

Résumé
175	exercices	corrigés	pour	maîtriser	Java
Conçu	 pour	 les	 étudiants	 en	 informatique,	 ce	 recueil	 d’exercices	 corrigés	 est	 le
complément	idéal	de	Programmer	en	Java	du	même	auteur	ou	de	tout	autre	ouvrage
d’initiation	au	langage	Java.

Cette	nouvelle	édition	tient	compte	des	nouveautés	de	Java	8,	publié	en	mars	2014,
avec	un	nouveau	chapitre	sur	les	expressions	lambda	et	les	streams.

Les	175	exercices	sont	classés	par	thèmes	en	18	chapitres.	Chaque	chapitre	débute
par	la	liste	des	notions	nécessaires	à	la	résolution	des	exercices	(section	Prérequis).
Certains	exercices	portent	sur	une	notion	précise	indiquée	dans	l’énoncé.	D’autres,
appelés	exercices	de	synthèse,	 font	appel	à	 la	mise	en	œuvre	de	plusieurs	notions
étudiées	dans	les	exercices	ou	chapitres	précédents,	et	nécessitent	donc	un	effort	de
réflexion	plus	fourni.

Chaque	 énoncé	 d’exercice	 est	 suivi	 d’une	 ou	 plusieurs	 solutions	 détaillées.	 Leur
code	source	est	fourni	sur	le	site	www.editions-eyrolles.com.

Au	sommaire
Les	opérateurs	et	expressions	(10	exercices)	•	Les	instructions	de	contrôle	:	if,
switch,	 for,	while,	do…	while	 (12	exercices)	 •	Les	classes	et	 les	objets	Java
(23	exercices)	•	Les	tableaux	(14	exercices)	 •	L’héritage	et	 le	polymorphisme
(14	exercices)	 •	La	 classe	String	 et	 les	 chaînes	de	 caractères	 (9	exercices)	 •
Les	types	énumérés	(7	exercices)	•	La	gestion	des	exceptions	(10	exercices)	 •
Les	bases	de	la	programmation	événementielle	(12	exercices)	•	Les	principaux
contrôles	de	Swing	(9	exercices)	•	Les	boîtes	de	dialogue	(6	exercices)	 •	Les
menus	et	 les	actions	(7	exercices)	 •	Les	événements	de	bas	niveau	 :	souris	et
clavier	 (8	 exercices)	 •	 Les	 applets	 Java	 (6	 exercices)	 •	 Les	 fichiers	 (5
exercices)	•	Les	génériques	(10	exercices)	•	Les	collections	(5	exercices)	•	Les
expressions	 lambda	 et	 les	 streams	 (9	exercices).	Annexes.	 Les	 constantes	 et
fonctions	mathématiques	•	Les	composants	graphiques	et	leurs	méthodes	•	Les
événements	et	leurs	écouteurs	•	La	classe	Clavier.

Biographie	auteur
Claude	Delannoy
Ingénieur	informaticien	au	CNRS,	Claude	Delannoy	possède	une	grande	pratique	de

1

http://www.editions-eyrolles.com

la	formation	continue	et	de	l’enseignement	supérieur.	Réputés	pour	la	qualité	de	leur
démarche	pédagogique,	ses	ouvrages	sur	les	langages	et	la	programmation	totalisent
plus	de	300	000	exemplaires	vendus.

www.editions-eyrolles.com

2

http://www.editions-eyrolles.com

Claude	Delannoy

Exercices	en	Java

4e	édition

Troisième	tirage	2017,	avec	nouvelle	présentation

3

ÉDITIONS	EYROLLES
61,	bd	Saint-Germain
75240	Paris	Cedex	05

www.editions-eyrolles.com

AUX	ÉDITIONS	EYROLLES

Du	même	auteur

C.	DELANNOY.	–	Programmer	en	Java.Java	5	à	8.
N°11889,	9e	édition,	2014,	948	pages	(réédition	avec	nouvelle	présentation,	2016).

C.	DELANNOY.	–	Programmer	en	langage	C++.
N°14008,	8e	édition,	2011,	820	pages.

C.	DELANNOY.	–	Exercices	en	langage	C++.
N°12201,	3e	édition,	2007,	336	pages	(réédition	avec	nouvelle	présentation,	2016).

C.	DELANNOY.	–	Le	guide	complet	du	langage	C.
N°14020,	2014,	844	pages.

C.	DELANNOY.	–	S’initier	à	la	programmation	et	à	l’orienté	objet.
Avec	des	exemples	en	C,	C++,	C#,	Python,	Java	et	PHP.
N°14011,	2e	édition,	septembre	2014,	360	pages	environ.

En	application	de	la	loi	du	11	mars	1957,	il	est	interdit	de	reproduire	intégralement	ou	partiellement	le	présent	ouvrage,
sur	quelque	support	que	ce	soit,	sans	l’autorisation	de	l’Éditeur	ou	du	Centre	Français	d’exploitation	du	droit	de	copie,
20,	rue	des	Grands	Augustins,	75006	Paris.

La	quatrième	édition	du	présent	ouvrage	est	parue	en	2014	sous	l’ISBN	978-2-212-14009-5.	À	l’occasion	de	ce
troisième	tirage,	elle	bénéficie	d’une	nouvelle	couverture.	Le	texte	reste	inchangé.

©	Groupe	Eyrolles,	2001-2014,	pour	le	texte	de	la	présente	édition.
©	Groupe	Eyrolles,	2017,	ISBN	:	978-2-212-67385-2.

4

http://www.editions-eyrolles.com

Table	des	matières

Avant-propos

1.			Les	opérateurs	et	les	expressions
Exercice	1.	Priorités	des	opérateurs	arithmétiques	et	parenthèses
Exercice	2.	Conversions	implicites
Exercice	3.	Exceptions	flottantes	et	conventions	IEEE	754
Exercice	4.	Le	type	char
Exercice	5.	Opérateurs	logiques	à	"court	circuit"
Exercice	6.	Priorités	des	opérateurs
Exercice	7.	Affectation	et	conversion
Exercice	8.	Opérateurs	d’incrémentation,	de	décrémentation	et	d’affectation	élargie
Exercice	9.	Opérateurs	d’incrémentation	et	d’affectation	élargie
Exercice	10.	Opérateur	conditionnel

2.			Les	instructions	de	contrôle
Exercice	11.	Syntaxe	de	if	et	de	switch
Exercice	12.	Rôle	de	l’instruction	switch
Exercice	13.	Syntaxe	des	boucles
Exercice	14.	Comparaison	entre	for,	while	et	do…	while
Exercice	15.	Rupture	de	séquence	avec	break	et	continue
Exercice	16.	Boucle	while,	opérateurs	d’affectation	élargie	et	d’incrémentation	(1)
Exercice	17.	Boucle	while,	opérateurs	d’affectation	élargie	et	d’incrémentation	(2)
Exercice	18.	Syntaxe	générale	des	trois	parties	d’une	boucle	for
Exercice	19.	Synthèse	:	calcul	d’une	suite	de	racines	carrées
Exercice	20.	Synthèse	:	calcul	de	la	valeur	d’une	série

5

Exercice	21.	Synthèse	:	dessin	d’un	triangle	en	mode	texte
Exercice	22.	Synthèse	:	calcul	de	combinaisons

3.			Les	classes	et	les	objets
Exercice	23.	Création	et	utilisation	d’une	classe	simple
Exercice	24.	Initialisation	d’un	objet
Exercice	25.	Champs	constants
Exercice	26.	Affectation	et	comparaison	d’objets
Exercice	27.	Méthodes	d’accès	aux	champs	privés
Exercice	28.	Conversions	d’arguments
Exercice	29.	Champs	et	méthodes	de	classe	(1)
Exercice	30.	Champs	et	méthodes	de	classe	(2)
Exercice	31.	Champs	et	méthodes	de	classe	(3)
Exercice	32.	Bloc	d’initialisation	statique
Exercice	33.	Surdéfinition	de	méthodes
Exercice	34.	Recherche	d’une	méthode	surdéfinie	(1)
Exercice	35.	Recherche	d’une	méthode	surdéfinie	(2)
Exercice	36.	Recherche	d’une	méthode	surdéfinie	(3)
Exercice	37.	Surdéfinition	et	droits	d’accès
Exercice	38.	Emploi	de	this
Exercice	39.	Récursivité	des	méthodes
Exercice	40.	Mode	de	transmission	des	arguments	d’une	méthode
Exercice	41.	Objets	membres
Exercice	42.	Synthèse	:	repères	cartésiens	et	polaires
Exercice	43.	Synthèse	:	modification	de	l’implémentation	d’une	classe
Exercice	44.	Synthèse	:	vecteurs	à	trois	composantes
Exercice	45.	Synthèse	:	nombres	sexagésimaux

4.			Les	tableaux
Exercice	46.	Déclaration	et	initialisation	de	tableau
Exercice	47.	Utilisation	usuelle	d’un	tableau	(1)

6

Exercice	48.	Utilisation	usuelle	d’un	tableau	(2)
Exercice	49.	Affectation	de	tableaux	(1)
Exercice	50.	Affectation	de	tableaux	(2)
Exercice	51.	Affectation	de	tableaux	(3)
Exercice	52.	Tableau	en	argument	(1)
Exercice	53.	Tableau	en	argument	(2)
Exercice	54.	Tableau	en	valeur	de	retour
Exercice	55.	Tableaux	de	tableaux
Exercice	56.	Synthèse	:	nombres	aléatoires	et	histogramme
Exercice	57.	Synthèse	:	calcul	vectoriel
Exercice	58.	Synthèse	:	utilitaires	pour	des	tableaux	de	tableaux
Exercice	59.	Synthèse	:	crible	d’Eratosthène

5.			L’héritage	et	le	polymorphisme
Exercice	60.	Définition	d’une	classe	dérivée,	droits	d’accès	(1)
Exercice	61.	Définition	d’une	classe	dérivée,	droits	d’accès	(2)
Exercice	62.	Héritage	et	appels	de	constructeurs
Exercice	63.	Redéfinition
Exercice	64.	Construction	et	initialisation	d’une	classe	dérivée
Exercice	65.	Dérivations	successives	et	redéfinition
Exercice	66.	Dérivations	successives	et	surdéfinition
Exercice	67.	Les	bases	du	polymorphisme
Exercice	68.	Polymorphisme	et	surdéfinition
Exercice	69.	Les	limites	du	polymorphisme
Exercice	70.	Classe	abstraite
Exercice	71.	Classe	abstraite	et	polymorphisme
Exercice	72.	Interface
Exercice	73.	Synthèse	:	comparaison	entre	héritage	et	objet	membre

6.			La	classe	String	et	les	chaînes	de	caractères
Exercice	74.	Construction	et	affectation	de	chaînes

7

Exercice	75.	Accès	aux	caractères	d’une	chaîne
Exercice	76.	Conversion	d’un	entier	en	chaîne
Exercice	77.	Comptage	des	voyelles	d’un	mot
Exercice	78.	Arguments	de	la	ligne	de	commande
Exercice	79.	Redéfinition	de	toString
Exercice	80.	Synthèse	:	conjugaison	d’un	verbe
Exercice	81.	Synthèse	:	tri	de	mots
Exercice	82.	Synthèse	:	gestion	d’un	répertoire

7.			Les	types	énumérés
Exercice	83.	Définition	et	utilisation	d’un	type	énuméré	simple
Exercice	84.	Itération	sur	les	valeurs	d’un	type	énuméré
Exercice	85.	Accès	par	leur	rang	aux	valeurs	d’un	type	énuméré	(1)
Exercice	86.	Lecture	de	valeurs	d’un	type	énuméré
Exercice	87.	Ajout	de	méthodes	et	de	champs	à	une	énumération	(1)
Exercice	88.	Ajout	de	méthodes	et	de	champs	à	une	énumération	(2)
Exercice	89.	Synthèse	:	gestion	de	résultats	d’examens

8.			Les	exceptions
Exercice	90.	Déclenchement	et	traitement	d’une	exception
Exercice	91.	Transmission	d’information	au	gestionnaire
Exercice	92.	Cheminement	des	exceptions
Exercice	93.	Cheminement	des	exceptions	et	choix	du	gestionnaire
Exercice	94.	Cheminement	des	exceptions
Exercice	95.	Instruction	return	dans	un	gestionnaire
Exercice	96.	Redéclenchement	d’une	exception	et	choix	du	gestionnaire
Exercice	97.	Bloc	finally
Exercice	98.	Redéclenchement	et	finally
Exercice	99.	Synthèse	:	entiers	naturels

9.			Les	bases	de	la	programmation	événementielle

8

Exercice	100.	Écouteurs	de	clics	d’une	fenêtre
Exercice	101.	Écouteurs	de	clics	de	plusieurs	fenêtres
Exercice	102.	Écouteur	commun	à	plusieurs	fenêtres
Exercice	103.	Création	de	boutons	et	choix	d’un	gestionnaire	FlowLayout
Exercice	104.	Gestion	de	plusieurs	boutons	d’une	fenêtre	avec	un	seul	écouteur
Exercice	105.	Synthèse	:	création	et	suppression	de	boutons	(1)
Exercice	106.	Synthèse	:	création	et	suppression	de	boutons	(2)
Exercice	107.	Dessin	permanent	dans	une	fenêtre
Exercice	108.	Synthèse	:	dessin	permanent	et	changement	de	couleur
Exercice	109.	Synthèse	:	dessin	permanent,	coloration	et	adaptation	à	la	taille	d’une
fenêtre
Exercice	110.	Dessin	à	la	volée
Exercice	111.	Synthèse	:	ardoise	magique	en	couleur

10.	Les	principaux	contrôles	de	Swing
Exercice	112.	Cases	à	cocher
Exercice	113.	Cases	à	cocher	en	nombre	quelconque
Exercice	114.	Boutons	radio	en	nombre	quelconque
Exercice	115.	Champs	de	texte
Exercice	116.	Champ	de	texte	et	événements	Action	et	Focus
Exercice	117.	Écoute	permanente	d’un	champ	de	texte
Exercice	118.	Synthèse	:	série	harmonique
Exercice	119.	Gestion	d’une	boîte	de	liste
Exercice	120.	Synthèse	:	pendule

11.	Les	boîtes	de	dialogue
Exercice	121.	Utilisation	de	boîtes	de	message	et	de	confirmation
Exercice	122.	Utilisation	de	boîtes	de	message,	de	confirmation	et	de	saisie
Exercice	123.	Programmation	d’une	boîte	de	message
Exercice	124.	Programmation	d’une	boîte	de	confirmation
Exercice	125.	Programmation	d’une	boîte	de	saisie

9

Exercice	126.	Synthèse	:	saisie	d’une	heure

12.	Les	menus
Exercice	127.	Création	d’un	menu	déroulant	usuel
Exercice	128.	Gestion	des	actions	sur	les	options	d’un	menu
Exercice	129.	Activation,	désactivation	d’options
Exercice	130.	Synthèse	:	calculs	sur	des	rectangles
Exercice	131.	Synthèse	:	coloration	par	boutons	radio
Exercice	132.	Synthèse	:	choix	de	couleur	de	fond	et	de	forme	par	des	menus	composés
Exercice	133.	Synthèse	:	choix	de	couleurs	et	de	dimensions	par	des	menus	surgissants

13.	Les	événements	de	bas	niveau
Exercice	134.	Identification	des	boutons	de	la	souris
Exercice	135.	Vrais	doubles-clics
Exercice	136.	Suivi	des	déplacements	de	la	souris	(1)
Exercice	137.	Suivi	des	déplacements	de	la	souris	(2)
Exercice	138.	Dessin	par	le	clavier	(1)
Exercice	139.	Synthèse	:	dessin	par	le	clavier	(2)
Exercice	140.	Sélection	d’un	composant	par	le	clavier
Exercice	141.	Mise	en	évidence	d’un	composant	sélectionné

14.	Les	applets
Exercice	142.	Comptage	des	arrêts	d’une	applet
Exercice	143.	Dessin	dans	une	applet
Exercice	144.	Synthèse	:	dessin	paramétré	dans	une	applet
Exercice	145.	Synthèse	:	tracé	de	courbe	dans	une	applet
Exercice	146.	Différences	entre	applet	et	application

15.	Les	flux	et	les	fichiers
Exercice	147.	Création	séquentielle	d’un	fichier	binaire
Exercice	148.	Liste	séquentielle	d’un	fichier	binaire
Exercice	149.	Synthèse	:	consultation	d’un	répertoire	en	accès	direct

10

Exercice	150.	Synthèse	:	liste	d’un	fichier	texte	avec	numérotation	des	lignes
Exercice	151.	Liste	d’un	répertoire

16.	La	programmation	générique
Exercice	152.	Classe	générique	à	un	paramètre	de	type
Exercice	153.	Classe	générique	à	plusieurs	paramètres	de	type
Exercice	154.	Conséquences	de	l’effacement	(1)
Exercice	155.	Conséquences	de	l’effacement	(2)
Exercice	156.	Méthode	générique	à	un	argument
Exercice	157.	Méthode	générique	et	effacement
Exercice	158.	Dérivation	de	classes	génériques
Exercice	159.	Les	différentes	sortes	de	relation	d’héritage
Exercice	160.	Limitations	des	paramètres	de	type	d’une	méthode
Exercice	161.	Redéfinition	de	la	méthode	compareTo

17.	Les	collections	et	les	tables	associatives
Exercice	162.	Dépendance	ou	indépendance	d’un	itérateur
Exercice	163.	Manipulation	d’un	tableau	de	type	ArrayList
Exercice	164.	Tri	d’une	collection	(1)
Exercice	165.	Tri	d’une	collection	(2)
Exercice	166.	Réalisation	d’une	liste	triée	en	permanence
Exercice	167.	Création	d’un	index
Exercice	168.	Inversion	d’un	index

18.	Les	expressions	lambda	et	les	streams
Exercice	169.	Lambda	et	interfaces	prédéfinies
Exercice	170.	Lambda	et	références
Exercice	171.	L’interface	Comparator
Exercice	172.	Les	méthodes	usuelles	des	streams
Exercice	173.	Traitement	de	liste	avec	un	stream
Exercice	174.	Répertoire

11

Exercice	175.	Répertoire	(bis)
Exercice	176.	Reduce
Exercice	177.	Collect	et	Collectors

A.	Les	constantes	et	fonctions	mathématiques

B.	Les	composants	graphiques	et	leurs	méthodes
Exercice	1.	Les	classes	de	composants
Exercice	2.	Les	méthodes

C.	Les	événements	et	les	écouteurs
Exercice	3.	Les	événements	de	bas	niveau
Exercice	4.	Les	événements	sémantiques
Exercice	5.	Les	méthodes	des	événements

D.	La	classe	Clavier

12

	

Avant-propos

Que	l’on	soit	débutant	ou	programmeur	chevronné,	la	maîtrise	d’un	nouveau	langage	de
programmation	passe	obligatoirement	par	la	pratique.
Cet	ouvrage	est	destiné	à	accompagner	et	à	prolonger	votre	étude	de	Java.	Sa	structure
correspond	à	 la	progression	classique	d’un	cours	 :	 les	opérateurs	et	 les	expressions,
les	 instructions	 de	 contrôle,	 les	 classes	 et	 les	 objets,	 les	 tableaux,	 l’héritage	 et	 le
polymorphisme,	 la	 classe	String,	 les	 types	 énumérés,	 les	 exceptions,	 les	 bases	 de	 la
programmation	 événementielle,	 les	 principaux	 contrôles	 de	 Swing,	 les	 boîtes	 de
dialogue,	 les	 menus,	 les	 événements	 de	 bas	 niveau,	 les	 applets,	 les	 fichiers,	 la
programmation	 générique,	 les	 collections	 et	 les	 tables	 associatives,	 les	 expressions
lambda	et	les	streams.
En	début	de	chaque	chapitre,	vous	trouverez	la	liste	des	connaissances	nécessaires	à	la
résolution	des	exercices.	Ces	connaissances	peuvent	être	acquises	à	l’aide	du	manuel
Programmer	en	Java,	du	même	auteur,	ou	de	tout	autre	ouvrage	d’apprentissage	de	ce
langage.
Nous	avons	prévu	deux	sortes	d’exercices	:	les	exercices	d’application	et	les	exercices
de	synthèse.
Chaque	exercice	d’application	a	été	conçu	pour	vous	entraîner	à	mettre	en	œuvre	une
ou	plusieurs	notions	qui	sont	clairement	indiquées	dans	l’intitulé	même	de	l’exercice.
Nous	avons	tout	particulièrement	cherché	à	équilibrer	 la	répartition	de	ces	exercices.
D’une	 part,	 nous	 avons	 évité	 la	 prolifération	 d’exercices	 semblables	 sur	 un	 même
thème.	D’autre	part,	nous	couvrons	la	plupart	des	aspects	du	langage,	qu’il	s’agisse	des
fondements	de	la	programmation	orientée	objet	ou	de	caractéristiques	plus	techniques
et	plus	spécifiques	à	Java.
Les	 exercices	 de	 synthèse,	 quant	 à	 eux,	 sont	 destinés	 à	 favoriser	 l’intégration	 des
connaissances	que	vous	apprendrez	à	mettre	en	œuvre	dans	des	contextes	variés.	Les

13

notions	à	utiliser	n’étant	indiquées	ni	dans	l’intitulé,	ni	dans	l’énoncé	de	ces	exercices
de	synthèse,	leur	résolution	vous	demandera	plus	de	réflexion	que	celle	des	exercices
d’application.

L’ouvrage,	J2SE	et	Swing
Si	les	instructions	de	base	de	Java	n’ont	pratiquement	pas	évolué	depuis	sa	naissance,
il	n’en	va	pas	de	même	de	ses	bibliothèques	standards.	Très	tôt,	le	modèle	de	gestion
des	événements	a	été	 fortement	modifié	 (version	1.1).	Puis,	de	nombreux	composants
graphiques	 dits	 Swing	 sont	 apparus	 avec	 la	 version	 1.2,	 renommée	 à	 cette	 occasion
J2SE	(Java	2	Standard	Edition).	Un	peu	plus	récemment,	la	version	5.0	de	J2SE	(dite
aussi	 Java	 5)	 a	 introduit	 d’importantes	 nouveautés,	 notamment	 la	 programmation
générique	 et	 son	 application	 aux	 collections,	 la	 nouvelle	 boucle	 dite	 for…	 each,	 les
types	énumérés.	Enfin,	la	version	Java	SE81	(dite	aussi	Java	8)	a	introduit,	entre	autres,
les	importantes	notions	d’expressions	lambda	et	de	streams.
Cette	nouvelle	édition	de	 l’ouvrage	se	 fonde	sur	 la	version	Java	SE	8.	La	plupart	du
temps,	nous	avons	fait	en	sorte	que	 les	corrigés	d’exercices	restent	compatibles	avec
les	 versions	 antérieures	 (y	 compris	 celles	 précédent	 Java	 5),	 en	 utilisant	 des
commentaires	 appropriés	 exprimant	 les	 différences	 éventuelles.	 Seuls	 font	 exception
les	chapitres	relatifs	aux	types	énumérés	et	à	la	programmation	générique	(qui	n’ont	pas
d’équivalent	dans	les	versions	antérieures	à	Java	5),	le	chapitre	relatif	aux	collections
et	 aux	 tables	 associatives	 (ajouté	 dans	une	précédente	 édition),	 ainsi	 que	 le	 nouveau
chapitre	de	cette	dernière	édition	relatif	aux	expressions	lambda	et	aux	streams.
Par	 ailleurs,	 et	 conformément	 aux	 recommandations	 d’Oracle,	 nous	 nous	 appuyons
entièrement	sur	les	composants	Swing	introduits	avec	Java	2,	ceci	aussi	bien	pour	les
applications	autonomes	que	pour	les	applets.

La	classe	Clavier
Alors	que	Java	dispose	de	méthodes	d’affichage	d’information	dans	la	fenêtre	console,
rien	 n’est	 prévu	 pour	 la	 lecture	 au	 clavier.	Bien	 entendu,	 il	 est	 toujours	 possible	 de
développer	soi-même	une	classe	offrant	 les	services	de	base	que	sont	 la	 lecture	d’un
entier,	d’un	flottant,	d’un	caractère	ou	d’une	chaîne.	Pour	vous	faciliter	la	résolution	de
certains	 exercices,	 vous	 trouverez	une	 telle	 classe	 (nommée	Clavier.java)	 sur	 le	 site
Web	d’accompagnement	;	sa	liste	est	également	fournie	en	Annexe	D.	Ses	méthodes	se
nomment	lireChar,	lireInt,	lireFloat,	lireDouble	et	lireString.
Par	exemple,	pour	lire	une	valeur	entière	et	la	placer	dans	la	variable	nb,	vous	pourrez
procéder	 ainsi	 (notez	 bien	 que	 les	 parenthèses	 sont	 obligatoires	 dans	 l’appel	 d’une
méthode	sans	arguments)	:
n	=	Clavier.lireInt()	;

Notez	 que,	 depuis	 Java	 5,	 il	 existe	 une	 classe	 nommée	 Scanner	 qui	 offre	 des

14

possibilités	d’analyse	de	chaînes	de	caractères.	Par	exemple,	avec	:
Scanner	clavier	=	new	Scanner	(System.in)	;

on	 construit	 un	 objet	 clavier	 associé	 à	 l’entrée	 standard	 System.in.	 La	 lecture	 des
informations	 peut	 alors	 se	 faire	 à	 l’aide	 de	 méthodes	 telles	 que	 nexInt,	 nextFloat,
nextDouble	de	la	classe	Scanner.	Par	exemple	:

double	ht	=	clavier.nextDouble	()	;

Nous	 avons	 ici	 préféré	 éviter	 de	 recourrir	 à	 ces	 possibilités,	 car	 le	 formatage	 des
informations	 y	 fait	 appel	 à	 certaines	 caractéristiques	 dites	 de	 «	 localisation	 »
spécifiques	à	chaque	pays.

Le	site	Web	d’accompagnement
Le	code	source	des	corrigés	d’exercices	est	fourni	sur	le	site	Web	d’accompagnement	à
l’adresse	www.editions-eyrolles.com.	 Pour	 accéder	 à	 l’espace	 de	 téléchargement,	 il
vous	 suffit	 de	 taper	 le	 nom	 de	 l’auteur	 (Delannoy)	 dans	 le	 formulaire	 de	 recherche
rapide	et	de	sélectionner	l’ouvrage	Exercices	en	Java.
Il	 existe	 souvent	plusieurs	manières	de	 résoudre	 le	même	exercice	et	 il	 se	peut	donc
que	votre	solution	diffère	de	celle	présentée	dans	le	corrigé	sans	être	incorrecte	pour
autant.	En	cas	de	doute,	vous	pouvez	contacter	l’auteur	par	e-mail	à	l’adresse	suivante	:
delannoy@eyrolles.com.

1.	La	dénomination	des	différentes	versions	de	Java	a	évolué	avec	le	 temps	de	JDKxx	à	Java	SExx,	 en	passant
par	J2SExx,	mais	on	parle	aussi	de	Javaxx

15

http://www.editions-eyrolles.com
mailto:delannoy@eyrolles.com

Chapitre	1

Les	opérateurs	et	les	expressions

Connaissances	requises

•	Écriture	d’un	programme	principal,	c’est-à-dire	formé	d’une	classe
comportant	une	seule	méthode	nommée	main

•	Règles	générales	d’écriture	:	identificateurs,	mots	clés,	séparateurs,	format
libre,	commentaires

•	Les	types	primitifs	:	entiers	(byte,	short,	int	et	long),	flottants	(float,	double),
caractères	(char)	et	booléens	(boolean).

•	Déclaration	de	variables	d’un	type	primitif	;	les	possibilités	d’initialisation	;
rôle	de	final	;	notion	d’expression	constante

•	Affichage	d’informations	avec	System.out.print	et	System.out.println

•	Les	opérateurs	arithmétiques	;	conversions	implicites	dans	les	expressions
(ajustement	de	type,	promotion	numérique)	;	comportement	en	cas	d’exception	;
existence	des	valeurs	Infinity	et	NaN

•	Les	opérateurs	relationnels	;	conversions	implicites	des	opérandes

•	Les	opérateurs	logiques	;	cas	particulier	des	opérateurs	dits	"de	court-circuit"
&&	et	||

•	Les	opérateurs	d’affectation	simple	ou	élargie	;	conversions	forcées	par
affectation

•	Les	opérateurs	d’incrémentation	et	de	décrémentation

•	L’opérateur	de	cast

16

1 	Priorités	des	opérateurs
arithmétiques	et	parenthèses

Éliminer	 les	 parenthèses	 superflues	 dans	 les	 expressions	 suivantes	 (l’ordre	 des
calculs	devant	rester	le	même)	:

(a	+	b)	-	(2	*	c)				//	expression	1

(2	*	x)	/	(y	*	z)				//	expression	2

(x	+	3)	*	(n%p)						//	expression	3

(-a)	/	(-(b	+	c))				//	expression	4

(x/y)%(-z)											//	expression	5

x/(y%(-z))											//	expression	6

a	+	b	-	2	*	c								//	expression	1

2	*	x	/	(y	*	z)						//	expression	2

On	 pourrait	 aussi	 écrire	 cette	 expression	 2*x/y/z	 mais	 l’ordre	 des	 calculs	 sera
différent,	ce	qui	peut	avoir	une	légère	incidence	sur	le	résultat.
(x	+	3)	*	(n%p)						//	expression	3

Ici	 aucune	 parenthèse	 ne	 peut	 être	 supprimée	 car	 *	 et	%	 sont	 de	même	 priorité	 ;	 la
suppression	de	la	seconde	paire	de	parenthèses	conduirait	à	une	expression	équivalent
à	:	((x+3)*n)%p.
-a	/	-(b	+	c)							//	expression	4

Ne	 pas	 oublier	 que	 l’opérateur	 unaire	 -	 est	 prioritaire	 sur	 tous	 les	 opérateurs
arithmétiques	à	deux	opérandes.
x/y%-z														//	expression	5

x/(y%-z)												//	expression	6

17

2 	Conversions	implicites

Soit	ces	déclarations	:
byte	b1	=	10,	b2	=	20	;

short	p	=	200	;

int	n	=	500	;

long	q	=	100	;

float	x	=	2.5f	;

double	y	=	5.25	;

Donner	le	type	et	la	valeur	des	expressions	arithmétiques	suivantes	:
b1+b2													//	1

p+b1														//	2

b1*b2													//	3

q+p*(b1+b2);						//	4

x+q*n													//	5

b1*q/x												//	6

b1*q*2./x									//	7

b1*q*2.f/x								//	8

b1+b2	=	30												//	1

L’opérateur	+	soumet	les	valeurs	de	b1	et	b2	à	la	promotion	numérique	de	byte	en	int.
Le	résutat	est	de	type	int.

p+b1	=	210												//	2

L’opérateur	+	soumet	ses	opérandes	à	des	promotions	numériques	:	de	short	en	int	pour
p	et	de	byte	en	int	pour	b1.	Le	résultat	est	de	type	int.

b1*b2	=	200											//	3

Là	encore,	avant	d’effectuer	le	produit,	 les	valeurs	de	b1	et	de	b2	 sont	soumises	à	 la
promotion	numérique	de	byte	en	int.	Le	résultat	est	de	type	int.

q+p*(b1+b2)	=	6100				//	4

On	 évalue	 tout	 d’abord	 la	 somme	 s=b1+b2,	 en	 soumettant	 les	 valeurs	 des	 deux
opérandes	aux	promotions	numériques	de	byte	en	 int.	La	valeur	de	s	 est	 de	 type	 int.
Puis	 on	 effectue	 la	 somme	q+p	 en	 soumettant	 le	 second	 opérande	 à	 une	 conversion

18

d’ajustement	de	type	de	short	en	long	(type	de	q).	Le	résultat	est	de	type	long.	 Il	 faut
maintenant	 le	 multiplier	 par	 s,	 ce	 qui	 se	 fait	 en	 soumettant	 la	 valeur	 de	 s	 à	 une
conversion	d’ajustement	de	type	de	int	en	long.	Le	résultat	final	est	de	type	long.

x+q*n	=50002.5								//	5

On	évalue	 tout	d’abord	 le	produit	q*n	en	soumettant	 la	valeur	de	n	à	une	conversion
d’ajustement	de	type	de	int	en	long.	Le	résultat	est	de	type	long.	Pour	pouvoir	l’ajouter
à	la	valeur	de	x,	on	le	soumet	à	une	conversion	d’ajustement	de	type	de	long	en	float.
Le	résultat	est	de	type	float.

b1*q/x=400.0										//	6

On	évalue	tout	d’abord	le	quotient	q/x	en	soumettant	 la	valeur	de	q	à	une	conversion
d’ajustement	de	 type	de	 long	en	 float.	Le	 résultat	 est	de	 type	 float.	Pour	pouvoir	 lui
ajouter	la	valeur	de	b1,	on	soumet	cette	dernière	à	une	conversion	d’ajustement	de	type
de	byte	en	 float	 (ou,	ce	qui	 revient	au	même,	d’abord	à	une	promotion	numérique	de
byte	en	int,	puis	à	une	conversion	d’ajustement	de	type	de	int	en	float).	Le	résultat	est
de	type	float.

b1*q*2./x=800.0							//	7

On	évalue	tout	d’abord	le	produit	q*2.,	en	soumettant	la	valeur	de	q	à	une	conversion
d’ajustement	de	type	de	long	en	double	(attention,	la	constante	2.	est	de	type	double	et
non	de	type	float).	Le	résultat	est	de	type	double.	Il	est	divisé	par	la	valeur	obtenue	par
conversion	d’ajustement	de	type	de	x	de	float	en	double.	Le	résultat,	de	type	double	est
alors	multiplié	 par	 la	 valeur	 obtenue	 par	 conversion	 d’ajustement	 de	 type	 de	 b1	 en
double.	Le	résultat	est	de	type	double.

b1*q*2.f/x=800.0						//	8

Il	s’agit	de	l’expression	précédente,	dans	laquelle	la	constante	2.	(de	type	double)	est
remplacée	par	2.f	de	type	float.	La	même	démarche	s’applique,	en	substituant	 le	 type
float	au	type	double.	Le	résultat	final	est	de	type	float.

19

3 	Exceptions	flottantes	et	conventions
IEEE	754

Quels	résultats	fournit	ce	programme	?
public	class	Excep

{	public	static	void	main	(String	args[])

{	double	x1	=	1e200,	x2	=	1e210	;

double	y,	z	;

y	=	x1*x2	;

System.out.println	("valeur	de	y	"	+	y)	;

x2	=	x1	;

z	=	y/(x2-x1)	;

System.out.println	 (y	 +	 "	 divise	 par	 "	 +	 (x2-x1)	 +	 "	 =	 "	 +

z)	;

y	=	15	;

z	=	y/(x2-x1)	;

System.out.println	 (y	 +	 "	 divise	 par	 "	 +	 (x2-x1)	 +	 "	 =	 "	 +

z)	;

z	=	(x2-x1)/(x2-x1)	;

System.out.println	((x2-x1)	+	"	divise	par	"	+	(x2-x1)	+	"	=	"

+	z)	;

System.out.println	(z	+	"+1	=	"	+	(z+1))	;

x1	=	Float.POSITIVE_INFINITY	;

x2	=	Double.NEGATIVE_INFINITY	;

z	=	x1/x2	;

System.out.println	(x1	+	"/"	+	x2	+	"	=	"	+	z)	;

}

}

Infinity	divise	par	0.0	=	Infinity

15.0	divise	par	0.0	=	Infinity

20

0.0	divise	par	0.0	=	NaN

NaN+1	=	NaN

Infinity/-Infinity	=	NaN

Rappelons	 qu’en	 Java	 aucune	 opération	 sur	 les	 flottants	 ne	 conduit	 à	 un	 arrêt	 de
l’exécution.	En	revanche,	les	nombres	flottants	respectent	les	conventions	IEEE	754	qui
imposent	 l’existence	 d’un	 motif	 particulier	 représentant	 les	 valeurs	 infinies,	 lequel
s’imprime	sous	la	forme	Infinity	ou	-Infinity.	Les	constantes	correspondantes	se	notent
Float.Infinity	ou	Double.Infinity.	De	même,	il	existe	un	motif	particulier	représentant
une	 valeur	 non	 calculable	 ;	 il	 peut	 s’obtenir	 par	 Float.NaN	 ou	 Double.NaN	 et	 il
s’imprime	sous	la	forme	NaN.

21

4 	Le	type	char

Soit	ces	déclarations	:
char	c	=	60,	ce	=	'e',	cg	=	'g'	;

byte	b	=	10	;

Donner	le	type	et	la	valeur	des	expressions	suivantes	:
c	+	1

2	*	c

cg	-	ce

b	*	c

c	+	1	=	61

L’opérateur	+	soumet	 ici	son	premier	opérande	à	 la	promotion	numérique	de	char	en
int,	ce	qui	fournit	la	valeur	601.	Le	résultat	est	de	type	int.

2	*	c	=	120

L’opérateur	*	soumet	ici	son	second	opérande	à	la	promotion	numérique	de	char	en	int,
ce	qui	fournit	la	valeur	602.	Le	résultat	est	de	type	int.

cg	-	ce	=	2

L’opérateur	-	soumet	ici	ses	deux	opérandes	à	la	promotion	numérique	de	char	en	int.
On	obtient	un	résultat	de	type	int	qui	représente	l’écart	entre	les	codes	des	caractères	g
et	e	 (dans	 le	code	Unicode,	 les	 lettres	consécutives	d’une	même	casse	ont	des	codes
consécutifs).

b	*	c	=	600

L’opérateur	*	soumet	 ici	ses	deux	opérandes	aux	promotions	numériques	 :	de	byte	en
int	pour	 le	premier,	de	char	en	 int	 pour	 le	 second.	On	notera	qu’aucun	problème	de
dépassement	de	capacité	n’apparaît	puisque	le	produit	est	bien	effectué	dans	le	type	int
(il	 en	 irait	 différemment	 s’il	 était	 effectué	 dans	 le	 type	 byte	 puisque	 600	 n’est	 pas
représentable	dans	ce	type).

22

5 	Opérateurs	logiques	à	"court
circuit"

Quels	résultats	fournit	ce	programme	?
public	class	CourCir

{	public	static	void	main	(String	args[])

{	int	i=10,	j=5	;

if	(i<5	&&	j++<10)	System.out.println	("&&1	vrai")	;

	else	System.out.println	("&&1	faux")	;

System.out.println	("i	=	"	+	i	+	"	j	=	"	+	j)	;

if	(i<5	&	j++<10)	System.out.println	("&	vrai")	;

	else	System.out.println	("&	faux")	;

System.out.println	("i	=	"	+	i	+	"	j	=	"	+	j)	;

if	(i<15	&&	j++<10)	System.out.println	("&&2	vrai")	;

	else	System.out.println	("&&2	faux")	;

System.out.println	("i	=	"	+	i	+	"	j	=	"	+	j)	;

if	(i<15	||	j++<10)	System.out.println	("||	vrai")	;

	else	System.out.println	("||	faux")	;

System.out.println	("i	=	"	+	i	+	"	j	=	"	+	j)	;

}

}

&&1	faux

i	=	10	j	=	5

&	faux

i	=	10	j	=	6

&&2	vrai

i	=	10	j	=	7

||	vrai

i	=	10	j	=	7

23

Il	 faut	 simplement	 tenir	 compte	 de	 la	 proprité	 particulière	 dont	 bénéficient	 les
opérateurs	&&	et	||	dits	à	court-circuit.	Ils	n’évaluent	leur	second	opérande	que	lorsque
cela	est	nécessaire.

24

6 	Priorités	des	opérateurs

Éliminer	les	parenthèses	superflues	dans	les	expressions	suivantes	:
a	=	(x+5)										//	1

a	=	(x=y)+	2							//	2

a	=	(x	=	(y+2))				//	3

(a<b)	&&	(c<d)					//	4

(i++)	*	(n+p)						//	5

x	+=	(n%p)									//	6

n	=	(p+=5)									//	7

a	=	x+5											//	1

a	=	(x=y)+	2						//	2

a	=	x	=	y+2							//	3

a<b	&&	c<d								//	4

i++	*	(n+p)							//	5

x	+=	n%p										//	6

n	=	(p+=5)								//	7

25

7 	Affectation	et	conversion

Soit	ces	déclarations	:
byte	b	;	short	p	;	int	n	;	long	q	;

final	int	N=10	;

float	x	;	double	y	;

Parmi	 les	expressions	suivantes,	 lesquelles	sont	 incorrectes	et	pourquoi	?	Lorsque
l’expression	est	correcte,	citer	les	conversions	éventuellement	mises	en	jeu.

b	=	n						//	1

b	=	25					//	2

b	=	500				//	3

x	=	2*q				//	4

y	=	b*b				//	5

p	=	b*b				//	6

b	=	b+5				//	7

p	=	5*N-3		//	8

b	=	n	;						//	1	Erreur

La	conversion	de	int	en	byte	n’est	pas	autorisée	par	affectation.
b	=	25	;					//	2	OK

D’une	manière	générale,	la	conversion	de	int	en	byte	n’est	pas	acceptée	par	affectation.
Mais	 une	 exception	 a	 lieu	 pour	 les	 expressions	 constantes	 (calculables	 à	 la
compilation),	à	condition	que	leur	valeur	soit	représentable	dans	le	type	d’arrivée,	ce
qui	est	manifestement	le	cas	ici.
b	=	500	;				//	3	Erreur

On	est	dans	la	même	situation	que	précédemment,	avec	cette	différence	que	la	valeur
500	n’est	pas	représentable	dans	le	type	byte.
x	=	2*q	;				//	4	OK

Ici,	l’expression	2*q	est	évaluée	en	effectuant	la	conversion	d’ajustement	de	type	de	2
en	 long.	 Puis	 le	 résultat,	 de	 type	 long,	 est	 converti	 dans	 le	 type	 float	 avant	 d’être
affecté	à	x.
y	=	b*b	;				//	5	OK

26

La	valeur	de	l’expression	b*b	est	évaluée	en	effectuant	la	promotion	numérique	de	b	en
int.	Le	résultat,	de	type	int,	est	converti	dans	le	type	double	avant	d’être	affecté	à	y.
p	=	b*b	;				//	6	Erreur

Là	encore,	la	valeur	de	l’expression	b*b	est	de	type	int.	La	conversion	de	int	en	short
est	illégale	par	affectation.
b	=	b+5	;				//	7	Erreur

La	valeur	de	l’expression	b+5	est	de	type	int.	La	conversion	de	int	en	short	est	illégale
par	affectation.
p	=	5*N-3	;		//	8	OK

L’expression	5*N-3	est	de	 type	 int.	Mais	comme	 il	 s’agit	d’une	expression	constante
(calculable	à	la	compilation),	sa	conversion	en	short	est	légale	par	affectation	pour	peu
que	sa	valeur	soit	représentable	dans	ce	type,	ce	qui	est	le	cas	ici.

