

Recursivite des methodes

Ecrire une méthode statique d’une classe statique Util calculant la valeur de la
"fonction d’ Ackermann" A définie pour m>=0 et n>=0 par :

* A(m, n) = A(m-1, A(m, n-1)) pour m>0 et n>0,
* A (0, n) =n+1 pour n>0,
* A(m, 0) = A(m-1, 1) pour m>0.

Il suffit d’exploiter les possibilités de récursivité de Java en écrivant quasi
textuellement les définitions récursives de la fonction A.

class Util
{ public static int acker (int m, int n)
{ if ((m<®) || (n<®)) return © ; // protection : O si arguments
incorrects
else if (m == 0) return n+1 ;
else if (n == 0) return acker (m-1, 1) ;
else return acker (m-1, acker(m, n-1)) ;
}
}

public class Acker
{ public static void main (String args[])
{ int m, n ;

System.out.print ("Premier parametre : ") ;

m = Clavier.lireInt() ;

System.out.print ("Second parametre : ") ;

n = Clavier.lirelInt() ;

System.out.println ("acker (" + m + ", " + n + ") = " +
util.acker(m, n)) ;
}

83

Mode de transmission des
arguments d’une methode

Quels résultats fournit ce programme ?

class A

{ public A (int nn)

{n = nn ;

}

public int getn ()

{ return n ;

}

public void setn (int nn)
{ n=nn;

}

private int n ;

}

class Util
{ public static void incre (A a, int p)
{ a.setn (a.getn()+p);

}

public static void incre (int n, int p)
{n+=p;

}

}

public class Trans

{ public static void main (String args[])
{ A a=new A(2) ;
int n = 2 ;

System.out.println ("valeur de a avant : " + a.getn()) ;
Util.incre (a, 5) ;

System.out.println ("valeur de a apres : " + a.getn()) ;
System.out.println ("valeur de n avant : " + n) ;

Util.incre (n, 5) ;

84

System.out.println ("valeur de n apres : " + n) ;

}
}

En Java, le transfert des arguments a une méthode se fait toujours par valeur. Mais la
valeur d’une variable de type objet est sa référence. D’ou les résultats :

valeur de a avant 2
valeur de a apres 7
valeur de n avant 2
valeur de n apres 2

85

Objets membres

On dispose de la classe Point suivante permettant de manipuler des points d’un
plan.

class Point

{ public Point (double x, double y) { this.x = x ; this.y =y ; }

public void deplace (double dx, double dy) { x += dx ; y += dy ;
}
public void affiche ()

{ System.out.println ("coordonnees =" + x + " " +vy) ;
b
private double x, y ;

b

En ajoutant les fonctionnalités nécessaires a la classe Point, réaliser une classe
Segment permettant de manipuler des segments d’un plan et disposant des méthodes
suivantes :

segment (Point origine, Point extremite)

segment (double xOr, double yOr, double xExt, double yExt)

double longueur() ;

void deplaceOrigine (double dx, double dy)

void deplaceExtremite (double dx, double dy)

void affiche()

Pour I’instant, la classe Point n’est dotée ni de méthodes d’acces aux champs x et y, ni
de méthodes d’altération de leurs valeurs.

Si I’on prévoit de représenter un segment par deux objets de type Point?, il faudra
manifestement pouvoir connaitre et modifier leurs coordonnées pour pouvoir déplacer
’origine ou I’extrémité du segment. Pour ce faire, on pourra par exemple ajouter a la
classe Point les quatre méthodes suivantes :

public double getX ()
{ return x ;

}

86

public double getY ()

{ return vy ;

}

public void setX (double x)
{ this.x = x ;

}

public void setY (double vy)
{ this.y =y ;

}

En ce qui concerne la méthode affiche de Segment, on peut se contenter de faire appel
a celle de Point, pour peu qu’on se contente de la forme du message qu’elle fournit.

Voici la nouvelle définition de Point et celle de Segment :

class Point

{ public Point (double x, double y) { this.x = x ; this.y =y ; }
public void deplace (double dx, double dy) { x += dx ; y +=dy ; }
public double getX () { return x ; }

public double getY () { returny ; }

public void setX (double x) { this.x = x ; }

public void setY (double y) { this.y = H

public void affiche ()

{ System.out.println ("coordonnees =" + x + " " + vy) ;
}

private double x, vy ;
}

class Segment

{ public Segment (Point or, Point ext)

{ this.or = or ; this.ext = ext ;

}

public Segment (double xOr, double yOr, double xExt, double yExt)
{ or = new Point (xOr, yoOr) ;
ext = new Point (XExt, yExt) ;

}

public double longueur ()

{ double xOr = or.getX(), yOr = or.getY() ;
double XExt = ext.getX(), YExt = ext.getY() ;

return Math.sqrt ((XExt-xOr)*(xExt-x0r) + (yExt-yOr)*(yExt-yOr)
)

87

}
public void deplaceOrigine (double dx, double dy)

{ or.setX (or.getX() + dx) ;

or.setY (or.getY() + dy) ;

}

public void deplaceExtremite (double dx, double dy)
{ ext.setX (ext.getX() + dx) ;

ext.setY (ext.getY() + dy) ;

}
public void affiche ()
{ System.out.print ("Origine - ") ; or.affiche() ;
System.out.print ("Extremite - ") ; ext.affiche() ;
}
private Point or, ext ;
}

Voici un petit programme de test, accompagné de son résultat :

public class TstSeg

{ public static void main (String args[])
{ Point a = new Point(1, 3) ;
Point b = new Point(4, 8) ;
a.affiche() ; b.affiche() ;

Segment s1 = new Segment (a, b) ;
sl.affiche() ;

sl.deplaceOrigine (2, 5) ;
sl.affiche() ;

Segment s2 = new Segment (3, 4, 5, 6) ;

s2.affiche() ;

System.out.println ("longueur = " + s2.longueur()) ;
s2.deplaceExtremite (-2, -2) ;

s2.affiche() ;

}

}
coordonnees = 1.0 3.0
coordonnees = 4.0 8.0

Origine - coordonnees = 1.0 3.0
Extremite - coordonnees = 4.0 8.0

88

Origine - coordonnees = 3.0 8.
Extremite - coordonnees 4.0
Origine - coordonnees = 3.0 4.
Extremite - coordonnees 5.0
longueur = 2.8284271247461903
Origine - coordonnees = 3.0 4.
Extremite - coordonnees = 3.0

(o]

O © 0 o

(o]

(o]

89

Synthese : reperes carteésiens et
polaires

Soit la classe Point ainsi définie :

class Point

{ public Point (double x, double y) { this.x = x ; this.y = y
}

public void deplace (double dx, double dy) { x += dx ; y +=
dy ; }

public double abscisse () { return x ; }

public double ordonnee () { returny ; }

private double x ; // abscisse

private double y ; // ordonnee

}

La compléter en la dotant des méthodes suivantes :

.
14

» homothetie qui multiplie les coordonnées par une valeur (de type double)
fournie en argument,

* rotation qui effectue une rotation dont 1’angle est fourni en argument,
* rho et theta qui fournissent les coordonnées polaires du point,
» dfficheCart qui affiche les coordonnées cartésiennes du point,

» dffichePol qui affiche les coordonnées polaires du point.

La méthode homothetie ne présente aucune difficulté. En revanche, la méthode rotation
nécessite une transformation intermédiaire des coordonnées cartésiennes du point en
coordonnées polaires. De méme, les méthode rho et theta doivent calculer
respectivement le rayon vecteur et 1’angle d’un point a partir de ses coordonnées
cartésiennes.

Le calcul d’angle a été réalisé par la méthode Math.atan2 (qui recoit en argument une
abscisse xx et une ordonnée yy) plus pratique que atan (a laquelle il faudrait fournir le
quotient yy/xx) car elle évite d’avoir a s’assurer que xx n’est pas nulle et a adapter

90

dans ce cas 1’angle obtenu.
Voici la définition de notre classe Point :

class Point
{ public Point (double x, double y) { this.x = x ; this.y =y ; }
public void deplace (double dx, double dy) { x +=dx ; y +=dy ; }
public double abscisse () { return x ; }
public double ordonnee () { returny ; }
public void homothetie (double coef) { x *= coef ; y *= coef ; }
public void rotation (double th)
{ double r = Math.sqrt (x*x + y*y) ;
double t = atan2(y, Xx) ;
t += th ;
X = r * Math.cos(t) ;
y =r Math.sin(t) ;
}
public double rho() { return Math.sqrt (x*x + y*y) ; }
public double theta () { return atan2(y, x) ; }
public void afficheCart ()

{ System.out.println ("Coordonnees cartesiennes = " + x + " " + vy
)
}
public void affichePol ()
{ System.out.println ("Coordonnees polaires = " + Math.sqgqrt (x*x +
y*y)
+ " "+ atan2 (y, x)) ;
}
private double x ; // abscisse
private double y ; // ordonnee
}

Voici a titre indicatif un petit programme d’essai, accompagné du résultat de son
exécution :

public class PntPol
{ public static void main (String args[])
{ Point a ;
a = new Point(1, 1) ; a.afficheCart() ; a.affichePol() ;
a.deplace(-1, -1) ; a.afficheCart() ; a.affichePol() ;
Point b = new Point(1, 0) ; b.afficheCart() ; b.affichePol() ;

91

b.homothetie (2) ;

b.rotation (Math.PI) ;

b
b

Coordonnees
Coordonnees
Coordonnees
Coordonnees
Coordonnees
Coordonnees
Coordonnees
Coordonnees
Coordonnees
Coordonnees

b.afficheCart() ;

b.affichePol() ;

b.afficheCart() ; b.affichePol() ;

cartesiennes = 1.0 1.0

polaires = 1.4142135623730951 0.7853981633974483
cartesiennes = 0.0 0.0

polaires = 0.0 0.0

cartesiennes = 1.0 0.0

polaires = 1.0 0.0

cartesiennes = 2.0 0.0

polaires = 2.0 0.0

cartesiennes

polaires = 2.

-2.0 1.2246467991473532E-16
3.141592653589793

92

Synthese : modification de
I’implémentation d’une classe

Modifier la classe Point réalisée dans 1’exercice 42, de maniére que les données
(privées) soient maintenant les coordonnées polaires d’un point et non plus ses
coordonnées cartésiennes. On fera en sorte que le "contrat" initial de la classe soit
respecté en évitant de modifier les champs publics ou les en-tétes de méthodes
publiques (1’ utilisation de la classe devra continuer a se faire de la méme maniere).

Le constructeur recoit toujours en argument les coordonnées cartésiennes d’un point. Il
doit donc opérer les transformations appropriées.

Par ailleurs, la méthode deplace recoit un déplacement exprimé en coordonnées
cartésiennes. Il faut donc tout d’abord déterminer les coordonnées cartésiennes du point
apres déplacement, avant de repasser en coordonnées polaires.

En revanche, les méthodes homothetie et rotation s’expriment maintenant tres
simplement.

Voici la définition de notre nouvelle classe.

class Point
{ public Point (double x, double vy)
{ rho = Math.sqrt (x*x + y*y) ;
theta = Math.atan (y/x) ;
}
public void deplace (double dx, double dy)
{ double x = rho * Math.cos(theta) + dx ;
double y = rho * Math.sin(theta) + dy ;
rho = Math.sqrt (x*x + y*y) ;
theta = antan2 (y, Xx) ;
}
public double abscisse () { return rho * Math.cos(theta) ;
public double ordonnee () { return rho * Math.sin(theta) ;
public void homothetie (double coef) { rho *= coef ; }

}
}

93

public void rotation (double th)

{ theta += th ;

}

public double rho() { return rho ; }
public double theta () { return theta ; }
public void afficheCart ()

{ System.out.println ("Coordonnees cartesiennes = " +
rho*Math.cos(theta)
+ " " + rho*Math.sin(theta)) ;
}
public void affichePol ()
{ System.out.println ("Coordonnees polaires = " + rho + " " +
theta) ;
}
private double rho ; // rayon vecteur
private double theta ; // angle polaire

}

A titre indicatif, nous pouvons tester notre classe avec le méme programme que dans
1’exercice précédent. Il fournit les mémes résultats, aux incertitudes de calcul pres :

public class PntPol2

{ public static void main (String args[])

{ Point a ;
a = new Point(1, 1) ; a.afficheCart() ; a.affichePol() ;
a.deplace(-1, -1) ; a.afficheCart() ; a.affichePol() ;
Point b = new Point(1, 0) ; b.afficheCart() ; b.affichePol() ;
b.homothetie (2) ; b.afficheCart() ; b.affichePol() ;
b.rotation (Math.PI) ; b.afficheCart() ; b.affichePol() ;

b
b

Coordonnees cartesiennes = 1.0000000000000002 1.0
Coordonnees polaires = 1.4142135623730951 0.7853981633974483
Coordonnees cartesiennes 2.220446049250313E-16 0.0
Coordonnees polaires = 2.220446049250313E-16 0.0

Coordonnees cartesiennes 1.0 0.0

Coordonnees polaires = 1.0 0.0

Coordonnees cartesiennes 2.0 0.0

Coordonnees polaires = 2.0 0.0

Coordonnees cartesiennes -2.0 2.4492127076447545E-16

(o]

(o]

94

Coordonnees polaires = 2.0 3.141592653589793

95

Synthese : vecteurs a trois
composantes

Réaliser une classe Vecteur3d permettant de manipuler des vecteurs a trois
composantes (de type double) et disposant :

* d’un constructeur a trois arguments,

* d’une méthode d’affichage des coordonnées du vecteur, sous la forme :
< composante_1, composante_2, composante_3 >

* d’une méthode fournissant la norme d’un vecteur,
* d’une méthode (statique) fournissant la somme de deux vecteurs,

* d’une méthode (non statique) fournissant le produit scalaire de deux vecteurs.
Ecrire un petit programme (main) utilisant cette classe.

class Vecteur3d

{ public Vecteur3d (double x, double y, double z)

{ this.x = x ; this.y =y ; this.z = z ;

}

public void affiche ()

{ System.out.println ("< " + x + ", "+ y + " "+ z + " S") ;
}

public double norme ()

{ return (Math.sgrt (x*x + y*y + z*z)) ;

}

public static Vecteur3d somme(Vecteur3d v, Vecteur3d w)
{ Vecteur3d s = new Vecteur3d (0, 0, 0) ;

S.X = V.X + W.X ; S.Y = V.Y + W.Yy ; S.Z = V.Z + W.Z ;

return s ;

}

public double pScal (Vecteur3d v)

{ return (x*v.x + y*v.y + z*v.z) ;

96

}

private double x, y, z ;

}

public class TstVv3d

{ public static void main (String args[])

{ Vecteur3d vl = new Vecteur3d (3, 2, 5) ;
Vecteur3d v2 = new Vecteur3d (1, 2, 3) ;
Vecteur3d v3 ;

System.out.print ("vi = ") ; vil.affiche() ;
System.out.print ("v2 =") ; v2.affiche() ;
v3 = Vecteur3d.somme (v1, v2) ;
System.out.print ("vi + v2 =") ; v3.affiche() ;
System.out.println ("vi.v2 = " + wvl1.pScal(v2)) ; // ou
v2.pScal(vl)
}
}
vli =< 3.0, 2.0, 5.0 >

v2 <1.0, 2.0, 3.0 >
vl + v2 = < 4.0, 4.0, 8.0 >
vli.v2 = 22.0

1. Le corps de la méthode somme pourrait étre écrit de facon plus concise :
return new Vecteur3d (v.X+w.X, V.y+w.y, V.z+w.z) ;

2. Les instructions suivantes de main :
v3 = Vecteur3d.somme (v1, v2) ;
System.out.print ("vi + v2 =") ; v3.affiche() ;

pourraient étre remplacées par :

System.out.print ("vi + wv2 = ") ; (Vecteur3d.somme(v1l,
v2)).affiche() ;

3. Si la méthode pScal avait été prévue statique, son utilisation deviendrait
symétrique. Par exemple, au lieu de vI1.pScal(v2) ou v2.pScal(vl), on écrirait
Vecteur3d.pScal(v1, v2).

97

Synthese : nombres sexagésimaux

On souhaite disposer d’une classe permettant d’effectuer des conversions (dans les
deux sens) entre nombre sexagésimaux (durée exprimée en heures, minutes,
secondes) et des nombres décimaux (durée exprimée en heures décimales). Pour ce
faire, on réalisera une classe permettant de représenter une durée. Elle comportera :

* un constructeur recevant trois arguments de type int représentant une valeurs
sexagésimale (heures, minutes, secondes) qu’on supposera normalisée (secondes
et minutes entre 0 et 59). Aucune limitation ne portera sur les heures ;

* un constructeur recevant un argument de type double représentant une durée en
heures ;

» une méthode getDec fournissant la valeur en heures décimales associée a
1’ objet,
* des méthodes getH, getM et getS fournissant les trois composantes du nombre
sexagésimal associé a 1’objet.

On proposera deux solutions :

1. Avec un champ (privé) représentant la valeur décimale,

2. Avec des champs (privés) représentant la valeur sexagésimale.

En conservant la valeur décimale

Les deux constructeurs ne posent pas de probleme particulier, le second devant
simplement calculer la durée en heures correspondant a un nombre donné d’heures, de
minutes et de secondes. Les méthodes getH, getM et getS utilisent le méme principe :
le nombre d’heures n’est rien d’autre que la partie entiere de la durée décimale. En le
soustrayant de cette durée décimale, on obtient un résidu d’au plus une heure qu’on
convertit en minutes en le multipliant par 60. Sa partie entiere fournit le nombre de
minutes qui, soustrait du résidu horaire fournit un résidu d’au plus une minute...

class SexDec
{ public SexDec (double dec)
{ this.dec = dec ;

98

}

public SexDec (int h, int mn, int s)
{ dec = h + mn/60. + s/3600. ;

}

public double getDec()

{ return dec ;

}

public int getH()

{ int h = (int)dec ; return h ;

}

public int getM()

{ int h = (int)dec ;

int mn = (int)(60*(dec-h)) ;

return mn ;
}

public int getS()

{ int h = (int)dec ;

double minDec = 60*(dec-h) ;

int mn = (int)minDec ;

int sec = (int)(60*(minDec-mn)) ;
return sec ;

}

private double dec ;

}

Voici un petit programme de test, accompagné du résultat d’exécution :

public class TSexDecl
{ public static void main (String args[])
{ SexDec hl = new SexDec(4.51) ;
System.out.println ("h1 - decimal = " + hil.getDec()
+" Sexa = " + hl.getH() + " " + hi.getM() + " " + hil.getS()) ;
SexDec h2 = new SexDec (2, 32, 15) ;
System.out.println ("h2 - decimal = " + h2.getDec()
+" Sexa = " + h2.getH() + " " + h2.getM() + " " + h2.getS()) ;

}

hl - decimal
h2 - decimal

4.51 Sexa = 4 30 35
2.5375 Sexa = 2 32 15

99

En conservant la valeur sexagésimale

Cette fois, le constructeur recevant une valeur en heures décimales doit opérer des
conversions analogues a celles opérées précédemment par les méthodes d’acces getH,
getM et getS. En revanche, les autres méthodes sont tres simples.

class SexDec
{ public SexDec (double dec)
{ h = (int)dec ;
int minDec = (int)(60*(dec-h)) ;
mn = (int)minDec ;
s = (int)(60*(minDec-mn)) ;
}
public SexDec (int h, int mn, int s)
{ this.h = h ; this.mn = mn ; this.s = s ;
}
public double getDec()
{ return (3600*h+60*mn+s)/3600. ;
}
public int getH()
{ return h ;
}
public int getM()
{ return mn ;
}
public int getS()
{ return s ;
}
private int h, mn, s ;

}

Voici le méme programme de test que précédemment, accompagné de son exécution :

public class TSexDec2
{ public static void main (String args[])
{ SexDec hl = new SexDec(4.51) ;
System.out.println ("h1 - decimal = " + hil.getDec()
+" Sexa = " + hl.getH() + " " + hi.getM() + " " + hil.getS()) ;
SexDec h2 = new SexDec (2, 32, 15) ;
System.out.println ("h2 - decimal = " + h2.getDec()
+" Sexa = " + h2.getH() + " " + h2.getM() + " " + h2.getS()) ;

100

b
b

hl - decimal
h2 - decimal

4.5 Sexa = 4 30 0
2.5375 Sexa = 2 32 15

On notera que la premiére démarche permet de conserver une durée décimale atteignant
la précision du type double, quitte a ce que la valeur sexagésimale correspondante soit
arrondie a la seconde la plus proche. La deuxieme démarche, en revanche, en imposant
d’emblée un nombre entier de secondes, entraine une erreur d’arrondi définitive (entre
0 et 1 seconde) des la création de I’objet. Bien entendu, on pourrait régler le probleme
en conservant un nombre de secondes décimal ou encore, en gérant un résidu de
secondes.

1. Sila méthode main avait été introduite directement dans A, I’appel serait accepté !

2. On pourrait se contenter d’ajouter des méthodes getX et getY, en représentant un segment, non plus par deux
points, mais par quatre valeurs de type double, ce qui serait moins commode.

101

Chapitre 4

Les tableaux

Wu-,u?%.
' '._.---

= ,_ —
 \& |

Connaissances requises

» Déclaration d’un tableau ; utilisation éventuelle d’un initialiseur
* Création d’un tableau avec I’ opérateur new

* Acces aux éléments d’un tableau

» Affectation de tableaux

* Le champ length

» Transmission de tableaux en argument d’une méthode

» Tableaux de tableaux ; leur utilisation pour "simuler" les tableaux a plusieurs
indices

102

Déclaration et initialisation de
tableau

Quelles erreurs ont été commises dans le début de programme suivant ?
public static void main (String args[])
{ int n=10 ;
final int p=5 ;
int ti[] = {1, 3, 5} ;

int t2[] = {n-1, n, n+1} ;
int t3[] = {p-ll P, p+1} ’
int t4[] ;

t4 = {1, 3, 5} ;
float x1[] = {1, 2, p, p+1} ;
float x2[] = {1.25, 2.5, 5} ;

int ti1[] = {1, 3, 5} ; // OK
int t2[] = {n-1, n, n+1} ; // 0K
int t3[] = {p-1, p, ptl} ; // 0K

Notez que les expressions utilisées dans un initialiseur de tableau n’ont pas besoin
d’étre des expressions constantes. Il suffit qu’elles soient calculables au moment ou
1’on exécute la déclaration correspondante, ce qui est le cas ici.

int t4[] ;

t4 = {1, 3, 5} ; // erreur
La notation {...} n’est utilisable que dans la déclaration d’un tableau. Ici, il faut soit
déclarer :

int t4 = {1, 3, 5} ;
soit affecter des valeurs a chacun des éléments de t4, apres sa déclaration.

float x1[] = {1, 2, p, p+1i} ; // OK

Il n’est pas obligatoire que les valeurs figurant dans un initialiseur de tableau soient du

103

type des éléments du tableau, mais seulement d’un type compatible par affectation, ce
qui est le cas ici.

float x2[] = {1.25, 2.5, 5} ; // erreur

Ici, en revanche, les constantes 1.25 et 2.5 sont d’un type double, non compatible par
affectation avec le type float du tableau.

double x3[] = {1, 2.5, 5.25, 2*p} ; // OK

Ici, toutes les valeurs de I’initialiseur sont compatibles par affectation avec le type
double.

104

Utilisation usuelle d’un tableau
(1)

Ecrire un programme qui crée un tableau comportant les valeurs des carrés des n
premiers nombres impairs, la valeur de n étant lue au clavier® et qui en affiche les
valeurs sous la forme suivante :

combien de valeurs : 5

1 a pour carre 1

3 a pour carre 9

5 a pour carre 25
7 a pour carre 49
9 a pour carre 81

a. On pourra utiliser la méthode lireInt de la classe Clavier fournie sur le site Web d’accompagnement.

En Java, la taille d’un tableau n’est définie qu’au moment de sa création, ce qui nous
permet ici de la lire au clavier :

public class CarrImp
{ public static void main (String args[])
{ int car[] ;
int n ;
System.out.print ("combien de valeurs : ") ;
n = Clavier.lirelInt() ;
car = new int[n] ;

for (int 1i=0 ; i<n ; 1i++) // 1ici, for.. each n’est pas
applicable

car[i] = (2*i+1)*(2*i+1) ,;

for (int i=0 ; i<n ; 1i++) // ici non plus (on a besoin de
i)

System.out.println ((2*i+1) + " a pour carre " + car[i]) ;

105

Si 1’énoncé ne 1’avait pas imposé, il aurait été possible de se passer d’un tableau.

106

Utilisation usuelle d’un tableau (2)

Ecrire un programme qui :
*]lit dans un tableau 5 valeurs flottantes fournies au clavier?,

« en calcule et en affiche la moyenne, la plus grande et la plus petite valeur.

a. On pourra utiliser la méthode lireInt de la classe Clavier fournie sur le site Web d’accompagnement.

public class UtilTab1l
{ public static void main (String args[])
{ final int N =5 ;
double val [] = new double[N] ;
int 1 ;
System.out.println ("donnez " + N + " valeurs flottantes")

4

for (i=0 ; i<N ; 1i++) // for.. each n’est pas

applicable ici
val[i] = Clavier.lireDouble() ;

double valMax = val[0], valMin

val[0], somme=0 ;

for (i=0 ; 1i<N ; 1i++) // ou (depuis JDK
5.0) :

{ if (val[i] > valMax) valMax = val[i] ; // for (double v : val)
if (val[i] < wvalMin) valMin = wval[i] ; // { if (v>valMax)
valMax=v ;
somme += val[i] ; // if (v<valMin)
valMin=v ;

} // som += v ;
// 3}

System.out.println ("valeur maximale
System.out.println ("valeur minimale

" + valMax) ;
" + valMin) ;

double vMoyenne = somme/N ; // on suppose que N est strictement
positif

System.out.println ("moyenne " + vMoyenne) ;
}

107

Ici encore, si 1’énoncé ne 1’avait pas imposé, il aurait été possible de se passer d’un
tableau.

108

Affectation de tableaux (1)

Que se passera-t-il si 1’on exécute le programme suivant ?
public class Affec1l
{ public static void main (String args[])
{ int t1[] = {1, 2, 3} ;
int t2[] = new int[4] ;
for (int i=0 ; i<4 ; i++) t2[i] = 2*i ;
t2 = t1 ;
for (int 1i=0 ; i<4 ; i++) System.out.println (t2[i]) ;
}
}

Ce programme crée tout d’abord deux tableaux d’entiers de dimension 3 et 4. Leurs
références figurent respectivement dans les variables t1 et t2.

Apres I’instruction for, la situation se présente comme ci-apres :

2

tl |

2

|

2] 3 |

Apres D’affectation t2=t1, les deux variables t1 et t2 contiennent dorénavant la
référence au premier tableau, tandis que le second n’est plus référencé (il sera candidat
au ramasse-miettes). La situation est la suivante :

109

[]

|

t2| / |

Dans ces conditions, la derniere boucle affichera tout d’abord les valeurs 1, 2 et 3 puis
provoquera une erreur d’exécution pour =3 (exception
ArrayIndexOutOfBoundsException), étant donné que 1’on cherche a accéder a un
élément n’appartenant pas au tableau concerné.

110

Affectation de tableaux (2)

Quels résultats fournit le programme suivant ?

public class Affec

{ public static void main (String args[])
{ final int N = 4 ;
int ti[] new int [N] ;
int t2[] new int [N] ;
for (int i=0 ; i<N ; i++) t1[i] i+1 ;
for (int i=0 ; i<N ; i++) t2[i] = 2*i+1 ;

// affichage des valeurs de tl1 et de t2

System.out.print ("t1 =") ;
for (int i=0 ; i<N ; i++) System.out.print (ti[i] + " ") ;
System.out.println () ;

System.out.print ("t2 = ") ;

for (int i=0 ; i<N ; i++) System.out.print (t2[i] + " ") ;

System.out.println () ;

t1 = t2 ;
t1[0] = 10 ; t2[1] = 20 ; ti1[2] = 30 ; t2[3] = 40

~=

// affichage des valeurs de tl1 et de t2
System.out.print ("t1 = ") ;

for (int i=0 ; i<N ; i++) System.out.print (ti[i] + " ") ;
System.out.println () ;

System.out.print ("t2 = ") ;

for (int i=0 ; i<N ; i++) System.out.print (t2[i] + " ") ;

System.out.println () ;

Ce programme crée tout d’abord deux tableaux en placant leurs références dans t1 et
t2. Mais apres 1’affectation t1=t2, t1 et t2 contiennent la méme référence (celle du
premier tableau, le second devenant candidat au ramasse-miettes). Dans ces conditions,

111

une instruction telle que t2[1]=20 a le méme effet que t1[1]=20. En définitive, le
programme fournit les résultats suivants :

ti1 =123 4
t2 =1357
tl = 10 20 30 40
t2 = 10 20 30 40

112

Affectation de tableaux (3)

Quels résultats fournit le programme suivant ?
public class Affec2
{ public static void main (String args[])
{ char ti[] = {'b', '0', 'n', 'j', 'o', 'u', 'r'} ;
char t2[] = {'h', 'e', '1', '1', '0'} ;
char t3[] = {'x', 'x', 'x', 'x'} ;
t3 = t1 ; t1 = t2 ; t2 = t3 ;

System.out.print ("t1 = ") ;

for (int i=0 ; i<tl.length ; i++) System.out.print (ti[i]) ;
System.out.println () ;

System.out.print ("t2 = ") ;

for (int i=0 ; i<t2.length ; i++) System.out.print (t2[i]) ;
System.out.println () ;

System.out.print ("t3 = ") ;

for (int i=0 ; i<t3.length ; i++) System.out.print (t3[1i]) ;
System.out.println () ;

Ce programme crée trois tableaux de caracteres, les initialise et place leurs références
respectives dans t1, t2 et t3. Apres exécution des trois affectations, le troisieme tableau
n’est plus référencé, tandis que le premier I’est deux fois (par t2 et par t3). En
définitive, nous obtenons les résultats suivants :

t1 = hello
t2 = bonjour
t3 = bonjour

113

Tableau en argument (1)

Récrire le programme de 1’exercice numéro 50, en prévoyant une méthode statique
destinée a afficher les valeurs d’un tableau recu en argument.

La méthode d’affichage doit recevoir en argument la référence a un tableau d’entiers. Il
n’est pas nécessaire de prévoir un argument supplémentaire pour le nombre d’éléments
du tableau ; celui-ci pourra étre obtenu a 1’aide du champ length.

Ici, nous plagons la méthode d’affichage nommée affiche dans la méme classe que la
méthode main, ce qui nous conduit au programme suivant :

public class TabArgil
{ public static void main (String args[])
{ final int N = 4 ;

int t1[] = new int [N] ;

int t2[] = new int [N] ;

for (int 1i=0 ; i<N ; i++) ti[i] = i+1 ;
for (int 1i=0 ; i<N ; i++) t2[i] = 2*i+1 ;

// affichage des valeurs de tl et de t2

System.out.print ("t1 = ") ; affiche (t1) ;
System.out.print ("t2 = ") ; affiche (t2) ;
tl1 = t2 ;

t1[0] = 10 ; t2[1] = 20 ; t1[2] = 30 ; t2[3] = 40 ;

// affichage des valeurs de tl et de t2

System.out.print ("t1 = ") ; affiche (t1) ;

System.out.print ("t2 = ") ; affiche (t2) ;

}

static void affiche (int [] t) // ou (depuis JDK 5.0)

{ for (int i=0 ; i<t.length ; i++) // for (int v : t)
System.out.print (t[i] + " ") ; // System.out.print (v + " ") ;

System.out.println () ;

114

Ici, comme la méthode dffiche figure dans la classe TabArgl, il n’est pas nécessaire
(bien que cela ne soit pas interdit) d’en préfixer les appels par TabArg1 en écrivant par
exemple TabArgl.dffiche (t1). En revanche, cela deviendrait indispensable si la
méthode daffiche figurait dans une autre classe que celle ou elle est utilisée.

115

Tableau en argument (2)

Ecrire une classe utilitaire UtilTab disposant des méthodes statiques suivantes :

» somme qui fournit la somme des valeurs d’un tableau de réels (double) de taille
quelconque,

* incre qui incrémente d’une valeur donnée toutes les valeurs d’un tableau de
réels (double).

Ecrire un petit programme d’essai. Pour faciliter les choses, on pourra également
doter la classe UtilTab d’une méthode d’affichage des valeurs d’un tableau de réels.

Pour réaliser la méthode incre, on exploite le fait que lorsqu’un tableau est transmis en
argument d’une méthode, celle-ci recoit une copie de la référence correspondante, par
le biais de laquelle elle peut modifier les valeurs du tableau. On retrouve la le méme
mécanisme que pour les objets. L’écriture des autres méthodes ne pose pas de
probleme particulier.

class UtilTab
{ static double somme (double[] t)

{ double s=0. ; // ou (depuis JDK
5.0) :

for (int i=0 ; i<t.length ; i++) s+= t[i] ; // for (int v : t)
s+= v ;

return s ;

}

static void incre (double[] t, double a)

{ for (int i=0 ; i<t.length ; i++) t[i] += a ; // for.. each n’est
pas

} // applicable

static void affiche (double[] t)

{ for (int i=0 ; i<t.length ; i++) System.out.print (t[i] + " ") ;
System.out.println () ;

}

116

}

public class TstUtil1l
{ public static void main (String args[])
{ double ti[] = {1.25, 2.5, 3.5, 5.} ;

System.out.print ("tl1 initial = ") ; UtilTab.affiche(t1) ;
System.out.println (" somme = " +UtilTab.somme(tl)) ;
UtilTab.incre (t1, 1.25) ;

System.out.print ("tl incremente = ") ; UtilTab.affiche(t1) ;
System.out.println (" somme = " +UtilTab.somme(tl)) ;

}

}

t1 initial = 1.25 2.5 3.5 5.0
somme = 12.25

tl incremente = 2.5 3.75 4.75 6.25
somme = 17.25

117

Tableau en valeur de retour

Ecrire une classe utilitaire UtilTab disposant des méthodes statiques suivantes :

» genere qui fournit en retour un tableau des n premiers nombres impairs, la
valeur de n étant fournie en argument

* somme qui recoit en argument deux vecteurs d’entiers de méme taille et qui
fournit en retour un tableau représentant la somme de ces deux vecteurs.

Ecrire un petit programme d’essai. Pour faciliter les choses, on pourra également
doter la classe UtilTab d’une méthode d’affichage des valeurs d’un tableau de réels.

Les méthodes de la classe Utillab recevront tout naturellement en argument la
référence a un ou deux tableaux. En ce qui concerne leur résultat (tableau), celui-ci sera
créé et rempli au sein de la méthode qui se contentera d’en renvoyer la référence.

class UtilTab

{ public static int[] genere (int n)
{ int [] res = new int[n] ;
for (int i=0, j=1 ; i<n ; i++, j+=2) res[i] =] ;
return res ;

}

public static int[] somme (int ti1[], int t2[])

{ int n = tl.length ;

if (n !'= t2.length) return null ;

int res[] = new int[n] ;

for (int 1i=0 ; i<n ; 1i++) res [i] = ti1[i] + t2[1i] ;
return res ;

}

public static void affiche (int [] t)

{ for (int i=0 ; i<t.length ; i++)
System.out.print (t[i] + " ") ;
System.out.println () ;

118

b
b

public class TabValR
{ public static void main (String args[])
{ int ta[] = {1, 5, 9} ;
System.out.print ("ta = ") ; UtilTab.affiche(ta) ;
int tb[] = UtilTab.genere (3) ;
System.out.print ("tb = ") ; UtilTab.affiche(tb) ;
int tc[] = UtilTab.somme (ta, tb) ;

System.out.print ("tc = ") ; UtilTab.affiche(tc) ;
}
}
ta =159
tb =135
tc = 2 8 14

Il ne faut pas perdre de vue qu’en Java, les emplacements alloués a des objets ou a des
tableaux ne sont libérés que lorsqu’ils ne sont plus référencés. C’est ce qui permet a
une méthode de renvoyer la référence a un emplacement qu’elle a elle-méme créé. Il
n’en va pas de méme dans un langage comme C++ qui gere de tels emplacements de
maniere "automatique”, en les libérant des la sortie de la méthode.

119

Tableaux de tableaux

Quels résultats fournit le programme suivant ?
public class Tab2Ind1
{ public static void main (String args[])
{ int [] [] t = new int [3][] ;
for (int 1i=0 ; i<3 ; i++)
{ t[i] = new int [i+1] ;
for (int j=0 ; j<t[i].length ; j++)
t[i][3] = 1+] ;
}
for (int 1i=0 ; i<3 ; i++)
{ System.out.print ("tableau numero " + i + " = ") ;
for (int j=0 ; j<t[i].length ; j++)
System.out.print (t[i][j] + " ") ;
System.out.println () ;
}

I’instruction :
int [] [] t = new int [3][] ;

crée un tableau de trois références a des tableaux d’entiers et place sa référence dans t.
Pour I’instant, les références aux tableaux d’entiers sont initialisées a la valeur null.

Pour chaque valeur de i :
* ’instruction :
t[i] = new int [i+1] ;
crée un tableau d’entiers de taille i+1 et en place la référence dans t[i].
* ’instruction :
t[i]l3] = i+ ;
place des valeurs dans chacun des i+1 éléments de ce tableau.

120

En définitive, la situation peut étre schématisée comme ci-apres :

D’ou les résultats :

tableau numero 0
tableau numero 1
tableau numero 2

12
2 3 4

121

» 0
P 1
s

ﬂh&““hn)
3

4

Synthese : nombres aléatoires et
histogramme

Réaliser une classe nommée Aleat permettant de disposer de suites de nombres
entiers aléatoires. On y prévoira les méthodes suivantes

 constructeur Aleat (int n, int lim), n représentant le nombre de valeurs
souhaitées, appartenant a 1’intervalle [0, lim],

» getValeur (int n) qui fournit la valeur de rang n de la suite,
» getValeurs () qui fournit un tableau contenant toutes les valeurs de la suite,

* histo() qui fournit un histogramme des valeurs de la suite, c’est-a-dire un tableau
de lim+1 valeurs dans lequel un élément de rang i représente le nombre de fois ou
la valeur i est présente dans la suite.

Ecrire un petit programme d’utilisation.

Ici, les valeurs aléatoires seront déterminées par le constructeur et conservées dans un
tableau privé nommé val.

La méthode Math.random fournit un nombre aléatoire réel dans 1’intervalle [0, 1[. Il
faut donc le multiplier par lim+1 et en prendre la partie entiere pour obtenir un entier
appartenant a 1’intervalle [0, [im].

Dans getValeurs, nous évitons de renvoyer directement la référence au tableau privé
val car sinon la méthode appelante pourrait en modifier la valeur. En fait, nous
renvoyons la référence a une copie du tableau (copie qui, quant a elle, reste
modifiable !). Enfin, dans histo, nous sommes amenés a créer un nouveau tableau pour
y calculer I’ histogramme.

class Aleat

{ public Aleat (int n, int 1)
{ nval = n ; limite =1 ;
val = new int[n] ;
for (int 1i=0 ; i<nVal ; 1i++)

122

val[i] = (int)((1l+1)*Math.random())

}

public int getValeur (int num)
{ return val[num] ; }
public int[] getValeurs ()
{ int[] res = new int[nVal] ;
for (int 1=0 ; i<nVal ; 1i++)
res[i] = val[i] ;
return res ;

}
public int[] histo ()

{ int[] res = new int[limite+1]

/

l4

// pour aller de 0 a limite

for (int 1=0 ; i<nVal ; i++) res[val[i]]++ ;

return res ;

}
private int[] val ;
private int nval, limite ;

}
public class TstAleat

{ public static void main (String args[])

{ final int NS1=8, MAX1=5, NS2=10000, MAX2=9 ;

Aleat suitel = new Aleat (NS1, 10)

l4

System.out.print ("suitel, valeur par valeur = ") ;

for (int 1=0 ; 1<NS1 ; i++)

System.out.print (suitel.getValeur(i) + " ") ;

System.out.println () ;

System.out.print ("suitel, globale = ")
int[] valeurs = suitel.getValeurs()

for (int 1=0 ; 1<NS1 ; i++)

System.out.print (valeurs[i] + " ")

System.out.println() ;
int [] hist = suitel.histo()

System.out.print ("histogramme de suitel

/

l4

l4

4

for (int i=0 ; i<=MAX1 ; i++) System.out.

System.out.println() ;

Aleat suite2 = new Aleat (NS2, MAX2)

hist = suite2.histo() ;

System.out.print ("histogramme de suite2

l4

for (int i=0 ; i<=MAX2 ; i++) System.out.

123

="
print (hist[i] + " ")
="

print (hist[i] + " ")

4

4

b
b

suitel, valeur par valeur = 3 7 9 4 10 7 10 1
suitel, globale =3 7 9 4 10 7 10 1
histogramme de suitel = 0 1 0 1 1 0

histogramme de suite2 = 1057 1008 1010 1012 1050 940 976 963 963
1021

124

Synthese : calcul vectoriel

Réaliser une classe Vecteur permettant de manipuler des vecteurs ayant un nombre
quelconque de composantes de type double. On y prévoira :

 un constructeur Vecteur (int n), n représentant le nombre de composantes qui
seront alors initialisées a zéro,

* un constructeur Vecteur (int n, double x), n représentant le nombre de
composantes qui seront alors toutes initialisées a la valeur x,

 un constructeur Vecteur (double [| v) qui créera un vecteur par recopie du
tableau v,

» une méthode (non statique) prod_scal fournissant le produit scalaire de deux
vecteurs (ici, si les deux vecteurs ne sont pas de méme taille, on se contentera de
fournir la valeur zéro),

» une méthode (statique) somme fournissant la somme de deux vecteurs ; s’ils
n’ont pas la méme taille, on renverra une référence "nulle",

« une méthode affiche affichant les composantes d’un vecteur.
Ecrire un petit programme d’utilisation.

Nous exploitons la possibilité d’appeler un constructeur au sein d’un autre ; rappelons
que cet appel doit obligatoirement étre la premiere instruction du constructeur.

La méthode somme doit créer un nouvel objet de type Vecteur pour y placer la somme
des deux vecteurs recus en argument.

class Vecteur
{ public Vecteur(int n)
{ this (n, 0.) ;
}
public Vecteur (int n, double x)
{ vect = new double[n] ;
for (int i=0 ; i<n ; i++) vect[i] = x ;

}

125

public Vecteur (double [] V)
{ int n = v.length ;
vect = new double [n] ;
for (int 1i=0 ; i<n ; 1i++) vect[i] = v[i] ;
}
public double prodScal (Vecteur w)
{ if (vect.length != w.vect.length) return 0. ;
double ps = 0. ;
for (int i=0 ; i<vect.length ; i++)
ps += vect[i]*w.vect[i] ;
return ps ;
}
public static Vecteur somme (Vecteur v1, Vecteur v2)
{ if (vi1.vect.length != v2.vect.length) return null ;
int n = vl.vect.length ;
Vecteur res = new Vecteur (n) ;
for (int i=0 ; i<n ; i++)
res.vect[i] = vil.vect[i] + v2.vect[i] ;
return res ;
}
public void affiche ()
{ for (int i=0 ; i<vect.length ; i++)
System.out.print (vect[i] + " ") ;
System.out.println() ;
}

private double[] vect ;
}
public class TstVect
{ public static void main (String args[])

{ Vecteur a = new Vecteur (5) ; a.affiche();
Vecteur b = new Vecteur (5, 0.5) ; b.affiche() ;
System.out.println ("a.b = " + a.prodScal(b)) ;
double [] valeurs = {1.25, 2.5, 5.25, 3, 1} ;
Vecteur ¢ = new Vecteur (valeurs) ; c.affiche() ;

System.out.println ("b.c = " + b.prodScal(c)) ;
a = Vecteur.somme (b, c) ;

System.out.print ("b+c = ") ; a.affiche() ;

}

126

0.0 0.0 0.0 0.0 0.0
0.5 0.5 0.5 0.5 0.5

a.b = 0.0
1.25 2.5 5.25 3.0 1.0
b.c = 6.5

b+c = 1.75 3.0 5.75 3.5 1.5

Dans un programme réel, on serait amené a prendre plus de précautions, notamment :

— s’assurer dans le premier constructeur que la valeur de n est positive ou nulle (une
valeur nulle conduisant simplement a un tableau de taille nulle, ce qui n’est pas
incorrect) ou traiter correctement 1’exception NegativeArraySizelndexException
correspondante ;

— vérifier dans les méthodes recevant un tableau en argument que les références
correspondantes ne sont pas nulles ou traiter 1’exception NullPointerException
risquant d’apparaitre.

On pourrait également déclencher des exceptions créées spécifiquement pour la classe
Vecteur.

127

Synthese : utilitaires pour des
tableaux de tableaux

Réaliser une classe utilitaire concernant des tableaux de tableaux de valeurs de type
double et contenant les méthodes statiques suivantes :

* dffiche (double t [] []) : affiche les valeurs de t, a raison d’une ligne d’écran
pour une ligne du tableau,

* boolean regulier (double t [] []) : teste si le tableau t est régulier, c’est-a-dire
si toutes ses lignes ont la méme taille,

* double [] sommeLignes (double t [| []) : fournit un tableau de double
correspondant aux sommes des différentes lignes de t,

* double [] [] somme (double [] [] t1, double [| [] t2) : s’assure que les
tableaux t1 et t2 sont réguliers et de mémes dimensions et fournit dans ce cas leur
somme en résultat ; dans le cas contraire, elle fournit une référence nulle.

Ecrire un petit programme de test.

Rappelons que la notion de tableau a plusieurs indices n’existe pas en Java qui ne
dispose en fait que de la composition des tableaux : les éléments d’un tableau peuvent
étre a leur tour des tableaux. Dans ce cas, il n’est pas nécessaire que les "tableaux
éléments" soient de méme taille. S’ils le sont, on dit que le tableau est "régulier" ; il
permet alors de simuler le tableau a plusieurs indices de la plupart des autres langages.

class Util2D
{ public static boolean regulier (double[][] t)
{ int n = t[0].1length ; // longueur premiere ligne
for (int i=1 ; i<t.length ; i++) // parcourt les lignes a partir
// de la seconde
if (t[i].length != n) return false ;
return true ;

}

128

public static double[] sommeLignes (double[][] t)
{ int nLignes t.length ;
double[] res new double[nLignes] ;
for (int 1=0 ; i<nlLignes ; 1i++)
{ res[i] = 0. ;
for (int j=0 ; j<t[i].length ; j++) res[i] += t[i][]] ;
}

return res ;

}
public static double[][] somme (double[][] t1, double[][] t2)
{ if (!'regulier(tl) || !'regulier(t2)) return null ;

if (tl1.length != t2.length) return null ;
if (t1[0].length != t2[0].length) return null ;
int nLig = ti1.length ; int nCol=t1[0].length ;
double[][] som = new double[nLig][nCol] ;
for (int 1=0 ; i<nlLig ; 1i++)
for (int j=0 ; j<nCol ; j++)
som[i][j] = ta[i][3] + t2[i][3] ;
return som ;
}
public static void affiche (double[][] t)
{ for (int i=0 ; i<t.length ; i++)
{ for (int j=0 ; j<t[i].length ; j++)
System.out.print (t[i][j] + " ") ;
System.out.println () ;
}
}
}

public class TUutil2D

{ public static void main (String args[])

{ double[][] a = { {1, 2, 3}, {4, 5, 6}} ;
double[][] b = { {6, 5, 4}, {3, 2, 1}} ;
double[][] ¢ = Util2D.somme (a, b) ;

System.out.println ("a = ") ; Util2D.affiche(a) ;
System.out.println ("b = ") ; Util2D.affiche(b) ;
System.out.println ("c = ") ; Util2Db.affiche(c) ;

double[][] d = { { 1, 2}, {1, 2, 3}, {1}, {1, 2, 3, 4, 5}} ;

129

double [] sLig = Util2D.sommeLignes(d) ;

System.out.println ("d = ") ; Util2D.affiche(d) ;

System.out.print ("somme lignes de d = ") ;

for (int i=0 ; i<slLig.length ; i++) System.out.print (sLig[i] + "

")

N © © I

o ©

o ©

R R R N~NODO WOoOOT MR D W

© © o
N
°
w
(o)

1.0 2.0 3.0 4.0 5.0
somme lignes de d = 3.0 6.0 1.0 15.0

Comme dans I’exercice 57, nous n’avons pas prévu de protections contre les références
nulles fournies en argument. Celles-ci pourraient s’avérer nécessaires dans un
programme réel.

130

Synthese : crible d’Eratosthene

Il existe une méthode de détermination de tous les nombres premiers compris entre 1
et n, connue sous le nom de "crible d’Eratosthéne". Elle consiste a dresser une liste
de tous les nombres entiers considérés et a y "rayer" tous les multiples d’autres
entiers. Plus précisément, on procéde ainsi :

* onraye le 1 (qui, par définition, n’est pas un nombre premier),

* on recherche, a partir du dernier nombre premier considéré (la premiere fois, on
convient qu’il s’agit du 1), le premier nombre non rayé (on peut montrer qu’il est
premier). Il devient, a son tour, le dernier nombre premier considéré et on raye
tous ses multiples,

* on répete le traitement précédent jusqu’a ce que le nombre premier considéré
soit supérieur a la racine carrée de n. On peut alors démontrer que tous les
nombres non premiers ont été rayés de la liste.

Ecrire un programme exploitant cette méthode pour rechercher tous les nombres
premiers compris entre 1 et une valeur fournie en donnée.

Nous représentons le "crible" par un tableau de n booléens nommé raye. Pour faciliter
les choses, nous convenons que raye[i] correspond au nombre i, ce qui nous impose de
donner au tableau raye la dimension nMax+1. La variable nombre sert a représenter le
dernier nombre premier considéré (dont on raye tous les multiples).

Pour faciliter la lecture des résultats, nous les affichons a raison de nParLigne (10)
valeurs par ligne.

public class Erato
{ public static void main (String[] args)
{ final int nParlLigne = 10 ;

boolean raye [] ; // tableau servant de
"crible"

int nombre ; // dernier nombre entier
raye

int nMax ; // le plus grand entier a
examiner

131

int i ;

/* preparation du crible */
System.out.print("Donnez le plus grand nombre entier a examiner

")

nMax

Clavier.lireInt() ;
new boolean [nMax+1] ;

for (i=1 ; i<=nMax ; i++) raye[i] = false ;

/* on raye le nombre 1 */

raye[1l] = false ; nombre = 1 ;
while (nombre*nombre <= nMax)

{ /* recherche, a partir de nombre, du premier nombre non raye */
while ((raye[++nombre]) && (nombre<=nMax)) {}

/* on raye tous ses multiples */

for (i=2*nombre ; i<=nMax ; i+=nombre) raye[i] = true ;
}

/* affichage des resultats */

System.out.println ("entre 1 et " + nMax + " les nombres premiers
sont : ") ;

int nAff = 0 ; // nombre de valeurs affichees
for (i=1 ; i<=nMax ; 1i++)
{ if ('raye[i]) { System.out.print (i + " ") ;
nAff++ ;
if (nAff == nParLigne) { nAff = 0 ;
System.out.println () ;
}

raye

b
b
b

Voici un exemple d’exécution de ce programme :

Donnez le plus grand nombre entier a examiner : 1000
entre 1 et 1000 les nombres premiers sont

12357 11 13 17 19 23

29 31 37 41 43 47 53 59 61 67

71 73 79 83 89 97 101 103 107 109

113 127 131 137 139 149 151 157 163 167

173 179 181 191 193 197 199 211 223 227

229 233 239 241 251 257 263 269 271 277

132

281 283 293 307 311 313 317 331 337 347
349 353 359 367 373 379 383 389 397 401
409 419 421 431 433 439 443 449 457 461
463 467 479 487 491 499 503 509 521 523
541 547 557 563 569 571 577 587 593 599
601 607 613 617 619 631 641 643 647 653
659 661 673 677 683 691 701 709 719 727
733 739 743 751 757 761 769 773 787 797
809 811 821 823 827 829 839 853 857 859
863 877 881 883 887 907 911 919 929 937
941 947 953 967 971 977 983 991 997

Dans la boucle de recherche du premier nombre non rayé, nous avons conservée le
"garde-fou" nombre < nMax. On pourrait toutefois démontrer que, des que nMax est
supérieur ou égal a 2, on est toujours assuré de trouver au moins un nombre non rayé
avant la fin du tableau (compte tenu de ce que 1’on commence 1’exploration avec un
nombre inférieur ou égal a la racine carrée de nMax).

133

Chapitre 5

L’héritage et le polymorphisme

N
B || #5F, "‘ 'f

1]

]
|
& |

Connaissances requises

» Définition d’une classe dérivée ; le mot clé extends
* Droits d’acces d’une classe dérivée aux membres de sa classe de base

« Construction et initialisation des objets dérivés ; regles d’appel des
constructeurs ; appel du constructeur de la classe de base depuis le constructeur
de la classe dérivée : le mot clé super

» Dérivations successives

* Redéfinition de méthodes ou de champs ; la surdéfinition a travers 1’héritage ;
utilisation simultanée des possibilités de surdéfinition et de redéfinition ;
contraintes relatives a la surdéfinition

* Le polymorphisme : ses fondements sur la redéfinition ; polymorphisme et
surdéfinition ; conversion d’arguments effectifs de type classe ; conversions
explicites de références ; la référence super (en dehors d’un constructeur)

» La super classe Object ; références de type Object ; la méthode equals
* Les membres protégés (protected)

* Classes et méthodes finales

* Classes abstraites

« Interfaces ; définition, implémentation ; variables de type interface ;
constantes d’une interface ; dérivation d’une interface

» Classes enveloppes : Boolean, Byte, Character, Short, Integer, Long, Float

134

et Double

* Classes anonymes

135

m Définition d’une classe dérivée,
droits d’acces (1)

On dispose de la classe suivante :
class Point
{ public void initialise (int x, int y) { this.x = x ; this.y =
y ; }
public void deplace (int dx, int dy) { x += dx ; y +=dy ; }
public int getX() { return x ; }
public int getY() { returny ; }
private int x, y ;

}

Réaliser une classe PointA, dérivée de Point disposant d’une méthode daffiche
affichant (en fenétre console) les coordonnées d’un point. Ecrire un petit programme
utilisant les deux classes Point et PointA.

Que se passerait-il si la classe Point ne disposait pas des méthodes getX et getY ?

Il suffit de définir une classe dérivée en utilisant le mot clé extends. La méthode
dffiche, comme toute méthode d’une classe dérivée a acces a tous les membres publics
de la classe de base, donc en particulier a getX et getY.

class PointA extends Point
{ void affiche()
{ System.out.println ("Coordonnees : " + getX() + " " + getY()) ;

}
}
On peut alors créer des objets de type PointA et leur appliquer aussi bien les méthodes
publiques de PointA que celles de Point comme dans ce programme accompagné d’un
exemple d’exécution :
public class TsPointA
{ public static void main (String args[])
{ Point p = new Point () ;

136

p.initialise (2, 5) ;

System.out.println ("Coordonnees : " + p.getX() + " " + p.getY()
)

PointA pa = new PointA () ;

pa.initialise (1, 8) ; // on utilise la methode initialise de
Point

pa.affiche() ; // et la methode affiche de PointA

b
b

Coordonnees : 2 5
Coordonnees : 2 5

Notez bien qu’un appel tel que p.daffiche() conduirait a une erreur de compilation
puisque la classe de p (Point) ne possede pas de méthode affiche.

Si la classe Point n’avait pas disposé des méthodes d’acces getX et getY, il n’aurait
pas été possible d’accéder a ses champs privés x et y depuis la classe PointA. 1l
n’aurait donc pas été possible de la doter de la méthode affiche. L’héritage ne permet
pas de contourner le principe d’encapsulation.

Comme nos classes ne disposent pas de constructeur, il est possible de créer des objets
sans les initialiser. Dans ce cas, leurs champs auront simplement une valeur "nulle",
c’est-a-dire ici la valeur entiére 0.

137

Définition d’une classe dérivée,
droits d’acces (2)

On dispose de la classe suivante :
class Point
{ public void setPoint (int x, int y) { this.x = x
y ; }
public void deplace (int dx, int dy) { x += dx ; y +=dy ; }
public void affCoord ()

; this.y =

{ System.out.println ("Coordonnees : " + x + " " + vy) ;
}
private int x, y ;

}

Réaliser une classe PointNom, dérivée de Point permettant de manipuler des points

définis par deux coordonnées (int) et un nom (caractere). On y prévoira les
méthodes suivantes :

» setPointNom pour définir les coordonnées et le nom d’un objet de type
PointNom,

» setNom pour définir seulement le nom d’un tel objet,

* affCoordNom pour afficher les coordonnées et le nom d’un objet de type
PointNom.

Ecrire un petit programme utilisant la classe PointNom.

Nous définissons une classe dérivée en utilisant le mot clé extends :
class PointNom extends Point

Dans cette classe PointNom, nous introduisons un champ (de préférence privé) destiné
a contenir le nom du point :

private char nom ;

La méthode setNom est triviale. Compte tenu de 1’encapsulation des données de Point,
nos deux autres méthodes doivent absolument recourir aux méthodes publiques de

138

Point.
En définitive, voici la définition de notre classe PoitnNom :

class PointNom extends Point
{ public void setPointNom (int x, int y, char nom)
{ setPoint (x, vy) ;
this.nom = nom ;
}
public void setNom(char nom)
{ this.nom = nom ;
}
public void affCoordNom()
{ System.out.print ("Point de nom " + nom + " ") ;
affCoord() ;
}

private char nom ;

}

Voici un programme d’utilisation de PointNom :

public class TsPointN
{ public static void main (String args[])
{ Point p = new Point () ;
p.setPoint (2, 5) ;
p.affCoord() ;
PointNom pnl = new PointNom() ;

pnl.setPointNom (1, 7, 'A') ; // methode de PointNom
pnil.affCoordNom() ; // methode de PointNom
pnl.deplace (9, 3) ; // methode de Point

pnil.affCoordNom() ; // methode de PointNom

PointNom pn2 = new PointNom() ;

pn2.setPoint (4, 3) ; // methode de Point
pn2.setNom ('B'") ; // methode de PointNom
pn2.affCoordNom() ; // methode de PointNom
pn2.affCoord() ; // methode de Point

}

}

Coordonnees : 2 5
Point de nom A Coordonnees : 1 7

139

Point de nom A Coordonnees : 10 10
Point de nom B Coordonnees : 4 3
Coordonnees : 4 3

1. Ici encore, comme nos classes ne disposent pas de constructeur, il est possible de
créer des objets sans les initialiser. Dans ce cas, leurs champs auront simplement une
valeur "nulle", c’est-a-dire ici la valeur entiere O pour les coordonées et le caractere
de code nul pour le nom.

2. Comme la classe Point ne dispose pas de méthodes d’acces aux coordonnées, on
voit que la méthode affCoordNom n’a pas d’autre possibilité que de recourir a la
méthode affCoord de Point, ce qui impose des contraintes sur la présentation des
résultats. En particulier, il serait impossible d’afficher sur une méme ligne le nom du
point avant les coordonnées.

140

Heritage et appels de constructeurs

On dispose de la classe suivante (disposant cette fois d’un constructeur) :
class Point
{ public Point (int x, int y) { this.x = x ; this.y =y ; }
public void affCoord()

{ System.out.println ("Coordonnees : " + x + " " + vy) ;
}
private int x, y ;

}

Réaliser une classe PointNom, dérivée de Point permettant de manipuler des points
définis par leurs coordonnées (entieres) et un nom (caractere). On y prévoira les
méthodes suivantes :

 constructeur pour définir les coordonnées et le nom d’un objet de type
PointNom,

* affCoordNom pour afficher les coordonnées et le nom d’un objet de type
PointNom.

Ecrire un petit programme utilisant la classe PointNom.

Cet exercice est voisin de I’exercice 61 mais, cette fois, les deux classes disposent
d’un constructeur. Celui de la classe dérivée PointNom doit prendre en charge la
construction de 1’intégralité de 1’objet correspondant, quitte a s’appuyer pour cela sur
le constructeur de la classe de base (ce qui est indispensable ici puisque la classe
Point ne dispose pas de méthodes d’acces). Rappelons que 1’appel du constructeur de
la classe de base (fait a 1’aide du mot clé super) doit constituer la premiere instruction
du constructeur de la classe dérivée.