27

8 	Opérateurs	d’incrémentation,	de
décrémentation	et	d’affectation
élargie

Quels	résultats	fournit	ce	programme	?
public	class	OpIncr

{	public	static	void	main(String[]	args)

{	int	i,	j,	n	;

i	=	0	;	n	=	i++	;

System.out.println	("A	:	i	=	"	+	i	+	"	n	=	"	+	n)	;

i	=	10	;	n	=	++	i	;

System.out.println	("B	:	i	=	"	+	i	+	"	n	=	"	+	n)	;

i	=	20	;	j	=	5	;	n	=	i++	*	++	j	;

System.out.println	("C	:	i	=	"	+	i	+	"	j	=	"	+	j	+	"	n	=	"	+	n

)	;

i	=	15	;	n	=	i	+=	3	;

System.out.println	("D	:	i	=	"	+	i	+	"	n	=	"	+	n)	;

i	=	3	;	j	=	5	;	n	=	i	*=	--j	;

System.out.println	("E	:	i	=	"	+	i	+	"	j	=	"	+	j	+	"	n	=	"	+

n)	;

}

}

A	:	i	=	1	n	=	0

B	:	i	=	11	n	=	11

C	:	i	=	21	j	=	6	n	=	120

D	:	i	=	18	n	=	18

E	:	i	=	12	j	=	4	n	=	12

28

9 	Opérateurs	d’incrémentation	et
d’affectation	élargie

Soit	ces	déclarations	:
byte	b	;	short	p	;	char	c	;	int	n	;	float	x	;

Parmi	les	expressions	suivantes,	lesquelles	sont	incorrectes	et	pourquoi	?
c	=	c	+	1					//	1

c++											//	2

c	+=	3								//	3

b	+=	c								//	4

p	+=	b								//	5

p	=	p	+	b					//	6

n	+=	x								//	7

n	=	n	+	x					//	8

x++	;									//	9

c	=	c	+	1					//	1	Erreur

L’expression	c+1	est	du	type	int	qui	ne	peut	pas	être	converti	en	char	par	affectation.
c++											//	2	OK

Ici,	l’opérateur	++	applique	son	incrémentation	de	1	directement	à	la	variable	c	de	type
char.	Aucune	conversion	n’est	mise	en	jeu.
c	+=	3								//	3	OK

Cette	expression	est	en	fait	équivalente	à	c=(char)	(c+3)	et	non	simplement	à	c=c+3.
Dans	ces	conditions,	elle	évalue	bien	 l’expression	c+3	dans	 le	 type	 int	mais	 elle	 en
force	ensuite	la	conversion	en	char.	Notez	bien	que	l’affectation	c=c+3	serait	illégale.
b	+=	c								//	4	OK

Cette	expression	est	équivalente	à	b	=	(byte)	(b+c).
p	+=	b								//	5	OK

Cette	expression	est	équivalente	à	p	=	(short)	(p+b).
p	=	p	+	b					//	6	Erreur

La	valeur	de	l’expression	p+b	est	de	type	int	(les	deux	opérandes	de	+	sont	soumis	aux

29

promotions	numériques	en	int).	Elle	ne	peut	pas	être	convertie	en	short	par	affectation.
Notez	la	différence	avec	l’expression	précédente.
n	+=	x								//	7	OK

Cette	 expression	 est	 équivalente	 à	 n	 =	 (int)	 (n+x).	 Notez	 cependant	 qu’on	 emploie
rarement	l’opérateur	+=	de	cette	manière.
n	=	n	+	x					//	8	Erreur

L’expression	 n+x	 est	 de	 type	 float	 et	 sa	 valeur	 ne	 peut	 pas	 être	 convertie	 par
affectation	en	int.
x++											//	9	OK

Cette	expression	joue	le	même	rôle	que	x=x+1.	En	pratique,	on	emploie	rarement	les
opérateurs	d’incrémentation	ou	de	décrémentation	sur	des	variables	flottantes.

30

10 	Opérateur	conditionnel

Quels	résultats	fournit	ce	programme	?
public	class	OpCond

{	public	static	void	main(String[]	args)

{	int	n=10,	p=5,	q=10	;

n	=	p	=	q	=	5	;

n	+=	p	+=	q	;

System.out.println	("A	:	n	=	"	+	n	+	"	p	=	"	+	p	+	"	q	=	"	+

q)	;

q	=	n	<	p	?	n++	:	p++	;

System.out.println	("B	:	n	=	"	+	n	+	"	p	=	"	+	p	+	"	q	=	"	+

q)	;

q	=	n	>	p	?	n++	:	p++	;

System.out.println	("C	:	n	=	"	+	n	+	"	p	=	"	+	p	+	"	q	=	"	+

q)	;

}

}

A	:	n	=	15	p	=	10	q	=	5

B	:	n	=	15	p	=	11	q	=	10

C	:	n	=	16	p	=	11	q	=	15

1.	En	toute	rigueur,	la	valeur	de	la	variable	c	est	non	pas	60,	mais	l’entier	dont	le	code	(Unicode)	est	égal	à	60.
2.	Même	remarque	que	précédemment.

31

Chapitre	2

Les	instructions	de	contrôle

Connaissances	requises

•	Instructions	simples,	instructions	structurées,	instructions	composées	(bloc)

•	L’instruction	if	;	cas	des	if	imbriqués

•	L’instruction	switch	;	l’étiquette	default

•	L’instruction	do	while

•	L’instruction	while

•	L’instruction	for	;	initialisation	avec	éventuelle	déclaration,	condition	d’arrêt,
incrémentation

•	Les	instructions	de	branchement	inconditionnel	break	et	continue	avec	ou
sans	étiquette

Note	 :	 on	 suppose	 qu’on	 dispose	 d’une	 classe	 nommée	Clavier,	 comportant	 (entre
autres)	 des	 méthodes	 (statiques)	 de	 lecture	 au	 clavier	 d’informations	 de	 type	 int
(lireInt),	 float	 (lireFloat),	double	 (lireDouble)	 et	 char	 (lireChar).	 Cette	 classe	 est
présente	sur	le	site	Web	d’accompagnement	et	sa	liste	est	fournie	en	Annexe	D.

32

11 	Syntaxe	de	if	et	de	switch

Quelles	erreurs	ont	été	commises	dans	chacun	des	groupes	d’instructions	suivants.
On	 suppose	 que	 les	 variables	 concernées	 sont	 d’un	 type	 primitif	 numérique	 et
qu’elles	ont	été	correctement	déclarées	(un	groupe	ne	comporte	aucune	erreur)	:

//	groupe	1

if	(a	<	b)	System.out.println	("ascendant")

else	System.out.println	("non	ascendant")	;

//	groupe	2

if	(a	<	b)	{	System.out.println	("ascendant)	;	max	=	b	}

//	groupe	3

int	n,	p	;

switch	(n)	{	case	2	:	System.out.println	("petit")	;	break	;

	case	p	:	System.out.println	("limite")	;	break	;

	}

//	groupe	4

int	n	;

final	int	LIMITE	=	20	;

switch	 (n)	 {	 case	 LIMITE-1	 :	 System.out.println	 ("un	 peu	 trop

petit")	;	break	;

	case	LIMITE	:	System.out.println	("OK")	;	break	;

	 case	 LIMITE+1	 :	 System.out.println	 ("un	 peu	 trop

grand")	;	break	;

	}

Groupe	1
Il	manque	un	point-virgule	à	la	fin	du	premier	appel	de	System.out.println	:
if	(a	<	b)	System.out.println	("ascendant")	;

else	System.out.println	("non	ascendant")	;

33

Groupe	2
Il	manque	un	point-virgule	à	la	fin	de	la	deuxième	instruction	du	bloc	:
if	(a	<	b)	{	System.out.println	("ascendant)	;	max	=	b	;	}

Groupe	3
Les	 valeurs	 utilisées	 dans	 les	 étiquettes	 de	 la	 forme	 case	 xxx	 doivent	 être	 des
expressions	constantes,	ce	qui	n’est	pas	le	cas	de	p.

Groupe	4
Aucune	 erreur.	 Les	 expressions	 telles	 que	 LIMITE-1	 étant	 bien	 cette	 fois	 des
expressions	constantes.

34

12 	Rôle	de	l’instruction	switch

Soit	le	programme	suivanta	:
public	class	ExoII2

{	public	static	void	main(String[]	args)

{	int	n	;

n	=	Clavier.lireInt()	;

switch	(n)

{	case	0	:	System.out.println	("Nul")	;

case	1	:

case	2	:	System.out.println	("Petit")	;

break	;

case	3	:

case	4	:

case	5	:	System.out.println	("Moyen")	;

default	:	System.out.println	("Grand")	;

}

}

}

Quels	résultats	affiche-t-il	lorsqu’on	lui	fournit	en	donnée	:
1.	la	valeur	0,
2.	la	valeur	1,
3.	la	valeur	4,
4.	la	valeur	10,
5.	la	valeur	-5.

a.	Il	utilise	la	classe	Clavier	(voir	note	en	début	de	chapitre).

//	avec	la	valeur	0

Nul

Petit

//	avec	la	valeur	1

35

Petit

//	avec	la	valeur	4

Moyen

Grand

//	avec	la	valeur	10

Grand

//	avec	la	valeur	-5

Grand

36

13 	Syntaxe	des	boucles

Quelles	erreurs	ont	été	commises	dans	chacune	des	instructions	suivantes	?
do	n++	while	(n<10)	;																									//	instruction	1

do	while	((n	=	Clavier.lireInt())	!=	10)	;			//	instruction	2

do	;	while	(true)	;																											//	instruction	3

do	{}	while	(false)	;																									//	instruction	4

Instruction	1
Il	manque	un	point-virgule	:
do	n++	;	while	(n<10)	;

Instruction	2
Il	manque	une	instruction	(même	vide)	après	le	mot	do,	par	exemple	:
do	;	while	((n	=	Clavier.lireInt())	!=	10)	;

ou	:
do	{}	while	((n	=	Clavier.lireInt())	!=	10)	;

Instruction	3
Aucune	erreur	de	compilation	ne	sera	détectée.	Mais	on	est	en	présence	d’une	boucle
infinie.

Instruction	4
Aucune	erreur	de	compilation	ne	sera	détectée.	Mais	l’instruction	ne	sert	à	rien.

37

14 	Comparaison	entre	for,	while	et
do…	while

Soit	le	programme	suivanta	:
public	class	ExoII4a

{	public	static	void	main(String[]	args)

{	int	i,	n,	som	;

som	=	0	;

for	(i=0	;	i<4	;	i++)

{	System.out.println	("donnez	un	entier	")	;

n	=	Clavier.lireInt()	;

som	+=	n	;

}

System.out.println	("Somme	:	"	+	som)	;

}

}

Écrire	 un	 programme	 réalisant	 la	 même	 chose	 en	 employant	 à	 la	 place	 de
l’instruction	for	:
1.	une	instruction	while,
2.	une	instruction	do…	while.

a.	Il	utilise	la	classe	Clavier	(voir	note	en	début	de	chapitre).

Avec	une	instruction	while	:
public	class	ExoII4b

{	public	static	void	main(String[]	args)

{	int	i,	n,	som	;

som	=	0	;

i	=	0	;

while	(i<4)

{	System.out.println	("donnez	un	entier	")	;

n	=	Clavier.lireInt()	;

38

som	+=	n	;

i++	;

}

System.out.println	("Somme	:	"	+	som)	;

}

}

Avec	une	instruction	do…	while	:

public	class	ExoII4c

{	public	static	void	main(String[]	args)

{	int	i,	n,	som	;

som	=	0	;

i	=	0	;

	do

{	System.out.println	("donnez	un	entier	")	;

n	=	Clavier.lireInt()	;

som	+=	n	;

i++	;

}

while	(i<4)	;

System.out.println	("Somme	:	"	+	som)	;

}

}

39

15 	Rupture	de	séquence	avec	break	et
continue

Quels	résultats	fournit	le	programme	suivant	?
public	class	ExoII5

{	public	static	void	main(String[]	args)

{	int	n=0	;

do

{	if	(n%2==0)	{	System.out.println	(n	+	"	est	pair")	;

n	+=	3	;

continue	;

}

if	(n%3==0)	{	System.out.println	(n	+	"	est	multiple	de	3")	;

n	+=	5	;

}

if	(n%5==0)	{	System.out.println	(n	+	"	est	multiple	de	5")	;

break	;

}

n	+=	1	;

}

while	(true)	;

}

}

0	est	pair

3	est	multiple	de	3

9	est	multiple	de	3

15	est	multiple	de	3

20	est	multiple	de	5

40

16 	Boucle	while,	opérateurs
d’affectation	élargie	et
d’incrémentation	(1)

Quels	résultats	fournit	le	programme	suivant	?
public	class	ExoII6

{	public	static	void	main(String[]	args)

{	int	n,	p	;

n	=	0	;

while	(n<=5)	n++	;

System.out.println	("A	:	n	=	"	+	n)	;

n	=	p	=	0	;

while	(n<=8)	n	+=	p++	;

System.out.println	("B	:	n	=	"	+	n)	;

n	=	p	=	0	;

while	(n<=8)	n	+=	++p	;

System.out.println	("C	:	n	=	"	+	n)	;

n	=	p	=	0	;

while	(p<=5)	n	+=	p++	;

System.out.println	("D	:	n	=	"	+	n)	;

n	=	p	=	0	;

while	(p<=5)	n+=	++p	;

System.out.println	("D	:	n	=	"	+	n)	;

}

}

A	:	n	=	6

B	:	n	=	10

41

C	:	n	=	10

D	:	n	=	15

D	:	n	=	21

42

17 	Boucle	while,	opérateurs
d’affectation	élargie	et
d’incrémentation	(2)

Quels	résultats	fournit	le	programme	suivant	?
public	class	ExoII7

{	public	static	void	main(String[]	args)

{	int	n,	p	;

n=p=0	;

while	(n<5)	n+=2	;	p++	;

System.out.println	("A	:	n	=	"	+	n	+	",	p	=	"	+	p)	;

n=p=0	;

while	(n<5)	{	n+=2	;	p++	;	}

System.out.println	("B	:	n	=	"	+	n	+	",	p	=	"	+	p)	;

}

}

A	:	n	=	6,	p	=	1

B	:	n	=	6,	p	=	3

43

18 	Syntaxe	générale	des	trois	parties
d’une	boucle	for

Quels	résultats	fournit	le	programme	suivant	?
public	class	ExoII8

{	public	static	void	main	(String[]	args)

{	int	i,	n	;

for	(i=0,	n=0	;	i<5	;	i++)	n++	;

System.out.println	("A	:	i	=	"	+	i	+	",	n	=	"	+	n)	;

for	(i=0,	n=0	;	i<5	;	i++,	n++)	{}

System.out.println	("B	:	i	=	"	+	i	+	",	n	=	"	+	n)	;

for	(i=0,	n=50	;	n>10	;	i++,	n-=	i)	{}

System.out.println	("C	:	i	=	"	+	i	+	",	n	=	"	+	n)	;

for	(i=0,	n=0	;

i<3	;	i++,	n+=i,	System.out.println	("D	:	i	=	"	+	i	+	",	n	=

"	+	n))	;

System.out.println	("E	:	i	=	"	+	i	+	",	n	=	"	+	n)	;

}

}

A	:	i	=	5,	n	=	5

B	:	i	=	5,	n	=	5

C	:	i	=	9,	n	=	5

D	:	i	=	1,	n	=	1

D	:	i	=	2,	n	=	3

D	:	i	=	3,	n	=	6

E	:	i	=	3,	n	=	6

44

19 	Synthèse	:	calcul	d’une	suite	de
racines	carrées

Écrire	un	programme	qui	calcule	les	racines	carrées	de	nombres	fournis	en	donnée.
Il	s’arrêtera	lorsqu’on	lui	fournira	la	valeur	0a.	Il	refusera	les	valeurs	négatives.	Son
exécution	se	présentera	ainsi	:

donnez	un	nombre	positif	:	2

sa	racine	carree	est	:	1.4142135623730951

donnez	un	nombre	positif	:	-3

svp	positif

donnez	un	nombre	positif	:	5

sa	racine	carree	est	:	2.23606797749979

donnez	un	nombre	positif	:	0

a.	Rappelons	que	la	méthode	Math.sqrt	fournit	un	résultat	de	type	double	correspondant	à	la	valeur	de	type	double
fournie	en	argument.

Il	existe	beaucoup	de	rédactions	possibles.	En	voici	trois	:

public	class	RacCara

{	public	static	void	main	(String[]	args)

{	double	x	;

do

{	System.out.print	("donnez	un	nombre	positif	:	")	;

	x	=	Clavier.lireDouble	()	;

	if	(x	<	0)	System.out.println	("svp	positif")	;

	if	(x	<=0)	continue	;

	System.out.println	("sa	racine	carree	est	:	"	+	Math.sqrt	(x)

)	;

}

while	(x	!=	0)	;

}

}

45

public	class	RacCarb

{	public	static	void	main	(String[]	args)

{	double	x	;

do

{	System.out.print	("donnez	un	nombre	positif	:	")	;

x	=	Clavier.lireDouble()	;

if	(x	<	0)	{	System.out.println	("svp	positif")	;

continue	;

	}

if	 (x>0)	 System.out.println	 ("sa	 racine	 carree	 est	 :	 "	 +

Math.sqrt	(x))	;

}

while	(x	!=	0)	;

}

}

public	class	RacCarc

{	public	static	void	main	(String[]	args)

{	double	x	;

do

{	System.out.print	("donnez	un	nombre	positif	:	")	;

x	=	Clavier.lireDouble()	;

if	(x	<	0)	{	System.out.println	("svp	positif	")	;

continue	;

}

if	 (x>0)	 System.out.println	 ("sa	 racine	 carree	 est	 :	 "	 +

Math.sqrt	(x))	;

if	(x==0)	break	;

}

while	(true)	;

}

}

46

20 	Synthèse	:	calcul	de	la	valeur
d’une	série

Écrire	 un	 programme	 calculant	 la	 somme	 des	 n	 premiers	 termes	 de	 la	 "série
harmonique",	c’est-à-dire	la	somme	:

1	+	1/2	+	1/3	+	1/4	+	+	1/n
La	valeur	de	n	sera	lue	en	donnéea.

a.	On	pourra	utiliser	la	classe	Clavier	(voir	note	en	début	de	chapitre).

public	class	Serie

{	public	static	void	main	(String[]	args)

{	int	nt	;										//	nombre	de	termes	de	la	serie	harmonique

float	som	;							//	pour	la	somme	de	la	serie

int	i	;

do

{	System.out.print	("combien	de	termes	:	")	;

nt	=	Clavier.lireInt()	;

}

while	(nt<1)	;

for	(i=1,	som=0	;	i<=nt	;	i++)	som	+=	(float)1/i	;

System.out.println	 ("Somme	 des	 "	 +	 nt	 +	 "	 premiers	 termes	 =	 "	 +

som)	;

}

}

1.	Rappelons	que	dans	:
som	+=	(float)1/i

l’opérateur	float	porte	sur	l’entier	1.	Le	premier	opérande	de	l’opérateur	/	est	donc	de
type	 float	 ;	 par	 conséquent,	 son	 second	 opérande	 sera	 soumis	 à	 une	 promotion

47

numérique	en	float,	avant	qu’on	ne	procède	à	la	division.
Notez	qu’il	faut	éviter	d’écrire	:

som	+=	1/i

En	 effet	 dans	 ce	 cas	 l’opérateur	 /	 porterait	 sur	 deux	 entiers	 et	 correspondrait	 à	 la
division	entière.	Le	résultat	serait	toujours	nul	(sauf	pour	i	=	1).
De	même,	en	écrivant	:

som	+=	(float)(1/i)

le	résultat	ne	serait	pas	plus	satisfaisant	puisque	la	conversion	en	flottant	n’aurait	lieu
qu’après	la	division	(en	entier).
En	revanche,	on	pourrait	écrire	:

som	+=	1.0f/i

2.	On	peut	 améliorer	 la	 précision	 du	 résultat	 en	 effectuant	 la	 somme	 "à	 l’envers",
c’est-àdire	en	allant	de	n	vers	1	et	non	pas	de	1	vers	n.	La	différence	ne	deviendra
cependant	perceptible	que	pour	de	grandes	valeurs	de	n.

48

21 	Synthèse	:	dessin	d’un	triangle	en
mode	texte

Écrire	un	programme	qui	affiche	un	triangle	isocèle	formé	d’étoiles.	La	hauteur	du
triangle	 (c’est-à-dire	 son	 nombre	 de	 lignes)	 sera	 fourni	 en	 donnéea,	 comme	 dans
l’exemple	ci-dessous.	On	s’arrangera	pour	que	la	dernière	ligne	du	triangle	s’affiche
sur	le	bord	gauche	de	l’écran.

combien	de	lignes	?	8

	*

a.	On	pourra	utiliser	la	classe	Clavier	(voir	note	en	début	de	chapitre).

public	class	Dessin

{

public	static	void	main	(String[]	args)

{

int	nLignes	;															//	nombre	total	de	lignes

int	numLigne	;														//	compteur	de	ligne

int	 nEspaces	 ;	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 nombre	 d'espaces	 precedent	 une

etoile

final	 char	 cRempli	 =	 '*'	 ;	 	 //	 caractere	 de	 remplissage	 (ici

etoile)

int	j	;

System.out.print	("combien	de	lignes	?	")	;

nLignes	=	Clavier.lireInt	()	;

49

for	(numLigne=0	;	numLigne<nLignes	;	numLigne++)

{	nEspaces	=	nLignes	-	numLigne	-	1	;

for	(j=0	;	j<nEspaces	;	j++)	System.out.print	('	')	;

for	(j=0	;	j<2*numLigne+1	;	j++)	System.out.print	(cRempli)	;

System.out.println	()	;

}

}

}

50

22 	Synthèse	:	calcul	de	combinaisons

Écrire	 un	 programme	 qui	 affiche	 toutes	 les	manières	 possibles	 d’obtenir	 un	 franc
avec	 des	 pièces	 de	 2	 centimes,	 5	 centimes	 et	 10	 centimes.	 Dire	 combien	 de
possibilités	ont	ainsi	été	trouvées.	Les	résultats	seront	présentés	ainsi	:

1	F	=	50	X	2c

1	F	=	45	X	2c	+	2	X	5c

1	F	=	40	X	2c	+	4	X	5c

1	F	=	35	X	2c	+	6	X	5c

1	F	=	30	X	2c	+	8	X	5c

1	F	=	25	X	2c	+	10	X	5c

1	F	=	20	X	2c	+	12	X	5c

1	F	=	15	X	2c	+	14	X	5c

1	F	=	15	X	2c	+	7	X	10c

1	F	=	10	X	2c	+	2	X	5c	+	7	X	10c

1	F	=	5	X	2c	+	4	X	5c	+	7	X	10c

1	F	=	6	X	5c	+	7	X	10c

1	F	=	10	X	2c	+	8	X	10c

1	F	=	5	X	2c	+	2	X	5c	+	8	X	10c

1	F	=	4	X	5c	+	8	X	10c

1	F	=	5	X	2c	+	9	X	10c

1	F	=	2	X	5c	+	9	X	10c

1	F	=	10	X	10c

En	tout,	il	y	a	66	facons	de	faire	1	F

public	class	Combis

{

public	static	void	main	(String[]	args)

{

int	nbf	;	/*	compteur	du	nombre	de	façons	de	faire	1	F	*/

int	n10	;	/*	nombre	de	pièces	de	10	centimes	*/

int	n5	;	/*	nombre	de	pièces	de	5	centimes	*/

51

int	n2	;	/*	nombre	de	pièces	de	2	centimes	*/

nbf	=	0	;

for	(n10=0	;	n10<=10	;	n10++)

for	(n5=0	;	n5<=20	;	n5++)

for	(n2=0	;	n2<=50	;	n2++)

if	(2*n2	+	5*n5	+	10*n10	==	100)

	{	nbf	++	;

	System.out.print	("1	F	=	")	;

	if	(n2	!=	0)	System.out.print	(n2	+	"	X	2c")	;

	if	(n5	!=	0)	{	if	(n2	!=	0)	System.out.print	("	+	")	;

	System.out.print	(n5	+	"	X	5c")	;

	}

	if	(n10	!=	0)	{	if	((n2	!=	0)	||	(n5	!=	0))	System.out.print

("	+	")	;

	System.out.print	(n10	+	"	10c")	;

	}

	System.out.println	()	;

	}

System.out.println	("En	tout,	il	y	a	"	+	nbf	+	"	facons	de	faire	1

F")	;

}

}

52

Chapitre	3

Les	classes	et	les	objets

Connaissances	requises

•	Notion	de	classe	:	définition	des	champs	et	des	méthodes,	accès	privés	ou
publics	aux	membres,	utilisation	d’une	classe

•	Mise	en	oeuvre	d’un	programme	comportant	plusieurs	classes,	à	raison	d’une
ou	plusieurs	classes	par	fichier	source

•	Notion	de	constructeur	;	règles	d’écriture	et	d’utilisation

•	Les	différentes	étapes	de	la	création	d’un	objet	:	initialisation	par	défaut,
initialisation	explicite,	appel	du	constructeur	;	cas	particulier	des	champs
déclarés	avec	l’attribut	final

•	Affectation	et	comparaison	d’objets

•	Notion	de	ramasse-miettes

•	Règles	d’écriture	d’une	méthode	;	méthode	fonction,	arguments	muets	ou
effectifs,	règles	de	conversion	des	arguments	effectifs,	propriétés	des	variables
locales

•	Champs	et	méthodes	de	classe	;	initialisation	des	champs	de	classe,	bloc
d’initialisation	statique

•	Surdéfinition	de	méthodes

•	Le	mot	clé	this	;	cas	particulier	de	l’appel	d’un	constructeur	au	sein	dun	autre
constructeur

•	Récursivité	des	méthodes

53

•	Mode	de	transmission	des	arguments	et	de	la	valeur	de	retour

•	Objets	membres

•	Paquetages

54

23 	Création	et	utilisation	d’une
classe	simple

Réaliser	 une	 classe	Point	 permettant	 de	 représenter	 un	 point	 sur	 un	 axe.	 Chaque
point	sera	caractérisé	par	un	nom	(de	type	char)	et	une	abscisse	(de	type	double).
On	prévoira	:

•	un	constructeur	recevant	en	arguments	le	nom	et	l’abscisse	d’un	point,

•	 une	 méthode	 affiche	 imprimant	 (en	 fenêtre	 console)	 le	 nom	 du	 point	 et	 son
abscisse,

•	 une	méthode	 translate	 effectuant	 une	 translation	 définie	 par	 la	 valeur	 de	 son
argument.

Écrire	un	petit	programme	utilisant	cette	classe	pour	créer	un	point,	en	afficher	les
caractéristiques,	le	déplacer	et	en	afficher	à	nouveau	les	caractéristiques.

Ici,	notre	programme	d’essai	(méthode	main)	est	séparé	de	la	classe	Point,	mais	placé
dans	le	même	fichier	source.	La	classe	Point	ne	peut	donc	pas	être	déclarée	publique.
Rappelons	que,	dans	ces	conditions,	elle	reste	utilisable	depuis	n’importe	quelle	classe
du	paquetage	par	défaut.

class	Point

{	public	Point	(char	c,	double	x)			//	constructeur

{	nom	=	c	;

abs	=	x	;

}

public	void	affiche	()

{	 System.out.println	 ("Point	 de	 nom	 "	 +	 nom	 +	 "	 d'abscisse	 "	 +

abs)	;

}

public	void	translate	(double	dx)

{	abs	+=	dx	;

}

55

private	char	nom	;					//	nom	du	point

private	double	abs	;			//	abscisse	du	point

}

public	class	TstPtAxe

{	public	static	void	main	(String	args[])

{	Point	a	=	new	Point	('C',	2.5)	;

a.affiche()	;

Point	b	=	new	Point	('D',	5.25)	;

b.affiche()	;

b.translate(2.25)	;

b.affiche()	;

}

}

Point	de	nom	C	d'abscisse	2.5

Point	de	nom	D	d'abscisse	5.25

Point	de	nom	D	d'abscisse	7.5

56

24 	Initialisation	d’un	objet

Que	fournit	le	programme	suivant	?
class	A

{	public	A	(int	coeff)

{	nbre	*=	coeff	;

nbre	+=	decal	;

}

public	void	affiche	()

{	System.out.println	("nbre	=	"	+	nbre	+	"	decal	=	"	+	decal)	;

}

private	int	nbre	=	20	;

private	int	decal	;

}

public	class	InitChmp

{	public	static	void	main	(String	args[])

{	A	a	=	new	A	(5)	;	a.affiche()	;

}

}

La	création	d’un	objet	de	type	A	entraîne	successivement	:

•	 l’initialisation	 par	 défaut	 de	 ses	 champs	 nbre	 et	 decal	 à	 une	 valeur	 "nulle"	 (ici
l’entier	0),

•	l’initialisation	explicite	de	ses	champs	lorsqu’elle	existe	;	ici	nbre	prend	la	valeur
20,

•	 l’appel	 du	 constructeur	 :	 nbre	 est	 multiplié	 par	 la	 valeur	 de	 coeff	 (ici	 5),	 puis
incrémenté	de	la	valeur	de	decal	(0).

En	définitive,	le	programme	affiche	:
nbre	=	100	decal	=	0

57

25 	Champs	constants

Quelle	erreur	a	été	commise	dans	cette	définition	de	classe	?
class	ChCt

{	public	ChCt	(float	r)

{	x	=	r	;

}

.....

private	final	float	x	;

private	final	int	n	=	10	;

private	final	int	p	;

}

Le	 champ	p	 déclaré	 final	 doit	 être	 initialisé	 au	 plus	 tard	 par	 le	 constructeur,	 ce	 qui
n’est	 pas	 le	 cas.	 En	 revanche,	 les	 autres	 champs	 déclarés	 final	 sont	 correctement
initialisés,	n	de	façon	explicite	et	x	par	le	constructeur.

58

26 	Affectation	et	comparaison	d’objets

Que	fournit	le	programme	suivant	?
class	Entier

{	public	Entier	(int	nn)	{	n	=	nn	;	}

public	void	incr	(int	dn)	{	n	+=	dn	;	}

public	void	imprime	()	{	System.out.println	(n)	;	}

private	int	n	;

}

public	class	TstEnt

{	public	static	void	main	(String	args[])

{	 Entier	 n1	 =	 new	 Entier	 (2)	 ;	 System.out.print	 ("n1	 =	 ")	 ;

n1.imprime()	;

Entier	 n2	 =	 new	 Entier	 (5)	 ;	 System.out.print	 ("n1	 =	 ")	 ;

n2.imprime()	;

n1.incr(3)	;	System.out.print	("n1	=	")	;	n1.imprime()	;

System.out.println	("n1	==	n2	est	"	+	(n1	==	n2))	;

n1	 =	 n2	 ;	 n2.incr(12)	 ;	 System.out.print	 ("n2	 =	 ")	 ;

n2.imprime()	;

System.out.print	("n1	=	")	;	n1.imprime()	;

System.out.println	("n1	==	n2	est	"	+	(n1	==	n2))	;

}

}

n1	=	2

n1	=	5

n1	=	5

n1	==	n2	est	false

n2	=	17

n1	=	17

n1	==	n2	est	true

L’opérateur	==	appliqué	à	des	objets	compare	leurs	références	(et	non	leurs	valeurs).
C’est	pourquoi	la	première	comparaison	(n1	==	n2)	est	fausse	alors	que	les	objets	ont
la	 même	 valeur.	 La	 même	 reflexion	 s’applique	 à	 l’opérateur	 d’affectation.	 Après

59

exécution	de	n1	=	n2,	 les	 références	 contenues	 dans	 les	 variables	n1	 et	n2	 sont	 les
mêmes.	 L’objet	 anciennement	 référencé	 par	 n2	 n’étant	 plus	 référencé	 par	 ailleurs,	 il
devient	candidat	au	ramasse-miettes.
Dorénavant	n1	et	n2	référencent	un	seul	et	même	objet.	L’incrémentation	de	sa	valeur
par	le	biais	de	n1	se	retrouve	indifféremment	dans	n1.imprime	et	dans	n2.imprime.	De
même,	la	comparaion	n1	==	n2	a	maintenant	la	valeur	vrai.

60

27 	Méthodes	d’accès	aux	champs
privés

Soit	 le	programme	suivant	 comportant	 la	définition	d’une	classe	nommée	Point	 et
son	utilisation	:

class	Point

{	public	Point	(int	abs,	int	ord)	{	x	=	abs	;	y	=	ord	;	}

public	void	deplace	(int	dx,	int	dy)	{	x	+=	dx	;	y	+=	dy	;	}

public	void	affiche	()

{	System.out.println	("Je	suis	un	point	de	coordonnees	"	+	x	+

"	"	+	y)	;

}

private	double	x	;			//	abscisse

private	double	y	;			//	ordonnee

}

public	class	TstPnt

{	public	static	void	main	(String	args[])

{	Point	a	;

a	=	new	Point(3,	5)	;	a.affiche()	;

a.deplace(2,	0)	;	a.affiche()	;

Point	b	=	new	Point(6,	8)	;	b.affiche()	;

}

}

Modifier	 la	 définition	 de	 la	 classe	Point	 en	 supprimant	 la	méthode	 affiche	 et	 en
introduisant	 deux	 méthodes	 d’accès	 nommées	 abscisse	 et	 ordonnee	 fournissant
respectivement	 l’abscisse	 et	 l’ordonnée	 d’un	 point.	 Adapter	 la	 méthode	main	 en
conséquence.

class	Point

{	public	Point	(int	abs,	int	ord)	{	x	=	abs	;	y	=	ord	;	}

public	void	deplace	(int	dx,	int	dy)	{	x	+=	dx	;	y	+=	dy	;	}

public	double	abscisse	()	{	return	x	;	}

61

public	double	ordonnee	()	{	return	y	;	}

private	double	x	;			//	abscisse

private	double	y	;			//	ordonnee

}

public	class	TstPnt1

{	public	static	void	main	(String	args[])

{	Point	a	;

a	=	new	Point(3,	5)	;

System.out.println	("Je	suis	un	point	de	coordonnees	"

+	a.abscisse()	+	"	"	+	a.ordonnee())	;

a.deplace(2,	0)	;

System.out.println	("Je	suis	un	point	de	coordonnees	"

+	a.abscisse()	+	"	"	+	a.ordonnee())	;

Point	b	=	new	Point(6,	8)	;

System.out.println	("Je	suis	un	point	de	coordonnees	"

+	b.abscisse()	+	"	"	+	b.ordonnee())	;

}

}

Cet	 exemple	 était	 surtout	 destiné	 à	montrer	 que	 les	méthodes	 d’accès	 permettent	 de
respecter	 l’encapsulation	 des	 données.	 Dans	 la	 pratique,	 la	 classe	 disposera
probablement	d’une	méthode	affiche	en	plus	des	méthodes	d’accès.

62

28 	Conversions	d’arguments

On	suppose	qu’on	dispose	de	la	classe	A	ainsi	définie	:
class	A

{	void	f	(int	n,	float	x)	{	}

void	g	(byte	b)	{	}

.....

}

Soit	ces	déclarations	:
A	a	;	int	n	;	byte	b	;	float	x	;	double	y	;

Dire	si	les	appels	suivants	sont	corrects	et	sinon	pourquoi.
a.f	(n,	x)	;

a.f	(b+3,	x)	;

a.f	(b,	x)	;

a.f	(n,	y)	;

a.f	(n,	(float)y)	;

a.f	(n,	2*x)	;

a.f	(n+5,	x+0.5)	;

a.g	(b)	;

a.g	(b+1)	;

a.g	(b++)	;

a.g	(3)	;

a.f	(n,	x)	;									//	OK	:	appel	normal

a.f	(b+3,	x)	;							//	OK	:	b+3	est	déjà	de	type	int

a.f	(b,	x)	;									//	OK	:	b	de	type	byte	sera	converti	en	int

a.f	(n,	y)	;										//	erreur	:	y	de	type	double	ne	peut	être

converti	en	float

a.f	(n,	(float)y)	;		//	OK

a.f	(n,	2*x)	;							//	OK	:	2*x	est	de	type	float

a.f	(n+5,	x+0.5)	;			//	erreur	:	0.5	est	de	type	double,	donc	x+0.5

est	de

	 //	 type	 double,	 lequel	 ne	 peut	 pas	 être	 converti	 en

63

float

a.g	(b)	;												//	OK	:	appel	normal

a.g	 (b+1)	 ;	 	 	 	 	 	 	 	 	 	 //	 erreur	 :	 b1+1	 de	 type	 int	 ne	 peut	 être

converti	en	byte

a.g	(b++)	;										//	OK	:	b1++	est	de	type	int

	//	(mais	peu	conseillé	:	on	a	modifié	la	valeur	de	b1)

a.g	 (3)	 ;	 	 	 	 	 	 	 	 	 	 	 	 //	 erreur	 :	 3	 de	 type	 int	 ne	 peut	 être

convertie	en	byte

64

29 	Champs	et	méthodes	de	classe	(1)

Quelles	erreurs	ont	été	commises	dans	la	définition	de	classe	suivante	et	dans	son
utilisation	?

class	A

{	static	int	f	(int	n)

{	q	=	n	;

}

void	g	(int	n)

{	q	=	n	;

p	=	n	;

}

static	private	final	int	p	=	20	;

private	int	q	;

}

public	class	EssaiA

{	public	static	void	main	(String	args[])

{	A	a	=	new	A()	;	int	n	=	5	;

a.g(n)	;

a.f(n)	;

f(n)	;

}

}

La	méthode	statique	 f	de	A	 ne	peut	 pas	 agir	 sur	 un	 champ	non	 statique	 ;	 l’affectation
q=n	est	incorrecte.
Dans	la	méthode	g	de	A,	l’affectation	q=n	n’est	pas	usuelle	mais	elle	est	correcte.	En
revanche,	l’affectation	p=n	ne	l’est	pas	puisque	p	est	final	(il	doit	donc	être	initialisé
au	plus	tard	par	le	constructeur	et	il	ne	peut	plus	être	modifié	par	la	suite).
Dans	la	méthode	main,	l’appel	a.f(n)	se	réfère	à	un	objet,	ce	qui	est	inutile	mais	toléré.
Il	 serait	 cependant	 préférable	 de	 l’écrire	A.f(n).	Quant	 à	 l’appel	 f(n)	 il	 est	 incorrect
puisqu’il	n’existe	pas	de	méthode	f	dans	la	classe	EssaiA1.	 Il	est	probable	que	l’on	a
voulu	écrire	A.f(n).

65

30 	Champs	et	méthodes	de	classe	(2)

Créer	une	classe	permettant	de	manipuler	un	point	d’un	axe,	repéré	par	une	abscisse
(de	type	int).	On	devra	pouvoir	effectuer	des	changements	d’origine,	en	conservant
en	 permanence	 l’abscisse	 d’une	 origine	 courante	 (initialement	 0).	 On	 prévoira
simplement	les	méthodes	suivantes	:

•	 constructeur,	 recevant	 en	 argument	 l’abscisse	 "absolue"	 du	 point	 (c’est-à-dire
repérée	par	rapport	au	point	d’origine	0	et	non	par	rapport	à	l’origine	courante),

•	affiche	qui	 imprime	à	 la	 fois	 l’abscisse	de	 l’origine	courante	et	 l’abscisse	du
point	par	rapport	à	cette	origine,

•	setOrigine	qui	permet	de	définir	une	nouvelle	abscisse	pour	l’origine	(exprimée
de	façon	absolue	et	non	par	rapport	à	l’origine	courante),

•	getOrigine	qui	permet	de	connaître	l’abscisse	de	l’origine	courante.
Ecrire	un	petit	programme	de	test	fournissant	les	résultats	suivants	:

Point	a	-	abscisse	=	3

	relative	a	une	origine	d'abscisse	0

Point	b	-	abscisse	=	12

	relative	a	une	origine	d'abscisse	0

On	place	l'origine	en	3

Point	a	-	abscisse	=	0

	relative	a	une	origine	d'abscisse	3

Point	b	-	abscisse	=	9

relative	a	une	origine	d'abscisse	3

L’abscisse	de	l’origine	courante	est	une	information	qui	concerne	tous	les	points	de	la
classe.	On	en	fera	donc	un	champ	de	classe	en	le	déclarant	static.	De	la	même	manière,
les	 méthodes	 setOrigine	 et	 getOrigine	 concernent	 non	 pas	 un	 point	 donné,	 mais	 la
classe.	On	en	fera	des	méthodes	de	classe	en	les	déclarant	static.

class	Point

{	public	Point	(int	xx)	{	x	=	xx	;	}

public	void	affiche	()

66

{	System.out.println	("abscisse	=	"	+	(x-origine))	;

System.out.println	 ("	 relative	 a	 une	 origine	 d'abscisse	 "	 +

origine)	;

}

public	static	void	setOrigine	(int	org)	{	origine	=	org	;	}

public	static	int	getOrigine()	{	return	origine	;	}

private	 static	 int	 origine	 ;	 	 	 //	 abscisse	 absolue	 de	 l'origine

courante

private	int	x	;																//	abscisse	absolue	du	point

}

public	class	TstOrig

{	public	static	void	main	(String	args[])

{	 Point	 a	 =	 new	 Point	 (3)	 ;	 System.out.print	 ("Point	 a	 -	 ")	 ;

a.affiche()	;

Point	 b	 =	 new	 Point	 (12)	 ;	 System.out.print	 ("Point	 b	 -	 ")	 ;

b.affiche()	;

Point.setOrigine(3)	;

System.out.println	 ("On	 place	 l'origine	 en	 "	 +

Point.getOrigine())	;

System.out.print	("Point	a	-	")	;	a.affiche()	;

System.out.print	("Point	b	-	")	;	b.affiche()	;

}

}

67

31 	Champs	et	méthodes	de	classe	(3)

Réaliser	une	classe	qui	permet	d’attribuer	un	numéro	unique	à	chaque	nouvel	objet
créé	 (1	au	premier,	2	au	 suivant…).	On	ne	cherchera	pas	à	 réutiliser	 les	numéros
d’objets	éventuellement	détruits.	On	dotera	la	classe	uniquement	d’un	constructeur,
d’une	méthode	getIdent	 fournissant	 le	 numéro	 attribué	 à	 l’objet	 et	 d’une	méthode
getIdentMax	fournissant	le	numéro	du	dernier	objet	créé.
Écrire	un	petit	programme	d’essai.

Chaque	objet	devra	disposer	d’un	champ	(de	préférence	privé)	destiné	à	conserver	son
numéro.	 Par	 ailleurs,	 le	 constructeur	 d’un	 objet	 doit	 être	 en	 mesure	 de	 connaître	 le
dernier	 numéro	 attribué.	 La	 démarche	 la	 plus	 naturelle	 consiste	 à	 le	 placer	 dans	 un
champ	 de	 classe	 (nommé	 ici	 numCour).	 La	 méthode	 getIdentMax	 est	 indépendante
d’un	quelconque	objet	;	il	est	préférable	d’en	faire	une	méthode	de	classe.

class	Ident

{	public	Ident	()

{	numCour++	;

num	=	numCour	;

}

public	int	getIdent()

{	return	num	;

}

public	static	int	getIdentMax()

{	return	numCour	;

}

private	static	int	numCour=0	;		//	dernier	numero	attribué

private	int	num	;															//	numero	de	l'objet

}

public	class	TstIdent

{	public	static	void	main	(String	args[])

{	Ident	a	=	new	Ident(),	b	=	new	Ident()	;

System.out.println	("numero	de	a	:	"	+	a.getIdent())	;

68

System.out.println	("numero	de	b	:	"	+	b.getIdent())	;

System.out.println	("dernier	numero	"	+	Ident.getIdentMax())	;

Ident	c	=	new	Ident()	;

System.out.println	("dernier	numero	"	+	Ident.getIdentMax())	;

}

}

Ce	programme	fournit	les	résultats	suivants	:
numero	de	a	:	1

numero	de	b	:	2

dernier	numero	2

dernier	numero	3

Si	l’on	souhaitait	récupérer	les	identifications	d’objets	détruits,	on	pourrait	exploiter	le
fait	que	Java	appelle	la	méthode	finalize	d’un	objet	avant	de	le	soumettre	au	ramasse-
miettes.	 Il	 faudrait	 alors	 redéfinir	 cette	 méthode	 en	 conservant	 les	 numéros	 ainsi
récupérés	 et	 en	 les	 réutilisant	 dans	 une	 construction	 ultérieure	 d’objet,	 ce	 qui
compliquerait	quelque	peu	la	définition	de	la	classe.	De	plus,	il	ne	faudrait	pas	perdre
de	vue	qu’un	objet	n’est	soumis	au	ramasse-miettes	qu’en	cas	de	besoin	de	mémoire	et
non	pas	nécessairement	dès	qu’il	n’est	plus	référencé.

69

32 	Bloc	d’initialisation	statique

Adapter	la	classe	précédente,	de	manière	que	le	numéro	initial	des	objets	soit	lu	au
claviera.	On	devra	s’assurer	que	la	réponse	de	l’utilisateur	est	strictement	positive.

a.	On	pourra	utiliser	la	méthode	lireInt	de	la	classe	Clavier	fournie	sur	le	site	Web	d’accompagnement	et	dont	la	liste
figure	en	Annexe	D

S’il	 n’était	 pas	 nécessaire	 d’effectuer	 un	 test	 sur	 la	 valeur	 fournie	 au	 clavier,	 on
pourrait	se	contenter	de	modifier	ainsi	la	classe	Ident	précédente	:

public	Ident	()

{	num	=	numCour	;

	numCour++	;

}

private	 static	 int	 numCour=Clavier.lireInt()	 ;	 	 //	 dernier	 numero

attribué

Notez	cependant	que	l’utilisateur	ne	serait	pas	informé	que	le	programme	attend	qu’il
frappe	au	clavier.
Mais	ici,	 l’initialisation	de	numCour	n’est	plus	réduite	à	une	simple	expression.	Elle
fait	 donc	 obligatoirement	 intervenir	 plusieurs	 instructions	 et	 il	 est	 nécessaire	 de
recourir	à	un	bloc	d’initialisation	statique	en	procédant	ainsi	:

class	Ident

{	public	Ident	()

{	num	=	numCour	;

numCour++	;

}

public	int	getIdent()

{	return	num	;

}

public	static	int	getIdentMax()

{	return	numCour-1	;

70

}

private	static	int	numCour	;			//	prochain	numero	a	attribuer

private	int	num	;														//	numero	de	l'objet

static

{	System.out.print	("donnez	le	premier	identificateur	:	")	;

do	numCour	=	Clavier.lireInt()	;	while	(numCour	<=	0)	;

}

}

À	titre	 indicatif,	 avec	 le	même	programme	 (main)	 que	 dans	 l’exercice	 précédent,	 on
obtient	ces	résultats	:

donnez	le	premier	identificateur	:	12

numero	de	a	:	12

numero	de	b	:	13

dernier	numero	13

dernier	numero	14

1.	Les	 instructions	 d’un	 bloc	 d’initialisation	 statique	 ne	 concernent	 aucun	 objet	 en
particulier	 ;	elles	ne	peuvent	donc	accéder	qu’à	des	champs	statiques.	En	outre,	et
contrairement	 à	 ce	 qui	 se	 produit	 pour	 les	 instructions	 des	méthodes,	 ces	 champs
doivent	 avoir	 été	 déclarés	 avant	 d’être	 utilisés.	 Ici,	 il	 est	 donc	 nécessaire	 que	 la
déclaration	du	champ	statique	numCour	figure	avant	le	bloc	statique	(en	pratique,	on
a	tendance	à	placer	ces	blocs	en	fin	de	définition	de	classe).
2.	Les	instructions	d’un	bloc	d’initialisation	sont	exécutées	avant	toute	création	d’un
objet	de	la	classe.	Même	si	notre	programme	ne	créait	aucun	objet,	il	demanderait	à
l’utilisateur	de	lui	founir	un	numéro.

71

33 	Surdéfinition	de	méthodes

Quelles	erreurs	figurent	dans	la	définition	de	classe	suivante	?
class	Surdef

{	public	void	f	(int	n)											{	}

public	int	f	(int	p)												{	}

public	void	g	(float	x)									{	}

public	void	g	(final	double	y)		{	}

public	void	h	(long	n)										{	}

public	int	h	(final	long	p)					{	}

}

Les	deux	méthodes	f	ont	des	arguments	de	même	type	(la	valeur	de	retour	n’intervenant
pas	dans	la	surdéfinition	des	fonctions).	Il	y	a	donc	une	ambiguïté	qui	sera	détectée	dès
la	compilation	de	la	classe,	indépendamment	d’une	quelconque	utilisation.
La	surdéfinition	des	méthodes	g	ne	présente	pas	d’anomalie,	 leurs	arguments	étant	de
types	différents.
Enfin,	les	deux	méthodes	h	ont	des	arguments	de	même	type	(long),	le	qualificatif	final
n’intervenant	pas	ici.	La	compilation	signalera	également	une	ambiguïté	à	ce	niveau.

72

34 	Recherche	d’une	méthode
surdéfinie	(1)

Soit	la	définition	de	classe	suivante	:
class	A

{	public	void	f	(int	n)	{	}

public	void	f	(int	n,	int	q)	{	}

public	void	f	(int	n,	double	y)	{	}

}

Avec	ces	déclarations	:
A	a	;	byte	b	;	short	p	;	int	n	;	long	q	;	float	x	;	double	y	;

Quelles	 sont	 les	 instructions	 correctes	 et,	 dans	 ce	 cas,	 quelles	 sont	 les	méthodes
appelées	et	les	éventuelles	conversions	mises	en	jeu	?

a.f(n);

a.f(n,	q)	;

a.f(q)	;

a.f(p,	n)	;

a.f(b,	x)	;

a.f(q,	x)	;

a.f(n);								//	appel	f(int)

a.f(n,	 q)	 ;	 	 	 	 //	 appel	 f(int,	 double)	 après	 conversion	 de	 q	 en

double

a.f(q)	;							//	erreur	:	aucune	méthode	acceptable

a.f(p,	n)	;				//	appel	f(int,	int)	après	conversion	de	p	en	int

a.f(b,	x)	;				//	appel	f(int,	double)	après	conversion	de	b	en	int

	//	et	de	x	en	double

a.f(q,	x)	;				//	erreur	:	aucune	méthode	acceptable

73

35 	Recherche	d’une	méthode	surdéfinie
(2)

Soit	la	définition	de	classe	suivante	:
class	A

{	public	void	f	(byte	b)	{	}

public	void	f	(int	n)	{	}

public	void	f	(float	x)	{	}

public	void	f	(double	y)	{	}

}

Avec	ces	déclarations	:
A	a	;	byte	b	;	short	p	;	int	n	;	long	q	;	float	x	;	double	y	;

Quelles	sont	les	méthodes	appelées	et	les	éventuelles	conversions	mises	en	jeu	dans
chacune	des	instructions	suivantes	?

a.f(b)	;

a.f(p)	;

a.f(q)	;

a.f(x)	;

a.f(y)	;

a.f(2.*x)	;

a.f(b+1)	;

a.f(b++)	;

a.f(b)	;						//	appel	de	f(byte)

a.f(p)	;						//	appel	de	f(int)

a.f(q)	;						//	appel	de	f(float)	après	conversion	de	q	en	float

a.f(x)	;						//	appel	de	f(float)

a.f(y)	;						//	appel	de	f(double)

a.f(2.*x)	;			//	appel	de	f(double)	car	2.	est	de	type	double	;

//	l'expression	2.*x	est	de	type	double

a.f(b+1)	;				//	appel	de	f(int)	car	l'expression	b+1	est	de	type

int

74

a.f(b++)	;				//	appel	de	f(byte)	car	l'expression	b++	est	de	type

byte

75

36 	Recherche	d’une	méthode	surdéfinie
(3)

Soit	la	définition	de	classe	suivante	:
class	A

{	public	void	f	(int	n,	float	x)

{	}

public	void	f	(float	x1,	float	x2)

{	}

public	void	f	(float	x,	int	n)

{	}

}

Avec	ces	déclarations	:
A	a	;	short	p	;	int	n1,	n2	;	float	x	;

Quelles	 sont	 les	 instructions	 correctes	 et,	 dans	 ce	 cas,	 quelles	 sont	 les	méthodes
appelées	et	les	éventuelles	conversions	mises	en	jeu	?

a.f(n1,	x)	;

a.f(x,	n1)	;

a.f(p,	x)	;

a.f(n1,	n2)	;

a.f(n1,	x)	;

Les	méthodes	f(int,	float)	et	f(float,	float)	sont	acceptables	mais	la	seconde	est	moins
bonne	que	la	première.	Il	y	a	donc	appel	de	f(int,	float).

a.f(x,	n1)	;

Les	méthodes	f(float,	float)	et	f(float,	int)	sont	acceptables	mais	la	première	est	moins
bonne	que	la	seconde.	Il	y	a	donc	appel	de	f(float,	int).

a.f(p,	x)	;

Les	trois	méthodes	sont	acceptables.	La	seconde	et	la	troisième	sont	moins	bonnes	que
la	première.	Il	y	a	donc	appel	de	f(int,	float)	après	conversion	de	p	en	int.

a.f(n1,	n2)	;

76

Les	trois	méthodes	sont	acceptables.	Seule	la	seconde	est	moins	bonne	que	les	autres.
Comme	aucune	des	deux	méthodes	 f(int,	 float)	 et	 f(float,	 int)	 n'est	meilleure	 que	 les
autres,	il	y	a	erreur.

77

37 	Surdéfinition	et	droits	d’accès

Quels	résultats	fournit	ce	programme	?
class	A

{	public	void	f(int	n,	float	x)

{	System.out.println	("f(int	n,	float	x)	n	=	"	+	n	+	"	x	=	"	+

x)	;

}

private	void	f(long	q,	double	y)

{	System.out.println	("f(long	q,	double	y)	q	=	"	+	q	+	"	y	=	"

+	y)	;

}

public	void	f(double	y1,	double	y2)

{	System.out.println	("f(double	y1,	double	y2)	y1	=	"	+	y1	+	"

y2	=	"	+	y2)	;

}

public	void	g()

{	int	n=1	;	long	q=12	;	float	x=1.5f	;	double	y	=	2.5	;

System.out.println	("---	dans	g	")	;

f(n,	q)	;

f(q,	n)	;

f(n,	x)	;

f(n,	y)	;

}

}

public	class	SurdfAcc

{	public	static	void	main	(String	args[])

{	A	a	=	new	A()	;

a.g()	;

System.out.println	("---	dans	main")	;

int	n=1	;	long	q=12	;	float	x=1.5f	;	double	y	=	2.5	;

a.f(n,	q)	;

a.f(q,	n)	;

a.f(n,	x)	;

a.f(n,	y)	;

}

78

}

---	dans	g

f(int	n,	float	x)	n	=	1	x	=	12.0

f(long	q,	double	y)	q	=	12	y	=	1.0

f(int	n,	float	x)	n	=	1	x	=	1.5

f(long	q,	double	y)	q	=	1	y	=	2.5

---	dans	main

f(int	n,	float	x)	n	=	1	x	=	12.0

f(double	y1,	double	y2)	y1	=	12.0	y2	=	1.0

f(int	n,	float	x)	n	=	1	x	=	1.5

f(double	y1,	double	y2)	y1	=	1.0	y2	=	2.5

La	méthode	f(long,	double)	étant	privée,	elle	n’est	accessible	que	depuis	les	méthodes
de	la	classe.	Ici,	elle	est	donc	accessible	depuis	g	et	elle	intervient	dans	la	recherche
de	 la	 meilleure	 correspondance	 dans	 un	 appel	 de	 f.	 En	 revanche,	 elle	 ne	 l’est	 pas
depuis	main.	 Ceci	 explique	 les	 différences	 constatées	 dans	 les	 deux	 séries	 d’appels
identiques,	l’une	depuis	g,	l’autre	depuis	main.

79

38 	Emploi	de	this

Soit	la	classe	Point	ainsi	définie	:
class	Point

{	public	Point	(int	abs,	int	ord)	{	x	=	abs	;	y	=	ord	;	}

public	void	affiche	()

{	System.out.println	("Coordonnees	"	+	x	+	"	"	+	y)	;

}

private	double	x	;			//	abscisse

private	double	y	;			//	ordonnee

}

Lui	ajouter	une	méthode	maxNorme	déterminant	parmi	deux	points	lequel	est	le	plus
éloigné	 de	 l’origine	 et	 le	 fournissant	 en	 valeur	 de	 retour.	 On	 donnera	 deux
solutions	:

•	maxNorme	est	une	méthode	statique	de	Point,

•	maxNorme	est	une	méthode	usuelle	de	Point.

Avec	une	méthode	statique
La	méthode	maxNorme	va	devoir	disposer	de	deux	arguments	de	type	Point.	Ici,	nous
nous	contentons	de	calculer	le	carré	de	la	norme	du	segment	joignant	l’origine	au	point
concerné.	Il	suffit	ensuite	de	fournir	comme	valeur	de	retour	celui	des	deux	points	pour
lequel	cette	valeur	est	 la	plus	grande.	Voici	 la	nouvelle	définition	de	la	classe	Point,
accompagnée	d’un	programme	de	test	et	des	résultats	fournis	par	son	exécution	:

class	Point

{	public	Point	(int	abs,	int	ord)	{	x	=	abs	;	y	=	ord	;	}

public	void	affiche	()

{	System.out.println	("Coordonnees	"	+	x	+	"	"	+	y)	;

}

public	static	Point	MaxNorme	(Point	a,	Point	b)

{	double	na	=	a.x*a.x	+	a.y*a.y	;

double	nb	=	b.x*b.x	+	b.y*b.y	;

80

if	(na>nb)	return	a	;

else	return	b	;

}

private	double	x	;			//	abscisse

private	double	y	;			//	ordonnee

}

public	class	MaxNorme

{	public	static	void	main	(String	args[])

{	 Point	 p1	 =	 new	 Point	 (2,	 5)	 ;	 System.out.print	 ("p1	 :	 ")	 ;

p1.affiche()	;

Point	 p2	 =	 new	 Point	 (3,	 1)	 ;	 System.out.print	 ("p2	 :	 ")	 ;

p2.affiche()	;

Point	p	=	Point.MaxNorme	(p1,	p2)	;

System.out.print	("Max	de	p1	et	p2	:	")	;	p.affiche()	;

}

}

p1	:	Coordonnees	2.0	5.0

p2	:	Coordonnees	3.0	1.0

Max	de	p1	et	p2	:	Coordonnees	2.0	5.0

Avec	une	méthode	usuelle
Cette	fois,	la	méthode	ne	dispose	plus	que	d’un	seul	argument	de	type	Point,	le	second
point	 concerné	 étant	 celui	 ayant	 appelé	 la	 méthode	 et	 dont	 la	 référence	 se	 note
simplement	this.
Voici	 la	 nouvelle	 définition	 de	 la	 classe	 et	 l’adaptation	 du	 programme	 d’essai	 (qui
fournit	les	mêmes	résultats	que	précédemment)	:

class	Point

{	public	Point	(int	abs,	int	ord)	{	x	=	abs	;	y	=	ord	;	}

public	void	affiche	()

{	System.out.println	("Coordonnees	"	+	x	+	"	"	+	y)	;

}

public	Point	MaxNorme	(Point	b)

{	 double	 na	 =	 x*x	 +	 y*y	 ;	 	 	 	 //	 ou	 encore	 this.x*this.x	 +

this.y*this.y

double	nb	=	b.x*b.x	+	b.y*b.y	;

if	(na>nb)	return	this	;

else	return	b	;

}

private	double	x	;			//	abscisse

81

private	double	y	;			//	ordonnee

}

public	class	MaxNorm2

{	public	static	void	main	(String	args[])

{	 Point	 p1	 =	 new	 Point	 (2,	 5)	 ;	 System.out.print	 ("p1	 :	 ")	 ;

p1.affiche()	;

Point	 p2	 =	 new	 Point	 (3,	 1)	 ;	 System.out.print	 ("p2	 :	 ")	 ;

p2.affiche()	;

Point	p	=	p1.MaxNorme	(p2)	;		//	ou	p2.maxNorme(p1)

System.out.print	("Max	de	p1	et	p2	:	")	;	p.affiche()	;

}

}

82

39 	Récursivité	des	méthodes

Écrire	 une	 méthode	 statique	 d’une	 classe	 statique	Util	 calculant	 la	 valeur	 de	 la
"fonction	d’Ackermann"	A	définie	pour	m>=0	et	n>=0	par	:

•	A	(m,	n)	=	A	(m-1,	A(m,	n-1))	pour	m>0	et	n>0,

•	A	(0,	n)	=	n+1	pour	n>0,

•	A	(m,	0)	=	A(m-1,	1)	pour	m>0.

Il	 suffit	 d’exploiter	 les	 possibilités	 de	 récursivité	 de	 Java	 en	 écrivant	 quasi
textuellement	les	définitions	récursives	de	la	fonction	A.

class	Util

{	public	static	int	acker	(int	m,	int	n)

{	if	((m<0)	||	(n<0))	return	0	;		//	protection	:	0	si	arguments

incorrects

else	if	(m	==	0)	return	n+1	;

else	if	(n	==	0)	return	acker	(m-1,	1)	;

else	return	acker	(m-1,	acker(m,	n-1))	;

}

}

public	class	Acker

{	public	static	void	main	(String	args[])

{	int	m,	n	;

System.out.print	("Premier	parametre	:	")	;

m	=	Clavier.lireInt()	;

System.out.print	("Second	parametre	:	")	;

n	=	Clavier.lireInt()	;

System.out.println	 ("acker	 ("	 +	 m	 +	 ",	 "	 +	 n	 +	 ")	 =	 "	 +

Util.acker(m,	n))	;

}

}

83

40 	Mode	de	transmission	des
arguments	d’une	méthode

Quels	résultats	fournit	ce	programme	?
class	A

{	public	A	(int	nn)

{n	=	nn	;

}

public	int	getn	()

{	return	n	;

}

public	void	setn	(int	nn)

{	n	=	nn	;

}

private	int	n	;

}

class	Util

{	public	static	void	incre	(A	a,	int	p)

{	a.setn	(a.getn()+p);

}

public	static	void	incre	(int	n,	int	p)

{	n	+=	p	;

}

}

public	class	Trans

{	public	static	void	main	(String	args[])

{	A	a	=	new	A(2)	;

int	n	=	2	;

System.out.println	("valeur	de	a	avant	:	"	+	a.getn())	;

Util.incre	(a,	5)	;

System.out.println	("valeur	de	a	apres	:	"	+	a.getn())	;

System.out.println	("valeur	de	n	avant	:	"	+	n)	;

Util.incre	(n,	5)	;

84

System.out.println	("valeur	de	n	apres	:	"	+	n)	;

}

}

En	Java,	le	transfert	des	arguments	à	une	méthode	se	fait	 toujours	par	valeur.	Mais	la
valeur	d’une	variable	de	type	objet	est	sa	référence.	D’où	les	résultats	:

valeur	de	a	avant	:	2

valeur	de	a	apres	:	7

valeur	de	n	avant	:	2

valeur	de	n	apres	:	2

85

41 	Objets	membres

On	 dispose	 de	 la	 classe	Point	 suivante	 permettant	 de	 manipuler	 des	 points	 d’un
plan.
class	Point

{	public	Point	(double	x,	double	y)	{	this.x	=	x	;	this.y	=	y	;	}

public	void	deplace	(double	dx,	double	dy)	{	x	+=	dx	;	y	+=	dy	;

}

public	void	affiche	()

{	System.out.println	("coordonnees	=	"	+	x	+	"	"	+	y)	;

}

private	double	x,	y	;

}

En	 ajoutant	 les	 fonctionnalités	 nécessaires	 à	 la	 classe	Point,	 réaliser	 une	 classe
Segment	permettant	de	manipuler	des	segments	d’un	plan	et	disposant	des	méthodes
suivantes	:

segment	(Point	origine,	Point	extremite)

segment	(double	xOr,	double	yOr,	double	xExt,	double	yExt)

double	longueur()	;

void	deplaceOrigine	(double	dx,	double	dy)

void	deplaceExtremite	(double	dx,	double	dy)

void	affiche()

Pour	l’instant,	la	classe	Point	n’est	dotée	ni	de	méthodes	d’accès	aux	champs	x	et	y,	ni
de	méthodes	d’altération	de	leurs	valeurs.
Si	 l’on	 prévoit	 de	 représenter	 un	 segment	 par	 deux	 objets	 de	 type	Point2,	 il	 faudra
manifestement	pouvoir	connaître	et	modifier	leurs	coordonnées	pour	pouvoir	déplacer
l’origine	ou	l’extrémité	du	segment.	Pour	ce	faire,	on	pourra	par	exemple	ajouter	à	la
classe	Point	les	quatre	méthodes	suivantes	:

public	double	getX	()

{	return	x	;

}

86

public	double	getY	()

{	return	y	;

}

public	void	setX	(double	x)

{	this.x	=	x	;

}

public	void	setY	(double	y)

{	this.y	=	y	;

}

En	ce	qui	concerne	la	méthode	affiche	de	Segment,	on	peut	se	contenter	de	faire	appel
à	celle	de	Point,	pour	peu	qu’on	se	contente	de	la	forme	du	message	qu’elle	fournit.
Voici	la	nouvelle	définition	de	Point	et	celle	de	Segment	:

class	Point

{	public	Point	(double	x,	double	y)	{	this.x	=	x	;	this.y	=	y	;	}

public	void	deplace	(double	dx,	double	dy)	{	x	+=	dx	;	y	+=	dy	;	}

public	double	getX	()	{	return	x	;	}

public	double	getY	()	{	return	y	;	}

public	void	setX	(double	x)	{	this.x	=	x	;	}

public	void	setY	(double	y)	{	this.y	=	y	;	}

public	void	affiche	()

{	System.out.println	("coordonnees	=	"	+	x	+	"	"	+	y)	;

}

private	double	x,	y	;

}

class	Segment

{	public	Segment	(Point	or,	Point	ext)

{	this.or	=	or	;	this.ext	=	ext	;

}

public	Segment	(double	xOr,	double	yOr,	double	xExt,	double	yExt)

{	or	=	new	Point	(xOr,	yOr)	;

ext	=	new	Point	(xExt,	yExt)	;

}

public	double	longueur()

{	double	xOr	=	or.getX(),	yOr	=	or.getY()	;

double	xExt	=	ext.getX(),	yExt	=	ext.getY()	;

return	 Math.sqrt	 ((xExt-xOr)*(xExt-xOr)	 +	 (yExt-yOr)*(yExt-yOr)

)	;

87

}

public	void	deplaceOrigine	(double	dx,	double	dy)

{	or.setX	(or.getX()	+	dx)	;

or.setY	(or.getY()	+	dy)	;

}

public	void	deplaceExtremite	(double	dx,	double	dy)

{	ext.setX	(ext.getX()	+	dx)	;

ext.setY	(ext.getY()	+	dy)	;

}

public	void	affiche	()

{	System.out.print	("Origine	-	")	;	or.affiche()	;

System.out.print	("Extremite	-	")	;	ext.affiche()	;

}

private	Point	or,	ext	;

}

Voici	un	petit	programme	de	test,	accompagné	de	son	résultat	:

public	class	TstSeg

{	public	static	void	main	(String	args[])

{	Point	a	=	new	Point(1,	3)	;

Point	b	=	new	Point(4,	8)	;

a.affiche()	;	b.affiche()	;

Segment	s1	=	new	Segment	(a,	b)	;

s1.affiche()	;

s1.deplaceOrigine	(2,	5)	;

s1.affiche()	;

Segment	s2	=	new	Segment	(3,	4,	5,	6)	;

s2.affiche()	;

System.out.println	("longueur	=	"	+	s2.longueur())	;

s2.deplaceExtremite	(-2,	-2)	;

s2.affiche()	;

}

}

coordonnees	=	1.0	3.0

coordonnees	=	4.0	8.0

Origine	-	coordonnees	=	1.0	3.0

Extremite	-	coordonnees	=	4.0	8.0

88

Origine	-	coordonnees	=	3.0	8.0

Extremite	-	coordonnees	=	4.0	8.0

Origine	-	coordonnees	=	3.0	4.0

Extremite	-	coordonnees	=	5.0	6.0

longueur	=	2.8284271247461903

Origine	-	coordonnees	=	3.0	4.0

Extremite	-	coordonnees	=	3.0	4.0

89

42 	Synthèse	:	repères	cartésiens	et
polaires

Soit	la	classe	Point	ainsi	définie	:
class	Point

{	public	Point	(double	x,	double	y)	{	this.x	=	x	;	this.y	=	y	;

}

public	 void	 deplace	 (double	 dx,	 double	 dy)	 {	 x	 +=	 dx	 ;	 y	 +=

dy	;	}

public	double	abscisse	()	{	return	x	;	}

public	double	ordonnee	()	{	return	y	;	}

private	double	x	;					//	abscisse

private	double	y	;					//	ordonnee

}

La	compléter	en	la	dotant	des	méthodes	suivantes	:

•	 homothetie	 qui	 multiplie	 les	 coordonnées	 par	 une	 valeur	 (de	 type	 double)
fournie	en	argument,

•	rotation	qui	effectue	une	rotation	dont	l’angle	est	fourni	en	argument,

•	rho	et	theta	qui	fournissent	les	coordonnées	polaires	du	point,

•	afficheCart	qui	affiche	les	coordonnées	cartésiennes	du	point,

•	affichePol	qui	affiche	les	coordonnées	polaires	du	point.

La	méthode	homothetie	ne	présente	aucune	difficulté.	En	revanche,	la	méthode	rotation
nécessite	 une	 transformation	 intermédiaire	 des	 coordonnées	 cartésiennes	 du	 point	 en
coordonnées	 polaires.	 De	 même,	 les	 méthode	 rho	 et	 theta	 doivent	 calculer
respectivement	 le	 rayon	 vecteur	 et	 l’angle	 d’un	 point	 à	 partir	 de	 ses	 coordonnées
cartésiennes.
Le	calcul	d’angle	a	été	réalisé	par	la	méthode	Math.atan2	(qui	reçoit	en	argument	une
abscisse	xx	et	une	ordonnée	yy)	plus	pratique	que	atan	(à	laquelle	il	faudrait	fournir	le
quotient	yy/xx)	 car	 elle	 évite	 d’avoir	 à	 s’assurer	 que	xx	 n’est	 pas	 nulle	 et	 à	 adapter

90

dans	ce	cas	l’angle	obtenu.
Voici	la	définition	de	notre	classe	Point	:

class	Point

{	public	Point	(double	x,	double	y)	{	this.x	=	x	;	this.y	=	y	;	}

public	void	deplace	(double	dx,	double	dy)	{	x	+=	dx	;	y	+=	dy	;	}

public	double	abscisse	()	{	return	x	;	}

public	double	ordonnee	()	{	return	y	;	}

public	void	homothetie	(double	coef)	{	x	*=	coef	;	y	*=	coef	;	}

public	void	rotation	(double	th)

{	double	r	=	Math.sqrt	(x*x	+	y*y)	;

double	t	=	atan2(y,	x)	;

t	+=	th	;

x	=	r	*	Math.cos(t)	;

y	=	r	=	Math.sin(t)	;

}

public	double	rho()	{	return	Math.sqrt	(x*x	+	y*y)	;	}

public	double	theta	()	{	return	atan2(y,	x)	;	}

public	void	afficheCart	()

{	System.out.println	("Coordonnees	cartesiennes	=	"	+	x	+	"	"	+	y

)	;

}

public	void	affichePol	()

{	System.out.println	("Coordonnees	polaires	=	"	+	Math.sqrt	(x*x	+

y*y)

	+	"	"	+	atan2	(y,	x))	;

}

private	double	x	;					//	abscisse

private	double	y	;					//	ordonnee

}

Voici	 à	 titre	 indicatif	 un	 petit	 programme	 d’essai,	 accompagné	 du	 résultat	 de	 son
exécution	:

public	class	PntPol

{	public	static	void	main	(String	args[])

{	Point	a	;

a	=	new	Point(1,	1)	;	a.afficheCart()	;	a.affichePol()	;

a.deplace(-1,	-1)	;	a.afficheCart()	;	a.affichePol()	;

Point	b	=	new	Point(1,	0)	;	b.afficheCart()	;	b.affichePol()	;

91

b.homothetie	(2)	;	b.afficheCart()	;	b.affichePol()	;

b.rotation	(Math.PI)	;	b.afficheCart()	;	b.affichePol()	;

}

}

Coordonnees	cartesiennes	=	1.0	1.0

Coordonnees	polaires	=	1.4142135623730951	0.7853981633974483

Coordonnees	cartesiennes	=	0.0	0.0

Coordonnees	polaires	=	0.0	0.0

Coordonnees	cartesiennes	=	1.0	0.0

Coordonnees	polaires	=	1.0	0.0

Coordonnees	cartesiennes	=	2.0	0.0

Coordonnees	polaires	=	2.0	0.0

Coordonnees	cartesiennes	=	-2.0	1.2246467991473532E-16

Coordonnees	polaires	=	2.0	3.141592653589793

92

43 	Synthèse	:	modification	de
l’implémentation	d’une	classe

Modifier	 la	 classe	Point	 réalisée	dans	 l’exercice	42,	de	manière	que	 les	données
(privées)	 soient	 maintenant	 les	 coordonnées	 polaires	 d’un	 point	 et	 non	 plus	 ses
coordonnées	cartésiennes.	On	fera	en	sorte	que	le	"contrat"	initial	de	la	classe	soit
respecté	 en	 évitant	 de	 modifier	 les	 champs	 publics	 ou	 les	 en-têtes	 de	 méthodes
publiques	(l’utilisation	de	la	classe	devra	continuer	à	se	faire	de	la	même	manière).

Le	constructeur	reçoit	toujours	en	argument	les	coordonnées	cartésiennes	d’un	point.	Il
doit	donc	opérer	les	transformations	appropriées.
Par	 ailleurs,	 la	 méthode	 deplace	 reçoit	 un	 déplacement	 exprimé	 en	 coordonnées
cartésiennes.	Il	faut	donc	tout	d’abord	déterminer	les	coordonnées	cartésiennes	du	point
après	déplacement,	avant	de	repasser	en	coordonnées	polaires.
En	 revanche,	 les	 méthodes	 homothetie	 et	 rotation	 s’expriment	 maintenant	 très
simplement.
Voici	la	définition	de	notre	nouvelle	classe.

class	Point

{	public	Point	(double	x,	double	y)

{	rho	=	Math.sqrt	(x*x	+	y*y)	;

theta	=	Math.atan	(y/x)	;

}

public	void	deplace	(double	dx,	double	dy)

{	double	x	=	rho	*	Math.cos(theta)	+	dx	;

double	y	=	rho	*	Math.sin(theta)	+	dy	;

rho	=	Math.sqrt	(x*x	+	y*y)	;

theta	=	antan2	(y,	x)	;

}

public	double	abscisse	()	{	return	rho	*	Math.cos(theta)	;	}

public	double	ordonnee	()	{	return	rho	*	Math.sin(theta)	;	}

public	void	homothetie	(double	coef)	{	rho	*=	coef	;	}

93

public	void	rotation	(double	th)

{	theta	+=	th	;

}

public	double	rho()	{	return	rho	;	}

public	double	theta	()	{	return	theta	;	}

public	void	afficheCart	()

{	 System.out.println	 ("Coordonnees	 cartesiennes	 =	 "	 +

rho*Math.cos(theta)

	+	"	"	+	rho*Math.sin(theta))	;

}

public	void	affichePol	()

{	 System.out.println	 ("Coordonnees	 polaires	 =	 "	 +	 rho	 +	 "	 "	 +

theta)	;

}

private	double	rho	;					//	rayon	vecteur

private	double	theta	;			//	angle	polaire

}

À	titre	 indicatif,	nous	pouvons	 tester	notre	classe	avec	 le	même	programme	que	dans
l’exercice	précédent.	Il	fournit	les	mêmes	résultats,	aux	incertitudes	de	calcul	près	:

public	class	PntPol2

{	public	static	void	main	(String	args[])

{	Point	a	;

a	=	new	Point(1,	1)	;	a.afficheCart()	;	a.affichePol()	;

a.deplace(-1,	-1)	;	a.afficheCart()	;	a.affichePol()	;

Point	b	=	new	Point(1,	0)	;	b.afficheCart()	;	b.affichePol()	;

b.homothetie	(2)	;	b.afficheCart()	;	b.affichePol()	;

b.rotation	(Math.PI)	;	b.afficheCart()	;	b.affichePol()	;

}

}

Coordonnees	cartesiennes	=	1.0000000000000002	1.0

Coordonnees	polaires	=	1.4142135623730951	0.7853981633974483

Coordonnees	cartesiennes	=	2.220446049250313E-16	0.0

Coordonnees	polaires	=	2.220446049250313E-16	0.0

Coordonnees	cartesiennes	=	1.0	0.0

Coordonnees	polaires	=	1.0	0.0

Coordonnees	cartesiennes	=	2.0	0.0

Coordonnees	polaires	=	2.0	0.0

Coordonnees	cartesiennes	=	-2.0	2.4492127076447545E-16

94

Coordonnees	polaires	=	2.0	3.141592653589793

95

44 	Synthèse	:	vecteurs	à	trois
composantes

Réaliser	 une	 classe	 Vecteur3d	 permettant	 de	 manipuler	 des	 vecteurs	 à	 trois
composantes	(de	type	double)	et	disposant	:

•	d’un	constructeur	à	trois	arguments,

•	d’une	méthode	d’affichage	des	coordonnées	du	vecteur,	sous	la	forme	:
<	composante_1,	composante_2,	composante_3	>

•	d’une	méthode	fournissant	la	norme	d’un	vecteur,

•	d’une	méthode	(statique)	fournissant	la	somme	de	deux	vecteurs,

•	d’une	méthode	(non	statique)	fournissant	le	produit	scalaire	de	deux	vecteurs.
Écrire	un	petit	programme	(main)	utilisant	cette	classe.

class	Vecteur3d

{	public	Vecteur3d	(double	x,	double	y,	double	z)

{	this.x	=	x	;	this.y	=	y	;	this.z	=	z	;

}

public	void	affiche	()

{	System.out.println	("<	"	+	x	+	",	"	+	y	+	",	"	+	z	+	"	>")	;

}

public	double	norme	()

{	return	(Math.sqrt	(x*x	+	y*y	+	z*z))	;

}

public	static	Vecteur3d	somme(Vecteur3d	v,	Vecteur3d	w)

{	Vecteur3d	s	=	new	Vecteur3d	(0,	0,	0)	;

s.x	=	v.x	+	w.x	;	s.y	=	v.y	+	w.y	;	s.z	=	v.z	+	w.z	;

return	s	;

}

public	double	pScal	(Vecteur3d	v)

{	return	(x*v.x	+	y*v.y	+	z*v.z)	;

96

}

private	double	x,	y,	z	;

}

public	class	TstV3d

{	public	static	void	main	(String	args[])

{	Vecteur3d	v1	=	new	Vecteur3d	(3,	2,	5)	;

Vecteur3d	v2	=	new	Vecteur3d	(1,	2,	3)	;

Vecteur3d	v3	;

System.out.print	("v1	=	")	;	v1.affiche()	;

System.out.print	("v2	=	")	;	v2.affiche()	;

v3	=	Vecteur3d.somme	(v1,	v2)	;

System.out.print	("v1	+	v2	=	")	;	v3.affiche()	;

System.out.println	 ("v1.v2	 =	 "	 +	 v1.pScal(v2))	 ;	 	 	 //	 ou

v2.pScal(v1)

}

}

v1	=	<	3.0,	2.0,	5.0	>

v2	=	<	1.0,	2.0,	3.0	>

v1	+	v2	=	<	4.0,	4.0,	8.0	>

v1.v2	=	22.0

1.	Le	corps	de	la	méthode	somme	pourrait	être	écrit	de	façon	plus	concise	:
return	new	Vecteur3d	(v.x+w.x,	v.y+w.y,	v.z+w.z)	;

2.	Les	instructions	suivantes	de	main	:
v3	=	Vecteur3d.somme	(v1,	v2)	;

System.out.print	("v1	+	v2	=	")	;	v3.affiche()	;

pourraient	être	remplacées	par	:
System.out.print	 ("v1	 +	 v2	 =	 ")	 ;	 (Vecteur3d.somme(v1,

v2)).affiche()	;

3.	 Si	 la	 méthode	 pScal	 avait	 été	 prévue	 statique,	 son	 utilisation	 deviendrait
symétrique.	 Par	 exemple,	 au	 lieu	 de	 v1.pScal(v2)	 ou	 v2.pScal(v1),	 on	 écrirait
Vecteur3d.pScal(v1,	v2).

97

45 	Synthèse	:	nombres	sexagésimaux

On	souhaite	disposer	d’une	classe	permettant	d’effectuer	des	conversions	(dans	les
deux	 sens)	 entre	 nombre	 sexagésimaux	 (durée	 exprimée	 en	 heures,	 minutes,
secondes)	et	des	nombres	décimaux	(durée	exprimée	en	heures	décimales).	Pour	ce
faire,	on	réalisera	une	classe	permettant	de	représenter	une	durée.	Elle	comportera	:

•	 un	 constructeur	 recevant	 trois	 arguments	 de	 type	 int	 représentant	 une	 valeurs
sexagésimale	(heures,	minutes,	secondes)	qu’on	supposera	normalisée	(secondes
et	minutes	entre	0	et	59).	Aucune	limitation	ne	portera	sur	les	heures	;

•	un	constructeur	recevant	un	argument	de	type	double	 représentant	une	durée	en
heures	;

•	 une	 méthode	 getDec	 fournissant	 la	 valeur	 en	 heures	 décimales	 associée	 à
l’objet,

•	des	méthodes	getH,	getM	et	getS	 fournissant	 les	 trois	composantes	du	nombre
sexagésimal	associé	à	l’objet.

On	proposera	deux	solutions	:
1.	Avec	un	champ	(privé)	représentant	la	valeur	décimale,
2.	Avec	des	champs	(privés)	représentant	la	valeur	sexagésimale.

En	conservant	la	valeur	décimale
Les	 deux	 constructeurs	 ne	 posent	 pas	 de	 problème	 particulier,	 le	 second	 devant
simplement	calculer	la	durée	en	heures	correspondant	à	un	nombre	donné	d’heures,	de
minutes	et	de	secondes.	Les	méthodes	getH,	getM	et	getS	utilisent	le	même	principe	:
le	nombre	d’heures	n’est	rien	d’autre	que	la	partie	entière	de	la	durée	décimale.	En	le
soustrayant	 de	 cette	 durée	 décimale,	 on	 obtient	 un	 résidu	 d’au	 plus	 une	 heure	 qu’on
convertit	 en	minutes	 en	 le	multipliant	 par	 60.	 Sa	 partie	 entière	 fournit	 le	 nombre	 de
minutes	qui,	soustrait	du	résidu	horaire	fournit	un	résidu	d’au	plus	une	minute…

class	SexDec

{	public	SexDec	(double	dec)

{	this.dec	=	dec	;

98

}

public	SexDec	(int	h,	int	mn,	int	s)

{	dec	=	h	+	mn/60.	+	s/3600.	;

}

public	double	getDec()

{	return	dec	;

}

public	int	getH()

{	int	h	=	(int)dec	;	return	h	;

}

public	int	getM()

{	int	h	=	(int)dec	;

int	mn	=	(int)(60*(dec-h))	;

return	mn	;

}

public	int	getS()

{	int	h	=	(int)dec	;

double	minDec	=	60*(dec-h)	;

int	mn	=	(int)minDec	;

int	sec	=	(int)(60*(minDec-mn))	;

return	sec	;

}

private	double	dec	;

}

Voici	un	petit	programme	de	test,	accompagné	du	résultat	d’exécution	:

public	class	TSexDec1

{	public	static	void	main	(String	args[])

{	SexDec	h1	=	new	SexDec(4.51)	;

System.out.println	("h1	-	decimal	=	"	+	h1.getDec()

	+"	Sexa	=	"	+	h1.getH()	+	"	"	+	h1.getM()	+	"	"	+	h1.getS())	;

	SexDec	h2	=	new	SexDec	(2,	32,	15)	;

	System.out.println	("h2	-	decimal	=	"	+	h2.getDec()

	+"	Sexa	=	"	+	h2.getH()	+	"	"	+	h2.getM()	+	"	"	+	h2.getS())	;

}

h1	-	decimal	=	4.51	Sexa	=	4	30	35

h2	-	decimal	=	2.5375	Sexa	=	2	32	15

99

En	conservant	la	valeur	sexagésimale
Cette	 fois,	 le	 constructeur	 recevant	 une	 valeur	 en	 heures	 décimales	 doit	 opérer	 des
conversions	analogues	à	celles	opérées	précédemment	par	les	méthodes	d’accès	getH,
getM	et	getS.	En	revanche,	les	autres	méthodes	sont	très	simples.

class	SexDec

{	public	SexDec	(double	dec)

{	h	=	(int)dec	;

int	minDec	=	(int)(60*(dec-h))	;

mn	=	(int)minDec	;

s	=	(int)(60*(minDec-mn))	;

}

public	SexDec	(int	h,	int	mn,	int	s)

{	this.h	=	h	;	this.mn	=	mn	;	this.s	=	s	;

}

public	double	getDec()

{	return	(3600*h+60*mn+s)/3600.	;

}

public	int	getH()

{	return	h	;

}

public	int	getM()

{	return	mn	;

}

public	int	getS()

{	return	s	;

}

private	int	h,	mn,	s	;

}

Voici	le	même	programme	de	test	que	précédemment,	accompagné	de	son	exécution	:

public	class	TSexDec2

{	public	static	void	main	(String	args[])

{	SexDec	h1	=	new	SexDec(4.51)	;

System.out.println	("h1	-	decimal	=	"	+	h1.getDec()

	+"	Sexa	=	"	+	h1.getH()	+	"	"	+	h1.getM()	+	"	"	+	h1.getS())	;

	SexDec	h2	=	new	SexDec	(2,	32,	15)	;

	System.out.println	("h2	-	decimal	=	"	+	h2.getDec()

	+"	Sexa	=	"	+	h2.getH()	+	"	"	+	h2.getM()	+	"	"	+	h2.getS())	;

100

}

}

h1	-	decimal	=	4.5	Sexa	=	4	30	0

h2	-	decimal	=	2.5375	Sexa	=	2	32	15

On	notera	que	la	première	démarche	permet	de	conserver	une	durée	décimale	atteignant
la	précision	du	type	double,	quitte	à	ce	que	la	valeur	sexagésimale	correspondante	soit
arrondie	à	la	seconde	la	plus	proche.	La	deuxième	démarche,	en	revanche,	en	imposant
d’emblée	un	nombre	entier	de	secondes,	entraîne	une	erreur	d’arrondi	définitive	(entre
0	et	1	seconde)	dès	la	création	de	l’objet.	Bien	entendu,	on	pourrait	régler	le	problème
en	 conservant	 un	 nombre	 de	 secondes	 décimal	 ou	 encore,	 en	 gérant	 un	 résidu	 de
secondes.

1.	Si	la	méthode	main	avait	été	introduite	directement	dans	A,	l’appel	serait	accepté	!
2.	On	pourrait	se	contenter	d’ajouter	des	méthodes	getX	et	getY,	en	représentant	un	segment,	non	plus	par	deux
points,	mais	par	quatre	valeurs	de	type	double,	ce	qui	serait	moins	commode.

101

Chapitre	4

Les	tableaux

Connaissances	requises

•	Déclaration	d’un	tableau	;	utilisation	éventuelle	d’un	initialiseur

•	Création	d’un	tableau	avec	l’opérateur	new

•	Accès	aux	éléments	d’un	tableau

•	Affectation	de	tableaux

•	Le	champ	length

•	Transmission	de	tableaux	en	argument	d’une	méthode

•	Tableaux	de	tableaux	;	leur	utilisation	pour	"simuler"	les	tableaux	à	plusieurs
indices

102

46 	Déclaration	et	initialisation	de
tableau

Quelles	erreurs	ont	été	commises	dans	le	début	de	programme	suivant	?
public	static	void	main	(String	args[])

{	int	n=10	;

final	int	p=5	;

int	t1[]	=	{1,	3,	5}	;

int	t2[]	=	{n-1,	n,	n+1}	;

int	t3[]	=	{p-1,	p,	p+1}	;

int	t4[]	;

t4	=	{1,	3,	5}	;

float	x1[]	=	{1,	2,	p,	p+1}	;

float	x2[]	=	{1.25,	2.5,	5}	;

double	x3[]	=	{1,	2.5,	5.25,	2*p}	;

int	t1[]	=	{1,	3,	5}	;													//	OK

int	t2[]	=	{n-1,	n,	n+1}	;									//	OK

int	t3[]	=	{p-1,	p,	p+1}	;									//	OK

Notez	 que	 les	 expressions	 utilisées	 dans	 un	 initialiseur	 de	 tableau	 n’ont	 pas	 besoin
d’être	 des	 expressions	 constantes.	 Il	 suffit	 qu’elles	 soient	 calculables	 au	moment	 où
l’on	exécute	la	déclaration	correspondante,	ce	qui	est	le	cas	ici.
int	t4[]	;

t4	=	{1,	3,	5}	;																				//	erreur

La	notation	{…}	n’est	utilisable	que	dans	 la	déclaration	d’un	tableau.	Ici,	 il	 faut	soit
déclarer	:
int	t4	=	{1,	3,	5}	;

soit	affecter	des	valeurs	à	chacun	des	éléments	de	t4,	après	sa	déclaration.
float	x1[]	=	{1,	2,	p,	p+1}	;							//	OK

Il	n’est	pas	obligatoire	que	les	valeurs	figurant	dans	un	initialiseur	de	tableau	soient	du

103

type	des	éléments	du	tableau,	mais	seulement	d’un	type	compatible	par	affectation,	ce
qui	est	le	cas	ici.
float	x2[]	=	{1.25,	2.5,	5}	;								//	erreur

Ici,	en	revanche,	les	constantes	1.25	et	2.5	sont	d’un	type	double,	non	compatible	par
affectation	avec	le	type	float	du	tableau.
double	x3[]	=	{1,	2.5,	5.25,	2*p}	;		//	OK

Ici,	 toutes	 les	 valeurs	 de	 l’initialiseur	 sont	 compatibles	 par	 affectation	 avec	 le	 type
double.