En définitive, voici ce que pourrait étre la définition de notre classe PointNom :

class PointNom extends Point
{ public PointNom (int x, int y, char nom)

{ super (x, y) ;
this.nom = nom ;

141

}
public void affCoordNom()

{ System.out.print ("Point de nom " + nom + " ") ;
affCoord() ;
¥

private char nom ;

¥
Voici un petit programme d’utilisation de PointNom :

public class TsPointC
{ public static void main (String args[])
{ PointNom pnl = new PointNom(1, 7, 'A') ;

pnil.affCoordNom() ; // methode de PointNom
PointNom pn2 = new PointNom(4, 3, 'B') ;
pn2.affCoordNom() ; // methode de PointNom
pn2.affCoord() ; // methode de Point
}

}

Point de nom A Coordonnees : 1 7
Point de nom B Coordonnees : 4 3
Coordonnees : 4 3

142

Redéfinition

On dispose de la classe suivante :
class Point
{ public Point (int x, int y) { this.x = x ; this.y =y ; }
public void affiche()

{ System.out.println ("Coordonnees : " + x + " " + vy) ;
}
private int x, y ;

}

Réaliser une classe PointNom, dérivée de Point permettant de manipuler des points
définis par leurs coordonnées et un nom (caractere). On y prévoira les méthodes
suivantes :

 constructeur pour définir les coordonnées et le nom d’un objet de type
PointNom,

» dffiche pour afficher les coordonnées et le nom d’un objet de type PointNom.

Cet exercice est voisin de I’exercice 62. L’écriture du constructeur reste la méme.
Mais, cette fois, on doit redéfinir la méthode affiche dans la classe dérivée. I affichage
du nom n’y pose aucun probleme :

System.out.print ("Point de nom " + nom + " ") ;

En revanche, il nous faut faire appel a la méthode affiche de la classe de base. Pour ce
faire, nous employons le mot clé super :

super.affiche() ;
En définitive, voici la définition de notre classe, accompagnée d’un petit programme
d’utilisation :

class PointNom extends Point

{ public PointNom (int x, int y, char Nom)

{ super (x, y) ;
this.Nom = Nom ;

}

143

public void affiche()
{ System.out.print ("Point de nom " + Nom + " ") ;
super.affiche() ;

}

private char Nom ;

}

public class TsPointR

{ public static void main (String args[])
{ Point p = new Point (3, 7) ;

p.affiche() ; // methode de Point

PointNom pn = new PointNom(1, 7, 'A') ;

pn.affiche() ; // methode de PointNom
}

}

Coordonnees : 3 7
Point de nom A Coordonnees : 1 7

Ici, la redéfinition de la méthode affiche dans PointNom utilise la méthode affiche de
la classe ascendante Point, ce qui impose de recourir au mot clé super. Bien entendu, il
n’en ira pas toujours ainsi : rien n’empéche de redéfinir entierement une méthode sans
chercher a exploiter celle de la classe ascendante.

144

Construction et initialisation
d’une classe deriveée

Quels résultats fournit ce programme ?
class A
{
public A (int nn)
{ System.out.println ("Entree Constr A - n=" + n + " p=" + p) ;
n = nn ;
System.out.println ("Sortie Constr A - n=" + n + " p=" + p) ;

}

public int n ; // ici, exceptionnellement, pas
d'encapsulation

public int p=10 ;
}
class B extends A
{ public B (int n, int pp)
{ super (n) ;
System.out.println ("Entree Constr B - n=" + n + " p=" + p + "

q=" +q) ;

P =ppP

q = 2*n ;

System.out.println ("Sortie Constr B - n=" + n + " p=" + p + "
q=" +q) ;

}
public int =25 ;

}

public class TstInit

{ public static void main (String args[])
{ A a=new A(5) ;
B b = new B(5, 3) ;

}

}

145

Il faut tenir compte de 1’ordre dans lequel ont lieu les initialisations des champs
(explicite et implicite) et les appels des constructeurs, a savoir :

« initialisation par défaut des champs de 1’objet dérivé (y compris ceux hérités),
« initialisation explicite des champs hérités,
* exécution du constructeur de la classe de base,
« initialisation explicite des champs spécifiques a 1’objet dérivé,
» exécution du constructeur de la classe dérivée.
Cela nous conduit aux résultats suivants :

Entree Constr A - n=0 p=10
Sortie Constr A - n=5 p=10
Entree Constr A - n=0 p=10
Sortie Constr A - n=5 p=10
Entree Constr B - n=5 p=10 =25
Sortie Constr B - n=5 p=3 =10

146

Derivations successives et
redefinition

Quels résultats fournit le programme suivant ?
class A
{ public void affiche()
{ System.out.println ("Je suis un A") ;

}
}

class B extends A { }
class C extends A
{ public void affiche()
{ System.out.println ("Je suis un C") ;

}
}

class D extends C
{ public void affiche()
{ System.out.println ("Je suis un D") ;

}

}
class E extends B {}

class F extends C {}

public class DiagHeri

{ public static void main (String arg[])
{ Aa=new A() ; a.affiche() ;

B b =new B() ; b.affiche() ;
Cc =new C() ; c.affiche() ;
Dd=new D() ; d.affiche() ;
E e = new E() ; e.affiche() ;
F f = new F() ; f.affiche() ;

147

Lors d’un appel tel que o.dffiche() (o étant un objet de 1’une des classes concernées),
on recherche tout d’abord la méthode affiche dans la classe de o. Si aucune méthode
n’est trouvée, on poursuit la recherche dans la classe ascendante et ainsi de suite
jusqu’a ce que la méthode soit trouvée' (si 1’on arrive a la classe Object, racine de
toutes les classes, sans que la méthode ne soit trouvée, on obtient une erreur de
compilation).

Ici, le programme fournit ces résultats :

Je suis un
Je suis un
Je suis un
Je suis un
Je suis un

O >» U O >» >

Je suis un

148

Derivations successives et
surdefinition

Quels résultats fournit le programme suivant ?
class A
{ public void f(double x) { System.out.print ("A.f(double=" + x
+") ") ;1
}
class B extends A {}
class C extends A
E)pubiic void f(long q) { System.out.print ("C.f(long=" + q + ")
}
class D extends C
{ public void f(int n) { System.out.print ("D.f(int=" + n + ")
") 7}
}
class E extends B {}
class F extends C
{)public void f(float x) { System.out.print ("F.f(float=" + x +
") ")
}
public void f(int n) { System.out.print ("F.f(int=" + n + ")
") 7}
}
public class Surdf
{ public static void main (String arg[])
{ byte bb=1 ; short p=2 ; int n=3 ; long q=4 ;
float x=5.f ; double y=6. ;

A a = new A() ; a.f(bb) ; a.f(x) ; System.out.println() ;
Bb=new B() ; b.f(bb) ; a.f(x) ; System.out.println() ;

C ¢ = new C() ; c.f(bb) ; c.f(q) ; c.f(x) ;
System.out.println() ;

D d = new D() ; d.f(bb) ; c.f(q) ; c.f(y) ;
System.out.println() ;

E e = new E() ; e.f(bb) ; e.f(q) ; e.f(y) ;

149

System.out.println() ;
F f =new F() ; f.f(bb) ; f.f(n) ; f.f(x) ; f.f(y) ; f.f(p) ;

}
}

Ici, on fait intervenir a la fois la redéfinition d’une méthode et sa surdéfinition. Pour
résoudre un appel de la forme o.f(v) (o étant un objet et v une expression), on recherche
toutes les méthodes acceptables, a la fois dans la classe de o et dans toutes ses
ascendantes. On utilise ensuite les regles habituelles de recherche de la meilleure (et
unique) méthode. En définitive, le programme fournit les résultats suivants (notez que
certaines conversions peuvent apparaitre) :

.f(double=1.0) A.f(double=5.0)

.f(double=1.0) A.f(double=5.0)

.f(long=1) C.f(long=4) A.f(double=5.0)
.f(int=1) C.f(long=4) A.f(double=6.0)
.f(double=1.0) A.f(double=4.0) A.f(double=6.0)

f(int=1) F.f(int=3) F.f(float=5.0) A.f(double=6.0) C.f(long=4)
f(int=2)

mT > O O > >

150

Les bases du polymorphisme

Quels résultats fournit le programme suivant ?

class A
{ public void affiche() { System.out.print ("Je suis un A ")

}

class B extends A {}
class C extends A
{ public void affiche() { System.out.print ("Je suis un C ")

}

class D extends C
{ public void affiche() { System.out.print ("Je suis un D ")

}

class E extends B {}
class F extends C {}
public class Poly

{ public static void main (String arg[])

{ Aa

B b

a=>»

® o I oS < Il O

=h =h Il

new A()

new
’

new

B()

c()

D()

E()

F()

4

; a.affiche()

; b.
a.

C.

affiche()
affiche()

affiche()

a.affiche()

.affiche()

a.affiche()

.affiche()

.affiche()
.affiche()
.affiche()

.affiche()

a.affiche()

.affiche()

4

; System.out.println()

System.

System.

System.

System.

151

out.println()

out.println()

out.println()

out.println()

4

H

H

H

}

Certaines possibilités d’affectation entre objets des types classes A, B, C, D, E et F
ne figurent pas dans le programme ci-dessus. Pourquoi ?

En Java, I’une des propriétés du "polymorphisme" est que 1’appel d’une méthode est
déterminé au moment de |’exécution, suivant la nature de 1’objet effectivement
référencé (et non seulement suivant le type de la référence). C’est pourquoi ici tous les
appels de affiche concernant un méme objet fournissent le méme message, quel que soit
le type de référence utilisé :

Je suis un
Je suis un Je suis un
Je suis un

A

Je suis un C
Je suis un D Je suis un D

A

C

Je suis un
Je suis un

Je suis un Je suis un A

O >» T O >» >

Je suis un Je suis un Je suis un C

Néanmoins, une référence de type T ne peut se voir affecter qu’une référence d’un type
T ou dérivé de T. C’est ce qui se passait effectivement dans notre programme. Mais (en
supposant les mémes déclarations), ces affectations seraient incorrectes :

; e=a ; e=b ; c=a ; d=c ; d=a ; f=c
c=

; b=f ; e=c ; e=d ; e=f ; b , c=e ; d=b ;, d=e ; f=b ;

T T
0 D
i
o

152

Polymorphisme et surdefinition

Quels résultats fournit le programme suivant ?
class A
{ public void f(double x) { System.out.print ("A.f(double=" + x
+") ") ;1
}
class B extends A {}
class C extends A
{ public void f(long q) { System.out.print ("C.f(long=" + q + ")
")}
}
class D extends C
{ public void f(int n) { System.out.print ("D.f(int=" + n + ")
") ;1
}
class F extends C
{ public void f(float x) { System.out.print ("F.f(float=" + x +
") ")}
public void f(int n) { System.out.print ("F.f(int=" + n + ")
") ;1
}

public class PolySur

{ public static void main (String arg[])

{ byte bb=1 ; short p=2 ; int n=3 ; long q=4 ;
float x=5.f ; double y=6. ;

System.out.println ("** A ** ")
A a = new A() ; a.f(bb) ; a.f(x) ; System.out.println() ;

System.out.println ("** B ** ") ;
Bb=new B() ; b.f(bb) ; b.f(x) ; System.out.println() ;
a=>b; a.f(bb) ; a.f(x) ; System.out.println() ;

System.out.println ("** C ** ")

C ¢ = new C() ; c.f(bb) ; c.f(q) ; c.f(x) ;
System.out.println() ;

153

a=c; a.f(bb) ; a.f(q) ; a.f(x) ; System.out.println() ;

System.out.println ("** D ** ") ;

D d = new D() ; d.f(bb) ; c.f(q) ; c.f(y) ;
System.out.println() ;

a=c; a.f(bb) ; a.f(q) ; a.f(y) ; System.out.println() ;

System.out.println ("** F ** ") ;

F f=newF() ; f.f(bb) ; f.f(n) ; f.f(x) ; f.f(y) ;
System.out.println() ;

a = f ; a.f(bb) ; a.f(n) ;oa.f(x) ; a.f(y)

System.out.println() ;

c=Ff ; c.f(bb) ; c.f(n) ; c.f(x) ; c.f(y) ;

Ici, on combine :

* les possibilités qu’offre le polymorphisme de choisir une méthode suivant la nature
de I’objet effectivement référencé,

* les possibilités de surdéfinition qui permettent de déterminer une méthode suivant
le type de ses arguments.

Mais il faut bien voir que le choix d’une méthode surdéfinie est réalisé par le
compilateur, alors que la ligature dynamique induite par le polymorphisme ne
s’effectue qu’a I’exécution.

Plus précisément, lors d’un appel du type o.f(...), la signature de la méthode f est
définie a la compilation au vu de son appel, en utilisant le type de la variable o (et non
le type de 1’objet référencé, non encore connu) et en appliquant éventuellement les
regles de choix d’une méthode surdéfinie. Ce choix ne peut alors se faire que dans la
classe de o ou ses ascendantes (et en aucun cas dans ses descendantes éventuelles,
comme le permettra la ligature dynamique).

Au moment de I’exécution, on cherchera parmi la classe de 1’objet effectivement
référencé par o (qui peut donc éventuellement étre une classe descendante de celle de
0), une méthode ayant la signature précédemment déterminée. Mais, on ne reviendra
plus sur le choix de la meilleure méthode.

Par exemple, dans le troisiéeme groupe d’instructions (** C **), les appels de la forme
c.f(...) sont traités en considérant les méthodes f de C et de son ascendante A. En
revanche, malgré 1’affectation a=c, ceux de la forme a.f(...) sont traités en ne

154

considérant que les méthodes f de A. Ainsi, I’appel c.f(bb) utilise C.f(long) tandis que
1’appel a.f(bb) utilise A.f(double).

Finalement, le programme fournit les résultats suivants :
* % A * %

A.f(double=1.0) A.f(double=5.0)

k% B kk

A.f(double=1.0) A.f(double=5.0)

A.f(double=1.0) A.f(double=5.0)

kx o Kk

C.f(long=1) C.f(long=4) A.f(double=5.0)

A.f(double=1.0) A.f(double=4.0) A.f(double=5.0)

k% Kk

D.f(int=1) C.f(long=4) A.f(double=6.0)

A.f(double=1.0) A.f(double=4.0) A.f(double=6.0)

k% |E okk

F.f(int=1) F.f(int=3) F.f(float=5.0) A.f(double=6.0)
A.f(double=1.0) A.f(double=3.0) A.f(double=5.0) A.f(double=6.0)
C.f(long=1) C.f(long=3) A.f(double=5.0) A.f(double=6.0)

155

Les limites du polymorphisme

Soit les classes Point et PointNom ainsi définies :

class Point

{ public Point (int x, int y) { this.x = x ; this.y =y ; }
public static boolean identiques (Point a, Point b)
{ return ((a.x==b.x) && (a.y==b.y)) ; }

public boolean identique (Point a)
{ return ((a.x==x) && (a.y==y)) ; }

private int x, y ;

}

class PointNom extends Point

{ PointNom (int x, int y, char nom)
{ super (x, y) ; this.nom = nom ; }

private char nom ;

}

1. Quels résultats fournit ce programme ? Expliciter les conversions mises en jeu
et les regles utilisées pour traiter les différents appels de méthodes :
public class LimPoly
{ public static void main (String args[])
{ Point p = new Point (2, 4) ;
PointNom pnli1 = new PointNom (2, 4, 'A') ;
PointNom pn2 new PointNom (2, 4, 'B') ;
System.out.println (pnil.identique(pn2)) ;
System.out.println (p.identique(pni)) ;
System.out.println (pni.identique(p)) ;
System.out.println (Point.identiques(pni, pn2)) ;

}
}

2. Doter la classe PointNom d’une méthode statique identiques et d’une méthode
identique fournisant toutes les deux la valeur true lorsque les deux points
concernés ont a la fois mémes coordonnées et méme nom. Quels résultats fournira
alors le programme précédent ? Quelles seront les conversions mises en jeu et les
regles utilisées ?

156

Question 1
pnl.identique(pn2)

Lors de la compilation, on recherche une méthode identique dans la classe de pni
(PointNom) ou ses ascendantes. On en trouve une seule dans Point avec un argument de
type Point, ce qui fige sa signature sous la forme identique(Point), en imposant une
conversion implicite de pn2 en Point. Lors de 1’exécution, on cherche une telle
méthode d’abord dans PointNom (ligature dynamique) puis, comme on n’en trouve pas,
dans Point. En définitive, on exécute bien la méthode identique de Point.

p.identique(pnl)

Lors de la compilation, on trouve la méthode identique dans la classe de p (Point), ce
qui fige sa signature sous la forme identique(Point), en imposant une conversion
implicite de pnl en Point. Lors de 1’exécution, on cherche une telle méthode dans la
classe de p (Point). En définitive, on exécute bien la méthode identique de Point.

pnl.identique(p)

Lors de la compilation, on recherche une méthode identique dans la classe de pni
(PointNom) ou ses ascendantes. On en trouve une seule dans Point avec un argument de
type Point, ce qui fige sa signature sous la forme identique(Point) (cette fois aucune
conversion d’argument n’est prévue). Lors de 1’exécution, on cherche une telle méthode
d’abord dans PointNom (ligature dynamique) puis dans Point. En définitive, on exécute
bien la méthode identique de Point.

Point.identiques(pnl, pn2)

Ici, 1’appel est résolu des la compilation (les méthodes statiques ne peuvent pas étre
concernées par le polymorphisme). Il fait intervenir la conversion de pnl et de pn2 en
Point.

Comme on peut s’y attendre, le programme fournit ces résultats :

true
true
true
true

Question 2

Comme les champs x et y de Point ne sont pas publics et comme 1’on ne dispose
d’aucune méthode d’acces, il est nécessaire, au sein des méthodes voulues dans
PointNom, de recourir aux méthodes correspondantes de Point :

157

public static boolean identiques (PointNom a, PointNom b)

{

return (Point.identiques (a, b) && (a.nom==b.nom)) ;

}

public boolean identique (PointNom a)

{

return (super.identique(a) && (nom==a.nom)) ;

}

On notera la notation super.identique qui force 1’utilisation de la méthode identique de
la classe ascendante Point.

pnl.identique(pn2)

Lors de la compilation, on recherche une méthode identique dans la classe de pni
(PointNom) ou ses ascendantes. Cette fois, les méthodes de PointNom et de Point sont
acceptables. Mais, la premiere est meilleure, ce qui fige la signature de la méthode
appelée sous la forme identique(PointNom). Lors de 1’exécution, on cherche d’abord
une telle méthode dans PointNom et on la trouve. En définitive, on exécute bien la
méthode identique de PointNom, contrairement a ce que se passait dans la question 1.

p.identique(pnl)

Lors de la compilation, cette fois, on recherche une méthode identique dans la classe
de p (Point), ce qui fige sa signature sous la forme identique(Point), en imposant une
conversion implicite de pnl en Point. Lors de 1’exécution, on cherche une telle
méthode dans la classe de p (Point). En définitive, on exécute (comme dans la
premiere question) la méthode identique de Point. Notez que 1’application de la
méthode de PointNom n’aurait, de toutes fagons, aucune signification, 1’objet p n’ayant
pas de champ nom !

pnl.identique(p)

Lors de la compilation, on recherche, comme avec le premier appel, une méthode
identique dans la classe de pnl (PointNom) ou ses ascendantes. Mais, cette fois, seule
celle de Point est acceptable car on ne peut pas convertir implicitement le type Point
en PointNom (seul I’inverse est possible). On fige donc la signature de la méthode
appelée sous la forme identique(Point) (cette fois aucune conversion d’argument n’est
prévue). Lors de 1’exécution, on cherche une telle méthode d’abord dans PointNom
(ligature dynamique) puis dans Point. En définitive, on exécute bien la méthode
identique de Point.

158

Point.identiques(pnl, pn2)

Ici, comme précédemment, 1’appel est résolu des la compilation et il fait toujours
intervenir la conversion de pnl et de pn2 en Point. Comme on peut s’y attendre, le
programme fournit ces résultats :

false
true
true
true

Notez que 1’on pourrait forcer I’emploi de identiques de PointNom en écrivant

PointNom.identiques(pnl, pn2) ; dans ce cas, il n’y aurait plus de conversion et 1’on
obtiendrait le résultat false.

159

Classe abstraite

On souhaite disposer d’une hiérarchie de classes permettant de manipuler des
figures géométriques. On veut qu’il soit toujours possible d’étendre la hiérarchie en
dérivant de nouvelles classes mais on souhaite pouvoir imposer que ces dernieres
disposent toujours des méthodes suivantes :

* void dffiche ()
* void homothetie (double coeff)
* void rotation (double angle)

Ecrire la classe abstraite Figure qui pourra servir de classe de base a toutes ces
classes.

Il suffit d’appliquer les regles de définition d’une classe abstraite. On y place les en-
tetes des méthodes qu’on souhaite voir redéfinies dans les classes dérivées, en leur
associant le mot clé abstract :

abstract class Figure

{ abstract public void affiche() ;

abstract public void homothetie (double coef) ;
abstract public void rotation (double angle) ;

}

Le mot clé abstract figurant devant class peut étre omis (toute classe disposant au
moins d’une méthode abstraite est abstraite). Il est cependant conseillé de le conserver.
Quant aux noms d’arguments accompagnant les en-tétes de méthodes, ils sont
syntaxiquement nécessaires (bien que n’ayant aucune signification).

Les classes de la hiérarchie de figures seront alors simplement définies comme classes
dérivées de Figure et elles devront définir les trois méthodes affiche, homothetie et
rotation, par exemple :

class Point extends Figure
{ public void affiche() { }
public void homothetie (double coef) { }

160

161

Classe abstraite et
polymorphisme

Compléter la classe abstraite Figure de 1’exercice précédent, de facon qu’elle
implémente :

» une méthode homoRot (double coef, double angle) qui applique a la fois une
homothétie et une rotation a la figure,

» de méthodes statiques afficheFigures, homothetieFigures et rotationFigures
appliquant une méme opération (affichage, homothétie ou rotation) a un tableau de
figures (objets d’une classe dérivée de Figure).

Une classe abstraite peut comporter des définitions de méthodes (non abstraites) qui
pourront alors étre utilisées par les classes dérivées sans qu’il ne soit nécessaire de les
redéfinir (mais on peut toujours le faire !). D’autre part, une classe abstraite peut
comporter des méthodes statiques, pour peu que celles-ci ne soient pas abstraites (ce
qui n’aurait aucune signification).

En définitive, voici la définition de notre nouvelle classe Figure :

abstract class Figure

{ abstract public void affiche() ;

abstract public void homothetie (double coef) ;

abstract public void rotation (double angle) ;

public void HomoRot (double coef, double angle)

{ homothetie (coef) ; rotation (angle) ;

}

public static void afficheFigures (Figure [] f)

{ for (int i=0 ; i<f.length ; i++) f[i].affiche() ;

}

public static void homothetieFigures (double coef, Figure[] f)
{ for (int i=0 ; i<f.length ; i++) f[i].homothetie(coef) ;
}

public static void rotationFigures (double angle, Figure[] f)

162

{ for (int i=0 ; i<f.length ; i++) f[i].rotation(angle) ;
¥
¥

On notera que, au sein de la méthode homoRot, il est possible d’appeler les méthodes
homotethie et rotation, et ceci bien qu’elles soient abstraites. En effet, d’apres les
regles du polymorphisme, la méthode effectivement appelée sera celle correspondant
au type effectif de 1’objet ayant appelé la méthode homoRot ; grace aux contraintes
portant sur les dérivées de classes abstraittes, on est certain qu’elle existera.

Des réflexions analogues s’appliquent a 1’appel des méthodes homothetie et rotation
dans les méthodes statiques homothetieFigures et rotationFigures.

163

Interface

On souhaite disposer de classes permettant de manipuler des figures géométriques.
On souhaite pouvoir caractériser celles qui possedent certaines fonctionnalités en
leur demandant d’implémenter des interfaces, a savoir :
» Affichable pour celles qui disposeront d’une méthode void dffiche (),
* Tranformable pour celles qui disposeront des deux méthodes suivantes :
void homothetie (double coeff)
void rotation (double angle)
Ecrire les deux interfaces Affichable et Transformable.

Il suffit d’appliquer les regles de définition d’une interface, ce qui nous conduit a :

interface Affichable

{ abstract public void affiche() ;

}

interface Transformable

{ abstract public void homothetie (double coef) ;
abstract public void rotation (double angle) ;

}

Ici, nos interfaces disposent d’un droit d’acces de paquetage. Comme les classes, elles
pourraient étre déclarées public Les mots clés abstract et public figurant dans les en-
tetes de méthodes peuvent étre omis puisque, par essence, les méthodes d’une interface
sont publiques et abstraites.

Une classe représentant une figure pourra implémenter aucune, une ou les deux
interfaces précédentes. Par exemple

class Point implements Affichable

{ public void affiche() { }

}

class Rectangle implements Affichable, Transformable
{ public void affiche() { }

164

public void homothetie (double coef) {
public void rotation (double angle) { }

}

165

Synthese : comparaison entre
héritage et objet membre

On dispose de la classe suivante :
class Point
{ public Point (double x, double y) { this.x=x ; this.y=y ; }
public void deplace (double dx, double dy) { x+=dx ; y+=dy ; }
public void affiche ()
{ System.out.println ("Point de coordonnees " + x + " " + vy) ;

}
public double getX() { return x ; }

public double getY() { returny ; }
private double x, y ;

}

On souhaite réaliser une classe Cercle disposant des méthodes suivantes :

* constructeur recevant en argument les coordonnées du centre du cercle et son
rayon,

* deplaceCentre pour modifier les coordonnées du centre du cercle,
 changeRayon pour modifier le rayon du cercle,

» getCentre qui fournit en résultat un objet de type Point correspondant au centre
du cercle,

« affiche qui affiche les coordonnées du centre du cercle et son rayon.
1. Définir la classe Cercle comme classe dérivée de Point.
2. Définir la classe Cercle comme possédant un membre de type Point.

Dans les deux cas, on écrira un petit programme mettant en jeu les différentes
fonctionnalités de la classe Cercle.

Classe dérivée de Point

166

class Cercle extends Point

{ public Cercle (double x, double y, double r)
{ super (x, y) ;

this.r = r ;

}

public void deplaceCentre (double dx, double dy)
{ super.deplace (dx, dy) ;

}

public void changeRayon (double r)

{ this.r = r ;

}

public Point getCentre()

{ Point centre = new Point (getX(), getY()) ;

return centre ;

}
public void affiche ()
{ System.out.println ("Cercle de centre " + super.getX() + " " +

super.getY()
+ " et de rayon " + r) ;

}

private double r ;

}

Voici un petit programme d’utilisation de Cercle, accompagné du résultat de son
exécution :

public class TstCerD

{ public static void main (String args[])
{ Cercle ¢ = new Cercle (3, 8, 2.5) ;

.affiche() ;

.deplaceCentre (1, 0.5) ;

.changeRayon (5.25) ;

.affiche() ;

Point a = c.getCentre() ;

a.affiche() ;

b
b

Cercle de centre 3.0 8.0 et de rayon 2.5
Cercle de centre 4.0 8.5 et de rayon 5.25
Point de coordonnees 4.0 8.5

O O O O

167

Avec un objet membre

class Cercle
{ public Cercle (double x, double y, double r)
{ centre = new Point (x, y) ;
this.r = r ;
}
public void deplaceCentre (double dx, double dy)
{ centre.deplace (dx, dy) ;
}
public void changeRayon (double r)
{ this.r = r ;
}
public Point getCentre()
{ return centre ;
}
public void affiche ()

{ System.out.println ("Cercle de centre " + centre.getX() +
centre.getY()

+ " et de rayon " + r) ;
}
private Point centre ;
private double r ;

}

n n +

Le précédent programme d’utilisation de Cercle peut encore étre employé ici sans

modifications. Il fournit les mémes résultats.

1. Notez bien qu’ici aucune possibilité de surdéfinition n’existe puisque affiche ne posséde aucun argument. En
revanche, nous verrons dans les exercices suivants des situations dans lesquelles il peut étre nécessaire de

considérer plusieurs méthodes appartenant a la fois a la classe et a ses ascendantes.

168

Chapitre 6

La classe String et les chaines de
caracteres

R I

—= - U
— i

[
.
- N\&a

Connaissances requises

» La classe String : constructeurs, propriétés des objets de type String,
affectation

» Affichage d’une chaine par print ou printin
* Longueur d’une chaine : méthode length
* Acces aux caracteres d’une chaine : méthode charAt

» Concaténation de chaines avec I’opérateur + ; conversions des opérandes ;
1’ opérateur +=

* Recherche dans une chaine : méthodes indexOf et lastIndexOf
» Comparaisons de chaines : méthodes equals et compareTo

» Création d’une chaine par modification d’une autre : méthodes replace,
substring, toLowerCase, toUpperCase et trim

» Conversion d’un type primitif en type chaine : méthode valueOf

 Conversion d’une chaine en un type primitif a I’aide des méthodes des classes
enveloppes des types primitifs

+ La méthode toString de la classe Object
» Conversions entre chaines et tableaux de caracteres

* Arguments de la ligne de commande

169

Note : on suppose qu’on dispose d’une classe nommée Clavier, disposant (entre
autres) de méthodes (statiques) de lecture au clavier d’informations de type int
(lirelnt), float (lireFloat), double (lireDouble), char (lireChar) et String (lireString).

Cette classe est présente sur le site Web d’accompagnement et sa liste est fournie en
Annexe D.

170

7/ Construction et affectation de
chaines

Quels résultats fournit le programme suivant ?
public class Chaine
{ public static void main (String args[])
{ String chl = new String();

System.out.println ("A - chl1 =:" + ch1 + ":") ;
String ch2 = "hello" ;

System.out.println ("B - ch2 =:" + ch2 + ":") ;
String ch3 = new String ("bonjour") ;
System.out.println ("C - ch3 =:" + ch3 + ":") ;

String ch4 = new String (ch3) ;

System.out.println ("D - ch4 =:" + ch4 + ":") ;
ch3 = "bonsoir" ;
System.out.println ("E - ch4 =:" + ch4d + ": ch3 =:" + ch3 +
")
ch4a = ch3 ;
ch3 = "au revoir" ;
System.out.println ("F - ch4 =:" + ch4d + ": ch3 =:" + ch3 +
") g

}

}

L’instruction

String chl = new String();

crée une chaine vide et place sa référence dans chl. L’instruction
String ch2 = "hello" ;

crée une chaine formée des cing caracteres h, e, I, | et o et place sa référence dans ch2.
De méme
String ch3 = new String ("bonjour") ;

171

crée une chaine contenant les sept caracteres b, o, n, j, o, u et r et place sa référence
dans ch3. L’instruction
String ch4 = new String (ch3) ;

crée une chaine par recopie de la valeur de la chaine de référence ch3 et place sa
référence dans ch4.

On notera bien que dorénavant, il existe deux chaines de méme contenu, comme
I’illustre ce schéma :

P bonjour

bonjour

[’ affectation
ch3 = "bonsoir" ;
crée la chaine bonsoir et place sa référence dans ch3. ’ancienne chaine (contenant

bonjour) désignée par ch3 n’étant plus référencée, elle devient candidate au ramasse-
miettes. La situation se présente ainsi :

bonsoir
bonjour
| |
_ bonjour
| =]
ch4

Apres |’affectation
ch4 = ch3 ;

La situation se présente ainsi :

172

bonsoir

bonjour
| 7]
ch3 P
- bonjour
| 7]
ch4
Enfin, apres
ch3 = "au revoir" ;
On obtient :
au revoir
bonsoir
bonjour
| a
~ 3 E
e bonjour
| A
ch4

En définitive, le programme affiche les résultats suivants :

A - chl =::

B - ch2 =:hello:

C - ch3 =:bonjour:

D - ch4 =:bonjour:

E - ch4 =:bonjour: ch3 =:bonsoir:

F - ch4 =:bonsoir: ch3 =:au revoir:

173

Acces aux caracteres d’une chaine

Ecrire un programme qui lit une chaine au clavier® et qui en affiche :
* un caractere sur deux (le premier étant affiché),

* le premier et le dernier caractere.

a. On pourra utiliser la classe Clavier (voir note en début de chapitre).

Il suffit d’utiliser les méthodes length et charAt de la classe String.

public class CarcCh
{ public static void main (String args[])

{ System.out.print ("donnez une chaine : ") ;
String ch = Clavier.lireString() ;
System.out.print ("un caractere sur deux : ") ;

for (int 1 = 0 ; i<ch.length() ; 1i+=2)
System.out.print (ch.charAt(1i)) ;
System.out.println () ;

System.out.println ("Premier caractere = " + ch.charAt(0)) ;
System.out.println ("Dernier caractere = " +
ch.charAt(ch.length()-1)) ;

}

}

donnez une chaine : java est plus portable que C++
un caractere sur deux : jv s lspral u +

Premier caractere = j

Dernier caractere = +

Notez bien que le dernier caractére de la chaine ch possede le rang ch.length-1. Une
tentative d’acces au caractere de rang ch.length conduirait a une exception
StringIndexOutOfBoundsException.

174

Conversion d’un entier en chaine

Ecrire un programme qui lit un entier au clavier® et qui 1’affiche verticalement
comme dans cet exemple :
donnez un nombre entier : 785412

N B~ 01 00 N

a. On pourra utiliser la classe Clavier (voir note en début de chapitre).

On peut convertir un entier en une chaine a 1’aide de la méthode valueOf de la classe
String. L’acces aux caracteres de la chaine se fait avec la méthode charAt, d’ou le
programme :

public class Conver

{ public static void main (String args[])

{ System.out.print ("donnez un nombre entier : ") ;
int n = Clavier.lirelInt() ;
String ch = String.valueOf(n) ;

for (int i=0 ; i<ch.length() ; i++) // ou (depuis JDK 5.0)
System.out.println (ch.charAt(i)) ; // for (char c : ch)
} // System.out.println

(c) ;
}

Ici, nous avons utilisé la méthode valueOf pour convertir un entier en chaine. Nous
aurions pu également exploiter la propriété de 1’opérateur + qui, lorsque 1’un de ses
deux opérandes est de type String, convertit I’autre dans ce méme type. C’est ainsi que

175

nous aurions pu écrire (un peu artificiellement) ch = "" + n. Notez cependant que
’affectation directe ch = n ne serait pas correcte puisque le type int n’est pas
compatible par affectation avec le type String.

176

Comptage des voyelles d’un mot

Ecrire un programme qui lit un mot au clavier® et qui indique combien de fois sont
présentes chacune des voyelles a, e, i, 0, u ou y, que celles-ci soient écrites en
majuscules ou en minuscules, comme dans cet exemple :

donnez un mot : Anticonstitutionnellement

il comporte
fois la lettre
fois la lettre
fois la lettre
fois la lettre
fois la lettre
fois la lettre

©O RPN W WK
< € 0O H O 9

a. On pourra utiliser la classe Clavier (voir note en début de chapitre).

On commence par convertir tous les caracteres du mot en minuscules (par exemple).
Puis on compare chaque caractére (obtenu par charAt) avec chacune des six voyelles
que I’on a placées dans un tableau de caracteres. Un tableau de six entiers sert au
comptage.
public class Voyelles
{ public static void main (String args[])
{ char voy[] {'a', 'e', 'i', 'o', 'u', 'y'} ;
int nVoy [] new int [voy.length] ;
for (int 1i=0 ; i<nVoy.length ; i++) nVoy[i] = 0 ;
System.out.print ("donnez un mot : ") ;
String mot = Clavier.lireString() ;
mot = mot.toLowerCase() ;
for (int 1=0 ; i<mot.length() ; i++)
for (int j=0 ; j<voy.length ; j++)
if (mot.charAt(i) == voy[j]) nVoy[j]++ ;
System.out.println ("il comporte : ") ;
for (int 1=0 ; i<voy.length ; 1i++)
System.out.println(nVoy[i] + " fois la lettre " + voy[i]) ;

177

}

}
L’instruction :

mot = mot.toLowerCase() ;
crée une nouvelle chaine obtenue par conversion en minuscules de la chaine référencée
par mot, puis place son adresse dans mot. Il n’y a pas modification de la chaine
initiale. Ici, toutefois, celle-ci devenant non référencée, deviendra candidate au
ramasse-miettes...

Notez que lorsqu’une voyelle est détectée, le programme poursuit inutilement la
comparaison du caractere concerné avec les éventuelles voyelles suivantes. On
pourrait |’éviter en utilisant une instruction break dans la boucle la plus interne.

178

Arguments de la ligne de commande

Ecrire un programme qui récupére deux entiers sur la "ligne de commande" et qui en
affiche la somme en fenétre console, comme dans cet exemple :
12 + 25 = 37

On vérifiera que les arguments fournis sont formés uniquement de chiffres (sans
aucun signe) ; dans le cas contraire, le programme s’interrompra.

Les arguments de la ligne de commande sont transmis a la méthode main, par le biais
de son unique argument qui se trouve étre un tableau de références sur des chaines.

Nous vérifions tout d’abord que ce tableau est de taille 2. Si ce n’est pas le cas, nous
interrompons le programme en appelant la méthode System.exit.

Puis nous nous assurons que tous les caracteres des deux chaines sont bien des chiffres
(caractéres de 0 a 9). Pour ce faire, nous utilisons ici la méthode substring pour
extraire chaque caractere de 1’argument sous forme d’une chaine de longueur un ; celle-
ci est alors comparée (par equals') avec chacune des chalnes obtenues en convertissant
chacun des nombres 0 a 9 en une chaine (notez que 1’on ne peut pas comparer
directement une chaine de longueur 1 avec un caracetre). La encore, si les conditions
voulues ne sont pas remplies, nous interrompons le programme.

Enfin, nous convertissons les deux arguments (ainsi controlés) a 1’aide de la méthode
parselnt de la classe enveloppe Integer.

public class ArgLC2

{ public static void main (String args[])
{
int nbArgs = args.length ;

if (nbArgs I= 2) { System.out.println ("nombre arguments
incorrect") ;

System.exit(-1) ;

}
// on verifie que les caracteres de args[0] et args[1]
// sont bien des chiffres
for (int 1=0 ; 1i<2 ; 1i++)

179

comp : for (int j=0 ; j<args[i].length() ; j++)
{ for (int k=0 ; k<=9 ; k++)

if (args[i].substring(j, j+1).equals(String.valueOf(k)))
break comp ;

System.out.println ("arguments pas tous numeriques") ;
System.exit(-1) ;

}
int nl1 = Integer.parseInt (args[0]) ;
int n2 = Integer.parseInt (args[1]) ;
System.out.println (n1 + " + " + n2 + " =" + (nl1+n2)) ;
}
}

La ligne :

if (args[i].substring(j,j+1).equals(String.valueOf(k))) break comp ;
pourrait étre remplacée par :

if (args[i].charAt(j)==chif[k]) break comp ;

avec, par exemple :
Char[] Chlf: {'G', |1|’ |2|’ |3|’ l4l’ l5l’ I6l’ I7I, I8I, Igl} ;

180

Redéfinition de toString

1. Réaliser une classe PointN permettant de manipuler des points d’un plan a
coordonnées entieres et repérés par un nom de type chaine. On se limitera a un
constructeur et a une méthode affiche affichant le nom du point et ses coordonnées,
de maniere que les instructions suivantes :

PointN a = new PointN (2, 5, "orig") ;

System.out.print ("a = ") ; a.affiche() ;

fournissent les résultats suivants :
a = Point nomme orig et de coordonnees 2 5

2. Modifier la classe précédente, de maniere que les résultats suivants puissent
maintenant s’ obtenir ainsi (on pourra supprimer la méthode affiche) :

PointN a = new PointN (2, 5, "orig") ;

System.out.println ("a = " + a) ;

Question 1
La définition de la classe PointN ne présente pas de difficultés :

class PointN

{ public PointN (int x, int y, String nom)

{ this.x=x ; this.y=y ; this.nom =nom ;

}

public void affiche()

{ System.out.println ("Point nomme " + nom

+ " et de coordonnees " + x + " " +vy) ;

}

private int x, y ;

private String nom ;

}

Notez qu’il n’est pas nécessaire de recopier au sein de 1’objet la valeur de la chaine

181

représentant le nom du point. On peut se contenter d’en recopier la référence car les
objets de type String ne sont pas modifiables.

Question 2

La classe Object, dont dérive toute classe, dispose d’une méthode toString qui, par
défaut, affiche le nom de la classe et 1’adresse de 1’objet concerné. Si nous ne
modifions pas notre classe PointN, une instruction telle que :

System.out.println ("a = " + a) ;

appellera cette méthode toString pour permettre a 1’opérateur + de convertir a en
String ; elle affichera quelque chose comme :
a = PointN@fd7a8b04

Pour obtenir les résultats voulus, il nous suffit en fait de redéfinir de facon appropriée
la méthode toString dans notre classe PointN :
class PointN
{ public PointN (int x, int y, String nom)
{ this.x=x ; this.y=y ; this.nom = new String(nom) ;
}
public String toString()
{ String ch = "Je suis un point nomme " + nom
+ " et de coordonnees " + x + " " + vy ;
return ch ;
}
private int x, y ;
private String nom ;

}

182

m Synthese : conjugaison d’un
verbe

Ecrire un programme qui lit au clavier® un verbe du premier groupe (il s’assurera
qu’il est bien terminé par er) et qui en affiche la conjuguaison au présent de
I’indicatif. On supposera qu’il s’agit d’un verbe régulier. Autrement dit, on admettra
que 1’utilisateur ne fournit pas un verbe tel que manger (dans ce cas, le programme
affichera nous mangons !). Les résultats se présenteront ainsi :

donnez un verbe regulier du premier groupe : dire

*** i1 ne se termine pas par er - donnez-en un autre : chanter

je chante

tu chantes

il/elle chante

nous chantons

vous chantez

ils/elles chantent

a. On pourra utiliser la classe Clavier (voir note en début de chapitre).

On lira bien siir le verbe sous la forme d’une chaine de caracteres. A I’aide de la
méthode substring, on en extrait la fin qu’on compare avec la chaine "er".

Les différentes personnes de la conjugaison s’obtiennent en ajoutant au verbe, privé de
ses deux derniers caracteres, 1’une des terminaisons voulues fournies ici par un tableau
de chaines terminaisons. On les fait précéder d’un sujet extrait, lui aussi, d’un tableau
de chaines sujets.

public class Conjug
{ public static void main (String args[])
{ final String sujets[] =
{ "je", "tu", "il/elle", "nous", "vous", "ils/elles"} ;
final String terminaisons [] =
{ "e", "es", "e", "ons", "ez", "ent" } ;
String verbe ;

183

int nbLettres ;

System.out.print ("donnez un verbe regulier du premier groupe
")
while (true)
{ verbe = Clavier.lireString() ;
nbLettres = verbe.length() ;
String fin = verbe.substring (nbLettres-2, nbLettres) ;
if (fin.equals("er")) break ;
System.out.print
("*** i1 ne se termine pas par er - donnez-en un autre
")
}
String rad = verbe.substring(©, nbLettres-2) ;
int n = terminaisons.length ;
for (int 1=0 ; i<n ; 1i++)
System.out.println (sujets[i] + " " + rad + terminaisons[i]) ;

184

Synthese : tri de mots

Ecrire un programme qui lit une suite de mots au clavier® et qui les affiche triés par
ordre alphabétique. On supposera que ces mots ne contiennent que des lettres non
accentuées (majuscules ou minuscules). Le nombre de mots sera fourni en données et
1’exécution se présentera ainsi :

Combien de mots ? 5

donnez vos mots

javaScript

Pascal

BaSiC

Java

ADA

Liste par ordre alphabetique

ADA

BaSiC

Java

javaScript

Pascal

Notez bien que les mots sont affichés avec leur "casse" d’origine mais que celle-ci
n’influe pas sur le tri qui respecte 1’ordre alphabétique traditionnel (qui ne distingue
pas les majuscules des minuscules).

a. On pourra utiliser la classe Clavier (voir note en début de chapitre).

Les différentes chaines constituant les mots sont lues dans un tableau d’objets de type
String dont la dimension nous est fournie en donnée. Pour en effectuer le tri, nous
recourons a la méthode simple du "tri a bulle" qui consiste a comparer chaque élément
a tous ses suivants, en procédant a un échange chaque fois qu’ils ne sont pas dans le
bon ordre. On notera bien qu’ici, on peut se contenter de trier uniquement les
références et non pas les chaines elles-mémes, ce qui se fait tres simplement en Java.

Pour les comparaisons de chaines, nous pouvons recourir a la méthode compareTo.
Cependant, celle-ci utilise comme ordre des caracteres celui induit par la valeur de
leur code. Cela signifie que les majuscules sont séparées des minuscules. Il nous faut

185

donc faire porter le tri sur les (références des) chaines converties (par exemple) en
majuscules (a 1’aide de la méthode toUpperCase). Mais comme 1’énoncé nous impose
d’afficher les mots triés suivant leur casse d’origine, nous devons conserver a la fois le
tableaux des références des mots tels qu’ils ont été fournis et un tableau des références
sur ces mémes mots convertis en majuscules. De plus, les deux tableaux doivent étre
triés en parralléle.

public class TrisMots
{
public static void main (String args[])
{ // lecture des donnees
System.out.print ("Combien de mots ? ") ;
int nMots = Clavier.lireInt() ;
String [] mots = new String[nMots] ;
System.out.println ("donnez vos mots") ;
for (int 1=0 ; i<nMots ; i++)
mots[i] = Clavier.lireString() ;

// conversion de chaque mot en minuscules
String [] motsMin = new String[nMots] ;
for (int 1=0 ; i<nMots ; i++)

motsMin[i] = mots[i].toLowerCase() ;

// tri par reorganisation des references (mots d'origine et en
minuscules)

// (on compare chaque mot (minuscule) a tous ses suivants)
String temp ;
for (int 1=0 ; i<nMots-1 ; 1i++)

for (int j=i+1 ; j<nMots ; j++)

if (motsMin[i].compareTo(motsMin[j]) >= 0)

{ temp = motsMin[i] ; motsMin[i] = motsMin[j] ; motsMin[j] =
temp ;

temp = mots[i] ; mots[i] = mots[j] ; mots[j]

temp ;
}

// affichage des chaines triees
System.out.println ("Liste par ordre alphabetique :") ;

for (int 1=0 ; i<nMots ; i++) // ou (depuis JDK 5.0)
System.out.println (mots[i]) ; // for (String mot : mots)
} // System.out.println
(mot) ;

186

187

Synthese : gestion d’un repertoire

Réaliser une classe Repertoire permettant de gérer un répertoire téléphonique
associant un numeéro de téléphone (chaine de caracteres) a un nom. Pour faciliter les
choses, on prévoira une classe Abonne destinée a représenter un abonné et disposant
des fonctionnalités indispensables.

La classe Repertoire devra disposer des fonctionnalités suivantes :

* constructeur recevant un argument de type entier précisant le nombre maximum
d’abonnés que pourra contenir le répertoire (cette particularité évite d’avoir a se
soucier d’une gestion dynamique du répertoire),

» méthode addAbonne permettant d’ajouter un nouvel abonné ; elle renverra la
valeur false si le répertoire est plein, la valeur true sinon,

» méthode getNumero fournissant le numéro associé a un nom d’abonné fourni en
argument,

» méthode getNAbonnes qui fournit le nombre d’abonnés figurant dans le
répertoire,

» méthode getAbonne fournissant 1’abonné dont le rang est fourni en argument,

» méthode getAbonnesTries fournissant un tableau des références des différents
abonnés, rangés par ordre alphabétique (pour simplifier, on supposera que les
noms sont écrits en minuscules, sans caracteres accentués).

Ecrire un petit programme de test.

La classe Abonne ne présente pas de difficultés particulieres. Si, comme il est
conseillé, on y encapsule les champs de données, il faut simplement prévoir les
méthodes d’acces correspondantes :

class Abonne
{ public Abonne (String nom, String numero)
{ this.nom = nom ; this.numero = numero ;

}
public String getNom() { return nom ; }

188

public String getNumero() { return numero ; }
private String nom, numero ;

}

En ce qui concerne la classe Repertoire, nous pouvons nous permettre, dans la méthode
getAbonne, de fournir en résultat une copie de la référence a 1’abonné correspondant.
En effet, ici 1’objet correspondant n’est pas modifiable (champs privés, pas de
méthodes d’altération).

Dans la méthode getAbonnesTries, nous faisons porter le tri sur une copie du tableau
des références aux différents abonnés, afin de ne pas modifier ’ordre initial du
répertoire.

Voici ce que pourrait étre la définition de notre classe Repert :

class Repert
{ public Repert (int nMax)
{ this.nMax = nMax ;
rep = new Abonne [nMax] ;
nAbon = 0 ;
}
public boolean addAbonne (Abonne a)
{ if (nAbon >= nMax) return false ;
rep[nAbon] = a ;
nAbon++ ;
return true ;
}
public int getNAbonnes () { return nAbon ; }
public Abonne getAbonne (int num)
{ if (num < nAbon) return rep[num] ;
return null ;
}
public String getNumero (String nom)
{ for (int i=0 ; i<=nAbon ; 1i++)
if (nom.equals(rep[i].getNom())) return rep[i].getNumero() ;
// ou (depuis JDK 5.0)
// for (Abonne a : rep)
// if (nom.equals(a.getNom())) return a.getNumero() ;
return null ;

}
public Abonne[] getAbonnesTries ()

189

{ Abonne[] repTrie = new Abonne[nAbon] ;
for (int 1=0 ; i<nAbon ; i++)
repTrie[i] = rep[i] ;
for (int 1=0 ; i<nAbon-1 ; 1i++)
for (int j=i+1 ; j<nAbon ; j++)
if ((repTrie[i].getNom()).compareTo(repTrie[j].getNom()) > 0)
{ Abonne temp = repTrie[i] ;

repTrie[i] = repTrie[]j] ;
repTrie[j] = temp ;
}
return repTrie ;

}

private int nMax, nAbon ;
private Abonne[] rep ;

}

Voici un petit programme de test, accompagné de ses résultats :

public class TstRep

{ public static void main (String args[])

{ Repert rep = new Repert(10) ;
System.out.println ("il y a " + rep.getNAbonnes () + " abonnes")
Abonne a = new Abonne("Dupont", "02-38-25-88-99")
Abonne b = new Abonne("Duval", "04-55-66-77-99") ;
rep.addAbonne (a) ;
rep.addAbonne (b) ;
rep.addAbonne (new Abonne ("Duchene", "02-11-22-33-44")) ;
rep.addAbonne (new Abonne ("Dubois", "01-11-22-33-44")) ;

4

I4

System.out.println ("il y a " + rep.getNAbonnes () + " abonnes")
System.out.println ("qui sont : ") ;

for (int 1=0 ; i<rep.getNAbonnes() ; i++)

System.out.println (rep.getAbonne(i).getNom() + " "

+ rep.getAbonne(i).getNumero()) ;

System.out.println ("ou encore, par ordre alphabetique") ;
Abonne[] abonnes = rep.getAbonnesTries () ;

for (int 1=0 ; i<abonnes.length ; i++)

System.out.println (abonnes[i].getNom() + " " +
abonnes[i].getNumero()) ;

4

190

}

il y a 0 abonnes

il y a 4 abonnes

qui sont

Dupont 02-38-25-88-99
Duval 04-55-66-77-99
Duchene 02-11-22-33-44
Dubois 01-11-22-33-44
ou encore, par ordre alphabetique
Dubois 01-11-22-33-44
Duchene 02-11-22-33-44
Dupont 02-38-25-88-99
Duval 04-55-66-77-99

1. Dans la méthode getAbonnesTries, nous avons pu nous contenter de recopier
seulement les références des chalnes et non les chaines elles-mémes. En effet,
I’utilisateur de cette méthode pourra toujours modifier les valeurs du tableau de
références dont il recoit la référence en retour mais il ne pourra pas modifier les

chaines ainsi référencées.

2. Dans un programme réel, les objets de type Abonne pourraient comporter d’autres
informations (adresse...). Il pourrait également étre judicieux de vérifier lors de la
construction d’un tel objet que la chaine correspondant au numéro répond a certains

criteres.

1. Attention a ne pas utiliser I’opérateur == qui comparerait, non pas les valeurs des chaines, mais simplement leurs

références !

191

Chapitre 7

Les types énumeres

-’W;ji—‘[;;@&; "
ar,

Connaissances requises

* Définition d’un type énuméré simple (sans champs ni méthodes)
» Utilisation des valeurs d’un type énuméré

» Comparaisons d’égalité entre valeurs d’un type énuméré : opérateur == ou
méthode equals

* Ordre des valeurs d’un type énuméré : méthodes compareTo et ordinal

 Conversion en chaines des constantes d’un type énuméré, avec la méthode
toString

« Conversion éventuelle d’une chaine en une valeur d’un type énuméré ;
méthode valueOf

» Méthode values de la classe Enum
» [tération sur les constantes d’un type énuméré

* Introduction de champs et de méthodes dans un type énumeéré ; cas particulier
des constructeurs (transmission d’arguments)

Note : Les types énumérés ne sont disponibles qu’a partir du JDK 5.0.

192

Deéfinition et utilisation d’un type
enumere simple

1. Définir un type énuméré nommé Couleurs dont les valeurs sont définies par les
identificateurs suivants : rouge, bleu, vert, jaune.

2. Déclarer deux variables c1 et c2 du type Couleurs et leur affecter une valeur.

3. Echanger le contenu de ces deux variables, en s’assurant au préalable que leurs
valeurs ne sont pas égales.

4. Regrouper toutes ces instructions dans une petit programme complet (on pourra
ajouter des instructions d’affichage des valeurs des variables avant et apres
échange).

1. La définition d’un type énuméré en Java utilise une syntaxe de la forme :
enum NomType { valeurl, valeur2, ... valeurN }
soit, ici :
enum Couleurs { rouge, bleu, vert, jaune }
Notez que, bien que I’on emploie le mot-clé enum et non class, Couleurs est a

considérer comme un classe particuliere. Les valeurs du type (rouge, bleu, vert et
jaune) en sont des instances finales (non modifiables).

2. La déclaration de variables du type Couleurs est classique :
Couleurs c1, c2 ;

On ne peut affecter a ces variables que des valeurs du type Couleurs. Ici, il peut
s’agir de 1’une des 4 constantes du type : on les nomme en les préfixant du nom de
type (ici Couleurs) comme dans :
cl = Couleurs.bleu ; // attention : cl1 = bleu serait erroné
c2 = Couleurs.jaune ;
3. La comparaison de deux variables de type énuméré peut se faire indifféremment
avec I’un des opérateurs == ou equals. Rappelons que le premier compare les
références des objets correspondants, tandis que le second porte sur les valeurs de
ces objets. Mais, comme il n’existe qu’un exemplaire de chaque objet représentant

193

un constante d’un type énuméré, il revient bien au méme de comparer leur référence
ou leur valeur. De méme, on peut utiliser indifféremment /= ou !equals.
if (c1 '= c2) // ou if (! cl.equals(c2))
{ Couleurs c ;
c =cl;
cl =c2 ;
c2 = c ;

4. Voici un exemple complet reprenant ces différentes instructions, accompagné d’un
exemple d’exécution. On notera qu’il est tres facile d’afficher une valeur de type
énuméré puisque 1’appel implicite a la méthode toString pour une instance de type
énuméré fournit simplement le libellé correspondant :
public class EnumSimple
{ public static void main (String args[])

{ Couleurs c1, c2 ;

cl = Couleurs.bleu ; // attention : c1 = bleu serait erroné

c2 = Couleurs.jaune ;

System.out.println ("couleurs avant echange = " + c1 + " " +
c2) ;

if (c1 '= c2) // ou if (! cl.equals(c2))
{ Couleurs c ;

c =cl;

cl =c2 ;

c2 c ;

}

System.out.println ("couleurs apres echange = " + c1 + " " +
c2) ;

b
b

enum Couleurs {rouge, bleu, vert, jaune }

couleurs avant echange
couleurs apres echange

bleu jaune

jaune bleu

194

Iteration sur les valeurs d’un type
enumere

On suppose qu’on dispose d’un type énuméré nommé Suite. Ecrire un programme

qui en affiche les différents libellés. Par exemple, si Suite a été défini ainsi (notez

I’emploi du libellé ut, car do n’est pas utilisable puisqu’il s’agit d’un mot-clé) :
enum Suite { ut, re, mi, fa, sol, la, si }

Le programme affichera :

Liste des valeurs du type Suite :
ut

re

mi

fa

sol

la

si

On peut facilement itérer sur les différentes valeurs d’un type énuméré a 1’aide de la
boucle dite for... each, introduite par le JDK 5.0. Il faut cependant au préalable créer
un tableau des valeurs du type en utilisant la méthode values de la classe Enum ;
1’expression Suite.values() représente un tableau formé des différentes valeurs du type
Suite. En définitive, voici le programme voulu ; il fonctionne quelle que soit la
définition du type Suite :

public class TstSuite

{ public static void main (String args[])

{ System.out.println("Liste des valeurs du type Suite : ") ;
for (Suite s : Suite.values())
System.out.println (s) ; // appel implicite de toString ()
}

}

enum Suite { ut, re, mi, fa, sol, la, si }

195

Acces par leur rang aux valeurs d’un
type enumere (1)

On suppose qu’on dispose d’un type énuméré nommé Suite. Ecrire un programme
qui :

» affiche le nombre de valeurs du type,
« affiche les valeurs de rang impair,

« affiche la derniére valeur du type.

Une démarche simple consiste a créer un tableau des valeurs du type, a 1’aide de la
méthode values de la classe Enum. Il suffit ensuite d’exploiter classiquement ce
tableau pour obtenir les informations voulues :

public class TstValues

{ public static void main (String args[])

{ // On crée un tableau des valeurs du type, a l'aide de la méthode
values

Suite[] valeurs = Suite.values () ;

int nbVal = valeurs.length ;

)System.out.println ("le type Suite comporte " + nbval + " valeurs"
System.out.println ("valeurs de rang impair
for (int 1 =0 ; i < nbval ; i+=2)

System.out.println (valeurs[i]) ;
System.out.println ("derniere valeur du type : ") ;
System.out.println (valeurs[nbval-1]) ;

}

enum Suite { ut, re, mi, fa, sol, la, si }

")

le type Suite comporte 7 valeurs
valeurs de rang impair =

ut

mi

196

sol

si

derniere valeur du type

si
On notera que le programme n’est pas protégé contre le risque que le type Suite ne
comporte aucun élément.

197

m Lecture de valeurs d’un type
énumere

On suppose qu’on dispose d’un type énuméré nommé Suite. Ecrire un programme
qui lit une chaine au clavier et qui indique si cette chaine correspond ou non a un
libellé du type et qui, le cas échéant, en affiche le rang dans les valeurs du type.

A priori, toute classe d’énumération dispose d’une méthode valueOf qui effectue la
conversion inverse de toString, a savoir : convertir une chaine en une valeur du type
énuméré correspondant. Cependant, si la chaine en question ne correspond a aucune
valeur du type, on aboutit a une exception qui doit alors étre interceptée, sous peine de
voir le programme s’interrompre. Ici, nous vous proposons une démarche, moins
directe, mais ne comportant plus de risque d’exception, a savoir : parcourir chacune
des valeurs du type énuméré (a 1’aide du tableau fourni par la méthode values) en
comparant sa conversion en chaine (toString) avec la chaine fournie au clavier.

public class LectureEnum
{ public static void main (String args[])
{ String chSuite ;
System.out.print("Donnez un libelle de 1l'enumeration Suite : ");
chSuite = Clavier.lireString () ;
boolean trouve = false ;
for (Suite j : Suite.values())
{ if (chSuite.equals(j.toString()))
{ trouve = true ;
int numSuite = j.ordinal() ;
System.out.println(chSuite + " correspond a la valeur de rang "
+ (numSuite+1) + " du type Suite");
}
}

if (!'trouve) System.out.println (chSuite
+ " n'appartient pas au type Suite") ;

198

}

enum Suite {ut, re, mi, fa, sol, la, si }

Donnez un libelle de 1l'enumeration Suite : Re
Re n'appartient pas au type Suite

Donnez un libelle de l'enumeration Suite : mi
mi correspond a la valeur de rang 3 du type Suite

199

Ajout de methodes et de champs a
une enumeration (1)

Définir un type énuméré nommeé Mois permettant de représenter les douze mois de
I’année, en utilisant les noms usuels (janvier, fevrier, mars...) et en associant a
chacun le nombre de jours correspondants. On ne tiendra pas compte des années
bisextiles.

Ecrire un petit programme affichant ces différents noms avec le nombre de jours
correspondants comme dans :

janvier comporte 31 jours

fevrier comporte 28 jours

mars comporte 31 jours

octobre comporte 31 jours

novembre comporte 30 jours

decembre comporte 31 jours

Java vous permet de doter un type énumération de champs et de méthodes, comme s’il
s’agissait d’une classe. Certaines de ces méthodes peuvent étre des constructeurs ; dans
ce cas, il est nécessaire d’utiliser une syntaxe spéciale dans la définition du type
énuméré pour fournir les arguments destinés au constructeur, en association avec le
libellé correspondant.

Voici comment nous pourrions définir notre type Mois, en le munissant :
* d’un champ nj destiné a contenir le nombre de jours d’un mois donné,
* d’un constructeur recevant en argument le nombre de jours du mois,

* d’une méthode nbJours fournissant le nombre de jours associé a une valeur donnée.
enum Mois

{ janvier (31), fevrier (28), mars (31), avril (30),

mai (31), juin (30), juillet (31), aout (31),

septembre (30), octobre (31), novembre (30), decembre (31) ;
private Mois (int n) // constructeur (en argument, nombre de jours

200

du mois)

{nj=n;,

}

public int nbJdours () { return nj ; }
private int nj ;

}

Notez les particularités de la syntaxe :
» présence d’arguments pour le constructeur,

» présence d’un point-virgule séparant I’énumération des valeurs du type des
déclarations des champs et méthodes.
Voici un petit programme fournissant la liste voulue.
public class TstMois
{ public static void main (String args[])
{ for (Mois m : Mois.values())

System.out.println (m + " comporte " + m.nbJours() + "
jours")

201

Ajout de méthodes et de champs a
une enumeration (2)

Compléter la classe Mois précédente, de maniere a associer a chaque nom de mois :
* un nombre de jours,
* une abréviation de trois caracteres (jan, fev...),

* le nom anglais correspondant.

Ecrire un petit programme affichant ces différentes informations sous la forme
suivante :

jan = janvier = january - 31 jours

fev = fevrier february - 28 jours

mar = mars = march - 31 jours

oct = octobre = october - 31 jours
nov = novembre = november - 30 jours
dec = decembre = december - 31 jours

Il suffit d’adapter I’énumération Mois de 1’exercice précédent de la facon suivante :

 introduction de nouveaux champs abrege et anglais pour y conserver les
informations relatives au nom abrégé et au nom anglais,

* ajout de méthodes abreviation et nomAnglais fournissant chacune de ces
informations,

» adaptation du constructeur pour qu’il dispose cette fois de trois arguments.
enum Mois2

{ janvier (31, "jan", "january"), fevrier (28, "fev", "february"),
mars (31, "mar", "march"), avril (30, "avr", "april"),

mai (31, "mai", "may"), juin (30, "jun", "june"),

juillet (31, "jul", "july"), aout (31, "aou", "august"),

septembre (30, "sep", "september"), octobre (31, "oct", "october"),

202

novembre (30, "nov", "november"), decembre

"december") ;

private Mois2 (int n, String abrev, String na)
{nj=n;

abrege = abrev ;

anglais = na ;

}

public int nbJdours () { return nj ; }
public String abreviation ()

{ return abrege ;

}

public String nomAnglais ()

{ return anglais ;

}

private int nj ;

private String abrege ;

private String anglais ;

}

public class TstMois2
{ public static void main (String args[])
{ for (Mois2 m : Mois2.values())

System.out.println (m.abreviation() + " =" +m+ " ="
+m.nomAnglais() + " - " 4+ m.nbJours() + " jours")

203

(31,

4

"deC",

Synthese : gestion de resultats
d’examens

On se propose d’établir les résultats d’examen d’un ensemble d’éleves. Chaque
éleve sera représenté par un objet de type Eleve, comportant obligatoirement les
champs suivants :

* le nom de 1’éleve (type String),

* son admissibilité a 1’examen, sous forme d’une valeur d’un type énuméré
comportant les valeurs suivantes : N (non admis), P (passable), AB (Assez bien),
B (Bien), TB (Tres bien).

Idéalement, les noms des éleves pourraient étre contenus dans un fichier. Ici, par
souci de simplicité, nous les supposerons fournis par un tableau de chaines placé
dans le programme principal.

On demande de définir convenablement la classe Eleve et d’écrire un programme
principal qui :
» pour chaque éleve, lit au clavier 3 notes d’examen, en calcule la moyenne et
renseigne convenablement le champ d’admissibilité, suivant les regles usuelles :
— moyenne < 10 : Non admis
— 10 <= moyenne <12 : Passable
— 12 <= moyenne <14 : Assez bien
— 14 <= moyenne <16 : Bien
— 16 <= moyenne : Tres bien
« affiche 1’ensemble des résultats en fournissant en clair la mention obtenue.

Voici un exemple d’exécution d’un tel programme :
donnez les trois notes de l'eleve Dutronc
11.5
14.5
10
donnez les trois notes de l'eleve Dunoyer
9.5
10.5

204

9

donnez les trois notes de 1l'eleve Lechene

14.5

12

16.5

donnez les trois notes de l1l'eleve Dubois
6

14

11

donnez les trois notes de l'eleve Frenet
17.5

14

18.5

Resultats

Dutronc - Assez bien

Dunoyer - Non admis

Lechene - Bien

Dubois - Passable

Frenet - Tres bien

[’énoncé nous impose la définition du type énuméré contenant les différents résultats
possibles de 1’examen. On notera qu’on nous demande d’afficher ces résultats sous une
forme « longue », par exemple Passable et non simplement P. Nous associerons donc
un texte a chacune des valeurs de notre type énuméré, en exploitant la possibilité de

doter un tel type de méthodes, a savoir ici :

* un constructeur recevant en argument le texte associé a la valeur,

« une méhtode nommeée details, permettant de trouver ce texte a partir d’une valeur.
Voici ce que pourrait étre la définition de ce type énuméré :

enum Mention

{ NA ("Non admis"), P ("Passable"), AB ("Assez bien"),
B ("Bien"), TB ("Tres bien"), NC ("Non connu")

private Mention (String d)
{ mentionDetaillee = d ;

}
public String details ()

{ return mentionDetaillee ;

205

’

}
private String mentionDetaillee ;
}

Un champ privé nommé mentionDetaillee nous sert a conserver le texte associé a
chaque valeur.
Notez que, pour des questions de sécurité, nous avons prévu une valeur supplémentaire
(NC) correspondant a un résultat non connu, avec laquelle se trouvera automatiquement
initialisée (par le constructeur) toute variable du type Mention,

Nous avons prévu d’utiliser deux méthodes statiques :

* double moyenne (String n) qui demande de fournir trois notes pour le nom n et qui
en calcule 1a moyenne,

* Mention resul (double m) qui fournit la mention correspondant a une moyenne
donnée m.

Voici ce que pourrait étre le programme demandé :
public class Examen
{ public static void main (String args[])

{ String noms[] = { "Dutronc", "Dunoyer", '"Lechene", "Dubois",
"Frenet" } ;

// creation du tableau d'eleves

int nel = noms.length ;
Eleve eleves [] = new Eleve [nel] ;
for (int 1=0 ; i<nel ; i++)

eleves [i] = new Eleve (noms[i]) ;

// lecture des notes et détermination du résultat de chaque éléve
for (Eleve el : eleves)

{ double moy = moyenne (el.getNom()) ;

el.setResul ((resul(moy))) ;

}

// affichage résultats
System.out.println ("Resultats : ") ;
for (Eleve el : eleves)

System.out.println (el.getNom() + " - " +
el.getResul().details()) ;

// méthode qui demande au clavier trois notes pour un nom donne
// et qui fournit en retour la moyenne correspondante

206

static public double moyenne (String n)
{ System.out.println ("donnez les trois notes de l'eleve " + n) ;
double som = 0. ;
for (int 1=0 ; 1i<3 ; 1i++)
{ double note = Clavier.lireDouble() ;
som += note ;
}
double moyenne = som / 3. ;
return moyenne ;

// méthode qui définit la mention en fonction de la moyenne
static public Mention resul (double m)
{ if (m<10.) return Mention.NA ;
if (m<12.0) return Mention.P ;
if (m<14.0) return Mention.AB ;
if (m<16.0) return Mention.B ;
return Mention.TB ;

b
b

class Eleve

{ public Eleve (String n)

{ nom = n ;

resul = Mention.NC ; // valeur par défaut
}

public void setResul (Mention r)
{ resul =r ;

}

public Mention getResul()

{ return resul ;

}

public String getNom()

{ return nom ;

}

private String nom ;

private Mention resul ;

}

enum Mention

207

{ NA ("Non admis"), P ("Passable"), AB ("Assez bien"),
B ("Bien"), TB ("Tres bien"), NC ("Non connu") ;
private Mention (String d)
{ mentionDetaillee = d ;
}
public String details ()
{ return mentionDetaillee ;

}

private String mentionDetaillee ;

208

Chapitre 8

Les exceptions

N\ h ||

Il.i L
O '

- N

Connaissances requises

 Déclenchement d’une exception avec throw

* Bloc try, écriture d’un gestionnaire d’exception

* Transmission d’informations au gestionnaire d’exception
* Regles de choix du gestionnaire d’exception

» Cheminement d’une exception

* Clause throws

* Bloc finally

* Redéclenchement d’une exception

* Exceptions standard

209

m Declenchement et traitement
d’une exception

Réaliser une classe EntNat permettant de manipuler des entiers naturels (positifs ou
nuls). Pour I’instant, cette classe disposera simplement :

 d’un constructeur a un argument de type int qui générera une exception de type
ErrConst (type classe a définir) lorsque la valeur recue ne conviendra pas,

 d’une méthode getN fournissant sous forme d’un int, la valeur encapsulée dans
un objet de type EntNat.

Ecrire un petit programme d’utilisation qui traite 1’exception ErrConst en affichant
un message et en interrompant 1’ exécution.

Le constructeur de la classe EntNat doit donc déclencher une exception de type
ErrConst lorsque la valeur recue par son constructeur est négative. Ici, la classe
ErrConst peut étre réduite a sa plus simple expression, a savoir ne comporter ni
champs ni méthodes. La définition de EntNat pourrait se présenter ainsi :

class EntNat

{ public EntNat (int n) throws ErrConst
{ if (n<0®) throw new ErrConst() ;
this.n = n ;

}

public int getN () { return n ; }
private int n ;

}

class ErrConst extends Exception

{}

On notera qu’en 1’absence de la clause throws ErrConst dans 1’en-téte du constructeur
de EntNat, on obtiendrait une erreur de compilation. D’autre part, il est indispensable
que la classe ErrConst dérive de la classe Exception (le compilateur s’assure bien que
1’objet mentionné a throw est d’un type compatible avec Exception).

210

Voici un programme d’utilisation dans lequel nous traitons 1’exception ErrConst en
incluant les instructions concernées dans un bloc try que nous faisons suivre d’un
gestionnaire introduit par catch(ErrConst e). Comme demandé, nous y affichons un
message (*** erreur construction ***) et nous mettons fin a 1’exécution par 1’appel de
System.exit.

public class TstEntNat
{ public static void main (String args[])
{ try
{ EntNat nl1 = new EntNat(20) ;
System.out.println ("n1 ="
EntNat n2 = new EntNat(-12) ;
System.out.println ("n2 ="
}
catch (ErrConst e)
{ System.out.println ("*** erreur construction ***") ;
System.exit (-1) ;
}
}
}

nil = 20
*** arreur construction ***

+

ni.getN()) ;

+

n2.getN()) ;

211

Transmission d’information au
gestionnaire

Adapter la classe EntNat de 1’exercice et le programme d’utilisation de maniere a
disposer dans le gestionnaire d’exception du type ErrConst de la valeur fournie a
tort au constructeur.

Cette fois, nous prévoyons, dans la classe ErrConst, un champ valeur destiné a
conserver la valeur avec laquelle on a tenté de construire a tort un entier naturel. La
facon la plus simple d’attribuer une valeur a ce champ consiste a le faire lors de la
création de I’objet de type ErrConst, en la transmettant au constructeur. Ici, nous avons
fait de valeur un champ privé, de sorte que nous dotons notre classe ErrConst d’une
méthode d’acces getValeur. Voici la nouvelle définition de nos classes EntNat et
ErrConst :

class EntNat
{ public EntNat (int n) throws ErrConst
{ if (n<O®) throw new ErrConst(n) ;
this.n = n ;
}
public int getN () { return n ; }
private int n ;
}
class ErrConst extends Exception
{ public ErrConst (int valeur) { this.valeur = valeur ; }
public int getValeur() { return valeur ; }
private int valeur ;

}

Dans notre programme d’utilisation, nous devons récupérer la valeur coupable dans le
gestionnaire d’exception. Il nous suffit pour cela de recourir a la méthode getValeur :

public class TstEntN1

212

{ public static void main (String args[])
{ try
{ EntNat nl1 = new EntNat(20) ;
System.out.println ("n1 ="
EntNat n2 = new EntNat(-12) ;
System.out.println ("n2 ="
}
catch (ErrConst e)
{ System.out.println ("*** tentative construction naturel avec "
+ e.getValeur() + " ***")
System.exit (-1) ;
}
}
}

nil = 20
*** tentative construction naturel avec -12 ***

+

nl.getN()) ;

+

n2.getN()) ;

l4

En pratique, on se permettra souvent de ne pas appliquer le principe d’encapsulation a
des champs tels que valeur. Ainsi, en le déclarant public, on pourra se passer de la
méthode getValeur et écrire directement dans le gestionnaire :
System.out.println ("*** tentative construction naturel avec "
+ e.valeur + " xxxl)

/

213

Cheminement des exceptions

Que produit le programme suivant lorsqu’on lui fournit en donnée® :
*]la valeur O,
* la valeur 1,

* la valeur 2.

class Except extends Exception

{ public Except (int n) { this.n = n ; }
public int n ;

}

public class Chemin

{ public static void main (String args[])
{ int n ;

System.out.print ("donnez un entier : ")
Clavier.lireInt() ;
try

{ System.out.println ("debut premier bloc try") ;
if (n!'=0) throw new Except (n) ;
System.out.println ("fin premier bloc try") ;

}

catch (Except e)

{ System.out.println ("catch 1 - n = " + e.n)

}

System.out.println ("suite du programme") ;

try

{ System.out.println ("debut second bloc try") ;
if (n!=1) throw new Except (n) ;
System.out.println ("fin second bloc try") ;

}
catch (Except e)

14

{ System.out.println ("catch 2 - n = "
System.exit(-1) ;
}

System.out.println ("fin programme")

4

214

}
}

a. Pour lire un entier au clavier, il utilise la méthode lireInt de la classe Clavier fournie sur le site Web.

Ici, il faut simplement savoir que lorsque le gestionnaire d’exception ne comporte pas
d’arrét de I’exécution (ou d’instruction return), 1’exécution se poursuit a I’instruction
suivant le dernier gestionnaire associé au bloc try.

En définitive, voici quels seront les trois exemples d’exécution correspondant aux trois
réponses proposeées :

donnez un entier : 0
debut premier bloc try
fin premier bloc try
suite du programme
debut second bloc try
catch 2 - n = 0

donnez un entier : 1
debut premier bloc try
catch 1 - n =1

suite du programme
debut second bloc try
fin second bloc try
fin programme

donnez un entier : 2
debut premier bloc try
catch 1 - n = 2

suite du programme
debut second bloc try
catch 2 - n = 2

215

Cheminement des exceptions et
choix du gestionnaire

Quels résultats fournit ce programme ?
class Erreur extends Exception
{ public int num ;
}
class Erreur_d extends Erreur
{ public int code ;
}
class A
{ public A(int n) throws Erreur_d

{ if (n==1) { Erreur_d e = new Erreur_d() ; e.num = 999 ;
e.code = 12 ;

throw e ;
}

}

}

public class Cheminil

{
public static void main (String args[])
{ try
{ Aa=new A(1) ;
System.out.println ("apres creation a(1)") ;
}
catch (Erreur e)
{ System.out.println ("** exception Erreur " + e.num) ;
}
System.out.println ("suite main") ;
try
{ Ab = new A(1) ;
System.out.println ("apres creation b(1)") ;

}

catch (Erreur_d e)

216

{ System.out.println ("** exception Erreur_d " + e.num + " " +
e.code) ;

}
catch (Erreur e)
{ System.out.println ("** exception Erreur " + e.num) ;

}
}
}

Que se passe-t-il si 1’on inverse 1’ordre des deux gestionnaires dans le second bloc
try ?

Dans le premier bloc try, 1’appel du constructeur de A déclenche une exception de type
Erreur_d. Celle-ci est traitée par 1’unique gestionnaire relatif au type Erreur, lequel
convient effectivement puisque Erreur_d dérive de Erreur. Dans le second bloc try, on
déclenche la méme exception mais, cette fois, deux gestionnaires lui sont associés. Le
premier trouvé convient et c’est donc lui qui est exécuté. En définitive, on obtient les
résultats suivants :

** exception Erreur 999

suite main

** exception Erreur_d 999 12

Notez bien qu’ici, les messages apres creation... ne sont pas affichés puisque les deux
blocs try sont interrompus auparavant.

Si I’on inverse 1’ordre des deux gestionnaires dans le second bloc try, on obtient une
erreur de compilation car le second n’a aucune chance d’étre sélectionné.

217

m Cheminement des exceptions

Que fait ce programme? ?
class Positif
{ public Positif (int n) throws ErrConst
{ if (n<=0) throw new ErrConst() ;

}
}
class ErrConst extends Exception
{}
public class TstPos
{ public static void main (String args[])
{ System.out.println ("debut main") ;
boolean ok = false ;
while (!ok)
{ try
{ System.out.print ("donnez un entier positif : ") ;
int n = Clavier.lireInt() ;
Positif ep = new Positif (n) ;
ok = true ;
}
catch (ErrConst e)
{ System.out.println ("*** erreur construction ***") ;

}
}

System.out.println ("fin main") ;

}
}

a. Pour lire un entier au clavier, il utilise la méthode lireInt de la classe Clavier fournie sur le site Web.

Dans la boucle while de la méthode main, on lit un nombre entier qu’on transmet au
constructeur de Positif. Si la valeur qu’il recoit n’est pas strictement positive, il
déclenche une exception de type ErrConst. Celle-ci est traitée dans le gestionnaire

218

associé au bloc try, lequel se contente d’afficher un message (*** erreur construction
**¥). Apres 1’exécution de ce gestionnaire, on passe a 1’instruction suivant le bloc try,
c’est-a-dire ici au test de poursuite de la boucle while, basée sur la valeur de ok. On
constate que la boucle se poursuit jusqu’a ce que la valeur de n soit effectivement
positive. Dans ce cas, en effet, la construction de ep se déroule normalement et 1’on
exécute I’instruction ok=true.

Voici un exemple d’exécution de ce programme, dans lequel on déclenche a deux
reprises 1’exception ErrConst :

debut main

donnez un entier positif : -5
*** erreur construction ***
donnez un entier positif : O
*** erreur construction ***
donnez un entier positif : 4
fin main

Voici un autre exemple dans lequel aucune exception n’a été déclenchée :

debut main
donnez un entier positif : 5
fin main

En général, il n’est pas conseillé d’employer le mécanisme de gestion des exceptions
pour controler le déroulement d’une boucle comme nous le faisons ici. Cependant, cette
démarche pourra s’avérer utile dans quelques rares circonstances, notamment pour lire
un fichier séquentiel ; dans ce cas, on se basera sur 1’exception EOFException.

219

Instruction return dans un
gestionnaire

Que fournit le programme suivant ?
class Erreur extends Exception
{}
class A
{ public A(int n) throws Erreur
{ if (n==1) throw new Erreur() ;

}
}

public class Chemin2

{ public static void main (String args[])
{ f(true) ; System.out.println ("apres f(true)") ;
f(false) ; System.out.println ("apres f(false)") ;

}
public static void f(boolean ret)
{ try

{ Aa=new A(1) ;

}

catch (Erreur e)

{ system.out.println ("** Dans f - exception Erreur ") ;
if (ret) return ;

}

System.out.println ("suite f") ;

Les deux appels de f déclenchent une exception a la construction de a. Toutefois, dans
le premier cas, le gestionnaire est amené a exécuter une instruction return, ce qui met
fin a I’exécution de f, sans que 1’instruction suivant le bloc try (affichage de suite f) ne
soit exécutée. En revanche, elle 1’est bien dans le second cas ou le gestionnaire se

220

termine naturellement, sans qu’aucune instruction return ou exit n’ait été exécutée.

En définitive, le programme fournit les résultats suivants :

** Dans f - exception Erreur

apres f(true)
** Dans f - exception Erreur

suite f
apres f(false)

221

Redéclenchement d’une
exception et choix du gestionnaire

Que fournit ce programme ?
class Erreur extends Exception {}
class Erreurl extends Erreur {}
class Erreur2 extends Erreur {}
class A
{ public A(int n) throws Erreur
{ try
{ if (n==1) throw new Erreuri() ;
if (n==2) throw new Erreur2() ;
if (n==3) throw new Erreur() ;
}
catch (Erreurl e)
{ System.out.println ("** Exception Erreurl dans constructeur
A")
}
catch (Erreur e)
{ System.out.println ("** Exception Erreur dans constructeur
A")
throw (e) ;
}
}
}

public class Redecl
{ public static void main (String args[])

{ int n ;
for (n=1 ; n<=3 ; n++)
{ try
{ A a=new A(n) ;
}

catch (Erreurl e)
{ System.out.println ("*** Exception Erreurl dans main") ;

222

}

catch (Erreur2 e)

{ System.out.println ("*** Exception Erreur2 dans main") ;
}

catch (Erreur e)

{ System.out.println ("*** Exception Erreur dans main") ;

}

System.out.println ("-------------- "y
}
System.out.println ("fin main") ;

}
}

Ici, on exécute a trois reprises le méme bloc try, n prenant successivement les valeurs
1, 2 et 3.

Dans le premier cas (n=1), la construction de 1’objet a déclenche une erreur Erreurl
qui se trouve traitée par le gestionnaire correspondant (catch(Erreurl e) du
constructeur de A.

Dans le second cas (n=2), la construction de a déclenche une erreur Erreur?2. Elle est
alors traitée par le gestionnaire relatif au type Erreur du constructeur de A (il s’agit du
premier des gestionnaires ayant un type compatible avec Erreur2). Mais celui-ci
redéclenche a son tour une exception de méme type Erreur? ; transmise au bloc try
englogant, elle est traitée par le gestionnaire catch(Erreur?2).

Enfin, dans le dernier cas (n=3), la construction de a déclenche une erreur Erreur qui
se trouve traitée par le gestionnaire correspondant du constructeur de A lequel, la
encore, redéclenche a son tour une exception de méme type ; transmise au bloc try
englobant, elle sera traitée par le gestionnaire catch(Erreur).

En définitive, le programme fournit ces résultats :
** Exception Erreurl dans constructeur A
** Exception Erreur dans constructeur A
*** Exception Erreur2 dans main
** Exception Erreur dans constructeur A
*** Exception Erreur dans main

223

fin main

Notez bien qu’ici le type de I’exception redéclenchée par le second gestionnaire du
constructeur de A (instruction throw e) est identique a celui recu en argument. Il peut
varier d’un appel a un autre. Ici, il s’agit soit de Erreur2, soit de Erreur.

224

Bloc finally

Quels résultats fournit ce programme ?
class Except extends Exception
{}
public class Finally
{ public static void f(int n)

{ try
{ if (n!=1) throw new Except () ;
}
catch (Except e)
{ System.out.println ("catch dans f - n =" + n) ;

return ;

}
finally
{ System.out.println ("dans finally - n = " + n) ;
}

}

public static void main (String args[])

{ f(1) ;
f(2) ;

}

}

Les instructions d’un floc finally associé a un bloc try sont toujours exécutées qu’il y
ait eu ou non déclenchement d’une exception (sauf si le gestionnaire met fin a
I’exécution). Ceci s’applique notamment au cas ou un gestionnaire comporte une
instruction return : le bloc finally est quand méme exécuté auparavant.

En définitive, le programme fournit ceci :

dans finally - n =1
catch dans f - n = 2
dans finally - n = 2

225

Redéclenchement et finally

Quels résultats fournit ce programme ?
class Except extends Exception {}
public class FinReth
{ public static void f(int n) throws Except

{ try
{ if (n!=1) throw new Except () ;
}
catch (Except e)
{ System.out.println ("catch dans f - n =" + n) ;
throw e ;
}
finally
{ System.out.println ("dans finally de f - n = " + n) ;
}
}
public static void main (String args[])
{ int n=0 ;
try
{ for (n=1 ; n<5 ; n++) f(n) ;
}
catch (Except e)
{ System.out.println ("catch dans main - n = " + n) ;
}
finally
{ System.out.println ("dans finally de main - n = " + n) ;
}
}

La boucle for de la méthode main effectue théoriquement cing appels de f. Le premier
(n=1) ne provoque aucune exception dans f, et il conduit a 1’exécution du bloc finally

226

associé au bloc try de f. Le deuxieme (n=2) provoque une exception dans f qui est
traitée par le bloc catch correspondant, lequel relance a nouveau une exception ; avant
qu’on ne lui cherche un gestionnaire, on exécute le bloc finally associé au bloc try.
Puis on cherche un gestionnaire approprié dans un bloc try englobant, c’est-a-dire ici
celui du main. On exécute donc le bloc catch correspondant, puis le bloc finally
associé. Comme cette exception met fin a 1’exécution du bloc try de main, le
programme s’ interrompt.

En définitive, on obtient ces résultats :

dans finally de f - n = 1
catch dans f - n = 2

dans finally de f - n = 2
catch dans main - n = 2

dans finally de main - n = 2

227

m Synthese : entiers naturels

Réaliser une classe permettant de manipuler des entiers naturels (positifs ou nuls) et
disposant :

* d’un constructeur a un argument de type int ; il générera une exception ErrConst
si la valeur de son argument est négative ;

 de méthodes statiques de somme, de différence et de produit de deux naturels ;
elles généreront respectivement des exceptions ErrSom, ErrDiff et ErrProd
lorsque le résultat ne sera pas représentable ; la limite des valeurs des naturels
sera fixée a la plus grande valeur du type int ;

* une méthode d’acces getN fournissant sous forme d’un int la valeur de 1’entier
naturel.

On s’arrangera pour que toutes les classes exception dérivent d’une classe ErrNat et
pour qu’elles permettent a un éventuel gestionnaire de récupérer les valeurs ayant
provoqué 1’ exception.

Ecrire deux exemples d’utilisation de la classe :

* I’un se contentant d’intercepter sans discernement les exceptions de type dérivé
de ErrNat,

* ’autre qui explicite la nature de 1’exception en affichant les informations
disponibles.
Les deux exemples pourront figurer dans deux blocs try d’un méme programme.

[’énoncé nous impose de respecter une certaine hiérarchie pour les classes exception.
Ici, pour faciliter la tache, nous prévoyons une classe intermédiaire supplémentaire
nommée ErrOp qui servira de base aux exceptions liées a des opérations arithmétiques
(somme, différence ou produit) ; elle possedera tout naturellement deux champs de type
int (on aurait pu choisir aussi EntNat) représentant les valeurs des deux opérandes de
1’ opération.
La hiérarchie des classes d’exception se présentera donc ainsi :

Exception

228

ErrNat
ErrConst
ErrOp
ErrSom
ErrDif
ErrProd
Voici la définition de notre classe EntNat et des classes exception correspondantes :

class EntNat

{ public EntNat (int n) throws ErrConst
{ if (n<0®) throw new ErrConst(n) ;
this.n = n ;

}

public static EntNat somme (EntNat nl1, EntNat n2) throws ErrSom,
ErrConst

{ int opl = nl1l.n, 0p2 = n2.n ;
long s = opl + op2 ;
if (s > Integer.MAX_VALUE) throw new ErrSom (opl, op2) ;
return new EntNat (opl+op2) ;

}

public static EntNat diff (EntNat nl1, EntNat n2) throws ErrDiff,
ErrConst

{ int opl = nl1l.n, 0op2 = n2.n ;

int d = opl - op2 ; if (d<@) throw new ErrDiff(opl, op2) ;
EntNat res = new EntNat (d) ;

return res ;

}

public static EntNat prod (EntNat nl1, EntNat n2) throws ErrProd,
ErrConst

{ int opl1 = nl1.n, op2 = n2.n ;
long p = (long)opl * (long)op2 ;
if (p > Integer.MAX_VALUE) throw new ErrProd(opl, op2) ;
return new EntNat ((int)p) ;
}
public int getN() { return n ; }
private int n ;
}
class ErrNat extends Exception {}
class ErrConst extends ErrNat

229

{ public ErrConst (int n) { this.n = n ; }
public int n ;

}

class ErrOp extends ErrNat

{ public ErrOp (int n1, int n2)
{ this.n1 = n1 ; this.n2 = n2 ;
}
public int n1, n2 ;

}

class ErrSom extends ErrOp

{ public ErrSom (int n1, int n2)
{ super(ni, n2) ;
}

}

class ErrDiff extends ErrOp
{ public ErrDiff (int nl1, int n2)
{ super(ni, n2) ;
}
}

class ErrProd extends ErrOp
{ public ErrProd (int n1, int n2)
{ super (n1, n2) ;
}
}
Il faut bien prendre garde a mentionner ErrConst dans la clause throws des méthodes
somme, diff et prod puisque 1’appel du constructeur de EntNat est une source
potentielle d’une telle exception. Si on ne le fait pas, on obtiendra une erreur de
compilation.
Notez que, dans la méthode prod, il a fallu prendre la précaution d’effectuer le calcul
du produit en long. Pour cela, il ne faut surtout pas se contenter d’écrire :
long p = opl * op2 ;
car le produit opl*op2 serait effectué dans le type int. Le résultat ne serait jamais
supérieur a Integer. MAX_VALUE ; de plus, il pourrait étre négatif, ce qui déclencherait
une exception lors de la construction de EntNat ((int)p).
Voici deux exemples d’utilisation répondant aux conditions imposées par 1’énoncé :
public class TstEntN2
{ public static void main (String args[])

{ try

230

{ EntNat nl1 = new EntNat(20), n2 = new EntNat(12) ;
EntNat d ;
d = EntNat.diff (n1, n2) ;
d = EntNat.diff (n2, n1) ;
}
catch (ErrNat e)
{ System.out.println ("*** erreur Entier naturel ****") .,
}
try
{ EntNat n3 = new EntNat (50000), n4 = new EntNat (45000) ;

EntNat d = EntNat.diff (n3, n4) ;
EntNat s = EntNat.somme (n3, n4) ;
EntNat p = EntNat.prod (n3, n4) ;
¥

catch (ErrConst e)

{ System.out.println ("*** erreur construction EntNat avec
argument "

+ e.n) ;

¥

catch (ErrDiff e)

{ System.out.println ("*** erreur difference EntNat - valeurs
+e.nl1 +" " + e.n2) ;

}

catch (ErrSom e)
{ System.out.println ("*** erreur somme EntNat - valeurs
+e.nl1 +" " + e.n2) ;

}
catch (ErrProd e)

{ System.out.println ("*** erreur produit EntNat - valeurs "
+e.nl1 +" " + e.n2) ;

b
b
b

*** erreur Entier naturel ****
*** erreur produit EntNat - valeurs 50000 45000

1. Si notre deuxieme bloc try ne comportait pas 1’appel des trois méthodes somme,

231

diff et prod, le compilateur n’accepterait pas qu’il soit suivi d’un ou de plusieurs
gestionnaires non utiles (par exemple, catch(ErrProd e) sans appel de EntNat.prod).

2. Nous pourrions exploiter 1’existence de la classe ErrOp pour simplifier la gestion
des exceptions en nous contentant de distinguer les exceptions de construction de
celles de calcul. Dans ce dernier cas, on pourrait afficher les valeurs des deux
opérandes mais on ne pourrait plus préciser 1’opération concernée.

232

Chapitre 9

Les bases de la programmation
evéenementielle

Connaissances requises

 La classe JErame : méthodes setSize, setTitle, setBounds, setVisible
* Notion d’événement, de catégorie d’événements, de source et d’écouteur

* Gestion des événements de la catégorie MouseEvent avec un écouteur
implémentant 1’interface MouseListener ou avec un écouteur dérivé de la
classe adaptateur MouseAdapter (éventuellement avec une classe anonyme)

» Utilisation de I’information associée a un événement de type MouseEvent :
méthodes getX et getY

» Création d’un objet bouton (JButton), ajout a une fenétre (méthodes
getContentPane et add)

* Notion de gestionnaire de mise en forme ; remplacement du gestionnaire par
défaut de JFrame par un gestionnaire de type FlowLayout

» Evénement de type Action Event ; méthodes actionPerformed et getSource ;
notion de chaine de commande ; méthode getActionCommand

* Suppression d’un composant par la méthode remove de son conteneur ;
méthodes validate et revalidate

* Activation ou désactivation d’un composant : méthode setEnabled ; test
d’activation par isEnabled

* Notion de panneau (JPanel) ; gestionnaire de mise en forme par défaut

233

* Dessin permanent dans un panneau par redéfinition de paintComponent ;
notion de contexte graphique (classe Graphics) ; forcage du dessin avec
repaint ; tracé de lignes avec drawLine

* Dessin "a la volée"
* Quelques constantes usuelles de la classe Color (yellow, green, red...)

* Gestion des dimensions : obtention des dimensions de 1’écran (méthode
getScreenSize de la classe Toolkit), obtention des dimensions d’un composant
(méthode getSize), choix des dimensions préférentielles d’un composant
(méthode getPreferredSize)

Note : En général, on s’arrange pour que la fermeture de la fenétre graphique
principale mette fin au programme correspondant. Pour obtenir ce résultat, il faut traiter
de facon appropriée 1’événement "fermeture de la fenétre". Ici, il n’est pas demandé de
le faire (nous y reviendrons au chapitre 12) ; nous supposerons que c’est 1’utilisateur
lui-méme qui met fin au programme (sous Unix ou Linux, il frappera Ctrl/C en fenétre
console, sous Windows, il fermera la fenétre console).

On trouvera la liste des composants graphiques et de leurs méthodes en Annexe B, la
liste des événements et de leurs méthodes en Annexe C.

234

Ecouteurs de clics d’une fenétre

Ecrire un programme qui crée une fenétre (de type JFrame) et qui détecte les
événements "appui” et "relachement” associés a la souris et ayant la fenétre comme
source. On se contentera de signaler chacun de ces deux événements en affichant en
fenétre console un message précisant sa nature (appui ou relachement), ainsi que les
coordonnées correspondantes.

On proposera quatre solutions :

1. la fenétre est son propre écouteur de souris et elle implémente 1’interface
MouselListener,

2. on utilise un écouteur différent de la fenétre, objet d’une classe implémentant
I’interface MouseListener,

3. on utilise un objet écouteur différent de la fenétre en recourant a 1’adaptateur
MouseAdapter,

4. on utilise un écouteur différent de la fenétre, objet d’une classe anonyme
dérivée de MouseAdapter.

On crée une classe fenétre nommée MaFenetre dérivée de JErame. Ici, son titre et ses
dimensions seront fixés dans son constructeur a 1’aide des méthodes setTitle et
setBounds. On lui associera un écouteur des événements souris a 1’aide de la méthode
addMouseListener a laquelle on spécifiera 1’objet écouteur voulu, a savoir ici la
fenétre elle-méme (this). Ici, cet appel peut se faire dans le constructeur (mais ce n’est
pas une obligation).

Un objet écouteur doit implémenter une interface donnée (ici MouseListener). On
devra donc mentionner la clause implements MouseListener dans la définition de la
classe MaFenetre et définir de maniere appropriée les méthodes qui nous intéressent.
Ici, il s’agit de mousePressed (appui sur une touche quelconque) et de mouseReleased
(relachement). Notez bien que les autres méthodes de 1’interface MouseListener
(mouseClicked, mouseEntered et mouseExited) doivent étre présentes (nous leur
prévoyons simplement un corps vide). Les coordonnées de la souris sont obtenues a
1’aide des méthodes getX et getY qu’on applique a 1’objet de type MouseEvent recu en
argument de chacune des méthodes de 1’ écouteur.

235

Le programme se contente de créer un objet de type MaFenetre et de 1’afficher en le
rendant visible par appel de sa méthode setVisible.

import javax.swing.* ; // pour JFrame

import java.awt.event.* ; // pour MouseEvent et MouselListener
class MaFenetre extends JFrame implements MouselListener

{ public MaFenetre () // constructeur

}

{ setTitle ("Gestion de clics") ;

setBounds (10, 20, 300, 200) ;

addMouselListener (this) ; // la fenetre sera son propre écouteur
// d'événements souris

}

public void mousePressed (MouseEvent ev)

{ System.out.println ("appuli en " + ev.getX() + " " + ev.getY()) ;
}

public void mouseReleased(MouseEvent ev)

{ System.out.println ("relachement en " + ev.getX() + " " +
ev.getY()) ;

}

public void mouseClicked(MouseEvent ev) {}
public void mouseEntered (MouseEvent ev) {}
public void mouseExited (MouseEvent ev) {}

public class Clic1l

{

}

public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible(true) ;

}

appui en 172 74

r

elachement en 172 74

appui en 166 126
relachement en 166 126
appuli en 72 75
relachement en 239 131
appul en 49 85
relachement en -57 100

236

1. Ici, la méthode setVisible a été appelée dans la méthode main. Rien n’empécherait
de I’appeler dans le constructeur de MaFenetre.

2. On constate qu’un clic génere deux évenements : appui et relachement. En
définissant de facon appropriée la méthode mouseClicked, on pourrait constater
qu’il conduit également a un événement clic (on dit aussi "clic complet").

3. Les clics opérés en dehors de la fenétre ne sont pas pris en compte. Toutefois, si
I’on déplace la souris apres avoir appuyé sur un bouton alors qu’elle se trouvait
dans la fenétre, un événement relachement sera généré méme si le bouton est relaché
en dehors de la fenétre ; c’est ce qui se produit dans le dernier exemple, d’ou une
coordonnée négative. En revanche, si le déplacement de la souris se fait de
I’extérieur vers l’intérieur de la fenétre, aucun événement ne sera signalé (la
"source" concernée par le relachement étant celle concernée par I’appui).

Cette fois, il est nécessaire de définir une classe distincte de MaFenetre (ici Ecout)
implémentant 1’interface MouseListener. La définition des méthodes concernées peut
cependant rester la méme que précédemment. Dans le constructeur de MaFenetre, on
associe a la fenétre un objet écouteur de type Ecout par add (new Ecout()).

import javax.swing.* ; // pour JFrame

import java.awt.event.* ; // pour MouseEvent et MouselListener
class MaFenetre extends JFrame

{ public MaFenetre () // constructeur

{ setTitle ("Gestion de clics") ;
setBounds (10, 20, 300, 200) ;

addMouselListener (new Ecout()) ; // on ecoute avec un objet de
type Ecout

b
b

class Ecout implements MouselListener
{ public void mousePressed (MouseEvent ev)

{ System.out.println ("appui en " + ev.getX() + " " + ev.getY()) ;
}

public void mouseReleased(MouseEvent ev)

{ System.out.println ("relachement en " + ev.getX() + " " +
ev.getY()) ;

}

237

public void mouseClicked(MouseEvent ev) {}
public void mouseEntered (MouseEvent ev) {}
public void mouseExited (MouseEvent ev) {}
}
public class Clic2
{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible(true) ;

b
b

Ici encore, on définit une classe Ecout, distincte de MaFenetre. Mais cette fois, il
s’agit d’une classe dérivée de la classe adaptateur MouseAdapter. 1l nous suffit alors
d’y redéfinir les deux méthodes qui nous intéressent, a savoir ici mousePressed et
mouseReleased ; contrairement a ce qui passait précédemment, nous n’avons plus
besoin de nous préoccuper des autres (elles sont toutes définies dans MouseAdapter
avec un corps vide).

import javax.swing.* ; // pour JFrame
import java.awt.event.* ; // pour MouseEvent et MouselListener
class MaFenetre extends JFrame
{ public MaFenetre () // constructeur
{ setTitle ("Gestion de clics") ;
setBounds (10, 20, 300, 200) ;

addMouselListener (new Ecout()) ; // on ecoute avec un objet de
type Ecout

b
b

class Ecout extends MouseAdapter
{ public void mousePressed (MouseEvent ev)

{ System.out.println ("appuli en " + ev.getX() + " " + ev.getY()) ;
}
public void mouseReleased(MouseEvent ev)
{ System.out.println ("relachement en " + ev.getX() + " " +
ev.getY()) ;
}

}

public class Clic3

238

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible(true) ;

b
b

Cette fois, on crée un objet d’une classe anonyme dérivée de MouseAdapter et on le
transmet a la méthode addMouseListener. Rappelons que les classes anonymes ne
peuvent étre que des classes dérivées ou implémentant une interface. Ici, nous créons
notre objet écouteur de cette facon :

new MouseAdapter ()
{ // redéfinition des méthodes mousePressed et mouseReleased }

Nous y redéfinissons comme précédemment les méthodes mousePressed et
mouseReleased et nous fournissons cet objet en argument de la méthode
addMouseListener.

import javax.swing.* ; // pour JFrame
import java.awt.event.* ; // pour MouseEvent et MouselListener
class MaFenetre extends JFrame
{ public MaFenetre () // constructeur

{ setTitle ("Gestion de clics") ;

setBounds (10, 20, 300, 200) ;

addMouselListener (new MouseAdapter()

{ public void mousePressed (MouseEvent ev)

{ System.out.println ("appui en " + ev.getX() + " " +
ev.getY()) ;

}
public void mouseReleased(MouseEvent ev)

{ System.out.println ("relachement en " + ev.getX() + " " +
ev.getY()) ;,

}
1)
}

}
public class Clic4

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;

239

fen.setVisible(true) ;

b
b

240

Ecouteurs de clics de plusieurs
fenetres

Ecrire un programme qui crée plusieurs fenétres (de type JFrame) repérées par un
numeéro et qui détecte les événements "appui” et "relachement” de la souris associés
a chacune de ces fenétres. On signalera chaque événement en affichant en fenétre
console un message précisant sa nature (appui ou relachement), le numéro de fenétre
et les coordonnées correspondantes.

On proposera deux solutions :
1. chaque fenétre est son propre écouteur de souris,

2. chaque fenétre dispose d’un objet écouteur d’une classe implémentant
I’interface MouseAdapter.

Notez qu’il s’agit de la généralisation de 1’exercice a plusieurs fenétres.

On va donc étre amené a créer une classe spécialisée (ici MaFenetre) dérivée de
JFrame. 1l est préférable que le nombre de fenétres a créer ne soit pas imposé par la
classe. Ici, il est fixé par une constante (nFen=3) définie dans la méthode main. En
revanche, le constructeur de MaFenetre devra étre en mesure d’attribuer un numéro
différent a chaque fenétre, numéro qui se retrouvera dans son titre et surtout dans le
message correspondant aux événements signalés. Pour ce faire, nous comptons
simplement les objets du type MaFenetre en employant une variable de classe
(statique) nbFen, initialisée a zéro et incrémentée a chaque création d’un nouvel objet.
Un champ num sert a conserver le numéro attribué a une fenétre donnée.

Comme chaque fenétre est son propre écouteur, les méthodes mousePressed et
mouseReleased accedent directement au champ num pour en afficher la valeur, en
méme temps que les coordonnées du clic.

import javax.swing.* ; // pour JFrame
import java.awt.event.* ; // pour MouseEvent et MouselListener
class MaFenetre extends JFrame implements MouselListener
{ public MaFenetre ()
{ nbFen++ ;

241

num = nbFen ;
setTitle ("Fenetre numero " + num) ;
setBounds (10, 20, 300, 200) ;
addMouselListener (this) ;
}
public void mousePressed (MouseEvent ev)
{ System.out.println ("appui dans fen num " + num
+ " en " + ev.getX() + " " + ev.getY()) ;
}
public void mouseReleased(MouseEvent ev)
{ System.out.println ("relachement dans fen num " + num
+ " en " + ev.getX() + " " + ev.getY()) ;
}
public void mouseClicked(MouseEvent ev) {}
public void mouseEntered (MouseEvent ev) {}
public void mouseExited (MouseEvent ev) {}
private static int nbFen=0 ;
private int num ;
}
public class ClicI1l
{ public static void main (String args[])
{ final int nFen = 3 ;
for (int 1=0 ; i<nFen ; 1i++)
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible(true) ;
}
}
}

appuli dans fen num 1 en 121 82
relachement dans fen num 1 en 121 82
appui dans fen num 1 en 168 91
relachement dans fen num 1 en 456 155
appuli dans fen num 2 en 228 137
relachement dans fen num 2 en 228 137
appul dans fen num 3 en 152 169
relachement dans fen num 3 en 152 169
appuli dans fen num 3 en 112 121
relachement dans fen num 3 en -23 41
appul dans fen num 2 en 89 119

242

relachement dans fen num 2 en 89 119

Pour numéroter les fenétres, nous employons la méme démarche que dans la solution
précédente (champ statique nbFen et champ num dans la classe MaFenetre).

En revanche, cette fois, les objets écouteurs sont d’une classe distincte de la fenétre
(nommée ici Ecout). Il faut donc que chaque objet écouteur dispose d’une information
lui permettant d’identifier la fenétre a laquelle il est associé. Une facon de faire
consiste a fournir ce numéro au constructeur de 1’objet écouteur et a le conserver dans
un champ (ici num).

import javax.swing.* ;
import java.awt.event.* ;
class MaFenetre extends JFrame
{ public MaFenetre ()
{ nbFen++ ;
num = nbFen ;
setTitle ("Fenetre numero " + num) ;
setBounds (10, 20, 300, 200) ;

addMouselListener (new Ecout(num)) ; // chaque fenetre a son
propre ecouteur

}
private static int nbFen = 0 ;
private int num ;
}
class Ecout extends MouseAdapter
{ public Ecout (int num)
{ this.num = num ;
}
public void mousePressed (MouseEvent ev)
{ System.out.println ("appui dans fen num " + num
+ " en " + ev.getX() + " " + ev.getY()) ;
}
public void mouseReleased (MouseEvent ev)
{ System.out.println ("relachement dans fen num " + num

+ " en " + ev.getX() + " " + ev.getY()) ;
}
private int num ; // numero de la fenetre ecoutee public void
mousePressed

243

(MouseEvent ev)
}
public class ClicI2
{ public static void main (String args[])
{ final int nFen = 3 ;
for (int 1=0 ; i<nFen ; 1i++)
{ MaFenetre fen = new MaFenetre()
fen.setVisible(true)
}
}
}

/

4

244

Ecouteur commun a plusieurs
fenetres

Ecrire un programme qui crée plusieurs fenétres (de type JFrame) et qui détecte les
événements "appui” et "relachement” de la souris associés a chacune de ces
fenétres. On signalera chaque événement en affichant en fenétre console un message
précisant sa nature (appui ou relachement) et les coordonnées correspondantes
(notez bien qu’ici, on ne cherche plus a afficher un numéro de fenétre).

On proposera une solution avec un seul objet écouteur pour toutes les fenétres.

Pour numéroter les fenétres, nous utiliserons la méme démarche que dans 1’exercice 94.
Cette fois, contrairement a ce qui se passait dans la deuxieme solution de 1’exercice 94,
on souhaite disposer d’un seul objet écouteur commun a toutes les fenétres. Il doit donc
étre créé avant toute fenétre. Pour y parvenir, nous pouvons utiliser dans la classe
MaFenetre un bloc d’initialisation statique (bloc introduit par le mot clé static) dont
on sait qu’il est exécuté avant toute création d’objet. Bien entendu, nous faisons alors
de la référence a 1’écouteur (ec) un champ de classe (static).

import javax.swing.* ;

import java.awt.event.* ;

class MaFenetre extends JFrame

{

public MaFenetre () // constructeur
{ nbFen++ ;
num = nbFen ;
setTitle ("Fenetre numero " + num) ;
setBounds (10, 20, 300, 200) ;
addMouselListener (ec) ;

}

private int num ;

private static Ecout ec ;

static // bloc statique execute avant l'instanciation d'un objet
du type

245

{ ec = new Ecout() ;

}

private static int nbFen = 0 ;

}

class Ecout extends MouseAdapter
{ public void mousePressed (MouseEvent ev)

{ System.out.println ("appui en " + ev.getX() + " " + ev.getY()) ;
}

public void mouseReleased (MouseEvent ev)

{ System.out.println ("relachement en " + ev.getX() + " " +
ev.getY()) ;

}

private int num ; // numero de la fenetre ecoutee
public class ClicI3
{ public static void main (String args[])
{ final int nFen = 3 ;
for (int 1=0 ; i<nFen ; 1i++)
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible(true) ;
}
}
}

Ici, on ne demandait pas d’afficher le numéro de fenétre. Pour y parvenir, il faudrait
tenir compte de ce que 1’objet écouteur est commun a toutes les fenétres. On pourrait
par exemple identifier la source de 1’événement avec la méthode getSource de la
classe mouseEvent, ce qui nous fournirait la référence de la fenétre correspondante. Il
faudrait ensuite disposer d’un moyen permettant de lui faire correspondre le numéro de
fenétre, ce qui nécessiterait d’accéder a une liste des références de fenétres.

246

Creation de boutons et choix d’un
gestionnaire FlowLayout

Ecrire un programme qui crée une fenétre (JFrame) et qui y affiche n boutons
portant les étiquettes BOUTON1, BOUTON?Z... disposés comme dans cet exemple :

2BOUTONS MI[=E

BOUTON1 BOUTONZ2
BOUTON3 BOUTON4
BOUTONS

La valeur de n sera lue au clavier?.

a. On pourra utiliser la méthode lireInt de la classe Clavier fournie sur le site Web d’accompagnement et dont la liste
figure en Annexe D.

Pour créer les boutons, nous transmettons a leur constructeur 1’étiquette qu’on souhaite
y voir figurer ; ici, il s’agira de la concaténation de la chaine "BOUTON" avec le
numeéro du bouton.

Rappelons qu’on ajoute un composant (tel un bouton), non pas directement a un objet
fenétre (type JFrame ou dérivé), mais a son contenu (objet de type Container) dont on
obtient la référence a 1’aide de la méthode getContentPane de la classe JFrame.

Par ailleurs, ici, on ne peut pas se contenter d’utiliser le gestionnaire par défaut de
JFrame qui est de type BorderLayout (il ne permet de placer qu’au maximum 5
composants). Il faut utiliser un gestionnaire de type FlowLayout. Le choix d’un
gestionnaire se fait a 1’aide de la méthode setLayout qu’on applique la encore au
contenu de la fenétre, et a laquelle on transmet en argument la référence d’un objet du
type voulu.

import javax.swing.* ;

247

import java.awt.* ;

class FenBoutons extends JFrame
{
public FenBoutons (int nBout)
{ setTitle ("BOUTONS") ;
setSize (200, 150) ;
Container contenu = getContentPane() ;
contenu.setlLayout (new FlowLayout()) ;
for (int 1=0 ; i<nBout ; i++)
{ unBouton = new JButton ("BOUTON"+(i+1)) ;
contenu.add(unBouton) ;
}
}

private JButton unBouton ;

}

public class Boutons

{ public static void main (String args[])

{ System.out.print ("Combien de boutons ? ") ;
int nBoutons = Clavier.lireInt() ;
FenBoutons fen = new FenBoutons(nBoutons) ;
fen.setVisible(true) ;

}

}

Ici, nous n’avons pas conservé la référence de chacun des boutons créés ; celle-ci
n’aura figuré que temporairement dans la variable unBouton.

248

Gestion de plusieurs boutons
d’une fenetre avec un seul éecouteur

Adapter le programme de 1’exercice 96 pour qu’il détecte les actions sur les
différents boutons.

On proposera deux solutions :

1. la fenétre est 1’écouteur de tous les boutons et on recourt a getSource pour
identifier le bouton concerné ; chaque action sur un bouton affiche son numéro en
fenétre console comme dans cet exemple :

Combien de boutons ? 5

Action sur bouton
Action sur bouton
Action sur bouton
Action sur bouton
Action sur bouton 3

g o »~ BB

2. on utilise un objet écouteur (unique) différent de la fenétre et on recourt a la
méthode getActionCommand pour identifier le bouton concerné ; chaque action
sur un bouton affiche en fenétre console une ligne formée d’un nombre
d’astérisques égal au numéro du bouton, comme dans cet exemple d’exécution :

Combien de boutons ? 5
%k k%%

*

* % % %

* % %

Dans la classe FenBoutons, nous devons donc implémenter 1’interface ActionListener
en définissant la méthode actionPerformed. Comme 1’énoncé nous impose de recourir
a la méthode getSource de la classe ActionEvent (elle fournit la référence a 1’objet
source de 1’événement), il nous faut conserver les références des différents boutons
dans 1’objet fenétre. Pour ce faire, nous y introduisons un tableau de références a des
boutons (boutons).

249

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;
class FenBoutons extends JFrame implements ActionListener
{ public FenBoutons (int nBout)
{ this.nBout = nBout ;
setTitle ("BOUTONS") ;
setSize (200, 150) ;
Container contenu = getContentPane() ;
contenu.setlLayout (new FlowLayout()) ;
boutons = new JButton [nBout] ;
for (int 1=0 ; i<nBout ; i++)
{ boutons[i] = new JButton ("BOUTON"+(i+1)) ;
contenu.add(boutons[i]) ;
boutons[i].addActionListener (this) ;

b
b

public void actionPerformed (ActionEvent e)
{ Object source = e.getSource() ;
for (int 1=0 ; i<nBout ; i++)
if (source == boutons[i])
System.out.println ("Action sur bouton " + (i+1)) ;
}
private int nBout ;
private JButton[] boutons ;

}

public class Boutonsil

{ public static void main (String args[])

{ System.out.print ("Combien de boutons ? ") ;
int nBoutons = Clavier.lireInt() ;
FenBoutons fen = new FenBoutons(nBoutons) ;
fen.setVisible(true) ;

b
b

1. Dans la méthode actionPerformed, la boucle de recherche de la source n’est pas

250

optimisée puisqu’elle se poursuit lorsqu’on a identifié la source.
2. Notez la comparaison (légale) source == boutons[i] qui fait intervenir un
opérande de type Object et un opérande de type JButton. Le second est simplement
converti en Object, ce qui ne modifie pas la valeur de la référence correspondante.
Comme ici nous sommes certains que la source est de type JButton, nous aurions pu
également procéder ainsi :

JButton source = (JButton) e.getSource() ;

for (int 1=0 ; i<nBout ; i++)

if (source == boutons[i]) ..

Ici, nous faisons en sorte que le programme permette facilement la modification du
préfixe (ici BOUTON) de 1’étiquette associée aux boutons. Celui-ci est défini en un
seul endroit du constructeur de la fenétre (prefixeBouton).

Cette fois, 1’écouteur est un objet d’une classe distincte de celle de la fenétre, nommée
Ecout. Elle définit la méthode actionListener en y retrouvant la "chaine de commande"
associée a |’action. Rappelons que, par défaut, celle-ci n’est rien d’autre que
1’ étiquette du bouton. En extrayant la fin de cette chaine, nous obtenons une sous-chaine
correspondant au numéro et nous la convertissons en un entier par Integer.parselnt.

Notez qu’ici nous avons dii prévoir un constructeur pour la classe Ecout dans le seul
but d’y récupérer le préfixe des étiquettes des boutons.

import javax.swing.* ;

import java.awt.* ;

import java.awt.event.* ;

class FenBoutons extends JFrame

{ public FenBoutons (int nBout)
{ final String prefixeBouton = "BOUTON" ;
this.nBout = nBout ;
setTitle ("BOUTONS") ;
setSize (200, 150) ;
Container contenu = getContentPane() ;
contenu.setlLayout (new FlowLayout()) ;
boutons = new JButton [nBout] ;
Ecout ecouteur = new Ecout (prefixeBouton) ;
for (int 1=0 ; i<nBout ; i++)
{ boutons[i] = new JButton (prefixeBouton + (i+1)) ;

contenu.add(boutons[i]) ;

251

boutons[i].addActionListener (ecouteur)
}
}

private int nBout ;
private JButton[] boutons ;

}

class Ecout implements ActionListener

{ public Ecout (String prefixe)

{ this.prefixe = prefixe ;

}
public void actionPerformed (ActionEvent e)

{ String commande = e.getActionCommand () ;

String chNum = commande.substring (prefixe.length())
int num = Integer.parseInt(chNum) ;
for (int 1i=0 ; i<num ; i++)
System.out.print("*") ;
System.out.println () ;
}
private String prefixe ;
}
public class Boutons2
{ public static void main (String args[])

{ System.out.print ("Combien de boutons ? ")
int nBoutons = Clavier.lirelInt() ;
FenBoutons fen = new FenBoutons(nBoutons)
fen.setVisible(true) ;

}

}

4

I4

4

4

Au lieu de chercher a extraire un numéro de bouton de son étiquette, nous aurions
également pu modifier la chaine de commande de chacun des boutons, en utilisant la
méthode setActionCommand :
boutons[i].setActionCommand (String.valueOf(i+1)) ;
La classe Ecout pourrait se présenter ainsi (elle n’aurait plus besoin de constructeur) :
class Ecout implements ActionListener

{ public void actionPerformed (ActionEvent e)

{ String commande = e.getActionCommand ()

I4

252

int num = Integer.parseInt(commande) ;
for (int i=0 ; i<num ; i++)
System.out.print("*") ;
System.out.println () ;

}

}

Le programme complet ainsi modifié figure sur le site Web d’accompagnement sous le
nom Boutonsb.java.

253

Synthese : création et suppression de
boutons (1)

Ecrire un programme qui affiche une fenétre comportant deux boutons d’étiquettes
"CREATION" et "SUPPRESSION" placés respectivement en haut et en bas.

Chaque action sur le bouton CREATION conduira a la création d’un bouton jaune a
I’intérieur de la fenétre. Chaque action sur I’un des boutons de la fenétre le
"sélectionnera" (s’il ne 1’est pas déja) ou le "désélectionnera” (s’il I’est déja). On
visualisera un bouton sélectionné en le colorant en rouge. Chaque action sur le
bouton SUPPRESSION supprimera tous les boutons sélectionnés (rouges).

Les boutons seront numérotés dans 1’ordre de leur création. On ne réutilisera pas les
numeéros des boutons supprimés.

Eﬂreatiun - suppression de boutons {maxi 50) [_ [O] x|

CREATION |
BOUTON 1 BOUTON 4 BOUTON 5 BOUTON 8
souron 10 | [EGEIGNEEN souron12 || Bouton1s |
BOUTON 14 _

SUPPRESSION

Par souci de simplicité, on fournira au constructeur de la fenétre le nombre
maximum de boutons susceptibles d’étre créés.

Comme le suggere 1’image fournie dans 1’énoncé, les deux boutons CREATION et
SUPPRESSION peuvent étre disposés dans la fenétre en utilisant son gestionnaire par
défaut de type BorderLayout. 1l suffira simplement de préciser les parametres "North"
et "South". En revanche, les boutons gérés dynamiquement devront étre placés dans un
panneau distinct qu’on placera au centre de la fenétre (option par défaut de la méthode
add). Le gestionnaire par défaut d’un panneau est de type FlowLayout, ce qui nous
conviendra ici.

254

Nous faisons de la fenétre 1’écouteur de tous les boutons. Comme il est nécessaire de
conserver une information de couleur pour chacun des boutons dynamiques, nous
prévoyons a cet effet un tableau boutons comportant les références des boutons
dynamiques et un tableau boutSelec contenant une information booléenne de sélection.
Ces deux tableaux auront une taille fournie lors de 1’appel du constructeur de la fenétre.

Chaque fois qu’on modifie le contenu du panneau, soit en ajoutant un nouveau bouton,
soit en supprimant les boutons sélectionnés, on fait appel a sa méthode validate, afin de
forcer son gestionnaire de mise en forme a recalculer les positions des différents
composants. En revanche, cet appel n’est pas nécessaire lors de la modification de la
couleur d’un bouton (par setBackground) car il est alors réalisé automatiquement.