104

47 	Utilisation	usuelle	d’un	tableau
(1)

Écrire	un	programme	qui	 crée	un	 tableau	comportant	 les	valeurs	des	carrés	des	n
premiers	nombres	impairs,	la	valeur	de	n	étant	lue	au	claviera	et	qui	en	affiche	les
valeurs	sous	la	forme	suivante	:

combien	de	valeurs	:	5

1	a	pour	carre	1

3	a	pour	carre	9

5	a	pour	carre	25

7	a	pour	carre	49

9	a	pour	carre	81

a.	On	pourra	utiliser	la	méthode	lireInt	de	la	classe	Clavier	fournie	sur	le	site	Web	d’accompagnement.

En	Java,	la	taille	d’un	tableau	n’est	définie	qu’au	moment	de	sa	création,	ce	qui	nous
permet	ici	de	la	lire	au	clavier	:

public	class	CarrImp

{	public	static	void	main	(String	args[])

{	int	car[]	;

int	n	;

System.out.print	("combien	de	valeurs	:	")	;

n	=	Clavier.lireInt()	;

car	=	new	int[n]	;

for	 (int	 i=0	 ;	 i<n	 ;	 i++)	 	 	 	 	 	 	 	 //	 ici,	 for…	 each	 n’est	 pas

applicable

car[i]	=	(2*i+1)*(2*i+1)	;

for	(int	i=0	;	i<n	;	i++)								//	ici	non	plus	(on	a	besoin	de

i)

System.out.println	((2*i+1)	+	"	a	pour	carre	"	+	car[i])	;

}

}

105

Si	l’énoncé	ne	l’avait	pas	imposé,	il	aurait	été	possible	de	se	passer	d’un	tableau.

106

48 	Utilisation	usuelle	d’un	tableau	(2)

Écrire	un	programme	qui	:

•	lit	dans	un	tableau	5	valeurs	flottantes	fournies	au	claviera,

•	en	calcule	et	en	affiche	la	moyenne,	la	plus	grande	et	la	plus	petite	valeur.

a.	On	pourra	utiliser	la	méthode	lireInt	de	la	classe	Clavier	fournie	sur	le	site	Web	d’accompagnement.

public	class	UtilTab1

{	public	static	void	main	(String	args[])

{	final	int	N	=	5	;

double	val	[]	=	new	double[N]	;

int	i	;

System.out.println	("donnez	"	+	N	+	"	valeurs	flottantes")	;

for	 (i=0	 ;	 i<N	 ;	 i++)	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 for…	 each	 n’est	 pas

applicable	ici

val[i]	=	Clavier.lireDouble()	;

double	valMax	=	val[0],	valMin	=	val[0],	somme=0	;

for	(i=0	;	i<N	;	i++)																						//	ou	(depuis	JDK

5.0)	:

{	if	(val[i]	>	valMax)	valMax	=	val[i]	;	//	for	(double	v	:	val)

if	 (val[i]	 <	 valMin)	 valMin	 =	 val[i]	 ;	 //	 {	 if	 (v>valMax)

valMax=v	;

somme	 +=	 val[i]	 ;	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 if	 (v<valMin)

valMin=v	;

}																																				//	som	+=	v	;

//	}

System.out.println	("valeur	maximale	=	"	+	valMax)	;

System.out.println	("valeur	minimale	=	"	+	valMin)	;

double	vMoyenne	=	somme/N	;		//	on	suppose	que	N	est	strictement

positif

System.out.println	("moyenne	"	+	vMoyenne)	;

}

107

}

Ici	encore,	si	 l’énoncé	ne	 l’avait	pas	 imposé,	 il	aurait	été	possible	de	se	passer	d’un
tableau.

108

49 	Affectation	de	tableaux	(1)

Que	se	passera-t-il	si	l’on	exécute	le	programme	suivant	?
public	class	Affec1

{	public	static	void	main	(String	args[])

{	int	t1[]	=	{1,	2,	3}	;

int	t2[]	=	new	int[4]	;

for	(int	i=0	;	i<4	;	i++)	t2[i]	=	2*i	;

t2	=	t1	;

for	(int	i=0	;	i<4	;	i++)	System.out.println	(t2[i])	;

}

}

Ce	programme	 crée	 tout	 d’abord	 deux	 tableaux	 d’entiers	 de	 dimension	 3	 et	 4.	Leurs
références	figurent	respectivement	dans	les	variables	t1	et	t2.
Après	l’instruction	for,	la	situation	se	présente	comme	ci-après	:

Après	 l’affectation	 t2=t1,	 les	 deux	 variables	 t1	 et	 t2	 contiennent	 dorénavant	 la
référence	au	premier	tableau,	tandis	que	le	second	n’est	plus	référencé	(il	sera	candidat
au	ramasse-miettes).	La	situation	est	la	suivante	:

109

Dans	ces	conditions,	la	dernière	boucle	affichera	tout	d’abord	les	valeurs	1,	2	et	3	puis
provoquera	 une	 erreur	 d’exécution	 pour	 i=3	 (exception
ArrayIndexOutOfBoundsException),	 étant	 donné	 que	 l’on	 cherche	 à	 accéder	 à	 un
élément	n’appartenant	pas	au	tableau	concerné.

110

50 	Affectation	de	tableaux	(2)

Quels	résultats	fournit	le	programme	suivant	?
public	class	Affec

{	public	static	void	main	(String	args[])

{	final	int	N	=	4	;

int	t1[]	=	new	int	[N]	;

int	t2[]	=	new	int	[N]	;

for	(int	i=0	;	i<N	;	i++)	t1[i]	=	i+1	;

for	(int	i=0	;	i<N	;	i++)	t2[i]	=	2*i+1	;

	//	affichage	des	valeurs	de	t1	et	de	t2

System.out.print	("t1	=	")	;

for	(int	i=0	;	i<N	;	i++)	System.out.print	(t1[i]	+	"	")	;

System.out.println	()	;

System.out.print	("t2	=	")	;

for	(int	i=0	;	i<N	;	i++)	System.out.print	(t2[i]	+	"	")	;

System.out.println	()	;

t1	=	t2	;

t1[0]	=	10	;	t2[1]	=	20	;	t1[2]	=	30	;	t2[3]	=	40	;

	//	affichage	des	valeurs	de	t1	et	de	t2

System.out.print	("t1	=	")	;

for	(int	i=0	;	i<N	;	i++)	System.out.print	(t1[i]	+	"	")	;

System.out.println	()	;

System.out.print	("t2	=	")	;

for	(int	i=0	;	i<N	;	i++)	System.out.print	(t2[i]	+	"	")	;

System.out.println	()	;

}

}

Ce	programme	crée	 tout	d’abord	deux	tableaux	en	plaçant	 leurs	références	dans	 t1	et
t2.	Mais	 après	 l’affectation	 t1=t2,	 t1	 et	 t2	 contiennent	 la	 même	 référence	 (celle	 du
premier	tableau,	le	second	devenant	candidat	au	ramasse-miettes).	Dans	ces	conditions,

111

une	 instruction	 telle	 que	 t2[1]=20	 a	 le	 même	 effet	 que	 t1[1]=20.	 En	 définitive,	 le
programme	fournit	les	résultats	suivants	:

t1	=	1	2	3	4

t2	=	1	3	5	7

t1	=	10	20	30	40

t2	=	10	20	30	40

112

51 	Affectation	de	tableaux	(3)

Quels	résultats	fournit	le	programme	suivant	?
public	class	Affec2

{	public	static	void	main	(String	args[])

{	char	t1[]	=	{'b',	'o',	'n',	'j',	'o',	'u',	'r'}	;

char	t2[]	=	{'h',	'e',	'l',	'l',	'o'}	;

char	t3[]	=	{'x',	'x',	'x',	'x'}	;

t3	=	t1	;	t1	=	t2	;	t2	=	t3	;

System.out.print	("t1	=	")	;

for	(int	i=0	;	i<t1.length	;	i++)	System.out.print	(t1[i])	;

System.out.println	()	;

System.out.print	("t2	=	")	;

for	(int	i=0	;	i<t2.length	;	i++)	System.out.print	(t2[i])	;

System.out.println	()	;

System.out.print	("t3	=	")	;

for	(int	i=0	;	i<t3.length	;	i++)	System.out.print	(t3[i])	;

System.out.println	()	;

}

}

Ce	programme	crée	trois	tableaux	de	caractères,	les	initialise	et	place	leurs	références
respectives	dans	t1,	t2	et	t3.	Après	exécution	des	trois	affectations,	le	troisième	tableau
n’est	 plus	 référencé,	 tandis	 que	 le	 premier	 l’est	 deux	 fois	 (par	 t2	 et	 par	 t3).	 En
définitive,	nous	obtenons	les	résultats	suivants	:

t1	=	hello

t2	=	bonjour

t3	=	bonjour

113

52 	Tableau	en	argument	(1)

Récrire	le	programme	de	l’exercice	numéro	50,	en	prévoyant	une	méthode	statique
destinée	à	afficher	les	valeurs	d’un	tableau	reçu	en	argument.

La	méthode	d’affichage	doit	recevoir	en	argument	la	référence	à	un	tableau	d’entiers.	Il
n’est	pas	nécessaire	de	prévoir	un	argument	supplémentaire	pour	le	nombre	d’éléments
du	tableau	;	celui-ci	pourra	être	obtenu	à	l’aide	du	champ	length.
Ici,	nous	plaçons	la	méthode	d’affichage	nommée	affiche	dans	 la	même	classe	que	 la
méthode	main,	ce	qui	nous	conduit	au	programme	suivant	:

public	class	TabArg1

{	public	static	void	main	(String	args[])

{	final	int	N	=	4	;

int	t1[]	=	new	int	[N]	;

int	t2[]	=	new	int	[N]	;

for	(int	i=0	;	i<N	;	i++)	t1[i]	=	i+1	;

for	(int	i=0	;	i<N	;	i++)	t2[i]	=	2*i+1	;

	//	affichage	des	valeurs	de	t1	et	de	t2

System.out.print	("t1	=	")	;	affiche	(t1)	;

System.out.print	("t2	=	")	;	affiche	(t2)	;

t1	=	t2	;

t1[0]	=	10	;	t2[1]	=	20	;	t1[2]	=	30	;	t2[3]	=	40	;

	//	affichage	des	valeurs	de	t1	et	de	t2

System.out.print	("t1	=	")	;	affiche	(t1)	;

System.out.print	("t2	=	")	;	affiche	(t2)	;

}

static	void	affiche	(int	[]	t)								//	ou	(depuis	JDK	5.0)

{	for	(int	i=0	;	i<t.length	;	i++)				//	for	(int	v	:	t)

System.out.print	(t[i]	+	"	")	;			//	System.out.print	(v	+	"	")	;

System.out.println	()	;

114

}

}

Ici,	 comme	 la	méthode	affiche	 figure	dans	 la	classe	TabArg1,	 il	 n’est	 pas	 nécessaire
(bien	que	cela	ne	soit	pas	interdit)	d’en	préfixer	les	appels	par	TabArg1	en	écrivant	par
exemple	 TabArg1.affiche	 (t1).	 En	 revanche,	 cela	 deviendrait	 indispensable	 si	 la
méthode	affiche	figurait	dans	une	autre	classe	que	celle	où	elle	est	utilisée.

115

53 	Tableau	en	argument	(2)

Écrire	une	classe	utilitaire	UtilTab	disposant	des	méthodes	statiques	suivantes	:

•	somme	qui	fournit	la	somme	des	valeurs	d’un	tableau	de	réels	(double)	de	taille
quelconque,

•	 incre	 qui	 incrémente	 d’une	 valeur	 donnée	 toutes	 les	 valeurs	 d’un	 tableau	 de
réels	(double).

Écrire	 un	petit	 programme	d’essai.	 Pour	 faciliter	 les	 choses,	 on	 pourra	 également
doter	la	classe	UtilTab	d’une	méthode	d’affichage	des	valeurs	d’un	tableau	de	réels.

Pour	réaliser	la	méthode	incre,	on	exploite	le	fait	que	lorsqu’un	tableau	est	transmis	en
argument	d’une	méthode,	celle-ci	reçoit	une	copie	de	la	référence	correspondante,	par
le	biais	de	laquelle	elle	peut	modifier	les	valeurs	du	tableau.	On	retrouve	là	le	même
mécanisme	 que	 pour	 les	 objets.	 L’écriture	 des	 autres	 méthodes	 ne	 pose	 pas	 de
problème	particulier.

class	UtilTab

{	static	double	somme	(double[]	t)

{	double	s=0.	;																																	//	ou	(depuis	JDK

5.0)	:

for	(int	i=0	;	i<t.length	;	i++)	s+=	t[i]	;			//	for	(int	v	:	t)

s+=	v	;

return	s	;

}

static	void	incre	(double[]	t,	double	a)

{	for	(int	i=0	;	i<t.length	;	i++)	t[i]	+=	a	;		//	for…	each	n’est

pas

}																																															//	applicable

static	void	affiche	(double[]	t)

{	for	(int	i=0	;	i<t.length	;	i++)	System.out.print	(t[i]	+	"	")	;

System.out.println	()	;

}

116

}

public	class	TstUtil1

{	public	static	void	main	(String	args[])

{	double	t1[]	=	{1.25,	2.5,	3.5,	5.}	;

System.out.print	("t1	initial	=	")	;	UtilTab.affiche(t1)	;

System.out.println	("	somme	=	"	+UtilTab.somme(t1))	;

UtilTab.incre	(t1,	1.25)	;

System.out.print	("t1	incremente	=	")	;	UtilTab.affiche(t1)	;

System.out.println	("	somme	=	"	+UtilTab.somme(t1))	;

}

}

t1	initial	=	1.25	2.5	3.5	5.0

somme	=	12.25

t1	incremente	=	2.5	3.75	4.75	6.25

somme	=	17.25

117

54 	Tableau	en	valeur	de	retour

Écrire	une	classe	utilitaire	UtilTab	disposant	des	méthodes	statiques	suivantes	:

•	 genere	 qui	 fournit	 en	 retour	 un	 tableau	 des	 n	 premiers	 nombres	 impairs,	 la
valeur	de	n	étant	fournie	en	argument

•	 somme	 qui	 reçoit	 en	 argument	 deux	 vecteurs	 d’entiers	 de	 même	 taille	 et	 qui
fournit	en	retour	un	tableau	représentant	la	somme	de	ces	deux	vecteurs.

Écrire	 un	petit	 programme	d’essai.	 Pour	 faciliter	 les	 choses,	 on	 pourra	 également
doter	la	classe	UtilTab	d’une	méthode	d’affichage	des	valeurs	d’un	tableau	de	réels.

Les	 méthodes	 de	 la	 classe	 UtilTab	 recevront	 tout	 naturellement	 en	 argument	 la
référence	à	un	ou	deux	tableaux.	En	ce	qui	concerne	leur	résultat	(tableau),	celui-ci	sera
créé	et	rempli	au	sein	de	la	méthode	qui	se	contentera	d’en	renvoyer	la	référence.

class	UtilTab

{	public	static	int[]	genere	(int	n)

{	int	[]	res	=	new	int[n]	;

for	(int	i=0,	j=1	;	i<n	;	i++,	j+=2)	res[i]	=	j	;

return	res	;

}

public	static	int[]	somme	(int	t1[],	int	t2[])

{	int	n	=	t1.length	;

if	(n	!=	t2.length)	return	null	;

int	res[]	=	new	int[n]	;

for	(int	i=0	;	i<n	;	i++)	res	[i]	=	t1[i]	+	t2[i]	;

return	res	;

}

public	static	void	affiche	(int	[]	t)

{	for	(int	i=0	;	i<t.length	;	i++)

System.out.print	(t[i]	+	"	")	;

System.out.println	()	;

118

}

}

public	class	TabValR

{	public	static	void	main	(String	args[])

{	int	ta[]	=	{1,	5,	9}	;

System.out.print	("ta	=	")	;	UtilTab.affiche(ta)	;

int	tb[]	=	UtilTab.genere	(3)	;

System.out.print	("tb	=	")	;	UtilTab.affiche(tb)	;

int	tc[]	=	UtilTab.somme	(ta,	tb)	;

System.out.print	("tc	=	")	;	UtilTab.affiche(tc)	;

}

}

ta	=	1	5	9

tb	=	1	3	5

tc	=	2	8	14

Il	ne	faut	pas	perdre	de	vue	qu’en	Java,	les	emplacements	alloués	à	des	objets	ou	à	des
tableaux	ne	sont	 libérés	que	 lorsqu’ils	ne	sont	plus	 référencés.	C’est	ce	qui	permet	à
une	méthode	de	 renvoyer	 la	 référence	à	un	emplacement	qu’elle	a	elle-même	créé.	 Il
n’en	va	pas	de	même	dans	un	 langage	comme	C++	qui	gère	de	 tels	emplacements	de
manière	"automatique",	en	les	libérant	dès	la	sortie	de	la	méthode.

119

55 	Tableaux	de	tableaux

Quels	résultats	fournit	le	programme	suivant	?
public	class	Tab2Ind1

{	public	static	void	main	(String	args[])

{	int	[]	[]	t	=	new	int	[3][]	;

for	(int	i=0	;	i<3	;	i++)

	{	t[i]	=	new	int	[i+1]	;

	for	(int	j=0	;	j<t[i].length	;	j++)

	t[i][j]	=	i+j	;

	}

	for	(int	i=0	;	i<3	;	i++)

	{	System.out.print	("tableau	numero	"	+	i	+	"	=	")	;

	for	(int	j=0	;	j<t[i].length	;	j++)

	System.out.print	(t[i][j]	+	"	")	;

	System.out.println	()	;

	}

}

}

L’instruction	:
int	[]	[]	t	=	new	int	[3][]	;

crée	un	tableau	de	trois	références	à	des	tableaux	d’entiers	et	place	sa	référence	dans	t.
Pour	l’instant,	les	références	aux	tableaux	d’entiers	sont	initialisées	à	la	valeur	null.
Pour	chaque	valeur	de	i	:

•	l’instruction	:
t[i]	=	new	int	[i+1]	;

crée	un	tableau	d’entiers	de	taille	i+1	et	en	place	la	référence	dans	t[i].

•	l’instruction	:
t[i][j]	=	i+j	;

place	des	valeurs	dans	chacun	des	i+1	éléments	de	ce	tableau.

120

En	définitive,	la	situation	peut	être	schématisée	comme	ci-après	:

D’où	les	résultats	:

tableau	numero	0	=	0

tableau	numero	1	=	1	2

tableau	numero	2	=	2	3	4

121

56 	Synthèse	:	nombres	aléatoires	et
histogramme

Réaliser	 une	 classe	 nommée	 Aleat	 permettant	 de	 disposer	 de	 suites	 de	 nombres
entiers	aléatoires.	On	y	prévoira	les	méthodes	suivantes

•	 constructeur	 Aleat	 (int	 n,	 int	 lim),	 n	 représentant	 le	 nombre	 de	 valeurs
souhaitées,	appartenant	à	l’intervalle	[0,	lim],

•	getValeur	(int	n)	qui	fournit	la	valeur	de	rang	n	de	la	suite,

•	getValeurs	()	qui	fournit	un	tableau	contenant	toutes	les	valeurs	de	la	suite,

•	histo()	qui	fournit	un	histogramme	des	valeurs	de	la	suite,	c’est-à-dire	un	tableau
de	lim+1	valeurs	dans	lequel	un	élément	de	rang	i	représente	le	nombre	de	fois	où
la	valeur	i	est	présente	dans	la	suite.

Écrire	un	petit	programme	d’utilisation.

Ici,	les	valeurs	aléatoires	seront	déterminées	par	le	constructeur	et	conservées	dans	un
tableau	privé	nommé	val.
La	méthode	Math.random	 fournit	un	nombre	aléatoire	 réel	dans	 l’intervalle	 [0,	1[.	 Il
faut	donc	le	multiplier	par	lim+1	et	en	prendre	la	partie	entière	pour	obtenir	un	entier
appartenant	à	l’intervalle	[0,	lim].
Dans	getValeurs,	 nous	 évitons	de	 renvoyer	directement	 la	 référence	 au	 tableau	privé
val	 car	 sinon	 la	 méthode	 appelante	 pourrait	 en	 modifier	 la	 valeur.	 En	 fait,	 nous
renvoyons	 la	 référence	 à	 une	 copie	 du	 tableau	 (copie	 qui,	 quant	 à	 elle,	 reste
modifiable	!).	Enfin,	dans	histo,	nous	sommes	amenés	à	créer	un	nouveau	tableau	pour
y	calculer	l’histogramme.

class	Aleat

{	public	Aleat	(int	n,	int	l)

{	nVal	=	n	;	limite	=	l	;

val	=	new	int[n]	;

for	(int	i=0	;	i<nVal	;	i++)

122

val[i]	=	(int)((l+1)*Math.random())	;

}

public	int	getValeur	(int	num)

{	return	val[num]	;	}

public	int[]	getValeurs	()

{	int[]	res	=	new	int[nVal]	;

for	(int	i=0	;	i<nVal	;	i++)

res[i]	=	val[i]	;

return	res	;

}

public	int[]	histo	()

{	int[]	res	=	new	int[limite+1]	;		//	pour	aller	de	0	à	limite

for	(int	i=0	;	i<nVal	;	i++)	res[val[i]]++	;

return	res	;

}

private	int[]	val	;

private	int	nVal,	limite	;

}

public	class	TstAleat

{	public	static	void	main	(String	args[])

{	final	int	NS1=8,	MAX1=5,	NS2=10000,	MAX2=9	;

Aleat	suite1	=	new	Aleat	(NS1,	10)	;

System.out.print	("suite1,	valeur	par	valeur	=	")	;

for	(int	i=0	;	i<NS1	;	i++)

System.out.print	(suite1.getValeur(i)	+	"	")	;

System.out.println	()	;

System.out.print	("suite1,	globale	=	")	;

int[]	valeurs	=	suite1.getValeurs()	;

for	(int	i=0	;	i<NS1	;	i++)

System.out.print	(valeurs[i]	+	"	")	;

System.out.println()	;

int	[]	hist	=	suite1.histo()	;

System.out.print	("histogramme	de	suite1	=	")	;

for	(int	i=0	;	i<=MAX1	;	i++)	System.out.print	(hist[i]	+	"	")	;

System.out.println()	;

Aleat	suite2	=	new	Aleat	(NS2,	MAX2)	;

hist	=	suite2.histo()	;

System.out.print	("histogramme	de	suite2	=	")	;

for	(int	i=0	;	i<=MAX2	;	i++)	System.out.print	(hist[i]	+	"	")	;

123

}

}

suite1,	valeur	par	valeur	=	3	7	9	4	10	7	10	1

suite1,	globale	=	3	7	9	4	10	7	10	1

histogramme	de	suite1	=	0	1	0	1	1	0

histogramme	 de	 suite2	 =	 1057	 1008	 1010	 1012	 1050	 940	 976	 963	 963

1021

124

57 	Synthèse	:	calcul	vectoriel

Réaliser	une	classe	Vecteur	permettant	de	manipuler	des	vecteurs	ayant	un	nombre
quelconque	de	composantes	de	type	double.	On	y	prévoira	:

•	 un	 constructeur	Vecteur	 (int	 n),	 n	 représentant	 le	 nombre	 de	 composantes	 qui
seront	alors	initialisées	à	zéro,

•	 un	 constructeur	 Vecteur	 (int	 n,	 double	 x),	 n	 représentant	 le	 nombre	 de
composantes	qui	seront	alors	toutes	initialisées	à	la	valeur	x,

•	 un	 constructeur	Vecteur	 (double	 []	 v)	 qui	 créera	 un	 vecteur	 par	 recopie	 du
tableau	v,

•	 une	méthode	 (non	 statique)	prod_scal	 fournissant	 le	 produit	 scalaire	 de	 deux
vecteurs	(ici,	si	les	deux	vecteurs	ne	sont	pas	de	même	taille,	on	se	contentera	de
fournir	la	valeur	zéro),

•	 une	 méthode	 (statique)	 somme	 fournissant	 la	 somme	 de	 deux	 vecteurs	 ;	 s’ils
n’ont	pas	la	même	taille,	on	renverra	une	référence	"nulle",

•	une	méthode	affiche	affichant	les	composantes	d’un	vecteur.
Écrire	un	petit	programme	d’utilisation.

Nous	exploitons	la	possibilité	d’appeler	un	constructeur	au	sein	d’un	autre	;	rappelons
que	cet	appel	doit	obligatoirement	être	la	première	instruction	du	constructeur.
La	méthode	somme	doit	créer	un	nouvel	objet	de	type	Vecteur	pour	y	placer	la	somme
des	deux	vecteurs	reçus	en	argument.

class	Vecteur

{	public	Vecteur(int	n)

{	this	(n,	0.)	;

}

public	Vecteur	(int	n,	double	x)

{	vect	=	new	double[n]	;

for	(int	i=0	;	i<n	;	i++)	vect[i]	=	x	;

}

125

public	Vecteur	(double	[]	v)

{	int	n	=	v.length	;

vect	=	new	double	[n]	;

for	(int	i=0	;	i<n	;	i++)	vect[i]	=	v[i]	;

}

public	double	prodScal	(Vecteur	w)

{	if	(vect.length	!=	w.vect.length)	return	0.	;

double	ps	=	0.	;

for	(int	i=0	;	i<vect.length	;	i++)

ps	+=	vect[i]*w.vect[i]	;

return	ps	;

}

public	static	Vecteur	somme	(Vecteur	v1,	Vecteur	v2)

{	if	(v1.vect.length	!=	v2.vect.length)	return	null	;

int	n	=	v1.vect.length	;

Vecteur	res	=	new	Vecteur	(n)	;

for	(int	i=0	;	i<n	;	i++)

	res.vect[i]	=	v1.vect[i]	+	v2.vect[i]	;

return	res	;

}

public	void	affiche	()

{	for	(int	i=0	;	i<vect.length	;	i++)

System.out.print	(vect[i]	+	"	")	;

System.out.println()	;

}

private	double[]	vect	;

}

public	class	TstVect

{	public	static	void	main	(String	args[])

{	Vecteur	a	=	new	Vecteur	(5)	;	a.affiche();

Vecteur	b	=	new	Vecteur	(5,	0.5)	;	b.affiche()	;

System.out.println	("a.b	=	"	+	a.prodScal(b))	;

double	[]	valeurs	=	{1.25,	2.5,	5.25,	3,	1}	;

Vecteur	c	=	new	Vecteur	(valeurs)	;	c.affiche()	;

System.out.println	("b.c	=	"	+	b.prodScal(c))	;

a	=	Vecteur.somme	(b,	c)	;

System.out.print	("b+c	=	")	;	a.affiche()	;

}

}

126

0.0	0.0	0.0	0.0	0.0

0.5	0.5	0.5	0.5	0.5

a.b	=	0.0

1.25	2.5	5.25	3.0	1.0

b.c	=	6.5

b+c	=	1.75	3.0	5.75	3.5	1.5

Dans	un	programme	réel,	on	serait	amené	à	prendre	plus	de	précautions,	notamment	:

–	s’assurer	dans	le	premier	constructeur	que	la	valeur	de	n	est	positive	ou	nulle	(une
valeur	 nulle	 conduisant	 simplement	 à	 un	 tableau	 de	 taille	 nulle,	 ce	 qui	 n’est	 pas
incorrect)	 ou	 traiter	 correctement	 l’exception	 NegativeArraySizeIndexException
correspondante	;

–	 vérifier	 dans	 les	 méthodes	 recevant	 un	 tableau	 en	 argument	 que	 les	 références
correspondantes	 ne	 sont	 pas	 nulles	 ou	 traiter	 l’exception	 NullPointerException
risquant	d’apparaître.

On	pourrait	également	déclencher	des	exceptions	créées	spécifiquement	pour	la	classe
Vecteur.

127

58 	Synthèse	:	utilitaires	pour	des
tableaux	de	tableaux

Réaliser	une	classe	utilitaire	concernant	des	tableaux	de	tableaux	de	valeurs	de	type
double	et	contenant	les	méthodes	statiques	suivantes	:
•	affiche	(double	 t	 []	[])	 :	affiche	 les	valeurs	de	 t,	 à	 raison	d’une	 ligne	d’écran
pour	une	ligne	du	tableau,

•	boolean	regulier	(double	t	[]	[])	:	teste	si	le	tableau	t	est	régulier,	c’est-à-dire
si	toutes	ses	lignes	ont	la	même	taille,

•	 double	 []	 sommeLignes	 (double	 t	 []	 [])	 :	 fournit	 un	 tableau	 de	 double
correspondant	aux	sommes	des	différentes	lignes	de	t,

•	double	[]	[]	somme	(double	[]	[]	 t1,	double	[]	[]	 t2)	 :	 s’assure	que	 les
tableaux	t1	et	t2	sont	réguliers	et	de	mêmes	dimensions	et	fournit	dans	ce	cas	leur
somme	en	résultat	;	dans	le	cas	contraire,	elle	fournit	une	référence	nulle.

Écrire	un	petit	programme	de	test.

Rappelons	 que	 la	 notion	 de	 tableau	 à	 plusieurs	 indices	 n’existe	 pas	 en	 Java	 qui	 ne
dispose	en	fait	que	de	la	composition	des	tableaux	:	les	éléments	d’un	tableau	peuvent
être	 à	 leur	 tour	 des	 tableaux.	Dans	 ce	 cas,	 il	 n’est	 pas	 nécessaire	 que	 les	 "tableaux
éléments"	soient	de	même	taille.	S’ils	 le	sont,	on	dit	que	le	 tableau	est	"régulier"	 ;	 il
permet	alors	de	simuler	le	tableau	à	plusieurs	indices	de	la	plupart	des	autres	langages.

class	Util2D

{	public	static	boolean	regulier	(double[][]	t)

{	int	n	=	t[0].length	;			//	longueur	premiere	ligne

for	(int	i=1	;	i<t.length	;	i++)		//	parcourt	les	lignes	a	partir

//	de	la	seconde

	if	(t[i].length	!=	n)	return	false	;

return	true	;

}

128

public	static	double[]	sommeLignes	(double[][]	t)

{	int	nLignes	=	t.length	;

double[]	res	=	new	double[nLignes]	;

for	(int	i=0	;	i<nLignes	;	i++)

{	res[i]	=	0.	;

for	(int	j=0	;	j<t[i].length	;	j++)	res[i]	+=	t[i][j]	;

}

return	res	;

}

public	static	double[][]	somme	(double[][]	t1,	double[][]	t2)

{	if	(!regulier(t1)	||	!regulier(t2))	return	null	;

if	(t1.length	!=	t2.length)	return	null	;

if	(t1[0].length	!=	t2[0].length)	return	null	;

int	nLig	=	t1.length	;	int	nCol=t1[0].length	;

double[][]	som	=	new	double[nLig][nCol]	;

for	(int	i=0	;	i<nLig	;	i++)

for	(int	j=0	;	j<nCol	;	j++)

som[i][j]	=	t1[i][j]	+	t2[i][j]	;

return	som	;

}

public	static	void	affiche	(double[][]	t)

{	for	(int	i=0	;	i<t.length	;	i++)

{	for	(int	j=0	;	j<t[i].length	;	j++)

System.out.print	(t[i][j]	+	"	")	;

System.out.println	()	;

}

}

}

public	class	TUtil2D

{	public	static	void	main	(String	args[])

{	double[][]	a	=	{	{1,	2,	3},	{4,	5,	6}}	;

double[][]	b	=	{	{6,	5,	4},	{3,	2,	1}}	;

double[][]	c	=	Util2D.somme	(a,	b)	;

System.out.println	("a	=	")	;	Util2D.affiche(a)	;

System.out.println	("b	=	")	;	Util2D.affiche(b)	;

System.out.println	("c	=	")	;	Util2D.affiche(c)	;

double[][]	d	=	{	{	1,	2},	{1,	2,	3},	{1},	{1,	2,	3,	4,	5}}	;

129

double	[]	sLig	=	Util2D.sommeLignes(d)	;

System.out.println	("d	=	")	;	Util2D.affiche(d)	;

System.out.print	("somme	lignes	de	d	=	")	;

for	(int	i=0	;	i<sLig.length	;	i++)	System.out.print	(sLig[i]	+	"

")	;

}

}

a	=

1.0	2.0	3.0

4.0	5.0	6.0

b	=

6.0	5.0	4.0

3.0	2.0	1.0

c	=

7.0	7.0	7.0

7.0	7.0	7.0

d	=

1.0	2.0

1.0	2.0	3.0

1.0

1.0	2.0	3.0	4.0	5.0

somme	lignes	de	d	=	3.0	6.0	1.0	15.0

Comme	dans	l’exercice	57,	nous	n’avons	pas	prévu	de	protections	contre	les	références
nulles	 fournies	 en	 argument.	 Celles-ci	 pourraient	 s’avérer	 nécessaires	 dans	 un
programme	réel.

130

59 	Synthèse	:	crible	d’Eratosthène

Il	existe	une	méthode	de	détermination	de	tous	les	nombres	premiers	compris	entre	1
et	n,	connue	sous	le	nom	de	"crible	d’Eratosthène".	Elle	consiste	à	dresser	une	liste
de	 tous	 les	 nombres	 entiers	 considérés	 et	 à	 y	 "rayer"	 tous	 les	 multiples	 d’autres
entiers.	Plus	précisément,	on	procéde	ainsi	:

•	on	raye	le	1	(qui,	par	définition,	n’est	pas	un	nombre	premier),

•	on	recherche,	à	partir	du	dernier	nombre	premier	considéré	(la	première	fois,	on
convient	qu’il	s’agit	du	1),	le	premier	nombre	non	rayé	(on	peut	montrer	qu’il	est
premier).	 Il	devient,	à	 son	 tour,	 le	dernier	nombre	premier	considéré	et	on	 raye
tous	ses	multiples,

•	on	 répète	 le	 traitement	précédent	 jusqu’à	ce	que	 le	nombre	premier	 considéré
soit	 supérieur	 à	 la	 racine	 carrée	 de	 n.	 On	 peut	 alors	 démontrer	 que	 tous	 les
nombres	non	premiers	ont	été	rayés	de	la	liste.

Écrire	 un	 programme	 exploitant	 cette	 méthode	 pour	 rechercher	 tous	 les	 nombres
premiers	compris	entre	1	et	une	valeur	fournie	en	donnée.

Nous	représentons	le	"crible"	par	un	tableau	de	n	booléens	nommé	raye.	Pour	faciliter
les	choses,	nous	convenons	que	raye[i]	correspond	au	nombre	i,	ce	qui	nous	impose	de
donner	au	tableau	raye	la	dimension	nMax+1.	La	variable	nombre	sert	à	représenter	le
dernier	nombre	premier	considéré	(dont	on	raye	tous	les	multiples).
Pour	 faciliter	 la	 lecture	des	 résultats,	 nous	 les	 affichons	 à	 raison	de	nParLigne	 (10)
valeurs	par	ligne.

public	class	Erato

{	public	static	void	main	(String[]	args)

{	final	int	nParLigne	=	10	;

boolean	raye	[]	;																								//	tableau	servant	de

"crible"

int	nombre	;																													//	dernier	nombre	entier

raye

int	nMax	;																															//	le	plus	grand	entier	a

examiner

131

int	i	;

/*	preparation	du	crible	*/

System.out.print("Donnez	le	plus	grand	nombre	entier	a	examiner	:

")	;

nMax	=	Clavier.lireInt()	;

raye	=	new	boolean	[nMax+1]	;

for	(i=1	;	i<=nMax	;	i++)	raye[i]	=	false	;

/*	on	raye	le	nombre	1	*/

raye[1]	=	false	;	nombre	=	1	;

while	(nombre*nombre	<=	nMax)

{	/*	recherche,	a	partir	de	nombre,	du	premier	nombre	non	raye	*/

while	((raye[++nombre])	&&	(nombre<=nMax))	{}

/*	on	raye	tous	ses	multiples	*/

for	(i=2*nombre	;	i<=nMax	;	i+=nombre)	raye[i]	=	true	;

}

/*	affichage	des	resultats	*/

System.out.println	("entre	1	et	"	+	nMax	+	"	les	nombres	premiers

sont	:	")	;

int	nAff	=	0	;		//	nombre	de	valeurs	affichees

for	(i=1	;	i<=nMax	;	i++)

{	if	(!raye[i])	{	System.out.print	(i	+	"	")	;

nAff++	;

if	(nAff	==	nParLigne)	{	nAff	=	0	;

	System.out.println	()	;

	}

}

}

}

}

Voici	un	exemple	d’exécution	de	ce	programme	:

Donnez	le	plus	grand	nombre	entier	a	examiner	:	1000

entre	1	et	1000	les	nombres	premiers	sont	:

1	2	3	5	7	11	13	17	19	23

29	31	37	41	43	47	53	59	61	67

71	73	79	83	89	97	101	103	107	109

113	127	131	137	139	149	151	157	163	167

173	179	181	191	193	197	199	211	223	227

229	233	239	241	251	257	263	269	271	277

132

281	283	293	307	311	313	317	331	337	347

349	353	359	367	373	379	383	389	397	401

409	419	421	431	433	439	443	449	457	461

463	467	479	487	491	499	503	509	521	523

541	547	557	563	569	571	577	587	593	599

601	607	613	617	619	631	641	643	647	653

659	661	673	677	683	691	701	709	719	727

733	739	743	751	757	761	769	773	787	797

809	811	821	823	827	829	839	853	857	859

863	877	881	883	887	907	911	919	929	937

941	947	953	967	971	977	983	991	997

Dans	 la	 boucle	 de	 recherche	 du	 premier	 nombre	 non	 rayé,	 nous	 avons	 conservé	 le
"garde-fou"	nombre	<	nMax.	On	pourrait	 toutefois	démontrer	que,	dès	que	nMax	 est
supérieur	ou	égal	à	2,	on	est	toujours	assuré	de	trouver	au	moins	un	nombre	non	rayé
avant	 la	 fin	du	 tableau	 (compte	 tenu	de	 ce	que	 l’on	 commence	 l’exploration	 avec	un
nombre	inférieur	ou	égal	à	la	racine	carrée	de	nMax).

133

Chapitre	5

L’héritage	et	le	polymorphisme

Connaissances	requises

•	Définition	d’une	classe	dérivée	;	le	mot	clé	extends

•	Droits	d’accès	d’une	classe	dérivée	aux	membres	de	sa	classe	de	base

•	Construction	et	initialisation	des	objets	dérivés	;	règles	d’appel	des
constructeurs	;	appel	du	constructeur	de	la	classe	de	base	depuis	le	constructeur
de	la	classe	dérivée	:	le	mot	clé	super

•	Dérivations	successives

•	Redéfinition	de	méthodes	ou	de	champs	;	la	surdéfinition	à	travers	l’héritage	;
utilisation	simultanée	des	possibilités	de	surdéfinition	et	de	redéfinition	;
contraintes	relatives	à	la	surdéfinition

•	Le	polymorphisme	:	ses	fondements	sur	la	redéfinition	;	polymorphisme	et
surdéfinition	;	conversion	d’arguments	effectifs	de	type	classe	;	conversions
explicites	de	références	;	la	référence	super	(en	dehors	d’un	constructeur)

•	La	super	classe	Object	;	références	de	type	Object	;	la	méthode	equals

•	Les	membres	protégés	(protected)

•	Classes	et	méthodes	finales

•	Classes	abstraites

•	Interfaces	;	définition,	implémentation	;	variables	de	type	interface	;
constantes	d’une	interface	;	dérivation	d’une	interface

•	Classes	enveloppes	:	Boolean,	Byte,	Character,	Short,	Integer,	Long,	Float

134

et	Double

•	Classes	anonymes

135

60 	Définition	d’une	classe	dérivée,
droits	d’accès	(1)

On	dispose	de	la	classe	suivante	:
class	Point

{	public	void	initialise	(int	x,	int	y)	{	this.x	=	x	;	this.y	=

y	;	}

public	void	deplace	(int	dx,	int	dy)	{	x	+=	dx	;	y	+=	dy	;	}

public	int	getX()	{	return	x	;	}

public	int	getY()	{	return	y	;	}

private	int	x,	y	;

}

Réaliser	 une	 classe	 PointA,	 dérivée	 de	 Point	 disposant	 d’une	 méthode	 affiche
affichant	(en	fenêtre	console)	les	coordonnées	d’un	point.	Ecrire	un	petit	programme
utilisant	les	deux	classes	Point	et	PointA.
Que	se	passerait-il	si	la	classe	Point	ne	disposait	pas	des	méthodes	getX	et	getY	?

Il	 suffit	 de	 définir	 une	 classe	 dérivée	 en	 utilisant	 le	 mot	 clé	 extends.	 La	 méthode
affiche,	comme	toute	méthode	d’une	classe	dérivée	a	accès	à	tous	les	membres	publics
de	la	classe	de	base,	donc	en	particulier	à	getX	et	getY.

class	PointA	extends	Point

{	void	affiche()

{	System.out.println	("Coordonnees	:	"	+	getX()	+	"	"	+	getY())	;

}

}

On	peut	alors	créer	des	objets	de	type	PointA	et	leur	appliquer	aussi	bien	les	méthodes
publiques	de	PointA	que	celles	de	Point	comme	dans	ce	programme	accompagné	d’un
exemple	d’exécution	:
public	class	TsPointA

{	public	static	void	main	(String	args[])

{	Point	p	=	new	Point	()	;

136

p.initialise	(2,	5)	;

System.out.println	("Coordonnees	:	"	+	p.getX()	+	"	"	+	p.getY()

)	;

PointA	pa	=	new	PointA	()	;

pa.initialise	 (1,	 8)	 ;	 	 //	 on	 utilise	 la	 methode	 initialise	 de

Point

pa.affiche()	;										//	et	la	methode	affiche	de	PointA

}

}

Coordonnees	:	2	5

Coordonnees	:	2	5

Notez	 bien	 qu’un	 appel	 tel	 que	 p.affiche()	 conduirait	 à	 une	 erreur	 de	 compilation
puisque	la	classe	de	p	(Point)	ne	possède	pas	de	méthode	affiche.
Si	 la	classe	Point	n’avait	pas	disposé	des	méthodes	d’accès	getX	et	getY,	 il	n’aurait
pas	 été	 possible	 d’accéder	 à	 ses	 champs	 privés	 x	 et	 y	 depuis	 la	 classe	 PointA.	 Il
n’aurait	donc	pas	été	possible	de	la	doter	de	la	méthode	affiche.	L’héritage	ne	permet
pas	de	contourner	le	principe	d’encapsulation.

Comme	nos	classes	ne	disposent	pas	de	constructeur,	il	est	possible	de	créer	des	objets
sans	 les	 initialiser.	Dans	 ce	 cas,	 leurs	 champs	 auront	 simplement	 une	 valeur	 "nulle",
c’est-à-dire	ici	la	valeur	entière	0.

137

61 	Définition	d’une	classe	dérivée,
droits	d’accès	(2)

On	dispose	de	la	classe	suivante	:
class	Point

{	 public	 void	 setPoint	 (int	 x,	 int	 y)	 {	 this.x	 =	 x	 ;	 this.y	 =

y	;	}

public	void	deplace	(int	dx,	int	dy)	{	x	+=	dx	;	y	+=	dy	;	}

public	void	affCoord	()

{	System.out.println	("Coordonnees	:	"	+	x	+	"	"	+	y)	;

}

private	int	x,	y	;

}

Réaliser	une	classe	PointNom,	dérivée	de	Point	permettant	de	manipuler	des	points
définis	 par	 deux	 coordonnées	 (int)	 et	 un	 nom	 (caractère).	 On	 y	 prévoira	 les
méthodes	suivantes	:

•	 setPointNom	 pour	 définir	 les	 coordonnées	 et	 le	 nom	 d’un	 objet	 de	 type
PointNom,

•	setNom	pour	définir	seulement	le	nom	d’un	tel	objet,
•	 affCoordNom	 pour	 afficher	 les	 coordonnées	 et	 le	 nom	 d’un	 objet	 de	 type
PointNom.
Écrire	un	petit	programme	utilisant	la	classe	PointNom.