Nous utilisons classiquement une variable statique nBout pour numéroter nos boutons.
On notera que le premier bouton porte le numéro 1, alors qu’il correspond a I’indice 0
dans les tableaux boutons et boutSelec.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

class FenBoutDyn extends JFrame implements ActionListener
{ public FenBoutDyn (int nBoutMax)
{ setTitle ("Creation - suppression de boutons (maxi " + nBoutMax +
II)II) ;
setSize (500, 180) ;
Container contenu = getContentPane() ;

creation = new JButton ("CREATION") ;
contenu.add (creation, "North") ;
creation.addActionListener (this) ;

suppression = new JButton ("SUPPRESSION") ;
contenu.add (suppression, "South") ;
suppression.addActionListener (this) ;

pan = new JPanel () ;

contenu.add (pan) ; // au centre par defaut
boutons = new JButton [nBoutMax] ;

boutSelec = new boolean [nBoutMax] ;

}

public void actionPerformed (ActionEvent e)
{ Object source = e.getSource() ;

255

if (source == creation)

{ boutons[nBout] = new JButton ("BOUTON " + (nBout+1)) ;
boutons[nBout].setBackground (Color.yellow) ;

boutSelec[nBout] = false ;

pan.add (boutons[nBout]) ;

boutons[nBout].addActionListener (this) ;

pan.validate(); // pour forcer le recalcul par le gestionnaire
nBout++ ;

}

if (source == suppression)

{ for (int i=0 ; i<nBout ; i++)
if (boutSelec[i]) pan.remove(boutons[i]); ;
pan.validate() ;

}

for (int 1=0 ; i<nBout ; i++)
{ if (source == boutons[i])
if (boutSelec[i])
{ boutSelec[i] = false ;
boutons[i].setBackground(Color.yellow) ;
}
else
{ boutSelec[i] = true ;
boutons[i].setBackground (Color.red) ;
}
}
}

private JButton creation, suppression ;
private JPanel pan ;

private static int nBout = 0 ;

private JButton [] boutons ;

private boolean[] boutSelec ;

}

public class CrSuprB

{ public static void main (String args[])
{ FenBoutDyn fen = new FenBoutDyn(50) ;
fen.setVisible(true) ;

}

256

257

Synthese : creation et
suppression de boutons (2)

Ecrire un programme qui affiche une fenétre comportant deux boutons placés
respectivement en haut et en bas. Chaque action sur 1’un de ces boutons conduira a
la création d’un bouton a I’intérieur de la fenétre. Le bouton du haut créera des "gros
boutons" tandis que celui du bas créera des boutons plus petits.

Les gros boutons afficheront le nombre de fois ou 1’on a agit sur eux. Lorsque ce
nombre atteindra 5, ils seront supprimeés de la fenétre.

Les petits boutons seront supprimés des la premiere fois ou 1’on agit sur eux.

EGms et Petits Boutons = I:I|x _
[GROS BOUTON
COMPTE =3 Petit COMPTE =2 COMPTE = 1
Petit Petit COMPTE = 4 Petit
| PETIT BOUTON

Les écouteurs des gros et des petits boutons devront étre distincts de la fenétre.

Comme le suggere 1’image fournie dans 1’énoncé, les deux boutons marqués GROS
BOUTON et PETIT BOUTON peuvent étre disposés dans la fenétre en utilisant son
gestionnaire par défaut de type BorderLayout. 1l suffira simplement de préciser les
parametres "North" et "South". En revanche, les boutons gérés dynamiquement devront
étre placés dans un panneau distinct qu’on placera au centre de la fenétre (option par
défaut de la méthode add). Le gestionnaire par défaut d’un panneau est de type
FlowLayout, ce qui nous conviendra ici.

Comme 1’énoncé ne nous impose pas de contraintes particuliéres, nous ferons de la
fenétre 1’écouteur de ces deux boutons.

258

En ce qui concerne les boutons gérés dynamiquement, 1’énoncé nous impose d’utiliser
un écouteur distinct de la fenétre. La solution la plus simple consiste alors a créer deux
classes d’écouteurs différentes : EcouteGrosBouton et EcoutePetitBouton. Il est
nécessaire d’associer a chaque gros bouton une information correspondant au nombre
d’actions ; dans ces conditions, il est préférable d’utiliser un objet écouteur (de la
classe EcouteGrosBouton) pour chacun. En revanche, aucune information n’est a
mémoriser pour les petits boutons, de sorte qu’on pourra se contenter de les écouter
tous avec le méme objet écouteur (de type EcoutePetitBouton).

Notez qu’ici, contrairement a ce qui se produisait dans I’exercice 105, il n’est pas
nécessaire de conserver les références des boutons du panneau. Par contre, il faudra
que les écouteurs des boutons dynamiques disposent de la référence du panneau ; on
pourra la fournir a leur constructeur.

La taille des gros boutons et celle des petits boutons sera imposée a 1’aide de la
méthode setPreferredSize de la classe JButton. Elle nécessite en argument un objet de
type Dimension dont on fournit les valeurs en argument de son constructeur. Rappelons
que cette information est exploitée correctement par un gestionnaire de type
FlowLayout, mais qu’il n’en va pas de méme pour tous les gestionnaires de mise en
forme.

import javax.swing.* ; import java.awt.* ; import java.awt.event.* ;
class FenBoutDyn extends JFrame implements ActionListener
{ public static Dimension dimPetitBouton = new Dimension (70, 30),
dimGrosBouton = new Dimension (110, 50) ;
public static String etiqCompt = "COMPTE = " ;
public FenBoutDyn ()
{ setTitle ("Gros et Petits Boutons") ;
setSize (500, 200) ;
Container contenu = getContentPane() ;
grosBouton = new JButton ("GROS BOUTON") ;
contenu.add (grosBouton, "North") ;
grosBouton.addActionListener (this) ;
petitBouton = new JButton ("PETIT BOUTON") ;
contenu.add (petitBouton, "South") ;
petitBouton.addActionListener (this) ;
pan = new JPanel () ;
contenu.add (pan) ; // au centre par defaut
}
public void actionPerformed (ActionEvent e)
{ Object source = e.getSource() ;

259

if (source == grosBouton)

{ JButton bouton = new JButton (etiqgCompt) ;

pan.add (bouton) ;

bouton.addActionListener (new EcoutGrosBouton (pan,
bouton.setPreferredSize (dimGrosBouton) ;
pan.validate() ;

}

if (source == petitBouton)

{ JButton bouton = new JButton ("Petit") ;
pan.add (bouton) ;

etiqCompt))

bouton.addActionListener (new EcoutePetitBouton (pan)) ;

bouton.setPreferredSize (dimPetitBouton) ;
pan.validate() ;

b
b

private JButton petitBouton, grosBouton ;
private JPanel pan ;

}

class EcoutGrosBouton implements ActionListener
{ static int nMaxClics = 5 ;
public EcoutGrosBouton (JPanel pan, String etiqCompt)
{ nActions = 0 ;
this.pan = pan ;
this.etiqCompt = etiqCompt ;
}
public void actionPerformed (ActionEvent e)
{ JButton bouton = (JButton)e.getSource() ;
nActions++ ;
if (nActions >= nMaxClics)
{ pan.remove (bouton) ;
pan.validate() ;
}
else
{ bouton.setText (etigqCompt+nActions) ;

b
b

private int nActions ;
private JPanel pan ;

260

4

private String etiqCompt ;

}

class EcoutePetitBouton implements ActionListener
{ public EcoutePetitBouton (JPanel pan)
{ this.pan = pan ;
}
public void actionPerformed (ActionEvent e)
{ JButton bouton = (JButton)e.getSource()
pan.remove (bouton) ;
pan.validate() ;

}

private JPanel pan ;

}

public class GrosPetB

{ public static void main (String args[])
{ FenBoutDyn fen = new FenBoutDyn()
fen.setVisible(true) ;

}

}

4

l4

Dans certaines des méthodes actionPerformed, nous avons utilisé des conversions
explicites de e.getSource() en JButton car nous étions certains du type de la source.
Dans un programme plus complexe, il faudrait parfois étre plus prudent. Par exemple,
on pourrait s’assurer que la source est bien de type JButton en utilisant :

if (source instanceof JButton)

261

Dessin permanent dans une
fenetre

Ecrire un programme qui affiche en permanence dans une fenétre un rectangle de
taille donnée et ses deux diagonales, comme dans cet exemple :

EDessin permanent _ (o] x]

>

Rappelons que lorsqu’on utilise les composants Swing de Java 2, la démarche la plus
appropriée pour obtenir des dessins permanents dans une fenétre (de type JFrame)
consiste a dessiner, non pas directement dans la fenétre elle-méme, mais dans un
panneau (objet de type JPanel) placé dans cette fenétre. Nous créons donc ici un objet
d’une classe Panneau, dérivée de JPanel et nous 1’ajoutons a la fenétre par add.
Comme le gestionnaire par défaut de notre fenétre est de type BorderLayout, nous
n’avons pas a nous préoccuper de la taille du panneau’.

Il suffit alors de redéfinir la méthode paintComponent du panneau en y placant les
instructions de dessin voulues. Encore faut-il prendre soin d’appeler au préalable la
méthode paintComponent de la classe de base JPanel, laquelle dessine le fond du
panneau (ce qui efface donc I’ancien).

Nous employons la méthode drawLine pour tracer les 6 segments de droite qui
constituent la figure voulue?.

import javax.swing.* ; import java.awt.* ;
class MaFenetre extends JFrame

{ public MaFenetre ()

{ setTitle ("Dessin permanent") ;

262

setSize (300, 150) ;
pan = new Panneau () ; getContentPane().add(pan) ;

}

private Panneau pan ;

}

class Panneau extends JPanel
{ private static final int x = 30, y = 20, 1 = 120, h
public void paintComponent (Graphics g)
{ super.paintComponent(g) ; //
// trace du rectangle
g.drawLine (x, y, x+1, vy) ;
g.drawLine (x+1, y, x+1, y+h) ;
g.drawLine (x+1, y+h, x, y+h) ;
g.drawLine (x, y+h, x, y) ;
// trace des diagonales
g.drawLine (x, y, x+1, y+h) ;
g.drawLine (x, y+h, x+1, y) ;
}
}

public class DesPer

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible (true) ;

}

}

Vous pourrez constater que le dessin (de taille fixe) subsiste, quelles que soient les
opérations que 1’on fait subir a la fenétre.

50 ;

Il peut étre intéressant de voir ce que fait ce programme lorsqu’on supprime 1’appel
super.paintComponent dans la méthode paintComponent.

263

Synthese : dessin permanent et
changement de couleur

Adapter le programme de 1’exercice 100, de facon que chaque clic (complet) dans
la fenétre en modifie la couleur. On se fixera une liste de quelques couleurs qu’on
parcourra de maniere cyclique.

Comme le panneau couvre toute la fenétre, un clic dans la fenétre a en fait le panneau
comme source. Il faut donc écouter les événements de type MouseEvent ayant pour
source le panneau. Ici, nous faisons du panneau son propre écouteur, ce qui facilite la
définition de la méthode mouseClicked.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

class MaFenetre extends JFrame

{ public MaFenetre ()
{ setTitle ("Dessin permanent") ;
setSize (300, 150) ;
pan = new Panneau () ;

pan.addMouseListener (pan) ; // le panneau sera son propre
ecouteur

getContentPane().add(pan) ;

}

private Panneau pan ;

}

class Panneau extends JPanel implements MouselListener
{ private static final int x = 30, y = 20, 1 = 120, h = 50 ;
private static final Color[] couleurs = {Color.yellow, Color.blue,
Color.green, Color.red } ;
public void paintComponent (Graphics g)

264

}

{ super.paintComponent(g) ;
// trace du rectangle
g.drawLine (x, y, x+1, vy) ;
g.drawLine (x+1, y, x+1, y+h) ;
g.drawLine (x+1, y+h, x, y+h) ;
g.drawLine (x, y+h, x, y) ;
// trace des diagonales
g.drawLine (x, y, x+1, y+h) ;
g.drawLine (x, y+h, x+1, y) ;
}
public void mouseClicked (MouseEvent e)
{ setBackground (couleurs[numCoul]) ;
numCoul++ ;
if (numCoul >= couleurs.length) numCoul = 0 ;
}
public void mousePressed (MouseEvent e) {}
public void mouseReleased (MouseEvent e) {}
public void mouseEntered (MouseEvent e) {}
public void mouseExited (MouseEvent e) {}
private int numCoul = 0 ;

public class DesCoul

{

}

public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible (true) ;

}

1. Initialement le panneau est peint en gris, et non en jaune. Pour qu’il soit jaune des
le début, il faudrait fixer la couleur de fond a couleur[0] par exemple lors de la
construction du panneau et fixer numCoul a 1 et non a 0.

2. Ici, il n’est pas nécessaire d’appeler la méthode repaint apres avoir modifié la
couleur de fond du panneau car cela est fait automatiquement par la méthode
setBackground. Le programme modifié dans ce sens figure sur le site Web
d’accompagnement sous le nom DesCoull.java.

265

Synthese : dessin permanent,
coloration et adaptation a la taille
d’une fenetre

Ecrire un programme qui affiche en permanence dans une fenétre un rectangle et ses
deux diagonales ; les dimensions du rectangle seront déterminées de maniére a ce
qu’il soit toujours situé a 5 pixels de la bordure de la fenétre. Un bouton placé en
haut de la fenétre permettra d’en modifier la couleur de fond ; un autre bouton placé
en bas permettra de modifier la couleur des traits du dessin.

E Dessin et Couleurs !Eﬂ
| Couleur fond |
‘ Couleur trait

On se fixera une (seule) liste de quelques couleurs qu’on parcourra de maniere
cyclique.

Nous conservons le gestionnaire par défaut de la fenétre. Le dessin est fait dans un
panneau placé au centre et les deux boutons sont placés respectivement avec les
parametres "North" et "South".

Nous écoutons les deux boutons dans la fenétre elle-méme et nous dotons le panneau de
deux méthodes publiques changeCoulFond et changeCoulTrait chargées de modifier
les couleurs.

Dans changeCoulTrait, il ne suffit pas de modifier la couleur d’avant-plan du panneau
(par setForeground). 1l faut en outre forcer le dessin par appel de repaint.

Pour adapter la taille du dessin a la fenétre (ou plutdt au panneau), nous utilisons la
méthode getSize qui nous fournit les dimensions du panneau sous forme d’un objet de

266

type Dimension.

import javax.swing.* ;
import java.awt.event.* ;
import java.awt.* ;

class MaFenetre extends JFrame implements ActionListener
{
public MaFenetre ()
{ setTitle ("Dessin et Couleurs") ;
setSize (300, 150) ;
Container contenu = getContentPane() ;
pan = new Panneau() ;
contenu.add(pan) ;
coulFond = new JButton ("Couleur fond") ;
contenu.add(coulFond, "North") ;
coulFond.addActionListener (this);
coulTrait = new JButton ("Couleur trait") ;
contenu.add (coulTrait, "South") ;
coulTrait.addActionListener (this) ;

}

public void actionPerformed (ActionEvent e)

{ if (e.getSource() == coulFond) pan.changeCoulFond() ;
if (e.getSource() == coulTrait) pan.changeCoulTrait() ;

}

private int numCouleur ;
private JButton coulFond, coulTrait ;
private Panneau pan ;

}

class Panneau extends JPanel

{ final Color[] couleurs = { Color.red, Color.yellow, Color.blue,
Color.green,

Color.gray, Color.pink, Color.cyan, Color.white } ;
public void paintComponent (Graphics g)
{ super.paintComponent (g) ;
setBackground (couleurs[numCoulFond]) ;
setForeground (couleurs[numCoulTrait]) ;
Dimension dim = getSize() ;
int x =5, y =5 ;

267

int 1 = dim.width, h = dim.height ;
// trace du rectangle

.drawLine (x, vy, 1l-x, y) ;
.drawLine (1l-x, y, 1-x, h-y) ;
.drawLine (1-x, h-y, x, h-y) ;

Q Q@ Q@ «Q

.drawLine (x, h-y, X, y) ;
// trace des diagonales
g.drawLine (x, y, 1-x, h-y) ;
g.drawLine (x, h-y, 1-x, y) ;
}
public void changeCoulFond()
{ numCoulFond++ ;
if (numCoulFond >= couleurs.length) numCoulFond = 0 ;
repaint() ;
}
public void changeCoulTrait()
{ numCoulTrait++ ;
if (numCoulTrait >= couleurs.length) numCoulTrait = 0 ;
repaint() ;
}

private int numCoulFond=0, numCoulTrait=1 ;

}

public class DesCoul2

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible (true) ;

}

}

Nous aurions pu ne pas appeler setBackground et setForeground dans
paintComponent et nous contenter :

— d’appeler setBackground dans changeCoulFond,
— d’appeler setForeground et repaint dans changeCoulTrait.

268

Dessin a la volée

Ecire un programme qui dessine "au vol" dans une fenétre en joignant par des traits
les différents points auquel 1’ utilisateur clique :

Craynn magique - O] X

Ici, on ne cherchera pas a assurer la permanence du dessin qui sera effacé des que
’utilisateur déplace la fenétre ou modifie sa taille (on demande toutefois que cet
effacement soit toujours complet).

Bien qu’il s’agisse de dessin au vol, nous travaillons sur un panneau. Cela nous
permettra d’effacer la fenétre en définissant une méthode paintComponent réduite au
simple appel super.paintComponent.

Le dessin proprement dit est réalisé dans la méthode mouseClicked de 1’écouteur du
panneau (ici, le panneau lui-méme). Rappelons que pour ce faire, il est nécessaire
d’obtenir un contexte graphique pour le panneau (getGraphics) et de le libérer apres
emploi (dispose).

Pour traiter le premier clic différemment des suivants, nous employons un indicateur
booléen (enCours) qu’on place a la valeur false au début et a chaque effacement de la
fenétre.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

class MaFenetre extends JFrame
{ public MaFenetre ()

269

{ setTitle ("Crayon magique") ;
setSize (300, 150) ;
pan = new Panneau () ;
pan.addMouselListener (pan) ;
getContentPane().add(pan) ;

}

private Panneau pan ;

}

class Panneau extends JPanel implements MouselListener
{ public void paintComponent (Graphics g)

{ super.paintComponent(g) ;

enCours = false ;

}

public void mouseClicked (MouseEvent e)

{ int xFin = e.getX() ; yFin = e.getY() ;

if (enCours) { Graphics g = getGraphics() ;

g.drawLine (xDeb, yDeb, xFin, yFin) ;
g.dispose() ;
}

xDeb = xFin ; yDeb = yFin ;

enCours = true ;

}

public void mousePressed (MouseEvent e) {}
public void mouseReleased (MouseEvent e) {}
public void mouseEntered (MouseEvent e) {}
public void mouseExited (MouseEvent e) {}
private boolean enCours = false ;

private int xDeb, yDeb, xFin, yFin ;

}

public class DesVol

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible (true) ;

b
b

270

Si 1’énoncé n’avait pas imposé 1’effacement de la fenétre, nous aurions pu dessiner
directement dans la fenétre en définissant la méme méthode mouseClicked dans un
écouteur qui aurait pu étre la fenétre elle-méme. Le dessin aurait alors pu se trouver
effacé partiellement lors d’actions sur la fenétre ; de plus la gestion de 1’indicateur
enCours n’aurait plus été possible...

271

Synthese : ardoise magique en
couleur

Adapter le programme de I’exercice, de maniere que :
* I’utilisateur puisse dessiner plusieurs lignes brisées (bouton Nouvelle ligne),
» qu’il puisse effacer le contenu de la fenétre (bouton Effacer),

 qu’il puisse choisir a chaque instant une couleur de dessin a 1’aide d’un bouton
placé a gauche ; on se fixera une liste de quelques couleurs (constantes de la
classe Color) qu’on parcourra de facon cyclique ; le bouton de sélection sera
peint dans la couleur courante :

[EiArdoise magique _ O] %]

Howvelle ligne |

125

Effacer

Note : pour choisir la couleur de dessin d’un contexte graphique, on utilisera la
méthode setColor de la classe Graphics.

Nous utilisons toujours un panneau pour dessiner. Les boutons sont placés
classiquement dans la fenétre en utilisant les parametres "North", "South" et "West".
Le bouton de sélection de couleur dispose d’un titre "vide"* et sa couleur est fixée a
1’aide de sa méthode setBackground.

La gestion du dessin se fait 1a encore avec un indicateur booléen enCours mais, cette
fois, celui-ci doit étre également réinitialisé a false lors de 1’action sur le bouton
Nouvelle Ligne.

Nous avons choisi d’écouter les trois boutons dans la fenétre elle-méme, ce qui impose

272

un échange d’informations entre fenétre et panneau. Pour ce faire, nous dotons notre
panneau de méthodes publiques setCoul, nouvelleLigne et efface.

Nous faisons tout naturellement du panneau son propre écouteur de clics et nous
dessinons "a la volée" dans la méthode mouseClicked.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

class MaFenetre extends JFrame implements ActionListener

{ public static Color[] couleurs = {Color.yellow, Color.red,
Color.blue,

Color.green, Color.black, Color.cyan } ;
public MaFenetre ()
{ setTitle ("Ardoise magique") ;
setSize (400, 180) ;
Container contenu = getContentPane() ;

pan = new Panneau () ;
pan.addMouselListener (pan) ;
contenu.add(pan) ;

boutNouv = new JButton ("Nouvelle ligne") ;
contenu.add(boutNouv, "North") ;
boutNouv.addActionListener (this) ;

bouteEff = new JButton ("Effacer") ;
contenu.add(boutEff, "South") ;
boutEff.addActionListener (this) ;

boutCoul = new JButton ("") ;
contenu.add(boutCoul, "West") ;
boutCoul.addActionListener (this) ;
boutCoul.setBackground (couleurs[numCoul]) ;
pan.setCoul (couleurs[numCoul]) ;

}

public void actionPerformed (ActionEvent e)

{ if (e.getSource() == boutCoul)

{ numCoul++ ;
if (numCoul >= couleurs.length) numCoul = 0 ;
boutCoul.setBackground (couleurs[numCoul]) ;

273

pan.setCoul (couleurs[numCoul]) ;

}
if (e.getSource() == boutNouv)
{ pan.nouvellelLigne() ;
}
if (e.getSource() == boutEff)
{ pan.efface() ;
}
}

private Panneau pan ;
private JButton boutNouv, boutEff, boutCoul ;
private int numCoul = 0 ;
}
class Panneau extends JPanel implements MouselListener
{ public void paintComponent (Graphics g)
{ super.paintComponent(g) ;
enCours = false ;
}
public void setCoul(Color couleur)
{ this.couleur = couleur ;
}
public void nouvellelLigne()
{ enCours = false ;
}
public void efface ()
{ repaint() ;
}
public void mouseClicked (MouseEvent e)
{ int xFin = e.getX() ; yFin = e.getY() ;
if (enCours) { Graphics g = getGraphics() ;
g.setColor (couleur) ;
g.drawLine (xDeb, yDeb, xFin, yFin) ;
g.dispose() ;
}
xDeb = xFin ; yDeb = yFin ;
enCours = true ;
}
public void mousePressed (MouseEvent e) {}
public void mouseReleased (MouseEvent e) {}

274

public void mouseEntered (MouseEvent e) {}
public void mouseExited (MouseEvent e) {}
private boolean enCours = false ;

private int xDeb, yDeb, xFin, yFin ;
private Color couleur ;

}

public class ArdMag

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible (true) ;

b
b

1. En revanche, un gestionnaire de type FlowLayout exploiterait la taille de ce panneau qui, par défaut, est trés
petite. Il faudrait alors recourir a setPreferredSize.

2. Le tracé du rectangle pourrait s’effectuer plus facilement avec drawRect.
3. Nous aurions pu également utiliser un constructeur JButton sans arguments.

275

Chapitre 10

Les principaux controles de Swing

N A

7 <<
N -

NN i
D - N

Connaissances requises

» Cases a cocher (JCheckBox) et boutons radio (JRadioButton) ;
construction ; événements générés : Action et Item (méthode itemStateChanged
) ; méthodes isSelected et setSelected ; groupes de boutons radio (ButtonGroup

)

« Etiquettes (JLabel) ; construction ; modification de libellé (setText)

» Champs de texte (JTextField) ; construction ; méthodes getText, setEditable
et setColumns ; événements générés : Action et Focus (méthodes focusGained
et focusLost) ; exploitation fine (interface DocumentListener, méthodes
insertUpdate, removeUpdate et changedUpdate)

* Bottes de liste (JList) ; construction et choix du type de sélection (simple,
multiple, intervalle) ; méthodes getSelectedValue, getSelectedValues,
getSelectedIndex et getSelectedIndices ; événements générés : ListSelection
(méthodes valueChanged et getValuelsAdjusting)

* Boite combo (JComboBox) ; construction ; méthodes setEditable et
getSelectedIndex ; événements générés : Action, Item (méthode
itemStateChanged), Focus (méthodes focusGained et focusLost) ; évolution
dynamique : addltem, addItemAt et removeltem

Note : les boutons (JButton) ont fait 1’objet du Chapitre 8.

276

Cases a cocher

Ecrire un programme qui affiche deux boutons marqués RAZ et Etat et trois cases a
cocher, de la facon suivante :

[£Cases a cocher H=1F3

RAZ ‘

vl Cercle v/ Rectangle [| Triangle

| Eta |

[’action sur le bouton Etat provoquera I’affichage en fenétre console des cases
sélectionnées. I’action sur RAZ remettra les trois cases a I’état non coché. Enfin, on
signalera en fenétre console les événements de type Action et Item associés a
chacune des trois cases (en précisant la source concernée).

Nous placerons les trois cases dans un panneau associé a la fenétre. Nous faisons de la
fenétre 1’écouteur des boutons et des cases. Comme 1’impose 1’énoncé, nous
redéfinissons a la fois les méthodes actionPerformed et itemStateChanged.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

class MaFenetre extends JFrame implements ActionListener,
ItemListener

{ public MaFenetre ()
{ setTitle ("Cases a cocher") ;
setSize (300, 140) ;
Container contenu = getContentPane () ;
// les deux boutons
boutRaz = new JButton ("RAZ") ;

277

boutRaz.addActionListener (this) ;
contenu.add (boutRaz, "North") ;
boutEtat = new JButton ("Etat") ;
boutEtat.addActionListener (this) ;
contenu.add (boutEtat, "South") ;

// les cases a cocher dans un panneau
pan = new JPanel () ;
contenu.add (pan) ;
cercle = new JCheckBox ("Cercle") ;
pan.add (cercle) ;

cercle.addActionListener (this) ;
cercle.addItemListener (this) ;

rectangle = new JCheckBox ("Rectangle") ;
pan.add (rectangle) ;
rectangle.addActionListener (this) ;
rectangle.addItemListener (this) ;
triangle = new JCheckBox ("Triangle") ;
pan.add (triangle) ;
triangle.addActionListener (this) ;
triangle.addItemListener (this) ;

}

public void actionPerformed (ActionEvent e)

{ Object source = e.getSource() ;

if (source == boutRaz)

{ cercle.setSelected (false) ;
rectangle.setSelected (false) ;
triangle.setSelected (false) ;

}
if (source == boutEtat)
{ System.out.print ("Cases selectionnees : ") ;

if (cercle.isSelected()) System.out.print (" cercle ") ;

if (rectangle.isSelected()) System.out.print (" rectangle ") ;
if (triangle.isSelected()) System.out.print (" triangle ") ;
System.out.println() ;

}
if (source == cercle) System.out.println ("Action case cercle") ;
if (source == rectangle) System.out.println ("Action case

rectangle") ;

278

if (source == triangle) System.out.println ("Action case
triangle") ;

}
public void itemStateChanged (ItemEvent e)
{ Object source = e.getSource() ;

if (source == cercle) System.out.println ("Item case cercle") ;

if (source == rectangle) System.out.println ("Item case
rectangle") ;

if (source == triangle) System.out.println ("Item case
triangle") ;
}

private JButton boutRaz, boutEtat ;
private JPanel pan ;
private JCheckBox cercle, rectangle, triangle ;
}
public class Coches
{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible(true) ;

b
b

Item case cercle

Action case cercle

Item case rectangle

Action case rectangle

Cases selectionnees : cercle rectangle
Item case cercle

Item case rectangle

Item case triangle

Item case cercle

Action case cercle

Item case rectangle

Action case rectangle

Cases selectionnees : cercle rectangle

On notera qu’a chaque événement Action relatif a une case a cocher correspond
toujours un événement Item. La réciproque est fausse puisqu’un événement Item peut
étre généré suite a une modification par programme de 1’état d’une case ; dans ce cas,
elle ne génere pas d’événement Action.

279

Plusieurs instructions semblables doivent étre écrites pour chaque case a cocher. Si le
nombre de cases devenait important, cela pourrait s’avérer fastidieux. Il serait alors
préférable de s’acheminer vers une solution plus concise telle que 1’écriture de
méthodes (statiques) d’intérét général, par exemple pour 1’ajout d’une case de
référence donnée a la fenétre. On pourrait aussi conserver dans la fenétre un tableau
des références des cases ainsi qu’'un tableau de chaines correspondant a leurs
libellés...

280

Cases a cocher en nombre
quelconque

Généraliser le programme de 1’exercice 105, de maniere que le nombre de cases a
cocher puisse étre quelconque et déterminé lors de 1’appel du constructeur de la
fenétre, auquel on fournira un tableau de chaines contenant les libellés a associer
aux cases :

RAZ |

I Cercle [|Rectangle [| Triangle [| Pentagone [| Ellipse

|_| Carre

Etat

Les messages en fenétre console continueront de repérer une case a cocher par son
libellé.

On continue naturellement a placer les cases dans un panneau. Les différents écouteurs
restent les mémes. Mais, cette fois, on va conserver les références des cases dans un
tableau dont la taille est égale a celle du tableau de chaines recu en argument du
constructeur de la fenétre.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

class MaFenetre extends JFrame implements ActionListener,
ItemListener

{ public MaFenetre (String libelles[])
{ setTitle ("Cases a cocher") ; setSize (400, 160) ;
Container contenu = getContentPane () ;

281

// les deux boutons
boutRaz = new JButton ("RAZ") ;
boutRaz.addActionListener (this) ;
contenu.add (boutRaz, "North") ;
boutEtat = new JButton ("Etat") ;
boutEtat.addActionListener (this) ;
contenu.add (boutEtat, "South") ;

// les cases a cocher dans un panneau
pan = new JPanel () ; contenu.add (pan) ;
this.libelles = libelles ;
nbCases = libelles.length ;
cases = new JCheckBox [nbCases] ;
for (int 1=0 ; i<nbCases ; 1i++)

{ cases[i] = new JCheckBox (libelles[i]) ;
pan.add (cases[i]) ;
cases[i].addActionListener (this) ;
cases[i].addItemListener (this) ;

b
b

public void actionPerformed (ActionEvent e)
{ Object source = e.getSource() ;
if (source == boutRaz)
for (int 1=0 ; i<nbCases ; 1i++)
cases[1i].setSelected (false) ;

if (source == boutEtat)
{ System.out.print ("Cases selectionnees : ") ;
for (int i=0 ; i<nbCases ; i++)
if (cases[i].isSelected()) System.out.print (libelles[i]+ " ") ;
System.out.println() ;
}
for (int 1=0 ; i<nbCases ; 1i++)
if (source == cases[i]) System.out.println ("Action case " +
libelles[i]) ;
}

public void itemStateChanged (ItemEvent e)
{ Object source = e.getSource() ;
for (int 1=0 ; i<nbCases ; 1i++)

if (source == cases[i]) System.out.println ("Item case " +
libelles[1i]) ;

282

private JButton boutRaz, boutEtat ;
private JPanel pan ;

private JCheckBox cases|[] ;

private String libelles[] ;

private int nbCases ;

}

public class Cochesb
{ public static void main (String args[])

{ String 1libelles[] = {"Cercle", "Rectangle", "Triangle",
"Pentagone",

"Ellipse", "Carre"} ;
MaFenetre fen = new MaFenetre(libelles) ;
fen.setVisible(true) ;
}
}

283

Boutons radio en nombre
quelconque

Ecrire un programme qui affiche un bouton marqués Etat et un (seul) groupe de
boutons radio de la facon suivante :

ba1 Boutons radio
@ Cercle (Rectangle O Triangle (Pentagone (Ellipse
) Carre
Etat

Les libellés des boutons radio seront fournis en argument du constructeur de la
fenétre.

[’action sur le bouton Etat provoquera 1’affichage en fenétre console du libellé
associé au bouton radio sélectionné. On signalera en fenétre console les événements
de type Action associés.

On peut facilement adapter le programme de 1’exercice 106, en remplacant les objets
de type JCheckBox par des objets de type JRadioButton et en supprimant 1’écoute des
événements Item. Il faut simplement prendre soin de rattacher les différents boutons
radio a un groupe (objet de type ButtonGroup), afin d’obtenir le comportement attendu
d’un groupe : la sélection d’un des boutons du groupe désactive tous les autres.

import javax.swing.* ;

import java.awt.* ;

import java.awt.event.* ;

class MaFenetre extends JFrame implements ActionListener
{ public MaFenetre (String[] libelles)

284

{ setTitle ("Boutons radio") ;
setSize (400, 160) ;
Container contenu = getContentPane () ;
boutEtat = new JButton ("Etat") ;
boutEtat.addActionListener (this) ;
contenu.add (boutEtat, "South") ;
// les boutons radio dans un panneau
pan = new JPanel () ;
contenu.add (pan) ;
this.libelles = libelles ;
nbBoutons = libelles.length ;
ButtonGroup groupe = new ButtonGroup() ;
boutons = new JRadioButton [nbBoutons] ;
for (int 1=0 ; i<nbBoutons ; i++)
{ boutons[i] = new JRadioButton (libelles[i]) ;
pan.add (boutons[i]) ;
groupe.add (boutons[i]) ;
boutons[i].addActionListener (this) ;

}
if (nbBoutons > 0) boutons[0@].setSelected(true) ;

}

public void actionPerformed (ActionEvent e)

{ Object source = e.getSource() ;

if (source == boutEtat)

{ System.out.print ("Bouton selectionne = ") ;
for (int 1=0 ; i<nbBoutons ; i++)

if (boutons[i].isSelected()) System.out.print (libelles[i]+ "
")
System.out.println() ;

}
for (int 1=0 ; i<nbBoutons ; i++)
if (source == boutons[i])
System.out.println ("Action bouton " + libelles[i]) ;
}

private JButton boutDef, boutEtat ;
private JPanel pan ;

private JRadioButton boutons|[] ;
private String libelles[] ;

private int nbBoutons ;

285

}

public class Radios
{ public static void main (String args[])

{ String 1libelles[] = {"Cercle", "Rectangle", "Triangle",
"Pentagone",

"Ellipse", "Carre"} ;
MaFenetre fen = new MaFenetre(libelles) ;
fen.setVisible(true) ;

b
b

Action bouton Triangle

Action bouton Carre

Bouton selectionne = Carre
Action bouton Pentagone

Action bouton Rectangle

Bouton selectionne = Rectangle
Action bouton Cercle

Notez que nous avons pris soin de sélectionner initialement le premier bouton du
groupe (en nous assurant que la dimension du tableau de libellés était non nulle).

Ici, rien ne montre a 1’utilisateur que nos boutons radio font partie d’un méme groupe.
Dans un programme réel, on sera souvent amené a mettre en évidence un groupe en le
placant dans un panneau qu’on pourra colorer différemment du reste de la fenétre ou
encore doter d’une "bordure" a I’aide de la méthode setBorder.

286

Champs de texte

Ecrire un programme qui permet a I’utilisateur de saisir un nombre entier dans un
champ texte et qui en affiche le carré lorsqu’il agit sur un bouton marqué CALCUL :

bay Carres !EE
Nombre : |125 || caLcuL ‘Calre:15525

Le programme devra gérer convenablement le cas ou I’utilisateur entre autre chose
qu’un nombre dans le champ texte ; il pourra par exemple remettre ce champ a
blanc.

Ici, nous pouvons nous permettre d’introduire directement dans la fenétre les différents
controles dont nous avons besoin. Nous remplacons simplement le gestionnaire par
défaut par un gestionnaire de type FlowLayout.

Nous utilisons des objets de type JLabel pour les libellés, ainsi que pour la valeur du
carré. La saisie du nombre se fait dans un objet nommé nombre de type JTextField.

Ici, nous n’avons pas a nous préoccuper des événements générés par nombre puisque le
calcul proprement dit est déclenché par une action extérieure a 1’objet. En revanche,
nous devons traiter les événements de type Action déclenchés par le bouton. Nous y
récupérons le contenu du champ texte que nous convertissons en entier avec la méthode
Integer.parselnt. Celle-ci déclenche une exception NumberFormatException lorsque
la chaine ne correspond pas a un nombre entier (y compris lorsqu’elle contient trop de
chiffres). Dans le gestionnaire d’exception correspondant, nous nous contentons de
remettre a blanc le contenu du champ texte.

Ici, nous calculons le carré du nombre dans le type long, ce qui évite tout probleme de
dépassement de capacité.

import java.awt.* ;
import java.awt.event.* ;

287

import javax.swing.* ;
class MaFenetre extends JFrame implements ActionListener
{ public MaFenetre ()
{ setTitle ("Carres") ;
setSize (400, 100) ;
Container contenu = getContentPane() ;
contenu.setlLayout (new FlowLayout()) ;
labNombre = new JLabel (etigqNombre) ;
contenu.add(labNombre) ;
nombre = new JTextField (10) ;
contenu.add(nombre) ;
boutonCalcul = new JButton ("CALCUL") ;
contenu.add(boutonCalcul) ;
boutonCalcul.addActionListener(this) ;
labCarre = new JLabel (etiqCarre) ;
contenu.add(labCarre) ;

}

public void actionPerformed (ActionEvent e)
{ if (e.getSource() == boutonCalcul)

try

{ String texte = nombre.getText() ;
int n = Integer.parseInt(texte) ;
long carre = (long)n*(long)n ;
labCarre.setText (etiqCarre + carre) ;
}
catch (NumberFormatException ex)
{ nombre.setText ("") ;
labCarre.setText (etiqCarre) ;

b
b

private JLabel labNombre, labCarre ;
private JTextField nombre ;

static private String etigqNombre = "Nombre : ", etiqCarre =
"Carre : " ;
private JButton boutonCalcul ;

}

public class Carre
{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;

288

fen.setVisible(true) ;

b
b

289

Champ de texte et evenements
Action et Focus

Adapter le programme de I’exercice 108 en supprimant le bouton CALCUL et de
maniere que le carré du nombre s’affiche lorsque I’utilisateur valide 1’information
saisie ou lorsque le champ de texte perd le focus :

b=s Carres] B3

Nombre: (11111] | Carre : 123454321

Il suffit que les actions précédemment réalisées dans 1’écouteur du bouton soient
transposeées :

* dans 1’écouteur de 1’événement focusLost associé au champ de texte,

* dans 1’ écouteur de 1’événement Action associé a ce méme champ de texte.

Pour éviter de dupliquer les instructions correspondantes, nous prévoyons une méthode
de service nommeée actualise.

import java.awt.* ;
import java.awt.event.* ;
import javax.swing.* ;

class MaFenetre extends JFrame implements ActionListener,
FocusListener

{ public MaFenetre ()

{ setTitle ("Carres") ;
setSize (400, 100) ;
Container contenu = getContentPane() ;
contenu.setlLayout (new FlowLayout()) ;

labNombre = new JLabel (etigNombre) ;

290

}

contenu.add(labNombre) ;
nombre = new JTextField (10) ;
contenu.add(nombre) ;

nombre.addFocusListener (this) ; // pour la perte de focus
nombre.addActionListener (this) ; // pour la validation
labCarre = new JLabel (etiqCarre) ;
contenu.add(labCarre) ;
}
public void actionPerformed (ActionEvent e)
{ actualise () ;

}

public void focusLost (FocusEvent e)

{ actualise () ;

}

public void focusGained (FocusEvent e)
{

}

public void actualise()
{ try
{ String texte = nombre.getText() ;
int n = Integer.parselnt(texte) ;
long carre = (long)n*(long)n ;
labCarre.setText (etiqCarre + carre) ;
}
catch (NumberFormatException ex)
{ nombre.setText ("") ;
labCarre.setText (etiqCarre) ;

b
b

private JLabel labNombre, labCarre ;
private JTextField nombre ;

static private String etiqNombre = "Nombre : ", etiqgCarre

"Carre : " ;
private JButton boutonCalcul ;

public class Carrel

291

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible(true) ;

b
b

Comme notre fenétre ne comporte qu’un seul composant susceptible de recevoir le
focus, le seul moyen de faire perdre le focus au champ de texte consiste ici a rendre
active une autre fenétre.

292

Ecoute permanente d’un champ
de texte

Adapter le programme de I’exercice 108 en supprimant le bouton CALCUL et de
maniere que le carré du nombre s’affiche en permanence, indépendamment de toute
validation ou de transfert de focus :

bas Carres _ O] x|

Nombre ; |1 11 1[| Carre: 123454321

Ainsi, ici (si 1’utilisateur n’a pas fait de corrections au cours de la frappe), on verra
s’afficher successivement les carrés de 1, de 11, de 111... et enfin de 11111.

Cette fois, il faut savoir que pour implémenter un objet de type JTextField, Java utilise
a la fois un objet dit "document” (de type Document) pour y conserver 1’information et
un objet dit "vue" pour en fournir la représentation visuelle. Toute modification d’un
objet de type Document génére un des événements de la catégorie Document qu’on
traite a 1’aide d’un écouteur implémentant 1’interface DocumentListener. Celle-ci
comporte trois méthodes insertUpdate, removeUpdate et changedUpdate. Seules les
deux premiéres sont concernées par un champ de texte. I’ objet document associé a un
composant s’obtient par la méthode getDocument.

Il nous faut donc transposer dans ces deux méthodes les actions précédemment
réalisées dans I’écouteur du bouton de 1’exercice. Pour éviter de dupliquer les
instructions correspondantes, nous prévoyons une méthode de service nommée
actualise.

Cette fois, cependant, en cas d’exception, nous évitons de remettre a blanc le contenu
du champ de texte. En effet, une telle modification risquerait de provoquer une boucle
infinie et elle est interdite par Java (elle provoque une exception). Nous nous
contentons d’effacer la valeur affichée comme carré.

import java.awt.* ;

293

import java.awt.event.* ;
import javax.swing.* ;
import javax.swing.event.* ; // utile pour DocumentListener

class MaFenetre extends JFrame implements DocumentListener
{ public MaFenetre ()

{ setTitle ("Carres") ;

setSize (400, 100) ;

Container contenu = getContentPane() ;

contenu.setlLayout (new FlowLayout()) ;

labNombre = new JLabel (etigNombre) ;
contenu.add(labNombre) ;

nombre = new JTextField (10) ;
contenu.add(nombre) ;
nombre.getDocument().addDocumentListener (this) ;
labCarre = new JLabel (etiqCarre) ;
contenu.add(labCarre) ;

}

public void insertUpdate (DocumentEvent e)
{ actualise () ;

}

public void removeUpdate (DocumentEvent e)
{ actualise () ;

}

public void changedUpdate (DocumentEvent e)

{
b

public void actualise()
{ try
{ String texte = nombre.getText() ;
int n = Integer.parselnt(texte) ;
long carre = (long)n*(long)n ;
labCarre.setText (etiqCarre + carre) ;
}
catch (NumberFormatException ex)
{ //nombre.setText ("") ; generait une exception
labCarre.setText (etiqCarre) ;

294

b
b

private JLabel labNombre, labCarre
private JTextField nombre ;

/

static private String etigqNombre = "Nombre : ", etiqCarre =
"Carre : " ;
private JButton boutonCalcul ;

}

public class Carre2

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible(true) ;

}

}

295

Synthese : serie harmonique

Ecrire un programme permettant d’afficher la somme partielle de la série
harmonique :

s=1+1/2+1/3+1/4+ ... +1/n

La valeur de n sera initialisée a 0 (on conviendra alors que s vaut 0) et deux boutons
marqués N++ et N-- permettront de la faire évoluer :

Serie har... EE

MNe+ ‘

n=25
Serie = 3.8159581777535068

N--

Nous conservons le gestionnaire par défaut de la fenétre, ce qui nous permettra de
disposer le bouton N++ avec 1’option "North" et le bouton N-- avec I’option "South".
Au centre de la fenétre, nous placons un panneau dans lequel nous disposons deux
étiquettes (JLabel) qui serviront a afficher les informations voulues. Les actions sur les
boutons sont gérées dans la fenétre et elles conduisent a I’actualisation des valeurs de n
et de la somme correspondante.

import java.awt.* ;
import java.awt.event.* ;
import javax.swing.* ;

class MaFenetre extends JFrame implements ActionListener
{ private static String texteN = "n =" ;
private static String texteSomme = "Serie = " ;

public MaFenetre ()
{ setTitle ("Serie harmonique") ;

296

setSize (200, 150) ;

Container contenu = getContentPane() ;
pan = new JPanel () ;

contenu.add(pan) ;

boutPlus = new JButton ("N++") ;
boutPlus.addActionListener (this) ;
contenu.add (boutPlus, "North") ;
boutMoins = new JButton ("N--") ;
boutMoins.addActionListener (this) ;
contenu.add (boutMoins, "South") ;

n =0 ;
somme = 0. ;
valeurN = new JLabel (texteN + n + " ") ;

pan.add (valeurN) ;
valeurSomme = new JLabel (texteSomme + somme) ;
pan.add (valeurSomme) ;
}
public void actionPerformed (ActionEvent e)
{ Object source = e.getSource() ;

if (source == boutPlus) { n++ ;
somme += 1./n ;
b

if (source == boutMoins && n>0) { somme -= 1./n ;
n--
b

valeurN.setText (texteN + n + " ") ;

valeurSomme.setText (texteSomme + somme) ;

}

private JPanel pan ;

private JButton boutPlus, boutMoins ;
private JLabel valeurN, valeurSomme ;
private int n ;

private double somme ;

}

public class Serie
{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;

297

fen.setVisible(true) ;

b
b

Ici, nous avons actualisé la valeur de la somme en lui ajoutant ou en lui soustrayant la
valeur 1/n. Des lors que I’utilisateur incrémente et décrémente la valeur de n a
diverses reprises, ce mode de calcul conduit a un cumul des erreurs. Pour 1’éviter, on
pourrait recalculer entierement la valeur de la somme a chaque action sur I’un des
boutons.

298

Gestion d’une boite de liste

Ecrire un programme affichant dans une fenétre des boutons dont les étiquettes sont
des noms de langage sélectionnés dans une boite de liste. La liste permettra de
sélectionner un nombre quelconque de plages de valeurs. Les noms des langages
seront fixés dans la méthode main (et non dans la fenétre). On proposera deux

solutions :

* une ou la sélection sera validée par I’action sur un bouton OK :

s Liste

Java
c

Basic

C++ Cobol |

Fascal
Basic
Cohal
Forran

OK

 une ou les boutons affichés dans la fenétre seront actualisés a chaque
modification de la sélection dans la liste (il n’y aura plus de bouton OK).

Les noms de langages sont définis par un tableau de chaines de la méthode main qu’on
fournit en argument au constructeur de la fenétre. La boite de liste est ajoutée a la
fenétre elle-méme avec 1’option "West". Un panneau est ajouté au centre de la fenétre,

en vue d’y afficher les boutons voulus.

Le bouton OK est ajouté avec 1’option "South” et on gere ses événements de type
Action. La méthode actionPerformed réalise les actions suivantes :

« suppression des boutons du panneau par la méthode removeAll (qui supprime tous

les composants d’un conteneur) ;

299

» récupération des valeurs sélectionnées dans la boite de liste a I’aide de
getSelectedValues. Elle fournit un tableau d’éléments de type Object qui seront
convertis en String, avant d’étre transmis au constructeur de chacun des boutons ;

» appel de la méthode validate du panneau pour forcer le recalcul par le gestionnaire
de mise en forme.

import java.awt.* ;

import java.awt.event.* ;

import javax.swing.* ;

class MaFenetre extends JFrame implements ActionListener
{ public MaFenetre (String noms[])
{ setTitle ("Liste") ;
setSize (300, 220) ;
Container contenu = getContentPane() ;
liste = new JList (noms) ;
contenu.add (liste, "West") ;
ok = new JButton ("OK") ;
contenu.add (ok, "South") ;
ok.addActionListener (this) ;
pan = new JPanel () ;
contenu.add (pan) ;
}
public void actionPerformed (ActionEvent e)
{ if (e.getSource() == ok)
{ pan.removeAll () ; // supprime tous les composants de pan
Object noms[] = liste.getSelectedValues() ;
for (int i=0 ; i<noms.length ; i++)
{ JButton bouton = new JButton ((String)noms[i]) ;
pan.add (bouton) ;
}
pan.validate() ;
}
}

private JList liste ;
private JButton ok ;
private JPanel pan ;
}
public class Liste
{ public static void main (String args[])

300

{ String [] nomsLangages = {"Java'", "C", "C++", "Pascal", "Basic",
"Cobol",

"Fortran"} ;
MaFenetre fen = new MaFenetre(nomsLangages) ;
fen.setVisible(true) ;

b
b

On supprime le bouton OK et on associe a la boite de liste un écouteur (ici la fenétre)
implémentant 1’interface ListSelectionListener :
liste.addListSelectionListener (this) ;

L’interface ListSelectionListener comporte une seule méthode valueChanged. Les
événements correspondants sont générés plus souvent qu’il n’est nécessaire pour une
gestion usuelle de la boite. Il est préférable de faire appel a la méthode
getValuelsAdjusting de la classe ListSelectionEvent, afin d’éviter les événements de
transition. Voici comment pourrait se présenter la méthode valueChanged :

public void valueChanged (ListSelectionEvent e)
{ if ((e.getSource() == liste) && (!e.getValueIsAdjusting()))
{ pan.removeAll () ; // supprime tous les composants de pan
Object noms[] = liste.getSelectedValues() ;
for (int 1=0 ; i<noms.length ; i++)
{ JButton bouton = new JButton ((String)noms[i]) ;
pan.add (bouton) ;
}
pan.validate() ;
}
}

Le programme complet ainsi adapté figure sur le site Web d’accompagnement sous le
nom Listel.java.

Rappelons que, par défaut, un boite de liste autorise la sélection de plusieurs plages de
valeurs. On a affaire au type MULTIPLE_INTERVAL_SELECTION. On peut imposer
un autre type a 1’aide de la méthode setSelectionMode.

D’autre part, une boite de liste ne dispose pas de barre de défilement. Si celle-ci

301

s’avere nécessaire, il faut alors introduire la boite de liste dans un "panneau de
défilement" (JScroll-Panel) et définir le nombre de valeurs visibles a un moment donné
par setVisibleRowCount.

302

Synthese : pendule

Afficher une pendule indiquant 1’heure fournie par le biais de deux champs de texte
(et validée par un bouton "Mise a I’heure") :

pas PENDULE - O] x

2 Heures |53 | Minmes[Mise a I'heure ‘

La pendule sera dessinée sur un fond de couleur jaune et on s’arrangera pour qu’elle
soit la plus grande possible (tout en étant entierement visible) en tenant compte du
fait que ’utilisateur peut modifier les dimensions de la fenétre. On utilisera la
méthode drawOval (int abscisse, int ordonnee, int largeur, int hauteur) pour
dessiner un cercle.

On utilise deux panneaux : un pour les champs de texte et le bouton, un pour le dessin
de la pendule. Ils sont disposés dans la fenétre en conservant le gestionnaire par défaut.
Les trois controles sont écoutés par la fenétre elle-méme.

Pour que la pendule s’ajuste a une éventuelle modification de la fenétre, il est
préférable de la dessiner dans la méthode paintComponent du panneau dans lequel elle
se trouve. Il faut donc créer une classe spécialisée (nommée ici PanPendule) dérivée
de JPanel. 1l apparait alors un besoin de communication des valeurs saisies entre la
fenétre et le panneau. Pour le régler, les valeurs saisies sont conservées dans la fenétre
qu’on dote de deux méthodes d’acces getHeures et getMinutes.

303

Nous prévoyons par défaut des valeurs nulles pour 1’heure (heures et minutes). D’autre
part, nous gérons les éventuelles erreurs de saisie de 1’utilisateur (valeurs non
numériques ou simplement incompatibles). Dans ce cas, nous avons prévu de redonner
son ancienne valeur au champ de texte correspondant.

[’actualisation de la pendule est tout simplement déclenchée par 1’appel de la méhode
repaint du panneau, en réponse a une action sur le bouton.

Nous dessinons une grande aiguille ayant une taille égale au rayon de la pendule et une
petite aiguille ayant la moité de cette taille. Pour dessiner la petite aiguille, nous tenons
compte du fait qu’elle se déplace non seulement en fonction du nombre d’heures, mais
aussi en fonction du nombre de minutes.

import java.awt.* ;

import java.awt.event.* ;

import javax.swing.* ;

class MaFenetre extends JFrame implements ActionListener

{ public MaFenetre ()

{ setTitle ("PENDULE") ;
setSize (400, 250) ;
Container contenu = getContentPane() ;
panControles = new JPanel() ;
contenu.add (panControles, "North") ;
saisieHeures = new JTextField (4) ;
panControles.add (saisieHeures) ;
etigHeures = new JLabel (" Heures") ;
panControles.add (etigHeures) ;
saisieMinutes = new JTextField (4) ;
panControles.add (saisieMinutes) ;
etigMinutes = new JLabel (" Minutes") ;
panControles.add (etiqMinutes) ;
ok = new JButton ("Mise a 1l'heure") ;
panControles.add (ok) ;
ok.addActionListener (this) ;
panPendule = new PanPendule(this) ;
contenu.add (panPendule) ;
panPendule.setBackground (Color.yellow) ;
}

public int getMinutes ()

{ return minutes ;

}

304

public int getHeures ()
{ return heures ;
}
public void actionPerformed (ActionEvent e)
{ int h, m ; // pour les valeurs saisies
if (e.getSource() == ok)
{ try
{ String chHeures = saisieHeures.getText() ;
h = Integer.parseInt (chHeures) ;
}
catch (NumberFormatException ex)
{ h=-1,; // on force une valeur invalide
saisieHeures.setText ("") ;
}
try
{ String chMinutes = saisieMinutes.getText() ;
m = Integer.parseInt (chMinutes) ;
}
catch (NumberFormatException ex)
{m=-1,; // on force une valeur invalide
saisieMinutes.setText ("") ;
}
// si les valeurs obtenues sont valides, on les place dans
// les champs heures et minutes et on force le dessin
// sinon, on replace les anciennes valeurs dans les champs texte
if ((h>=0) && (h<24) && (m>=0) && (mM<60))
{ heures = h ; minutes = m ;
repaint() ;
}
else
{ saisieMinutes.setText (""+minutes) ;
saisieHeures.setText (""+heures) ;

b
b
b

private JPanel panControles ;

private PanPendule panPendule ;

private JTextField saisieHeures, saisieMinutes ;
private JLabel etiqHeures, etiqMinutes ;

305

private JButton ok ;
private int minutes=0, heures=0 ;

}

class PanPendule extends JPanel
{ public PanPendule (MaFenetre fen)
{ this.fen = fen ;
}
public void paintComponent (Graphics g)
{ super.paintComponent(g) ;
// dessin du cercle
Dimension dim = getSize() ;
int largeur = dim.width, hauteur = dim.height ;
boolean panTropLarge = (largeur>hauteur) ;
int xCentre = largeur/2, yCentre = hauteur/2 ;
int rayon ;

if (panTropLarge) rayon = hauteur/2 - 2 ; else rayon = largeur/2 -
2

g.drawOval (xCentre-rayon, yCentre-rayon, 2*rayon, 2*rayon) ;
// dessin grande aiguille
int minutes = fen.getMinutes() ;
double angle = Math.PI/2 * (1. - minutes/15.) ;
g.drawLine (xCentre, yCentre,
(int) (xCentre+rayon*Math.cos(angle)),
(int)(yCentre-rayon*Math.sin(angle))) ;
// dessin petite aiguille
int heures = fen.getHeures() ;
angle = Math.PI/2 * (1. - heures/3. - minutes/180.) ;
g.drawLine (xCentre, yCentre,
(int)(xCentre+rayon/2.*Math.cos(angle)),
(int)(yCentre-rayon/2.*Math.sin(angle))) ;
}

private MaFenetre fen ;

}

public class Pendule

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible(true) ;

}

306

307

Chapitre 11

Les boites de dialogue

-mn—.,u II_
' '._.---

= ,_ ———
 \& |

Connaissances requises

* Boites de message : méthode showMessageDialog (choix du contenu du
message, du titre de la boite, du type d’icone)

* Botites de confirmation : méthode showConfirmDialog (choix du texte de la
question, du titre de la boite, des boutons)

* Botites de saisie : méthode showInputDialog (choix du texte de la question, du
titre de la boite, du type d’icone)

* Boites d’options : méthode showInputDialog ou showOptionDialog

* Boites de dialogue personnalisées : classe JDialog, méthode setVisible,
gestion du dialogue, transfert d’information entre la boite de dialogue et son
conteneur

308

Utilisation de boites de message
et de confirmation

Ecrire un programme qui affiche les carrés des nombres impairs a partir de 1. Aprés
1’affichage de chaque carré, on demandera a 1’utilisateur s’il souhaite continuer. On
utilisera des boites de message et des boites de confirmation comme dans les
illustrations de la page suivante :

b=y CARRES X p=4 CARRES X

ﬁ 13 a pour carre 169 impair sunant ?

OK Yes | | No |

Ici, il n’est pas nécessaire de créer une fenétre, de sorte que le programme sera
réduit a une simple méthode main.

Nous utilisons une boite de message pour afficher chacun des carrés. Comme celle-ci
n’est rattachée a aucune fenétre, le premier argument de la méthode
showMessageDialog est null. Les arguments suivants précisent respectivement le
message a afficher (ici le nombre impair courant et son carré), le titre de la boite
(CARRES) et le type d’icone (information).

Apres chaque affichage d’un carré, nous demandons a [’utilisateur s’il souhaite
continuer en utilisant une boite de confirmation créée par la méthode
showConfirmDialog. La encore le premier argument est null. Les autres précisent
respectivement la question a afficher (impair suivant ?), le titre de la boite et la nature
des boutons figurant dans la boite (YES et NO).

Notez que le choix du type d’icone ou celui de la nature des boutons est exprimé a
1’aide de constantes prédéfinies de la classe JOptionPane, ce qui est plus pratique que
d’utiliser les valeurs entieres correspondantes.

import javax.swing.* ;

309

public class Carres
{
public static void main(String[] args)
{int n =1 ;
int rep ;
do
{ JOptionPane.showMessageDialog (null, n + " a pour carre " + n*n,
"CARRES", JOptionPane.INFORMATION_MESSAGE) ;
n+=2 ,;
rep = JOptionPane.showConfirmbialog (null, "impair suivant ?",
"CARRES", JOptionPane.YES_NO_OPTION) ;
}
while (rep == JOptionPane.YES_OPTION) ;
}
}

310

Utilisation de boites de message, de
confirmation et de saisie

Ecrire un programme qui lit des valeurs flottantes et en affiche la moyenne. Les
valeurs seront lues par 1’intermédiaire d’une boite de saisie. Une réponse incorrecte
fera 1’objet d’un message d’avertissement (en cas d’action sur le bouton Cancel ou
de fermeture de la boite, on redemandera la valeur).

Apres chaque valeur correctement lue, on demandera a I’utilisateur s’il en a d’autres
a fournir. A la fin, une boite de message fournira le nombre de valeurs lues et leur
moyenne.

Ici, il n’est pas nécessaire de créer une fenétre (le programme sera donc réduit a une
simple méthode main). Voici quelques illustrations du dialogue avec 1’utilisateur
pour cet exemple :

'E: MOYENNES X . 'EP:' MOYENNES % .

5, donnez lavaleur de rang 2 7
? 112 | 2)

Avez-vous encore des valeurs 7

oK ‘ Cancel | Yes ‘ No

ﬁ moyenne des 3 valeurs = 37.333333333333336

OK

Nous utiliserons donc les boites de dialogue standard construites automatiquement par
les méthodes showMessageDialog, showConfirmDialog et showlnputDialog. Le
premier argument de leur appel est toujours null puisque nous ne cherchons pas a
rattacher ces boites a une fenétre particuliere. Le choix des formes d’icone ou du type

311

des boutons est fait a 1’aide des constantes prédéfinies de la classe JOptionPane :
JOptionPane.QUESTION_MESSAGE pour I’icone "point d’interrogation",
JOptionPane.YES_NO_OPTION pour ne disposer que des deux boutons YES et NO.

En ce qui concerne la saisie des valeurs, nous convertissons la chaine lue en un double
avec la méthode Double.parseDouble. Nous traitons les valeurs incorrectes en
interceptant I’ exception NumberFormatException qu’elle génere.