Nous	définissons	une	classe	dérivée	en	utilisant	le	mot	clé	extends	:
class	PointNom	extends	Point

Dans	cette	classe	PointNom,	nous	introduisons	un	champ	(de	préférence	privé)	destiné
à	contenir	le	nom	du	point	:

private	char	nom	;

La	méthode	setNom	est	triviale.	Compte	tenu	de	l’encapsulation	des	données	de	Point,
nos	 deux	 autres	 méthodes	 doivent	 absolument	 recourir	 aux	 méthodes	 publiques	 de

138

Point.
En	définitive,	voici	la	définition	de	notre	classe	PoitnNom	:

class	PointNom	extends	Point

{	public	void	setPointNom	(int	x,	int	y,	char	nom)

{	setPoint	(x,	y)	;

this.nom	=	nom	;

}

public	void	setNom(char	nom)

{	this.nom	=	nom	;

}

public	void	affCoordNom()

{	System.out.print	("Point	de	nom	"	+	nom	+	"	")	;

affCoord()	;

}

private	char	nom	;

}

Voici	un	programme	d’utilisation	de	PointNom	:

public	class	TsPointN

{	public	static	void	main	(String	args[])

{	Point	p	=	new	Point	()	;

p.setPoint	(2,	5)	;

p.affCoord()	;

PointNom	pn1	=	new	PointNom()	;

pn1.setPointNom	(1,	7,	'A')	;						//	methode	de	PointNom

pn1.affCoordNom()	;																//	methode	de	PointNom

pn1.deplace	(9,	3)	;															//	methode	de	Point

pn1.affCoordNom()	;																//	methode	de	PointNom

PointNom	pn2	=	new	PointNom()	;

pn2.setPoint	(4,	3)	;															//	methode	de	Point

pn2.setNom	('B')	;																		//	methode	de	PointNom

pn2.affCoordNom()	;																	//	methode	de	PointNom

pn2.affCoord()	;																				//	methode	de	Point

}

}

Coordonnees	:	2	5

Point	de	nom	A	Coordonnees	:	1	7

139

Point	de	nom	A	Coordonnees	:	10	10

Point	de	nom	B	Coordonnees	:	4	3

Coordonnees	:	4	3

1.	Ici	encore,	comme	nos	classes	ne	disposent	pas	de	constructeur,	il	est	possible	de
créer	des	objets	sans	les	initialiser.	Dans	ce	cas,	leurs	champs	auront	simplement	une
valeur	"nulle",	c’est-à-dire	ici	la	valeur	entière	0	pour	les	coordonées	et	le	caractère
de	code	nul	pour	le	nom.
2.	Comme	la	classe	Point	ne	dispose	pas	de	méthodes	d’accès	aux	coordonnées,	on
voit	que	 la	méthode	affCoordNom	 n’a	pas	d’autre	possibilité	 que	de	 recourir	 à	 la
méthode	affCoord	 de	Point,	 ce	 qui	 impose	 des	 contraintes	 sur	 la	 présentation	 des
résultats.	En	particulier,	il	serait	impossible	d’afficher	sur	une	même	ligne	le	nom	du
point	avant	les	coordonnées.

140

62 	Héritage	et	appels	de	constructeurs

On	dispose	de	la	classe	suivante	(disposant	cette	fois	d’un	constructeur)	:
class	Point

{	public	Point	(int	x,	int	y)	{	this.x	=	x	;	this.y	=	y	;	}

public	void	affCoord()

{	System.out.println	("Coordonnees	:	"	+	x	+	"	"	+	y)	;

}

private	int	x,	y	;

}

Réaliser	une	classe	PointNom,	dérivée	de	Point	permettant	de	manipuler	des	points
définis	 par	 leurs	 coordonnées	 (entières)	 et	 un	 nom	 (caractère).	On	 y	 prévoira	 les
méthodes	suivantes	:

•	 constructeur	 pour	 définir	 les	 coordonnées	 et	 le	 nom	 d’un	 objet	 de	 type
PointNom,

•	 affCoordNom	 pour	 afficher	 les	 coordonnées	 et	 le	 nom	 d’un	 objet	 de	 type
PointNom.
Écrire	un	petit	programme	utilisant	la	classe	PointNom.

Cet	 exercice	 est	 voisin	 de	 l’exercice	 61	mais,	 cette	 fois,	 les	 deux	 classes	 disposent
d’un	 constructeur.	 Celui	 de	 la	 classe	 dérivée	 PointNom	 doit	 prendre	 en	 charge	 la
construction	de	l’intégralité	de	l’objet	correspondant,	quitte	à	s’appuyer	pour	cela	sur
le	 constructeur	 de	 la	 classe	 de	 base	 (ce	 qui	 est	 indispensable	 ici	 puisque	 la	 classe
Point	ne	dispose	pas	de	méthodes	d’accès).	Rappelons	que	l’appel	du	constructeur	de
la	classe	de	base	(fait	à	l’aide	du	mot	clé	super)	doit	constituer	la	première	instruction
du	constructeur	de	la	classe	dérivée.
En	définitive,	voici	ce	que	pourrait	être	la	définition	de	notre	classe	PointNom	:

class	PointNom	extends	Point

{	public	PointNom	(int	x,	int	y,	char	nom)

{	super	(x,	y)	;

this.nom	=	nom	;

141

}

public	void	affCoordNom()

{	System.out.print	("Point	de	nom	"	+	nom	+	"	")	;

affCoord()	;

}

private	char	nom	;

}

Voici	un	petit	programme	d’utilisation	de	PointNom	:

public	class	TsPointC

{	public	static	void	main	(String	args[])

{	PointNom	pn1	=	new	PointNom(1,	7,	'A')	;

pn1.affCoordNom()	;																//	methode	de	PointNom

PointNom	pn2	=	new	PointNom(4,	3,	'B')	;

pn2.affCoordNom()	;																	//	methode	de	PointNom

pn2.affCoord()	;																				//	methode	de	Point

}

}

Point	de	nom	A	Coordonnees	:	1	7

Point	de	nom	B	Coordonnees	:	4	3

Coordonnees	:	4	3

142

63 	Redéfinition

On	dispose	de	la	classe	suivante	:
class	Point

{	public	Point	(int	x,	int	y)	{	this.x	=	x	;	this.y	=	y	;	}

public	void	affiche()

{	System.out.println	("Coordonnees	:	"	+	x	+	"	"	+	y)	;

}

private	int	x,	y	;

}

Réaliser	une	classe	PointNom,	dérivée	de	Point	permettant	de	manipuler	des	points
définis	 par	 leurs	 coordonnées	 et	 un	 nom	 (caractère).	On	 y	 prévoira	 les	méthodes
suivantes	:

•	 constructeur	 pour	 définir	 les	 coordonnées	 et	 le	 nom	 d’un	 objet	 de	 type
PointNom,

•	affiche	pour	afficher	les	coordonnées	et	le	nom	d’un	objet	de	type	PointNom.

Cet	 exercice	 est	 voisin	 de	 l’exercice	 62.	 L’écriture	 du	 constructeur	 reste	 la	 même.
Mais,	cette	fois,	on	doit	redéfinir	la	méthode	affiche	dans	la	classe	dérivée.	L’affichage
du	nom	n’y	pose	aucun	problème	:
System.out.print	("Point	de	nom	"	+	nom	+	"	")	;

En	revanche,	il	nous	faut	faire	appel	à	la	méthode	affiche	de	la	classe	de	base.	Pour	ce
faire,	nous	employons	le	mot	clé	super	:
super.affiche()	;

En	définitive,	voici	 la	définition	de	notre	classe,	 accompagnée	d’un	petit	programme
d’utilisation	:

class	PointNom	extends	Point

{	public	PointNom	(int	x,	int	y,	char	Nom)

{	super	(x,	y)	;

this.Nom	=	Nom	;

}

143

public	void	affiche()

{	System.out.print	("Point	de	nom	"	+	Nom	+	"	")	;

super.affiche()	;

}

private	char	Nom	;

}

public	class	TsPointR

{	public	static	void	main	(String	args[])

{	Point	p	=	new	Point	(3,	7)	;

p.affiche()	;													//	methode	de	Point

PointNom	pn	=	new	PointNom(1,	7,	'A')	;

pn.affiche()	;												//	methode	de	PointNom

}

}

Coordonnees	:	3	7

Point	de	nom	A	Coordonnees	:	1	7

Ici,	la	redéfinition	de	la	méthode	affiche	dans	PointNom	utilise	la	méthode	affiche	de
la	classe	ascendante	Point,	ce	qui	impose	de	recourir	au	mot	clé	super.	Bien	entendu,	il
n’en	ira	pas	toujours	ainsi	:	rien	n’empêche	de	redéfinir	entièrement	une	méthode	sans
chercher	à	exploiter	celle	de	la	classe	ascendante.

144

64 	Construction	et	initialisation
d’une	classe	dérivée

Quels	résultats	fournit	ce	programme	?
class	A

{

public	A	(int	nn)

{	System.out.println	("Entree	Constr	A	-	n="	+	n	+	"	p="	+	p)	;

n	=	nn	;

System.out.println	("Sortie	Constr	A	-	n="	+	n	+	"	p="	+	p)	;

}

public	 int	 n	 ;	 	 	 //	 ici,	 exceptionnellement,	 pas

d'encapsulation

public	int	p=10	;

}

class	B	extends	A

{	public	B	(int	n,	int	pp)

{	super	(n)	;

System.out.println	("Entree	Constr	B	-	n="	+	n	+	"	p="	+	p	+	"

q="	+	q)	;

p	=	pp	;

q	=	2*n	;

System.out.println	("Sortie	Constr	B	-	n="	+	n	+	"	p="	+	p	+	"

q="	+	q)	;

}

public	int	q=25	;

}

public	class	TstInit

{	public	static	void	main	(String	args[])

{	A	a	=	new	A(5)	;

B	b	=	new	B(5,	3)	;

}

}

145

Il	 faut	 tenir	 compte	 de	 l’ordre	 dans	 lequel	 ont	 lieu	 les	 initialisations	 des	 champs
(explicite	et	implicite)	et	les	appels	des	constructeurs,	à	savoir	:

•	initialisation	par	défaut	des	champs	de	l’objet	dérivé	(y	compris	ceux	hérités),

•	initialisation	explicite	des	champs	hérités,

•	exécution	du	constructeur	de	la	classe	de	base,

•	initialisation	explicite	des	champs	spécifiques	à	l’objet	dérivé,

•	exécution	du	constructeur	de	la	classe	dérivée.
Cela	nous	conduit	aux	résultats	suivants	:

Entree	Constr	A	-	n=0	p=10

Sortie	Constr	A	-	n=5	p=10

Entree	Constr	A	-	n=0	p=10

Sortie	Constr	A	-	n=5	p=10

Entree	Constr	B	-	n=5	p=10	q=25

Sortie	Constr	B	-	n=5	p=3	q=10

146

65 	Dérivations	successives	et
redéfinition

Quels	résultats	fournit	le	programme	suivant	?
class	A

{	public	void	affiche()

{	System.out.println	("Je	suis	un	A")	;

}

}

class	B	extends	A	{	}

class	C	extends	A

{	public	void	affiche()

{	System.out.println	("Je	suis	un	C")	;

}

}

class	D	extends	C

{	public	void	affiche()

{	System.out.println	("Je	suis	un	D")	;

}

}

class	E	extends	B	{}

class	F	extends	C	{}

public	class	DiagHeri

{	public	static	void	main	(String	arg[])

{	A	a	=	new	A()	;	a.affiche()	;

B	b	=	new	B()	;	b.affiche()	;

C	c	=	new	C()	;	c.affiche()	;

D	d	=	new	D()	;	d.affiche()	;

E	e	=	new	E()	;	e.affiche()	;

F	f	=	new	F()	;	f.affiche()	;

}

}

147

Lors	d’un	appel	tel	que	o.affiche()	(o	étant	un	objet	de	l’une	des	classes	concernées),
on	recherche	tout	d’abord	la	méthode	affiche	dans	la	classe	de	o.	Si	aucune	méthode
n’est	 trouvée,	 on	 poursuit	 la	 recherche	 dans	 la	 classe	 ascendante	 et	 ainsi	 de	 suite
jusqu’à	ce	que	 la	méthode	 soit	 trouvée1	 (si	 l’on	 arrive	 à	 la	 classe	Object,	 racine	 de
toutes	 les	 classes,	 sans	 que	 la	 méthode	 ne	 soit	 trouvée,	 on	 obtient	 une	 erreur	 de
compilation).
Ici,	le	programme	fournit	ces	résultats	:

Je	suis	un	A

Je	suis	un	A

Je	suis	un	C

Je	suis	un	D

Je	suis	un	A

Je	suis	un	C

148

66 	Dérivations	successives	et
surdéfinition

Quels	résultats	fournit	le	programme	suivant	?
class	A

{	public	void	f(double	x)	{	System.out.print	("A.f(double="	+	x

+")	")	;	}

}

class	B	extends	A	{}

class	C	extends	A

{	public	void	f(long	q)	{	System.out.print	("C.f(long="	+	q	+	")

")	;	}

}

class	D	extends	C

{	 public	 void	 f(int	 n)	 {	 System.out.print	 ("D.f(int="	 +	 n	 +	 ")

")	;	}

}

class	E	extends	B	{}

class	F	extends	C

{	public	void	f(float	x)	{	System.out.print	("F.f(float="	+	x	+

")	")	;

}

public	 void	 f(int	 n)	 {	 System.out.print	 ("F.f(int="	 +	 n	 +	 ")

")	;	}

}

public	class	Surdf

{	public	static	void	main	(String	arg[])

{	byte	bb=1	;	short	p=2	;	int	n=3	;	long	q=4	;

float	x=5.f	;	double	y=6.	;

A	a	=	new	A()	;	a.f(bb)	;	a.f(x)	;	System.out.println()	;

B	b	=	new	B()	;	b.f(bb)	;	a.f(x)	;	System.out.println()	;

C	 c	 =	 new	 C()	 ;	 c.f(bb)	 ;	 c.f(q)	 ;	 c.f(x)	 ;

System.out.println()	;

D	 d	 =	 new	 D()	 ;	 d.f(bb)	 ;	 c.f(q)	 ;	 c.f(y)	 ;

System.out.println()	;

E	 e	 =	 new	 E()	 ;	 e.f(bb)	 ;	 e.f(q)	 ;	 e.f(y)	 ;

149

System.out.println()	;

F	f	=	new	F()	;	f.f(bb)	;	f.f(n)	;	f.f(x)	;	f.f(y)	;	f.f(p)	;

}

}

Ici,	on	 fait	 intervenir	à	 la	 fois	 la	 redéfinition	d’une	méthode	et	 sa	 surdéfinition.	Pour
résoudre	un	appel	de	la	forme	o.f(v)	(o	étant	un	objet	et	v	une	expression),	on	recherche
toutes	 les	 méthodes	 acceptables,	 à	 la	 fois	 dans	 la	 classe	 de	 o	 et	 dans	 toutes	 ses
ascendantes.	On	utilise	ensuite	 les	règles	habituelles	de	recherche	de	 la	meilleure	(et
unique)	méthode.	En	définitive,	 le	programme	fournit	 les	résultats	suivants	(notez	que
certaines	conversions	peuvent	apparaître)	:

A.f(double=1.0)	A.f(double=5.0)

A.f(double=1.0)	A.f(double=5.0)

C.f(long=1)	C.f(long=4)	A.f(double=5.0)

D.f(int=1)	C.f(long=4)	A.f(double=6.0)

A.f(double=1.0)	A.f(double=4.0)	A.f(double=6.0)

F.f(int=1)	 F.f(int=3)	 F.f(float=5.0)	 A.f(double=6.0)	 C.f(long=4)

F.f(int=2)

150

67 	Les	bases	du	polymorphisme

Quels	résultats	fournit	le	programme	suivant	?
class	A

{	public	void	affiche()	{	System.out.print	("Je	suis	un	A	")	;	}

}

class	B	extends	A	{}

class	C	extends	A

{	public	void	affiche()	{	System.out.print	("Je	suis	un	C	")	;	}

}

class	D	extends	C

{	public	void	affiche()	{	System.out.print	("Je	suis	un	D	")	;	}

}

class	E	extends	B	{}

class	F	extends	C	{}

public	class	Poly

{	public	static	void	main	(String	arg[])

{	A	a	=	new	A()	;	a.affiche()	;	System.out.println()	;

B	b	=	new	B()	;	b.affiche()	;

a	=	b	;									a.affiche()	;	System.out.println()	;

C	c	=	new	C()	;	c.affiche()	;

a	=	c	;									a.affiche()	;	System.out.println()	;

D	d	=	new	D()	;	d.affiche()	;

a	=	d	;									a.affiche()	;

c	=	d	;									c.affiche()	;	System.out.println()	;

E	e	=	new	E()	;	e.affiche()	;

a	=	e	;									a.affiche()	;

b	=	e	;									b.affiche()	;	System.out.println()	;

F	f	=	new	F()	;	f.affiche()	;

a	=	f	;									a.affiche()	;

c	=	f	;									c.affiche()	;

}

151

}

Certaines	possibilités	d’affectation	entre	objets	des	types	classes	A,	B,	C,	D,	E	et	F
ne	figurent	pas	dans	le	programme	ci-dessus.	Pourquoi	?

En	Java,	 l’une	des	propriétés	du	"polymorphisme"	est	que	 l’appel	d’une	méthode	est
déterminé	 au	 moment	 de	 l’exécution,	 suivant	 la	 nature	 de	 l’objet	 effectivement
référencé	(et	non	seulement	suivant	le	type	de	la	référence).	C’est	pourquoi	ici	tous	les
appels	de	affiche	concernant	un	même	objet	fournissent	le	même	message,	quel	que	soit
le	type	de	référence	utilisé	:

Je	suis	un	A

Je	suis	un	A	Je	suis	un	A

Je	suis	un	C	Je	suis	un	C

Je	suis	un	D	Je	suis	un	D	Je	suis	un	D

Je	suis	un	A	Je	suis	un	A	Je	suis	un	A

Je	suis	un	C	Je	suis	un	C	Je	suis	un	C

Néanmoins,	une	référence	de	type	T	ne	peut	se	voir	affecter	qu’une	référence	d’un	type
T	ou	dérivé	de	T.	C’est	ce	qui	se	passait	effectivement	dans	notre	programme.	Mais	(en
supposant	les	mêmes	déclarations),	ces	affectations	seraient	incorrectes	:

b=a	;	e=a	;	e=b	;	c=a	;	d=c	;	d=a	;	f=c	;	f=a	;

b=c	;	b=d	;	b=f	;	e=c	;	e=d	;	e=f	;	c=b	;	c=e	;	d=b	;	d=e	;	f=b	;

f=e	;

152

68 	Polymorphisme	et	surdéfinition

Quels	résultats	fournit	le	programme	suivant	?
class	A

{	public	void	f(double	x)	{	System.out.print	("A.f(double="	+	x

+")	")	;	}

}

class	B	extends	A	{}

class	C	extends	A

{	public	void	f(long	q)	{	System.out.print	("C.f(long="	+	q	+	")

")	;	}

}

class	D	extends	C

{	 public	 void	 f(int	 n)	 {	 System.out.print	 ("D.f(int="	 +	 n	 +	 ")

")	;	}

}

class	F	extends	C

{	public	void	f(float	x)	{	System.out.print	("F.f(float="	+	x	+

")	")	;	}

public	 void	 f(int	 n)	 {	 System.out.print	 ("F.f(int="	 +	 n	 +	 ")

")	;	}

}

public	class	PolySur

{	public	static	void	main	(String	arg[])

{	byte	bb=1	;	short	p=2	;	int	n=3	;	long	q=4	;

float	x=5.f	;	double	y=6.	;

System.out.println	("**	A	**	")	;

A	a	=	new	A()	;	a.f(bb)	;	a.f(x)	;	System.out.println()	;

System.out.println	("**	B	**	")	;

B	b	=	new	B()	;	b.f(bb)	;	b.f(x)	;	System.out.println()	;

a	=	b	;	a.f(bb)	;	a.f(x)	;	System.out.println()	;

System.out.println	("**	C	**	")	;

C	 c	 =	 new	 C()	 ;	 c.f(bb)	 ;	 c.f(q)	 ;	 c.f(x)	 ;

System.out.println()	;

153

a	=	c	;	a.f(bb)	;	a.f(q)	;	a.f(x)	;	System.out.println()	;

System.out.println	("**	D	**	")	;

D	 d	 =	 new	 D()	 ;	 d.f(bb)	 ;	 c.f(q)	 ;	 c.f(y)	 ;

System.out.println()	;

a	=	c	;	a.f(bb)	;	a.f(q)	;	a.f(y)	;	System.out.println()	;

System.out.println	("**	F	**	")	;

F	f	=	new	F()	;	f.f(bb)	;	f.f(n)	;	f.f(x)	;	f.f(y)	;

																														System.out.println()	;

a	 =	 f	 ;	 a.f(bb)	 ;	 a.f(n)	 ;	 a.f(x)	 ;	 a.f(y)	 ;

System.out.println()	;

c	=	f	;	c.f(bb)	;	c.f(n)	;	c.f(x)	;	c.f(y)	;

}

}

Ici,	on	combine	:

•	les	possibilités	qu’offre	le	polymorphisme	de	choisir	une	méthode	suivant	la	nature
de	l’objet	effectivement	référencé,

•	les	possibilités	de	surdéfinition	qui	permettent	de	déterminer	une	méthode	suivant
le	type	de	ses	arguments.

Mais	 il	 faut	 bien	 voir	 que	 le	 choix	 d’une	 méthode	 surdéfinie	 est	 réalisé	 par	 le
compilateur,	 alors	 que	 la	 ligature	 dynamique	 induite	 par	 le	 polymorphisme	 ne
s’effectue	qu’à	l’exécution.
Plus	 précisément,	 lors	 d’un	 appel	 du	 type	 o.f(…),	 la	 signature	 de	 la	 méthode	 f	 est
définie	à	la	compilation	au	vu	de	son	appel,	en	utilisant	le	type	de	la	variable	o	(et	non
le	 type	 de	 l’objet	 référencé,	 non	 encore	 connu)	 et	 en	 appliquant	 éventuellement	 les
règles	de	choix	d’une	méthode	surdéfinie.	Ce	choix	ne	peut	alors	se	faire	que	dans	la
classe	 de	o	 ou	 ses	 ascendantes	 (et	 en	 aucun	 cas	 dans	 ses	 descendantes	 éventuelles,
comme	le	permettra	la	ligature	dynamique).
Au	 moment	 de	 l’exécution,	 on	 cherchera	 parmi	 la	 classe	 de	 l’objet	 effectivement
référencé	par	o	(qui	peut	donc	éventuellement	être	une	classe	descendante	de	celle	de
o),	 une	méthode	 ayant	 la	 signature	 précédemment	 déterminée.	Mais,	 on	 ne	 reviendra
plus	sur	le	choix	de	la	meilleure	méthode.
Par	exemple,	dans	le	troisième	groupe	d’instructions	(**	C	**),	les	appels	de	la	forme
c.f(…)	 sont	 traités	 en	 considérant	 les	 méthodes	 f	 de	C	 et	 de	 son	 ascendante	 A.	 En
revanche,	 malgré	 l’affectation	 a=c,	 ceux	 de	 la	 forme	 a.f(…)	 sont	 traités	 en	 ne

154

considérant	que	les	méthodes	f	de	A.	Ainsi,	l’appel	c.f(bb)	utilise	C.f(long)	tandis	que
l’appel	a.f(bb)	utilise	A.f(double).
Finalement,	le	programme	fournit	les	résultats	suivants	:

**	A	**

A.f(double=1.0)	A.f(double=5.0)

**	B	**

A.f(double=1.0)	A.f(double=5.0)

A.f(double=1.0)	A.f(double=5.0)

**	C	**

C.f(long=1)	C.f(long=4)	A.f(double=5.0)

A.f(double=1.0)	A.f(double=4.0)	A.f(double=5.0)

**	D	**

D.f(int=1)	C.f(long=4)	A.f(double=6.0)

A.f(double=1.0)	A.f(double=4.0)	A.f(double=6.0)

**	F	**

F.f(int=1)	F.f(int=3)	F.f(float=5.0)	A.f(double=6.0)

A.f(double=1.0)	A.f(double=3.0)	A.f(double=5.0)	A.f(double=6.0)

C.f(long=1)	C.f(long=3)	A.f(double=5.0)	A.f(double=6.0)

155

69 	Les	limites	du	polymorphisme

Soit	les	classes	Point	et	PointNom	ainsi	définies	:
class	Point

{	public	Point	(int	x,	int	y)	{	this.x	=	x	;	this.y	=	y	;	}

public	static	boolean	identiques	(Point	a,	Point	b)

{	return	((a.x==b.x)	&&	(a.y==b.y))	;	}

public	boolean	identique	(Point	a)

{	return	((a.x==x)	&&	(a.y==y))	;	}

private	int	x,	y	;

}

class	PointNom	extends	Point

{	PointNom	(int	x,	int	y,	char	nom)

{	super	(x,	y)	;	this.nom	=	nom	;	}

private	char	nom	;

}

1.	Quels	résultats	fournit	ce	programme	?	Expliciter	les	conversions	mises	en	jeu
et	les	règles	utilisées	pour	traiter	les	différents	appels	de	méthodes	:
public	class	LimPoly

{	public	static	void	main	(String	args[])

{	Point	p	=	new	Point	(2,	4)	;

PointNom	pn1	=	new	PointNom	(2,	4,	'A')	;

PointNom	pn2	=	new	PointNom	(2,	4,	'B')	;

System.out.println	(pn1.identique(pn2))	;

System.out.println	(p.identique(pn1))	;

System.out.println	(pn1.identique(p))	;

System.out.println	(Point.identiques(pn1,	pn2))	;

}

}

2.	Doter	la	classe	PointNom	d’une	méthode	statique	identiques	et	d’une	méthode
identique	 fournisant	 toutes	 les	 deux	 la	 valeur	 true	 lorsque	 les	 deux	 points
concernés	ont	à	la	fois	mêmes	coordonnées	et	même	nom.	Quels	résultats	fournira
alors	le	programme	précédent	?	Quelles	seront	les	conversions	mises	en	jeu	et	les
règles	utilisées	?

156

Question	1
pn1.identique(pn2)
Lors	 de	 la	 compilation,	 on	 recherche	 une	méthode	 identique	 dans	 la	 classe	 de	 pn1
(PointNom)	ou	ses	ascendantes.	On	en	trouve	une	seule	dans	Point	avec	un	argument	de
type	Point,	 ce	 qui	 fige	 sa	 signature	 sous	 la	 forme	 identique(Point),	 en	 imposant	 une
conversion	 implicite	 de	 pn2	 en	 Point.	 Lors	 de	 l’exécution,	 on	 cherche	 une	 telle
méthode	d’abord	dans	PointNom	(ligature	dynamique)	puis,	comme	on	n’en	trouve	pas,
dans	Point.	En	définitive,	on	exécute	bien	la	méthode	identique	de	Point.

p.identique(pn1)
Lors	de	la	compilation,	on	trouve	la	méthode	identique	dans	la	classe	de	p	(Point),	ce
qui	 fige	 sa	 signature	 sous	 la	 forme	 identique(Point),	 en	 imposant	 une	 conversion
implicite	de	pn1	en	Point.	Lors	de	 l’exécution,	on	cherche	une	 telle	méthode	dans	 la
classe	de	p	(Point).	En	définitive,	on	exécute	bien	la	méthode	identique	de	Point.

pn1.identique(p)
Lors	 de	 la	 compilation,	 on	 recherche	 une	méthode	 identique	 dans	 la	 classe	 de	 pn1
(PointNom)	ou	ses	ascendantes.	On	en	trouve	une	seule	dans	Point	avec	un	argument	de
type	Point,	ce	qui	 fige	sa	signature	sous	 la	 forme	 identique(Point)	 (cette	 fois	 aucune
conversion	d’argument	n’est	prévue).	Lors	de	l’exécution,	on	cherche	une	telle	méthode
d’abord	dans	PointNom	(ligature	dynamique)	puis	dans	Point.	En	définitive,	on	exécute
bien	la	méthode	identique	de	Point.

Point.identiques(pn1,	pn2)
Ici,	 l’appel	est	 résolu	dès	 la	compilation	 (les	méthodes	statiques	ne	peuvent	pas	être
concernées	par	le	polymorphisme).	Il	fait	intervenir	la	conversion	de	pn1	et	de	pn2	en
Point.
Comme	on	peut	s’y	attendre,	le	programme	fournit	ces	résultats	:

true

true

true

true

Question	2
Comme	 les	 champs	 x	 et	 y	 de	Point	 ne	 sont	 pas	 publics	 et	 comme	 l’on	 ne	 dispose
d’aucune	 méthode	 d’accès,	 il	 est	 nécessaire,	 au	 sein	 des	 méthodes	 voulues	 dans
PointNom,	de	recourir	aux	méthodes	correspondantes	de	Point	:

157

public	static	boolean	identiques	(PointNom	a,	PointNom	b)

{

	return	(Point.identiques	(a,	b)	&&	(a.nom==b.nom))	;

}

public	boolean	identique	(PointNom	a)

{

	return	(super.identique(a)	&&	(nom==a.nom))	;

}

On	notera	la	notation	super.identique	qui	force	l’utilisation	de	la	méthode	identique	de
la	classe	ascendante	Point.

pn1.identique(pn2)
Lors	 de	 la	 compilation,	 on	 recherche	 une	méthode	 identique	 dans	 la	 classe	 de	 pn1
(PointNom)	ou	ses	ascendantes.	Cette	fois,	les	méthodes	de	PointNom	et	de	Point	sont
acceptables.	Mais,	 la	 première	 est	meilleure,	 ce	 qui	 fige	 la	 signature	 de	 la	méthode
appelée	sous	la	forme	 identique(PointNom).	Lors	de	l’exécution,	on	cherche	d’abord
une	 telle	méthode	 dans	PointNom	 et	 on	 la	 trouve.	 En	 définitive,	 on	 exécute	 bien	 la
méthode	identique	de	PointNom,	contrairement	à	ce	que	se	passait	dans	la	question	1.

p.identique(pn1)
Lors	de	la	compilation,	cette	fois,	on	recherche	une	méthode	identique	dans	la	classe
de	p	(Point),	ce	qui	fige	sa	signature	sous	la	forme	identique(Point),	en	imposant	une
conversion	 implicite	 de	 pn1	 en	 Point.	 Lors	 de	 l’exécution,	 on	 cherche	 une	 telle
méthode	 dans	 la	 classe	 de	 p	 (Point).	 En	 définitive,	 on	 exécute	 (comme	 dans	 la
première	 question)	 la	 méthode	 identique	 de	 Point.	 Notez	 que	 l’application	 de	 la
méthode	de	PointNom	n’aurait,	de	toutes	façons,	aucune	signification,	l’objet	p	n’ayant
pas	de	champ	nom	!

pn1.identique(p)
Lors	 de	 la	 compilation,	 on	 recherche,	 comme	 avec	 le	 premier	 appel,	 une	 méthode
identique	dans	la	classe	de	pn1	(PointNom)	ou	ses	ascendantes.	Mais,	cette	fois,	seule
celle	de	Point	est	acceptable	car	on	ne	peut	pas	convertir	implicitement	le	type	Point
en	PointNom	 (seul	 l’inverse	 est	 possible).	 On	 fige	 donc	 la	 signature	 de	 la	méthode
appelée	sous	la	forme	identique(Point)	(cette	fois	aucune	conversion	d’argument	n’est
prévue).	 Lors	 de	 l’exécution,	 on	 cherche	 une	 telle	méthode	 d’abord	 dans	PointNom
(ligature	 dynamique)	 puis	 dans	 Point.	 En	 définitive,	 on	 exécute	 bien	 la	 méthode
identique	de	Point.

158

Point.identiques(pn1,	pn2)
Ici,	 comme	 précédemment,	 l’appel	 est	 résolu	 dès	 la	 compilation	 et	 il	 fait	 toujours
intervenir	 la	 conversion	de	pn1	 et	 de	pn2	 en	Point.	 Comme	 on	 peut	 s’y	 attendre,	 le
programme	fournit	ces	résultats	:

false

true

true

true

Notez	 que	 l’on	 pourrait	 forcer	 l’emploi	 de	 identiques	 de	 PointNom	 en	 écrivant
PointNom.identiques(pn1,	pn2)	 ;	dans	ce	cas,	 il	n’y	aurait	plus	de	conversion	et	 l’on
obtiendrait	le	résultat	false.

159

70 	Classe	abstraite

On	 souhaite	 disposer	 d’une	 hiérarchie	 de	 classes	 permettant	 de	 manipuler	 des
figures	géométriques.	On	veut	qu’il	soit	toujours	possible	d’étendre	la	hiérarchie	en
dérivant	de	nouvelles	classes	mais	on	souhaite	pouvoir	 imposer	que	ces	dernières
disposent	toujours	des	méthodes	suivantes	:
•	void	affiche	()
•	void	homothetie	(double	coeff)
•	void	rotation	(double	angle)
Écrire	 la	classe	abstraite	Figure	 qui	 pourra	 servir	 de	 classe	 de	base	 à	 toutes	 ces
classes.

Il	suffit	d’appliquer	les	règles	de	définition	d’une	classe	abstraite.	On	y	place	les	en-
têtes	 des	méthodes	 qu’on	 souhaite	 voir	 redéfinies	 dans	 les	 classes	 dérivées,	 en	 leur
associant	le	mot	clé	abstract	:

abstract	class	Figure

{	abstract	public	void	affiche()	;

abstract	public	void	homothetie	(double	coef)	;

abstract	public	void	rotation	(double	angle)	;

}

Le	mot	 clé	 abstract	 figurant	 devant	 class	 peut	 être	 omis	 (toute	 classe	 disposant	 au
moins	d’une	méthode	abstraite	est	abstraite).	Il	est	cependant	conseillé	de	le	conserver.
Quant	 aux	 noms	 d’arguments	 accompagnant	 les	 en-têtes	 de	 méthodes,	 ils	 sont
syntaxiquement	nécessaires	(bien	que	n’ayant	aucune	signification).
Les	classes	de	la	hiérarchie	de	figures	seront	alors	simplement	définies	comme	classes
dérivées	de	Figure	 et	 elles	devront	définir	 les	 trois	méthodes	affiche,	homothetie	 et
rotation,	par	exemple	:

class	Point	extends	Figure

{	public	void	affiche()	{	}

public	void	homothetie	(double	coef)	{	}

160

public	void	rotation	(double	angle)	{	}

.....

}

161

71 	Classe	abstraite	et
polymorphisme

Compléter	 la	 classe	 abstraite	 Figure	 de	 l’exercice	 précédent,	 de	 façon	 qu’elle
implémente	:

•	une	méthode	homoRot	 (double	coef,	double	angle)	 qui	 applique	 à	 la	 fois	 une
homothétie	et	une	rotation	à	la	figure,

•	 de	 méthodes	 statiques	 afficheFigures,	 homothetieFigures	 et	 rotationFigures
appliquant	une	même	opération	(affichage,	homothétie	ou	rotation)	à	un	tableau	de
figures	(objets	d’une	classe	dérivée	de	Figure).

Une	 classe	 abstraite	 peut	 comporter	 des	 définitions	 de	méthodes	 (non	 abstraites)	 qui
pourront	alors	être	utilisées	par	les	classes	dérivées	sans	qu’il	ne	soit	nécessaire	de	les
redéfinir	 (mais	 on	 peut	 toujours	 le	 faire	 !).	 D’autre	 part,	 une	 classe	 abstraite	 peut
comporter	des	méthodes	statiques,	pour	peu	que	celles-ci	ne	soient	pas	abstraites	(ce
qui	n’aurait	aucune	signification).
En	définitive,	voici	la	définition	de	notre	nouvelle	classe	Figure	:

abstract	class	Figure

{	abstract	public	void	affiche()	;

abstract	public	void	homothetie	(double	coef)	;

abstract	public	void	rotation	(double	angle)	;

public	void	HomoRot	(double	coef,	double	angle)

{	homothetie	(coef)	;	rotation	(angle)	;

}

public	static	void	afficheFigures	(Figure	[]	f)

{	for	(int	i=0	;	i<f.length	;	i++)	f[i].affiche()	;

}

public	static	void	homothetieFigures	(double	coef,	Figure[]	f)

{	for	(int	i=0	;	i<f.length	;	i++)	f[i].homothetie(coef)	;

}

public	static	void	rotationFigures	(double	angle,	Figure[]	f)

162

{	for	(int	i=0	;	i<f.length	;	i++)	f[i].rotation(angle)	;

}

}

On	notera	que,	au	sein	de	la	méthode	homoRot,	il	est	possible	d’appeler	les	méthodes
homotethie	 et	 rotation,	 et	 ceci	 bien	 qu’elles	 soient	 abstraites.	 En	 effet,	 d’après	 les
règles	du	polymorphisme,	 la	méthode	effectivement	appelée	 sera	celle	correspondant
au	 type	 effectif	 de	 l’objet	 ayant	 appelé	 la	méthode	 homoRot	 ;	 grâce	 aux	 contraintes
portant	sur	les	dérivées	de	classes	abstraittes,	on	est	certain	qu’elle	existera.
Des	réflexions	analogues	s’appliquent	à	 l’appel	des	méthodes	homothetie	et	rotation
dans	les	méthodes	statiques	homothetieFigures	et	rotationFigures.

163

72 	Interface

On	souhaite	disposer	de	classes	permettant	de	manipuler	des	figures	géométriques.
On	 souhaite	 pouvoir	 caractériser	 celles	 qui	 possèdent	 certaines	 fonctionnalités	 en
leur	demandant	d’implémenter	des	interfaces,	à	savoir	:

•	Affichable	pour	celles	qui	disposeront	d’une	méthode	void	affiche	(),
•	Tranformable	pour	celles	qui	disposeront	des	deux	méthodes	suivantes	:

void	homothetie	(double	coeff)
void	rotation	(double	angle)

Écrire	les	deux	interfaces	Affichable	et	Transformable.

Il	suffit	d’appliquer	les	règles	de	définition	d’une	interface,	ce	qui	nous	conduit	à	:

interface	Affichable

{	abstract	public	void	affiche()	;

}

interface	Transformable

{	abstract	public	void	homothetie	(double	coef)	;

abstract	public	void	rotation	(double	angle)	;

}

Ici,	nos	interfaces	disposent	d’un	droit	d’accès	de	paquetage.	Comme	les	classes,	elles
pourraient	être	déclarées	public	Les	mots	clés	abstract	et	public	figurant	dans	les	en-
têtes	de	méthodes	peuvent	être	omis	puisque,	par	essence,	les	méthodes	d’une	interface
sont	publiques	et	abstraites.
Une	 classe	 représentant	 une	 figure	 pourra	 implémenter	 aucune,	 une	 ou	 les	 deux
interfaces	précédentes.	Par	exemple

class	Point	implements	Affichable

{	public	void	affiche()	{	}

}

class	Rectangle	implements	Affichable,	Transformable

{	public	void	affiche()	{	}

164

public	void	homothetie	(double	coef)	{	}

public	void	rotation	(double	angle)	{}

}

165

73 	Synthèse	:	comparaison	entre
héritage	et	objet	membre

On	dispose	de	la	classe	suivante	:
class	Point

{	public	Point	(double	x,	double	y)	{	this.x=x	;	this.y=y	;	}

public	void	deplace	(double	dx,	double	dy)	{	x+=dx	;	y+=dy	;	}

public	void	affiche	()

{	System.out.println	("Point	de	coordonnees	"	+	x	+	"	"	+	y)	;

}

public	double	getX()	{	return	x	;	}

public	double	getY()	{	return	y	;	}

private	double	x,	y	;

}

On	souhaite	réaliser	une	classe	Cercle	disposant	des	méthodes	suivantes	:

•	 constructeur	 recevant	 en	 argument	 les	 coordonnées	 du	 centre	 du	 cercle	 et	 son
rayon,

•	deplaceCentre	pour	modifier	les	coordonnées	du	centre	du	cercle,

•	changeRayon	pour	modifier	le	rayon	du	cercle,

•	getCentre	qui	fournit	en	résultat	un	objet	de	type	Point	correspondant	au	centre
du	cercle,

•	affiche	qui	affiche	les	coordonnées	du	centre	du	cercle	et	son	rayon.
1.	Définir	la	classe	Cercle	comme	classe	dérivée	de	Point.
2.	Définir	la	classe	Cercle	comme	possédant	un	membre	de	type	Point.
Dans	 les	 deux	 cas,	 on	 écrira	 un	 petit	 programme	 mettant	 en	 jeu	 les	 différentes
fonctionnalités	de	la	classe	Cercle.

Classe	dérivée	de	Point

166

class	Cercle	extends	Point

{	public	Cercle	(double	x,	double	y,	double	r)

{	super	(x,	y)	;

this.r	=	r	;

}

public	void	deplaceCentre	(double	dx,	double	dy)

{	super.deplace	(dx,	dy)	;

}

public	void	changeRayon	(double	r)

{	this.r	=	r	;

}

public	Point	getCentre()

{	Point	centre	=	new	Point	(getX(),	getY())	;

return	centre	;

}

public	void	affiche	()

{	 System.out.println	 ("Cercle	 de	 centre	 "	 +	 super.getX()	 +	 "	 "	 +

super.getY()

+	"	et	de	rayon	"	+	r)	;

}

private	double	r	;

}

Voici	 un	 petit	 programme	 d’utilisation	 de	 Cercle,	 accompagné	 du	 résultat	 de	 son
exécution	:

public	class	TstCerD

{	public	static	void	main	(String	args[])

{	Cercle	c	=	new	Cercle	(3,	8,	2.5)	;

c.affiche()	;

c.deplaceCentre	(1,	0.5)	;

c.changeRayon	(5.25)	;

c.affiche()	;

Point	a	=	c.getCentre()	;

a.affiche()	;

}

}

Cercle	de	centre	3.0	8.0	et	de	rayon	2.5

Cercle	de	centre	4.0	8.5	et	de	rayon	5.25

Point	de	coordonnees	4.0	8.5

167

Avec	un	objet	membre

class	Cercle

{	public	Cercle	(double	x,	double	y,	double	r)

{	centre	=	new	Point	(x,	y)	;

this.r	=	r	;

}

public	void	deplaceCentre	(double	dx,	double	dy)

{	centre.deplace	(dx,	dy)	;

}

public	void	changeRayon	(double	r)

{	this.r	=	r	;

}

public	Point	getCentre()

{	return	centre	;

}

public	void	affiche	()

{	System.out.println	("Cercle	de	centre	"	+	centre.getX()	+	"	"	+

centre.getY()

+	"	et	de	rayon	"	+	r)	;

}

private	Point	centre	;

private	double	r	;

}

Le	 précédent	 programme	 d’utilisation	 de	Cercle	 peut	 encore	 être	 employé	 ici	 sans
modifications.	Il	fournit	les	mêmes	résultats.

1.	Notez	bien	qu’ici	 aucune	possibilité	 de	 surdéfinition	n’existe	 puisque	affiche	 ne	possède	 aucun	 argument.	En
revanche,	 nous	 verrons	 dans	 les	 exercices	 suivants	 des	 situations	 dans	 lesquelles	 il	 peut	 être	 nécessaire	 de
considérer	plusieurs	méthodes	appartenant	à	la	fois	à	la	classe	et	à	ses	ascendantes.

168

Chapitre	6

La	classe	String	et	les	chaînes	de
caractères

Connaissances	requises

•	La	classe	String	:	constructeurs,	propriétés	des	objets	de	type	String,
affectation

•	Affichage	d’une	chaîne	par	print	ou	println

•	Longueur	d’une	chaîne	:	méthode	length

•	Accès	aux	caractères	d’une	chaîne	:	méthode	charAt

•	Concaténation	de	chaînes	avec	l’opérateur	+	;	conversions	des	opérandes	;
l’opérateur	+=

•	Recherche	dans	une	chaîne	:	méthodes	indexOf	et	lastIndexOf

•	Comparaisons	de	chaînes	:	méthodes	equals	et	compareTo

•	Création	d’une	chaîne	par	modification	d’une	autre	:	méthodes	replace,
substring,	toLowerCase,	toUpperCase	et	trim

•	Conversion	d’un	type	primitif	en	type	chaîne	:	méthode	valueOf

•	Conversion	d’une	chaîne	en	un	type	primitif	à	l’aide	des	méthodes	des	classes
enveloppes	des	types	primitifs

•	La	méthode	toString	de	la	classe	Object

•	Conversions	entre	chaînes	et	tableaux	de	caractères

•	Arguments	de	la	ligne	de	commande

169

Note	 :	 on	 suppose	 qu’on	 dispose	 d’une	 classe	 nommée	 Clavier,	 disposant	 (entre
autres)	 de	 méthodes	 (statiques)	 de	 lecture	 au	 clavier	 d’informations	 de	 type	 int
(lireInt),	float	(lireFloat),	double	(lireDouble),	char	(lireChar)	et	String	(lireString).
Cette	classe	est	présente	sur	 le	 site	Web	d’accompagnement	et	 sa	 liste	est	 fournie	en
Annexe	D.