Rappelons que si 1’utilisateur clique sur le bouton Cancel d’une boite de saisie ou s’il
la ferme, la méthode showInputDialog fournit la valeur null.

import javax.swing.* ;
public class Moyenne
{
public static void main(String[] args)
{ int n = 0 ;
double x=0, somme=0, moyenne ;
int continuer ;
// lecture des differentes valeurs
do
{ boolean ok ;
n++ ;
do // boucle de lecture d'une valeur jusqu'a correcte
{ ok = false ;
String rep = (String)JOptionPane.showInputDialog
(null, "donnez la valeur de rang " + n,
"MOYENNES", JOptionPane.QUESTION_MESSAGE) ;

if (rep == null) continue ; // si action sur Cancel ou
fermeture

try

{ x = Double.parseDouble(rep) ;

ok = true ;

}

catch (NumberFormatException e)
{ JOptionPane.showMessageDialog (null, "reponse incorrecte") ;

}
}
while ('ok) ;
somme += X ;
continuer = JOptionPane.showConfirmDialog
(null, "Avez-vous encore des valeurs ? ",

312

"MOYENNES", JOptionPane.YES_NO_OPTION) ;
}
while (continuer == JOptionPane.YES_OPTION) ;
// calcul de la moyenne et affichage
moyenne = somme/n ;
JOptionPane.showMessageDialog
(null, "moyenne des " + n + " valeurs = " + moyenne,
"RESULTATS", JOptionPane.INFORMATION_MESSAGE)

4

313

Programmation d’une boite de
message

Sans utiliser les boites de dialogue standard, écrire une méthode statique
dfficheMessage (d’une classe nommée Util) affichant une boite de message comme
le fait la méthode JOptionPane.showMessageDialog (qu’on ne devra donc pas
utiliser). Pour simplifier les choses, la boite affichée ne comportera pas d’icone et
sera de taille fixe (par exemple 200x100) et son titre sera toujours "MESSAGE"
comme dans cet exemple :

et MESSAGE [% |
tmnjuur 0K

La méthode afficheMessage ne comportera que deux arguments : la référence de la
fenétre parent (supposée de type JFrame ou dérivé) et le texte du message a
afficher.

Ecrire un petit programme d’essai.

Comme 1’énoncé nous interdit d’utiliser les boites de dialogue standard, il est
nécessaire de créer un objet boite de dialogue d’une classe JDialog ou dérivée. Nous
vous proposons deux solutions : 1’une utilisant directement la classe JDialog, 1’autre
créant une classe spécialisée dérivée de JDialog.

Premiere solution

Dans la méthode afficheMessage, nous créons donc un objet de type JDialog, en
fournissant true comme troisieme argument, ce qui correspond au cas usuel d’une boite
"modale". Nous y placons deux composants : un bouton OK et une étiquette (JLabel).
Comme le gestionnaire par défaut d’une boite de dialogue est de type BorderLayout,
nous le remplagons par un gestionnaire de type FlowLayout.

314

[’affichage de la boite est provoqué par 1’appel de sa méthode setVisible avec
1’argument true. La fin du dialogue doit étre déclenchée par 1’écouteur des événements
Action associés au bouton OK. Ici, cet écouteur ne peut étre qu’un objet d’une classe
spécifique (nommée EcoutOK). Nous transmettons la référence de la boite concernée
au constructeur : la méthode actionPerformed se contente de lui appliquer la méthode
setVisible (false) pour mettre fin au dialogue (aucun test n’a besoin d’étre réalisé dans
la méthode dfficheMessage). Avant de quitter la méthode afficheMessage, nous
prenons soin d’appeler la méthode dispose afin de libérer la boite de dialogue et les
différents objets qui lui sont associés.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;
class Util
{ static void afficheMessage (JFrame parent, String message)
{ // creation de 1l'objet boite de dialogue
JDialog boiteMessage = new JDialog (parent, "MESSAGE", true) ;
boiteMessage.setSize (200,100) ;
// mise en place des composants : bouton OK, etiquette
Container contenu = boiteMessage.getContentPane() ;
contenu.setLayout (new FlowLayout()) ;
JLabel txt = new JLabel (message) ;
contenu.add (txt) ;
JButton ok = new JButton ("OK") ;
contenu.add (ok) ;
ok.addActionListener (new EcouteOK(boiteMessage)) ;
// affichage du dialogue
boiteMessage.setVisible (true) ;
// fin sur OK - rien a tester ici
boiteMessage.dispose() ;

b
b

class EcouteOK implements ActionListener

{ public EcouteOK (JDialog bd)

{ this.bd = bd ;

}

public void actionPerformed (ActionEvent e)
{ bd.setVisible (false) ;

}

315

private JDialog bd ;
}

public class TstMess

{ public static void main (String args[])

{ JFrame fen = new JFrame("Essai afficheMessage") ;
fen.setSize (400, 300) ;
fen.setVisible (true) ;
Util.afficheMessage (fen, "bonjour") ;
Util.afficheMessage (fen, "et au revoir") ;

b
b

Deuxieme solution

Nous créons une classe BoiteMessage dérivée de JDialog. Cette fois, 1’écouteur du
bouton OK peut €étre 1’objet boite de message lui-méme, de sorte qu’aucune information
n’a besoin d’étre transmise a 1’ écouteur.

import javax.swing.* ;

import java.awt.* ;

import java.awt.event.* ;

class Util

{ static void afficheMessage (JFrame parent, String message)
{ BoiteMessage boiteMessage = new BoiteMessage (parent, message) ;
boiteMessage.setVisible (true) ;
boiteMessage.dispose() ;

b
b

class BoiteMessage extends JDialog implements ActionListener
{ public BoiteMessage(JFrame parent, String message)
{ super (parent, "MESSAGE", true) ;
setSize (200,100) ;
Container contenu = getContentPane() ;
contenu.setlLayout (new FlowLayout()) ;
JLabel txt = new JLabel (message) ;
contenu.add (txt) ;
JButton ok = new JButton ("OK") ;
contenu.add (ok) ;
ok.addActionListener (this) ;

316

}

public void actionPerformed (ActionEvent e)
{ setVisible (false)
}

}

4

public class TstMess2
{ public static void main (String args[])

{ JFrame fen = new JFrame("Essai afficheMessage")
fen.setSize (400, 300)
fen.setVisible (true) ;
Util.afficheMessage (fen, "bonjour") ;
Util.afficheMessage (fen, "et au revoir")

}

}

4

14

4

317

Programmation d’une boite de
confirmation

Sans utiliser les boites de dialogue standard, écrire une méthode statique
dfficheConfirme (d’une classe nommée Util) affichant une boite de confirmation
comme le fait la méthode JOptionPane.showConfirmDialog. Pour simplifier les
choses, la boite affichée ne comportera pas d’icone et sera de taille fixe (par
exemple 200x100), son titre sera toujours "CHOIX" et elle comportera toujours les
boutons Oui, Non et Annul comme dans cet exemple :

feq CHOIX Ed

Voulez-vous continuer ?

‘ Oui H Non H Annul ‘

La méthode afficheConfirm ne comportera que deux arguments : la référence de la
fenétre parent (supposée de type JFrame ou dérivé) et le texte de la question. Sa
valeur de retour, de type int, précisera 1’action effectuée : 0 pour Oui, 1 pour Non, 2
pour Annul, -1 pour la fermeture de la boite.

Ecrire un petit programme d’essai.

Ici, nous créons un objet d’une classe spécialisée BoiteConfirme (dérivée de JDialog)
dont nous faisons son propre écouteur des actions sur les différents boutons. Un champ
privé nommé etat est utilisé pour identifier le bouton actionné par 1’utilisateur. Nous
utilisons les valeurs prévues en retour de afficheConfirme. Pour éviter d’avoir a traiter
1’événement "fermeture de la boite de dialogue", nous placons initialement ce champ a
la valeur -1 (valeur de retour prévue en cas de fermeture de la boite).

Une méthode d’acces nommée getEtat permet a la méthode afficheConfirme de
connaitre le choix fait par 1’ utilisateur apres la fin du dialogue.

import javax.swing.* ;
import java.awt.* ;

318

import java.awt.event.* ;

class BoiteConfirme extends JDialog implements ActionListener
{

public BoiteConfirme (JFrame parent, String message)

{ super (parent, "CHOIX", true) ;

setSize (200,100) ;

// mise en place des composants : bouton OK, étiquette

Container contenu = getContentPane() ;

contenu.setlLayout (new FlowLayout()) ;

JLabel txt = new JLabel (message) ;

contenu.add (txt) ;

yes = new JButton ("Oui") ;

yes.addActionListener (this) ;

contenu.add (yes) ;

no = new JButton ("Non") ;

contenu.add (no) ;

no.addActionListener (this) ;

cancel = new JButton ("Annul") ;

contenu.add (cancel) ;

cancel.addActionListener (this) ;

}

public void actionPerformed (ActionEvent e)
{ if (e.getSource() == yes) etat = 0 ;

if (e.getSource() == no) etat = 1
if (e.getSource() == cancel) etat = 2 ;
setVisible (false) ;
}

public int getEtat()
{ return etat ;

~=

}

private JButton yes, no, cancel ;
private int etat = -1 ;
}
class Util

{ static int afficheConfirme (JFrame parent, String message)
{ // creation de 1l'objet boite de dialogue
BoiteConfirme boiteConf = new BoiteConfirme (parent, message) ;

319

// affichage du dialogue
boiteConf.setVisible (true)
// fin du dialogue
boiteConf.dispose() ;
return boiteConf.getEtat() ;
}
}

/

public class TstChoix
{ public static void main (String args[])

{ JFrame fen = new JFrame("Essal Boite Confirmation")
fen.setSize (400, 300)
fen.setVisible (true) ;
int rep = Util.afficheConfirme (fen, "Voulez-vous continuer ?")
System.out.println ("reponse = " + rep)

}

}

I4

14

4

4

320

Programmation d’une boite de
saisie

Sans utiliser les boites de dialogue standard, écrire une méthode statique
dfficheSaisie (d’une classe nommée Util) affichant une boite de confirmation
comme le fait la méthode JOptionPane.showInputDialog. Pour simplifier les
choses, la boite affichée ne comportera pas d’icone, elle sera de taille fixe (par
exemple 240x150), son titre sera toujours "SAISIE" et elle comportera toujours les
boutons OK et Annul comme dans cet exemple :

Donnez un texte ?

|HeII|:|]

‘ 0K H Annul |

La méthode afficheSaisie ne comportera que deux arguments : la référence de la
fenétre parent (supposée de type JFrame ou dérivé) et le texte a afficher. Sa valeur
de retour, de type String sera I’information saisie ou la valeur null en cas d’action
sur Annul ou de fermeture de la bofte.

Ecrire un petit programme d’essai.

Ici, nous créons un objet d’une classe spécialisée BoiteSaisie (dérivée de JDialog)
dont nous faisons son propre écouteur des actions sur les deux boutons qui doivent
déclencher la fin du dialogue. Les événements du champ de texte n’ont pas besoin
d’étre pris en compte puisque la validation de 1’information se fait par le bouton OK.

Un champ privé nommé infoLue est utilisé pour conserver la chaine lue. Pour éviter
d’avoir a traiter 1’événement "fermeture de la boite de dialogue", nous placons
initialement ce champ a la valeur null (valeur de retour prévue en cas de fermeture de
la boite).

Une méthode d’acces nommée getInfo permet a la méthode afficheSaisie de connaitre

321

le choix fait par I’utilisateur apres la fin du dialogue.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;
class BoiteSaisie extends JDialog implements ActionListener
{
public BoiteSaisie (JFrame parent, String message)
{ super (parent, "SAISIE", true) ;
setSize (240,150) ;
// mise en place des composants
Container contenu = getContentPane() ;
contenu.setLayout (new FlowLayout()) ;
JLabel txt = new JLabel (message) ;
contenu.add (txt) ;
saisie = new JTextField (20) ;
contenu.add (saisie) ;
ok = new JButton ("OK") ;
ok.addActionListener (this) ;
contenu.add (ok) ;
cancel = new JButton ("Annul") ;
contenu.add (cancel) ;
cancel.addActionListener (this) ;
}
public void actionPerformed (ActionEvent e)
{ if (e.getSource() == ok)
{ infoLue = saisie.getText() ;

}
setVisible (false) ;

}
public String getInfo ()
{ return infoLue ;
}
private JButton ok, cancel ;
private JTextField saisie ;
private String infoLue = null ;
}
class Util
{ static String afficheSaisie (JFrame parent, String message)

322

{ // creation de 1l'objet boite de dialogue
BoiteSaisie boiteSaisie = new BoiteSaisie (parent, message) ;
// affichage du dialogue
boiteSaisie.setVisible (true) ;
// fin du dialogue
boiteSaisie.dispose() ;
return boiteSaisie.getInfo() ;
}
}
public class TstSaisie
{
public static void main (String args[])
{ String rep ;
JFrame fen = new JFrame("Essali Boite de saisie") ;
fen.setSize (400, 300) ;
fen.setVisible (true) ;
do // on interroge l'utilisateur jusqu'a ce qu'il reponde "fin"
{ rep = Util.afficheSaisie (fen, "Donnez un texte ?") ;
if (rep !'= null)
System.out.println ("reponse = " + rep) ;
}
while ((rep == null) || !'rep.equals("fin")) ;
}
}

323

Synthese : saisie d’une heure

Réaliser une classe nommée DialogueSaisieHeure permettant a 1’utilisateur de
saisir, dans une boite de dialogue, une heure exprimée sous la forme de deux
nombres entiers : un nombre d’heures compris entre 0 et 23, un nombre de minutes
compris entre 0 et 59. La boite de dialogue comportera deux champs de texte pour la
saisie des entiers, un bouton OK et un bouton Annul :

;S4{ENTREZ UNE HEURE B3

Heures |11 .Milllﬂt‘ﬁ .48

‘ OK ‘ | Annul ‘

Si D’utilisateur agit sur OK alors que les valeurs fournies sont incorrectes (non
numeériques ou hors plage), on lui demandera d’en fournir d’autres (on ne mettra pas
fin au dialogue) :

=1 Message X =4 Message X

g Valeurs hors plage = Valeurs non humeérigques
L il

OK OK

La classe disposera :

* d’un constructeur a un argument de type JFrame correspondant a la fenétre
parent a utiliser pour la boite ;

* d’une méthode lanceDialog permettant d’afficher la boite et de gérer le
dialogue. Elle fournira en retour : la valeur true si le dialogue s’est terminé
normalement (valeurs correctes puis action sur OK), la valeur false dans le cas
contraire (Annul ou fermeture de la boite) ;

* de deux méthodes getHeures et getMinutes permettant de "récupérer” les
valeurs saisies.

324

Ecrire un petit programme de test.

Ici encore, la boite de dialogue sera son propre écouteur des actions sur les boutons
OK et Annul. 1l n’est pas nécessaire d’écouter les champs de texte puisque leur contenu
n’est pris en compte qu’au moment de 1’action sur OK.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;
class DialogueSaisieHeure extends JDialog implements ActionListener
{ public DialogueSaisieHeure (JFrame parent)
{ super (parent, "ENTREZ UNE HEURE", true) ;
this.parent = parent ;
setSize (240,120) ;
// mise en place des composants
Container contenu = getContentPane() ;
contenu.setLayout (new FlowLayout()) ;
JLabel etiqHeures = new JLabel ("Heures ") ;
contenu.add (etiqHeures) ;
saisieHeures = new JTextField (3) ;
contenu.add (saisieHeures) ;
JLabel etigMinutes = new JLabel ("Minutes ") ;
contenu.add (etigMinutes) ;
saisieMinutes = new JTextField (3) ;
contenu.add (saisieMinutes) ;
ok = new JButton ("OK") ;
ok.addActionListener (this) ;
contenu.add (ok) ;
cancel = new JButton ("Annul") ;
contenu.add (cancel) ;
cancel.addActionListener (this) ;
}
public void actionPerformed (ActionEvent e)
{ if (e.getSource() == ok)
{ // recuperation infos saisies
String chHeures = saisieHeures.getText() ;
String chMinutes = saisieMinutes.getText() ;

325

}

// essai de conversion en entiers
try

{ heures
minutes
}

catch (NumberFormatException eX)

{ JOptionPane.showMessageDialog (parent, "Valeurs non
numériques") ;

saisieHeures.setText ("") ;
saisieMinutes.setText ("") ;
return ;
}
// conversion reussie - verification des plages
if ((heures>=0) && (heures<24) && (minutes>=0) && (minutes<60))
correct = true ;
else
{ JOptionPane.showMessageDialog (parent, "Valeurs hors plage") ;
saisieHeures.setText ("") ;
saisieMinutes.setText ("") ;
return ;

}

}
setVisible (false) ;

Integer.parseInt (chHeures) ;
Integer.parseInt (chMinutes) ;

public int getHeures()

{
b

return heures ;

public int getMinutes()

{
b

return minutes ;

public boolean lancebDialog ()

{

}

correct = false ;

// affichage du dialogue
setVisible (true) ;

// fin du dialogue
dispose() ;

return correct ;

private JFrame parent ;

326

private JButton ok, cancel ;
private JTextField saisieHeures, saisieMinutes ;
private int heures, minutes ;
private boolean correct ;
}
public class TstHM
{ public static void main (String args[])
{ DialogueSaisieHeure boiteHeure ;
JFrame fen = new JFrame("Essali boite saisie heure") ;
fen.setSize (400, 300) ;
fen.setVisible (true) ;

boiteHeure = new DialogueSaisieHeure (fen) ;

if (boiteHeure.lanceDialog () == true)
{ System.out.println ("Heure fournie : " + boiteHeure.getHeures()
+ 1] h [
+ boiteHeure.getMinutes() + "mn") ;
}
else

System.out.println ("dialogue abandonne") ;
boiteHeure.dispose() ;

}

}

[’énoncé nous imposait de recourir a une méthode lanceDialog membre de la classe
DialogueSaisieHeure et non plus a une méthode statique. Il est donc nécessaire que
1’objet boite de dialogue ait été créé avant 1’appel de cette méthode. C’est ce que nous
faisons ici dans la méthode main. Cette démarche est plus contraignante que celle qui
consisterait a créer automatiquement la boite lors de 1’appel d’une méthode statique. En
revanche, elle permettrait, si on le souhaitait, de ne créer qu’une seule fois une boite
qu’on utilise ensuite a diverses reprises

327

Chapitre 12

L.es menus

-N“m—n 'f'ﬁ..

: —

- N

Connaissances requises

* Barre de menus (JMenuBar) ; construction ; rattachement a une fenétre
(méthode setJMenuBar)

* Objets menus (JMenu) ; construction ; ajout a une barre de menus ;
événements générés (MenuEvent), méthodes menuSelected, menuDeselected,
menuCanceled ; ajout d’une barre séparatrice (méthode addSeparator)

* Options de menus (JMenultem) ; construction ; ajout a un menu ; événements
Action générés

» Options case a cocher (JCheckBoxMenultem) ; options boutons radio
(JRadiButtonMenultem) ; groupe de boutons radio

» Menus surgissants (JPopupMenu)

» Composition d’options de menu

» Menus dynamiques ; activation/désactivation d’options (setEnabled)

328

Creation d’un menu deroulant
usuel

Créer une fenétre (dérivée de JFrame) munie d’une barre de menus constituée :
 d’un menu Fichier comportant les options : Ouvrir, Sauvegarder et Fermer,

 d’un menu Edition comportant les options : Copier et Coller.

j=3 Exemple de menus (=] E3

Fichier Edition

Ouwnwrir
Sauvegarder
Fermer

On ne cherchera pas ici a traiter les actions correspondantes.

Dans le constructeur de la fenétre, nous créons un objet de type JMenuBar et nous le
rattachons a la fenétre avec la méthode add. Puis nous créons deux objets de type
JMenu (nommés fichier et edition) que nous rattachons a la barre des menus. Pour
chaque menu, nous créons les options voulues (de type JMenultem) et nous les
associons au menu par add.

import java.awt.*;

import javax.swing.* ;

class FenMenu extends JFrame

{ public FenMenu ()
{ setTitle ("Exemple de menus") ;
setSize (300, 120) ;

/* creation barre des menus */

barreMenus = new JMenuBar() ;
setJMenuBar (barreMenus) ;

329

/* creation menu Fichier et ses options */
fichier = new JMenu ("Fichier") ;
barreMenus.add(fichier) ;
ouvrir = new JMenuItem ("Ouvrir") ;
fichier.add (ouvrir) ;
sauvegarder = new JMenultem ('"Sauvegarder") ;
fichier.add (sauvegarder) ;
fermer = new JMenuItem ("Fermer") ;
fichier.add (fermer) ;

/* creation menu Edition et ses options */
edition = new JMenu ("Edition") ;
barreMenus.add (edition) ;
copier = new JMenultem ("Copier") ;
edition.add (copier) ;
coller = new JMenuItem ("Coller") ;
edition.add (coller) ;

}
private JMenuBar barreMenus ;
private JMenu fichier, edition ;
private JMenultem ouvrir, sauvegarder, fermer, copier, coller ;
}
public class Fiched1l
{ public static void main (String args[])
{ FenMenu fen = new FenMenu() ;
fen.setVisible(true) ;

b
b

Dans la précédente solution, le constructeur de la fenétre comportait plusieurs
instructions semblables, notamment la création d’une option et son rattachement au
menu. Si le nombre d’options de chaque menu devenait important, on pourrait avoir
intérét a écrire une méthode statique regroupant ces différentes taches comme dans cet
exemple (ou cette méthode se nomme ajoute) :

import java.awt.*;
import javax.swing.* ;

class FenMenu extends JFrame

330

{ public FenMenu ()
{ setTitle ("Exemple de menus") ;
setSize (300, 150) ;

/* creation barre des menus */
barreMenus = new JMenuBar() ;
setJMenuBar (barreMenus) ;

/* creation menu Fichier et ses options */
fichier = new JMenu ("Fichier") ;
barreMenus.add(fichier) ;
ouvrir = ajoute ("Ouvrir", fichier) ;
sauvegarder = ajoute ("Sauvegarder", fichier) ;
fermer = ajoute ("Fermer", fichier) ;

/* creation menu Edition et ses options */
edition = new JMenu ("Edition") ;
barreMenus.add (edition) ;

ajoute ("Copier", edition) ;
ajoute ("Coller", edition) ;

copier
coller
}
private static JMenuItem ajoute (String libelle, JMenu menu)
{ JMenulItem option = new JMenultem (libelle) ;
menu.add (option) ;
return option ;
}
private JMenuBar barreMenus ;
private JMenu fichier, edition ;
private JMenultem ouvrir, sauvegarder, fermer, copier, coller ;
}
public class Fichedb1l
{ public static void main (String args[])
{ FenMenu fen = new FenMenu() ;
fen.setVisible(true) ;

b
b

Il est nécessaire que la méthode ajoute renvoie la référence a 1’option qu’elle a créée.
Il n’est pas possible de 1’écrire par exemple de cette maniere :

331

private static void ajoute (String 1libelle, JMenu menu, JMenuItem
option)

{ option = new JMenuItem (libelle) ;
menu.add (option) ;

}

On peut également envisager d’employer des tableaux d’options et de libellés comme
dans cet exemple :

import java.awt.*;
import javax.swing.* ;

class FenMenu extends JFrame

{ public FenMenu ()
{ setTitle ("Exemple de menus") ;
setSize (300, 120) ;

/* creation barre des menus */
barreMenus = new JMenuBar() ;
setJMenuBar (barreMenus) ;

/* creation menu Fichier et ses options */
fichier = new JMenu ("Fichier") ;
barreMenus.add(fichier) ;
int nOptionsFichier = nomsOptionsFichier.length ;
optionsFichier = new JMenuItem [nOptionsFichier] ;
for (int 1=0 ; i<nOptionsFichier ; i++)

{ optionsFichier[i] = new JMenuItem (nomsOptionsFichier[i]) ;
fichier.add (optionsFichier([i]) ;
}

/* creation menu Edition et ses options */
edition = new JMenu ("Edition") ;
barreMenus.add (edition) ;
int nOptionsEdition = nomsOptionsEdition.length ;
optionsEdition = new JMenultem [nOptionsEdition] ;
for (int 1=0 ; i<nOptionsEdition ; 1i++)

{ optionskEdition[i] = new JMenuItem (nomsOptionsEdition[i]) ;
edition.add (optionskEdition[i]) ;
}
}

332

private JMenuBar barreMenus ;
private JMenu fichier, edition ;
private JMenultem [] optionsFichier, optionsEdition ;

private String[] nomsOptionsFichier = {"Ouvrir", "Sauvegarder",
"Fermer"} ;

private String[] nomsOptionsEdition = { "Copier", "Coller"} ;
}
public class Fichedla
{ public static void main (String args[])

{ FenMenu fen = new FenMenu() ;

fen.setVisible(true) ;

b
b

Cette démarche ne sera cependant pas toujours facile a associer avec le traitement des
événements générés par les différentes options (non demandé ici).

333

Gestion des actions sur les options
d’un menu

On se propose de traiter les actions sur les options des deux menus créés dans
I’exercice 120. On ne cherchera pas a manipuler véritablement un fichier mais
seulement un nom de fichier fourni par une boite de saisie déclenchée par 1’option
Ouvrir.

On "tracera" en fenétre console les opérations résultant des différentes actions de
1’utilisateur comme dans cet exemple :

On ouvre truc

copie d'information

on sauvegarde truc

collage d'information

Rien a coller

on sauvegarde truc

On ferme truc

On ouvre chose

Oon ferme chose

Pas de fichier ouvert a sauvegarder

pas de fichier ouvert

Pour les options du menu Fichier, on précisera la nature de 1’opération (ouverture,
sauvegarde, fermeture) et le nom du fichier concerné. On supposera qu’on ne peut
ouvrir qu’un seul fichier a la fois et que 1’ouverture d’un nouveau fichier entraine la
fermeture de 1’ancien (une méme option peut donc déclencher plusieurs opérations).
On signalera les choix incohérents telle une demande de fermeture alors qu’aucun
fichier n’est ouvert.

Pour les options du menu Edition, on se contentera de préciser 1’opération réalisée
et de signaler les choix incohérents. On supposera qu’une méme information ne peut
étre collée qu’une seule fois.

Il nous suffit de traiter les événements Action déclenchés par les différentes options des
menus. Ici, nous faisons de la fenétre son propre écouteur.

334

En réponse a I’option Ouvrir, nous demandons a 1’utilisateur de fournir un nom de
fichier dans une boite de saisie standard. Nous tenons compte du fait qu’il peut tres
bien abandonner la saisie (fermeture de la boite ou action sur Cancel) et donc ne
fournir aucun nom. De méme, nous considérons qu’un nom vide n’est pas une réponse
satisfaisante.

Des indicateurs booléens fichierOuvert et infoCopiee nous permettent de suivre
1’évolution de la situation.

import java.awt.*;
import java.awt.event.* ;
import javax.swing.* ;
import javax.swing.event.* ;
class FenMenu extends JFrame implements ActionListener
{ public FenMenu ()
{ setTitle ("Exemple de menus") ;
setSize (300, 130) ;

/* creation barre des menus */
barreMenus = new JMenuBar() ;
setJMenuBar (barreMenus) ;

/* creation menu Fichier et ses options */
fichier = new JMenu ("Fichier") ;
barreMenus.add(fichier) ;
ouvrir = new JMenuItem ("Ouvrir") ;
fichier.add (ouvrir) ;
ouvrir.addActionListener (this) ;
sauvegarder = new JMenultem ('"Sauvegarder") ;
fichier.add (sauvegarder) ;
sauvegarder.addActionListener (this) ;
fermer = new JMenuItem ("Fermer") ;
fichier.add (fermer) ;
fermer.addActionListener (this) ;

/* creation menu Edition et ses options */
edition = new JMenu ("Edition") ;
barreMenus.add (edition) ;
copier = new JMenultem ("Copier") ;
edition.add (copier) ;
copier.addActionListener (this) ;
coller = new JMenuItem ("Coller") ;
edition.add (coller) ;

335

coller.addActionListener (this) ;

/* etat initial : pas de fichier ouvert, pas d'info copiee */
fichierOuvert = false ; infoCopiee = false ;

nomFichier = null ;

}

public void actionPerformed (ActionEvent e)
{ Object source = e.getSource() ;

if (source == ouvrir)

{ String nom = JOptionPane.showInputDialog (this, "nom fichier
ouvrir") ;

if ((nom == null) || (nom.equals(""))) return ;

if (fichieroOuvert) System.out.println ("On ferme "
nomFichier) ;

nomFichier = nom ; fichierOuvert = true ;
System.out.println ("On ouvre " + nomFichier) ;
}
if (source == fermer)

{ if (fichierOuvert) System.out.println ("on ferme "
nomFichier) ;

else System.out.println ("pas de fichier ouvert") ;
fichierOuvert = false ;
}
if (source == sauvegarder)

{ if (fichierOuvert) System.out.println ("on sauvegarde "
nomFichier) ;

else System.out.println ("Pas de fichier ouvert
sauvegarder") ;

}

if (source == copier)

{ System.out.println ("copie d'information") ;
infoCopiee = true ;

}

if (source == coller)

{ if (infoCopiee) System.out.println ("collage d'information") ;

else System.out.println ("Rien a coller") ;

infoCopiee = false ;

}

}

private JMenuBar barreMenus ;
private JMenu fichier, edition ;

336

private JMenultem ouvrir, sauvegarder, fermer, copier, coller
private boolean fichierOuvert, infoCopiee ;
private String nomFichier ;

}

public class Fiched2

{ public static void main (String args[])
{ FenMenu fen = new FenMenu()
fen.setVisible(true)
}

}

4

14

14

337

Activation, desactivation
d’options

Modifier le programme réalisé dans 1’exercice 121 de maniére que ne soient
activées que les seules les options réellement utilisables a un moment donné. Par
exemple, tant qu’un fichier n’est pas ouvert, les options Sauvegarder et Fermer ne
seront pas actives.

On proposera deux solutions :
* I’une ou I’on continuera de ne traiter que les événements de type Action,

* I’autre ou I’on traitera en plus les événements de type Menultem.

Nous utiliserons la méthode setEnabled de la classe JMenultem pour activer ou
désactiver une option. Initialement (a la construction de la fenétre), seules les options
Ouvrir et Copier sont activées. Lors du traitement des actions sur les différentes
options, nous actualisons les options actives. Plus précisément, a la fin de la méthode
actionPerformed, nous utilisons les valeurs des indicateurs booléens fichierOuvert et
infoCopiee pour décider de 1’état des différentes options. Cette démarche est plus
simple que celle qui consisterait a modifier 1’état d’activation d’une ou de plusieurs
options en fonction de 1’ option sélectionnée.

Notez qu’il est nécessaire de définir 1’état d’activation initial des options dans le
constructeur de la fenétre. Dans le cas contraire, lors de la premiere sélection d’un
menu, toutes les options seraient actives.

En ce qui concerne les messages affichés en fenétre console, certains n’ont plus lieu
d’étre, par exemple "pas de fichier ouvert"... Nous les avons supprimés.

import java.awt.*;

import java.awt.event.* ;
import javax.swing.* ;
import javax.swing.event.* ;

class FenMenu extends JFrame implements ActionListener
{ public FenMenu ()

338

{ setTitle ("Exemple de menus") ;
setSize (300, 130) ;

/* creation barre des menus */
barreMenus = new JMenuBar() ;
setJMenuBar (barreMenus) ;

/* creation menu Fichier et ses options */
fichier = new JMenu ("Fichier") ;
barreMenus.add(fichier) ;
ouvrir = new JMenuItem ("Ouvrir") ;
fichier.add (ouvrir) ;
ouvrir.addActionListener (this) ;
sauvegarder = new JMenultem ('"Sauvegarder") ;
fichier.add (sauvegarder) ;
sauvegarder.addActionListener (this) ;
fermer = new JMenuItem ("Fermer") ;
fichier.add (fermer) ;
fermer.addActionListener (this) ;

/* creation menu Edition et ses options */
edition = new JMenu ("Edition") ;
barreMenus.add (edition) ;
copier = new JMenultem ("Copier") ;
edition.add (copier) ;
copier.addActionListener (this) ;
coller = new JMenuItem ("Coller") ;
edition.add (coller) ;
coller.addActionListener (this) ;

/* etat initial : pas de fichier ouvert, pas d'info copiee */
fichierOuvert = false ; infoCopiee = false ;
nomFichier = null ;
ouvrir.setEnabled (true) ;
sauvegarder.setEnabled (false) ;
fermer.setEnabled (false) ;
copier.setEnabled (true) ;
coller.setEnabled (false) ;

}

public void actionPerformed (ActionEvent e)
{ Object source = e.getSource() ;

if (source == ouvrir)

{ String nom = JOptionPane.showInputDialog (this, "nom fichier a

339

}

ouvrir") ;
if ((nom == null) || (nom.equals(""))) return ;

if (fichieroOuvert) System.out.println ("Oon ferme
nomFichier) ;

nomFichier = nom ; fichierOuvert = true ;

System.out.println ("On ouvre " + nomFichier) ;
}

if (source == fermer)

{ System.out.println ("On ferme " + nomFichier) ;

fichierOuvert = false ;

}

if (source == sauvegarder)

{ System.out.println ("on sauvegarde " + nomFichier) ;
}

if (source == copier)

{ System.out.println ("copie d'information") ;

infoCopiee = true ;

}

if (source == coller)

{ System.out.println ("collage d'information") ;

infoCopiee = false ;

}

/* activation - desactivation des options */
copier.setEnabled (true) ; // par securite
coller.setEnabled (infoCopiee) ;
ouvrir.setEnabled (true) ; // par securite
sauvegarder.setEnabled (fichierOuvert) ;
fermer.setEnabled (fichierOuvert) ;
}
private JMenuBar barreMenus ;
private JMenu fichier, edition ;

private JMenultem ouvrir, sauvegarder, fermer, copier, coller

private boolean fichierOuvert, infoCopiee ;
private String nomFichier ;

public class Fiched3a

{

public static void main (String args[])
{ FenMenu fen = new FenMenu() ;
fen.setVisible(true) ;

340

4

Cette fois, nous tenons compte des événements de type MenuEvent générés lors de
I’affichage ou de la disparition d’un menu déroulant. Ceux-ci sont traités par un
écouteur implémentant 1’interface MenuListener comportant trois méthodes
menuSelected, menuDeselected et menuCanceled. Dans la premiere, nous prévoyons
de définir 1’état d’activation des différentes options. Ici encore, celui-ci est déduit des
valeurs des indicateurs booléens fichierOuvert et infoCopiee. Par souci de simplicité,
nous ne testons pas la source (menu Fichier ou menu Edition) et nous définissons 1’ état
de toutes les options (alors que manifestement ne sont concernées que celles du menu
choisi).

Notez que cette fois il n’est plus nécessaire de prévoir une initialisation de 1’état
d’activation des options puisque la méthode menuSelected sera nécessairement
appelée avant le premier affichage d’un menu. Toutes les opérations de gestion de 1’ état
d’activation se trouvent regroupées en un seul emplacement du programme.

import java.awt.*;

import java.awt.event.* ;
import javax.swing.* ;
import javax.swing.event.* ;

class FenMenu extends JFrame implements ActionListener, MenulListener
{ public FenMenu ()

{ setTitle ("Exemple de menus") ;

setSize (300, 130) ;

/* creation barre des menus */
barreMenus = new JMenuBar() ;
setJMenuBar (barreMenus) ;

/* creation menu Fichier et ses options */
fichier = new JMenu ("Fichier") ;
barreMenus.add(fichier) ;
fichier.addMenuListener (this) ;
ouvrir = new JMenuItem ("Ouvrir") ;
fichier.add (ouvrir) ;
ouvrir.addActionListener (this) ;
sauvegarder = new JMenultem ('"Sauvegarder") ;
fichier.add (sauvegarder) ;

341

sauvegarder.addActionListener (this) ;
fermer = new JMenuItem ("Fermer") ;
fichier.add (fermer) ;
fermer.addActionListener (this) ;

/* creation menu Edition et ses options */
edition = new JMenu ("Edition") ;
barreMenus.add (edition) ;
edition.addMenuListener(this) ;
copier = new JMenultem ("Copier") ;
edition.add (copier) ;
copier.addActionListener (this) ;
coller = new JMenuItem ("Coller") ;
edition.add (coller) ;
coller.addActionListener (this) ;

/* etat initial : pas de fichier ouvert, pas d'info copiee */
fichierOuvert = false ; infoCopiee = false ;
nomFichier = null ;

}
public void actionPerformed (ActionEvent e)
{ Object source = e.getSource() ;

if (source == ouvrir)

{ String nom = JOptionPane.showInputDialog (this, "nom fichier a
ouvrir") ;

if ((nom == null) || (nom.equals(""))) return ;

if (fichieroOuvert) System.out.println ("Oon ferme " +

nomFichier) ;
nomFichier = nom ; fichierOuvert = true ;
System.out.println ("On ouvre " + nomFichier) ;
}
if (source == fermer)
{ System.out.println ("On ferme " + nomFichier) ;
fichierOuvert = false ;
}
if (source == sauvegarder)
{ System.out.println ("on sauvegarde " + nomFichier) ;
}
if (source == copier)
{ System.out.println ("copie d'information") ;
infoCopiee = true ;

}

342

if (source == coller)

{ System.out.println ("collage d'information") ;
infoCopiee = false ;

}

}

public void menuSelected (MenuEvent e)

{ /* activation - desactivation des options */
copier.setEnabled (true) ;

coller.setEnabled (infoCopiee) ;
ouvrir.setEnabled (true) ;
sauvegarder.setEnabled (fichierOuvert) ;
fermer.setEnabled (fichierOuvert) ;
}

public void menuDeselected (MenuEvent e) {}
public void menuCanceled (MenuEvent e) {}

private JMenuBar barreMenus ;

private JMenu fichier, edition ;

private JMenultem ouvrir, sauvegarder, fermer, copier, coller ;
private boolean fichierOuvert, infoCopiee ;
private String nomFichier ;

}

public class Fiched3b

{ public static void main (String args[])

{ FenMenu fen = new FenMenu() ;
fen.setVisible(true) ;

}

}

343

Synthese : calculs sur des rectangles

Créer une fenétre disposant d’une barre de menus dotée de deux menus Dimensions
et Calcul destinés a effectuer des calculs de périmetre et d’aire de rectangles dont
on fournit la longueur et la largeur.

Le menu Dimensions comportera les options :

* Nouvelle longueur qui demandera a I’utilisateur d’entrer dans une boite de
saisie un entier représentant une longueur,

* Nouvelle largeur qui demandera a 1’utilisateur d’entrer dans une boite de saisie
un entier représentant une largeur,

» Dimensions actuelles qui affichera dans une boite de message les valeurs
courantes de la longueur et de la largeur

Le menu Calculs comportera les options Perimetre et Aire qui afficheront
I’information requise dans une boite de message

Voici un exemple d’exécution illustrant le fonctionnement de 1’option Nouvelle
longueur du menu Dimensions :

CALCULS sur des rectangles _ O] x]

Dimensions I Calculs :

e
Houvelle largeur &5) Donnez la longueur

Dimensions actuelles 2 45 |

0K Cancel |

Pour nous faciliter la création des différentes options, nous avons défini (dans la
fenétre) une méthode ajoute recevant en argument la référence d’un menu, un libellé et
la référence de 1’écouteur requis.

Ici encore, il nous suffit de traiter les événements Action déclenchés par les différentes
options des menus. Nous les écoutons dans la fenétre elle-méme.

344

Une méthode statique lire permet de lire une information numérique positive dans une
boite de saisie. Nous y traitons le cas d’une réponse non numérique en interceptant
I’exception NumberFormatException. Nous signalons a 1’utilisateur les réponses
incorrectes par une boite de message et nous lui demandons une nouvelle valeur. Nous
faisons de méme pour les valeurs non positives.

En revanche, nous laissons a 1’utilisateur la possibilité de "changer d’avis" en quittant
la boite de saisie (par fermeture ou par Cancel). Nous convenons alors que, dans ce
cas, la méthode lire renverra la valeur O.

import java.awt.*;

import java.awt.event.* ;
import javax.swing.* ;
import javax.swing.event.* ;

class FenCalculs extends JFrame implements ActionListener
{ public FenCalculs ()
{ setTitle ("CALCULS sur des rectangles") ;
setSize (400, 150) ;
/* creation barre des menus */
barreMenus = new JMenuBar() ;
setJMenuBar (barreMenus) ;
/* creation menu dimensions */
dimensions = new JMenu ("Dimensions") ;
barreMenus.add (dimensions) ;
longueur = ajoute (dimensions, "Nouvelle longueur'", this) ;
largeur = ajoute (dimensions, "Nouvelle largeur", this) ;
infos = ajoute (dimensions, "Dimensions actuelles", this) ;
calculs = new JMenu ("Calculs") ;
barreMenus.add (calculs) ;
perimetre = ajoute (calculs, "Perimetre", this) ;
aire = ajoute (calculs, "Aire", this) ;
}
public void actionPerformed (ActionEvent e)
{ Object source = e.getSource()

~=

if (source == longueur){ int n = lire ("Donnez la longueur") ;
if (n >0) L =n ;
}

if (source == largeur) { int n = lire ("Donnez la largeur") ;
l=n;
}

345

if (source == perimetre)

JOptionPane.showMessageDialog (null, '"Perimetre = " + (2*
(L+1)))
if (source == aire)
JOptionPane.showMessageDialog (null, "Aire = " + (L*1)) ;
if (source == infos)
JOptionPane.showMessageDialog (null, "Longueur = " + L
+ " Largeur = " + 1) ;

}

private static JMenultem ajoute (JMenu menu, String libelle,
ActionListener ecouteur)

{ JMenulItem option = new JMenultem (libelle) ;

menu.add (option) ;

option.addActionListener (ecouteur) ;

return option ;
}
private static int lire (String question)

{ /* ici on demande une valeur jusqu'a ce qu'elle soit correcte */

/* c'est-a-dire entiére et positive */
boolean correct = false ;
int valeur=0 ;

do

{ String rep = JOptionPane.showInputDialog (null, question) ;

if (rep == null) break ; // on renvoie 0 si fermeture ou Cancel
try

{ valeur = Integer.parseInt (rep) ;
if (valeur >0) correct = true ;

}

catch (NumberFormatException ex) {}

if ('correct) JOptionPane.showMessageDialog (null, "Valeur
incorrecte ") ;

}

while (!correct) ;

return valeur ;
}
private JMenuBar barreMenus ;
private JMenu dimensions, calculs ;
private JMenultem longueur, largeur, perimetre, aire, infos ;
private int 1=0, L=0 ;

346

public class Calculs

{ public static void main (String args[])
{ FenCalculs fen = new FenCalculs() ;
fen.setVisible(true) ;

b
b

1. Le troisieme argument de ajoute a été prévu ici de type ActionListener. Nous
appliquons ainsi les possibilités de polymorphisme aux interfaces ; ajoute peut étre
appelée avec un argument d’un type quelconque implémentant 1’interface
ActionListener.

2. On pourrait étre tentés d’écrire la méthode ajoute de cette maniere :

private static void ajoute (JMenu menu, JMenuItem option, String
libelle,

ActionListener ecouteur)
{ option = new JMenuItem (libelle) ;
menu.add (option) ;
option.addActionListener (ecouteur) ;

}

et de I’appeler de cette facon :
ajoute (longueur, dimensions, "Nouvelle longueur", this) ;

En effet, ajoute recevrait alors dans menu une copie de la référence figurant dans
longueur (ici null), avant de placer dans menu la référence de 1’objet menu créé
ensuite. Mais la valeur du champ menu de 1’objet fenétre ne serait aucunement
modifiée. Le programme fonctionnerait partiellement mais on ne traiterait pas les
actions sur les options.

347

Synthese : coloration par boutons
radio

Créer une fenétre munie d’une barre de menus comportant un seul menu (Couleur)
offrant le choix de la couleur de la fenétre par des boutons radio :

COULEURS = ¢

Couleur |
© Rouge
O Jaune
_ Bleu
®Yert

Pendant I’affichage du menu, la fenétre deviendra blanche. Si le menu est
abandonné, la fenétre reprendra sa couleur précédente.

Les couleurs sont conservées dans un tableau statique couleurs d’objets de type Color
accompagné d’un tableau de chaines nomsCouleurs fournissant le libellé
correspondant. Il est facile d’introduire de nouvelles couleurs dans le programme en
modifiant ces deux tableaux.

La création du menu Couleur ne pose aucun probleme. Celle de ses options se fait par
une boucle sur les différentes couleurs ; le nombre de répétitions est simplement fixé
par la dimension du tableau couleurs.

Ici, il est nécessaire de traiter a la fois les événements Action et Menu générés par les
options du menu Couleur. Les premiers fixent la couleur de fond de la fenétre, les
seconds permettent de décider du moment ou la fenétre doit étre repeinte en blanc.

En ce qui concerne le changement de couleur de la fenétre, on ne peut pas se contenter
d’appeler sa méthode setBackground aux moments opportuns (actionPerformed,
menuSelected...). En effet, les modifications d’affichage du menu lui-méme nécessitent
que la fenétre soit repeinte. Nous pourrions redéfinir la méthode paint de la fenétre

348

elle-méme mais, par souci de généralité, nous préférons utiliser la méthode
paintComponent d’un panneau occupant toute la fenétre. Nous créons donc une classe
Panneau, dérivée de JPanel. La couleur courante est définie par une variable
couleurCourante figurant dans la fenétre et a laquelle le panneau peut accéder par une
méthode getCouleur (il a fallu fournir au constructeur du panneau la référence de la
fenétre concernée).

Le traitement d’une action sur une option consite a trouver la couleur correspondante en
explorant le tableau d’options. En fait, nous définissons a la fois une couleur et un
numeéro, ce dernier nous permettant de retrouver 1’ancienne couleur courante (ou celle
qui vient d’étre sélectionnée) lorsque se produit 1’événement correspondant a
menuDeselected. On notera que ce dernier se produit apres 1’événement Action (s’il
existe). Si I’on tient a étre indépendant de cet ordre, on peut toujours définir la
(nouvelle) couleur courante a la fois dans menuDeselected et dans actionPerformed et
en appeler repaint dans actionPerformed (ce qui n’est pas nécessaire puisqu’il sera
appelé apres menuDeselected suite a 1’ effacement du menu).

import java.awt.*;
import java.awt.event.* ;
import javax.swing.* ;
import javax.swing.event.* ;
class FenMenu extends JFrame implements ActionListener,MenuListener
{ static Color [] couleurs =
{ Color.red, Color.yellow, Color.blue, Color.green} ;
static String[] nomsCouleurs =
{ "Rouge", "Jaune", "Bleu", "Vert" } ;
public FenMenu ()
{ setTitle ("COULEURS") ; setSize (300, 150) ;

/* creation panneau occupant toute la fenetre */
panneau = new Panneau (this) ;
getContentPane().add(panneau) ;

/* creation barre des menus */
barreMenus = new JMenuBar() ;
setJMenuBar (barreMenus) ;

/* creation menu Couleur et ses options */
menuCouleur = new JMenu ("Couleur") ;
barreMenus.add(menuCouleur) ;
menuCouleur.addMenuListener (this) ;
nbCouleurs = couleurs.length ;
optionsCouleurs = new JRadioButtonMenultem [nbCouleurs] ;
ButtonGroup groupe = new ButtonGroup () ;

349

for (int 1=0 ; i<nbCouleurs ; 1i++)

{ optionsCouleurs[i] = new JRadioButtonMenuItem
(nomsCouleurs[i]) ;

menuCouleur.add (optionsCouleurs[i]) ;
optionsCouleurs[i].addActionListener (this) ;
groupe.add(optionsCouleurs[i]) ;

}

couleurCourante = couleurs [numCouleur] ;
}
public void actionPerformed (ActionEvent e)
{ Object source = e.getSource() ;
for (int 1=0 ; i<nbCouleurs ; 1i++)
if (source == optionsCouleurs[i])
{ numCouleur = 1i ;
couleurCourante = couleurs[numCouleur] ;

repaint() ; // pour forcer a repeindre l’ensemble de 1la
fenetre

b
b

public void menuSelected (MenuEvent e)
{ couleurCourante = Color.white ;
}
public void menuDeselected (MenuEvent e)
{ couleurCourante = couleurs [numCouleur] ;
}
public void menuCanceled (MenuEvent e) {}
public Color getCouleur ()
{ return couleurCourante ;
}
private Panneau panneau ;
private JMenuBar barreMenus ;
private JMenu menuCouleur ;
private JRadioButtonMenuItem optionsCouleurs[] ;
private int nbCouleurs ;
private int numCouleur=0 ;
private Color couleurCourante ;
}
class Panneau extends JPanel
{ public Panneau (FenMenu fen)
{ this.fen = fen ;

350

}

public void paintComponent (Graphics g)
{ super.paintComponent (g) ;
setBackground (fen.getCouleur()) ;

}

private FenMenu fen ;

}

public class Coull

{ public static void main (String args[])
{ FenMenu fen = new FenMenu() ;
fen.setVisible(true) ;

b
b

Si on n’appelle pas la méthode repaint dans actionPerformed, la fenétre risque de
n’étre que partiellement repeinte. En effet, lors de la fermeture du menu, Java appelle
bien paintComponent pour repeindre la fenétre, mais en se limitant a la seule partie
endommagée' (nommée souvent "rectangle invalide").

351

Synthese : choix de couleur de fond
et de forme par des menus
COMPpOSEs

Afficher un rectangle coloré de taille fixe dans une fenétre. Un menu Couleur,
constitué de deux sous-menus Fond et Forme permettra de choisir la couleur du fond
ou du rectangle dans une liste de couleurs (qui sera la méme pour les deux cas) :

Cuulers de fond et de forme MN[=E3

| Couleur
Fond »

. Forme » jaune
rouge
bleu
rose
vert

Les couleurs et leurs noms seront fournis sous forme de tableaux en arguments du
constructeur de la fenétre.

Le dessin d’un rectangle de couleur donnée se fait en appliquant au contexte
graphique concerné successivement la méthode setColor (en argument 1’objet de
type Color voulu) et la méthode fillRect (int abscisse, int ordonnee, int largeur, int
hauteur)).

Nous dessinons dans un panneau dont nous redéfinissons classiquement la méthode
paintComponent. Cela nécessite la création d’une classe spécialisée Panneau dérivée
de JPanel.

Ici, nous avons affaire a des menus composés : le menu Couleur comporte deux sous-
menus Forme et Fond (qui sont toujours des objets de type JMenu). A ces derniers, on

352

rattache des options de type JMenultem. Il nous suffit d’écouter les événements Action
qu’ils générent. Les variables couleurFond et couleurForme servent a mémoriser dans

la fenétre la derniere couleur sélectionnée. La méthode paintComponent du
accede a 1’aide des méthodes getCouleurFond et getCouleurForme.

import java.awt.*;

import java.awt.event.* ;
import javax.swing.* ;
import javax.swing.event.* ;

class FenRect extends JFrame implements ActionListener
{ public FenRect (Color [] couleurs, String [] nomsCouleurs)
{ setTitle ("Couleurs de fond et de forme") ;
setSize (350, 220) ;
this.couleurs = couleurs ;
this.nomsCouleurs = nomsCouleurs ;
/* creation barre des menus */
barreMenus = new JMenuBar() ;
setJMenuBar (barreMenus) ;
/* creation menu Couleur et sous-menus Fond et Forme */
couleur = new JMenu ("Couleur") ;
barreMenus.add (couleur) ;
menuCouleurFond = new JMenu ("Fond") ;
couleur.add (menuCouleurFond) ;
menuCouleurForme = new JMenu ("Forme") ;
couleur.add (menuCouleurForme) ;

panneau y

/* creation des options de couleur et ajout aux deux sous-menus

*/

nbCouleurs = couleurs.length ;

optionsCouleurFond = new JMenulItem [nbCouleurs] ;
optionsCouleurForme = new JMenuItem [nbCouleurs] ;
for (int 1=0 ; i<nbCouleurs ; 1i++)

{ optionsCouleurForme[i] = new JMenuItem (nomsCouleurs[i]
optionsCouleurForme[i].addActionListener (this) ;
menuCouleurForme.add (optionsCouleurForme[i]) ;
optionsCouleurFond[i] = new JMenultem (nomsCouleurs[i])
optionsCouleurFond[i].addActionListener (this) ;
menuCouleurFond.add (optionsCouleurFond[i]) ;

}

/* creation panneau de dessin */

353

)

4

panneau = new Panneau (this) ;
getContentPane().add (panneau) ;
}

public void actionPerformed (ActionEvent e)
{ Object source = e.getSource() ;

for (int 1=0 ; i<nbCouleurs ; 1i++)

{ if (source == optionsCouleurFond[i]) couleurFond =
couleurs[i] ;

if (source == optionsCouleurForme[i]) couleurForme =
couleurs[i] ;

}

panneau.repaint() ; // pour forcer a repeindre l'ensemble de la
fenetre

}

public Color getCouleurFond () { return couleurFond ; }
public Color getCouleurForme () { return couleurForme ; }
private Color[] couleurs ;

private String[] nomsCouleurs ;

private JMenuBar barreMenus ;

private Panneau panneau ;

private JMenu couleur, menuCouleurFond, menuCouleurForme ;
private JMenultem[] optionsCouleurFond, optionsCouleurForme ;
private int nbCouleurs ;

private Color couleurFond=Color.white, couleurForme=Color.black ;

}

class Panneau extends JPanel

{ private static int x=10, y=10, largeur=200, hauteur=120 ;
public Panneau (FenRect fen)

{ this.fen = fen ;

}

public void paintComponent (Graphics g)
{ super.paintComponent(g) ;
setBackground (fen.getCouleurFond()) ;
g.setColor (fen.getCouleurForme()) ;
g.fillRect (%, y, largeur, hauteur) ;
}

private FenRect fen ;

}

public class Composes

354

{ private static Color [] couleurs =
{Color.yellow, Color.red, Color.blue, Color.pink, Color.green

¥

private static String[] nomsCouleurs =

{"jaune", "rouge", "bleu", "rose", "vert" } ;
public static void main (String args[])
{ FenRect fen = new FenRect(couleurs, nomsCouleurs) ;
fen.setVisible(true) ;

}

355

Synthese : choix de couleurs et

de dimensions par des menus
surgissants

Afficher un rectangle coloré dans une fenétre. Un clic dans le rectangle fera
apparaitre un menu surgissant permettant de modifier les dimensions du rectangle ou
sa couleur. Un clic en dehors du rectangle fera apparaitre un menu surgissant
permettant de modifier la couleur du fond.

[=iMenus surgissants composes [Mi[EiMenus surgissants composes [M=E]

‘ Couleur » jaune

‘ Couleur " Dimensions » rguge

‘ Dimensions l! Hauteur bleu

Largeur rose

vert

MEI’II.IS SU[giSSﬂl’ltS cCoOmposes

jaune
i rouge
bleu
rose
vert

Les couleurs et leurs noms seront les mémes pour le fond et pour le rectangle et ils
seront fournis sous forme de tableaux en arguments du constructeur de la fenétre.

Le dessin d’un rectangle de couleur donnée se fait en appliquant au contexte
graphique concerné successivement la méthode setColor (en argument 1’objet de
type Color voulu) et la méthode fillRect (int abscisse, int ordonnee, int largeur, int
hauteur)).

Note : la résolution de cet exercice sera facilitée par celle de 1’exercice 132.

Nous dessinons dans un panneau dont nous redéfinissons classiquement la méthode

356

paintComponent. Cela nécessite la création d’une classe spécialisée Panneau dérivée
de JPanel.

Dans le constructeur de la fenétre, nous créons deux menus surgissants menuForme et
menuFond. Le premier est constitué de deux sous-menus (de type JMenu)
menuFormeDimensions et menuFormeCouleurs. Leurs options sont de type
JMenultem. Nous avons choisi d’écouter les différentes options dans la fenétre elle-
méme (les écouter dans le panneau aurait nécessité de lui fournir les références de
toutes les options concernées).

Les variables couleurFond, couleurForme, | et h servent a mémoriser dans la fenétre
les dernieres couleurs sélectionnées et les dimensions du rectangle. La méthode
paintComponent du panneau y accede a |’aide des méthodes getCouleurFond,
getCouleurForme, getLargeur et getHauteur.

Les dimensions sont lues dans des boites de saisie. On traite comme a 1’accoutumée les
exceptions de conversion.

Le déclenchement des menus surgissants a lieu en cas de clic dans le panneau dont nous
faisons son propre écouteur d’événements Mouse. Ici, I’affichage du menu est réalisé
lors du relachement du bouton attribué aux menus surgissants : nous redéfinissons
mouseReleased et nous testons le bouton concerné a [’aide de la méthode
isPopupTrigger de la classe MouseEvent. L’ objet panneau n’a besoin de connaitre que
la référence de la fenétre et celles des deux menus surgissants. Celles-ci sont
transmises au constructeur.

import java.awt.*;

import java.awt.event.* ;
import javax.swing.* ;
import javax.swing.event.* ;

class FenRect extends JFrame implements ActionListener
{ public FenRect (Color [] couleurs, String [] nomsCouleurs)
{ setTitle ("Menus surgissants composes") ;
setSize (300, 150) ;
this.couleurs = couleurs ;
this.nomsCouleurs = nomsCouleurs ;
/* creation menus surgissants Fond et Forme */
menuFond = new JPopupMenu () ;
menuForme = new JPopupMenu () ;
menuFormeCouleur = new JMenu ("Couleur") ;
menuForme.add (menuFormeCouleur) ;
menuFormeDimensions = new JMenu ("Dimensions") ;

357

menuForme.add (menuFormeDimensions) ;

/* creation des options */
nbCouleurs = couleurs.length ;
optionsCouleurFond = new JMenulItem [nbCouleurs] ;
optionsCouleurForme = new JMenulItem [nbCouleurs] ;
for (int 1=0 ; i<nbCouleurs ; 1i++)

{ optionsCouleurForme[i] = new JMenulItem (nomsCouleurs[i]) ;
optionsCouleurForme[i].addActionListener (this) ;
menuFormeCouleur.add (optionsCouleurForme[i]) ;
optionsCouleurFond[i] = new JMenuItem (nomsCouleurs[i]) ;
optionsCouleurFond[i].addActionListener (this) ;
menuFond.add (optionsCouleurFond[1i]) ;

}
optionHauteur = new JMenuItem ("Hauteur") ;
optionLargeur = new JMenuItem ("Largeur") ;

menuFormeDimensions.add (optionHauteur) ;

menuFormeDimensions.add (optionLargeur) ;

optionHauteur.addActionListener (this) ;

optionLargeur.addActionListener (this) ;
/* creation panneau de dessin */

panneau = new Panneau (this, menuForme, menuFond) ;

panneau.addMouselListener (panneau) ;

getContentPane().add (panneau) ;

}

public void actionPerformed (ActionEvent e)

{ Object source = e.getSource() ;

for (int 1=0 ; i<nbCouleurs ; 1i++)

{ if (source == optionsCouleurFond[i]) couleurFond
couleurs[i] ;
if (source == optionsCouleurForme[i]) couleurForme
couleurs[i] ;
}
if ((source == optionLargeur) || (source == optionHauteur))

{ int valeur=0 ; String question ;
boolean ok=false ;

if (source == optionLargeur) question = "Nouvelle largeur ?"
else question = "Nouvelle hauteur ?" ;

String rep = JOptionPane.showInputDialog (null, question) ;

try

{ valeur = Integer.parseInt (rep) ;

358

ok = true ;

}

catch (NumberFormatException ex) { }

if (ok) if (source == optionLargeur) 1 = valeur ;
else h = valeur ;

}

panneau.repaint() ; // pour forcer a repeindre l'ensemble de la
fenetre

}

public Color getCouleurFond () { return couleurFond ; }
public Color getCouleurForme () { return couleurForme ; }
public int getLargeur () { return 1 ; }

public int getHauteur () { return h ; }

private Color[] couleurs ;
private String[] nomsCouleurs ;
private Panneau panneau ;
private JPopupMenu menuFond, menuForme ;
private JMenu menuFormeCouleur, menuFormeDimensions ;
private JMenultem[] optionsCouleurFond, optionsCouleurForme ;
private JMenultem optionHauteur, optionLargeur ;
private int nbCouleurs ;
private Color couleurFond=Color.white, couleurForme=Color.black ;
private int 1=100, h=50 ;
}
class Panneau extends JPanel implements MouselListener
{ private static int x=10, y=10 ;

public Panneau (FenRect fen, JPopupMenu menuForme, JPopupMenu
menuFond)

{ this.fen = fen ;

this.menuForme = menuForme ;
this.menuFond = menuFond ;
}
public void mouseReleased (MouseEvent e)
{ if('e.isPopupTrigger ()) return ;

int xClic = e.getX(), yClic = e.getY() ;

if ((xClic>=x) && (xClic<=x+largeur) && (yClic>=y) &&
(yClic<=y+hauteur))

menuForme.show (fen, xClic, yClic) ;
else

359

menuFond.show (fen, xClic, yClic) ;

}

public void mousePressed (MouseEvent e) {}
public void mouseClicked (MouseEvent e) {}
public void mouseEntered (MouseEvent e) {}
public void mouseExited (MouseEvent e) {}

public void paintComponent (Graphics g)
{ super.paintComponent(g) ;
setBackground (fen.getCouleurFond()) ;
g.setColor (fen.getCouleurForme()) ;
largeur = fen.getLargeur() ;

hauteur = fen.getHauteur() ;
g.fillRect (X%, y, largeur, hauteur) ;

}

private FenRect fen ;

private int largeur, hauteur ;

private JPopupMenu menuForme, menuFond ;

}

public class Compsurg
{ private static Color [] couleurs =
{Color.yellow, Color.red, Color.blue, Color.pink, Color.green

T

private static String[] nomsCouleurs =
{"jaune", "rouge", "bleu", "rose", "vert" } ;
public static void main (String args[])
{ FenRect fen = new FenRect(couleurs, nomsCouleurs) ;
fen.setVisible(true) ;
}
}

1. Plus précisément au plus petit rectangle contenant la partie endommageée.

360

Chapitre 13

Les evenements de bas niveau

N]

= !

- \&a

Connaissances requises

« Evénements de type MouseEvent liés aux boutons de la souris (rappel) ;
méthodes mousePressed, mouseReleased et mouseClicked

* Identification du bouton de la souris ; méthodes getModifiers et constantes
correspondantes InputEvent. BUTTON1_MASK, InputEvent. BUTTON2_MASK et
InputEvent. BUTTON3_MASK

* Gestion des clics multiples ; méthode getClickCount

* Gestion des déplacements de la souris ; méthodes mouseEntered,
mouseEXxited, mouseMoved et mouseDragged

« Evénements de type KeyEvent ; méthodes keyPressed, keyReleased et
keyTyped ; identification d’une touche par son code de touche virtuelle
(méthode getKeyCode) ou par le caractere correspondant (méthode
getKeyChar) ; connaissance de 1’état des touches modificatrices (méthodes
isXXXDown et getModifiers) ; source d’un événement clavier

361

Identification des boutons de la
SOUris

Afficher en permanence un segment dans une fenétre. Son origine sera définie par un
clic sur le bouton de gauche de la souris et elle se modifiera a chaque nouveau clic
sur ce méme bouton. Son extrémité sera définie de la méme maniére avec le bouton
de droite :

p=1 SEGMENT =] E3

-

Pour obtenir la permanence du dessin, nous tracerons notre segment dans un panneau.
Ici, il est plus simple d’écouter les clics (mouseClicked) dans le panneau lui-méme.
Pour identifier le bouton de la souris, nous utilisons la méthode getModifiers de la
classe MouseEvent. Elle fournit un entier dans lequel un bit de rang donné, associé a
chacun des boutons, prend la valeur 1. La classe InputEvent contient des constantes
qu’on peut utiliser comme masque pour faciliter les choses ; ici, ce sont les constantes
BUTTON1_MASK (bouton de gauche) et BUTTON3_MASK (bouton de droite) qui nous
intéressent.

Le segment est défini par les coordonnées de son origine (xOr et yOr) et celles de son
extrémité (xExt et yExt). Deux indicateurs booléens orConnue et extConnue permettent
de savoir si ces informations sont disponibles (elles sont en fait placées a false au
début du programme). Le dessin proprement dit est réalisé dans la méthode
paintComponent qui exploite ces différentes informations. Notez qu’il est nécessaire
d’appeler repaint apres un clic gauche ou droite, afin de provoquer 1’appel de
paintComponent.

362

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;
class MaFenetre extends JFrame
{ public MaFenetre ()
{ setTitle ("SEGMENT") ;
setSize (300, 150) ;
pan = new Panneau () ;
getContentPane().add (pan) ;
pan.addMouselListener (pan) ;

}

private Panneau pan ;
}
class Panneau extends JPanel implements MouselListener
{ public void paintComponent (Graphics g)
{ super.paintComponent (g) ;
if (orConnue && extConnue) g.drawLine (xOr, yOr, XExt, yExt) ;
}
public void mousePressed (MouseEvent e)
{ int x=e.getX(), y=e.getY() ;
int modifieurs = e.getModifiers() ;
if ((modifieurs & InputEvent.BUTTON1_MASK) != 0)
{ /* clic bouton gauche */
x0r = x ; yor =y ,
orConnue = true ;
repaint() ;
}
if ((modifieurs & InputEvent.BUTTON3_MASK) != 0)
{ /* clic bouton droite */
XEXt = x ; YyExt =vy ,
extConnue = true ;
repaint() ;
}
}

public void mouseReleased (MouseEvent e) {}
public void mouseClicked (MouseEvent e) {}
public void mouseEntered (MouseEvent e) {}
public void mouseExited (MouseEvent e) {}
private int xOr, yOr, xExt, yExt ;

363

private boolean orConnue=false, extConnue=false
}
public class Segments
{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre()
fen.setVisible (true)
}
}

4

4

14

364

Vrais doubles-clics

Java ne dispose que d’un seul compteur de clics pour les différents boutons de la
souris. Dans ces conditions, il n’est pas possible de distinguer un véritable double-
clic de deux clics successifs sur deux boutons différents. Ecrire un programme qui
détecte les "vrais" doubles-clics sur le bouton de gauche et qui affiche alors un
message en fenétre console.

Nous ferons naturellement de la fenétre son propre écouteur d’événements souris. Nous
utiliserons :

» la méthode getClickCount qui fournit le nombre de clics (rapprochés) successifs,

» la méthode getModifiers pour identifier le bouton de la souris.

Un indicateur booléen clicGauche indique si le dernier clic concernait le bouton de
gauche.

Il faut bien prendre garde a :

 mettre 1’indicateur clicGauche a false apres un double-clic gauche (vrai ou faux)
ainsi qu’apres tout clic sur un autre bouton,

» mettre I’indicateur clicGauche a true apres un simple clic gauche.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

class MaFenetre extends JFrame implements MouselListener
{ public MaFenetre ()

{ setTitle ("DOUBLES CLICS") ;

setSize (300, 150) ;

clicGauche = false ;

addMouselListener (this) ;

}

public void mousePressed (MouseEvent e) {}

365

public void mouseReleased (MouseEvent e) {}

public void mouseClicked (MouseEvent e)
{ int modifieurs = e.getModifiers () ;
if ((modifieurs & InputEvent.BUTTON1_MASK) != 0)
/* ici, on a affaire a un clic gauche */
{ if ((e.getClickCount() == 2) && clicGauche)
{ System.out.println ("Double clic gauche") ;
clicGauche = false ;

}
else clicGauche = true ;
}
else clicGauche = false ;
}

public void mouseEntered (MouseEvent e) {}
public void mouseExited (MouseEvent e) {}
private boolean clicGauche ;

}

public class DoubClic

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible (true) ;

b
b

366

Suivi des déplacements de la
souris (1)

Créer une fenétre dotée d’un bouton. Afficher en fenétre console des messages de
suivi des déplacements de la souris comme dans cet exemple :

la souris entre dans la fenetre

la souris quitte la fenetre

la souris entre dans le bouton

la souris quitte le bouton

la souris entre dans la fenetre

la souris quitte la fenetre

la souris entre dans la fenetre

la souris quitte la fenetre

la souris entre dans le bouton

la souris quitte le bouton

la souris entre dans la fenetre

la souris quitte la fenetre

Il nous suffit de suivre les événements mouseEntered et mouseExited ayant pour source
le bouton ou la fenétre.

Ici, nous utilisons pour les deux un méme écouteur, a savoir la fenétre elle-méme. Nous
y redéfinissons les six méthodes prévues par 1’interface MouseListener ; ici ce sont
MouseEntered et MouseExited qui nous intéressent. Dans chacune de ces deux
méthodes, getSource nous permet d’identifier la source de I’ événement.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

class MaFenetre extends JFrame implements MouselListener
{ public MaFenetre ()

{ setTitle ("Evenements souris") ;

setSize (300, 150) ;

367

contenu = getContentPane() ;
contenu.setlLayout (new FlowLayout()) ;
addMouselListener (this) ;

bouton = new JButton ("A") ;
contenu.add (bouton) ;
bouton.addMouselListener (this) ;

}

public void mousePressed (MouseEvent e) {}
public void mouseReleased (MouseEvent e) {}
public void mouseClicked (MouseEvent e) {}

public void mouseEntered (MouseEvent e)

{ if (e.getSource() == this)
System.out.println ("la souris entre dans la fenetre") ;
if (e.getSource() == bouton)

System.out.println ("la souris entre dans le bouton") ;

}

public void mouseExited (MouseEvent e)

{ if (e.getSource() == this)
System.out.println ("la souris quitte la fenetre") ;
if (e.getSource() == bouton)

System.out.println ("la souris quitte le bouton") ;

}

private JButton bouton ;

private Container contenu ;
}
public class DpSour
{ public static void main (String args[])

{ MaFenetre fen = new MaFenetre() ;

fen.setVisible (true) ;

}

[’exemple d’exécution de 1’énoncé montre bien que lorsque la souris entre dans le
bouton, elle sort de la fenétre.

368

Voici une autre solution dans laquelle la fenétre et le bouton ont été chacun doté d’un
écouteur objet d’une classe anonyme (implémentant 1’interface MouseAdapter). Ici, il
n’est plus nécessaire de tester la source d’un événement.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;
class MaFenetre extends JFrame
{ public MaFenetre ()
{ setTitle ("Evenements souris") ;
setSize (300, 150) ;
contenu = getContentPane() ;
contenu.setlLayout (new FlowLayout()) ;
addMouselListener (new MouseAdapter()
{ public void mouseEntered (MouseEvent e)
{ System.out.println ("la souris entre dans la fenetre") ;
}
public void mouseExited (MouseEvent e)
{ System.out.println ("la souris quitte la fenetre") ;

}
1)

bouton = new JButton ("A") ;
contenu.add (bouton) ;
bouton.addMouselListener (new MouseAdapter()
{ public void mouseEntered (MouseEvent e)
{ System.out.println ("la souris entre dans le bouton") ;
}
public void mouseExited (MouseEvent e)
{ System.out.println ("la souris quitte le bouton") ;

}
1)
}

private JButton bouton ;

private Container contenu ;

}

public class DpSourb

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible (true) ;

369

Voici une troisiéme solution dans laquelle la fenétre et le bouton partagent le méme
écouteur, la encore objet d’une classe anonyme implémentant 1’interface
MouseAdapter.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

class MaFenetre extends JFrame
{ public MaFenetre ()
{ setTitle ("Evenements souris") ;
setSize (300, 150) ;
contenu = getContentPane() ;
contenu.setlLayout (new FlowLayout()) ;
MouseAdapter ecout = new MouseAdapter()
{ public void mouseEntered (MouseEvent e)
{ if (e.getSource() == contenu)
System.out.println ("la souris entre dans la fenetre") ;
if (e.getSource() == bouton)
System.out.println ("la souris entre dans le bouton") ;
}
public void mouseExited (MouseEvent e)
{ if (e.getSource() == contenu)
System.out.println ("la souris quitte la fenetre") ;
if (e.getSource() == bouton)
System.out.println ("la souris quitte le bouton") ;

}
Y
contenu.addMouselListener (ecout) ;
bouton = new JButton ("A") ;
contenu.add (bouton) ;
bouton.addMouselListener (ecout) ;
}
private JButton bouton ;
private Container contenu ;

370

}

public class DpSoura

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible (true) ;

}
}
Ici, par souci de simplicité, nous avons intercepté les événements ayant pour source
non plus la fenétre elle-méme, mais son contenu. En effet, dans la classe anonyme de
I’écouteur, on ne peut plus identifier la fenétre par this. On pourrait le faire en
conservant la référence de la fenétre dans un champ.

371

Suivi des deplacements de la souris
(2)

Réaliser une fenétre disposant d’un bouton marqué CREATION_BOUTONS
permettant de créer dynamiquement des boutons marqués B1, B2, B3...

b=3 Evenements souris Mi=]1E3

CREATION_BOUTONS B1 ‘ B2 ‘
o3 ||| 5 || Bs || 87 |
BS

Lorsque la souris "passe" sur 1’un de ces boutons, il se colore en fonction de son
numéro (par exemple, le premier en rouge, le second en jaune, le troisieme en vert,
le quatrieme en bleuy, le cinquieme a nouveau en rouge...) ; le bouton se colore en
blanc lorsque la souris en sort

Ici, nous faisons de la fenétre 1’unique écouteur des différentes événements :
« Action pour le bouton de création,

» Mouse pour les boutons dynamiques.
Nous nous contentons du gestionnaire par défaut de la fenétre.

Pour identifier le bouton concerné par un événement souris, nous aurions pu utiliser la
référence a la source fournie par getSource. Cela aurait toutefois nécessité de
conserver les références de tous les boutons créés dynamiquement. Ici, nous avons
choisi d’exploiter la chaine de commande de la source ; elle s’obtient a 1’aide de la
méthode getActionCommand qui figure dans toutes les classes dérivées de
AbstractButton, donc en particulier dans JButton'.

import javax.swing.* ;

372

import java.awt.* ;
import java.awt.event.* ;

class MaFenetre extends JFrame implements MouselListener,
ActionListener
{ static final Color <couleurs[] = {Color.red, Color.yellow,

Color.green,
Color.blue} ;
public MaFenetre ()
{ setTitle ("Evenements souris") ; setSize (300, 150) ;
contenu = getContentPane() ;
contenu.setlLayout (new FlowLayout()) ;
boutonCreation = new JButton ("CREATION_BOUTONS") ;
contenu.add (boutonCreation) ;
boutonCreation.addActionListener (this) ;

}
public void actionPerformed (ActionEvent e)
{ if (e.getSource() == boutonCreation)

{ numBouton++ ;
JButton b = new JButton ("B"+numBouton) ;
contenu.add (b) ;
b.addMouselListener (this) ;
}
}

public void mousePressed (MouseEvent e) {}
public void mouseReleased (MouseEvent e) {}
public void mouseClicked (MouseEvent e) {}
public void mouseEntered (MouseEvent e)
{ Object source = e.getSource () ;
JButton bSource ;
if (source instanceof JButton) // par precaution
{ bSource = (JButton)source ;
String ch = bSource.getActionCommand() ;
if (ch.charAt(0@) == 'B')

{ int n = Integer.parseInt (ch.substring(1)) ;
int numCoul = n % couleurs.length ;
bSource.setBackground (couleurs[numCoul]) ;

}

}
}

public void mouseExited (MouseEvent e)

373

{ Object source = e.getSource () ;
JButton bSource ;
if (source instanceof JButton) // par precaution
{ bSource = (JButton)source ;
String ch = bSource.getActionCommand()
if (ch.charAt(0@) == 'B')
bSource.setBackground (Color.white) ;
}
}

private Container contenu ;

private JButton boutonCreation ;

private int numBouton = 0 ;

}

public class BtDynCol

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible (true) ;

}

}

4

Dans les méthodes mouseEntered et mouseExited, nous nous sommes assurés que la
source était bien d’un type JButton (opérateur instanceof) avant de lui appliquer la
méthode getActionCommand. Ce n’était pas indispensable ici, mais cela pourrait le
devenir si 1’on modifiait le programme en écoutant les événements souris générés par
d’autres composants.

374

Dessin par le clavier (1)

Ecrire un programme permettant de dessiner a la volée dans une fenétre en utilisant
les touches fléchées du clavier :

‘—_,LmL|—|—'7_
L —
il

Le dessin commencera en un point donné de la fenétre (ici 20 x 20). On pourra fixer
un incrément de plusieurs pixels (ici 5) pour chaque appui sur une touche.

Comme il s’agit ici de dessin a la volée, nous aurions pu opérer directement sur la
fenétre (ou plutot sur son contenu). Mais, pour conserver au programme un caractere
plus général, nous avons préféré dessiner sur un panneau.

La position de début du dessin est fixée par les valeurs initiales des variables x et y qui
désignent ensuite la position courante de fin de dessin. I’incrément du déplacement est
fixé par les constantes incx et incy.

Nous pouvons faire de la fenétre 1’écouteur des événements clavier. En effet, ceux-ci
seront transmis a la fois au panneau et a son conteneur, c’est-a-dire la fenétre. Ici, nous
redéfinissons la méthode keyPressed, ce qui revient a dire que nous décidons que les
déplacements seront effectués lors de 1’appui des touches. La méthode getKeyCode de
la classe KeyEvent nous permet de connaitre le code de touche virtuelle concerné.
Nous utilisons les constantes telles que KeyEvent.KEY_UP pour identifier les touches
fléchées.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

375

class MaFenetre extends JFrame implements KeylListener
{ static int incx=5,

}

public MaFenetre ()

incy=5 ;

{ setTitle ("DESSIN AU CLAVIER") ;

addKeylListener (this)
pan = new JPanel () ;

4

getContentPane().add (pan) ;

}

setSize (350, 150) ;

public void keyPressed (KeyEvent e)
{ int code = e.getKeyCode () ;

switch (code)

{ case KeyEvent.VK_UP
break ;

case KeyEvent.VK_DOWN

break ;

case KeyEvent.VK_LEFT

break ;

case KeyEvent.VK_RIGHT

break ;

}
if (bouge)

dx = 0 ; dy
dx = 0 ; dy
dx = -incx ;

dx = incx ;

{ Graphics g = pan.getGraphics()

g.drawLine (x, y, x+dx,

g.dispose() ;

x += dx ; y +=dy ;
}
}

y+dy)

14

14

public void keyReleased (KeyEvent e) {}
public void keyTyped (KeyEvent e) {}

private JPanel pan ;
private int x=20, y=20
private int dx, dy ;
private boolean bouge ;

public class DesClav
{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre()

}

fen.setVisible (true)

}

4

4

376

14

-incy

dy

dy

incy

0

4

4

4

bouge
bouge
bouge

bouge

true

true

true

true

Synthese : dessin par le clavier (2)

Modifier le programme de 1’exercice, de maniere qu’on puisse interrompre le
dessin et le reprendre en un autre point :

=4 DESSIN AU CLAVIER

L]
=
1

=
|
G

Un motif (en forme de x) permettra de visualiser la position courante du "curseur".
Les touches fléchées agiront toujours sur la position du curseur ; en revanche, le
dessin n’aura lieu que si la touche Shift est enfoncée.

Note : cet exercice nécessite (en plus des prérequis mentionnés en début de ce
chapitre et du précédent) de savoir ce qu’est un "mode de dessin" et comment le
modifier.

Les touches fléchées provoqueront donc toujours le déplacement du curseur. Pour ce
faire, il est nécessaire de pouvoir effacer le curseur de son ancienne position et de le
tracer dans sa nouvelle position. Pour y parvenir, le plus simple consiste a utiliser le
mode de dessin dit XOR, en le paramétrant par la couleur de fond du panneau. Dans ce
cas, en effet :

* le dessin sur une zone ayant la couleur de fond est fait avec la couleur courante,

* le méme dessin effectué deux fois de suite efface le premier.

En ce qui concerne 1’éventuel tracé du trait, il faut cette fois tenir compte de 1’état de la
touche Shift. On I’obtient avec la méthode getModifiers qui fournit un entier dans
lequel un bit de rang InputEvent.SHIFT_MASK correspond a la touche Shift.

On notera que si 1’on tragait ce trait dans le mode XOR, on effacerait le point situé a

377

I’intersection des deux segments représentant le curseur. On pourrait éventuellement
prévoir d’afficher a nouveau ce point mais cette démarche serait dépendante du motif
utilisé pour le curseur. Le plus raisonnable consiste a afficher le trait dans le mode de
dessin normal qu’on obtient par appel de setPaintMode.

Initialement, aucun curseur ne s’affiche dans la fenétre. En effet, nous ne pouvons pas
effectuer ce tracé dans le constructeur de la fenétre car aucun contexte graphique ne
serait encore disponible pour le panneau (la méthode getGraphics fournirait la valeur
null). Par souci de simplicité, nous nous sommes donc contentés d’afficher ce curseur
apres la premiére action sur une touche fléchée (nous recourons a un indicateur booléen
nommeé debut).

import javax.swing.* ;

import java.awt.* ;

import java.awt.event.* ;

class MaFenetre extends JFrame implements KeylListener
{ static int incx=5, incy=5 ;

public MaFenetre ()

{ setTitle ("DESSIN AU CLAVIER") ;
setSize (350, 150) ;
addKeylListener (this) ;
pan = new JPanel () ;
getContentPane().add (pan) ;

}

public void keyPressed (KeyEvent e)

{ int code = e.getKeyCode () ;
bouge = false ;
switch (code)

{ case KeyEvent.VK_UP : dx = 0 ; dy = -incy ; bouge = true ;
break ;

case KeyEvent.VK_DOWN : dx = 0 ; dy = 1incy ; bouge = true ;
break ;

case KeyEvent.VK_LEFT : dx = -incx ; dy
break ;

case KeyEvent.VK_RIGHT : dx = incx ; dy
break ;

}

if (bouge)

{ Graphics g = pan.getGraphics() ;
g.setXORMode (pan.getBackground()) ;

/* efface l'ancien curseur (s'il existe) et affiche le nouveau
*/

© ; bouge = true ;

= 0 ; bouge = true ;

378

if (debut) debut = false ;
else afficheCurseur (g, X, y) ;
afficheCurseur (g, x+dx, y+dy) ;
g.setPaintMode() ;
/* on ne trace que si la touche Shift est enfoncee */
if ((e.getModifiers() & InputEvent.SHIFT_MASK) != 0)
g.drawLine (x, y, x+dx, y+dy) ;

X += dx ;

y +=dy ;

g.dispose() ;
¥

}

private void afficheCurseur (Graphics g, int x, int y)
{ int dx=2, dy=2 ;

g.drawLine (x-dx, y-dy, x+dx, y+dy) ;
g.drawLine (x-dx, y+dy, x+dx, y-dy) ;
}

public void keyReleased (KeyEvent e) {}
public void keyTyped (KeyEvent e) {}
private JPanel pan ;

private int x=20, y=20 ;

private int dx, dy ;

private boolean bouge ;

private boolean debut = true ;

}

public class DesClav2

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible (true) ;

b
b

379

Sélection d’un composant par le
clavier

Afficher dans une fenétre n boutons (n<=9) étiquettés de 1 a n. Faire en sorte que la
frappe de 1’une des touches 1 a n sélectionne le bouton de numéro n (lui donne le
focus).

SELECTIONS PAR CLAVIER M[=E

BOUTON 1 BOUTON2 || BOUTON3
BOUTON4 || BOUTONS || BOUTONS®
BOUTON 7

Nous introduisons classiquement les boutons dans la fenétre, en conservant leurs
références dans un tableau boutons. Nous faisons de la fenétre son propre écouteur
d’événements clavier et nous redéfinissons les méthodes keyPressed, keyReleased et
keyTyped (seule la derniéere nous intéresse ici).

Pour forcer le focus sur un bouton, nous utilisons la méthode requestFocus.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

class MaFenetre extends JFrame implements KeylListener
{ private static int nBoutons = 7 ;

public MaFenetre ()

{ setTitle ("SELECTIONS PAR CLAVIER") ;

setSize (350, 150) ;

Container contenu = getContentPane() ;

380

contenu.setlLayout (new FlowLayout()) ;

addKeylListener (this) ; // attention : ajouter a la fenetre, pas
au contenu

boutons = new JButton [nBoutons]
for (int 1=0 ; i<nBoutons ; i++)
{ boutons[i] = new JButton ("BOUTON "+(i+1))
contenu.add(boutons[i])
}

}

public void keyPressed (KeyEvent e) {}

public void keyReleased (KeyEvent e) {}

public void keyTyped (KeyEvent e)

{ char c = e.getKeyChar() ;

int num = c -'0'

14

I4

4

if ((num>0) && (num<=nBoutons))
boutons[num-1].requestFocus()
}

private JButton boutons[]

}

/
4

public class SelClav

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre()
fen.setVisible (true)
}

}

/

14

381

Mise en evidence d’un
composant selectionné

Afficher dans une fenétre un certain nombre de boutons de couleur jaune. Faire en
sorte que lorsqu’un bouton prend le focus, il se colore en rouge.

SELECTIONS COLOREES ==

BOUTON1 | BOUTON2 || BOUTON3 |
Boutons || Boutons | [ECETONGN
BOUTON7 || BOUTONS

Ici, nous faisons de la fenétre I’écouteur des événements Focus générés par les
différents boutons. Nous redéfinissons les méthodes focusGained et focusLost de
maniere a modifier comme voulu la couleur du bouton.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;

class MaFenetre extends JFrame implements FocusListener
{ private static int nBoutons = 8 ;

private static Color coulRepos = Color.yellow, coulSelec =
Color.red ;

public MaFenetre ()
{ setTitle ("SELECTIONS COLOREES") ;
setSize (350, 150) ;
Container contenu = getContentPane() ;
contenu.setlLayout (new FlowLayout()) ;
for (int 1=0 ; i<nBoutons ; i++)

382

{ bouton = new JButton ("BOUTON "+(i+1))
contenu.add(bouton) ;
bouton.addFocusListener (this) ;
bouton.setBackground (coulRepos) ;

}

}

public void focusGained (FocusEvent e)
{ Object source = e.getSource() ;
if (source instanceof JButton)
{ JButton bSource = (JButton) source ;
bSource.setBackground (coulSelec)
}
}

4

l4

public void focusLost (FocusEvent e)
{ Object source = e.getSource() ;
if (source instanceof JButton)
{ JButton bSource = (JButton) source ;
bSource.setBackground (coulRepos)
}
}
private JButton bouton ;

}

l4

public class SelecCol

{ public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible (true) ;

}

}

1. Bien qu’elle fournisse le méme résultat, il s’agit bien d’'une méthode différente de getActionCommand de la
classe ActionEvent.

383

Chapitre 14

Les applets

Wu-,u?%.
' '._.---

= ,_ —
 \& |

Connaissances requises

* La classe JApplet ; les méthodes init, start, stop et destroy ; le gestionnaire
par défaut

« Ecriture d’un fichier HTML permettant de lancer une applet ; informations
code, width et height

» Transmission d’informations a une applet par le fichier HTML et récupération
par la méthode getParameter

» Transformation d’une application en une applet

384

Comptage des arrets d’une
applet

Réaliser une applet affichant en permanence le nombre de fois ou elle a été
interrompue.

Le nombre de fois ou 1’applet a été interrompue peut s’obtenir en comptant le nombre
de fois ou sa méthode stop a été appelée (avec la méthode start, on obtiendrait la
méme chose a une unité pres). Un compteur est initialisé a 0 dans sa méthode init et
incrémenté de 1 a chaque appel de stop. D’autre part, a chaque appel de stop, il faut
actualiser le contenu d’un objet étiquette (JLabel) indiquant la valeur de ce compteur.
Cet objet est ajouté par add au contenu de 1’applet, sachant que son gestionnaire par
défaut (BorderLayout) nous convient ici.

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;
public class Compteur extends JApplet // ne pas oublier public
{ public void init ()
{ valeurCompteur = new JLabel (texte + compteur) ;
getContentPane().add(valeurCompteur) ;
}
public void stop ()
{ compteur++ ;
valeurCompteur.setText (texte + compteur) ;
}
private JLabel valeurCompteur ;
private int compteur = 0 ;
private String texte = "Nombre d'arrets =" ;

}

Voici un exemple de fichier HTML permettant de lancer cette applet' soit au sein d’un
navigateur, soit dans une page Web (limitée alors ici a I’applet et ne disposant pas de

385

titre) :

HTML>
<BODY>
<APPLET
CODE = "Compteur.class"
WIDTH = 250
HEIGHT = 120
>
</APPLET>
</BODY>
</HTML>

Voici un exemple d’exécution dans un visualisateur d’applet :

Hombre d'arrets =3

Applet started.

=4 Applet Viewer: Compte...
Applet

olx]

386

Dessin dans une applet

Réaliser une applet qui affiche en permanence le dessin suivant (étoile dans un
cercle) de taille fixe :

f=1 Applet Vie.. of x|

Applet

X

PRV

Applet started.

Ecrire un exemple de fichier HTML de lancement de cette applet.

Afin d’en assurer la permanence, le dessin est réalisé dans un panneau dont on redéfinit
la méthode paintComponent.

Dans la méthode init de 1’applet, on crée le panneau et on le rattache par add au
contenu de 1’applet fourni par la méthode getContentPane (on procede exactement
comme dans le constructeur d’une fenétre).

Les dimensions du dessin sont définies par les constantes xc, yc (coordonnées du centre
du cercle) et rayon de la classe Panneau.

Le tracé de 1’étoile est réalisé par une boucle dessinant successivement chacun de ses 6
segments. La variable angle correspond a 1’angle que forme avec 1’axe des abcisses le
rayon passant par 1’origine de chacun des segments.

import java.awt.* ;
import javax.swing.* ;

387

public class AppEtoil extends JApplet // ne pas oublier public
{ public void init ()

{ Container contenu = getContentPane() ;

pan = new Panneau () ;

contenu.add (pan) ;

}

private Panneau pan ;

}

class Panneau extends JPanel
{ private static int xc = 80, yc = 80, rayon =60 ;
public void paintComponent (Graphics g)
{ super.paintComponent (g) ;
/* trace du cercle */
g.drawOval (xc-rayon, yc-rayon, 2*rayon, 2*rayon) ;
/* trace des 6 segments de l'etoile */
double angle, xd, xf, yd, yf ;
int i ;
{ for (i=0, angle=Math.PI/6. ; i<6 ; i++, angle+= Math.PI/3)
{ xd = xc + rayon*Math.cos(angle) ;
yd = yc - rayon*Math.sin(angle) ;
xf Xc + rayon*Math.cos(angle+2*Math.PI/3) ;
yf = yc - rayon*Math.sin(angle+2*Math.PI/3) ;
g.drawLine ((int)xd, (int)yd, (int)xf, (int)yf) ;
}
}
}
}

Voici un exemple de fichier HTML de lancement de 1’applet? :

<HTML>

<BODY>
<APPLET CODE = "AppEtoil.class" WIDTH = 200 HEIGHT = 150>
</APPLET>

</BODY>

</HTML>

Dans notre précédente solution, les coordonnées des segments sont recalculées a

388

chaque appel de paintComponent. On peut en réalité profiter du fait que 1’image est de
taille fixe pour n’effectuer qu’une seule fois 1’essentiel des calculs, par exemple dans
le constructeur du panneau :

import java.awt.* ;
import javax.swing.* ;

public class AppEtoib extends JApplet // ne pas oublier public
{ public void init ()

{ Container contenu = getContentPane() ;

pan = new Panneau () ;

contenu.add (pan) ;

}

private Panneau pan ;

}

class Panneau extends JPanel

{ private static int xc = 80, yc = 80, rayon =60 ;
public Panneau ()
{ xd = new int[6] ;

yd = new int[6] ;
xf = new int[6] ;
yf = new int[6] ;

/* calculs des coordonnes des origines et extremites des 6
segments */

double angle ;

int i ;

for (i=0, angle=Math.PI/6. ; i<6 ; i++, angle+= Math.PI/3)
{ xd[1i] = (int) (xc + rayon*Math.cos(angle)) ;

yd[i] = (int) (yc - rayon*Math.sin(angle)) ;
xf[1i] = (int) (xc + rayon*Math.cos(angle+2*Math.PI/3)) ;
yf[i] = (int) (yc - rayon*Math.sin(angle+2*Math.PI/3)) ;
}
}

public void paintComponent (Graphics g)

{ super.paintComponent (g) ;
/* trace du cercle */

g.drawOval (xc-rayon, yc-rayon, 2*rayon, 2*rayon) ;
/* trace des 6 segments de l'etoile */

for (int 1=0 ; 1<6 ; 1i++)

389

g.drawLine (xd[i], yd[i], xf[i], yf[i]) ;

}
private int[] xd, yd, xf, yf ;

}

390

Synthese : dessin parametreé
dans une applet

Réaliser une applet qui affiche en permanence un rectangle coloré dont les
dimensions et la couleur sont fournies par des parametres figurant dans le fichier
HTML de lancement :

Applet started.

Le rectangle sera placé au centre de I’applet dont on supposera que la taille
n’évolue pas®’. Donner un exemple de fichier HTML permettant de lancer cette
applet.

a. Les visualisateurs d’applet autorisent cette modification de taille, mais pas les navigateurs.

Le rectangle est dessiné dans un panneau dont on redéfinit la méthode paintComponent
pour assurer la permanence du dessin. Dans 1’objet applet, on récupere les valeurs des
parametres figurant dans le fichier HTML. Rappelons que ces derniers sont identifiés
par un nom (chaine dans laquelle la casse n’est pas significative) et une valeur (chaine
également). On récupere la valeur d’un parametre a 1’aide de la méthode getParameter
a laquelle on fournit en argument le nom du parametre voulu.

En cas de besoin, les dimensions de I’applet (de nom width et height) peuvent
également étre récupérés de cette maniere. C’est ce qui nous permet ici de calculer la
position du rectangle dans la fenétre de 1’applet.

391

Si les valeurs de ces parametres ne sont pas présentes dans le fichier HTML ou si elles
ne sont pas convertibles en un entier, nous attribuons au rectangle des dimensions par
défaut (celles de I’applet ne peuvent pas étre incorrectes, sinon 1’applet ne
s’exécuterait pas).

La "valeur" d’une couleur est définie par une chaine représentant son nom (rouge,
vert...). On lui fait correspondre un objet de type Color a 1’aide de deux tableaux, 1’un
de type String contenant les noms de couleur, I’autre de type Color contenant les
couleurs associées.

La communication entre 1’applet et le panneau se fait par des méthodes d’acces de
1’applet.

import javax.swing.* ;

import java.awt.* ;

import java.awt.event.* ;

public class AppRect extends JApplet // ne pas oublier public
{ String nomsCouleurs[] = {"rouge", "vert", "bleu", "jaune" } ;

Color couleurs|] = {Color.red, Color.green, Color.blue,
Color.yellow} ;

public void init ()
{ Container contenu = getContentPane () ;
pan = new Panneau (this) ;

contenu.add (pan) ; // avec le gestionnaire BorderlLayout, le
panneau

// occupe toute la fenetre

/* recuperation parametres dimension applet, dimension rectangle,
couleur */

String chLargeurApplet getParameter ("width") ;

String chHauteurApplet getParameter ("height") ;

String chLargeurRect = getParameter ("Largeur") ;

String chHauteurRect = getParameter ("Hauteur") ;

try

{ largeurApplet = Integer.parseInt (chLargeurApplet) ;
hauteurApplet = Integer.parseInt (chHauteurApplet) ;
largeurRect = Integer.parseInt (chLargeurRect) ;
hauteurRect = Integer.parseInt (chHauteurRect) ;

}

catch (NumberFormatException ex)

{ /* on attribue des dimensions par defaut pour le rectangle */

/* (celles de 1l'applet sont toujours bonnes) */

largeurRect = 80 ; hauteurRect = 50 ;

392

}

nomCouleur = getParameter ("Couleur") ;

couleur = Color.black ; // couleur par defaut

for (int i=0 ; i<nomsCouleurs.length ; i++)

{ if (nomCouleur.equals(nomsCouleurs[i])) couleur = couleurs[i] ;
}

}
public int getLargeurApplet () { return largeurApplet ;

public int getHauteurApplet () { return hauteurApplet ;
public int getLargeurRect () { return largeurRect ; }
public int getHauteurRect () { return hauteurRect ; }
public Color getCouleur () { return couleur ; }

private Panneau pan ;

private int largeurApplet, hauteurApplet, largeurRect,
hauteurRect ;

private String nomCouleur ;
private Color couleur ;
}
class Panneau extends JPanel
{ public Panneau (AppRect ap)
{ this.ap = ap ;
}
public void paintComponent (Graphics g)
{ super.paintComponent (g) ;
int x = (ap.getLargeurApplet() - ap.getLargeurRect())/2 ;
int y = (ap.getHauteurApplet() - ap.getHauteurRect())/2 ;
g.setColor(ap.getCouleur()) ;
g.fillRect(x, y, ap.getLargeurRect(), ap.getHauteurRect()) ;

}
AppRect ap ;

}

Voici un fichier HTML de lancement de cette applet® dans une fenétre de dimensions
350 x 120 avec un rectangle de dimensions 300 % 50 et de couleur rouge :

}
}

<HTML>

<BODY>
<APPLET CODE
<PARAM NAME
<PARAM NAME
<PARAM NAME

"AppRect.class" WIDTH = 350 HEIGHT = 120 >
"Largeur" VALUE = "300">

"Hauteur" VALUE "50">

"Couleur" VALUE "rouge'">

393

</APPLET>
</BODY>
</HTML>

Ici, les dimensions du rectangle sont recalculées a chaque appel de paintComponent.
Ce calcul pourrait étre fait une fois pour toutes, par exemple dans la méthode init, a
condition toutefois que ce soit avant le premier affichage du panneau.

394

Synthese : trace de courbe dans une
applet

Réaliser une applet permettant de représenter sous forme d’une courbe une suite de
valeurs entieres positives ou nulles figurant en parametres dans le fichier HTML
correspondant, comme dans cet exemple :

2 Applet Viewer: A... [H[=1E1
Applet
Evolution des ventes

Applet started.

Le titre sera fourni en parametre. Le nombre de valeurs devra pouvoir étre
quelconque et sera également fourni en parametre. L’applet affichera la valeur
maximale.

Donner un exemple de fichier HTML permettant de lancer cette applet.

Nous introduisons dans la fenétre de notre applet un panneau pour la courbe et un
champ de texte pour le titre. Nous conservons le gestionnaire par défaut
(BorderLayout) en placant le titre en haut ("North") et le panneau au centre.

Les parametres du fichier HTML sont récupérés classiquement dans la méthode init en
utilisant getParameter. Nous supposons ici que les noms de ces parametres sont
TITRE, NB_VALEURS, VALEURI1, VALEUR2, VALEURS3... Notez que les noms des
différentes valeurs sont formés d’un méme préfixe (ici VALEUR) suivi du "numéro" de
valeur. Ceci nous permet de traiter un nombre quelconque de valeurs. Ici, nous ne
traitons pas les éventuelles exceptions que pourraient déclencher des valeurs

395

incorrectes ou manquantes ; 1’applet se terminerait alors simplement avec un message
d’erreur.

La méthode paintComponent du panneau en détermine la taille a 1’aide de la méthode
getSize. Les valeurs a tracer sont obtenues par la méthode d’acces getValeurs de
’applet. Les coordonnées des différents points sont alors calculées en tenant compte
d’un facteur d’échelle (echelle) déterminé de maniere que :

* le point correspondant a la plus grande valeur s’affiche tout en haut du panneau,

* le premier point s’affiche a 1’extrémité gauche du panneau, le dernier a |’extrémité
droite.

Notez que nous employons des variables de type double pour éviter une imprécision
résultant de division d’entiers.

Notez également qu’il est nécessaire d’inverser les ordonnées afin d’obtenir un axe des
y dirigé vers le haut.

import java.awt.* ;
import javax.swing.* ;

public class AppCourb extends JApplet // ne pas oublier public

{ public void init ()

{ /* les deux composants de l'applet : champ texte et panneau */
Container contenu = getContentPane () ;
JLabel champTitre = new JLabel (getParameter ("TITRE")) ;
contenu.add (champTitre, "North") ; // titre en haut
pan = new Panneau (this) ;

contenu.add (pan) ; // panneau pour la courbe au
centre
/* recuperation des parametres HTML : nombre de valeurs et

valeurs */
nValeurs = Integer.parseInt (getParameter ("NB_VALEURS")) ;

if (nValeurs <= 1) System.exit (-1) ; // au moins 2 valeurs pour
une courbe

valeurs = new int [nValeurs] ;
for (int 1=0 ; i<nValeurs ; i++)
valeurs[i] = Integer.parseInt(getParameter ("VALEUR"+(i+1))) ;
}
public int[] getValeurs ()
{ return valeurs ;

}

private Panneau pan ;

396

private int nValeurs ;
private int valeurs[] ;

}

class Panneau extends JPanel
{ public Panneau (AppCourb ap)
{ this.ap = ap ;
}
public void paintComponent (Graphics g)
{ super.paintComponent (g) ;
/* determination de la dimension du panneau */
Dimension dimPanneau = getSize () ;
int hauteur = dimPanneau.height ;
int largeur = dimPanneau.width ;
/* recuperation des valeurs */
int[] valeurs = ap.getValeurs() ;
int nValeurs = valeurs.length ;
/* recherche de la valeur maximale */
int valMax = valeurs [0] ;
for (int i=1 ; i<nValeurs ; i++)
if (valeurs[i] > valMax) valMax = valeurs [i] ;
/* trace de la courbe point par point */
double ecart = (double)largeur/(nvaleurs-1) ; // on a nValeurs >1
double echelle = (double)hauteur/valMax ;
double xDeb = 0, yDeb = hauteur - valeurs[0@] * echelle ;
double xFin, yFin ;
for (int i=1 ; i<nValeurs ; i++)
{ xFin = xDeb + ecart ;
yFin = hauteur - valeurs[i] * echelle ;
g.drawLine ((int)xDeb, (int)yDeb, (int)xFin, (int)yFin) ;
xDeb = xFin ;
yDeb = yFin ;
}
}
AppCourb ap ;
}

VWoici un exemple de fichier HTML permettant d’exploiter ce programme* (il fournit la
courbe présentée dans 1’énoncé) :

<HTML>

397

<BODY>
<APPLET CODE = "AppCourb.class" WIDTH = 250 HEIGHT = 120>
<PARAM NAME = "TITRE" VALUE = "Evolution des ventes">
<PARAM NAME = "NB_VALEURS" VALUE = "6">
<PARAM NAME = "VALEUR1" VALUE = "175">
<PARAM NAME = "VALEUR2" VALUE = "288">
<PARAM NAME = "VALEUR3" VALUE = "352">
<PARAM NAME = "VALEUR4" VALUE = "181">
<PARAM NAME = "VALEUR5" VALUE = "135">
<PARAM NAME = "VALEUR6" VALUE = "285">
</APPLET>
</BODY>
</HTML>

Ici, les coordonnées du tracé sont calculées a chaque appel de paintComponent. Si
I’on utilise un visualisateur qui autorise le redimensionnement de 1’applet, on pourra
ainsi voir le tracé s’adapter a la taille courante de la fenétre. Il n’en irait pas ainsi si
1’on déterminait ces dimensions dans la méthode init.

398

Difféerences entre applet et
application

Adapter 1’exercice 103 du chapitre 8 de maniere que 1’utilisateur puisse dessiner
dans une applet et non plus dans une fenétre.

Il suffit d’adapter le code en tenant compte des quelques remarques suivantes :

« supprimer la méthode main (si on la conservait, elle ne serait pas appelée lors du
lancement du code depuis un fichier HTML) ;

« transformer la classe fenétre (MaFenetre) en une classe (ici DesVol) dérivée de
JApplet ;

« transposer dans la méthode init de la classe DesVol les actions réalisées dans le
constructeur de la fenétre MaFenetre ;

« supprimer les appels a setTitle et setSize qui n’ont plus de raison d’étre pour une
applet (pas de titre, dimensions définies par les parametres WIDTH et HEIGHT du
fichier HTML de lancement).

import javax.swing.* ;
import java.awt.* ;
import java.awt.event.* ;
public class DesVol extends JApplet // ne pas oublier public
{ public void init ()

{ pan = new Panneau () ;

pan.addMouselListener (pan) ;

getContentPane().add(pan) ;

}

private Panneau pan ;

}

class Panneau extends JPanel implements MouselListener
{ public void paintComponent (Graphics g)
{ super.paintComponent(g) ;

399

enCours = false ;

}

public void mouseClicked (MouseEvent e)

{ int xFin = e.getX() ; yFin = e.getY() ;

if (enCours) { Graphics g = getGraphics() ;
g.drawLine (xDeb, yDeb, xFin, yFin) ;
g.dispose() ;
}

xDeb = xFin ; yDeb = yFin ;

enCours = true ;

}

public void mousePressed (MouseEvent e) {}

public void mouseReleased (MouseEvent e) {}

public void mouseEntered (MouseEvent e) {}

public void mouseExited (MouseEvent e) {}

private boolean enCours = false ;

private int xDeb, yDeb, xFin, yFin ;

}

A titre indicatif, voici un fichier HTML trés simple (DesVol.html) permettant de lancer
cette applet :

<HTML>

<BODY>

<APPLET

CODE = "DesVol.class"

WIDTH = 350

HEIGHT = 100

>

</APPLET>
</BODY>
</HTML>

1. Certains navigateurs emploient la balise OBJECT ou EMBED a la place de la balise APPLET.
2. Certains navigateurs emploient la balise OBJECT ou EMBED a la place de la balise APPLET.
3. Certains navigateurs emploient la balise OBJECT ou EMBED a la place de la balise APPLET.
4. Certains navigateurs emploient la balise OBJECT ou EMBED a la place de la balise APPLET.

400

Chapitre 15

Les flux et les fichiers

N\ 'ﬁg ||

Il.i L
O '

- N

Connaissances requises

» Notion de flux ; flux d’entrée, flux de sortie ; flux binaire, flux texte

» Création séquentielle d’un fichier binaire ; classes OutputStream,
FileOutputStream et DataOutputStream

» Liste séquentielle d’un fichier binaire ; classes InputStream, FileInputStream
et DatalnputStream

 Acces direct a un fichier binaire ; classes RandomAccessFile ; action sur le
pointeur de fichier

 Création d’un fichier texte ; classe PrintWriter

* Lecture d’un fichier texte ; classes FileReader, BufferedReader et
StringTokenizer

» Gestion des fichiers avec la classe File

401

1’/ Creation sequentielle d’un
fichier binaire

Ecrire un programme permettant de créer séquentiellement un fichier binaire
comportant pour différentes personnes les informations suivantes : nom, prénom et
année de naissance.

Le dialogue de saisie de I’information s’effectuera en fenétre console comme dans
cet exemple :

Nom du fichier a creer

e:\repert

nom 1 : Carre

Prenom : Thibault

annee naissance : 1997

nom 5 : Mitenne

Prenom : Thomas

annee naissance : 2001

nom 6

**** fin creation fichier ****

On proposera deux solutions :

1. Les informations relatives au nom et au prénom seront conservées dans le
fichier sous la forme d’une suite de 20 caracteres (comportant d’éventuels
espaces a la fin).

2. Ces mémes informations seront conservées sous la forme d’une chaine codée
dans le format UTF? ; aucune contrainte ne portera sur leur longueur.

a. Ce format (Unicode Text Format) permet de coder une chaine sous forme d’une suite d’octets en nombre variable
(chaque caractere étant codé sur un a trois octets). La méthode writeUTF de la classe DataOutputStream réalise
cette transformation d’une chaine en une suite de caractéres UTF.

Nous utiliserons la démarche la plus classique qui consiste a exploiter les méthodes de
la classe flux DataOutputStream. Pour ce faire, nous associerons un objet de ce type
(nommé sortie) a un fichier dont le nom est fourni par 1’utilisateur dans la chaine

402

nomFichier :
DataOutputStream sortie = new DataOutputStream
(new FileOutputStream (nomFichier)) ;

Les variables chNom et chPrenom servent a lire les informations nom et prénom sous
forme de chaines de caracteres. Nous en transférons ensuite chacun des caracteres (a
concurrence de 20) dans des tableaux de 20 caracteéres nom et prenom, préalablement
remplis avec des espaces.

L’ écriture dans le fichier est réalisée a 1’aide des méthodes writeChar (écriture d’un
caractere) et writelnt (écriture d’un entier) de la classe DataOutputStream.
import java.io.* ;
public class CrFich
{ public static void main (String args[]) throws IOException
{ final int longMaxNom = 20 ;
final int longMaxPrenom = 20 ;
String chNom, chPrenom ;
char[] nom = new char [longMaxNom] ;
char[] prenom = new char [longMaxPrenom] ;
int annee ;

String nomFichier ;

System.out.println ("Nom du fichier a creer : ") ;

nomFichier = Clavier.lireString() ;

DataOutputStream sortie = new DataOutputStream
(new FileOutputStream (nomFichier)) ;

int i ;

int num = 0 ; // pour compter les differents enregistrements
while (true) // on s'arretera sur nom vide

{ /* lecture infos */

num++ ;

System.out.print ("nom " + num + " : ") ;

chNom = Clavier.lireString() ;

if (chNom.length() == 0) break ;
System.out.print ("Prenom : ") ;

chPrenom = Clavier.lireString() ;
System.out.print ("annee naissance : ") ;
annee = Clavier.lirelInt() ;

/* transfert nom et prenom dans tab de char termines par des
espaces */

for (i=0 ; i<longMaxNom ; i++) nom[i] = ' ';

403

for (i=0 ; i<longMaxPrenom ; i++) prenom[i] = ' ' ;
for (1 = 0 ; (i < chNom.length())&&(i<longMaxNom) ; i++)
nom[i] = chNom.charAt(i) ;
for (1 = 0 ; (i < chPrenom.length())&&(i<longMaxPrenom) ; i++)
prenom[i] = chPrenom.charAt(i) ;
/* ecriture fichier */
for (i=0 ; i<longMaxNom ; i++) sortie.writeChar (nom[i]) ;
for (i=0 ; i<longMaxPrenom ; i++) sortie.writeChar (prenom[i]) ;
sortie.writeInt(annee) ;
}
sortie.close() ;
System.out.println ("**** fin creation fichier ****") ;

b
b

1. La clause throws IOException figurant dans la méthode main est nécessaire, des
lors qu’on n’y traite pas les exceptions susceptibles d’étre déclenchées par les
méthodes de la classe DataOutputstream.

2. Plut6t que d’écrire un a un chacun des caracteres de nom et de prenom, on aurait
pu espérer appliquer directement a chNom et chPrenom la méthode writeChars qui
écrit tous les caracteres d’une chaine. Cependant, cette démarche ne correpond pas a
la demande de 1’énoncé (informations de taille fixe dans le fichier) ; de plus, elle ne
permettrait pas de relire ultérieurement le fichier (a moins de connaitre par ailleurs
les longueurs de chacune des informations y figurant !).

Comme précédemment, nous créons un objet de type DataOutputStream. Mais, cette
fois, nous pouvons appliquer la méthode writeUTF aux chaines correspondant au nom
et au prénom.
import java.io.* ;
public class CrFich2
{ public static void main (String args[]) throws IOException
{ String chNom, chPrenom ;
int annee ;

String nomFichier ;

404

System.out.println ("Nom du fichier a creer

nomFichier = Clavier.lireString() ;
DataOutputStream sortie =

")

new DataOutputStream

(new FileOutputStream (nomFichier)) ;

int i ;
int num = 0 ;

while (true) // on s'arretera sur
{ /* lecture infos */
num++ ;
System.out.print ("nom " + num + "
chNom = Clavier.lireString() ;
if (chNom.length() 0) break ;
System.out.print ("Prenom ")
chPrenom = Clavier.lireString() ;
System.out.print ("annee naissance
annee = Clavier.lireInt() ;

/* ecriture fichier */
sortie.writeUTF (chNom) ;
sortie.writeUTF (chPrenom) ;
sortie.writeInt(annee) ;

}

sortie.close() ;

System.out.println ("**** fin creation fichier ****")

b
b

// pour compter les differents enregistrements

nom vide

")

")

I4

Cette seconde démarche peut paraitre plus souple que la premiere puisqu’elle n’impose
aucune limite a la taille des chaines fournies. Néanmoins, elle présente 1’inconvénient
de ne plus étre adaptée a 1’exploitation ultérieure du fichier en acces direct.

405

Liste sequentielle d’un fichier
binaire

Ecrire un programme permettant de lister en fenétre console le contenu d’un fichier
binaire tel que celui créé par 1’exercice. On proposera deux solutions correspondant
aux deux situations :

1. Les informations relatives au nom et au prénom ont été enregistrées dans le
fichier sous la forme d’une suite de 20 caracteres (comportant d’éventuels
espaces a la fin).

2. Ces mémes informations ont été enregistrées sous la forme d’une chaine codée
dans le format UTF ; aucune contrainte ne portera sur leur longueur.

Nous exploitons les méthodes de la classe flux DatalnputStream. Pour ce faire, nous
associons un objet de ce type (nommé entree) a un fichier dont le nom est fourni par
1’utilisateur dans la chaine nomFichier :
DataInputStream entree = new DataInputStream
(new FileInputStream (nomFichier)) ;

Les informations relatives au nom et au prénom sont lues dans des tableaux de 20
caracteres nom et prenom a 1’aide de la méthode readChar de la classe
DatalnputStream.

La gestion de la fin de fichier est réalisée en interceptant 1’exception EOFException :
la boucle de lecture des informations est contr6lée par un indicateur booléen eof
initialisé a false et mis a true par le gestionnaire d’exception.

import java.io.* ;

public class LecFich

{

public static void main (String args[]) throws IOException
{ final int longMaxNom = 20 ;
final int longMaxPrenom = 20 ;
String chNom, chPrenom ;

406

char[] nom = new char [longMaxNom] ;
char[] prenom = new char [longMaxPrenom] ;
int annee ;
int i ;
String nomFichier ;
System.out.println ("Nom du fichier a lister : ") ;
nomFichier = Clavier.lireString() ;
DataInputStream entree = new DataInputStream
(new FileInputStream (nomFichier)) ;
System.out.println ("**** Liste du fichier ****") ;

boolean eof = false ; // sera mis a true par gestionnaire

exception EOFile
while ('eof)
{ try
{ /* lecture infos */
for (i=0 ; i<longMaxNom ; i++) nom[i] = entree.readChar () ;

for (i=0 ; i<longMaxPrenom ; i++) prenom[i] = entree.readChar

0)

annee = entree.readInt () ;
/* affichage infos */
for (i=0 ; i<longMaxNom ; i++) System.out.print (nom[i]) ;
System.out.print (" ") ;
for (i=0 ; i<longMaxPrenom ; i++) System.out.print (prenom[i])
System.out.print (" ") ;
System.out.println (annee) ;
}
catch (EOFException e)
{ eof = true ;
}
}

entree.close() ;
System.out.println ("**** fin liste fichier ****") ;
}
}
A titre indicatif, voici 1’allure des résultats fournis par ce programme :
Nom du fichier a lister

e:\repert
**** |Liste du fichier ****
Carre Thibault 1997

407

Dubois Louis 1975
Dutronc Jean Philippe 1958
Duchene Alfred 1994
Mitenne Thomas 2001
*** fin liste fichier ****

Comme précédemment, on fait appel a un objet de type DatalnputStream. Mais les
informations relatives au nom et au prénom sont lues directement a 1’aide de la méthode
readUTF. La gestion de la fin de fichier se déroule toujours de la méme maniere.

import java.io.* ;

public class LecFich2
{
public static void main (String args[]) throws IOException
{ final int longMaxNom = 20 ;
final int longMaxPrenom = 20 ;
String chNom, chPrenom ;
int annee ;
int 1 ;
String nomFichier ;
System.out.println ("Nom du fichier a lister : ") ;
nomFichier = Clavier.lireString() ;
DataInputStream entree = new DataInputStream
(new FileInputStream (nomFichier)) ;
System.out.println ("**** Liste du fichier ****") ;

boolean eof = false ; // sera mis a true par gestionnaire
exception EOFile

while ('eof)

{ try
{ /* lecture infos */
chNom = entree.readUTF () ;
chPrenom = entree.readUTF () ;
annee = entree.readInt () ;

/* affichage infos */
System.out.print (chNom + " ") ;
System.out.print (chPrenom + " ") ;
System.out.println (annee) ;

408

}
catch (EOFException e)

{ eof = true ;
}
}

entree.close() ;
System.out.println ("**** fin liste fichier ****") ;

b
b

Les résultats se présentent alors sous cette forme :

Nom du fichier a lister
e:\reputf

**** Liste du fichier ****
Carre Thibault 1997

Dubois Louis 1975

Dutronc Jean Philippe 1958
Duchene Alfred 1994

Mitenne Thomas 2001

****% fin liste fichier ***~*

409

Synthese : consultation d’un
répertoire en acces direct

Réaliser un programme permettant de consulter un fichier du type de celui créé par
la premiere solution a I’exercice. Le dialogue s’opérera a travers des controles

disposés dans une fenétre comme illustrée ci-apres® :

Nom fichier :

Numero enregistrement :

Mom :

Prenom:

Annee naissance :

b4 Consultation repertoire e\repert !EIEI

elrepen

9

Mitenne

Thomas

200

L’utilisateur pourra agir indifféremment sur les champs de texte indiquant le nom de
fichier ou le nom d’enregistrement. On signalera par des boites de message les

erreurs suivantes :

s fichier inexistant,

» information de numéro d’enregistrement non numérique, négative ou supérieure a

la taille du fichier.

Lorsqu’un fichier sera correctement ouvert, son nom s’affichera dans le titre de la

fenétre.

Note : pour que les controles soient disposés comme dans notre exemple, on pourra
utiliser un gestionnaire de mise en forme de type GridLayout créé par new

GridLayout(5, 2).

a. On pourra utiliser un gestionnaire de mise en forme de type GridBag.

410

Les dimensions des tableaux de caracteres sont définies par des constantes
symboliques LG_NOM et LG_PRENOM. 1l en va de méme pour la taille d’un
enregistrement (TAILLE_ENREG) dont on notera que le calcul doit tenir compte du fait
que les caracteres sont enregistrés en binaire et qu’ils occupent donc 2 octets.

La disposition des différents controles ne pose pas de probleme particulier. On notera
que, avec un gestionnaire de type GridLayout, le conteneur est rempli ligne par ligne,
suivant 1’ordre dans lequel ils sont ajoutés. Nous utilisons des champs de texte pour
toutes les informations mais seuls les deux premiers sont "éditables".

Nous écoutons les événements Focus et Action des deux champs de saisie (nom de
fichier et numéro d’enregistrement). Deux méthodes de service nommées
nouveauFichier et nouvel Enreg nous évitent de dupliquer certaines instructions.

La demande d’ouverture d’un nouveau fichier entraine tout d’abord la fermeture de tout
autre fichier éventuellement ouvert. Puis, nous vérifions 1’existence du fichier de nom
indiqué en traitant convenablement 1’exception générée par sa demande d’ouverture en
cas d’inexistence. Lorsque les choses se sont convenablement déroulées, nous
déterminons la taille du fichier en octets (méthode length) et nous déterminons le
nombre d’enregistrements correspondants.

Dans la demande d’un nouvel enregistrement, nous vérifions que :
* I’information fournie peut étre convenablement convertie en un entier,

* qu’elle possede une valeur compatible avec la taille du fichier.