170

74 	Construction	et	affectation	de
chaînes

Quels	résultats	fournit	le	programme	suivant	?
public	class	Chaine

{	public	static	void	main	(String	args[])

{	String	ch1	=	new	String();

System.out.println	("A	-	ch1	=:"	+	ch1	+	":")	;

String	ch2	=	"hello"	;

System.out.println	("B	-	ch2	=:"	+	ch2	+	":")	;

String	ch3	=	new	String	("bonjour")	;

System.out.println	("C	-	ch3	=:"	+	ch3	+	":")	;

String	ch4	=	new	String	(ch3)	;

System.out.println	("D	-	ch4	=:"	+	ch4	+	":")	;

ch3	=	"bonsoir"	;

System.out.println	 ("E	 -	 ch4	 =:"	 +	 ch4	 +	 ":	 ch3	 =:"	 +	 ch3	 +

":")	;

ch4	=	ch3	;

ch3	=	"au	revoir"	;

System.out.println	 ("F	 -	 ch4	 =:"	 +	 ch4	 +	 ":	 ch3	 =:"	 +	 ch3	 +

":")	;

}

}

L’instruction
String	ch1	=	new	String();

crée	une	chaîne	vide	et	place	sa	référence	dans	ch1.	L’instruction
String	ch2	=	"hello"	;

crée	une	chaîne	formée	des	cinq	caractères	h,	e,	l,	l	et	o	et	place	sa	référence	dans	ch2.
De	même
String	ch3	=	new	String	("bonjour")	;

171

crée	une	chaîne	contenant	les	sept	caractères	b,	o,	n,	j,	o,	u	et	r	et	place	sa	 référence
dans	ch3.	L’instruction
String	ch4	=	new	String	(ch3)	;

crée	 une	 chaîne	 par	 recopie	 de	 la	 valeur	 de	 la	 chaîne	 de	 référence	 ch3	 et	 place	 sa
référence	dans	ch4.
On	 notera	 bien	 que	 dorénavant,	 il	 existe	 deux	 chaînes	 de	 même	 contenu,	 comme
l’illustre	ce	schéma	:

L’affectation
ch3	=	"bonsoir"	;

crée	 la	 chaîne	bonsoir	 et	 place	 sa	 référence	 dans	 ch3.	 L’ancienne	 chaîne	 (contenant
bonjour)	désignée	par	ch3	n’étant	plus	référencée,	elle	devient	candidate	au	ramasse-
miettes.	La	situation	se	présente	ainsi	:

Après	l’affectation
ch4	=	ch3	;

La	situation	se	présente	ainsi	:

172

Enfin,	après
ch3	=	"au	revoir"	;

On	obtient	:

En	définitive,	le	programme	affiche	les	résultats	suivants	:

A	-	ch1	=::

B	-	ch2	=:hello:

C	-	ch3	=:bonjour:

D	-	ch4	=:bonjour:

E	-	ch4	=:bonjour:	ch3	=:bonsoir:

F	-	ch4	=:bonsoir:	ch3	=:au	revoir:

173

75 	Accès	aux	caractères	d’une	chaîne

Écrire	un	programme	qui	lit	une	chaîne	au	claviera	et	qui	en	affiche	:

•	un	caractère	sur	deux	(le	premier	étant	affiché),

•	le	premier	et	le	dernier	caractère.

a.	On	pourra	utiliser	la	classe	Clavier	(voir	note	en	début	de	chapitre).

Il	suffit	d’utiliser	les	méthodes	length	et	charAt	de	la	classe	String.

public	class	CarCh

{	public	static	void	main	(String	args[])

{	System.out.print	("donnez	une	chaine	:	")	;

String	ch	=	Clavier.lireString()	;

System.out.print	("un	caractere	sur	deux	:	")	;

for	(int	i	=	0	;	i<ch.length()	;	i+=2)

System.out.print	(ch.charAt(i))	;

System.out.println	()	;

System.out.println	("Premier	caractere	=	"	+	ch.charAt(0))	;

System.out.println	 ("Dernier	 caractere	 =	 "	 +

ch.charAt(ch.length()-1))	;

}

}

donnez	une	chaine	:	java	est	plus	portable	que	C++

un	caractere	sur	deux	:	jv	s	lspral	u	+

Premier	caractere	=	j

Dernier	caractere	=	+

Notez	bien	que	le	dernier	caractère	de	la	chaîne	ch	possède	le	rang	ch.length-1.	Une
tentative	 d’accès	 au	 caractère	 de	 rang	 ch.length	 conduirait	 à	 une	 exception
StringIndexOutOfBoundsException.

174

76 	Conversion	d’un	entier	en	chaîne

Écrire	 un	 programme	 qui	 lit	 un	 entier	 au	 claviera	 et	 qui	 l’affiche	 verticalement
comme	dans	cet	exemple	:

donnez	un	nombre	entier	:	785412

7

8

5

4

1

2

a.	On	pourra	utiliser	la	classe	Clavier	(voir	note	en	début	de	chapitre).

On	peut	convertir	un	entier	en	une	chaîne	à	l’aide	de	la	méthode	valueOf	de	la	classe
String.	 L’accès	 aux	 caractères	 de	 la	 chaîne	 se	 fait	 avec	 la	méthode	 charAt,	 d’où	 le
programme	:

public	class	Conver

{	public	static	void	main	(String	args[])

{	System.out.print	("donnez	un	nombre	entier	:	")	;

int	n	=	Clavier.lireInt()	;

String	ch	=	String.valueOf(n)	;

for	(int	i=0	;	i<ch.length()	;	i++)					//	ou	(depuis	JDK	5.0)	:

System.out.println	(ch.charAt(i))	;			//	for	(char	c	:	ch)

}																																									//	System.out.println

(c)	;

}

Ici,	 nous	 avons	 utilisé	 la	méthode	 valueOf	 pour	 convertir	 un	 entier	 en	 chaîne.	Nous
aurions	pu	également	 exploiter	 la	propriété	de	 l’opérateur	+	qui,	 lorsque	 l’un	de	 ses
deux	opérandes	est	de	type	String,	convertit	l’autre	dans	ce	même	type.	C’est	ainsi	que

175

nous	 aurions	 pu	 écrire	 (un	 peu	 artificiellement)	 ch	 =	 ""	 +	 n.	 Notez	 cependant	 que
l’affectation	 directe	 ch	 =	 n	 ne	 serait	 pas	 correcte	 puisque	 le	 type	 int	 n’est	 pas
compatible	par	affectation	avec	le	type	String.

176

77 	Comptage	des	voyelles	d’un	mot

Écrire	un	programme	qui	lit	un	mot	au	claviera	et	qui	indique	combien	de	fois	sont
présentes	 chacune	 des	 voyelles	 a,	 e,	 i,	o,	u	 ou	 y,	 que	 celles-ci	 soient	 écrites	 en
majuscules	ou	en	minuscules,	comme	dans	cet	exemple	:

donnez	un	mot	:	Anticonstitutionnellement

il	comporte

1	fois	la	lettre	a

3	fois	la	lettre	e

3	fois	la	lettre	i

2	fois	la	lettre	o

1	fois	la	lettre	u

0	fois	la	lettre	y

a.	On	pourra	utiliser	la	classe	Clavier	(voir	note	en	début	de	chapitre).

On	commence	par	 convertir	 tous	 les	 caractères	du	mot	 en	minuscules	 (par	 exemple).
Puis	on	compare	chaque	caractère	(obtenu	par	charAt)	avec	chacune	des	six	voyelles
que	 l’on	 a	 placées	 dans	 un	 tableau	 de	 caractères.	 Un	 tableau	 de	 six	 entiers	 sert	 au
comptage.
public	class	Voyelles

{	public	static	void	main	(String	args[])

{	char	voy[]	=	{'a',	'e',	'i',	'o',	'u',	'y'}	;

int	nVoy	[]	=	new	int	[voy.length]	;

for	(int	i=0	;	i<nVoy.length	;	i++)	nVoy[i]	=	0	;

System.out.print	("donnez	un	mot	:	")	;

String	mot	=	Clavier.lireString()	;

mot	=	mot.toLowerCase()	;

for	(int	i=0	;	i<mot.length()	;	i++)

for	(int	j=0	;	j<voy.length	;	j++)

if	(mot.charAt(i)	==	voy[j])	nVoy[j]++	;

System.out.println	("il	comporte	:	")	;

for	(int	i=0	;	i<voy.length	;	i++)

System.out.println(nVoy[i]	+	"	fois	la	lettre	"	+	voy[i])	;

177

}

}

L’instruction	:
mot	=	mot.toLowerCase()	;

crée	une	nouvelle	chaîne	obtenue	par	conversion	en	minuscules	de	la	chaîne	référencée
par	mot,	 puis	 place	 son	 adresse	 dans	mot.	 Il	 n’y	 a	 pas	 modification	 de	 la	 chaîne
initiale.	 Ici,	 toutefois,	 celle-ci	 devenant	 non	 référencée,	 deviendra	 candidate	 au
ramasse-miettes…
Notez	 que	 lorsqu’une	 voyelle	 est	 détectée,	 le	 programme	 poursuit	 inutilement	 la
comparaison	 du	 caractère	 concerné	 avec	 les	 éventuelles	 voyelles	 suivantes.	 On
pourrait	l’éviter	en	utilisant	une	instruction	break	dans	la	boucle	la	plus	interne.

178

78 	Arguments	de	la	ligne	de	commande

Écrire	un	programme	qui	récupère	deux	entiers	sur	la	"ligne	de	commande"	et	qui	en
affiche	la	somme	en	fenêtre	console,	comme	dans	cet	exemple	:

12	+	25	=	37

On	 vérifiera	 que	 les	 arguments	 fournis	 sont	 formés	 uniquement	 de	 chiffres	 (sans
aucun	signe)	;	dans	le	cas	contraire,	le	programme	s’interrompra.

Les	arguments	de	la	ligne	de	commande	sont	transmis	à	la	méthode	main,	par	le	biais
de	son	unique	argument	qui	se	trouve	être	un	tableau	de	références	sur	des	chaînes.
Nous	vérifions	tout	d’abord	que	ce	tableau	est	de	taille	2.	Si	ce	n’est	pas	le	cas,	nous
interrompons	le	programme	en	appelant	la	méthode	System.exit.
Puis	nous	nous	assurons	que	tous	les	caractères	des	deux	chaînes	sont	bien	des	chiffres
(caractères	 de	 0	 à	 9).	 Pour	 ce	 faire,	 nous	 utilisons	 ici	 la	 méthode	 substring	 pour
extraire	chaque	caractère	de	l’argument	sous	forme	d’une	chaîne	de	longueur	un	;	celle-
ci	est	alors	comparée	(par	equals1)	avec	chacune	des	chaînes	obtenues	en	convertissant
chacun	 des	 nombres	 0	 à	 9	 en	 une	 chaîne	 (notez	 que	 l’on	 ne	 peut	 pas	 comparer
directement	une	chaîne	de	longueur	1	avec	un	caracètre).	Là	encore,	si	 les	conditions
voulues	ne	sont	pas	remplies,	nous	interrompons	le	programme.
Enfin,	nous	convertissons	les	deux	arguments	(ainsi	contrôlés)	à	l’aide	de	la	méthode
parseInt	de	la	classe	enveloppe	Integer.

public	class	ArgLC2

{	public	static	void	main	(String	args[])

{

int	nbArgs	=	args.length	;

if	 (nbArgs	 !=	 2)	 {	 System.out.println	 ("nombre	 arguments

incorrect")	;

	System.exit(-1)	;

	}

//	on	verifie	que	les	caracteres	de	args[0]	et	args[1]

//	sont	bien	des	chiffres

for	(int	i=0	;	i<2	;	i++)

179

comp	:	for	(int	j=0	;	j<args[i].length()	;	j++)

{	for	(int	k=0	;	k<=9	;	k++)

if	 (args[i].substring(j,j+1).equals(String.valueOf(k)))

break	comp	;

System.out.println	("arguments	pas	tous	numeriques")	;

System.exit(-1)	;

}

int	n1	=	Integer.parseInt	(args[0])	;

int	n2	=	Integer.parseInt	(args[1])	;

System.out.println	(n1	+	"	+	"	+	n2	+	"	=	"	+	(n1+n2))	;

}

}

12	+	25	=	37

La	ligne	:
if	(args[i].substring(j,j+1).equals(String.valueOf(k)))	break	comp	;

pourrait	être	remplacée	par	:
if	(args[i].charAt(j)==chif[k])	break	comp	;

avec,	par	exemple	:
char[]	chif	=	{'0',	'1',	'2',	'3',	'4',	'5',	'6',	'7',	'8',	'9'}	;

180

79 	Redéfinition	de	toString

1.	 Réaliser	 une	 classe	 PointN	 permettant	 de	 manipuler	 des	 points	 d’un	 plan	 à
coordonnées	 entières	 et	 repérés	 par	 un	 nom	 de	 type	 chaîne.	 On	 se	 limitera	 à	 un
constructeur	et	à	une	méthode	affiche	affichant	le	nom	du	point	et	ses	coordonnées,
de	manière	que	les	instructions	suivantes	:

PointN	a	=	new	PointN	(2,	5,	"orig")	;

System.out.print	("a	=	")	;	a.affiche()	;

fournissent	les	résultats	suivants	:
a	=	Point	nomme	orig	et	de	coordonnees	2	5

2.	 Modifier	 la	 classe	 précédente,	 de	 manière	 que	 les	 résultats	 suivants	 puissent
maintenant	s’obtenir	ainsi	(on	pourra	supprimer	la	méthode	affiche)	:

PointN	a	=	new	PointN	(2,	5,	"orig")	;

System.out.println	("a	=	"	+	a)	;

Question	1
La	définition	de	la	classe	PointN	ne	présente	pas	de	difficultés	:

class	PointN

{	public	PointN	(int	x,	int	y,	String	nom)

{	this.x=x	;	this.y=y	;	this.nom	=nom	;

}

public	void	affiche()

{	System.out.println	("Point	nomme	"	+	nom

	+	"	et	de	coordonnees	"	+	x	+	"	"	+	y)	;

}

private	int	x,	y	;

private	String	nom	;

}

Notez	qu’il	n’est	pas	nécessaire	de	recopier	au	sein	de	l’objet	 la	valeur	de	la	chaîne

181

représentant	 le	nom	du	point.	On	peut	 se	contenter	d’en	 recopier	 la	 référence	car	 les
objets	de	type	String	ne	sont	pas	modifiables.

Question	2
La	 classe	Object,	 dont	 dérive	 toute	 classe,	 dispose	 d’une	méthode	 toString	 qui,	 par
défaut,	 affiche	 le	 nom	 de	 la	 classe	 et	 l’adresse	 de	 l’objet	 concerné.	 Si	 nous	 ne
modifions	pas	notre	classe	PointN,	une	instruction	telle	que	:
System.out.println	("a	=	"	+	a)	;

appellera	 cette	 méthode	 toString	 pour	 permettre	 à	 l’opérateur	 +	 de	 convertir	 a	 en
String	;	elle	affichera	quelque	chose	comme	:
a	=	PointN@fd7a8b04

Pour	obtenir	les	résultats	voulus,	il	nous	suffit	en	fait	de	redéfinir	de	façon	appropriée
la	méthode	toString	dans	notre	classe	PointN	:
class	PointN

{	public	PointN	(int	x,	int	y,	String	nom)

{	this.x=x	;	this.y=y	;	this.nom	=	new	String(nom)	;

}

public	String	toString()

{	String	ch	=	"Je	suis	un	point	nomme	"	+	nom

	+	"	et	de	coordonnees	"	+	x	+	"	"	+	y	;

return	ch	;

}

private	int	x,	y	;

private	String	nom	;

}

182

80 	Synthèse	:	conjugaison	d’un
verbe

Écrire	un	programme	qui	 lit	au	claviera	un	verbe	du	premier	groupe	 (il	 s’assurera
qu’il	 est	 bien	 terminé	 par	 er)	 et	 qui	 en	 affiche	 la	 conjuguaison	 au	 présent	 de
l’indicatif.	On	supposera	qu’il	s’agit	d’un	verbe	régulier.	Autrement	dit,	on	admettra
que	l’utilisateur	ne	fournit	pas	un	verbe	tel	que	manger	(dans	ce	cas,	le	programme
affichera	nous	mangons	!).	Les	résultats	se	présenteront	ainsi	:

donnez	un	verbe	regulier	du	premier	groupe	:	dire

***	il	ne	se	termine	pas	par	er	-	donnez-en	un	autre	:	chanter

je	chante

tu	chantes

il/elle	chante

nous	chantons

vous	chantez

ils/elles	chantent

a.	On	pourra	utiliser	la	classe	Clavier	(voir	note	en	début	de	chapitre).

On	 lira	 bien	 sûr	 le	 verbe	 sous	 la	 forme	 d’une	 chaîne	 de	 caractères.	 À	 l’aide	 de	 la
méthode	substring,	on	en	extrait	la	fin	qu’on	compare	avec	la	chaîne	"er".
Les	différentes	personnes	de	la	conjugaison	s’obtiennent	en	ajoutant	au	verbe,	privé	de
ses	deux	derniers	caractères,	l’une	des	terminaisons	voulues	fournies	ici	par	un	tableau
de	chaînes	terminaisons.	On	les	fait	précéder	d’un	sujet	extrait,	lui	aussi,	d’un	tableau
de	chaînes	sujets.

public	class	Conjug

{	public	static	void	main	(String	args[])

{	final	String	sujets[]	=

{	"je",	"tu",	"il/elle",	"nous",	"vous",	"ils/elles"}	;

final	String	terminaisons	[]	=

{	"e",	"es",	"e",	"ons",	"ez",	"ent"	}	;

String	verbe	;

183

int	nbLettres	;

System.out.print	 ("donnez	 un	 verbe	 regulier	 du	 premier	 groupe	 :

")	;

while	(true)

{	verbe	=	Clavier.lireString()	;

nbLettres	=	verbe.length()	;

String	fin	=	verbe.substring	(nbLettres-2,	nbLettres)	;

if	(fin.equals("er"))	break	;

System.out.print

("***	 il	 ne	 se	 termine	 pas	 par	 er	 -	 donnez-en	 un	 autre	 :

")	;

}

String	rad	=	verbe.substring(0,	nbLettres-2)	;

int	n	=	terminaisons.length	;

for	(int	i=0	;	i<n	;	i++)

System.out.println	(sujets[i]	+	"	"	+	rad	+	terminaisons[i])	;

}

}

184

81 	Synthèse	:	tri	de	mots

Écrire	un	programme	qui	lit	une	suite	de	mots	au	claviera	et	qui	les	affiche	triés	par
ordre	alphabétique.	On	supposera	que	ces	mots	ne	contiennent	que	des	 lettres	non
accentuées	(majuscules	ou	minuscules).	Le	nombre	de	mots	sera	fourni	en	données	et
l’exécution	se	présentera	ainsi	:

Combien	de	mots	?	5

donnez	vos	mots

javaScript

Pascal

BaSiC

Java

ADA

Liste	par	ordre	alphabetique	:

ADA

BaSiC

Java

javaScript

Pascal

Notez	bien	que	les	mots	sont	affichés	avec	leur	"casse"	d’origine	mais	que	celle-ci
n’influe	pas	sur	le	tri	qui	respecte	l’ordre	alphabétique	traditionnel	(qui	ne	distingue
pas	les	majuscules	des	minuscules).

a.	On	pourra	utiliser	la	classe	Clavier	(voir	note	en	début	de	chapitre).

Les	différentes	chaînes	constituant	les	mots	sont	lues	dans	un	tableau	d’objets	de	type
String	 dont	 la	 dimension	 nous	 est	 fournie	 en	 donnée.	 Pour	 en	 effectuer	 le	 tri,	 nous
recourons	à	la	méthode	simple	du	"tri	à	bulle"	qui	consiste	à	comparer	chaque	élément
à	 tous	ses	suivants,	en	procédant	à	un	échange	chaque	fois	qu’ils	ne	sont	pas	dans	 le
bon	 ordre.	 On	 notera	 bien	 qu’ici,	 on	 peut	 se	 contenter	 de	 trier	 uniquement	 les
références	et	non	pas	les	chaînes	elles-mêmes,	ce	qui	se	fait	très	simplement	en	Java.
Pour	 les	 comparaisons	 de	 chaînes,	 nous	 pouvons	 recourir	 à	 la	 méthode	 compareTo.
Cependant,	 celle-ci	 utilise	 comme	 ordre	 des	 caractères	 celui	 induit	 par	 la	 valeur	 de
leur	code.	Cela	signifie	que	les	majuscules	sont	séparées	des	minuscules.	Il	nous	faut

185

donc	 faire	 porter	 le	 tri	 sur	 les	 (références	 des)	 chaînes	 converties	 (par	 exemple)	 en
majuscules	(à	l’aide	de	la	méthode	toUpperCase).	Mais	comme	l’énoncé	nous	impose
d’afficher	les	mots	triés	suivant	leur	casse	d’origine,	nous	devons	conserver	à	la	fois	le
tableaux	des	références	des	mots	tels	qu’ils	ont	été	fournis	et	un	tableau	des	références
sur	ces	mêmes	mots	convertis	en	majuscules.	De	plus,	 les	deux	 tableaux	doivent	être
triés	en	parrallèle.

public	class	TrisMots

{

public	static	void	main	(String	args[])

{	//	lecture	des	donnees

System.out.print	("Combien	de	mots	?	")	;

int	nMots	=	Clavier.lireInt()	;

String	[]	mots	=	new	String[nMots]	;

System.out.println	("donnez	vos	mots")	;

for	(int	i=0	;	i<nMots	;	i++)

mots[i]	=	Clavier.lireString()	;

//	conversion	de	chaque	mot	en	minuscules

String	[]	motsMin	=	new	String[nMots]	;

for	(int	i=0	;	i<nMots	;	i++)

motsMin[i]	=	mots[i].toLowerCase()	;

//	 tri	 par	 reorganisation	 des	 references	 (mots	 d'origine	 et	 en

minuscules)

//	(on	compare	chaque	mot	(minuscule)	a	tous	ses	suivants)

String	temp	;

for	(int	i=0	;	i<nMots-1	;	i++)

for	(int	j=i+1	;	j<nMots	;	j++)

if	(motsMin[i].compareTo(motsMin[j])	>=	0)

{	 temp	 =	 motsMin[i]	 ;	 motsMin[i]	 =	 motsMin[j]	 ;	 motsMin[j]	 =

temp	;

temp	=	mots[i]	;	mots[i]	=	mots[j]	;	mots[j]	=	temp	;

}

//	affichage	des	chaines	triees

System.out.println	("Liste	par	ordre	alphabetique	:")	;

for	(int	i=0	;	i<nMots	;	i++)								//	ou	(depuis	JDK	5.0)	:

System.out.println	(mots[i])	;					//	for	(String	mot	:	mots)

}																																						//	System.out.println

(mot)	;

186

}

187

82 	Synthèse	:	gestion	d’un	répertoire

Réaliser	 une	 classe	 Repertoire	 permettant	 de	 gérer	 un	 répertoire	 téléphonique
associant	un	numéro	de	téléphone	(chaîne	de	caractères)	à	un	nom.	Pour	faciliter	les
choses,	on	prévoira	une	classe	Abonne	destinée	à	représenter	un	abonné	et	disposant
des	fonctionnalités	indispensables.
La	classe	Repertoire	devra	disposer	des	fonctionnalités	suivantes	:

•	constructeur	recevant	un	argument	de	type	entier	précisant	le	nombre	maximum
d’abonnés	que	pourra	contenir	le	répertoire	(cette	particularité	évite	d’avoir	à	se
soucier	d’une	gestion	dynamique	du	répertoire),

•	méthode	addAbonne	 permettant	 d’ajouter	 un	 nouvel	 abonné	 ;	 elle	 renverra	 la
valeur	false	si	le	répertoire	est	plein,	la	valeur	true	sinon,

•	méthode	getNumero	fournissant	le	numéro	associé	à	un	nom	d’abonné	fourni	en
argument,

•	 méthode	 getNAbonnes	 qui	 fournit	 le	 nombre	 d’abonnés	 figurant	 dans	 le
répertoire,

•	méthode	getAbonne	fournissant	l’abonné	dont	le	rang	est	fourni	en	argument,

•	méthode	getAbonnesTries	 fournissant	 un	 tableau	 des	 références	 des	 différents
abonnés,	 rangés	 par	 ordre	 alphabétique	 (pour	 simplifier,	 on	 supposera	 que	 les
noms	sont	écrits	en	minuscules,	sans	caractères	accentués).

Écrire	un	petit	programme	de	test.

La	 classe	 Abonne	 ne	 présente	 pas	 de	 difficultés	 particulières.	 Si,	 comme	 il	 est
conseillé,	 on	 y	 encapsule	 les	 champs	 de	 données,	 il	 faut	 simplement	 prévoir	 les
méthodes	d’accès	correspondantes	:

class	Abonne

{	public	Abonne	(String	nom,	String	numero)

{	this.nom	=	nom	;	this.numero	=	numero	;

}

public	String	getNom()	{	return	nom	;	}

188

public	String	getNumero()	{	return	numero	;	}

private	String	nom,	numero	;

}

En	ce	qui	concerne	la	classe	Repertoire,	nous	pouvons	nous	permettre,	dans	la	méthode
getAbonne,	de	fournir	en	résultat	une	copie	de	la	référence	à	l’abonné	correspondant.
En	 effet,	 ici	 l’objet	 correspondant	 n’est	 pas	 modifiable	 (champs	 privés,	 pas	 de
méthodes	d’altération).
Dans	la	méthode	getAbonnesTries,	nous	faisons	porter	 le	 tri	sur	une	copie	du	tableau
des	 références	 aux	 différents	 abonnés,	 afin	 de	 ne	 pas	 modifier	 l’ordre	 initial	 du
répertoire.
Voici	ce	que	pourrait	être	la	définition	de	notre	classe	Repert	:

class	Repert

{	public	Repert	(int	nMax)

{	this.nMax	=	nMax	;

rep	=	new	Abonne	[nMax]	;

nAbon	=	0	;

}

public	boolean	addAbonne	(Abonne	a)

{	if	(nAbon	>=	nMax)	return	false	;

rep[nAbon]	=	a	;

nAbon++	;

return	true	;

}

public	int	getNAbonnes	()	{	return	nAbon	;	}

public	Abonne	getAbonne	(int	num)

{	if	(num	<	nAbon)	return	rep[num]	;

return	null	;

}

public	String	getNumero	(String	nom)

{	for	(int	i=0	;	i<=nAbon	;	i++)

if	(nom.equals(rep[i].getNom()))	return	rep[i].getNumero()	;

//	ou	(depuis	JDK	5.0)	:

//	for	(Abonne	a	:	rep)

//	if	(nom.equals(a.getNom()))	return	a.getNumero()	;

return	null	;

}

public	Abonne[]	getAbonnesTries	()

189

{	Abonne[]	repTrie	=	new	Abonne[nAbon]	;

for	(int	i=0	;	i<nAbon	;	i++)

repTrie[i]	=	rep[i]	;

for	(int	i=0	;	i<nAbon-1	;	i++)

for	(int	j=i+1	;	j<nAbon	;	j++)

if	((repTrie[i].getNom()).compareTo(repTrie[j].getNom())	>	0)

{	Abonne	temp	=	repTrie[i]	;

repTrie[i]	=	repTrie[j]	;

repTrie[j]	=	temp	;

}

	return	repTrie	;

}

private	int	nMax,	nAbon	;

private	Abonne[]	rep	;

}

Voici	un	petit	programme	de	test,	accompagné	de	ses	résultats	:

public	class	TstRep

{	public	static	void	main	(String	args[])

{	Repert	rep	=	new	Repert(10)	;

System.out.println	("il	y	a	"	+	rep.getNAbonnes	()	+	"	abonnes")	;

Abonne	a	=	new	Abonne("Dupont",	"02-38-25-88-99")	;

Abonne	b	=	new	Abonne("Duval",	"04-55-66-77-99")	;

rep.addAbonne	(a)	;

rep.addAbonne	(b)	;

rep.addAbonne	(new	Abonne	("Duchene",	"02-11-22-33-44"))	;

rep.addAbonne	(new	Abonne	("Dubois",	"01-11-22-33-44"))	;

System.out.println	("il	y	a	"	+	rep.getNAbonnes	()	+	"	abonnes")	;

System.out.println	("qui	sont	:	")	;

for	(int	i=0	;	i<rep.getNAbonnes()	;	i++)

System.out.println	(rep.getAbonne(i).getNom()	+	"	"

	+	rep.getAbonne(i).getNumero())	;

System.out.println	("ou	encore,	par	ordre	alphabetique")	;

Abonne[]	abonnes	=	rep.getAbonnesTries	()	;

for	(int	i=0	;	i<abonnes.length	;	i++)

	 System.out.println	 (abonnes[i].getNom()	 +	 "	 "	 +

abonnes[i].getNumero())	;

}

190

}

il	y	a	0	abonnes

il	y	a	4	abonnes

qui	sont	:

Dupont	02-38-25-88-99

Duval	04-55-66-77-99

Duchene	02-11-22-33-44

Dubois	01-11-22-33-44

ou	encore,	par	ordre	alphabetique

Dubois	01-11-22-33-44

Duchene	02-11-22-33-44

Dupont	02-38-25-88-99

Duval	04-55-66-77-99

1.	 Dans	 la	 méthode	 getAbonnesTries,	 nous	 avons	 pu	 nous	 contenter	 de	 recopier
seulement	 les	 références	 des	 chaînes	 et	 non	 les	 chaînes	 elles-mêmes.	 En	 effet,
l’utilisateur	 de	 cette	 méthode	 pourra	 toujours	 modifier	 les	 valeurs	 du	 tableau	 de
références	 dont	 il	 reçoit	 la	 référence	 en	 retour	mais	 il	 ne	 pourra	 pas	modifier	 les
chaînes	ainsi	référencées.
2.	Dans	un	programme	réel,	les	objets	de	type	Abonne	pourraient	comporter	d’autres
informations	(adresse…).	Il	pourrait	également	être	judicieux	de	vérifier	lors	de	la
construction	d’un	tel	objet	que	la	chaîne	correspondant	au	numéro	répond	à	certains
critères.

1.	Attention	à	ne	pas	utiliser	l’opérateur	==	qui	comparerait,	non	pas	les	valeurs	des	chaînes,	mais	simplement	leurs
références	!

191

Chapitre	7

Les	types	énumérés

Connaissances	requises

•	Définition	d’un	type	énuméré	simple	(sans	champs	ni	méthodes)

•	Utilisation	des	valeurs	d’un	type	énuméré

•	Comparaisons	d’égalité	entre	valeurs	d’un	type	énuméré	:	opérateur	==	ou
méthode	equals

•	Ordre	des	valeurs	d’un	type	énuméré	:	méthodes	compareTo	et	ordinal

•	Conversion	en	chaînes	des	constantes	d’un	type	énuméré,	avec	la	méthode
toString

•	Conversion	éventuelle	d’une	chaîne	en	une	valeur	d’un	type	énuméré	;
méthode	valueOf

•	Méthode	values	de	la	classe	Enum

•	Itération	sur	les	constantes	d’un	type	énuméré

•	Introduction	de	champs	et	de	méthodes	dans	un	type	énuméré	;	cas	particulier
des	constructeurs	(transmission	d’arguments)

Note	:	Les	types	énumérés	ne	sont	disponibles	qu’à	partir	du	JDK	5.0.

192

83 	Définition	et	utilisation	d’un	type
énuméré	simple

1.	Définir	un	type	énuméré	nommé	Couleurs	dont	les	valeurs	sont	définies	par	les
identificateurs	suivants	:	rouge,	bleu,	vert,	jaune.
2.	Déclarer	deux	variables	c1	et	c2	du	type	Couleurs	et	leur	affecter	une	valeur.
3.	Échanger	le	contenu	de	ces	deux	variables,	en	s’assurant	au	préalable	que	leurs
valeurs	ne	sont	pas	égales.
4.	Regrouper	toutes	ces	instructions	dans	une	petit	programme	complet	(on	pourra
ajouter	 des	 instructions	 d’affichage	 des	 valeurs	 des	 variables	 avant	 et	 après
échange).

1.	La	définition	d’un	type	énuméré	en	Java	utilise	une	syntaxe	de	la	forme	:
enum	NomType	{	valeur1,	valeur2,	…	valeurN	}
soit,	ici	:
enum	Couleurs	{	rouge,	bleu,	vert,	jaune	}

Notez	 que,	 bien	 que	 l’on	 emploie	 le	 mot-clé	 enum	 et	 non	 class,	Couleurs	 est	 à
considérer	 comme	 un	 classe	 particulière.	 Les	 valeurs	 du	 type	 (rouge,	bleu,	 vert	 et
jaune)	en	sont	des	instances	finales	(non	modifiables).
2.	La	déclaration	de	variables	du	type	Couleurs	est	classique	:
Couleurs	c1,	c2	;

On	 ne	 peut	 affecter	 à	 ces	 variables	 que	 des	 valeurs	 du	 type	Couleurs.	 Ici,	 il	 peut
s’agir	de	 l’une	des	4	constantes	du	 type	 :	on	 les	nomme	en	 les	préfixant	du	nom	de
type	(ici	Couleurs)	comme	dans	:
c1	=	Couleurs.bleu	;			//	attention	:	c1	=	bleu	serait	erroné

c2	=	Couleurs.jaune	;

3.	La	comparaison	de	deux	variables	de	type	énuméré	peut	se	faire	 indifféremment
avec	 l’un	 des	 opérateurs	 ==	 ou	 equals.	 Rappelons	 que	 le	 premier	 compare	 les
références	des	objets	correspondants,	tandis	que	le	second	porte	sur	les	valeurs	de
ces	objets.	Mais,	comme	il	n’existe	qu’un	exemplaire	de	chaque	objet	 représentant

193

un	constante	d’un	type	énuméré,	il	revient	bien	au	même	de	comparer	leur	référence
ou	leur	valeur.	De	même,	on	peut	utiliser	indifféremment	!=	ou	!equals.
if	(c1	!=	c2)												//	ou	if	(!	c1.equals(c2))

{	Couleurs	c	;

c	=	c1	;

c1	=	c2	;

c2	=	c	;

}

4.	Voici	un	exemple	complet	reprenant	ces	différentes	instructions,	accompagné	d’un
exemple	 d’exécution.	On	 notera	 qu’il	 est	 très	 facile	 d’afficher	 une	 valeur	 de	 type
énuméré	puisque	l’appel	implicite	à	la	méthode	 toString	pour	une	 instance	de	 type
énuméré	fournit	simplement	le	libellé	correspondant	:
public	class	EnumSimple

{	public	static	void	main	(String	args[])

{	Couleurs	c1,	c2	;

c1	=	Couleurs.bleu	;		//	attention	:	c1	=	bleu	serait	erroné

c2	=	Couleurs.jaune	;

System.out.println	 ("couleurs	 avant	 echange	 =	 "	 +	 c1	 +	 "	 "	 +

c2)	;

if	(c1	!=	c2)					//	ou	if	(!	c1.equals(c2))

{	Couleurs	c	;

c	=	c1	;

c1	=	c2	;

c2	=	c	;

}

System.out.println	 ("couleurs	 apres	 echange	 =	 "	 +	 c1	 +	 "	 "	 +

c2)	;

}

}

enum	Couleurs	{rouge,	bleu,	vert,	jaune	}

couleurs	avant	echange	=	bleu	jaune

couleurs	apres	echange	=	jaune	bleu

194

84 	Itération	sur	les	valeurs	d’un	type
énuméré

On	suppose	qu’on	dispose	d’un	 type	énuméré	nommé	Suite.	 Écrire	 un	 programme
qui	en	affiche	les	différents	libellés.	Par	exemple,	si	Suite	a	été	défini	ainsi	(notez
l’emploi	du	libellé	ut,	car	do	n’est	pas	utilisable	puisqu’il	s’agit	d’un	mot-clé)	:

enum	Suite	{	ut,	re,	mi,	fa,	sol,	la,	si	}

Le	programme	affichera	:
Liste	des	valeurs	du	type	Suite	:

ut

re

mi

fa

sol

la

si

On	peut	 facilement	 itérer	sur	 les	différentes	valeurs	d’un	 type	énuméré	à	 l’aide	de	 la
boucle	dite	for…	each,	introduite	par	le	JDK	5.0.	Il	faut	cependant	au	préalable	créer
un	 tableau	 des	 valeurs	 du	 type	 en	 utilisant	 la	 méthode	 values	 de	 la	 classe	 Enum	 ;
l’expression	Suite.values()	représente	un	tableau	formé	des	différentes	valeurs	du	type
Suite.	 En	 définitive,	 voici	 le	 programme	 voulu	 ;	 il	 fonctionne	 quelle	 que	 soit	 la
définition	du	type	Suite	:
public	class	TstSuite

{	public	static	void	main	(String	args[])

{	System.out.println("Liste	des	valeurs	du	type	Suite	:	")	;

for	(Suite	s	:	Suite.values())

System.out.println	(s)	;					//	appel	implicite	de	toString	()

}

}

enum	Suite	{	ut,	re,	mi,	fa,	sol,	la,	si	}

195

85 	Accès	par	leur	rang	aux	valeurs	d’un
type	énuméré	(1)

On	suppose	qu’on	dispose	d’un	 type	énuméré	nommé	Suite.	 Ecrire	 un	 programme
qui	:

•	affiche	le	nombre	de	valeurs	du	type,

•	affiche	les	valeurs	de	rang	impair,

•	affiche	la	dernière	valeur	du	type.

Une	démarche	 simple	 consiste	 à	 créer	un	 tableau	des	valeurs	du	 type,	 à	 l’aide	de	 la
méthode	 values	 de	 la	 classe	 Enum.	 Il	 suffit	 ensuite	 d’exploiter	 classiquement	 ce
tableau	pour	obtenir	les	informations	voulues	:
public	class	TstValues

{	public	static	void	main	(String	args[])

{	//	On	crée	un	tableau	des	valeurs	du	type,	à	l'aide	de	la	méthode

values

	Suite[]	valeurs	=	Suite.values	()	;

	int	nbVal	=	valeurs.length	;

	System.out.println	("le	type	Suite	comporte	"	+	nbVal	+	"	valeurs"

)	;

	System.out.println	("valeurs	de	rang	impair	=	")	;

	for	(int	i	=0	;	i	<	nbVal	;	i+=2)

System.out.println	(valeurs[i])	;

	System.out.println	("derniere	valeur	du	type	:	")	;

	System.out.println	(valeurs[nbVal-1])	;

}

enum	Suite	{	ut,	re,	mi,	fa,	sol,	la,	si	}

le	type	Suite	comporte	7	valeurs

valeurs	de	rang	impair	=

ut

mi

196

sol

si

derniere	valeur	du	type	:

si

On	notera	 que	 le	 programme	n’est	 pas	 protégé	 contre	 le	 risque	 que	 le	 type	Suite	 ne
comporte	aucun	élément.

197

86 	Lecture	de	valeurs	d’un	type
énuméré

On	suppose	qu’on	dispose	d’un	 type	énuméré	nommé	Suite.	 Écrire	 un	 programme
qui	 lit	une	chaîne	au	clavier	et	qui	 indique	si	cette	chaîne	correspond	ou	non	à	un
libellé	du	type	et	qui,	le	cas	échéant,	en	affiche	le	rang	dans	les	valeurs	du	type.

A	 priori,	 toute	 classe	 d’énumération	 dispose	 d’une	méthode	 valueOf	 qui	 effectue	 la
conversion	inverse	de	 toString,	à	savoir	 :	convertir	une	chaîne	en	une	valeur	du	type
énuméré	 correspondant.	 Cependant,	 si	 la	 chaîne	 en	 question	 ne	 correspond	 à	 aucune
valeur	du	type,	on	aboutit	à	une	exception	qui	doit	alors	être	interceptée,	sous	peine	de
voir	 le	 programme	 s’interrompre.	 Ici,	 nous	 vous	 proposons	 une	 démarche,	 moins
directe,	mais	ne	comportant	plus	de	 risque	d’exception,	 à	 savoir	 :	 parcourir	 chacune
des	 valeurs	 du	 type	 énuméré	 (à	 l’aide	 du	 tableau	 fourni	 par	 la	 méthode	 values)	 en
comparant	sa	conversion	en	chaîne	(toString)	avec	la	chaîne	fournie	au	clavier.

public	class	LectureEnum

{	public	static	void	main	(String	args[])

{	String	chSuite	;

System.out.print("Donnez	un	libelle	de	l'enumeration	Suite	:	");

chSuite	=	Clavier.lireString	()	;

boolean	trouve	=	false	;

for	(Suite	j	:	Suite.values())

{	if	(chSuite.equals(j.toString()))

{	trouve	=	true	;

int	numSuite	=	j.ordinal()	;

System.out.println(chSuite	+	"	correspond	a	la	valeur	de	rang	"

+	(numSuite+1)	+	"	du	type	Suite");

}

}

if	(!trouve)	System.out.println	(chSuite

	+	"	n'appartient	pas	au	type	Suite")	;

}

198

}

enum	Suite	{ut,	re,	mi,	fa,	sol,	la,	si	}

Donnez	un	libelle	de	l'enumeration	Suite	:	Re

Re	n'appartient	pas	au	type	Suite

Donnez	un	libelle	de	l'enumeration	Suite	:	mi

mi	correspond	a	la	valeur	de	rang	3	du	type	Suite

199

87 	Ajout	de	méthodes	et	de	champs	à
une	énumération	(1)

Définir	un	type	énuméré	nommé	Mois	permettant	de	représenter	 les	douze	mois	de
l’année,	 en	 utilisant	 les	 noms	 usuels	 (janvier,	 fevrier,	mars…)	 et	 en	 associant	 à
chacun	 le	 nombre	 de	 jours	 correspondants.	On	 ne	 tiendra	 pas	 compte	 des	 années
bisextiles.
Écrire	 un	 petit	 programme	 affichant	 ces	 différents	 noms	 avec	 le	 nombre	 de	 jours
correspondants	comme	dans	:

janvier	comporte	31	jours

fevrier	comporte	28	jours

mars	comporte	31	jours

octobre	comporte	31	jours

novembre	comporte	30	jours

decembre	comporte	31	jours

Java	vous	permet	de	doter	un	type	énumération	de	champs	et	de	méthodes,	comme	s’il
s’agissait	d’une	classe.	Certaines	de	ces	méthodes	peuvent	être	des	constructeurs	;	dans
ce	 cas,	 il	 est	 nécessaire	 d’utiliser	 une	 syntaxe	 spéciale	 dans	 la	 définition	 du	 type
énuméré	 pour	 fournir	 les	 arguments	 destinés	 au	 constructeur,	 en	 association	 avec	 le
libellé	correspondant.
Voici	comment	nous	pourrions	définir	notre	type	Mois,	en	le	munissant	:

•	d’un	champ	nj	destiné	à	contenir	le	nombre	de	jours	d’un	mois	donné,

•	d’un	constructeur	recevant	en	argument	le	nombre	de	jours	du	mois,

•	d’une	méthode	nbJours	fournissant	le	nombre	de	jours	associé	à	une	valeur	donnée.
enum	Mois

{	janvier	(31),	fevrier	(28),	mars	(31),	avril	(30),

mai	(31),	juin	(30),	juillet	(31),	aout	(31),

septembre	(30),	octobre	(31),	novembre	(30),	decembre	(31)	;

private	Mois	(int	n)	//	constructeur	(en	argument,	nombre	de	jours

200

du	mois)

{	nj	=	n	;	;

}

public	int	nbJours	()	{	return	nj	;	}

private	int	nj	;

}

Notez	les	particularités	de	la	syntaxe	:

•	présence	d’arguments	pour	le	constructeur,

•	 présence	 d’un	 point-virgule	 séparant	 l’énumération	 des	 valeurs	 du	 type	 des
déclarations	des	champs	et	méthodes.