Si le numéro d’enregistrement est convenable, nous positionnons le pointeur a I’endroit
correspondant du fichier (méthode seek). Nous lisons les différentes informations
voulues et nous les affichons dans les champs appropriés. Notez que les tableaux de
caracteres constituant le nom et le prénom doivent étre convertis en chaines ; pour ce
faire, nous utilisons un constructeur de la forme String(char([]).

import java.awt.* ;
import java.awt.event.* ;
import javax.swing.* ;
import java.io.* ;

class MaFenetre extends JFrame implements ActionListener,
FocusListener

{ private static final int LG_NOM = 20, LG_PRENOM = 20 ;

private static final int TAILLE_ENREG = 2*LG_NOM + 2*LG_PRENOM +
4 ;

private static final String titreFenetre = "Consultation
repertoire" ;

411

public MaFenetre ()
{ nom = new char[LG_NOM] ;
prenom = new char[LG_PRENOM] ;

setTitle (titreFenetre) ;

setSize (400, 200) ;

Container contenu = getContentPane() ;
contenu.setlLayout (new GridLayout(5, 2)) ;

labNomFichier = new JLabel (etiqNomFichier) ;
contenu.add(labNomFichier) ;

txtNomFichier = new JTextField (20) ;
contenu.add(txtNomFichier) ;
txtNomFichier.addActionListener (this) ;
txtNomFichier.addFocusListener (this) ;

labNumEnreg = new JLabel (etigNumEnreg) ;

contenu.add (labNumEnreg) ;

txtNumEnreg = new JTextField (20) ;

contenu.add (txtNumEnreg) ;

txtNumEnreg.addActionListener (this) ;
txtNumEnreg.addFocusListener (this) ;

labNom = new JLabel (etigNom) ;

contenu.add (labNom) ;

txtNom = new JTextField (20) ; txtNom.setEditable (false) ;
contenu.add (txtNom) ;

labPrenom = new JLabel (etigPrenom) ;

contenu.add (labPrenom) ;

txtPrenom = new JTextField (20) ; txtPrenom.setEditable (false) ;
contenu.add (txtPrenom) ;

labAnnee = new JLabel (etigAnnee) ;

contenu.add (labAnnee) ;

txtAnnee = new JTextField (20) ; txtAnnee.setEditable (false) ;
contenu.add (txtAnnee) ;
}

public void actionPerformed (ActionEvent e)

{ Object source = e.getSource() ;

if (source == txtNomFichier) nouveauFichier() ;

if (source == txtNumEnreg) nouvelEnreg() ;

}

public void focusGained (FocusEvent e)

412

{}

public void focusLost (FocusEvent e)

{ Object source = e.getSource() ;

if (source == txtNomFichier) nouveauFichier ()
if (source == txtNumEnreg) nouvelEnreg() ;

}

4

private void nouveauFichier ()
{ try
{ if (fichierOuvert)
{ fichier.close() ;
fichierOuvert = false ;
setTitle (titreFenetre) ;
}
nomFichier = txtNomFichier.getText () ;
fichier = new RandomAccessFile (nomFichier, "r")
}
catch (IOException e) // erreur ouverture
{ JOptionPane.showMessageDialog (null, "FICHIER INEXISTANT")
txtNomFichier.setText ("") ;

I4

4

return ;
}
fichierOuvert = true ;
setTitle (titreFenetre + " " + nomFichier) ;
try

{ tailleFichieroOctets = fichier.length() ;
tailleFichierEnreg = tailleFichierOctets/TAILLE_ENREG
}
catch (IOException e) {}
txtNumEnreg.setText("") ; txtNom.setText("")
txtPrenom.setText("") ; txtAnnee.setText("")
}
private void nouvelEnreg()
{ if (!'fichierOuvert)
{ JOptionPane.showMessageDialog (null, "Pas de fichier ouvert")
txtNumEnreg.setText ("") ;
return ;

}

I4

I4

I4

4

/* lecture numero enregistrement et controles validite */

413

String chNumEnreg = txtNumEnreg.getText () ;
boolean converti = false ;

try

{ num = Integer.parseInt (chNumEnreg) ;
converti = true ;

}
catch (NumberFormatException e) {}
if (!'converti || (num<=0) || (num>tailleFichierEnreg))

{ JOptionPane.showMessageDialog (null, "Numero enreg incorrect") ;
txtNumEnreg.setText ("") ; txtNom.setText("") ;
txtPrenom.setText("") ; txtAnnee.setText("") ;
return ;

}

/* numero correct - lecture de l'enregistrement correspondant */
try

{ numEnreg = num ;
fichier.seek (TAILLE_ENREG*(numEnreg-1)) ;
for (int i=0 ; i<LG_NOM ; i++) nom[i] = fichier.readChar() ;

for (int i=0 ; i<LG_PRENOM ; i++) prenom[i] =
fichier.readChar() ;

annee = fichier.readInt () ;
/* conversion des informations en chaine et affichage */
String chNom = new String (nom) ;
String chPrenom = new String (prenom) ;
String chAnnee = String.valueOf (annee) ;
txtNom.setText (chNom) ;
txtPrenom.setText (chPrenom) ;
txtAnnee.setText (chAnnee) ;

}
catch (IOException e) {}

}

private boolean fichierOuvert = false ;

private String nomFichier ;

private RandomAccessFile fichier ;

private long tailleFichierEnreg, tailleFichierOctets ;
private int numEnreg, num ;

private char[] nom, prenom ;

private int annee ;

private JLabel 1labNomFichier, labNumEnreg, labNom, labPrenom,
labAnnee ;

414

p
t

b
Y
{

}

rivate JTextField txtNomFichier, txtNumEnreg, txtNom, txtPrenom,
xtAnnee ;
static private String etigNomFichier = "Nom
fichier : ",

etigNumEnreg = "Numero enregistrement : ",

etigNom = '"Nom : ",

etigPrenom = "Prenom : ",

etigAnnee = "Annee naissance : ",
ublic class ListAD

public static void main (String args[])
{ MaFenetre fen = new MaFenetre() ;
fen.setVisible(true) ;

}

1. En vertu des regles relatives a la redéfinition d’une méthode, il n’est pas possible
de mentionner de clause throws IOException dans les méthodes actionPerformed ou
focusLost. Dans ces conditions, il est nécessaire d’y traiter (ici artificiellement)
1’exception IOException.

2. On constate qu’en cas d’anomalie (fichier inexistant, numéro d’enregistrement
incorrect), on obtient deux fois 1’affichage du message correspondant. Ceci provient
de la mise a blanc des champs correspondants. Par souci de simplicité, nous n’avons
pas cherché a régler le probleme (par exemple, en recourant a des indicateurs
booléens).

415

Synthese : liste d’un fichier texte
avec numerotation des lignes

Ecrire un programme qui liste en fenétre console le contenu d’un fichier texte en en
numérotant les lignes. On prévoira 4 caracteres pour 1’affichage du numéro de ligne.
Les lignes de plus de 60 caracteres seront affichées sur plusieurs lignes d’écran
comme dans cet exemple
Donnez le nom du fichier texte a lister : e:\book\essai.txt

1 Ceci est la premiere ligne d'un exemple de fichier texte

2 Il contient des lignes de chiffres de longueurs variables

dont une de 59 caracteres, une de 60 caracteres et une de 61

caracteres

3 12345678901234567890

4
123456789012345678901234567890123456789012345678901234567890

5 12345678901234567890123456789012345678901234567890123456789

6
123456789012345678901234567890123456789012345678901234567890

1
7 1234567890123456789012345678901234567890
8 la ligne suivante est vide
9
10 les deux lignes suivantes sont egalement vides
11
12
13 Cecli est la derniere ligne du fichier
*** fin liste fichier ***

Rappelons que, pour la lecture d’un fichier texte, il n’existe pas de classe parfaitement
symétrique de la classe PrintWriter. 1l faut se contenter de la classe FileReader
(symétrique de FileWriter, classe plus rudimentaire que PrintWriter) qu’on couple
avec la classe BufferedReader, laquelle dispose d’une méthode readLine de lecture
d’une ligne. Nous créons donc un objet de ce type nommé entree en procédant ainsi

416

(nomfich étant la chaine correspondant au nom du fichier) :
BufferedReader entree = new BufferedReader (new FileReader
(nomfich)) ;
La méthode readLine de la classe BufferedReader fournit une référence a une chaine
correspondant a une ligne du fichier. Si la fin de fichier a été atteinte avant que la
lecteur n’ait commencé, autrement dit si aucun caractere n’est disponible (pas méme
une fin de ligne !), readLine fournit la valeur null. 1l est donc possible de parcourir les
différentes lignes du fichier, sans avoir besoin de recourir a la gestion des exceptions.

En ce qui concerne 1’affichage du numéro de ligne (numLigne), il est nécessaire de
convertir ’entier le représentant en une suite de 4 caracteres. Pour ce faire, nous
employons un tableau de 4 caracteres nommé charNumLigne que nous initialisons avec
des caracteres "espace", avant d’y introduire, a partir de la fin, les caracteres de la
chaine obtenue par conversion de la valeur de numLigne.

La gestion des lignes de plus de 60 caracteres se fait simplement en affichant un
changement de ligne et une suite de 4+1 espaces.

import java.io.* ;

public class ListText
{ public static void main (String args[]) throws IOException

{ final int longNumLigne = 4 ; // nombre de caracteres utilises
pour

// afficher le numero de ligne
final int nbCarParLigne = 60 ;
String nomfich ;

String ligne ; // ligne courante du fichier texte
char charNumLigne[] = new char[longNumLigne] ; // pour les
caracteres

// du numero de ligne
System.out.print ("Donnez le nom du fichier texte a lister : ") ;
nomfich = Clavier.lireString() ;
BufferedReader entree = new BufferedReader (new FileReader

(nomfich)) ;
int numLigne = 0 ;
do
{ /* lecture d'une ligne du fichier */
ligne = entree.readLine() ;
if (ligne == null) break ;
numLigne++ ;

/* determination des caracteres correspondant au numero de
ligne */

417

String ch = String.valueOf (numLigne) ;
int i, j ; // pour parcourir le numero de ligne
for (i=0 ; i<longNumLigne-ch.length() ; i++) charNumLigne[i] = '

for (j=0 ; i<longNumLigne ; i++, j++) charNumLigne[i] =
ch.charAt(j) ;

/* affichage numero de ligne suivi d'un espace*/

for (1=0 ; i<longNumLigne ; i++) System.out.print
(charNumLigne[i]) ;

System.out.print (' ') ;
/* affichage ligne courante */
int n=0 ; // pour parcourir la ligne courante
while (n < ligne.length())
{ if ((n != 0) && (n%nbCarParLigne == 0)) /* on change de ligne
*/

{ System.out.println () ;
for (int k=0 ; k<longNumLigne+1 ; k++)
System.out.print (' ') ;

¥
System.out.print (ligne.charAt(n)) ;
n++ ;
¥
System.out.println () ;

}
while (ligne != null) ;
entree.close () ;
System.out.println ("*** fin liste fichier ***");
}
}

418

Liste d’un repertoire

Ecrire un programme qui affiche le contenu d’un répertoire (dont le nom est fourni
au clavier), en précisant pour chaque nom s’il s’agit d’un sous-répertoire ou d’un
fichier ; dans ce dernier cas, il en fournira également la taille en octets.

nom du repertoire : e:\truc

Nom incorrect (inexistant ou non repertoire)

nom du repertoire : e:\book\exosjav

evbn.fm FICHIER 84992 octets

control.fm FICHIER 96256 octets

divers REPERTOIRE

menuac .fm FICHIER 112640 octets

classes REPERTOIRE

essai.txt FICHIER 5120 octets

fichiers.fm FICHIER 82944 octets

ap.fm FICHIER 35840 octets

Il nous suffit de recourir aux possibilités offertes par la classe File. Plus précisément, a
partir du nom fourni par ’utilisateur dans la chaine nomRepert, nous créons un objet
objRep de type File :

objRep = new File (nomRepert) ;

La méthode isDirectory nous permet de savoir si ce nom correspond bien a un
répertoire. Notez qu’il n’est pas nécessaire ici de recourir a la méthode exists, dans la
mesure ou nous n’avons pas cherché a distinguer le cas d’un nom ne désignant pas un
répertoire du cas d’un nom inexistant.

Lorsque le nom correspond bien a un répertoire, nous faisons appel a la méthode
listFiles qui nous fournit un tableau d’objets de type File, chaque élément
correspondant a un des membres du répertoire. Il nous suffit alors d’appliquer a chacun
d’entre eux les méthodes isDirectory, getName et length pour obtenir les informations
voulues.

import java.io.* ; // pour la classe File

419

public class ListRep
{ public static void main (String args[])
{ String nomRepert ;
File objRep ;
boolean ok ;
/* lecture nom de repertoire */
ok = false ;
do
{ System.out.print ("nom du repertoire : ") ;
nomRepert = Clavier.lireString () ;
objRep = new File (nomRepert) ;
if (objRep.isDirectory())
ok = true ;
else

System.out.println ("Nom incorrect (inexistant ou
repertoire)") ;

}
while (!ok) ;

/* affichage des informations correspondantes */
File [] membres = objRep.listFiles() ;

for (int 1=0 ; i<membres.length ; i++)

{ String type ;

System.out.print (membres[i].getName()+ " ") ;
if (membres[i].isFile())
System.out.println ("FICHIER " + membres[i].length()
octets") ;
else
System.out.println ("REPERTOIRE ") ;
}
}

non

1. L'utilisateur peut fournir indifféremment un nom relatif (au répertoire courant) ou

un nom absolu.

2. Au lieu de la méthode listFiles, nous aurions pu aussi utiliser list qui fournit un
tableau de chaines dans lequel chaque élément représente un nom de membre. I
aurait alors fallu créer les objets de type File correspondants pour obtenir les

420

informations voulues.

421

Chapitre 16

La programmation générique

N]

= !

- \&a

Connaissances requises

* Notion de classe générique et de parametre de type
« Définition et utilisation d’une classe générique

* Notion d’effacement du parametre de type et les limitations qui en découlent
(instanciation d’un objet d’un type générique, tableaux d’objets d’un type
paramétré, champs statiques d’un type paramétreé)

* Notion de méthode générique

* Limitation des parametres de type d’une classe générique ou d’une méthode
générique

» Différentes possibilités de dérivation d’une classe générique

* Relation de « faux héritage » : si T’ dérive de T, C<T’> ne dérive pas de
C<T>

* Notion de joker simple

* Joker avec contraintes

Note : La programmation générique n’est disponible qu’a partir du JDK 5.0.

422

Classe générique a un
parametre de type

Ecrire une classe générique Triplet permettant de manipuler des triplets d’objets
d’un méme type. On la dotera :

* d’un constructeur a trois arguments (les objets constituant le triplet),

* de trois méthodes d’acces getPremier, getSecond et getTroisieme, permettant
d’obtenir la référence de 1’un des éléments du triplet,

» d’une méthode dffiche affichant la valeur des éléments du triplet.

Ecrire un petit programme utilisant cette classe générique pour instancier quelques
objets et exploiter les méthodes existantes.

La définition d’une classe générique se fait a 1’aide d’un symbole (ici, T) représentant
un type classe quelconque que 1’on précise dans le nom de la classe comme dans :
class Triplet<T>

On utilise ce symbole T dans la suite de la définition de la classe, comme s’il s’agissait
d’un type donné.
Voici comment nous pouvons définir la classe générique Triplet :
class Triplet<T>
{ private T x, vy, z ; // les trois éléments du triplet
public Triplet (T premier, T second, T troisieme)
{ x = premier ; y = second ; z = troisieme ;
}
public T getPremier ()
{ return x ;
}
public T getSecond ()
{ return vy ;

}

public T getTroisieme ()

423

{ return z ;

}
public void affiche ()
{ System.out.println ("premiere valeur : " + x + " - deuxieme
valeur : " + vy
+ " - troisieme valeur : " + z) ;
}
}

Notez que dans la méthode affiche nous nous fondons implicitement sur la méthode
toString des objets concernés.

Voici un petit programme utilisant cette classe Triplet :

public class TstTriplet
{ public static void main (String args[])

{ Integer o0il = 3 ; // équivalent a : Integer o0il = new Integer
(3)

Integer o0i2 = 5 ; // équivalent a : Integer 0i2 = new Integer
(5)

Integer 0i3 = 12 ; // équivalent a : Integer 0i3 = new Integer
(12) ;

Triplet <Integer> ti = new Triplet<Integer> (o0il, o0i2, 0i3) ;
// on aurait aussi pu écrire directement
// Triplet <Integer> ti = new Triplet<Integer> (3, 5, 12) ;
ti.affiche () ;
Triplet <Double> td = new Triplet <Double> (2.0, 12.0, 2.5) ;
// on peut fournir des arguments de type double qui seront
// convertis automatiquement en Double
td.affiche() ;
Integer n = ti.getTroisieme() ;

System.out.println("troisieme element du triplet ti =" + n) ;
Double p = td.getPremier () ;

System.out.println ("premier element du triplet td =" + p) ;
}

}

premiere valeur : 3 - deuxieme valeur : 5 - troisieme valeur : 12

premiere valeur : 2.0 - deuxieme valeur : 12.0 - troisieme valeur
2.5

troisieme element du triplet ti = 12
premier element du triplet td = 2.0

424

Classe générique a plusieurs
parametres de type

Ecrire une classe générique TripletH semblable a celle de I’exercice précédent,
mais permettant cette fois de manipuler des triplets d’objets pouvant étre chacun
d’un type différent. Ecrire un petit programme utilisant cette classe générique pour
instancier quelques objets et exploiter les méthodes existantes.

Dans la définition de la classe, il suffit de prévoir cette fois trois parametres de type.
Si nous les nommons T, U et V, ils seront annoncés ainsi dans le nom de classe :
class TripletH <T, U, V>

Voici ce que pourrait étre la définition de TripletH :
class TripletH <T, U, V>

{ private T x ; private U y ; private V z ; // les trois éléments
du triplet

public TripletH (T premier, U second, V troisieme)
{ x = premier ; y = second ; z = troisieme ;
}

public T getPremier ()

{ return x ;

}

public U getSecond ()

{ return vy ;

}

public V getTroisieme ()

{ return z ;

}

public void affiche ()

{ System.out.println ("premiere valeur : " + x + " - deuxieme
valeur : " + vy

+ " - troisieme valeur : " + z) ;

425

}
Et en voici un petit programme d’utilisation :
public class TstTripletH
{ public static void main (String args[])
{ Integer oi = 3 ;
Double od = 5.25 ;
String os ="hello" ;
TripletH <Integer, Double, String> tids
= new TripletH <Integer, Double, String> (0i, od, o0s)
tids.affiche () ;

4

Integer n = tids.getPremier() ;
System.out.println("premier element du triplet ti =" + n)
Double d = tids.getSecond () ;

System.out.println ("second element du triplet td =" +d) ;

}
}
premiere valeur : 3 - deuxieme valeur : 5.25 - troisieme valeur
hello

premier element du triplet ti = 3
second element du triplet td = 5.25

426

Conséquences de I’effacement
(1)

Repérer les erreurs commises dans les instructions suivantes :
class C <T>
{1 x;
T[] t1 ;
T[] t2 ;
public static T inf ;
public static int compte ;

void f ()
{x=new T () ;
t2 = t1 ;
t2 = new T [5] ;
}

}

Rappelons que, lors de la compilation, la technique dite « de I’effacement », consiste a
remplacer un type générique par un « type brut ». En 1’absence d’indications contraires
(limitations des parametres de type), ce type brut est tout simplement Object. Dans ces
conditions, un certain nombre d’opérations sont impossibles, notamment :

* définition d’un champ statique d’un type générique,

« instanciation d’un type générique ou, a fortiori, d’un tableau d’un type générique.
class C <T>

{7 x; // OK

T[] t1; // OK

T[] t2 ; // OK

public static T inf ; // champ statique d'un type générique
interdit

public static int compte ;

void f ()

427

// instanciation d'un type générique

{ X = new T () ;
impossible

t2 = t1 ; // OK

t2 = new T [5] ; // instanciation d'un tableau d'un type

générique

// impossible

}

}

428

Consequences de I’effacement
(2)

Quels seront les résultats fournis par ce programme ?
public class TstStatic
{ public static void main (String args[])
{ C<Integer> ci = new C<Integer> () ;
ci.affiche() ;
C<Double> cd new C<Double> () ;
ci.affiche() ; cd.affiche() ;
Class cci = ci.getClass() ;
Class ccd = cd.getClass() ;
if (cci == ccd) System.out.println
("ci et cd sont de la meme classe") ;

else System.out.println ("ci et cd ne sont pas de la meme
classe") ;

System.out.println (cci.getName() + " " + ccd.getName()) ;

}
}

class C<T>
{ public C () {compte++ ;}
public void affiche ()
{ System.out.println ("compte = " + compte) ;
}
public void aff ()
{ System.out.println ("compte = " + compte) ;

}

private static int compte=0 ;

Compte tenu de 1’effacement, lors de I’exécution, il n’existe qu’une seule classe
correspondant au type brut de C<Integer> ou C<Double>, a savoir simplement C. Le

429

champ statique compte n’est finalement qu’un champ statique de cette classe C. Il
n’existe donc qu’un seul « compteur » nommé compte pour tous les objets de type
C<T>, quelle que soit la valeur de T. De méme, la méthode getClass appliquée a ces
différents objets fournit la méme valeur, a savoir la référence a un objet de type Class
dont le nom est C. Vici finalement les résultats fournis par ce programme :

compte = 1

compte = 2

compte = 2

ci et cd sont de la meme classe
cC

430

Méthode générique a un
argument

Ecrire une méthode générique fournissant en retour un objet tiré au hasard dans un
tableau fourni en argument. Ecrire un petit programme utilisant cette méthode.

Il suffit de réaliser une méthode générique possédant un seul parametre de type, ayant
un entéte de la forme suivante :
static <T> T hasard (T [] valeurs)

Le choix d’un élément se fait en tirant sa position au hasard, en recourant a la méthode
Math.random qui fournit une valeur au hasard dans I’intervalle [0, 1[. Voici la
définition de notre méthode accompagnée d’un petit programme de test :

public class Hasard

{ static <T> T hasard (T [] valeurs)

{ if (valeurs == null) return null ;
int n = valeurs.length ;
if (n == 0) return null ;

int i = (int) (n * Math.random()) ;

return valeurs[i] ;
}
public static void main(String args[])

{ Integer[] tabi = { 1, 7, 8, 4, 9} ; // ici boxing automatique

System.out.println ("hasard sur tabi = " + hasard (tabi)) ;
String[] tabs = {"Java", "C", "C++", "C#", "Visual Basic"} ;
System.out.println ("hasard sur tabs = " + hasard (tabs)) ;

b
b

hasard sur tabi
hasard sur tabs

4
Visual Basic

431

Méthode générique et
effacement

Ecrire une méthode qui renvoie au hasard un objet choisi parmi deux objets de
méme type fournis en argument. Ecrire un petit programme utilisant cette méthode.

La encore, il suffit de réaliser une méthode générique a un seul parametre de type, et a
deux arguments de ce type :
public static <T> T hasard (T x, T vy)
{ double v = Math.random () ;
if (v < 0.5) return x ;
else return vy ;

}

En revanche, cette fois, compte tenu de 1’effacement, cette méthode sera compilée
comme si on 1’avait écrite de la facon suivante :
public static Object hasard (Object x, Object vy)
{ double v = Math.random () ;
if (v < 0.5) return x ;
else return vy ;

}

Ainsi, des appels de hasard avec des arguments de types différents seront acceptés par
le compilateur. Il reste cependant possible de forcer le compilateur a s’assurer que les
arguments effectifs sont d’un méme type, ou d’un type compatible avec un type donné.
On le précise lors de 1’appel a I’aide d’une syntaxe de la forme suivante, dans laquelle
nomClasse correspond au nom de la classe ou la méthode générique est définie :

nomClasse<Type>.nomMéthode (arguments)

Nous en fournissons quelques exemples en commentaires du petit programme de test de
la méthode hasard :
public class MethGen2arg
{ public static void main (String args[])
{ Integer i1 = 3 ; Integer i2 =5 ;

432

System.out.println ("hasard (i1, i2) = " + hasard (i1, 1i2))
String s1 = "Salut" ; String s2 = "bonjour" ;
System.out.println ("hasard (s1, s2) = " + hasard (s1, s2))
System.out.println ("hasard (i1, s1) = " + hasard (i1, s1))
// Les appels suivants seront rejetés en compilation

// MethGen2arg.<Integer> hasard (i1, s1) ;

// MethGen2arg.<String> hasard (i1, s1) ;

// En revanche, ceux-ci seront acceptés

// MethGen2arg.<Integer> hasard (i1, i2) ;

// MethGen2arg.<Number> hasard (i1, i2) ;
}

public static <T> T hasard (T x, T vy)

{ double v = Math.random () ;

if (v < 0.5) return x ;

else return vy ;

433

Derivation de classes géneriques

On dispose de la classe générique suivante :
class Couple<T>
{ private T x, vy ; // les deux éléments du couple
public Couple (T premier, T second)
{ x = premier ; y = second ;

}
public void affiche ()
{ System.out.println ("premiere valeur : " + Xx
+ " - deuxieme valeur : " +y) ;
}
}

1. Créer, par dérivation, un classe CoupleNomme permettant de manipuler des
couples analogues a ceux de la classe Couple<T>, mais possédant, en outre, un
nom de type String. On redéfinira convenablement les méthodes de cette nouvelle
classe en réutilisant les méthodes de la classe de base.

2. Toujours par dérivation a partir de Couple<T>, créer cette fois une « classe
ordinaire » (c’est-a-dire une classe non générique), nommée PointNomme, dans
laquelle les éléments du couple sont de type Integer et le nom, toujours de type
String.

3. Ecrire un petit programme de test utilisant ces deux classes CoupleNomme et
PointNomme.

1. Il suffit d’exploiter les possibilités de dérivation de classes génériques, en créant
une nouvelle classe possédant le méme parametre de type que la classe de base.
Voici ce que pourrait étre la définition de notre classe CoupleNomme :
class CoupleNomme <T> extends Couple <T>

{ private String nom ;

public CoupleNomme (T premier, T second, String nom)

{ super (premier, second) ;

this.nom = nom ;

434

}
public void affiche ()

{ System.out.print ("nom = " + nom + " - ") ;
super.affiche() ;
}
}

2. Cette fois, on crée une classe non générique, dérivant d’un classe générique, dans
laquelle on fixe le parametre de type (ici T = Integer). Voici ce que pourrait étre la
défintion de notre classe PointNomme :
class PointNomme extends Couple <Integer>
{ private String nom ;

public PointNomme (Integer premier, Integer second, String nom)

{ super (premier, second) ;

this.nom = nom ;

}

public void affiche ()

{ System.out.print ("nom = " + nom + " - ") ;
super.affiche() ;

}

3. VWoici un programme utilisant ces deux nouvelles classes, accompagné d’un
exemple d’exécution :
public class TstDerivCouple
{ public static void main (String args[])
{ Couple <Double> cdl = new Couple <Double> (5.0, 2.5) ;
cdi.affiche () ;
Couple <Double> cd2 = new Couple <Double> (5.0, 2.5) ;
cd2.affiche () ;
CoupleNomme <String> cns
= new CoupleNomme <String> ("hello", "bonjour", "saluts") ;
cns.affiche () ;
CoupleNomme <Couple<Double>> cnd
= new CoupleNomme <Couple<Double>> (cdi1, cd2, "cf1i") ;
cnd.affiche () ;
PointNomme pl1 = new PointNomme (2, 5, "Point1") ;
pl.affiche() ;
}
}

premiere valeur : 5.0 - deuxieme valeur : 2.5

435

premiere valeur : 5.0 - deuxieme valeur : 2.5
nom = saluts - premiere valeur : hello - deuxieme valeur : bonjour

nom = cfl - premiere valeur : Couple@923e30 - deuxieme valeur
Couple@130c19b

nom = Pointl - premiere valeur : 2 - deuxieme valeur : 5

Notez qu’ici, nous avons exploité les possibilités de « composition » dans
I’instanciation de la classe générique cnd, en créant un objet de type CoupleNomme,
dans lequel les éléments sont d’un type Couple<Double>. On constate que la méthode
dffiche fournit alors simplement les adresses des deux éléments (de type
Couple<Double>) du couple. En effet, ici, cette méthode se contente d’utiliser
implicitement la méthode toString du type concerné (Couple<Double>).

436

Les différentes sortes de
relation d’héritage

On suppose qu’on a défini une classe générique nommée C :
class C <T> { }

ainsi qu’une classe ordinaire nommée X.

Pour chacune des définitions suivantes, donner les relations d’héritage existant entre
les classes mentionnées en commentaires :

class D<T> extends C<T> { } /* définition 1
*/

// C<Object>, C<Double>, D<Object>, D<Double>

class D<T, U> extends C<T> { } /* définition 2
*/

// C<Double>, D(Double, Integer), D(Double, Double),
// D(Integer, Double)

class D<T extends Number> extends C<T> { } /* définition
3 */

// D<Double>, C<Double>, D<String>, C<String>

class D<T> extends X { } /* définition 4
*/

// D<Double>, X, D<String>

class D<T> extends C<String> /* définition 5
*/

// D<String>, D<Integer>, C<String>, C<Integer>

1. D<Double> dérive de C<Double>
D<Object> dérive de C<Object>

En revanche, il n’existe aucune relation d’héritage entre D<Double> et D<Object>,
pas plus qu’entre C<Double> et C<Object>.

2. D<Double, Integer> dérive de C<Double>
D<Double, Double> dérive de C<Double>
En revanche, D<Integer, Double> et C<Double> ne sont pas liés par une relation

437

d’héritage.

3. D<Double> dérive de C<Double> car Double implémente bien 1’interface
Number. En revanche, D<String> ne dérive pas de C<String> puisque String
n’implémente pas Number.

4. D<Double> dérive de X
D<String> dérive de X
5. D<String> dérive de C<String>
D<Integer> dérive e C<String>
Enrevanche, D<Integer> ne possede aucun lien d’héritage avec C<Integer>.

438

Limitations des parametres de
type d’une méthode

Ecrire une méthode générique déterminant le plus grand élément d’un tableau, la
comparaison des éléments utilisant 1’ordre induit par la méthode compareTo de la
classe des éléments du tableau.

On pourrait envisager pour notre méthode, nommée max, un en-téte de cette forme :
static <T> T max (T[] valeurs)

Mais, dans ce cas, le compilateur refuserait 1’application de la méthode compareTo a

des éléments de type T. Pour que ce soit possible, il est nécessaire de préciser que le

type T implémente 1’interface Comparable<T>, en employant un en-téte de cette forme
static <T extends Comparable<T> > T max (T[] valeurs)

Voici la définition de la méthode et un exemple d’utilisation :
public class MaxTab
{ public static void main (String args[])
{ Integer [] td = {2, 8, 1, 7, 4, 9 } ;

System.out.println("maxi de td = " + max (td)) ;
String [] ts = {"bonjour", "hello", "salut"} ;
System.out.println ("maxi de ts = " + max (ts)) ;
}
static <T extends Comparable<T> > T max (T[] valeurs)
{ if (valeurs == null) return null ;

if (valeurs.length == 0) return null ;

T maxi = valeurs[0O] ;
for (T v : valeurs) if (v.compareTo(maxi) > 0) maxi = v ;
return maxi ;
}
}

maxi de td
maxi de ts

9
Visual Basic

439

En toute rigueur, dans certains cas, la spécification Comparable<T> de I’en-téte de
max pourra poser des problemes et il faudra recourir a des jokers de type super, en la
remplacant par < T extends Comparable <? super T> >, a I’instar de ce qui se fait
dans certaines méthodes relatives aux collections. Ce point, dont la justification sort du
cadre de ce manuel, concerne essentiellement les développeurs de bibliotheques
génériques.

440

Redéfinition de la méthode
compareTo

Compléter la classe Point suivante, de maniére a ce que 1’on puisse appliquer la
méthode générique max précédente a un tableau d’objets de type Point. On
conviendra que les points sont ordonnés par leur distance a 1’ origine.
class Point
{ private int x, y ;
Point (int x, int y)
{ this.x = x ; this.y =y ;

}
public void affiche()
{ System.out.println ("coordonnees : " + x + " " +vy) ;
}
}

Il faut faire implémenter a la classe Point, I’interface Comparable <Point> dont
1’unique méthode a pour en-téte :

public int compareTo (Point p)

D’ou la nouvelle définition de notre classe Point (ne pas oublier de mentionner que,
dorénavant, la classe Point implémente Comparable <Point> :
class Point implements Comparable <Point>
{ private int x, y ;
Point (int x, int y)
{ this.x = x ; this.y = vy ;

}

public void affiche()

{ System.out.println ("coordonnees : " + x + " " + vy) ;
}

public int compareTo (Point p)
{ int normel = x * x +y *vy,;

441

int norme2 = p.x * p.x + p.y * p.y ;
if (normel == norme2) return 0 ;
if (normel > norme2) return 1 ;

else return -1 ;

}
Voici un petit programme appliquant la méthode max a des objets du nouveau type
Point (par souci de lisibilité, nous avons reproduit la liste de 1a méthode max) :
public class MaxTabPoints
{ public static void main (String args[])
{ Point p1 = new Point (O, 5) ;

Point p2 = new Point (3, 1) ;
Point p3 = new Point (0, 12) ;
Point p4 = new Point (3, 5) ;

Point [] tp = {p1, p2, p3, p4} ;
Point maxp = max (tp) ;
System.out.println ("Point maxi : ") ;
maxp.affiche() ;
}
static <T extends Comparable <T> > T max (T[] valeurs)
{ if (valeurs == null) return null ;
if (valeurs.length == 0) return null ;
T maxi = valeurs[0O] ;
for (T v : valeurs) if (v.compareTo(maxi) > 0) maxi = v ;
return maxi ;
}
}

point maxi
coordonnees : 0 12

442

Chapitre 17

Les collections et les tables associatives

N A

W ~<3
— . |

| —
- N

Connaissances requises

* Principales méthodes de 1’interface Collection, indépendantes d’un itérateur :
add, size, contains, addAll, retainAll et removeAll

* Interface Iterator et méthodes next, hasNext et remove
« Interface ListIterator et méthodes previous, hasPrevious, set et add

* Ordre des éléments d’une collection ; interface Comparable et méthode
compareTo ; objets comparateurs

* Relativité de la notion d’égalité de deux éléments d’une méme collection ;
role de la méthode equals

» Utilisation de la boucle for... each sur des collections
» Classe LinkedList et méthodes spécifiques removeFirst et removeLast

» Classe ArrayList et méthodes spécifiques travaillant avec une position
donnée : get, set, add et remove

» Classe HashSet et méthodes hashCode et equals

* Classe TreeSet et méthode comparelo

Note : nous supposons que nous travaillons avec une version Java 5 ou postérieure, ce
qui nous permet d’utiliser des collections et des tables génériques, 1’emballage et le
déballage automatique, ainsi que la boucle dite for...each. En revanche, nous ne ferons
pas appel aux spécificités du JDK 8, lesquelles ne seront exploitées que dans le
chapitre suivant.

443

444

Deépendance ou independance d’un
itérateur

Quels résultats fournira ce programme :

import java.util.*;

public class Essai

{ public static void main (String args[])
{ LinkedList<Integer> liste = new LinkedList <Integer> () ;
liste.add (3) ; liste.add (5) ; nliste.add (3) ;
liste.add (12) ;nliste.add (3) ;
System.out.println (liste) ;
liste.remove (3) ; System.out.println (liste) ;
liste.remove (new Integer(3)) ; System.out.println (liste) ;
Iterator <Integer> it = liste.iterator () ;
while (it.hasNext())if (it.next()==3) it.remove() ;
System.out.println (liste) ;

Rappelons tout d’abord que, depuis Java 5, les possibilités dites d’emballage et de
déballage automatiques (autoboxing) permettent le recours automatique a des classes
enveloppes. Ainsi, 1’appel :

liste.add (3) ;

remplace avantageusement :
liste.add (new Integer(3)) ;

Cependant, cette démarche ne s’applique plus dans 1’appel :
liste.remove (3) ;

En effet, il existe une méthode remove (int) qui, compte tenu des regles relatives a la
surdéfinition, se trouvera appelée ici. Elle supprime 1’élément de rang 3 de liste.

En revanche :
liste.remove (new Integer(3)) ;

445

supprime bien le premier élément de la liste dont la valeur est égale a 3. Rappelons que
1’égalité se fonde sur la méthode equals laquelle, dans le cas des classes enveloppes,
considere bien la valeur des objets.

Enfin, la boucle :

while (it.hasNext())if (it.next()==3) it.remove() ;
permet de supprimer tous les éléments (restants) dont la valeur est égale a 3. Rappelons
que la méthode remove supprime 1’élément courant (c’est-a-dire celui désigné par
1’itérateur).
Enfin, dans une instruction telle que :

System.out.println (liste) ;
il y a appel de la méthode toString de 1’objet liste. Celle-ci, comme pour toute
collection, appelle la méthode toString de chacun de ses éléments.
En définitive, ce programme fournit les résultats suivants :

[3, 5, 3, 12, 3]

[3, 5, 3, 3]

[5, 3, 3]

[5]

446

Manipulation d’un tableau de type
ArrayList

On dispose d’un objet tab déclaré ainsi :
ArrayList <Integer> tab ;

Ecrire les instructions réalisant les actions suivantes sur les valeurs de tab :
» affichage dans 1’ ordre naturel (on proposera au moins 4 solutions) ;
» affichage dans 1’ordre inverse (au moins 2 solutions) ;
« affichage des éléments de rang pair (0, 2, 4...) (au moins 2 solutions) ;

* mise a zéro des éléments de valeur négative (au moins 2 solutions).

I’ affichage dans 1’ordre naturel peut se faire :

* en utilisant la boucle dite for... each :
for (int elem : tab) System.out.print (elem + " ") ;

* en utilisant le recours automatique a la méthode toString de ArrayList :
System.out.println (tab) ;

* enrecourant a la méthode get pour parcourir les différents éléments du tableau :

for (int i=0 ; i<tab.size() ; i++) System.out.print (tab.get(i)+ "

")

* en utilisant un itérateur :

ListIterator <Integer> it = tab.listIterator() ;

while (it.hasNext()) System.out.print (it.next() + " ") ;

[’ affichage dans 1’ordre inverse ne peut plus utiliser les deux premieres démarches.

Les deux dernieres restent applicables :

for (int i=tab.size()-1 ; i>=0 ; i--) System.out.print (tab.get(i)+

n n) ;

ListIterator <Integer> itr = tab.listIterator(tab.size()) ; // fin

de liste
while (itr.hasPrevious()) System.out.print(itr.previous() + " ")

447

Il en va de méme pour 1’affichage des éléments de rang pair :
for (int i=0 ; i<tab.size() ; i+=2) System.out.print (tab.get(i)+ "

")

System.out.println ("\nelements de rang pair - methode 2") ;
while (itp.hasNext())
{ System.out.print(itp.next() + " ") ;
itp.next();
¥

La mise a zéro des éléments négatifs ne peut, la encore, se faire qu’en utilisant soit les
méthodes get et set, soit un itérateur :

for (int i=0 ; i<tab.size() ; i++) if (tab.get(i) < 0) tab.set (1,
0) ;

ListIterator <Integer> itz = tab.listIterator() ;
while (itz.hasNext())if (itz.next() < 0) itz.set(0) ;

Notez bien que la boucle for... each ne permet que des consultations des éléments
d’une collection. Elle n’est donc pas utilisable ici. Bien que correcte sur un plan
syntaxique, 1’instruction suivante se contenterait d’agir a plusieurs reprises sur la
valeur de elem (la mettant a zéro lorsqu’elle est négative), mais laisserait inchangée la
valeur correspondante du tableau :
for (int elem : tab) if (elem < Q) elem = 0 ;
Voici un exemple de programme complet reprenant ces diverses démarches,
accompagné d’un exemple d’exécution. Notez que, pour tester les démarches de mise a
zéro des éléments négatifs, nous avons di travailler sur une copie du tableau initial.
import java.util.* ;
public class Tableau
{ public static void main (String args[])
{ int t[1 ={3, -5, 9, 2, 0, -8, 12, 7, 3, 12 } ;
ArraylList <Integer> tab = new ArraylList<Integer> () ;
for (int elem : t) tab.add (elem) ;

// affichage ordre naturel
System.out.println ("ordre naturel - methode 1") ;

for (int elem : tab) System.out.print (elem + "™ ") ;
System.out.println ("\nordre naturel - methode 2") ;
System.out.println (tab) ;
System.out.println ("ordre naturel - methode 3") ;
for (int i=0 ; i<tab.size() ; i++) System.out.print (tab.get(i)+ "

")

448

}

}

System.out.println ("\nordre naturel - methode 4") ;
ListIterator <Integer> it = tab.listIterator() ;
while (it.hasNext()) System.out.print(it.next() + " ") ;

// affichage ordre inverse
System.out.println ("\nordre inverse - methode 1") ;

for (int i=tab.size()-1 ; i>=0 ; i--) System.out.print
(tab.get(i)+ " ") ;

System.out.println ("\nordre inverse - methode 2") ;

ListIterator <Integer> itr = tab.listIterator(tab.size()) ; // fin
de liste

while (itr.hasPrevious()) System.out.print(itr.previous() + " ") ;

// affichage éléments de rang pair
System.out.println ("\nelements de rang pair - methode 1") ;
for (int 1i=0 ; i<tab.size() ; i+=2) System.out.print (tab.get(i)+

n n) ;

System.out.println ("\nelements de rang pair - methode 2") ;
ListIterator <Integer> itp = tab.listIterator() ;
while (itp.hasNext())
{ System.out.print(itp.next() + " ") ;
itp.next();
}
// mise a zero d'une copie de tab
ArraylList <Integer> tabl = new ArraylList<Integer> (tab) ;
System.out.println ("\nmise a zero - methode 1") ;
for (int i=0 ; i<tabl.size() ; i++) if (tabl.get(i) < 0) tabl.set
(i, 0) ;
System.out.println (tab1l) ;

tabl = new ArraylList<Integer> (tab) ;
System.out.println ("mise a zero - methode 2") ;
ListIterator <Integer> itz = tabl.listIterator() ;
while (itz.hasNext())if (itz.next() < 0) itz.set(0) ;
System.out.println (tab1l) ;

ordre naturel - methode 1

3

-5920 -812 7 3 12

ordre naturel - methode 2
[3, -5, 9, 2, 0, -8, 12, 7, 3, 12]

449

ordre naturel - methode 3

3 -5920 -812 7 3 12

ordre naturel - methode 4

3 -5920 -812 7 3 12

ordre inverse - methode 1

12 37 12 -8 0 2 9 -5 3

ordre inverse - methode 2

12 37 12 -8 0 2 9 -5 3

elements de rang pair - methode 1
390 12 3

elements de rang pair - methode 2
390 12 3

mise a zero - methode 1

[3, 6, 9, 2, 0, 0, 12, 7, 3, 12]
mise a zero - methode 2

[3, 6, 9, 2, 0, 0, 12, 7, 3, 12]

450

Tri d’une collection (1)

On dispose de la classe Cercle suivante :

class Cercle

{ public Cercle (int x, int y, double rayon)

{ this.x = x ; this.y = y ; this.rayon = rayon ; }
public void affiche ()

{ System.out.println ("Coordonnees : " + x + ", " + vy

+ " ; rayon : " + rayon) ;

}

public double getRayon () { return rayon ; }
public int getX () { return x ; }

private int x, y ;

double rayon ;

}

Ecrire les instructions permettant de trier, sans modifier la classe Cercle, un tableau
(de type ArrayList) d’objets de type Cercle :

« suivant les valeurs croissantes de leur rayon ;

* suivant les valeurs croissantes de leur abscisse.

La classe Collections fournit différents algorithmes de tri d’une collection quelconque
implémentant 1’interface List, ce qui est le cas de ArrayList. L’ordre de tri y est défini
soit par la méthode compareTo de la classe concernée qui doit alors implémenter
I’interface Comparable, soit par ce que 1’on nomme un objet comparateur, fourni en
argument de 1’algorithme de tri.

Manifestement ici, la classe Cercle n’implémentant pas 1’interface Comparator, il faut
se tourner vers la seconde démarche. Ici, notre objet comparateur devra implémenter
I’interface Comparator<Cercle>, c’est-a-dire disposer d’une méthode compare
(Cercle, Cercle) renvoyant un entier (dont la valeur exacte est sans importance) :

* négatif si le premier argument est considéré comme inférieur au second ;

* nul si le premier argument est considéré comme égal au second ;

451

» positif si le premier argument est considéré comme supérieur au second.

Voici ce que pourrait étre le code demandé. Ici, nous avons choisi (arbitrairement)
d’utiliser une classe comparateur pour le premier tri et une classe anonyme pour le
second.

import java.util.* ;
public class EssaiComparateur
{ public static void main (String args[])
{ ArraylList <Cercle> liste = new ArraylList <Cercle> ()
Cercle cl1 = new Cercle (5, 3, 5.0) ;
Cercle c2 new Cercle (1, 9, 3.5) ;
Cercle c3 new Cercle (2, 9, 2.5) ;
liste.add (c1) ; liste.add (c2) ; liste.add (c3) ;
// tri suivant le rayon du cercle
Collections.sort (liste, new Comparateurl ()) ;
System.out.println ("-- Cercles tries par rayon croissant") ;
for (Cercle c : liste) c.affiche () ;
// tri suivant l'abcisse du cercle
Collections.sort (liste, new Comparator <Cercle> ()
{ public int compare (Cercle c1, Cercle c2)
{ double x1 = cl.getX () ; double x2 = c2.getX () ;
if (x1 < x2) return -1 ;
else if (x1 == x2) return 0 ;
else return 1 ;

4

}
)
System.out.println ("-- Cercles tries par abscisse croissante") ;
for (Cercle c : liste) c.affiche () ;
}
}

class Comparateurl implements Comparator <Cercle>
{ public int compare (Cercle c1, Cercle c2)
{ double r1 = cil.getRayon () ;
double r2 = c2.getRayon () ;
if (r1 < r2) return -1 ;
else if (r1 == r2) return 0 ;
else return 1 ;

452

class Cercle
{ public Cercle (int x, int y, double rayon)
{ this.x = x ; this.y = vy ; this.rayon = rayon ; }
public void affiche ()
{ System.out.println ("Coordonnees : " + x + ", " + vy
+ ", rayon : " + rayon) ;
}
public double getRayon () { return rayon ; }
public int getX () { return x ; }
private int x, y ;
double rayon ;

}

-- Cercles tries par rayon croissant
Coordonnees : 2, 9 ; rayon : 2.5
Coordonnees : 1, 9 ; rayon : 3.5
Coordonnees : 5, 3 ; rayon : 5.0

-- Cercles tries par abscisse croissante
Coordonnees : 1, 9 ; rayon : 3.5
Coordonnees : 2, 9 ; rayon : 2.5
Coordonnees : 5, 3 ; rayon : 5.0

Notez que I’écriture de la classe anonyme dans 1’appel de Collections.sort pourrait
également utiliser la méthode comparelo de la classe Integer, moyennant 1’emploi de
conversions de int en Integer :
Collections.sort (liste, new Comparator <Cercle> ()
{ public int compare (Cercle c1, Cercle c2)
{ return ((Integer)(cl.getX())).compareTo((Integer)
(c2.getX())) ;

}
P
Il en va de méme pour la méthode compare de la classe Comparateurl :
public int compare (Cercle cl1, Cercle c2)

{ return ((Double)(cl.getRayon())).compareTo((Double)
(c2.getRayon())) ;
}

453

Tri d’une collection (2)

Modifier la classe Cercle de 1’exercice précédent, de maniere a ce que 1’appel
(liste étant un objet de type ArrayList<Cercle>) :
Collections.sort (liste) ;

trie les éléments de liste, suivant les valeurs croissantes de leur rayon.

Cette fois, 1’énoncé nous interdit d’employer un objet comparateur, comme nous
1’avons fait dans 1’exercice précédent. Il faut donc obligatoirement que la clase Cercle
implémente 1’interface Comparable et qu’elle définisse la méthode compareTo, de
facon appropriée.
Voici la classe Cercle modifiée dans ce sens, accompagnée d’un petit programme de
test et d’un exemple d’exécution.
import java.util.* ;
public class EssaiTri
{ public static void main (String args[])
{ ArraylList <Cercle> liste = new ArraylList <Cercle> () ;
Cercle cl1 = new Cercle (5, 3, 5.0) ;
Cercle c2 = new Cercle (1, 9, 3.5) ;
Cercle c3 new Cercle (2, 9, 2.5) ;
liste.add (c1l) ; liste.add (c2) ; liste.add (c3) ;
// tri suivant le rayon du cercle
Collections.sort (liste) ;

System.out.println ("-- Cercles tries par rayon croissant") ;
for (Cercle c : liste) c.affiche () ;
}

}

class Cercle implements Comparable<Cercle>
{ public Cercle (int x, int y, double rayon)
{ this.x = x ; this.y = vy ; this.rayon = rayon ; }
public void affiche ()
{ System.out.println ("Coordonnees : " + x + ", " + vy
+ ", rayon : " + rayon) ;

454

}

public int compareTo (Cercle c)

{ if (rayon < c.rayon) return -1 ;

else if (rayon == c.rayon) return 0 ;

else return 1 ;
}

// on peut aussi utiliser compareTo sur des Double

// return ((Double)(rayon)).compareTo ((Double)(c.rayon))
public double getRayon () { return rayon ; } // inutilisee ici
public int getX () { return x ; } // inutilisee ici
private int x, y ;

double rayon ;

}

-- Cercles tries par rayon croissant
Coordonnees : 2, 9 ; rayon : 2.5
Coordonnees : 1, 9 ; rayon : 3.5
Coordonnees : 5, 3 ; rayon : 5.0

Notez que, cette fois, les méthodes getX et getRayon de la classe Cercle ne sont plus
utilisées, puisque notre méthode compareTo a bien acces aux champs privés.

Par ailleurs, 1’ordre de tri est défini, une fois pour toutes, dans la classe Cercle elle-
méme. Si 1’on souhaite effectuer d’autres sortes de tris, il faudra quand méme recourir
a la démarche de 1’exercice précédent en fournissant un objet comparateur, indépendant
de la classe Cercle.

455

Réalisation d’une liste triée en
permanence

Réaliser une classe nommée ListeTriee permettant de manipuler une liste de chaines
de caracteres, en s’arrangeant pour qu’elle soit triée en permanence. Outre le
constructeur, on la dotera des méthodes :

* gjoute qui ajoute un nouvel élément a la bonne place ;

» dffiche qui affiche les éléments de la liste.

[’énoncé n’impose pas le type de collection a utiliser pour conserver les chaines.
L’interface List nous convient tout a fait puisqu’elle permet de parcourir les éléments
de la collection et d’insérer un nouvel élément entre deux autres. Nous pouvons
indifféremment employer un objet de type ArrayList ou de type LinkedList.

La méthode ajoute (String ch) devra rechercher dans la liste le premier élément
supérieur a ch. Si un tel élément existe, on ajoutera ch avant (il faudra utiliser previous
pour "reculer" I’itérateur). Si un tel élément n’existe pas, il suffira d’ajouter ch a la
position courante de 1’itérateur, et ceci que la liste soit vide ou non.

Voici ce que pourrait étre la classe demandée, implémentée ici avec un objet de type
LinkedList, accompagnée d’un petit programme de test et d’un exemple d’exécution.

import java.util.* ;
public class TestListeTriee
{ public static void main (String args [])
{ ListeTriee liste = new ListeTriee () ;
liste.ajoute ("c") ;
liste.affiche() ;
liste.ajoute ("b") ;
liste.affiche() ;
liste.ajoute ("f") ;
liste.affiche() ;
liste.ajoute ("e") ;

456

liste.affiche() ;

b
b

class ListeTriee

{ public ListeTriee ()

{ liste = new LinkedList <String> () ; // ou ArraylList
}

public void ajoute (String ch)

{ ListIterator <String> it = liste.listIterator () ;

boolean trouve = false ;

while ((it.hasNext()) && ! trouve)

{ if (it.next().compareTo(ch) > 0) trouve = true ;

}

if (trouve) it.previous() ; // ici, 1l y obligatoirement un
precedent
it.add (ch) ;
}
public void affiche ()
{
for (String ch : liste) System.out.print (ch + " ") ;
System.out.println () ;
}
private LinkedList <String> liste ; // ou ArraylList
}
C
b c
bcf
bcef

457

Creéation d’un index

Réaliser une classe nommée Index permettant de gérer un index d’ouvrage. Un tel
index associe une entrée (mot ou suite de mots) a un ou plusieurs numéros de page
(contrairement a ce qui se passe dans les index de la plupart des ouvrages, on ne
prévoira pas d’entrées a plusieurs niveaux).

La classe Index disposera, en plus d’un constructeur, des méthodes :
* gjouter pour introduire une nouvelle entrée, associée a un numéro de page ;

» liste pour afficher la liste de 1’index, par ordre alphabétique des entrées, la liste
des numéros de page d’une méme entrée étant triée par valeur croissante ;
1’affichage d’une entrée d’index se présentera sur une méme ligne sous la forme :
Java : 12 25

On prendra bien soin de n’associer qu’une seule fois un méme numéro de page a une
entrée donnée.

Pour représenter notre index, nous utiliserons une table associative. Rappelons qu’il
s’agit d’un ensemble de paires, formant chacune une association entre une clé et une
valeur. Ici, la clé sera une entrée d’index (de type String). Quant a la valeur, elle
correspondra a la liste des numéros associés a une entrée. Ceux-ci pourraient étre
conservés dans un objet de type List, mais ce dernier devrait alors étre trié au moment
de 1’affichage de 1’index et de plus, il faudrait y éviter les doublons. Il est plus simple
d’utiliser un ensemble (ce qui élimine les doublons) de type TreeSet (il sera alors trié
en permanence).

Quant a la table associative elle-méme, nous choisirons également le type TreeMap, de
sorte qu’elle sera toujours triée sur les entrées d’index. Rappelons que, dans une table
associative (quel que soit son type exact), les clés sont toujours uniques.

En définitive, notre index sera conservé dans un objet du type :
TreeMap <String, TreeSet <Integer> >

Pour ajouter une nouvelle entrée a 1’index, la méthode
ajouter (String entree, int numero)

recherchera tout d’abord 1’ensemble des numéros déja associés a la clé entree, en

458

recourant a la méthode get (entree). Si cette entrée n’existe pas (la méthode get
fournira alors la valeur null), on introduira une nouvelle paire dans I’index, a I’aide de
la méthode put, a laquelle on fournira comme clé entree et comme valeur un nouvel
ensemble formé du seul numero. Dans le cas contraire (get fournira alors une valeur
non nulle correspondant a la référence sur la valeur associée a la clé fournie), on
ajoutera numero a I’ensemble des numéros existants et 1’on utilisera également la
méthode put pour introduire la paire voulue dans I’index ; comme les clés sont uniques,
la paire ainsi ajoutée prendra bien la place de 1’ancienne.

Une table associative ne dispose pas d’itérateur. Pour effectuer la liste de notre index,
nous devrons utiliser la méthode entrySet qui permet de "voir" la table comme un
ensemble de paires (clé, valeur). Chaque paire est un élément de type Map.Entry dont
les méthodes getKey et getValue permettent d’ obtenir respectivement la clé et la valeur
correspondante.

En définitive, voici notre classe Index, accompagnée d’un petit programme de test :

import java.util.* ;

public class TestIndex

{ public static void main (String args[])
{ Index monIndex = new Index () ;
monIndex.ajouter ("Java", 25) ;
monIndex.ajouter ("C++", 45) ;
monIndex.ajouter ("Java", 12) ;
monIndex.ajouter ("objet", 15) ;
monIndex.ajouter ("polymorphisme", 45) ;
monIndex.liste() ;

}

}

class Index

{ public Index ()

{ index = new TreeMap <String, TreeSet <Integer> > () ; }
public void ajouter (String entree, int numero)

{ // si entree n'existe pas dans 1l'index, on l'ajoute, associe au
numero

// sinon, on ajoute le numero de page a l'ensemble des numeros
// deja associes a entree

TreeSet <Integer> numeroskExistants = index.get(entree) ;

if (numerosExistants == null)

{ TreeSet <Integer> numeroNouveauNom = new TreeSet <Integer> () ;
numeroNouveauNom.add (numero) ;

index.put (entree, numeroNouveauNom) ;

459

}

else
{ numerosExistants.add (numero) ;
index.put(entree, numerosExistants) ; // remplace l'entree
precedente
}
}

public void liste ()
{ Set <Map.Entry <String, TreeSet <Integer> > >
elementsIndex = index.entrySet () ;

for (Map.Entry <String, TreeSet <Integer> > -elementCourant
elementsIndex)

{ String entreeCourante = elementCourant.getKey () ;
TreeSet <Integer> numeros = elementCourant.getValue ()

4

System.out.print (entreeCourante + " : ") ;

for (int num : numeros) System.out.print (num + " ") ;
System.out.println () ;
}

}

private TreeMap <String, TreeSet <Integer> > index ;

}

C++ : 45
Java : 12 25
objet : 15

polymorphisme : 45

460

Inversion d’un index

Modifier la classe Index précédente, de sorte qu’elle dispose de deux méthodes
supplémentaires :

* creationIndexPage créant un "index inversé", associant un numéro de page
donné a la liste des entrées correspondantes ; on se limitera aux numéros de page
associés a au moins une entrée ;

* listeIndexPage affichant la liste de cet index inversé, par ordre croissant des
numeéros de page, les entrées d’une méme page étant triées par ordre alphabétique,
sous la forme :

25 : Java langage

Nous dotons notre classe d’un nouveau champ indexPage destiné a représenter 1’index
inversé. Nous utiliserons également une table associative ; cette fois, la clé
correspondra a un numéro de page (type Integer) tandis que la valeur correspondra a la
liste des entrées associées a la page correspondante. La encore, nous pourrions utiliser
un objet de type List, mais un TreeSet <String> permettra d’éliminer les doublons et
de conserver la liste des entrées d’une page triée par ordre alphabétique. Une nouvelle
fois, pour la table associative, nous choisirons le type TreeMap, ce qui lui permettra
d’étre triée automatiquement sur le numéro de page. En définitive, notre champ
indexPage sera déclaré ainsi :
private TreeMap <Integer, TreeSet <String> > indexPage ;

La méthode creationIndexPage devra parcourir chacune des paires de 1’index initial.
Pour ce faire, on utilisera la méthode entrySet qui servira a "voir" notre index comme
un ensemble de paires (clé, valeur), chaque paire étant un élément de type Map.Entry
dont les méthodes getKey et getValue permettant d’obtenir respectivement la clé
(chaine) et la valeur associée (ensemble de numéros de page).

Parallelement, on créera 1’index inversé, en procédant de facon similaire a ce que nous
avions fait dans la méthode ajouter de I’exercice précédent. Cette fois, pour chaque
numéro de page n associé a une entrée e, on recherchera dans 1’index inversé un
élément de clé n. S’il existe, on ajoutera a sa liste d’entrées 1’entrée e ; dans le cas
contraire, on créera un nouvel élément de clé n, dont la valeur sera un ensemble formé

461

de la seule entrée e.

En définitive, voici notre nouvelle classe Index (nous n’avons pas reproduit les
méthodes ajouter et liste), accompagnée d’un petit programme de test.
import java.util.* ;
public class TestIndexParPage
{ public static void main (String args[])
{ Index monIndex = new Index () ; monIndex.ajouter ("Java", 25) ;
monIndex.ajouter ("C++", 45) ; monIndex.ajouter ("Java", 12) ;

monIndex.ajouter ("objet", 15) ; monIndex.ajouter
("polymorphisme", 45) ;

monIndex.ajouter ("objet", 45) ; monIndex.ajouter ('"langage",
25) ;

monIndex.creationIndexPage () ;
monIndex.listeIndexPage () ;

b
b

class Index
{ public Index () { // comme precedemment }

public void ajouter (String entree, int numero) { // comme
precedemment }

public void liste () { // comme precedemment }

public void creationIndexPage ()

{ indexPage = new TreeMap <Integer, TreeSet <String> > () ;

Set <Map.Entry <String, TreeSet <Integer> > >
elementsIndex = index.entrySet () ;

for (Map.Entry <String, TreeSet <Integer> > -elementCourant
elementsIndex)

{ String entreeCourante = elementCourant.getKey () ;
TreeSet <Integer> pagesCourantes = elementCourant.getValue () ;
for (Integer numero : pagesCourantes)
{ TreeSet <String> entreeskExistantes = indexPage.get(numero) ;
if (entreesExistantes == null)
{ TreeSet <String> entreeNouveauNumero = new TreeSet <String>

0)

entreeNouveauNumero.add(entreeCourante) ;
indexPage.put(numero, entreeNouveauNumero) ;
}

else

{ entreesExistantes.add(entreeCourante) ;
indexPage.put (numero, entreesExistantes) ;

462

}

}
}
}
public void listeIndexPage ()
{ if (indexPage == null) return ;

Set <Map.Entry <Integer, TreeSet <String> > >
elementsIndexPage = indexPage.entrySet () ;

for (Map.Entry <Integer, TreeSet <String> > numero
elementsIndexPage)

{ Integer numeroCourant = numero.getKey () ;
TreeSet <String> entrees = numero.getValue () ;

System.out.print (numeroCourant + " : ") ;

for (String entree : entrees) System.out.print (entree + " ") ;
System.out.println () ;

}

}

private TreeMap <String, TreeSet <Integer> > index ;
private TreeMap <Integer, TreeSet <String> > indexPage ;

}

12 : Java

15 : objet

25 : Java langage

45 : C++ objet polymorphisme

463

Chapitre 18

Les expressions lambda et les streams

N

L "'h.'
= !

—N\& |

Connaissances requises

* Syntaxe des expressions lambda

« Interface fonctionnelle ; les principales interfaces fonctionnelles standards
* Références de méthodes

* L’interface Comparator ; méthodes comparing, reversed, reversedOrder
« Stream séquentiel et stream paralléle

* Les différentes sources pour un stream : collection, liste ou tableau de
valeurs, génération

* Les méthodes intermédiaires : filter, map, sorted, limit, peek

* Les méthodes terminales : forEach, forEachOrdered, count, sum, min, max,
average

* La méthode reduce (forme usuelle) ; la méthode collect et les objets
Collectors : toList, toMap, groupingBy et joining

464

L.ambda et interfaces
prédéfinies

Ecrire la méthode affichage_selectif afin que le programme suivant affiche les
éléments positifs du tableau tab :
public class Affichage
{ public static void main (String [] args)
{ int [] tab = {1, 4, -2, 9, -3, 5, -3 } ;
System.out.print ("-- Les positifs de tab : ") ;
affichage_selectif (tab, ee -> ee > 0) ;
}
}

On proposera deux solutions, 1’une utilisant une interface personnalisée, 1’autre une
interface prédéfinie.

On voit que la méthode daffichage_selectif doit recevoir en second argument une
implémentation d’une interface fonctionnelle dont la méthode fonctionnelle recoit un
argument de type int et fournit un résultat de type booléen. Avec une interface
personnalisée, il pourrait s’agir de (les noms Filtrage et filtre étant arbitraires) :
interface Filtrage
{ public Boolean filtre (int n) ;

}

Voici ce que pourrait étre alors la méthode affiche_selectif :
public static void affichage_selectif (int [] t, Filtrage f)
{ for (int val : t) if (f.filtre (val)) System.out.print (val + "

* II) ;

System.out.println () ;
b

On peut se passer de définir 1’interface Filtrage en recourant a 1’interface prédéfinie
IntPredicate et a sa méthode fonctionnelle test (qui recoit un int et renvoie un
booléen). Voici ce que deviendrait notre programme complet dans ce cas :

import java.util.function.* ;

465

public class Affichage
{ public static void main (String [] args)

{ int [] tab = {1, 4, -2, 9, -3, 5, -3} ;
System.out.print ("-- Les positifs de tab : ")
affichage_selectif (tab, ee -> ee > 0)

}

public static void affichage_selectif (int [] t, IntPredicate f)

{ for (int val : t) if (f.test (val)) System.out.print (val + " *
")

System.out.println ()
¥

}
-- Les positifs de tab : 1 * 4 * 9 * 5 *

4

4

14

466

I.ambda et références

Compléter la derniere solution de 1’exercice précédent, de maniere que le
programme affiche, en plus des nombres positifs du tableau tab, les nombres
négatifs, puis les nombres pairs :

-- Les positifs

1*4*9 *5* 12 *7*6*

-- Les negatifs

-2 * -3 * .3 * .11 *

-- Les pairs

4 * -2 * 12 * 0 *6 *
On proposera tout d’abord une solution utilisant des expressions lambda, puis une
solution utilisant des références a des méthodes qu’on écrira.

La premiere solution consiste simplement a utiliser comme deuxieme argument de la
méthode affichage_selectif 1’une des expressions lambda suivantes :

ee -> ee < 0

ee -> 2 * (ee/2) == ee)
D’ou les instructions supplémentaires :

System.out.print ("-- Les negatifs : ") ;

affichage_selectif (tab, ee -> ee < 0)
System.out.print ("-- Les pairs : ") ;
affichage_selectif (tab, ee -> 2 * (ee/2) == ee)

l4

La deuxieme solution requiert que 1’on puisse utiliser a la place des expressions
lambda, la référence d’une méthode. Ici, nous utiliserons tout naturellement des
méthodes statiques, recevant un argument de type int et renvoyant un résultat de type
booléen. Nous les nommerons filtragePositifs, filtrageNegatifs et filtragePairs.
Voici ce que pourrait étre le programme complet dans lequel nous avons fait figurer les
deux solutions (expression lambda et référence) :

import java.util.function.* ;

public class Affichage

{ public static void main (String [] args)

467

{ int [] tab = {1, 4, -2, 9, -3, 5, -3, 12, 7,-11, 0, 6 } ;

System.out.println ("-- Les positifs : ") ;

affichage_selectif (tab, ee ->ee >0) ; // lambda
affichage_selectif (tab, Affichage::filtragePositifs) ; //
reference

System.out.println ("-- Les negatifs : ") ;

affichage_selectif (tab, ee -> ee < 0) ; // lambda
affichage_selectif (tab, Affichage::filtrageNegatifs) ; //
reference

System.out.println ("-- Les pairs : ") ;

affichage_selectif (tab, ee -> 2 * (ee/2) == ee) ; // lambda
affichage_selectif (tab, Affichage::filtragePairs) ; //
reference
}

public static void affichage_selectif (int [] t, IntPredicate f)

{ for (int val : t) if (f.test (val)) System.out.print (val + " *
")

System.out.println () ;

}

public static Boolean filtrageNegatifs (int n) { return n < 0 ; }
public static Boolean filtragePositifs (int n) { return n > 0 ; }
public static Boolean filtragePairs (int n) { return 2*(n/2)==n ; }

}

-- Les positifs

1*4 *9 *5 *12 *7 *6 *
1*4 *9 *5 *12 *7 *6 *
-- Les negatifs

-2 * -3 * -3 * -11 *

-2 * -3 * -3 * -11 *

-- Les pairs

4 * -2 * 12 * 0 * 6 *

4 * -2 * 12 * 0 * 6 *

468

V4| I’interface Comparator

On dispose de la classe Point définie ainsi :

class Point

{ public Point (int x, int y) { this.x = x ; this.y =y ; }
public int getX() { return x ; }

public int getY() { returny ; }

public void affiche ()
{ System.out.print(" ["+ x + ", " +y + "]1"),; }
private int x, y ;

}

Ecrire une méthode statique nommée traiteListe recevant en premier argument une
liste de points sur laquelle elle réalise successivement trois opérations paramétrées
par les trois arguments suivants :

* une sélection des éléments réalisant une condition ;
* un tri (suivant un critere variable) des éléments sélectionnés ;

» un affichage des éléments ainsi triés.

La méthode traiteListe s’utilisera ainsi (le type des arguments étant a préciser) :
traiteListe (liste, selection, tri, affichage) ;

On utilisera cette méthode :

* pour sélectionner les points d’abscisse positive, les trier sur les valeurs de leurs
abscisses et les afficher suivant cette forme :
[2! 5] [2! 3] [61 '3]

» pour sélectionner tous les éléments, les trier suivant la somme de leurs
coordonnées et les afficher ainsi :
(abs = -3, ord = 4) (abs = 6, ord = -3) (abs = 2, ord = 3)

Ici, on évitera d’utiliser des streams.

Le premier argument de la méthode traiteListe est naturellement de type
ArrayList<Point>. Les suivants sont des implémentations des interfaces fonctionnelles

469

prédéfinies suivantes :
* Predicate<Point>, dont la méthode fonctionnelle est test ;
» Comparator<Point> ;

» Consumer<Point> dont la méthode fonctionnelle se nomme accept.

Comme 1’énoncé nous impose de ne pas utiliser de stream, il est nécessaire de créer
localement une liste nommée ici liste2? contenant les éléments sélectionnés pour la
soumettre au tri. Voici ce que pourrait étre notre méthode traiteListe :
public static void traitelListe (ArrayList<Point> liste,
Predicate<Point> selec,
Comparator<Point> comp,
Consumer<Point> aff)
{ ArraylList<Point> liste2 = new ArraylList <Point>() ;
liste.forEach (ee -> { if (selec.test(ee)) liste2.add(ee) ; }) ;
liste2.sort(comp);
liste2.forEach(ee -> aff.accept(ee)) ;

}

Pour le premier traitement, la sélection peut se faire a 1’aide de I’expression lambda :
ee -> ee.getX()>0
Pour le comparateur a fournir en troisieme argument, nous avons plusieurs
possibilités :
» utiliser une expression lambda pour implémenter la méthode fonctionnelle compare
de 1’interface Comparator<Point>, ce qui conduit a une expression assez
compliquée, notamment a cause des conversions en Integer dues a ce que la méthode
getX fournit un int et non un Integer :

(pp1, pp2) -> ((Integer)(ppl.getX()))
.compareTo (((Integer)(pp2.getX())))

 Utiliser la méthode Comparator.comparing pour créer un comparateur a partir
d’une expression lambda :
Comparator.comparing (pp-> pp.getX())

» Utiliser a la fois la méthode Comparator.comparing et une référence de méthode :
Comparator.comparing(Point: :getX)

Nous choisirons la derniere pour sa simplicité (mais, a titre indicatif, nous
programmerons également la premiere dans notre exemple complet).

Quant a I’affichage, il peut se faire simplement ici a 1’aide de la méthode
Point: :dffiche.

Pour le deuxieme traitement, il nous faut sélectionner tous les points ; nous utilisons

470

1’expression lambda :
XX -> true

Pour le comparateur, nous ne pouvons plus utiliser de référence a une méthode puisque
la comparaion porte dorénavant sur la somme des coordonnées (a moins de créer une
méthode supplémentaire a cet effet). Nous utiliserons donc la méthode
Comparator.comparing de cette maniere :

Comparator.comparing (xx -> xx.getX() + xx.getY())

Enfin, 1’affichage ne peut plus recourir a la méthode dffiche de la classe Point. Nous
aurions pu créer une méthode statique et transmettre sa référence en argument. Ici, nous
avons choisi une expression lambda.
En définitive, notre programme pourrait se présenter ainsi :
import java.util.function.* ;
import java.util.* ;
public class Traiteliste
{ public static void main (String [] args)
{ Point [] tab = { new Point(2, 5), new Point(-3, 4),
new Point(2, 3), new Point(6, -3) } ;
ArraylList<Point> 1 = new ArraylList<Point>() ;
for (Point p : tab) l.add(p) ;
// selection des points d'abscisse positive,
// tri sur l'abscisse utilisant Comparator.comparing
traiteListe (1, ee -> ee.getX()>0,
Comparator.comparing(Point::getX),
Point::affiche) ;
System.out.println () ;
// meme chose avec un comparateur sous forme d’expression lambda
traiteListe (1, ee -> ee.getX()>0,
(pp1, pp2) -> ((Integer)(ppl.getX()))
.compareTo (((Integer)(pp2.getX()))),
Point::affiche) ;
System.out.println () ;
// tri de tous les points suivant la somme des coordonnees
// avec Comparator.comparing
traiteListe (1, xx -> true,
Comparator.comparing (xx -> xx.getX() + xx.getY()),
(xx -> System.out.print ("(abs = " + xx.getX()
+ ", ord = " + xx.gety() + ") "))) ;

471

public static void traitelListe (ArrayList<Point> liste,
Predicate<Point> selec,
Comparator<Point> comp,
Consumer<Point> aff)

{ ArrayList<Point> liste2 = new ArraylList <Point>() ;
liste.forEach (ee -> { if (selec.test(ee)) liste2.add(ee)
liste2.sort(comp);
liste2.forEach(ee -> aff.accept(ee))

}

}

class Point

{ public Point (int x, int y) { this.x = x ; this.y =y
public int getX() { return x ; }

public int getY() { returny ; }

public void affiche () { System.out.print(" [" + x + ", " + vy + "]

") 7}

private int x, y ;

}

[215][213][61'3]
[215][213][61'3]

(abs = -3, ord = 4) (abs = 6, ord = -3) (abs
ord = 5)

;oY)

l4

.

2, ord = 3) (abs = 2,

472

Les meéethodes usuelles des streams

Que produit le programme suivant :
import java.util.stream.* ;
public class ExoStream
{ public static void main (String args[])
{ int [] tab = { 3, 5, -3, 8, 12, 4, 7, 4, 8, 3 } ;

long nb = IntStream.of(tab).filter (xx -> XX
>0).count() ; // 1
System.out.println ("nb = " + nb) ;
IntStream.of(tab).filter (xx -> XX >
3).sorted() // 2
.forEach(xx -> System.out.print (xx + " ")) ;
System.out.println();
IntStream.of(tab).filter (xx -> XX
>3).sorted().distinct() // 3
.forEach(xx -> System.out.print (xx + " ")) ;
int s =IntStream.of (tab).map(xx ->
Math.abs(xx)) // 4
.map(xx -> xx * xx).sum() ;
System.out.println ("\nresultat = " + s) ;
}
}

L’instruction 1 crée un stream a partir du tableau d’entiers tab. La méthode filter filtre
les éléments positifs et ceux-ci sont comptabilisés par la méthode terminale count.

L’instruction 2 crée le méme stream, en sélectionnant cette fois les éléments de valeur
supérieure a 3, en les triant suivant 1’ordre naturel et en les affichant.

L’instruction 3 fait la méme chose que I’instruction 2 avec cette différence que, apres le
tri, on évite de conserver des valeurs en double, grace a la méthode distinct.

Enfin, I’instruction 4 effectue une premiere transformation associant a chaque nombre
sa valeur absolue, puis une seconde transformation associant a chaque élément son
carré (notez qu’ici on obtiendrait le méme résultat, en supprimant la méthode map).
Enfin, la méthode terminale sum effectue la somme de ces derniers.

En définitive, ce programme affiche :
nb = 9

473

4 457 8 8 12
4 57 8 12
resultat = 405

474

Traitement de liste avec un stream

L’exercice 171 proposait de réaliser une méthode statique de traitement de liste,
laquelle devait nécessairement créer une nouvelle liste.

Ecrire un programme effectuant les mémes opérations, en utilisant un stream.
On proposera deux solutions :

* I’une utilisant toujours la méthode traiteListe ;

 I’autre n’utilisant plus cette méthode et se contentant d’effectuer le traitement
directement au sein de la méthode main.

La premiére démarche consiste simplement a créer un stream dans la méthode
traiteListe :
public static void traitelListe (ArrayList<Point> liste,
Predicate<Point> selec,
Comparator<Point> comp,
Consumer<Point> aff)
{ liste.stream().filter(selec).sorted(comp).forEach(aff) ;

b
b

On notera que, cette fois, il n’est plus nécessaire de créer une nouvelle liste puisque les
différentes opérations réalisées par le stream n’en modifient pas la source (liste
d’origine). Le reste du code est inchangé.

La deuxieme démarche possede, la encore, plusieurs variantes suivant la maniere dont
on fournit les arguments aux méthodes filter, sorted et forEach. Voici une formulation
possible :
import java.util.* ;
public class ExoTraitelLlistStream
{ public static void main (String [] args)
{ Point p1 = new Point (2, 5), p2 = new Point (-2, 3),
p3 = new Point (6, -3), p4 = new Point (-3, -2) ;
ArraylList<Point> 1 = new ArraylList<Point>() ;
l.add(p1l) ; l.add(p2) ; l.add(p3) ; l.add(p4) ;
// sélection des points d'abscisse positive, tri sur l'abscisse
l.stream().filter(ee -> ee.getX() > 0)

475

.sorted(Comparator.comparing (xx -> xx.getX()))
.foreach(Point::affiche) ;
System.out.println () ;
// tri de tous les points suivant la somme des coordonnees

1l.stream().sorted (Comparator.comparing (xx -> xx.getX() +
xx.getY()))

.forEach (xx -> System.out.print ("(abs=" + xx.getX()
+ ", ord=" + xx.getY())) ;
}
}

class Point
{ public Point (int x, int y) { this.x = x ; this.y =y ; }
public int getX() { return x ; }
public int getY() { returny ; }
public void affiche ()
{ System.out.print(" ["+ x + ", " +y + "] ")
private int x, y ;

}

[21 5] [61 '3]
(abs=-3, ord=-2) (abs=-2, ord=3) (abs=6, ord=-3) (abs=2, ord=5)

.

476

Reépertoire

On dispose de la classe Personne suivante :
class Personne
{ public Personne (String prenom, String nom, int annee)

{ this.nom = nom ; this.prenom = prenom ; annee_naissance =
annee ; }

public String getNom() { return nom ; }
public String getPrenom() { return prenom ; }
public int getAnnee() { return annee_naissance ; }
private String nom, prenom ;
private int annee_naissance ;

}

}

Réaliser les opérations suivantes sur un tableau d’objets de type Personne, en
utilisant un stream :

« afficher le nom des personnes nées apres 1985 ;

« afficher le nom des personnes nées avant 2000, triés par ordre alphabétique sur
leur nom, et afficher leur nombre ;

« afficher tous les noms et prénoms, triés par ordre alphabétique sur leur nom et
leur prénom.

Si tab désigne le tableau d’objets en question, on pourra créer un stream associé a ce
tableau, a I’aide de la méthode statique of de la classe Stream, en procédant ainsi :
Stream.of(tab)

Pour la premieére opération, on lui appliquera un filtre pour sélectionner les personnes
correspondant a la condition voulue :
.filter(pp -> pp.getAnnee() > 1985)

Enfin, 1’affichage sera provoqué par 1’opération terminale forEach :

.foreach(pp -> System.out.print (pp.getPrenom() + ", ")
Pour la seconde opération, on procédera de facon similaire, en ajoutant une opération
intermédiaire de tri, a 1’aide de la méthode sorted, a laquelle on fournira le
comparateur voulu. Plusieurs démarches sont possibles, la plus simple étant de recourir
a la méthode Comparator.comparing en lui fournissant la référence d’une méthode

477

existant déja dans la classe Personne, a savoir ici Personne::getNom.

En revanche, cette fois, on ne peut plus utiliser forEach pour afficher les noms
demandés puisque cette opération terminale déclencherait I’exécution du stream, alors
que nous voulons pouvoir 1’utiliser pour lui appliquer la méthode count (a moins
d’utiliser deux streams consécutifs, I’un pour 1’affichage, 1’autre pour le comptage). On
peut recourir a la méthode peek qui, tout en attendant un Consumer comme forEach,
présente la particularité d’étre une méthode intermédiaire laissant le stream inchangé
(onretrouve en sortie le stream fourni en entrée).

Enfin, pour la troisiéme opération, on utilisera également la méthode sorted, en lui
fournissant toujours un comparateur créé par la méthode Comparator.comparing mais,
cette fois, il n’est plus possible de lui fournir une référence de méthode (a moins d’en
écrire une spécialement pour cela). On procedera ainsi :
sorted(Comparator.comparing (pp -> pp.getNom()+pp.getPrenom()))

Voici un exemple de programme complet créant un "mini-répertoire" de cinq personnes
(nous n’avons pas rappelé la classe Personne) :
import java.util.stream.* ;
import java.util.* ;
public class ExoRepert
{ public static void main (String [] args)
{ Personne[] tab = { new Personne ("thibault", "Rougier", 2001),
new Personne ('"thomas", "Niesseron", 1987),
new Personne ("thifaine", "Mitenne", 1959),
new Personne ('"maxime", "Forest", 1995),
new Personne ("jules", "Forest", 1995) } ;
System.out.println ("--- Nes apres 1985 : ") ;
Stream.of(tab).filter(pp -> pp.getAnnee() > 1985)
.foreach(pp -> System.out.print (pp.getPrenom() + ", ")) ;
System.out.println ("\n--- Nes avant 2000 :") ;
long nombre = Stream.of(tab).filter(pp -> pp.getAnnee() < 2000)
.sorted(Comparator.comparing(Personne::getNom))
.peek(pp -> System.out.print (pp.getNom() + " "))

.count() ;
System.out.println ("\n Ils sont "+nombre) ;
System.out.println ("--- Tous tries sur nom + prenom : ") ;

Stream.of(tab).sorted(Comparator.comparing

(pp -> pp.getNom() + pp.getPrenom()))
.forEach(pp -> System.out.print ("(" + pp.getNom() + ", "

+ pp.getPrenom() +") ")) ;

478

}

--- Nes apres 1985

thibault, thomas, maxime, jules,

--- Nes avant 2000

Forest Forest Mitenne Niesseron
Ils sont 4

--- Tous tries sur nom + prenom

(Forest, jules) (Forest, maxime) (Mitenne,
thomas)

(Rougier, thibault)

479

thifaine)

(Niesseron,

Répertoire (bis)

On suppose qu’on dispose de la classe Personne de 1’exercice précédent.

Ecrire un programme qui, a partir d’une liste de personnes (List<Personne>)
utilise un stream pour afficher 1’année de naissance de la plus jeune. On proposera
deux formulations :

* ’une ne recourant pas a un comparateur et affichant seulement 1’année
concernée ;

* I’autre affichant le nom, prénom et année de naissance de la personne concernée
(on peut, cette fois, utiliser un comparateur).

Dans les deux démarches imposées, il faut manifestement recourir a la méthode min
d’un stream. Lorsqu’on I’applique a un Stream<T>, il est nécessaire de lui fournir un
comparateur. En revanche, lorsqu’on I’applique a un IntStream, la méthode min ne
dispose d’aucun argument et utilise 1’ordre naturel des entiers.

Dans les deux cas, nous travaillerons sur un Stream<Personne>. Dans le premier, nous
utiliserons la méthode mapTolnt pour extraire seulement les années de naissance, sous
forme d’un IntStream auquel nous appliquerons la méthode max.

Dans le deuxieme cas, nous appliquerons directement la méthode min sur ce
Stream<Personne>, en fournissant un comparateur approprié, ce qui nous permettra de
récupérer I’ensemble des informations sous forme d’un objet de type Personne.

Enfin, il faut ajouter que, dans les deux cas, la méthode min tient compte du fait que le
stream peut étre vide, en fournissant un objet de type Optionallnt (pour le premier cas)
ou Optional<Personne> (pour le deuxieme cas). Il faut alors utiliser la méthodes
isPresent pour savoir s’il y a bien présence d’une valeur que 1’on récupere, le cas
échéant, par getAsInt (dans le premier cas) ou get (dans le deuxieme).

En définitive, voici un exemple complet de programme créant, la encore, un mini-
répertoire de cinq personnes. Notez que, 1’énoncé imposant une liste, nous avons
d’abord créé un tableau de personnes, que nous transformons en liste a 1’aide de la
méthode asList de la classe utilitaire Arrays.

import java.util.* ;

public class OptionalPersonne

480

{ public static void main (String [] args)
{ Personne[] tab = { new Personne ("thibault", "Rougier", 2001),
new Personne ("thomas", "Niesseron", 1987),
new Personne ("thifaine", "Mitenne", 1959),
new Personne ('"maxime", "Forest", 1995),
new Personne ("jules", "Forest", 1995) } ;
List<Personne> liste = Arrays.asList(tab) ;

// utilisation d'un Stream<Personne> transforme par map en
IntStream

OptionalInt anneelJeune = liste.stream()
.mapToInt(pp -> pp.getAnnee()).max() ;
if (anneeJeune.isPresent())
"System.out.println ("--- Methode 1 - Le plus jeune est ne en

+ anneeJeune.getAsInt()) ;
else System.out.println ("--- Liste vide") ;

// recherche de min sur un Stream<Personne>
Optional<Personne> personneJeune =liste.stream()
.max(Comparator.comparing(Personne::getAnnee)) ;
if (personneJeune.isPresent())
{ Personne pj = personneldeune.get();

System.out.println ("--- Methode 2 - Le plus jeune est "
+ pj.getNom() + " " + pj.getPrenom() + " " +
pj.getAnnee()) ;
}
else System.out.println ("--- Liste vide") ;
}

}

class Personne
{ public Personne (String prenom, String nom, int annee)
{ this.nom = nom ; this.prenom = prenom ; annee_naissance = annee ;

}
public String getNom() { return nom ; }

public String getPrenom() { return prenom ; }
public int getAnnee() { return annee_naissance ; }
private String nom, prenom ;

private int annee_naissance ;

481

--- Methode 1 - Le plus jeune est ne en : 2001
--- Methode 2 - Le plus jeune est : Rougier thibault 2001

482

Reduce

Ecrire un programme qui utilise un stream pour générer un nombre donné de
nombres réels compris dans I’intervalle [0.5, 1.5[et en calculer le produit. On
affichera les nombres compris dans 1’intervalle [1 -e, 1+e], e étant une petite valeur
(par exemple 0.01).

Faire la méme chose en générant des nombres compris dans 1’intervalle [0, 2[et en
filtrant ceux compris entre 0.5 et 1.5.

Nous commencons par créer un stream d’éléments de type double (DoubleStream) a
I’aide de la méthode génératrice generate, a laquelle on fournit 1’expression lambda
(la méthode random fournit un double compris dans 1’intervalle [0, 1[) :

() -> (Math.random()+0.5)

Nous limitons les valeurs ainsi produites a 1’aide de la méthode intermédiaire limit.
Ensuite, il nous faut imprimer certaines valeurs, sans modifier le stream ; nous utilisons
pour cela la méthode peek, a laquelle nous fournissons I’instruction effectuant
1’impression des valeurs voulues :
.peek(xx -> { if (xx > 1-EPS && xx < 1+EPS)
System.out.print (xx + " ") ;

1)

Enfin, comme nous ne disposons pas de méthode "toute faite" pour effectuer 1’opération
de réduction demandée (calcul du produit des éléments), nous recourons a la méthode
reduce, en utilisant 1 comme valeur initiale (et donc, comme élément neutre de la
réduction) et une expression lambda pour "I’accumulateur” :

.reduce(1, (xx, yy) -> xx * yy)

La deuxieme question se résout de facon comparable. Il faut simplement effectuer un
filtrage préalable des valeurs tirées au hasard, avant d’en limiter les valeurs par limit.
import java.util.stream.* ;
public class ExoReducel
{ public static void main (String args[])
{ final int NVALEURS = 200 ;
final double EPS = 1le-2 ;

483

double produitil = DoubleStream.generate (() ->
(Math.random()+0.5))
.1imit (NVALEURS)
.peek(xx -> { if (xx > 1-EPS && xx < 1+EPS)
System.out.print (xx + " ") ;
1)
.reduce(1, (xX, yy) -> xx * yy) ;
System.out.println ("\nProduit 1 : " + produitl) ;

double produit2 = DoubleStream.generate (() -> 2*Math.random())
.filter (xx -> xx>0.5 && xx <1.5)

.1imit (NVALEURS)
.peek(xx -> { if (xx > 1-EPS && xx < 1+EPS)
System.out.print (xx + " ") ;
})
.reduce(1, (xx, yy) -> xx * yy) ;
System.out.println ("\nProduit 2 : " + produit2) ;
}
}
0.9975467498452386 0.998138364621028 0.99188663131875

1.0083743070821198
0.9928318680893621
Produit 1 : 2.697255477885424E-5

0.9902255816404553 0.9940031238252993 0.9997538300614459
1.003265020181365

Produit 2 : 5.127710428111979E-4

484

Collect et Collectors

On suppose qu’on dispose de la clase Point suivante :
class Point
{ public Point (int x, int y) { this.x = x ; this.y =y ; }
public int getX() { return x ; }
public int getY() { returny ; }
private int x, y ;

}

Ecrire un programme qui réalise les opérations suivantes :

« A partir d’un tableau de points, créer un ensemble formé des points dont les
abscisses sont positives ;

* A partir d’un tableau d’entiers, créer tout d’abord un Stream<Point> dont
chaque élément a pour abscisse un élément du tableau et pour ordonnée son
double ; utiliser ce stream pour créer un map dans lequel a chaque clé correspond
la liste des points ayant cette clé comme abscisse.

* A partir d’un tableau de chaines, créer une chaine unique formée de la
concaténation des chaines de longueur supérieure a 4, séparées par le caractere

"|"
* A partir de ce méme tableau de chaines, créer un map ou a chaque clé

représentant une lettre de 1’aphabet correspond la liste des mots commencant par
cette lettre.

Si notre tableau de points se nomme tabPoints, on voit qu’il faut créer un stream a
1’aide de la méthode of :
Stream.of (tabPoints)
et le filtrer avec la condition :
.filter(xx -> getX()>0)
puis, pour créer 1’ensemble voulu, on utilise la méthode collect en lui fournissant

comme parametre Collectors.toSet(), ce qui permet de collecter les valeurs du stream
ainsi obtenu dans un Set<Point>.

485

Pour la seconde question, nous créons le Stream<Point> demandé en appliquant la
méthode map de cette maniere :
.map(xx -> new Point(xx, 2*xx))

Puis, comme précédemment, nous collectons les points obtenus dans une liste a 1’aide
de la méthode collector a qui 1’on fournit le parametre Collectors.toList().

Pour la question suivante, nous créons un Stream<String> a partir du tableau de
chaines, puis nous filtrons les éléments voulus par :
.filter(xx -> xx.length()>4)

Nous concaténons alors les chaines sélectionnées a 1’aide de la méthode
Collectors.joining() fournie en argument de la méthode collect.

Pour la derniere question, nous choisirons des clés de type String plutot que de type
Character, ce qui nous évitera des opératons de conversion dans 1’écriture du
comparateur. Nous créerons donc un Map<String, List<String>, la encore a 1’aide de
la méthode collect, mais cette fois nous employons Collectors.groupingBy pour
effectuer le regroupement voulu, la clé étant la premiere lettre des éléments.

Voici ce que pourrait étre le programme.
import java.util.* ;
import java.util.stream.* ;
public class ExoCollect
{ public static void main (String [] args)

{ Point[] tabPoints = { new Point(2, 4), new Point(3, 8), new
Point (1, 3),

new Point(-2, 4), new Point(3, 8), new Point(1,3)} ;
Set<Point> ens = Stream.of(tabPoints).filter(xx -> xx.getX()>0)
.collect(Collectors.toSet()) ;
System.out.print("Ensemble : ") ;
ens.forEach (pp -> System.out.print ("["+pp.getX()+", "
+ pp.gety() + "1 ")) ;
Integer [] tab = { 2, 15, -3, 2, -5, 23, -8, 12 } ;
List<Point> liste = Stream.of(tab).map(xx -> new Point (xx, 2*xx))
.collect(Collectors.toList()) ;
System.out.print("\nListe : ") ;

liste.forEach (pp -> System.out.print ("["+pp.getX()+",

"+pp.getY()+"] ")) ;

String [] mots = {"bonjour", "hello", "buongiorno", "hi", "chao",
"bom dia", "guten tag" } ;

String mots_longs =
Stream.of(mots).collect(Collectors.joining("|")) ;
System.out.println ("\nchaine des mots longs : "+mots_longs) ;

486

Map <String, List<String>> map = Stream.of(mots)
.filter(xx -> xx.length()>4)
.collect(Collectors.groupingBy(xx ->(xx.substring(0,1)))) ;
System.out.println ("MAP: "+map) ;

b
b

class Point

{ public Point (int x, int y) { this.x = x ; this.y =y ; }
public int getX() { return x ; }
public int getY() { returny ; }
private int x, y ;

}

Ensemble : [1, 3] [2, 4] [1, 3] [3, 8] [3, 8]

Liste : [2, 4] [15, 30] [-3, -6] [2, 4] [-5, -10] [23, 46] [-8, -16]
[12, 24]

chaine des mots 1longs : bonjour|hello|buongiorno|hi|chao|bom
dia|guten tag

MAP: {b=[bonjour, buongiorno, bom dia], g=[guten tag], h=[hello]}

487

Annexe A

Les constantes et fonctions
mathematiques

N II_

18 wf
...-——--.‘.':\ ;h

U

Elles sont fournies par la classe Math. Les angles sont toujours exprimeés en radians.

Constante (double) Valeur
E 2.718281828459045
PI 3.141592653589793
Fonction Role En-tétes
double abs (double a)
abs Valeur absolue ﬂoat abs. (float a)
int abs (int a)
long abs (long a)
Arc cosinus (angle dans
acos Pintervalle [- 1, 1]) double acos (double a)
asin érlc il]r)ms (angle dans I"intervalle double asin (double a)
Arc tangente (angle dans
atan Pintervalle [-pi/2, pi/2]) double atan (double a)
atan? Arc tangente (a/b) (angle dans double atan2 (double a,
I’intervalle [-pi/2, pi/2]) double b)
ceil Arrondi a I’entier supérieur double ceil (double a)
Cos Cosinus double cos (double a)
exp Exponentielle double exp (double a)

488

floor

Arrondi a I’entier inférieur

double floor (double a)

double IEEEremainder

IEEEremainder | Reste de la division de x par y (double x, double y)
log Logarithme naturel (népérien) double log (double a)
double max (double a,
double b)
float max (float a, float
max Maximum de deux valeurs b)
int max (int a, int b)
long max (long a, long
b)
double min (double a,
double b)
min Minimum de deux valeurs]gl)o atmin (floata, float
int min (int a, int b)
long min (long a, long b)
: double pow (double a
b)
pow Puissance (a°) double b)
random 1[\(1)0111][3re aléatoire dans I’intervalle double random ()
rint Arrondi a I’entier le plus proche double rint (double a)
s long round (double a)
round Arrondi a I’entier le plus proche int round (float a)
sin Sinus double sin (double a)
sqrt Racine carrée double sqrt (double a)
tan Tangente double tan (double a)
: : . double toDegrees
toDegrees Conversion de radians en degrés (double aRad)
. : . : double toRadians
toRadians Conversion de degrés en radians (double aDeg)

489

Annexe B

Les composants graphiques et leurs
meéthodes

—."T'_r'{i_"'[-i}.,.?_ll
Y i

@_‘l_
B Y-V
A

Nous présentons ici les principales classes et méthodes des paquetages java.awt et
javax.swing, en particulier celles qui sont utilisées dans les exercices de cet ouvrage.
On notera que :

* lorsqu’une méthode est mentionnée dans une classe, elle n’est pas rappelée dans les
classes dérivées ;

» lorsqu’une classe se révele inutilisée en pratique (exemple Window, Frame,
Dialog), ses méthodes n’ont été mentionnées que dans ses classes dérivées ; par
exemple, la méthode setTitle est définie dans la classe Frame mais elle n’est
indiquée que dans la classe JFrame.

Nous vous fournissons d’abord 1’arborescence des classes concernées, avant d’en
décrire les différentes méthodes, classe par classe (pour chacune, nous rappelons la
liste de ses ancétres).

490

Les classes de composants

Les classes précédées d’un astérisque (*) sont abstraites.
*Component
*Container
Panel
Applet
JApplet
Window
JWindow
Frame
JFrame
Dialog
JDialog
JComponent
JPanel
AbstractButton
JButton
JToggleButton
JCheckBox
JRadioButton
JMenultem
JCheckBoxMenultem
JRadioButtonMenultem
JMenu
JLabel
JTextComponent
JTextField
JList
JcomboBox

491

JMenuBar
JPopupMenu
JScrollPane
JToolBar

492

Les meéthodes

Component
Component ()
void add (PopupMenu menuSurgissant)

void addFocusListener (FocusListener écouteur)
void addKeyListener (KeyListener écouteur)

void addMouseListener (MouseListener écouteur)
void addMouse MotionListener (MouseMotionListener écouteur)
Color getBackground ()

Rectangle getBounds ()

Font getFont ()

FontMetrics getFontMetrics (Font fonte)

Color getForeground ()

Graphics getGraphics ()

int getHeight ()

Dimension getSize ()

Toolkit getToolkit ()

int getX ()

int getY ()

int getWidth ()

boolean hasFocus ()

boolean imageUpdate (Image image, int flags, int x, int y, int largeur, int hauteur)
void invalidate ()

boolean isEnabled ()

boolean isFocusTraversable ()

boolean isVisible ()

void paint (Graphics contexteGraphique)

void setBackground (color couleurFond)

void setBounds (Rectangle r)

void setBounds (int x, int y, int largeur, int hauteur)
void setCursor (Cursor curseurSouris)

void setEnabled (boolean activé)

493

void setFont (Font fonte)

void setForeground (Color couleurAvantPlan)
void setSize (Dimension dim)

void setSize (int largeur, int hauteur)

void setVisible (boolean visible)

void update (Graphics contexteGraphique)
void validate ()

Container (Component)

Container ()
Component add (Component composant)
void add (Component composant, Object contraintes)
Component add (Component composant, int rang)
Component add (Component composant, Object contraintes, int rang)

void setLayout (LayoutManager gestionnaireMiseEnForme
void remove (int rang)

void remove (Component composant)

void removeAll ()

\pplet (Panel -Component - Container)

applet ()
void destroy ()

URL getCodeBase ()

Image getImage (URL adresseURL)

Image getImage (URL adresseURL, String nomFichier)
String getParameter (String nomParametre)

void init ()
void resize (Dimension dim)
void resize (int largeur, int hauteur)

void start ()
void stop ()

Applet (Applet -Panel - Component - Container)

JApplet ()
Container getContentPane ()
void setJMenuBar (JMenuBar barreMenus)
void setLayout (LayoutManager gestionnaireMiseEnForme)

494

Frame (Frame -Window - Component - Container)

Container
Toolkit
void
void
void
void
void
void

JFrame ()

JFrame (String titre)

getContentPane ()

getToolkit ()

setContentPane (Container contenu)

setDefaultClose Operation (int operationSurFermeture)
setJMenuBar (JMenuBar barreMenus)

setLayout (Layout gestionnaireMiseEnForme)

setTitle (String titre) // héritée de Frame

update (Graphics contexteGraphique)

Dialog (Dialog - Window - Container)

void
Container
void
void
void
void
void
void

JDialog (Dialog propriétaire, boolean modale)

JDialog (Frame propriétaire, boolean modale)

JDialog (Dialog propriétaire, String titre, boolean modale)
JDialog (Frame propriétaire, String titre, boolean modale)
dispose ()

getContentPane ()

setDefaultClose Operation (int operationSurFermeture)
setLayout (LayoutManager gestionnaireMiseEnForme)
setJMenuBar (JMenuBar barreMenus)

setTitle (String titre) // héritée de Dialog

show ()

update (Graphics contexteGraphique)

Component (Container - Component)

Graphics
Dimension
Dimension
Dimension
void

void

void

void

void

JComponent ()

getGraphics ()

getMaximumSize ()

getMinimumSize ()

getPreferredSize ()

paintBorder (Graphics contexteGraphique)
paintChildren (Graphics contexteGraphique)
paintComponent (Graphics contexteGraphique)
revalidate ()

setBorder (Border bordure)

495

void setMaximumSize (Dimension dimensions)

void setMinimumSize (Dimension dimensions)
void setPreferredSize (Dimension dimensions)
void setToolTipText (String texteBulleDAide)

Panel (Jcomponent - Container - Component)
JPanel ()
JPanel (LayoutManager gestionnaireMiseEnForme)

\bstractButton (Jcomponent - Container - Component)

AbstractButton ()
void addActionListener (ActionListener écouteur)
void addItemListener (ItemListener écouteur)
String getActionCommand()

String getText()
boolean isSelected()

void setActionCommand (String chaineDeCommande)
void setEnabled (boolean activé)

void setMnemonic (char caractereMnémonique)

void setSelected (boolean sélectionné)

void setText (String libellé)

Button (AbstractButton - JComponent - Container - Component)

JButton ()
JButton (String libellé)

CheckBox (JToggleButton - AbstractButton - JComponent - Container -
.omponent)

JCheckBox ()
JCheckBox (String libellé)
JCheckBox (String libellé, boolean sélectionné)

RadioButton (JToggleButton - AbstractButton - JComponent -
.ontainer - Component)

JRadioButton (String libellé)
JRadioButton (String libellé, boolean sélectionné)

Label (JComponent - Container - Component)

496

JLabel (String texte)
void setText (String libellé)

TextField (JTextComponent - JComponent - Container - Component)

JTextField ()

JTextField (int nombreColonnes)
JTextField (String textelnitial)
JTextField (String textelnitial, int

nombreColonnes)
// héritée de
Document getDocument () JTextComponent
. // héritée de
String getText () JTextComponent
void setColumns (int nombreCaracteres)
. . .- // héritée de
void setEditable (boolean éditable) JTextComponent
. : // héritée de
void setText (String texte) JTextComponent
List (JComponent - Container - Component)
JList ()
JList (Object[] données)
void addListSelectionListener (ListSelectionListener écouteur)
void setSelectedIndex (int rang)
int getSelectedIndex ()
int[] getSelectedIndices ()

Object getSelectedValue ()
Object[] getSelectedValues ()
boolean getValueIsAdjusting ()

void setSelectedIndex (int rang)

void setSelectedIndices (int [] rangs)

void setSelectionMode (int modeDeSelection)
void setVisibleRowCount (int nombre Valeurs)

ComboBox (JComponent - Container - Component)

JComboBox ()
JComboBox (Object[] données)
void addItem (Object nouvelleValeur)

497

int getSelectedIndex ()

Object getSelectedItem ()

void insertltemAt (Object nouvelleValeur, int rang)

void removeltem (Object valeurASupprimer)

void removeltemAt (int rang)

void removeAllltems ()

void setEditable (boolean éditable) // héritée de JTextComponent
void setSelectedIndex (int rang)

MenuBar (JComponent - Container - Component)

JMenu
JMenu

JMenuBar ()
add (JMenu menu)
getMenu (int rang)

Menu (JMenultem - AbstractButton - JComponent - Container -

.omponent)

JMenultem
JMenultem
void

void
KeyStroke
void

void

void
boolean
void

void

void

void

void

void

JMenu ()

JMenu (String nomMenu)

add (Action action)

add (JMenultem option)

addMenuListener (MenuListener écouteur)
addSeparator ()

getAccelerator ()

insert (Action action, int rang)

insert (JMenultem option, int rang)
insertSeparator (int rang)

isSelected ()

remove (int rang)

remove (JMenultem option)

removeAll ()

setAccelerator (KeyStroke combinaisonTouches)
setEnabled (boolean activé)

setSelected (boolean sélectionné)

PopupMenu (JComponent - Container - Component)

JMenultem

JPopupMenu ()
JPopupMenu (String nom)
add (Action action)

498

JMenultem add (JMenultem option)

void
void
void
void
void
void
void

addPopupMenuListener (PopupMenuListener écouteur)
addSeparator ()

insert (Action action, int rang)

insert (Component composant, int rang)

remove (Component composant)

setVisible (boolean visible)

show (Component composant, int x, int y)

Menultem (AbstractButton - JComponent - Container - Component)

void

JMenultem ()

JMenultem (String nomOption)

JMenultem (Icon icone)

JMenultem (String nomOption, Icon icone)

JMenultem (String nomOption, int caractereMnémonique)
setAccelerator (KeyStroke combinaisonTouches)

keyStroke getAccelerator ()

CheckBoxMenultem (JMenultem - AbstractButton - JComponent -
.ontainer - Component)

JChekBoxMenultem ()

JChekBoxMenultem (String nomOption)

JChekBoxMenultem (Icone icone)

JChekBoxMenultem (String nomOption, Icon icone)
JChekBoxMenultem (String nomOption, boolean activé)
JChekBoxMenultem (String nomOption, Icon icone, boolean activé)

RadioButtonMenultem (JMenultem - AbstractButton - JComponent -
.ontainer - Component)

JRadioButtonMenultem ()

JRadioButtonMenultem (String nomOption)

JRadioButtonMenultem (Icone icone)

JRadioButtonMenultem (String nomOption, Icon icone)
JRadioButtonMenultem (String nomOption, boolean activé)
JRadioButtonMenultem (String nomOption, Icon icone, boolean activé)

499

ScrollPane

JScrollPane ()
JScrollPane (Component)

ToolBar
JToolBar ()
JToolBar (int orientation)
JButton add (Action action)
void addSeparator ()
void addSeparator (Dimension dimensions)
boolean isFloatable ()
void remove (Component composant)
void setFloatable (boolean flottante)

500

Annexe C

IL.es evénements et les ecouteurs

"‘Tf{i—"l‘!&.}?_ll_
V. ¥

ﬁ"—ﬂ:;‘fg%_\l_
B Y-V
A

Nous vous fournissons tout d’abord deux tableaux de synthése, le premier pour les
événements de bas niveau, le second pour les événements sémantiques. Ils fournissent
pour chacune des principales interfaces écouteurs correspondantes :

* le nom de I’interface écouteur et le nom de la classe adaptateur (si elle existe),
* les noms des méthodes de 1’interface,

* le type de I’événement correspondant,

* les noms des principales méthodes de 1’événement,

* les composants concernés.

Vous trouverez ensuite les en-tétes completes des méthodes des classes événement.

501

Les evenements de bas niveau

Ecouteur Meéthode Type Meéthodes Composants
(adaptateur) eécouleur eévénement événement concernés
MouseLlistener mouseClicked MouseEvent getClickCount Component
(MouseAdapien mousePressed getCaomponent
mouzseReleased getMaodifiers
mouseEntered getSource
mouseExited getX
e R = gety
ouszelMotionListener mouseDragged :
(MouseMotionAdap- mouseMoved .getF'm ot
ter) isAltDown
isAltGraphDown
iaControlDown
isMetaDown
izPopupTrigger
iaShiftDown
Keylistener keyPressed keyEvent getComponent Component
(KeyAdapter) keyReleased getSource
keyTyped getKeyChar
getkKeyCode
getKeyModifiersText
getkeyText
getMaodifiers
isAltDown
izAltGraphDown
isControlDown
izShiftDown
isMetaDown
isActionKey
FocusListener focusGained FocusEvent getCaomponent Component
(FocusAdapter) focusLost getSource
isTemporary
WindowListener windowOpened WindowEvent getComponent Window
(WindowAdapter) windowClosing getSource
windowClosed getWindow

windowActivated
windowDeactivated
windowlconified
windowDeiconified

502

Dans la derniere colonne de ce tableau, les termes génériques Boutons et Menus

désignent les classes suivantes

* Boutons : JButton, JCheckBox, JRadioButton,

Les éevenements semantiques

* Menus : JMenu, JMenultem, JCheckBoxMenultem, JRadioButtonMenultem.

popupMenuWillBecomeVisible
popupMenuWillBecomelnvisible

Ecouteur Méthode Type Meéthodes Composants
(adaptateur) écouteur evénement evénement concernes
ActionListener | actionPerformed ActionEvent getSource Boutons
getActionCommand Menus
getModifiers JTextField
ltemListener itemStateChanged temEvent getSource Boutons
getltem Menus
getSiateChange JList
JComboBox
ListSelection- valueChanged ListSelectionEvent | getSource JList
Listener getValuelsAdjusting
Document- changeUpdate DocumentEvent getDocument Document
Listener inzertUpdate
removelpdate
MenuListener menuCanceled MenuEvent getSource JMenu
menuSelected
menuDeselected
PopupMenu- popupMenuCanceled PopupMenuEvent | getSource JPopupMenu
Listener

503

AouseEvent

int
Component
int
Object
int

int
Point
boolean
boolean
boolean
boolean
boolean
boolean

teyEvent

Component
Object
char

int
String
int
boolean
boolean
boolean
boolean
boolean

'ocusEvent

Component
Object
boolean

IL.es methodes des éevenements

getClickCount ()
getComponent ()
getModifiers ()
getSource ()
getX ()

getY ()

getPoint ()
isAltDown ()
isAltGraphDown ()
isControlDown ()
isMetaDown ()
isPopupTrigger ()
isShiftDown ()

getComponent ()
getSource ()
getKeyChar ()
getKeyCode ()
getKeyText (int codeTouche Virtuelle)
getModifiers ()
isAltDown ()
isAltGraphDown ()
isControlDown ()
isMetaDown ()
isShiftDown ()

getComponent ()
getSource ()

isTemporary ()

504

VindowEvent

Component getComponent ()
Object getSource ()
Window getWindow ()
\ctionEvent

Object getSource ()

String getActionCommand ()

int getModifiers ()

temEvent

Object getSource ()

Object getltem ()

int getStateChanged ()
JistSelectionEvent

Object getSource ()

boolean getValuelsAdjusting ()
JocumentEvent

Document getDocument ()
NenuEvent

Object getSource ()
'opuMenuEvent

Object getSource ()

505

Annexe D

L.a classe Clavier

ii.ﬁ%..ﬂ%@ﬂHE!IIIIIIIIIIIIIIIIIIIIIIIIﬂ
Y

@_\I_
B Y-V
A

Voici la liste de la classe Clavier présente sur le site Web d’accompagnement et que
vous pouvez utiliser pour la solution a certains des exercices de cet ouvrage.

Elle fournit des méthodes permettant de lire sur une ligne une information de I’un des
types int, float, double ou String. La méthode de lecture d’une chaine est utilisée par
les autres pour lire la ligne.

// classe fournissant des fonctions de lecture au clavier
import java.io.* ;
public class Clavier
{ public static String lireString () // lecture d’une chaine
{ String ligne_lue = null ;
try
{ InputStreamReader lecteur = new InputStreamReader (System.in)
BufferedReader entree = new BufferedReader (lecteur)
ligne_lue = entree.readLine() ;
}
catch (IOException err)
{ System.exit(0) ;
}
return ligne_lue ;
}
public static float lireFloat () // lecture d’un float
{ float x=0 ; // valeur a lire
try
{ String ligne_lue = lireString() ;
X = Float.parseFloat(ligne_lue) ;

.
4

.
I4

506

}

catch (NumberFormatException err)
{ System.out.println ("*** Erreur de donnee ***") ;
System.exit(0) ;
}
return x ;
}
public static double lireDouble () // lecture d’un double
{ double x=0 ; // valeur a lire
try
{ String ligne_lue = lireString() ;
X = Double.parseDouble(ligne_1lue) ;
}
catch (NumberFormatException err)
{ System.out.println ("*** Erreur de donnee ***") ;
System.exit(0) ;

¥

return x ;
¥

public static int lirelInt () // lecture d’un int
{ int n=0 ; // valeur a lire

try

{ String ligne_lue = lireString() ;
n = Integer.parseInt(ligne_1lue) ;
}

catch (NumberFormatException err)

{ System.out.println ("*** Erreur de donnee ***") ;
System.exit(0Q) ;

}

return n ;

// programme de test de la classe Clavier
public static void main (String[] args)

{ System.out.println ("donnez un flottant") ;
float x ;

x = Clavier.lireFloat() ;

System.out.println ("merci pour " + Xx) ;
System.out.println ("donnez un entier") ;

507

int n ;
n = Clavier.lireInt() ;
System.out.println ("merci pour " + n) ;

b
b

Notez que, en cas d’exception de type IOException (rare !), on se contente
d’interrompre le programme. Si nous n’avions pas traité cette exception, nous aurions
dii la déclarer dans une clause throws, ce qui aurait obligé 1’utilisateur de la classe
Clavier a la prendre en charge.

La lecture des informations de type entier ou flottant utilise la méthode
Clavier.lireString, ainsi que les méthodes de conversion de chaines Integer.parselnt,
Float.parseFloat et Double.parseDouble. Nous devons traiter 1’exception
NumberFormatException qu’elles sont susceptibles de générer. Ici, nous affichons un
message et nous interrompons le programme.

508

Pour suivre toutes les nouveautés numériques du Groupe Eyrolles, retrouvez-nous sur Twitter et Facebook
-1 @ebookEyrolles
LT EbooksEyrolles

Et retrouvez toutes les nouveautés papier sur

1) @Eyrolles
LT Eyrolles

509

https://twitter.com/ebooksEyrolles
http://www.facebook.com/EbooksEyrolles
https://twitter.com/Eyrolles
http://www.facebook.com/Eyrolles

	Le résumé et la biographie auteur
	Page de titre
	Copyright
	Table des matières
	Avant-propos
	1. Les opérateurs et les expressions
	Exercice 1. Priorités des opérateurs arithmétiques et parenthèses
	Exercice 2. Conversions implicites
	Exercice 3. Exceptions flottantes et conventions IEEE 754
	Exercice 4. Le type char
	Exercice 5. Opérateurs logiques à "court circuit"
	Exercice 6. Priorités des opérateurs
	Exercice 7. Affectation et conversion
	Exercice 8. Opérateurs d’incrémentation, de décrémentation et d’affectation élargie
	Exercice 9. Opérateurs d’incrémentation et d’affectation élargie
	Exercice 10. Opérateur conditionnel

	2. Les instructions de contrôle
	Exercice 11. Syntaxe de if et de switch
	Exercice 12. Rôle de l’instruction switch
	Exercice 13. Syntaxe des boucles
	Exercice 14. Comparaison entre for, while et do... while
	Exercice 15. Rupture de séquence avec break et continue
	Exercice 16. Boucle while, opérateurs d’affectation élargie et d’incrémentation (1)
	Exercice 17. Boucle while, opérateurs d’affectation élargie et d’incrémentation (2)
	Exercice 18. Syntaxe générale des trois parties d’une boucle for
	Exercice 19. Synthèse : calcul d’une suite de racines carrées
	Exercice 20. Synthèse : calcul de la valeur d’une série
	Exercice 21. Synthèse : dessin d’un triangle en mode texte
	Exercice 22. Synthèse : calcul de combinaisons

	3. Les classes et les objets
	Exercice 23. Création et utilisation d’une classe simple
	Exercice 24. Initialisation d’un objet
	Exercice 25. Champs constants
	Exercice 26. Affectation et comparaison d’objets
	Exercice 27. Méthodes d’accès aux champs privés
	Exercice 28. Conversions d’arguments
	Exercice 29. Champs et méthodes de classe (1)
	Exercice 30. Champs et méthodes de classe (2)
	Exercice 31. Champs et méthodes de classe (3)
	Exercice 32. Bloc d’initialisation statique
	Exercice 33. Surdéfinition de méthodes
	Exercice 34. Recherche d’une méthode surdéfinie (1)
	Exercice 35. Recherche d’une méthode surdéfinie (2)
	Exercice 36. Recherche d’une méthode surdéfinie (3)
	Exercice 37. Surdéfinition et droits d’accès
	Exercice 38. Emploi de this
	Exercice 39. Récursivité des méthodes
	Exercice 40. Mode de transmission des arguments d’une méthode
	Exercice 41. Objets membres
	Exercice 42. Synthèse : repères cartésiens et polaires
	Exercice 43. Synthèse : modification de l’implémentation d’une classe
	Exercice 44. Synthèse : vecteurs à trois composantes
	Exercice 45. Synthèse : nombres sexagésimaux

	4. Les tableaux
	Exercice 46. Déclaration et initialisation de tableau
	Exercice 47. Utilisation usuelle d’un tableau (1)
	Exercice 48. Utilisation usuelle d’un tableau (2)
	Exercice 49. Affectation de tableaux (1)
	Exercice 50. Affectation de tableaux (2)
	Exercice 51. Affectation de tableaux (3)
	Exercice 52. Tableau en argument (1)
	Exercice 53. Tableau en argument (2)
	Exercice 54. Tableau en valeur de retour
	Exercice 55. Tableaux de tableaux
	Exercice 56. Synthèse : nombres aléatoires et histogramme
	Exercice 57. Synthèse : calcul vectoriel
	Exercice 58. Synthèse : utilitaires pour des tableaux de tableaux
	Exercice 59. Synthèse : crible d’Eratosthène

	5. L’héritage et le polymorphisme
	Exercice 60. Définition d’une classe dérivée, droits d’accès (1)
	Exercice 61. Définition d’une classe dérivée, droits d’accès (2)
	Exercice 62. Héritage et appels de constructeurs
	Exercice 63. Redéfinition
	Exercice 64. Construction et initialisation d’une classe dérivée
	Exercice 65. Dérivations successives et redéfinition
	Exercice 66. Dérivations successives et surdéfinition
	Exercice 67. Les bases du polymorphisme
	Exercice 68. Polymorphisme et surdéfinition
	Exercice 69. Les limites du polymorphisme
	Exercice 70. Classe abstraite
	Exercice 71. Classe abstraite et polymorphisme
	Exercice 72. Interface
	Exercice 73. Synthèse : comparaison entre héritage et objet membre

	6. La classe String et les chaînes de caractères
	Exercice 74. Construction et affectation de chaînes
	Exercice 75. Accès aux caractères d’une chaîne
	Exercice 76. Conversion d’un entier en chaîne
	Exercice 77. Comptage des voyelles d’un mot
	Exercice 78. Arguments de la ligne de commande
	Exercice 79. Redéfinition de toString
	Exercice 80. Synthèse : conjugaison d’un verbe
	Exercice 81. Synthèse : tri de mots
	Exercice 82. Synthèse : gestion d’un répertoire

	7. Les types énumérés
	Exercice 83. Définition et utilisation d’un type énuméré simple
	Exercice 84. Itération sur les valeurs d’un type énuméré
	Exercice 85. Accès par leur rang aux valeurs d’un type énuméré (1)
	Exercice 86. Lecture de valeurs d’un type énuméré
	Exercice 87. Ajout de méthodes et de champs à une énumération (1)
	Exercice 88. Ajout de méthodes et de champs à une énumération (2)
	Exercice 89. Synthèse : gestion de résultats d’examens

	8. Les exceptions
	Exercice 90. Déclenchement et traitement d’une exception
	Exercice 91. Transmission d’information au gestionnaire
	Exercice 92. Cheminement des exceptions
	Exercice 93. Cheminement des exceptions et choix du gestionnaire
	Exercice 94. Cheminement des exceptions
	Exercice 95. Instruction return dans un gestionnaire
	Exercice 96. Redéclenchement d’une exception et choix du gestionnaire
	Exercice 97. Bloc finally
	Exercice 98. Redéclenchement et finally
	Exercice 99. Synthèse : entiers naturels

	9. Les bases de la programmation événementielle
	Exercice 100. Écouteurs de clics d’une fenêtre
	Exercice 101. Écouteurs de clics de plusieurs fenêtres
	Exercice 102. Écouteur commun à plusieurs fenêtres
	Exercice 103. Création de boutons et choix d’un gestionnaire FlowLayout
	Exercice 104. Gestion de plusieurs boutons d’une fenêtre avec un seul écouteur
	Exercice 105. Synthèse : création et suppression de boutons (1)
	Exercice 106. Synthèse : création et suppression de boutons (2)
	Exercice 107. Dessin permanent dans une fenêtre
	Exercice 108. Synthèse : dessin permanent et changement de couleur
	Exercice 109. Synthèse : dessin permanent, coloration et adaptation à la taille d’une fenêtre
	Exercice 110. Dessin à la volée
	Exercice 111. Synthèse : ardoise magique en couleur

	10. Les principaux contrôles de Swing
	Exercice 112. Cases à cocher
	Exercice 113. Cases à cocher en nombre quelconque
	Exercice 114. Boutons radio en nombre quelconque
	Exercice 115. Champs de texte
	Exercice 116. Champ de texte et événements Action et Focus
	Exercice 117. Écoute permanente d’un champ de texte
	Exercice 118. Synthèse : série harmonique
	Exercice 119. Gestion d’une boîte de liste
	Exercice 120. Synthèse : pendule

	11. Les boîtes de dialogue
	Exercice 121. Utilisation de boîtes de message et de confirmation
	Exercice 122. Utilisation de boîtes de message, de confirmation et de saisie
	Exercice 123. Programmation d’une boîte de message
	Exercice 124. Programmation d’une boîte de confirmation
	Exercice 125. Programmation d’une boîte de saisie
	Exercice 126. Synthèse : saisie d’une heure

	12. Les menus
	Exercice 127. Création d’un menu déroulant usuel
	Exercice 128. Gestion des actions sur les options d’un menu
	Exercice 129. Activation, désactivation d’options
	Exercice 130. Synthèse : calculs sur des rectangles
	Exercice 131. Synthèse : coloration par boutons radio
	Exercice 132. Synthèse : choix de couleur de fond et de forme par des menus composés
	Exercice 133. Synthèse : choix de couleurs et de dimensions par des menus surgissants

	13. Les événements de bas niveau
	Exercice 134. Identification des boutons de la souris
	Exercice 135. Vrais doubles-clics
	Exercice 136. Suivi des déplacements de la souris (1)
	Exercice 137. Suivi des déplacements de la souris (2)
	Exercice 138. Dessin par le clavier (1)
	Exercice 139. Synthèse : dessin par le clavier (2)
	Exercice 140. Sélection d’un composant par le clavier
	Exercice 141. Mise en évidence d’un composant sélectionné

	14. Les applets
	Exercice 142. Comptage des arrêts d’une applet
	Exercice 143. Dessin dans une applet
	Exercice 144. Synthèse : dessin paramétré dans une applet
	Exercice 145. Synthèse : tracé de courbe dans une applet
	Exercice 146. Différences entre applet et application

	15. Les flux et les fichiers
	Exercice 147. Création séquentielle d’un fichier binaire
	Exercice 148. Liste séquentielle d’un fichier binaire
	Exercice 149. Synthèse : consultation d’un répertoire en accès direct
	Exercice 150. Synthèse : liste d’un fichier texte avec numérotation des lignes
	Exercice 151. Liste d’un répertoire

	16. La programmation générique
	Exercice 152. Classe générique à un paramètre de type
	Exercice 153. Classe générique à plusieurs paramètres de type
	Exercice 154. Conséquences de l’effacement (1)
	Exercice 155. Conséquences de l’effacement (2)
	Exercice 156. Méthode générique à un argument
	Exercice 157. Méthode générique et effacement
	Exercice 158. Dérivation de classes génériques
	Exercice 159. Les différentes sortes de relation d’héritage
	Exercice 160. Limitations des paramètres de type d’une méthode
	Exercice 161. Redéfinition de la méthode compareTo

	17. Les collections et les tables associatives
	Exercice 162. Dépendance ou indépendance d’un itérateur
	Exercice 163. Manipulation d’un tableau de type ArrayList
	Exercice 164. Tri d’une collection (1)
	Exercice 165. Tri d’une collection (2)
	Exercice 166. Réalisation d’une liste triée en permanence
	Exercice 167. Création d’un index
	Exercice 168. Inversion d’un index

	18. Les expressions lambda et les streams
	Exercice 169. Lambda et interfaces prédéfinies
	Exercice 170. Lambda et références
	Exercice 171. L’interface Comparator
	Exercice 172. Les méthodes usuelles des streams
	Exercice 173. Traitement de liste avec un stream
	Exercice 174. Répertoire
	Exercice 175. Répertoire (bis)
	Exercice 176. Reduce
	Exercice 177. Collect et Collectors

	A. Les constantes et fonctions mathématiques
	B. Les composants graphiques et leurs méthodes
	Exercice 1. Les classes de composants
	Exercice 2. Les méthodes

	C. Les événements et les écouteurs
	Exercice 3. Les événements de bas niveau
	Exercice 4. Les événements sémantiques
	Exercice 5. Les méthodes des événements

	D. La classe Clavier