Voici	un	petit	programme	fournissant	la	liste	voulue.
public	class	TstMois

{	public	static	void	main	(String	args[])

{	for	(Mois	m	:	Mois.values())

	 System.out.println	 (m	 +	 "	 comporte	 "	 +	 m.nbJours()	 +	 "

jours")	;

}

}

201

88 	Ajout	de	méthodes	et	de	champs	à
une	énumération	(2)

Compléter	la	classe	Mois	précédente,	de	manière	à	associer	à	chaque	nom	de	mois	:

•	un	nombre	de	jours,

•	une	abréviation	de	trois	caractères	(jan,	fev…),

•	le	nom	anglais	correspondant.
Écrire	 un	 petit	 programme	 affichant	 ces	 différentes	 informations	 sous	 la	 forme
suivante	:

jan	=	janvier	=	january	-	31	jours

fev	=	fevrier	=	february	-	28	jours

mar	=	mars	=	march	-	31	jours

oct	=	octobre	=	october	-	31	jours

nov	=	novembre	=	november	-	30	jours

dec	=	decembre	=	december	-	31	jours

Il	suffit	d’adapter	l’énumération	Mois	de	l’exercice	précédent	de	la	façon	suivante	:

•	 introduction	 de	 nouveaux	 champs	 abrege	 et	 anglais	 pour	 y	 conserver	 les
informations	relatives	au	nom	abrégé	et	au	nom	anglais,

•	 ajout	 de	 méthodes	 abreviation	 et	 nomAnglais	 fournissant	 chacune	 de	 ces
informations,

•	adaptation	du	constructeur	pour	qu’il	dispose	cette	fois	de	trois	arguments.
enum	Mois2

{	janvier	(31,	"jan",	"january"),	fevrier	(28,	"fev",	"february"),

mars	(31,	"mar",	"march"),	avril	(30,	"avr",	"april"),

mai	(31,	"mai",	"may"),	juin	(30,	"jun",	"june"),

juillet	(31,	"jul",	"july"),	aout	(31,	"aou",	"august"),

septembre	(30,	"sep",	"september"),	octobre	(31,	"oct",	"october"),

202

novembre	 (30,	 "nov",	 "november"),	 decembre	 (31,	 "dec",

"december")	;

private	Mois2	(int	n,	String	abrev,	String	na)

{	nj	=	n	;

abrege	=	abrev	;

anglais	=	na	;

}

public	int	nbJours	()	{	return	nj	;	}

public	String	abreviation	()

{	return	abrege	;

}

public	String	nomAnglais	()

{	return	anglais	;

}

private	int	nj	;

private	String	abrege	;

private	String	anglais	;

}

public	class	TstMois2

{	public	static	void	main	(String	args[])

{	for	(Mois2	m	:	Mois2.values())

	System.out.println	(m.abreviation()	+	"	=	"	+	m	+	"	=	"

+m.nomAnglais()	+	"	-	"	+	m.nbJours()	+	"	jours")	;

}

}

203

89 	Synthèse	:	gestion	de	résultats
d’examens

On	 se	 propose	 d’établir	 les	 résultats	 d’examen	 d’un	 ensemble	 d’élèves.	 Chaque
élève	 sera	 représenté	 par	 un	 objet	 de	 type	Eleve,	 comportant	 obligatoirement	 les
champs	suivants	:

•	le	nom	de	l’élève	(type	String),

•	 son	 admissibilité	 à	 l’examen,	 sous	 forme	 d’une	 valeur	 d’un	 type	 énuméré
comportant	les	valeurs	suivantes	:	N	(non	admis),	P	(passable),	AB	(Assez	bien),
B	(Bien),	TB	(Très	bien).

Idéalement,	 les	 noms	 des	 élèves	 pourraient	 être	 contenus	 dans	 un	 fichier.	 Ici,	 par
souci	de	 simplicité,	 nous	 les	 supposerons	 fournis	par	un	 tableau	de	 chaînes	placé
dans	le	programme	principal.
On	demande	de	définir	 convenablement	 la	 classe	Eleve	 et	 d’écrire	 un	programme
principal	qui	:

•	 pour	 chaque	 élève,	 lit	 au	 clavier	 3	 notes	 d’examen,	 en	 calcule	 la	moyenne	 et
renseigne	convenablement	le	champ	d’admissibilité,	suivant	les	règles	usuelles	:
–	moyenne	<	10	:	Non	admis
–	10	<=	moyenne	<12	:	Passable
–	12	<=	moyenne	<14	:	Assez	bien
–	14	<=	moyenne	<16	:	Bien
–	16	<=	moyenne	:	Très	bien

•	affiche	l’ensemble	des	résultats	en	fournissant	en	clair	la	mention	obtenue.
Voici	un	exemple	d’exécution	d’un	tel	programme	:
donnez	les	trois	notes	de	l'eleve	Dutronc

11.5

14.5

10

donnez	les	trois	notes	de	l'eleve	Dunoyer

9.5

10.5

204

9

donnez	les	trois	notes	de	l'eleve	Lechene

14.5

12

16.5

donnez	les	trois	notes	de	l'eleve	Dubois

6

14

11

donnez	les	trois	notes	de	l'eleve	Frenet

17.5

14

18.5

Resultats	:

Dutronc	-	Assez	bien

Dunoyer	-	Non	admis

Lechene	-	Bien

Dubois	-	Passable

Frenet	-	Tres	bien

L’énoncé	nous	 impose	 la	définition	du	 type	énuméré	 contenant	 les	différents	 résultats
possibles	de	l’examen.	On	notera	qu’on	nous	demande	d’afficher	ces	résultats	sous	une
forme	«	longue	»,	par	exemple	Passable	et	non	simplement	P.	Nous	associerons	donc
un	 texte	 à	 chacune	des	valeurs	de	notre	 type	énuméré,	 en	exploitant	 la	possibilité	de
doter	un	tel	type	de	méthodes,	à	savoir	ici	:

•	un	constructeur	recevant	en	argument	le	texte	associé	à	la	valeur,

•	une	méhtode	nommée	details,	permettant	de	trouver	ce	texte	à	partir	d’une	valeur.
Voici	ce	que	pourrait	être	la	définition	de	ce	type	énuméré	:
enum	Mention

{	NA	("Non	admis"),	P	("Passable"),	AB	("Assez	bien"),

B	("Bien"),	TB	("Tres	bien"),	NC	("Non	connu")	;

private	Mention	(String	d)

{	mentionDetaillee	=	d	;

}

public	String	details	()

{	return	mentionDetaillee	;

205

}

private	String	mentionDetaillee	;

}

Un	 champ	 privé	 nommé	mentionDetaillee	 nous	 sert	 à	 conserver	 le	 texte	 associé	 à
chaque	valeur.
Notez	que,	pour	des	questions	de	sécurité,	nous	avons	prévu	une	valeur	supplémentaire
(NC)	correspondant	à	un	résultat	non	connu,	avec	laquelle	se	trouvera	automatiquement
initialisée	(par	le	constructeur)	toute	variable	du	type	Mention,
Nous	avons	prévu	d’utiliser	deux	méthodes	statiques	:

•	double	moyenne	(String	n)	qui	demande	de	fournir	trois	notes	pour	le	nom	n	et	qui
en	calcule	la	moyenne,

•	Mention	 resul	 (double	 m)	 qui	 fournit	 la	 mention	 correspondant	 à	 une	 moyenne
donnée	m.

Voici	ce	que	pourrait	être	le	programme	demandé	:
public	class	Examen

{	public	static	void	main	(String	args[])

{	 String	 noms[]	 =	 {	 "Dutronc",	 "Dunoyer",	 "Lechene",	 "Dubois",

"Frenet"	}	;

//	creation	du	tableau	d'eleves

int	nel	=	noms.length	;

Eleve	eleves	[]	=	new	Eleve	[nel]	;

for	(int	i=0	;	i<nel	;	i++)

	eleves	[i]	=	new	Eleve	(noms[i])	;

//	lecture	des	notes	et	détermination	du	résultat	de	chaque	élève

for	(Eleve	el	:	eleves)

{	double	moy	=	moyenne	(el.getNom())	;

el.setResul	((resul(moy)))	;

}

//	affichage	résultats

System.out.println	("Resultats	:	")	;

for	(Eleve	el	:	eleves)

System.out.println	 (el.getNom()	 +	 "	 -	 "	 +

el.getResul().details())	;

}

	//	méthode	qui	demande	au	clavier	trois	notes	pour	un	nom	donne

	//	et	qui	fournit	en	retour	la	moyenne	correspondante

206

static	public	double	moyenne	(String	n)

{	System.out.println	("donnez	les	trois	notes	de	l'eleve	"	+	n)	;

double	som	=	0.	;

for	(int	i=0	;	i<3	;	i++)

{	double	note	=	Clavier.lireDouble()	;

som	+=	note	;

}

double	moyenne	=	som	/	3.	;

return	moyenne	;

}

	//	méthode	qui	définit	la	mention	en	fonction	de	la	moyenne

static	public	Mention	resul	(double	m)

{	if	(m<10.)	return	Mention.NA	;

if	(m<12.0)	return	Mention.P	;

if	(m<14.0)	return	Mention.AB	;

if	(m<16.0)	return	Mention.B	;

return	Mention.TB	;

}

}

class	Eleve

{	public	Eleve	(String	n)

{	nom	=	n	;

resul	=	Mention.NC	;			//	valeur	par	défaut

}

public	void	setResul	(Mention	r)

{	resul	=	r	;

}

public	Mention	getResul()

{	return	resul	;

}

public	String	getNom()

{	return	nom	;

}

private	String	nom	;

private	Mention	resul	;

}

enum	Mention

207

{	NA	("Non	admis"),	P	("Passable"),	AB	("Assez	bien"),

B	("Bien"),	TB	("Tres	bien"),	NC	("Non	connu")	;

private	Mention	(String	d)

{	mentionDetaillee	=	d	;

}

public	String	details	()

{	return	mentionDetaillee	;

}

private	String	mentionDetaillee	;

}

208

Chapitre	8

Les	exceptions

Connaissances	requises

•	Déclenchement	d’une	exception	avec	throw

•	Bloc	try,	écriture	d’un	gestionnaire	d’exception

•	Transmission	d’informations	au	gestionnaire	d’exception

•	Règles	de	choix	du	gestionnaire	d’exception

•	Cheminement	d’une	exception

•	Clause	throws

•	Bloc	finally

•	Redéclenchement	d’une	exception

•	Exceptions	standard

209

90 	Déclenchement	et	traitement
d’une	exception

Réaliser	une	classe	EntNat	permettant	de	manipuler	des	entiers	naturels	(positifs	ou
nuls).	Pour	l’instant,	cette	classe	disposera	simplement	:

•	d’un	constructeur	à	un	argument	de	type	int	qui	générera	une	exception	de	type
ErrConst	(type	classe	à	définir)	lorsque	la	valeur	reçue	ne	conviendra	pas,

•	d’une	méthode	getN	fournissant	sous	forme	d’un	int,	 la	valeur	encapsulée	dans
un	objet	de	type	EntNat.

Écrire	un	petit	programme	d’utilisation	qui	traite	l’exception	ErrConst	en	affichant
un	message	et	en	interrompant	l’exécution.

Le	 constructeur	 de	 la	 classe	 EntNat	 doit	 donc	 déclencher	 une	 exception	 de	 type
ErrConst	 lorsque	 la	 valeur	 reçue	 par	 son	 constructeur	 est	 négative.	 Ici,	 la	 classe
ErrConst	 peut	 être	 réduite	 à	 sa	 plus	 simple	 expression,	 à	 savoir	 ne	 comporter	 ni
champs	ni	méthodes.	La	définition	de	EntNat	pourrait	se	présenter	ainsi	:

class	EntNat

{	public	EntNat	(int	n)	throws	ErrConst

{	if	(n<0)	throw	new	ErrConst()	;

this.n	=	n	;

}

public	int	getN	()	{	return	n	;	}

private	int	n	;

}

class	ErrConst	extends	Exception

{}

On	notera	qu’en	l’absence	de	la	clause	throws	ErrConst	dans	l’en-tête	du	constructeur
de	EntNat,	on	obtiendrait	une	erreur	de	compilation.	D’autre	part,	il	est	indispensable
que	la	classe	ErrConst	dérive	de	la	classe	Exception	(le	compilateur	s’assure	bien	que
l’objet	mentionné	à	throw	est	d’un	type	compatible	avec	Exception).

210

Voici	 un	 programme	 d’utilisation	 dans	 lequel	 nous	 traitons	 l’exception	ErrConst	 en
incluant	 les	 instructions	 concernées	 dans	 un	 bloc	 try	 que	 nous	 faisons	 suivre	 d’un
gestionnaire	 introduit	 par	 catch(ErrConst	 e).	 Comme	 demandé,	 nous	 y	 affichons	 un
message	(***	erreur	construction	***)	et	nous	mettons	fin	à	l’exécution	par	l’appel	de
System.exit.

public	class	TstEntNat

{	public	static	void	main	(String	args[])

{	try

{	EntNat	n1	=	new	EntNat(20)	;

System.out.println	("n1	=	"	+	n1.getN())	;

EntNat	n2	=	new	EntNat(-12)	;

System.out.println	("n2	=	"	+	n2.getN())	;

}

catch	(ErrConst	e)

{	System.out.println	("***	erreur	construction	***")	;

System.exit	(-1)	;

}

}

}

n1	=	20

***	erreur	construction	***

211

91 	Transmission	d’information	au
gestionnaire

Adapter	la	classe	EntNat	de	l’exercice	et	le	programme	d’utilisation	de	manière	à
disposer	dans	 le	gestionnaire	d’exception	du	 type	ErrConst	de	 la	valeur	 fournie	à
tort	au	constructeur.

Cette	 fois,	 nous	 prévoyons,	 dans	 la	 classe	 ErrConst,	 un	 champ	 valeur	 destiné	 à
conserver	 la	valeur	avec	 laquelle	on	a	 tenté	de	construire	à	 tort	un	entier	naturel.	La
façon	 la	plus	 simple	d’attribuer	une	valeur	 à	 ce	 champ	consiste	 à	 le	 faire	 lors	de	 la
création	de	l’objet	de	type	ErrConst,	en	la	transmettant	au	constructeur.	Ici,	nous	avons
fait	de	valeur	un	champ	privé,	de	sorte	que	nous	dotons	notre	classe	ErrConst	d’une
méthode	 d’accès	 getValeur.	 Voici	 la	 nouvelle	 définition	 de	 nos	 classes	 EntNat	 et
ErrConst	:

class	EntNat

{	public	EntNat	(int	n)	throws	ErrConst

{	if	(n<0)	throw	new	ErrConst(n)	;

this.n	=	n	;

}

public	int	getN	()	{	return	n	;	}

private	int	n	;

}

class	ErrConst	extends	Exception

{	public	ErrConst	(int	valeur)	{	this.valeur	=	valeur	;	}

public	int	getValeur()	{	return	valeur	;	}

private	int	valeur	;

}

Dans	notre	programme	d’utilisation,	nous	devons	récupérer	la	valeur	coupable	dans	le
gestionnaire	d’exception.	Il	nous	suffit	pour	cela	de	recourir	à	la	méthode	getValeur	:

public	class	TstEntN1

212

{	public	static	void	main	(String	args[])

{	try

{	EntNat	n1	=	new	EntNat(20)	;

System.out.println	("n1	=	"	+	n1.getN())	;

EntNat	n2	=	new	EntNat(-12)	;

System.out.println	("n2	=	"	+	n2.getN())	;

}

catch	(ErrConst	e)

{	System.out.println	("***	tentative	construction	naturel	avec	"

	+	e.getValeur()	+	"	***")	;

System.exit	(-1)	;

}

}

}

n1	=	20

***	tentative	construction	naturel	avec	-12	***

En	pratique,	on	se	permettra	souvent	de	ne	pas	appliquer	le	principe	d’encapsulation	à
des	champs	 tels	que	valeur.	Ainsi,	 en	 le	déclarant	public,	 on	pourra	 se	 passer	 de	 la
méthode	getValeur	et	écrire	directement	dans	le	gestionnaire	:

System.out.println	("***	tentative	construction	naturel	avec	"

+	e.valeur	+	"	***")	;

213

92 	Cheminement	des	exceptions

Que	produit	le	programme	suivant	lorsqu’on	lui	fournit	en	donnéea	:

•	la	valeur	0,

•	la	valeur	1,

•	la	valeur	2.
class	Except	extends	Exception

{	public	Except	(int	n)	{	this.n	=	n	;	}

public	int	n	;

}

public	class	Chemin

{	public	static	void	main	(String	args[])

{	int	n	;

System.out.print	 ("donnez	 un	 entier	 :	 ")	 ;	 n	 =

Clavier.lireInt()	;

try

{	System.out.println	("debut	premier	bloc	try")	;

if	(n!=0)	throw	new	Except	(n)	;

System.out.println	("fin	premier	bloc	try")	;

}

catch	(Except	e)

{	System.out.println	("catch	1	-	n	=	"	+	e.n)	;

}

System.out.println	("suite	du	programme")	;

try

{	System.out.println	("debut	second	bloc	try")	;

if	(n!=1)	throw	new	Except	(n)	;

System.out.println	("fin	second	bloc	try")	;

}

catch	(Except	e)

{	 System.out.println	 ("catch	 2	 -	 n	 =	 "	 +	 e.n)	 ;

System.exit(-1)	;

}

System.out.println	("fin	programme")	;

214

}

}

a.	Pour	lire	un	entier	au	clavier,	il	utilise	la	méthode	lireInt	de	la	classe	Clavier	fournie	sur	le	site	Web.

Ici,	il	faut	simplement	savoir	que	lorsque	le	gestionnaire	d’exception	ne	comporte	pas
d’arrêt	de	l’exécution	(ou	d’instruction	return),	 l’exécution	se	poursuit	à	 l’instruction
suivant	le	dernier	gestionnaire	associé	au	bloc	try.
En	définitive,	voici	quels	seront	les	trois	exemples	d’exécution	correspondant	aux	trois
réponses	proposées	:

donnez	un	entier	:	0

debut	premier	bloc	try

fin	premier	bloc	try

suite	du	programme

debut	second	bloc	try

catch	2	-	n	=	0

donnez	un	entier	:	1

debut	premier	bloc	try

catch	1	-	n	=	1

suite	du	programme

debut	second	bloc	try

fin	second	bloc	try

fin	programme

donnez	un	entier	:	2

debut	premier	bloc	try

catch	1	-	n	=	2

suite	du	programme

debut	second	bloc	try

catch	2	-	n	=	2

215

93 	Cheminement	des	exceptions	et
choix	du	gestionnaire

Quels	résultats	fournit	ce	programme	?
class	Erreur	extends	Exception

{	public	int	num	;

}

class	Erreur_d	extends	Erreur

{	public	int	code	;

}

class	A

{	public	A(int	n)	throws	Erreur_d

{	 if	 (n==1)	 {	 Erreur_d	 e	 =	 new	 Erreur_d()	 ;	 e.num	 =	 999	 ;

e.code	=	12	;

throw	e	;

}

}

}

public	class	Chemin1

{

public	static	void	main	(String	args[])

{	try

{	A	a	=	new	A(1)	;

System.out.println	("apres	creation	a(1)")	;

}

catch	(Erreur	e)

{	System.out.println	("**	exception	Erreur	"	+	e.num)	;

}

System.out.println	("suite	main")	;

try

{	A	b	=	new	A(1)	;

System.out.println	("apres	creation	b(1)")	;

}

catch	(Erreur_d	e)

216

{	System.out.println	("**	exception	Erreur_d	"	+	e.num	+	"	"	+

e.code)	;

}

catch	(Erreur	e)

{	System.out.println	("**	exception	Erreur	"	+	e.num)	;

}

}

}

Que	se	passe-t-il	si	l’on	inverse	l’ordre	des	deux	gestionnaires	dans	le	second	bloc
try	?

Dans	le	premier	bloc	try,	l’appel	du	constructeur	de	A	déclenche	une	exception	de	type
Erreur_d.	Celle-ci	 est	 traitée	par	 l’unique	gestionnaire	 relatif	 au	 type	Erreur,	 lequel
convient	effectivement	puisque	Erreur_d	dérive	de	Erreur.	Dans	le	second	bloc	try,	on
déclenche	la	même	exception	mais,	cette	fois,	deux	gestionnaires	lui	sont	associés.	Le
premier	trouvé	convient	et	c’est	donc	lui	qui	est	exécuté.	En	définitive,	on	obtient	les
résultats	suivants	:
**	exception	Erreur	999

suite	main

**	exception	Erreur_d	999	12

Notez	bien	qu’ici,	les	messages	apres	creation…	ne	sont	pas	affichés	puisque	les	deux
blocs	try	sont	interrompus	auparavant.
Si	l’on	inverse	l’ordre	des	deux	gestionnaires	dans	le	second	bloc	try,	on	obtient	une
erreur	de	compilation	car	le	second	n’a	aucune	chance	d’être	sélectionné.

217

94 	Cheminement	des	exceptions

Que	fait	ce	programmea	?
class	Positif

{	public	Positif	(int	n)	throws	ErrConst

{	if	(n<=0)	throw	new	ErrConst()	;

}

}

class	ErrConst	extends	Exception

{}

public	class	TstPos

{	public	static	void	main	(String	args[])

{	System.out.println	("debut	main")	;

boolean	ok	=	false	;

while	(!ok)

{	try

{	System.out.print	("donnez	un	entier	positif	:	")	;

int	n	=	Clavier.lireInt()	;

Positif	ep	=	new	Positif	(n)	;

ok	=	true	;

}

catch	(ErrConst	e)

{	System.out.println	("***	erreur	construction	***")	;

}

}

System.out.println	("fin	main")	;

}

}

a.	Pour	lire	un	entier	au	clavier,	il	utilise	la	méthode	lireInt	de	la	classe	Clavier	fournie	sur	le	site	Web.

Dans	 la	boucle	while	de	 la	méthode	main,	on	 lit	un	nombre	entier	qu’on	 transmet	au
constructeur	 de	 Positif.	 Si	 la	 valeur	 qu’il	 reçoit	 n’est	 pas	 strictement	 positive,	 il
déclenche	 une	 exception	 de	 type	ErrConst.	 Celle-ci	 est	 traitée	 dans	 le	 gestionnaire

218

associé	au	bloc	try,	lequel	se	contente	d’afficher	un	message	(***	erreur	construction
***).	Après	l’exécution	de	ce	gestionnaire,	on	passe	à	l’instruction	suivant	le	bloc	try,
c’est-à-dire	ici	au	test	de	poursuite	de	la	boucle	while,	basée	sur	la	valeur	de	ok.	On
constate	 que	 la	 boucle	 se	 poursuit	 jusqu’à	 ce	 que	 la	 valeur	 de	 n	 soit	 effectivement
positive.	Dans	ce	 cas,	 en	effet,	 la	 construction	de	ep	 se	déroule	normalement	 et	 l’on
exécute	l’instruction	ok=true.
Voici	 un	 exemple	 d’exécution	 de	 ce	 programme,	 dans	 lequel	 on	 déclenche	 à	 deux
reprises	l’exception	ErrConst	:

debut	main

donnez	un	entier	positif	:	-5

***	erreur	construction	***

donnez	un	entier	positif	:	0

***	erreur	construction	***

donnez	un	entier	positif	:	4

fin	main

Voici	un	autre	exemple	dans	lequel	aucune	exception	n’a	été	déclenchée	:

debut	main

donnez	un	entier	positif	:	5

fin	main

En	général,	 il	n’est	pas	conseillé	d’employer	le	mécanisme	de	gestion	des	exceptions
pour	contrôler	le	déroulement	d’une	boucle	comme	nous	le	faisons	ici.	Cependant,	cette
démarche	pourra	s’avérer	utile	dans	quelques	rares	circonstances,	notamment	pour	lire
un	fichier	séquentiel	;	dans	ce	cas,	on	se	basera	sur	l’exception	EOFException.

219

95 	Instruction	return	dans	un
gestionnaire

Que	fournit	le	programme	suivant	?
class	Erreur	extends	Exception

{}

class	A

{	public	A(int	n)	throws	Erreur

{	if	(n==1)	throw	new	Erreur()	;

}

}

public	class	Chemin2

{	public	static	void	main	(String	args[])

{	f(true)	;	System.out.println	("apres	f(true)")	;

f(false)	;	System.out.println	("apres	f(false)")	;

}

public	static	void	f(boolean	ret)

{	try

{	A	a	=	new	A(1)	;

}

catch	(Erreur	e)

{	System.out.println	("**	Dans	f	-	exception	Erreur	")	;

if	(ret)	return	;

}

System.out.println	("suite	f")	;

}

}

Les	deux	appels	de	f	déclenchent	une	exception	à	la	construction	de	a.	Toutefois,	dans
le	premier	cas,	le	gestionnaire	est	amené	à	exécuter	une	instruction	return,	ce	qui	met
fin	à	l’exécution	de	f,	sans	que	l’instruction	suivant	le	bloc	try	(affichage	de	suite	f)	ne
soit	 exécutée.	 En	 revanche,	 elle	 l’est	 bien	 dans	 le	 second	 cas	 où	 le	 gestionnaire	 se

220

termine	naturellement,	sans	qu’aucune	instruction	return	ou	exit	n’ait	été	exécutée.
En	définitive,	le	programme	fournit	les	résultats	suivants	:

**	Dans	f	-	exception	Erreur

apres	f(true)

**	Dans	f	-	exception	Erreur

suite	f

apres	f(false)

221

96 	Redéclenchement	d’une
exception	et	choix	du	gestionnaire

Que	fournit	ce	programme	?
class	Erreur	extends	Exception	{}

class	Erreur1	extends	Erreur	{}

class	Erreur2	extends	Erreur	{}

class	A

{	public	A(int	n)	throws	Erreur

{	try

{	if	(n==1)	throw	new	Erreur1()	;

if	(n==2)	throw	new	Erreur2()	;

if	(n==3)	throw	new	Erreur()	;

}

catch	(Erreur1	e)

{	 System.out.println	 ("**	 Exception	 Erreur1	 dans	 constructeur

A")	;

}

catch	(Erreur	e)

{	 System.out.println	 ("**	 Exception	 Erreur	 dans	 constructeur

A")	;

throw	(e)	;

}

}

}

public	class	Redecl

{	public	static	void	main	(String	args[])

{	int	n	;

for	(n=1	;	n<=3	;	n++)

{	try

{	A	a	=	new	A(n)	;

}

catch	(Erreur1	e)

{	System.out.println	("***	Exception	Erreur1	dans	main")	;

222

}

catch	(Erreur2	e)

{	System.out.println	("***	Exception	Erreur2	dans	main")	;

}

catch	(Erreur	e)

{	System.out.println	("***	Exception	Erreur	dans	main")	;

}

System.out.println	("--------------")	;

}

System.out.println	("fin	main")	;

}

}

Ici,	on	exécute	à	trois	reprises	le	même	bloc	try,	n	prenant	successivement	les	valeurs
1,	2	et	3.
Dans	le	premier	cas	(n=1),	la	construction	de	l’objet	a	déclenche	une	erreur	Erreur1
qui	 se	 trouve	 traitée	 par	 le	 gestionnaire	 correspondant	 (catch(Erreur1	 e)	 du
constructeur	de	A.
Dans	le	second	cas	(n=2),	la	construction	de	a	déclenche	une	erreur	Erreur2.	Elle	est
alors	traitée	par	le	gestionnaire	relatif	au	type	Erreur	du	constructeur	de	A	(il	s’agit	du
premier	 des	 gestionnaires	 ayant	 un	 type	 compatible	 avec	 Erreur2).	 Mais	 celui-ci
redéclenche	 à	 son	 tour	 une	 exception	 de	même	 type	Erreur2	 ;	 transmise	 au	 bloc	 try
englogant,	elle	est	traitée	par	le	gestionnaire	catch(Erreur2).
Enfin,	dans	le	dernier	cas	(n=3),	la	construction	de	a	déclenche	une	erreur	Erreur	qui
se	 trouve	 traitée	 par	 le	 gestionnaire	 correspondant	 du	 constructeur	 de	 A	 lequel,	 là
encore,	 redéclenche	 à	 son	 tour	 une	 exception	 de	même	 type	 ;	 transmise	 au	 bloc	 try
englobant,	elle	sera	traitée	par	le	gestionnaire	catch(Erreur).
En	définitive,	le	programme	fournit	ces	résultats	:
**	Exception	Erreur1	dans	constructeur	A

**	Exception	Erreur	dans	constructeur	A

***	Exception	Erreur2	dans	main

**	Exception	Erreur	dans	constructeur	A

***	Exception	Erreur	dans	main

223

fin	main

Notez	 bien	 qu’ici	 le	 type	 de	 l’exception	 redéclenchée	 par	 le	 second	 gestionnaire	 du
constructeur	de	A	 (instruction	 throw	e)	est	 identique	à	celui	 reçu	en	argument.	 Il	peut
varier	d’un	appel	à	un	autre.	Ici,	il	s’agit	soit	de	Erreur2,	soit	de	Erreur.

224

97 	Bloc	finally

Quels	résultats	fournit	ce	programme	?
class	Except	extends	Exception

{}

public	class	Finally

{	public	static	void	f(int	n)

{	try

{	if	(n!=1)	throw	new	Except	()	;

}

catch	(Except	e)

{	System.out.println	("catch	dans	f	-	n	=	"	+	n)	;

return	;

}

finally

{	System.out.println	("dans	finally	-	n	=	"	+	n)	;

}

}

public	static	void	main	(String	args[])

{	f(1)	;

f(2)	;

}

}

Les	instructions	d’un	floc	finally	associé	à	un	bloc	try	sont	toujours	exécutées	qu’il	y
ait	 eu	 ou	 non	 déclenchement	 d’une	 exception	 (sauf	 si	 le	 gestionnaire	 met	 fin	 à
l’exécution).	 Ceci	 s’applique	 notamment	 au	 cas	 où	 un	 gestionnaire	 comporte	 une
instruction	return	:	le	bloc	finally	est	quand	même	exécuté	auparavant.
En	définitive,	le	programme	fournit	ceci	:

dans	finally	-	n	=	1

catch	dans	f	-	n	=	2

dans	finally	-	n	=	2

225

98 	Redéclenchement	et	finally

Quels	résultats	fournit	ce	programme	?
class	Except	extends	Exception	{}

public	class	FinReth

{	public	static	void	f(int	n)	throws	Except

{	try

{	if	(n!=1)	throw	new	Except	()	;

}

catch	(Except	e)

{	System.out.println	("catch	dans	f	-	n	=	"	+	n)	;

throw	e	;

}

finally

{	System.out.println	("dans	finally	de	f	-	n	=	"	+	n)	;

}

}

public	static	void	main	(String	args[])

{	int	n=0	;

try

{	for	(n=1	;	n<5	;	n++)	f(n)	;

}

catch	(Except	e)

{	System.out.println	("catch	dans	main	-	n	=	"	+	n)	;

}

finally

{	System.out.println	("dans	finally	de	main	-	n	=	"	+	n)	;

}

}

}

La	boucle	for	de	la	méthode	main	effectue	théoriquement	cinq	appels	de	f.	Le	premier
(n=1)	ne	provoque	aucune	exception	dans	f,	et	il	conduit	à	l’exécution	du	bloc	finally

226

associé	 au	 bloc	 try	 de	 f.	 Le	 deuxième	 (n=2)	 provoque	 une	 exception	 dans	 f	 qui	 est
traitée	par	le	bloc	catch	correspondant,	lequel	relance	à	nouveau	une	exception	;	avant
qu’on	 ne	 lui	 cherche	 un	 gestionnaire,	 on	 exécute	 le	 bloc	 finally	 associé	 au	 bloc	 try.
Puis	on	cherche	un	gestionnaire	approprié	dans	un	bloc	try	englobant,	c’est-à-dire	ici
celui	 du	main.	 On	 exécute	 donc	 le	 bloc	 catch	 correspondant,	 puis	 le	 bloc	 finally
associé.	 Comme	 cette	 exception	 met	 fin	 à	 l’exécution	 du	 bloc	 try	 de	 main,	 le
programme	s’interrompt.
En	définitive,	on	obtient	ces	résultats	:

dans	finally	de	f	-	n	=	1

catch	dans	f	-	n	=	2

dans	finally	de	f	-	n	=	2

catch	dans	main	-	n	=	2

dans	finally	de	main	-	n	=	2

227

99 	Synthèse	:	entiers	naturels

Réaliser	une	classe	permettant	de	manipuler	des	entiers	naturels	(positifs	ou	nuls)	et
disposant	:

•	d’un	constructeur	à	un	argument	de	type	int	;	il	générera	une	exception	ErrConst
si	la	valeur	de	son	argument	est	négative	;

•	de	méthodes	statiques	de	somme,	de	différence	et	de	produit	de	deux	naturels	;
elles	 généreront	 respectivement	 des	 exceptions	 ErrSom,	 ErrDiff	 et	 ErrProd
lorsque	 le	 résultat	ne	sera	pas	 représentable	 ;	 la	 limite	des	valeurs	des	naturels
sera	fixée	à	la	plus	grande	valeur	du	type	int	;

•	une	méthode	d’accès	getN	fournissant	sous	forme	d’un	int	 la	valeur	de	l’entier
naturel.

On	s’arrangera	pour	que	toutes	les	classes	exception	dérivent	d’une	classe	ErrNat	et
pour	qu’elles	permettent	 à	un	éventuel	gestionnaire	de	 récupérer	 les	valeurs	ayant
provoqué	l’exception.
Écrire	deux	exemples	d’utilisation	de	la	classe	:

•	l’un	se	contentant	d’intercepter	sans	discernement	les	exceptions	de	type	dérivé
de	ErrNat,

•	 l’autre	 qui	 explicite	 la	 nature	 de	 l’exception	 en	 affichant	 les	 informations
disponibles.

Les	deux	exemples	pourront	figurer	dans	deux	blocs	try	d’un	même	programme.

L’énoncé	nous	impose	de	respecter	une	certaine	hiérarchie	pour	les	classes	exception.
Ici,	 pour	 faciliter	 la	 tâche,	 nous	 prévoyons	 une	 classe	 intermédiaire	 supplémentaire
nommée	ErrOp	qui	servira	de	base	aux	exceptions	liées	à	des	opérations	arithmétiques
(somme,	différence	ou	produit)	;	elle	possèdera	tout	naturellement	deux	champs	de	type
int	(on	aurait	pu	choisir	aussi	EntNat)	représentant	les	valeurs	des	deux	opérandes	de
l’opération.
La	hiérarchie	des	classes	d’exception	se	présentera	donc	ainsi	:
Exception

228

ErrNat
ErrConst
ErrOp

ErrSom
ErrDif
ErrProd

Voici	la	définition	de	notre	classe	EntNat	et	des	classes	exception	correspondantes	:

class	EntNat

{	public	EntNat	(int	n)	throws	ErrConst

{	if	(n<0)	throw	new	ErrConst(n)	;

this.n	=	n	;

}

public	 static	 EntNat	 somme	 (EntNat	 n1,	 EntNat	 n2)	 throws	 ErrSom,

ErrConst

{	int	op1	=	n1.n,	op2	=	n2.n	;

long	s	=	op1	+	op2	;

if	(s	>	Integer.MAX_VALUE)	throw	new	ErrSom	(op1,	op2)	;

return	new	EntNat	(op1+op2)	;

}

public	 static	 EntNat	 diff	 (EntNat	 n1,	 EntNat	 n2)	 throws	 ErrDiff,

ErrConst

{	int	op1	=	n1.n,	op2	=	n2.n	;

int	d	=	op1	-	op2	;	if	(d<0)	throw	new	ErrDiff(op1,	op2)	;

EntNat	res	=	new	EntNat	(d)	;

return	res	;

}

public	 static	 EntNat	 prod	 (EntNat	 n1,	 EntNat	 n2)	 throws	 ErrProd,

ErrConst

{	int	op1	=	n1.n,	op2	=	n2.n	;

long	p	=	(long)op1	*	(long)op2	;

if	(p	>	Integer.MAX_VALUE)	throw	new	ErrProd(op1,	op2)	;

return	new	EntNat	((int)p)	;

}

public	int	getN()	{	return	n	;	}

private	int	n	;

}

class	ErrNat	extends	Exception	{}

class	ErrConst	extends	ErrNat

229

{	public	ErrConst	(int	n)	{	this.n	=	n	;	}

public	int	n	;

}

class	ErrOp	extends	ErrNat

{	public	ErrOp	(int	n1,	int	n2)

{	this.n1	=	n1	;	this.n2	=	n2	;

}

public	int	n1,	n2	;

}

class	ErrSom	extends	ErrOp

{	public	ErrSom	(int	n1,	int	n2)

{	super(n1,	n2)	;

}

}

class	ErrDiff	extends	ErrOp

{	public	ErrDiff	(int	n1,	int	n2)

{	super(n1,	n2)	;

}

}

class	ErrProd	extends	ErrOp

{	public	ErrProd	(int	n1,	int	n2)

{	super	(n1,	n2)	;

}

}

Il	faut	bien	prendre	garde	à	mentionner	ErrConst	dans	la	clause	throws	des	méthodes
somme,	 diff	 et	 prod	 puisque	 l’appel	 du	 constructeur	 de	 EntNat	 est	 une	 source
potentielle	 d’une	 telle	 exception.	 Si	 on	 ne	 le	 fait	 pas,	 on	 obtiendra	 une	 erreur	 de
compilation.
Notez	que,	dans	la	méthode	prod,	il	a	fallu	prendre	la	précaution	d’effectuer	le	calcul
du	produit	en	long.	Pour	cela,	il	ne	faut	surtout	pas	se	contenter	d’écrire	:
long	p	=	op1	*	op2	;

car	 le	 produit	op1*op2	 serait	 effectué	 dans	 le	 type	 int.	 Le	 résultat	 ne	 serait	 jamais
supérieur	à	Integer.MAX_VALUE	;	de	plus,	il	pourrait	être	négatif,	ce	qui	déclencherait
une	exception	lors	de	la	construction	de	EntNat	((int)p).
Voici	deux	exemples	d’utilisation	répondant	aux	conditions	imposées	par	l’énoncé	:
public	class	TstEntN2

{	public	static	void	main	(String	args[])

{	try

230

{	EntNat	n1	=	new	EntNat(20),	n2	=	new	EntNat(12)	;

EntNat	d	;

d	=	EntNat.diff	(n1,	n2)	;

d	=	EntNat.diff	(n2,	n1)	;

}

catch	(ErrNat	e)

{	System.out.println	("***	erreur	Entier	naturel	****")	;

}

try

{	EntNat	n3	=	new	EntNat	(50000),	n4	=	new	EntNat	(45000)	;

EntNat	d	=	EntNat.diff	(n3,	n4)	;

EntNat	s	=	EntNat.somme	(n3,	n4)	;

EntNat	p	=	EntNat.prod	(n3,	n4)	;

}

catch	(ErrConst	e)

{	 System.out.println	 ("***	 erreur	 construction	 EntNat	 avec

argument	"

+	e.n)	;

}

catch	(ErrDiff	e)

{	System.out.println	("***	erreur	difference	EntNat	-	valeurs	"

+	e.n1	+	"	"	+	e.n2)	;

}

catch	(ErrSom	e)

{	System.out.println	("***	erreur	somme	EntNat	-	valeurs	"

+	e.n1	+	"	"	+	e.n2)	;

}

catch	(ErrProd	e)

{	System.out.println	("***	erreur	produit	EntNat	-	valeurs	"

+	e.n1	+	"	"	+	e.n2)	;

}

}

}

***	erreur	Entier	naturel	****

***	erreur	produit	EntNat	-	valeurs	50000	45000

1.	Si	notre	deuxième	bloc	try	ne	comportait	pas	l’appel	des	trois	méthodes	somme,

231

diff	 et	prod,	 le	 compilateur	 n’accepterait	 pas	 qu’il	 soit	 suivi	 d’un	ou	de	 plusieurs
gestionnaires	non	utiles	(par	exemple,	catch(ErrProd	e)	sans	appel	de	EntNat.prod).
2.	Nous	pourrions	exploiter	l’existence	de	la	classe	ErrOp	pour	simplifier	la	gestion
des	 exceptions	 en	 nous	 contentant	 de	 distinguer	 les	 exceptions	 de	 construction	 de
celles	 de	 calcul.	 Dans	 ce	 dernier	 cas,	 on	 pourrait	 afficher	 les	 valeurs	 des	 deux
opérandes	mais	on	ne	pourrait	plus	préciser	l’opération	concernée.

232

Chapitre	9

Les	bases	de	la	programmation
événementielle

Connaissances	requises

•	La	classe	JFrame	:	méthodes	setSize,	setTitle,	setBounds,	setVisible

•	Notion	d’événement,	de	catégorie	d’événements,	de	source	et	d’écouteur

•	Gestion	des	événements	de	la	catégorie	MouseEvent	avec	un	écouteur
implémentant	l’interface	MouseListener	ou	avec	un	écouteur	dérivé	de	la
classe	adaptateur	MouseAdapter	(éventuellement	avec	une	classe	anonyme)

•	Utilisation	de	l’information	associée	à	un	événement	de	type	MouseEvent	:
méthodes	getX	et	getY

•	Création	d’un	objet	bouton	(JButton),	ajout	à	une	fenêtre	(méthodes
getContentPane	et	add)

•	Notion	de	gestionnaire	de	mise	en	forme	;	remplacement	du	gestionnaire	par
défaut	de	JFrame	par	un	gestionnaire	de	type	FlowLayout

•	Evénement	de	type	Action	Event	;	méthodes	actionPerformed	et	getSource	;
notion	de	chaîne	de	commande	;	méthode	getActionCommand

•	Suppression	d’un	composant	par	la	méthode	remove	de	son	conteneur	;
méthodes	validate	et	revalidate

•	Activation	ou	désactivation	d’un	composant	:	méthode	setEnabled	;	test
d’activation	par	isEnabled

•	Notion	de	panneau	(JPanel)	;	gestionnaire	de	mise	en	forme	par	défaut

233

•	Dessin	permanent	dans	un	panneau	par	redéfinition	de	paintComponent	;
notion	de	contexte	graphique	(classe	Graphics)	;	forçage	du	dessin	avec
repaint	;	tracé	de	lignes	avec	drawLine

•	Dessin	"à	la	volée"

•	Quelques	constantes	usuelles	de	la	classe	Color	(yellow,	green,	red…)

•	Gestion	des	dimensions	:	obtention	des	dimensions	de	l’écran	(méthode
getScreenSize	de	la	classe	Toolkit),	obtention	des	dimensions	d’un	composant
(méthode	getSize),	choix	des	dimensions	préférentielles	d’un	composant
(méthode	getPreferredSize)

Note	 :	 En	 général,	 on	 s’arrange	 pour	 que	 la	 fermeture	 de	 la	 fenêtre	 graphique
principale	mette	fin	au	programme	correspondant.	Pour	obtenir	ce	résultat,	il	faut	traiter
de	façon	appropriée	l’événement	"fermeture	de	la	fenêtre".	Ici,	il	n’est	pas	demandé	de
le	faire	(nous	y	reviendrons	au	chapitre	12)	 ;	nous	supposerons	que	c’est	 l’utilisateur
lui-même	qui	met	fin	au	programme	(sous	Unix	ou	Linux,	il	frappera	Ctrl/C	en	fenêtre
console,	sous	Windows,	il	fermera	la	fenêtre	console).
On	trouvera	la	liste	des	composants	graphiques	et	de	leurs	méthodes	en	Annexe	B,	la
liste	des	événements	et	de	leurs	méthodes	en	Annexe	C.

234

100	Écouteurs	de	clics	d’une	fenêtre

Écrire	 un	 programme	 qui	 crée	 une	 fenêtre	 (de	 type	 JFrame)	 et	 qui	 détecte	 les
événements	"appui"	et	"relâchement"	associés	à	la	souris	et	ayant	la	fenêtre	comme
source.	On	se	contentera	de	signaler	chacun	de	ces	deux	événements	en	affichant	en
fenêtre	console	un	message	précisant	sa	nature	(appui	ou	relâchement),	ainsi	que	les
coordonnées	correspondantes.
On	proposera	quatre	solutions	:
1.	 la	 fenêtre	 est	 son	 propre	 écouteur	 de	 souris	 et	 elle	 implémente	 l’interface
MouseListener,
2.	on	utilise	un	écouteur	différent	de	la	fenêtre,	objet	d’une	classe	 implémentant
l’interface	MouseListener,
3.	on	utilise	un	objet	écouteur	différent	de	la	fenêtre	en	recourant	à	 l’adaptateur
MouseAdapter,
4.	 on	 utilise	 un	 écouteur	 différent	 de	 la	 fenêtre,	 objet	 d’une	 classe	 anonyme
dérivée	de	MouseAdapter.

On	crée	une	classe	fenêtre	nommée	MaFenetre	dérivée	de	JFrame.	Ici,	son	titre	et	ses
dimensions	 seront	 fixés	 dans	 son	 constructeur	 à	 l’aide	 des	 méthodes	 setTitle	 et
setBounds.	On	lui	associera	un	écouteur	des	événements	souris	à	l’aide	de	la	méthode
addMouseListener	 à	 laquelle	 on	 spécifiera	 l’objet	 écouteur	 voulu,	 à	 savoir	 ici	 la
fenêtre	elle-même	(this).	Ici,	cet	appel	peut	se	faire	dans	le	constructeur	(mais	ce	n’est
pas	une	obligation).
Un	 objet	 écouteur	 doit	 implémenter	 une	 interface	 donnée	 (ici	MouseListener).	 On
devra	donc	mentionner	 la	 clause	 implements	MouseListener	 dans	 la	 définition	 de	 la
classe	MaFenetre	et	définir	de	manière	appropriée	les	méthodes	qui	nous	intéressent.
Ici,	il	s’agit	de	mousePressed	(appui	sur	une	touche	quelconque)	et	de	mouseReleased
(relâchement).	 Notez	 bien	 que	 les	 autres	 méthodes	 de	 l’interface	 MouseListener
(mouseClicked,	 mouseEntered	 et	 mouseExited)	 doivent	 être	 présentes	 (nous	 leur
prévoyons	 simplement	 un	 corps	 vide).	Les	 coordonnées	 de	 la	 souris	 sont	 obtenues	 à
l’aide	des	méthodes	getX	et	getY	qu’on	applique	à	l’objet	de	type	MouseEvent	reçu	en
argument	de	chacune	des	méthodes	de	l’écouteur.

235

Le	programme	se	contente	de	créer	un	objet	de	type	MaFenetre	et	de	l’afficher	en	le
rendant	visible	par	appel	de	sa	méthode	setVisible.

import	javax.swing.*	;						//	pour	JFrame

import	java.awt.event.*	;			//	pour	MouseEvent	et	MouseListener

class	MaFenetre	extends	JFrame	implements	MouseListener

{	public	MaFenetre	()				//	constructeur

{	setTitle	("Gestion	de	clics")	;

setBounds	(10,	20,	300,	200)	;

addMouseListener	(this)	;			//	la	fenetre	sera	son	propre	écouteur

//	d'événements	souris

}

public	void	mousePressed	(MouseEvent	ev)

{	System.out.println	("appui	en	"	+	ev.getX()	+	"	"	+	ev.getY())	;

}

public	void	mouseReleased(MouseEvent	ev)

{	 System.out.println	 ("relachement	 en	 "	 +	 ev.getX()	 +	 "	 "	 +

ev.getY())	;

}

public	void	mouseClicked(MouseEvent	ev)	{}

public	void	mouseEntered	(MouseEvent	ev)	{}

public	void	mouseExited	(MouseEvent	ev)	{}

}

public	class	Clic1

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible(true)	;

}

}

appui	en	172	74

relachement	en	172	74

appui	en	166	126

relachement	en	166	126

appui	en	72	75

relachement	en	239	131

appui	en	49	85

relachement	en	-57	100

236

1.	Ici,	la	méthode	setVisible	a	été	appelée	dans	la	méthode	main.	Rien	n’empêcherait
de	l’appeler	dans	le	constructeur	de	MaFenetre.
2.	 On	 constate	 qu’un	 clic	 génère	 deux	 évènements	 :	 appui	 et	 relâchement.	 En
définissant	 de	 façon	 appropriée	 la	 méthode	 mouseClicked,	 on	 pourrait	 constater
qu’il	conduit	également	à	un	événement	clic	(on	dit	aussi	"clic	complet").
3.	Les	clics	opérés	en	dehors	de	la	fenêtre	ne	sont	pas	pris	en	compte.	Toutefois,	si
l’on	 déplace	 la	 souris	 après	 avoir	 appuyé	 sur	 un	 bouton	 alors	 qu’elle	 se	 trouvait
dans	la	fenêtre,	un	événement	relâchement	sera	généré	même	si	le	bouton	est	relâché
en	dehors	de	 la	fenêtre	 ;	c’est	ce	qui	se	produit	dans	 le	dernier	exemple,	d’où	une
coordonnée	 négative.	 En	 revanche,	 si	 le	 déplacement	 de	 la	 souris	 se	 fait	 de
l’extérieur	 vers	 l’intérieur	 de	 la	 fenêtre,	 aucun	 événement	 ne	 sera	 signalé	 (la
"source"	concernée	par	le	relâchement	étant	celle	concernée	par	l’appui).

Cette	 fois,	 il	 est	nécessaire	de	définir	une	classe	distincte	de	MaFenetre	 (ici	Ecout)
implémentant	 l’interface	MouseListener.	 La	 définition	 des	méthodes	 concernées	 peut
cependant	 rester	 la	même	que	précédemment.	Dans	 le	constructeur	de	MaFenetre,	on
associe	à	la	fenêtre	un	objet	écouteur	de	type	Ecout	par	add	(new	Ecout()).

import	javax.swing.*	;						//	pour	JFrame

import	java.awt.event.*	;			//	pour	MouseEvent	et	MouseListener

class	MaFenetre	extends	JFrame

{	public	MaFenetre	()				//	constructeur

{	setTitle	("Gestion	de	clics")	;

setBounds	(10,	20,	300,	200)	;

addMouseListener	 (new	 Ecout())	 ;	 	 //	 on	 ecoute	 avec	 un	 objet	 de

type	Ecout

}

}

class	Ecout	implements	MouseListener

{	public	void	mousePressed	(MouseEvent	ev)

{	System.out.println	("appui	en	"	+	ev.getX()	+	"	"	+	ev.getY())	;

}

public	void	mouseReleased(MouseEvent	ev)

{	 System.out.println	 ("relachement	 en	 "	 +	 ev.getX()	 +	 "	 "	 +

ev.getY())	;

}

237

public	void	mouseClicked(MouseEvent	ev)	{}

public	void	mouseEntered	(MouseEvent	ev)	{}

public	void	mouseExited	(MouseEvent	ev)	{}

}

public	class	Clic2

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible(true)	;

}

}

Ici	 encore,	 on	 définit	 une	 classe	Ecout,	 distincte	 de	MaFenetre.	 Mais	 cette	 fois,	 il
s’agit	d’une	classe	dérivée	de	la	classe	adaptateur	MouseAdapter.	 Il	nous	suffit	alors
d’y	 redéfinir	 les	 deux	 méthodes	 qui	 nous	 intéressent,	 à	 savoir	 ici	mousePressed	 et
mouseReleased	 ;	 contrairement	 à	 ce	 qui	 passait	 précédemment,	 nous	 n’avons	 plus
besoin	de	nous	préoccuper	des	 autres	 (elles	 sont	 toutes	définies	dans	MouseAdapter
avec	un	corps	vide).

import	javax.swing.*	;						//	pour	JFrame

import	java.awt.event.*	;			//	pour	MouseEvent	et	MouseListener

class	MaFenetre	extends	JFrame

{	public	MaFenetre	()				//	constructeur

{	setTitle	("Gestion	de	clics")	;

setBounds	(10,	20,	300,	200)	;

addMouseListener	 (new	 Ecout())	 ;	 	 //	 on	 ecoute	 avec	 un	 objet	 de

type	Ecout

}

}

class	Ecout	extends	MouseAdapter

{	public	void	mousePressed	(MouseEvent	ev)

{	System.out.println	("appui	en	"	+	ev.getX()	+	"	"	+	ev.getY())	;

}

public	void	mouseReleased(MouseEvent	ev)

{	 System.out.println	 ("relachement	 en	 "	 +	 ev.getX()	 +	 "	 "	 +

ev.getY())	;

}

}

public	class	Clic3

238

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible(true)	;

}

}

Cette	 fois,	on	crée	un	objet	d’une	classe	anonyme	dérivée	de	MouseAdapter	et	on	 le
transmet	 à	 la	 méthode	 addMouseListener.	 Rappelons	 que	 les	 classes	 anonymes	 ne
peuvent	être	que	des	classes	dérivées	ou	implémentant	une	interface.	Ici,	nous	créons
notre	objet	écouteur	de	cette	façon	:

new	MouseAdapter()

{	//	redéfinition	des	méthodes	mousePressed	et	mouseReleased	}

Nous	 y	 redéfinissons	 comme	 précédemment	 les	 méthodes	 mousePressed	 et
mouseReleased	 et	 nous	 fournissons	 cet	 objet	 en	 argument	 de	 la	 méthode
addMouseListener.

import	javax.swing.*	;						//	pour	JFrame

import	java.awt.event.*	;			//	pour	MouseEvent	et	MouseListener

class	MaFenetre	extends	JFrame

{	public	MaFenetre	()				//	constructeur

{	setTitle	("Gestion	de	clics")	;

setBounds	(10,	20,	300,	200)	;

addMouseListener	(new	MouseAdapter()

	{	public	void	mousePressed	(MouseEvent	ev)

	 {	 System.out.println	 ("appui	 en	 "	 +	 ev.getX()	 +	 "	 "	 +

ev.getY())	;

	}

	public	void	mouseReleased(MouseEvent	ev)

	 {	 System.out.println	 ("relachement	 en	 "	 +	 ev.getX()	 +	 "	 "	 +

ev.getY())	;

	}

	})	;

}

}

public	class	Clic4

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

239

fen.setVisible(true)	;

}

}

240

101	Écouteurs	de	clics	de	plusieurs
fenêtres

Écrire	un	programme	qui	crée	plusieurs	fenêtres	(de	type	JFrame)	repérées	par	un
numéro	et	qui	détecte	les	événements	"appui"	et	"relâchement"	de	la	souris	associés
à	 chacune	 de	 ces	 fenêtres.	On	 signalera	 chaque	 événement	 en	 affichant	 en	 fenêtre
console	un	message	précisant	sa	nature	(appui	ou	relâchement),	le	numéro	de	fenêtre
et	les	coordonnées	correspondantes.
On	proposera	deux	solutions	:
1.	chaque	fenêtre	est	son	propre	écouteur	de	souris,
2.	 chaque	 fenêtre	 dispose	 d’un	 objet	 écouteur	 d’une	 classe	 implémentant
l’interface	MouseAdapter.

Notez	qu’il	s’agit	de	la	généralisation	de	l’exercice	à	plusieurs	fenêtres.

On	 va	 donc	 être	 amené	 à	 créer	 une	 classe	 spécialisée	 (ici	MaFenetre)	 dérivée	 de
JFrame.	Il	est	préférable	que	le	nombre	de	fenêtres	à	créer	ne	soit	pas	imposé	par	la
classe.	 Ici,	 il	 est	 fixé	par	 une	 constante	 (nFen=3)	 définie	dans	 la	méthode	main.	 En
revanche,	 le	 constructeur	 de	MaFenetre	 devra	 être	 en	mesure	 d’attribuer	 un	 numéro
différent	 à	 chaque	 fenêtre,	 numéro	 qui	 se	 retrouvera	 dans	 son	 titre	 et	 surtout	 dans	 le
message	 correspondant	 aux	 événements	 signalés.	 Pour	 ce	 faire,	 nous	 comptons
simplement	 les	 objets	 du	 type	 MaFenetre	 en	 employant	 une	 variable	 de	 classe
(statique)	nbFen,	initialisée	à	zéro	et	incrémentée	à	chaque	création	d’un	nouvel	objet.
Un	champ	num	sert	à	conserver	le	numéro	attribué	à	une	fenêtre	donnée.
Comme	 chaque	 fenêtre	 est	 son	 propre	 écouteur,	 les	 méthodes	 mousePressed	 et
mouseReleased	 accèdent	 directement	 au	 champ	 num	 pour	 en	 afficher	 la	 valeur,	 en
même	temps	que	les	coordonnées	du	clic.

import	javax.swing.*	;						//	pour	JFrame

import	java.awt.event.*	;			//	pour	MouseEvent	et	MouseListener

class	MaFenetre	extends	JFrame	implements	MouseListener

{	public	MaFenetre	()

{	nbFen++	;

241

num	=	nbFen	;

setTitle	("Fenetre	numero	"	+	num)	;

setBounds	(10,	20,	300,	200)	;

addMouseListener	(this)	;

}

public	void	mousePressed	(MouseEvent	ev)

{	System.out.println	("appui	dans	fen	num	"	+	num

	+	"	en	"	+	ev.getX()	+	"	"	+	ev.getY())	;

}

public	void	mouseReleased(MouseEvent	ev)

{	System.out.println	("relachement	dans	fen	num	"	+	num

	+	"	en	"	+	ev.getX()	+	"	"	+	ev.getY())	;

}

public	void	mouseClicked(MouseEvent	ev)	{}

public	void	mouseEntered	(MouseEvent	ev)	{}

public	void	mouseExited	(MouseEvent	ev)	{}

private	static	int	nbFen=0	;

private	int	num	;

}

public	class	ClicI1

{	public	static	void	main	(String	args[])

{	final	int	nFen	=	3	;

for	(int	i=0	;	i<nFen	;	i++)

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible(true)	;

}

}

}

appui	dans	fen	num	1	en	121	82

relachement	dans	fen	num	1	en	121	82

appui	dans	fen	num	1	en	168	91

relachement	dans	fen	num	1	en	456	155

appui	dans	fen	num	2	en	228	137

relachement	dans	fen	num	2	en	228	137

appui	dans	fen	num	3	en	152	169

relachement	dans	fen	num	3	en	152	169

appui	dans	fen	num	3	en	112	121

relachement	dans	fen	num	3	en	-23	41

appui	dans	fen	num	2	en	89	119

242

relachement	dans	fen	num	2	en	89	119

Pour	numéroter	 les	 fenêtres,	nous	employons	 la	même	démarche	que	dans	 la	 solution
précédente	(champ	statique	nbFen	et	champ	num	dans	la	classe	MaFenetre).
En	 revanche,	 cette	 fois,	 les	 objets	 écouteurs	 sont	 d’une	 classe	distincte	de	 la	 fenêtre
(nommée	ici	Ecout).	Il	faut	donc	que	chaque	objet	écouteur	dispose	d’une	information
lui	 permettant	 d’identifier	 la	 fenêtre	 à	 laquelle	 il	 est	 associé.	 Une	 façon	 de	 faire
consiste	à	fournir	ce	numéro	au	constructeur	de	l’objet	écouteur	et	à	le	conserver	dans
un	champ	(ici	num).

import	javax.swing.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame

{	public	MaFenetre	()

{	nbFen++	;

num	=	nbFen	;

setTitle	("Fenetre	numero	"	+	num)	;

setBounds	(10,	20,	300,	200)	;

addMouseListener	 (new	 Ecout(num))	 ;	 	 //	 chaque	 fenetre	 a	 son

propre	ecouteur

}

private	static	int	nbFen	=	0	;

private	int	num	;

}

class	Ecout	extends	MouseAdapter

{	public	Ecout	(int	num)

{	this.num	=	num	;

}

public	void	mousePressed	(MouseEvent	ev)

{	System.out.println	("appui	dans	fen	num	"	+	num

	+	"	en	"	+	ev.getX()	+	"	"	+	ev.getY())	;

}

public	void	mouseReleased	(MouseEvent	ev)

{	System.out.println	("relachement	dans	fen	num	"	+	num

	+	"	en	"	+	ev.getX()	+	"	"	+	ev.getY())	;

}

private	 int	 num	 ;	 	 	 //	 numero	 de	 la	 fenetre	 ecoutee	 public	 void

mousePressed

243

(MouseEvent	ev)

}

public	class	ClicI2

{	public	static	void	main	(String	args[])

{	final	int	nFen	=	3	;

for	(int	i=0	;	i<nFen	;	i++)

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible(true)	;

}

}

}

244

102	Écouteur	commun	à	plusieurs
fenêtres

Écrire	un	programme	qui	crée	plusieurs	fenêtres	(de	type	JFrame)	et	qui	détecte	les
événements	 "appui"	 et	 "relâchement"	 de	 la	 souris	 associés	 à	 chacune	 de	 ces
fenêtres.	On	signalera	chaque	événement	en	affichant	en	fenêtre	console	un	message
précisant	 sa	 nature	 (appui	 ou	 relâchement)	 et	 les	 coordonnées	 correspondantes
(notez	bien	qu’ici,	on	ne	cherche	plus	à	afficher	un	numéro	de	fenêtre).
On	proposera	une	solution	avec	un	seul	objet	écouteur	pour	toutes	les	fenêtres.

Pour	numéroter	les	fenêtres,	nous	utiliserons	la	même	démarche	que	dans	l’exercice	94.
Cette	fois,	contrairement	à	ce	qui	se	passait	dans	la	deuxième	solution	de	l’exercice	94,
on	souhaite	disposer	d’un	seul	objet	écouteur	commun	à	toutes	les	fenêtres.	Il	doit	donc
être	 créé	 avant	 toute	 fenêtre.	 Pour	 y	 parvenir,	 nous	 pouvons	 utiliser	 dans	 la	 classe
MaFenetre	un	bloc	d’initialisation	statique	(bloc	 introduit	par	 le	mot	clé	static)	dont
on	sait	qu’il	est	exécuté	avant	toute	création	d’objet.	Bien	entendu,	nous	faisons	alors
de	la	référence	à	l’écouteur	(ec)	un	champ	de	classe	(static).

import	javax.swing.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame

{

public	MaFenetre	()				//	constructeur

{	nbFen++	;

num	=	nbFen	;

setTitle	("Fenetre	numero	"	+	num)	;

setBounds	(10,	20,	300,	200)	;

addMouseListener	(ec)	;

}

private	int	num	;

private	static	Ecout	ec	;

static			//	bloc	statique	execute	avant	l'instanciation	d'un	objet

du	type

245

{	ec	=	new	Ecout()	;

}

private	static	int	nbFen	=	0	;

}

class	Ecout	extends	MouseAdapter

{	public	void	mousePressed	(MouseEvent	ev)

{	System.out.println	("appui	en	"	+	ev.getX()	+	"	"	+	ev.getY())	;

}

public	void	mouseReleased	(MouseEvent	ev)

{	 System.out.println	 ("relachement	 en	 "	 +	 ev.getX()	 +	 "	 "	 +

ev.getY())	;

}

private	int	num	;			//	numero	de	la	fenetre	ecoutee

public	class	ClicI3

{	public	static	void	main	(String	args[])

{	final	int	nFen	=	3	;

for	(int	i=0	;	i<nFen	;	i++)

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible(true)	;

}

}

}

Ici,	on	ne	demandait	pas	d’afficher	 le	numéro	de	 fenêtre.	Pour	y	parvenir,	 il	 faudrait
tenir	compte	de	ce	que	l’objet	écouteur	est	commun	à	 toutes	 les	fenêtres.	On	pourrait
par	 exemple	 identifier	 la	 source	 de	 l’événement	 avec	 la	 méthode	 getSource	 de	 la
classe	mouseEvent,	ce	qui	nous	fournirait	la	référence	de	la	fenêtre	correspondante.	Il
faudrait	ensuite	disposer	d’un	moyen	permettant	de	lui	faire	correspondre	le	numéro	de
fenêtre,	ce	qui	nécessiterait	d’accéder	à	une	liste	des	références	de	fenêtres.

246

103	Création	de	boutons	et	choix	d’un
gestionnaire	FlowLayout

Écrire	 un	 programme	 qui	 crée	 une	 fenêtre	 (JFrame)	 et	 qui	 y	 affiche	 n	 boutons
portant	les	étiquettes	BOUTON1,	BOUTON2…	disposés	comme	dans	cet	exemple	:

La	valeur	de	n	sera	lue	au	claviera.

a.	On	pourra	utiliser	la	méthode	lireInt	de	la	classe	Clavier	fournie	sur	le	site	Web	d’accompagnement	et	dont	la	liste
figure	en	Annexe	D.

Pour	créer	les	boutons,	nous	transmettons	à	leur	constructeur	l’étiquette	qu’on	souhaite
y	 voir	 figurer	 ;	 ici,	 il	 s’agira	 de	 la	 concaténation	 de	 la	 chaîne	 "BOUTON"	 avec	 le
numéro	du	bouton.
Rappelons	qu’on	ajoute	un	composant	(tel	un	bouton),	non	pas	directement	à	un	objet
fenêtre	(type	JFrame	ou	dérivé),	mais	à	son	contenu	(objet	de	type	Container)	dont	on
obtient	la	référence	à	l’aide	de	la	méthode	getContentPane	de	la	classe	JFrame.
Par	 ailleurs,	 ici,	 on	 ne	 peut	 pas	 se	 contenter	 d’utiliser	 le	 gestionnaire	 par	 défaut	 de
JFrame	 qui	 est	 de	 type	 BorderLayout	 (il	 ne	 permet	 de	 placer	 qu’au	 maximum	 5
composants).	 Il	 faut	 utiliser	 un	 gestionnaire	 de	 type	 FlowLayout.	 Le	 choix	 d’un
gestionnaire	 se	 fait	 à	 l’aide	 de	 la	 méthode	 setLayout	 qu’on	 applique	 là	 encore	 au
contenu	de	la	fenêtre,	et	à	laquelle	on	transmet	en	argument	la	référence	d’un	objet	du
type	voulu.

import	javax.swing.*	;

247

import	java.awt.*	;

class	FenBoutons	extends	JFrame

{

public	FenBoutons	(int	nBout)

{	setTitle	("BOUTONS")	;

setSize	(200,	150)	;

Container	contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

for	(int	i=0	;	i<nBout	;	i++)

{	unBouton	=	new	JButton	("BOUTON"+(i+1))	;

contenu.add(unBouton)	;

}

}

private	JButton	unBouton	;

}

public	class	Boutons

{	public	static	void	main	(String	args[])

{	System.out.print	("Combien	de	boutons	?	")	;

int	nBoutons	=	Clavier.lireInt()	;

FenBoutons	fen	=	new	FenBoutons(nBoutons)	;

fen.setVisible(true)	;

}

}

Ici,	 nous	 n’avons	 pas	 conservé	 la	 référence	 de	 chacun	 des	 boutons	 créés	 ;	 celle-ci
n’aura	figuré	que	temporairement	dans	la	variable	unBouton.

248

104	Gestion	de	plusieurs	boutons
d’une	fenêtre	avec	un	seul	écouteur

Adapter	 le	 programme	 de	 l’exercice	 96	 pour	 qu’il	 détecte	 les	 actions	 sur	 les
différents	boutons.
On	proposera	deux	solutions	:
1.	 la	 fenêtre	 est	 l’écouteur	 de	 tous	 les	 boutons	 et	 on	 recourt	 à	 getSource	 pour
identifier	le	bouton	concerné	;	chaque	action	sur	un	bouton	affiche	son	numéro	en
fenêtre	console	comme	dans	cet	exemple	:
Combien	de	boutons	?	5

Action	sur	bouton	1

Action	sur	bouton	4

Action	sur	bouton	5

Action	sur	bouton	5

Action	sur	bouton	3

2.	on	utilise	un	objet	écouteur	 (unique)	différent	de	 la	 fenêtre	et	on	 recourt	à	 la
méthode	getActionCommand	 pour	 identifier	 le	 bouton	 concerné	 ;	 chaque	 action
sur	 un	 bouton	 affiche	 en	 fenêtre	 console	 une	 ligne	 formée	 d’un	 nombre
d’astérisques	égal	au	numéro	du	bouton,	comme	dans	cet	exemple	d’exécution	:
Combien	de	boutons	?	5

*

**

Dans	la	classe	FenBoutons,	nous	devons	donc	implémenter	l’interface	ActionListener
en	définissant	la	méthode	actionPerformed.	Comme	l’énoncé	nous	impose	de	recourir
à	 la	méthode	getSource	 de	 la	 classe	ActionEvent	 (elle	 fournit	 la	 référence	 à	 l’objet
source	 de	 l’événement),	 il	 nous	 faut	 conserver	 les	 références	 des	 différents	 boutons
dans	l’objet	fenêtre.	Pour	ce	faire,	nous	y	introduisons	un	tableau	de	références	à	des
boutons	(boutons).

249

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	FenBoutons	extends	JFrame	implements	ActionListener

{	public	FenBoutons	(int	nBout)

{	this.nBout	=	nBout	;

setTitle	("BOUTONS")	;

setSize	(200,	150)	;

Container	contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

boutons	=	new	JButton	[nBout]	;

for	(int	i=0	;	i<nBout	;	i++)

{	boutons[i]	=	new	JButton	("BOUTON"+(i+1))	;

contenu.add(boutons[i])	;

boutons[i].addActionListener	(this)	;

}

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

for	(int	i=0	;	i<nBout	;	i++)

if	(source	==	boutons[i])

System.out.println	("Action	sur	bouton	"	+	(i+1))	;

}

private	int	nBout	;

private	JButton[]	boutons	;

}

public	class	Boutons1

{	public	static	void	main	(String	args[])

{	System.out.print	("Combien	de	boutons	?	")	;

int	nBoutons	=	Clavier.lireInt()	;

FenBoutons	fen	=	new	FenBoutons(nBoutons)	;

fen.setVisible(true)	;

}

}

1.	Dans	la	méthode	actionPerformed,	la	boucle	de	recherche	de	la	source	n’est	pas

250

optimisée	puisqu’elle	se	poursuit	lorsqu’on	a	identifié	la	source.
2.	 Notez	 la	 comparaison	 (légale)	 source	 ==	 boutons[i]	 qui	 fait	 intervenir	 un
opérande	de	type	Object	et	un	opérande	de	type	JButton.	Le	second	est	simplement
converti	en	Object,	ce	qui	ne	modifie	pas	la	valeur	de	la	référence	correspondante.
Comme	ici	nous	sommes	certains	que	la	source	est	de	type	JButton,	nous	aurions	pu
également	procéder	ainsi	:

JButton	source	=	(JButton)	e.getSource()	;

for	(int	i=0	;	i<nBout	;	i++)

	if	(source	==	boutons[i])	…

Ici,	 nous	 faisons	 en	 sorte	 que	 le	 programme	 permette	 facilement	 la	 modification	 du
préfixe	 (ici	BOUTON)	 de	 l’étiquette	 associée	 aux	 boutons.	 Celui-ci	 est	 défini	 en	 un
seul	endroit	du	constructeur	de	la	fenêtre	(prefixeBouton).
Cette	fois,	l’écouteur	est	un	objet	d’une	classe	distincte	de	celle	de	la	fenêtre,	nommée
Ecout.	Elle	définit	la	méthode	actionListener	en	y	retrouvant	la	"chaîne	de	commande"
associée	 à	 l’action.	 Rappelons	 que,	 par	 défaut,	 celle-ci	 n’est	 rien	 d’autre	 que
l’étiquette	du	bouton.	En	extrayant	la	fin	de	cette	chaîne,	nous	obtenons	une	sous-chaîne
correspondant	au	numéro	et	nous	la	convertissons	en	un	entier	par	Integer.parseInt.
Notez	qu’ici	nous	avons	dû	prévoir	un	constructeur	pour	la	classe	Ecout	dans	 le	seul
but	d’y	récupérer	le	préfixe	des	étiquettes	des	boutons.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	FenBoutons	extends	JFrame

{	public	FenBoutons	(int	nBout)

{	final	String	prefixeBouton	=	"BOUTON"	;

this.nBout	=	nBout	;

setTitle	("BOUTONS")	;

setSize	(200,	150)	;

Container	contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

boutons	=	new	JButton	[nBout]	;

Ecout	ecouteur	=	new	Ecout	(prefixeBouton)	;

for	(int	i=0	;	i<nBout	;	i++)

{	boutons[i]	=	new	JButton	(prefixeBouton	+	(i+1))	;

contenu.add(boutons[i])	;

251

boutons[i].addActionListener	(ecouteur)	;

}

}

private	int	nBout	;

private	JButton[]	boutons	;

}

class	Ecout	implements	ActionListener

{	public	Ecout	(String	prefixe)

{	this.prefixe	=	prefixe	;

}

public	void	actionPerformed	(ActionEvent	e)

{	String	commande	=	e.getActionCommand	()	;

String	chNum	=	commande.substring	(prefixe.length())	;

int	num	=	Integer.parseInt(chNum)	;

for	(int	i=0	;	i<num	;	i++)

System.out.print("*")	;

System.out.println	()	;

}

private	String	prefixe	;

}

public	class	Boutons2

{	public	static	void	main	(String	args[])

{	System.out.print	("Combien	de	boutons	?	")	;

int	nBoutons	=	Clavier.lireInt()	;

FenBoutons	fen	=	new	FenBoutons(nBoutons)	;

fen.setVisible(true)	;

}

}

Au	 lieu	 de	 chercher	 à	 extraire	 un	 numéro	 de	 bouton	 de	 son	 étiquette,	 nous	 aurions
également	pu	modifier	 la	 chaîne	de	commande	de	chacun	des	boutons,	 en	utilisant	 la
méthode	setActionCommand	:

boutons[i].setActionCommand	(String.valueOf(i+1))	;

La	classe	Ecout	pourrait	se	présenter	ainsi	(elle	n’aurait	plus	besoin	de	constructeur)	:
class	Ecout	implements	ActionListener

{	public	void	actionPerformed	(ActionEvent	e)

{	String	commande	=	e.getActionCommand	()	;

252

int	num	=	Integer.parseInt(commande)	;

for	(int	i=0	;	i<num	;	i++)

System.out.print("*")	;

System.out.println	()	;

}

}

Le	programme	complet	ainsi	modifié	figure	sur	le	site	Web	d’accompagnement	sous	le
nom	Boutonsb.java.

253

105	Synthèse	:	création	et	suppression	de
boutons	(1)

Écrire	un	programme	qui	 affiche	une	 fenêtre	comportant	deux	boutons	d’étiquettes
"CREATION"	et	"SUPPRESSION"	placés	respectivement	en	haut	et	en	bas.
Chaque	action	sur	le	bouton	CREATION	conduira	à	la	création	d’un	bouton	jaune	à
l’intérieur	 de	 la	 fenêtre.	 Chaque	 action	 sur	 l’un	 des	 boutons	 de	 la	 fenêtre	 le
"sélectionnera"	(s’il	ne	l’est	pas	déjà)	ou	le	"désélectionnera"	(s’il	 l’est	déjà).	On
visualisera	 un	 bouton	 sélectionné	 en	 le	 colorant	 en	 rouge.	 Chaque	 action	 sur	 le
bouton	SUPPRESSION	supprimera	tous	les	boutons	sélectionnés	(rouges).
Les	boutons	seront	numérotés	dans	l’ordre	de	leur	création.	On	ne	réutilisera	pas	les
numéros	des	boutons	supprimés.

Par	 souci	 de	 simplicité,	 on	 fournira	 au	 constructeur	 de	 la	 fenêtre	 le	 nombre
maximum	de	boutons	susceptibles	d’être	créés.

Comme	 le	 suggère	 l’image	 fournie	 dans	 l’énoncé,	 les	 deux	 boutons	 CREATION	 et
SUPPRESSION	peuvent	être	disposés	dans	la	fenêtre	en	utilisant	son	gestionnaire	par
défaut	de	type	BorderLayout.	Il	suffira	simplement	de	préciser	les	paramètres	"North"
et	"South".	En	revanche,	les	boutons	gérés	dynamiquement	devront	être	placés	dans	un
panneau	distinct	qu’on	placera	au	centre	de	la	fenêtre	(option	par	défaut	de	la	méthode
add).	 Le	 gestionnaire	 par	 défaut	 d’un	 panneau	 est	 de	 type	FlowLayout,	 ce	 qui	 nous
conviendra	ici.

254

Nous	faisons	de	la	fenêtre	l’écouteur	de	tous	les	boutons.	Comme	il	est	nécessaire	de
conserver	 une	 information	 de	 couleur	 pour	 chacun	 des	 boutons	 dynamiques,	 nous
prévoyons	 à	 cet	 effet	 un	 tableau	 boutons	 comportant	 les	 références	 des	 boutons
dynamiques	et	un	tableau	boutSelec	contenant	une	information	booléenne	de	sélection.
Ces	deux	tableaux	auront	une	taille	fournie	lors	de	l’appel	du	constructeur	de	la	fenêtre.
Chaque	fois	qu’on	modifie	le	contenu	du	panneau,	soit	en	ajoutant	un	nouveau	bouton,
soit	en	supprimant	les	boutons	sélectionnés,	on	fait	appel	à	sa	méthode	validate,	afin	de
forcer	 son	 gestionnaire	 de	 mise	 en	 forme	 à	 recalculer	 les	 positions	 des	 différents
composants.	En	revanche,	cet	appel	n’est	pas	nécessaire	lors	de	la	modification	de	la
couleur	d’un	bouton	(par	setBackground)	car	il	est	alors	réalisé	automatiquement.
Nous	utilisons	classiquement	une	variable	statique	nBout	pour	numéroter	nos	boutons.
On	notera	que	le	premier	bouton	porte	le	numéro	1,	alors	qu’il	correspond	à	l’indice	0
dans	les	tableaux	boutons	et	boutSelec.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	FenBoutDyn	extends	JFrame	implements	ActionListener

{	public	FenBoutDyn	(int	nBoutMax)

{	setTitle	("Creation	-	suppression	de	boutons	(maxi	"	+	nBoutMax	+

")")	;

setSize	(500,	180)	;

Container	contenu	=	getContentPane()	;

creation	=	new	JButton	("CREATION")	;

contenu.add	(creation,	"North")	;

creation.addActionListener	(this)	;

suppression	=	new	JButton	("SUPPRESSION")	;

contenu.add	(suppression,	"South")	;

suppression.addActionListener	(this)	;

pan	=	new	JPanel	()	;

contenu.add	(pan)	;				//	au	centre	par	defaut

boutons	=	new	JButton	[nBoutMax]	;

boutSelec	=	new	boolean	[nBoutMax]	;

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

255

if	(source	==	creation)

{	boutons[nBout]	=	new	JButton	("BOUTON	"	+	(nBout+1))	;

boutons[nBout].setBackground	(Color.yellow)	;

boutSelec[nBout]	=	false	;

pan.add	(boutons[nBout])	;

boutons[nBout].addActionListener	(this)	;

pan.validate();	//	pour	forcer	le	recalcul	par	le	gestionnaire

nBout++	;

}

if	(source	==	suppression)

{	for	(int	i=0	;	i<nBout	;	i++)

if	(boutSelec[i])	pan.remove(boutons[i]);	;

pan.validate()	;

}

for	(int	i=0	;	i<nBout	;	i++)

{	if	(source	==	boutons[i])

if	(boutSelec[i])

	{	boutSelec[i]	=	false	;

	boutons[i].setBackground(Color.yellow)	;

	}

	else

	{	boutSelec[i]	=	true	;

	boutons[i].setBackground	(Color.red)	;

	}

}

}

private	JButton	creation,	suppression	;

private	JPanel	pan	;

private	static	int	nBout	=	0	;

private	JButton	[]	boutons	;

private	boolean[]	boutSelec	;

}

public	class	CrSuprB

{	public	static	void	main	(String	args[])

{	FenBoutDyn	fen	=	new	FenBoutDyn(50)	;

fen.setVisible(true)	;

}

256

}

257

106	Synthèse	:	création	et
suppression	de	boutons	(2)

Écrire	 un	 programme	 qui	 affiche	 une	 fenêtre	 comportant	 deux	 boutons	 placés
respectivement	en	haut	et	en	bas.	Chaque	action	sur	l’un	de	ces	boutons	conduira	à
la	création	d’un	bouton	à	l’intérieur	de	la	fenêtre.	Le	bouton	du	haut	créera	des	"gros
boutons"	tandis	que	celui	du	bas	créera	des	boutons	plus	petits.
Les	gros	boutons	afficheront	 le	nombre	de	 fois	où	 l’on	a	 agit	 sur	 eux.	Lorsque	ce
nombre	atteindra	5,	ils	seront	supprimés	de	la	fenêtre.
Les	petits	boutons	seront	supprimés	dès	la	première	fois	où	l’on	agit	sur	eux.

Les	écouteurs	des	gros	et	des	petits	boutons	devront	être	distincts	de	la	fenêtre.

Comme	 le	 suggère	 l’image	 fournie	 dans	 l’énoncé,	 les	 deux	 boutons	 marqués	 GROS
BOUTON	et	 PETIT	BOUTON	peuvent	 être	 disposés	 dans	 la	 fenêtre	 en	 utilisant	 son
gestionnaire	 par	 défaut	 de	 type	BorderLayout.	 Il	 suffira	 simplement	 de	 préciser	 les
paramètres	"North"	et	"South".	En	revanche,	les	boutons	gérés	dynamiquement	devront
être	placés	dans	un	panneau	distinct	qu’on	placera	au	centre	de	la	fenêtre	(option	par
défaut	 de	 la	 méthode	 add).	 Le	 gestionnaire	 par	 défaut	 d’un	 panneau	 est	 de	 type
FlowLayout,	ce	qui	nous	conviendra	ici.
Comme	 l’énoncé	 ne	 nous	 impose	 pas	 de	 contraintes	 particulières,	 nous	 ferons	 de	 la
fenêtre	l’écouteur	de	ces	deux	boutons.

258

En	ce	qui	concerne	les	boutons	gérés	dynamiquement,	l’énoncé	nous	impose	d’utiliser
un	écouteur	distinct	de	la	fenêtre.	La	solution	la	plus	simple	consiste	alors	à	créer	deux
classes	 d’écouteurs	 différentes	 :	 EcouteGrosBouton	 et	 EcoutePetitBouton.	 Il	 est
nécessaire	d’associer	à	chaque	gros	bouton	une	information	correspondant	au	nombre
d’actions	 ;	 dans	 ces	 conditions,	 il	 est	 préférable	 d’utiliser	 un	 objet	 écouteur	 (de	 la
classe	 EcouteGrosBouton)	 pour	 chacun.	 En	 revanche,	 aucune	 information	 n’est	 à
mémoriser	pour	 les	petits	 boutons,	 de	 sorte	qu’on	pourra	 se	 contenter	de	 les	 écouter
tous	avec	le	même	objet	écouteur	(de	type	EcoutePetitBouton).
Notez	 qu’ici,	 contrairement	 à	 ce	 qui	 se	 produisait	 dans	 l’exercice	 105,	 il	 n’est	 pas
nécessaire	de	conserver	 les	 références	des	boutons	du	panneau.	Par	 contre,	 il	 faudra
que	 les	 écouteurs	des	boutons	dynamiques	disposent	de	 la	 référence	du	panneau	 ;	on
pourra	la	fournir	à	leur	constructeur.
La	 taille	 des	 gros	 boutons	 et	 celle	 des	 petits	 boutons	 sera	 imposée	 à	 l’aide	 de	 la
méthode	setPreferredSize	de	la	classe	JButton.	Elle	nécessite	en	argument	un	objet	de
type	Dimension	dont	on	fournit	les	valeurs	en	argument	de	son	constructeur.	Rappelons
que	 cette	 information	 est	 exploitée	 correctement	 par	 un	 gestionnaire	 de	 type
FlowLayout,	mais	qu’il	n’en	va	pas	de	même	pour	 tous	 les	gestionnaires	de	mise	en
forme.

import	javax.swing.*	;	import	java.awt.*	;	import	java.awt.event.*	;

class	FenBoutDyn	extends	JFrame	implements	ActionListener

{	public	static	Dimension	dimPetitBouton	=	new	Dimension	(70,	30),

dimGrosBouton	=	new	Dimension	(110,	50)	;

public	static	String	etiqCompt	=	"COMPTE	=	"	;

public	FenBoutDyn	()

{	setTitle	("Gros	et	Petits	Boutons")	;

setSize	(500,	200)	;

Container	contenu	=	getContentPane()	;

grosBouton	=	new	JButton	("GROS	BOUTON")	;

contenu.add	(grosBouton,	"North")	;

grosBouton.addActionListener	(this)	;

petitBouton	=	new	JButton	("PETIT	BOUTON")	;

contenu.add	(petitBouton,	"South")	;

petitBouton.addActionListener	(this)	;

pan	=	new	JPanel	()	;

contenu.add	(pan)	;				//	au	centre	par	defaut

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

259

if	(source	==	grosBouton)

{	JButton	bouton	=	new	JButton	(etiqCompt)	;

pan.add	(bouton)	;

bouton.addActionListener	(new	EcoutGrosBouton	(pan,	etiqCompt))	;

bouton.setPreferredSize	(dimGrosBouton)	;

pan.validate()	;

}

if	(source	==	petitBouton)

{	JButton	bouton	=	new	JButton	("Petit")	;

pan.add	(bouton)	;

bouton.addActionListener	(new	EcoutePetitBouton	(pan))	;

bouton.setPreferredSize	(dimPetitBouton)	;

pan.validate()	;

}

}

private	JButton	petitBouton,	grosBouton	;

private	JPanel	pan	;

}

class	EcoutGrosBouton	implements	ActionListener

{	static	int	nMaxClics	=	5	;

public	EcoutGrosBouton	(JPanel	pan,	String	etiqCompt)

{	nActions	=	0	;

this.pan	=	pan	;

this.etiqCompt	=	etiqCompt	;

}

public	void	actionPerformed	(ActionEvent	e)

{	JButton	bouton	=	(JButton)e.getSource()	;

nActions++	;

if	(nActions	>=	nMaxClics)

{	pan.remove	(bouton)	;

pan.validate()	;

}

else

{	bouton.setText	(etiqCompt+nActions)	;

}

}

private	int	nActions	;

private	JPanel	pan	;

260

private	String	etiqCompt	;

}

class	EcoutePetitBouton	implements	ActionListener

{	public	EcoutePetitBouton	(JPanel	pan)

{	this.pan	=	pan	;

}

public	void	actionPerformed	(ActionEvent	e)

{	JButton	bouton	=	(JButton)e.getSource()	;

pan.remove	(bouton)	;

pan.validate()	;

}

private	JPanel	pan	;

}

public	class	GrosPetB

{	public	static	void	main	(String	args[])

{	FenBoutDyn	fen	=	new	FenBoutDyn()	;

fen.setVisible(true)	;

}

}

Dans	 certaines	 des	 méthodes	 actionPerformed,	 nous	 avons	 utilisé	 des	 conversions
explicites	de	e.getSource()	en	JButton	 car	 nous	 étions	 certains	du	 type	de	 la	 source.
Dans	un	programme	plus	complexe,	il	faudrait	parfois	être	plus	prudent.	Par	exemple,
on	pourrait	s’assurer	que	la	source	est	bien	de	type	JButton	en	utilisant	:
if	(source	instanceof	JButton)

261

107	Dessin	permanent	dans	une
fenêtre

Écrire	 un	 programme	 qui	 affiche	 en	 permanence	 dans	 une	 fenêtre	 un	 rectangle	 de
taille	donnée	et	ses	deux	diagonales,	comme	dans	cet	exemple	:

Rappelons	que	lorsqu’on	utilise	les	composants	Swing	de	Java	2,	la	démarche	la	plus
appropriée	 pour	 obtenir	 des	 dessins	 permanents	 dans	 une	 fenêtre	 (de	 type	 JFrame)
consiste	 à	 dessiner,	 non	 pas	 directement	 dans	 la	 fenêtre	 elle-même,	 mais	 dans	 un
panneau	(objet	de	type	JPanel)	placé	dans	cette	fenêtre.	Nous	créons	donc	ici	un	objet
d’une	 classe	 Panneau,	 dérivée	 de	 JPanel	 et	 nous	 l’ajoutons	 à	 la	 fenêtre	 par	 add.
Comme	 le	 gestionnaire	 par	 défaut	 de	 notre	 fenêtre	 est	 de	 type	 BorderLayout,	 nous
n’avons	pas	à	nous	préoccuper	de	la	taille	du	panneau1.
Il	 suffit	 alors	 de	 redéfinir	 la	méthode	 paintComponent	 du	 panneau	 en	 y	 plaçant	 les
instructions	 de	 dessin	 voulues.	Encore	 faut-il	 prendre	 soin	 d’appeler	 au	 préalable	 la
méthode	 paintComponent	 de	 la	 classe	 de	 base	 JPanel,	 laquelle	 dessine	 le	 fond	 du
panneau	(ce	qui	efface	donc	l’ancien).
Nous	 employons	 la	 méthode	 drawLine	 pour	 tracer	 les	 6	 segments	 de	 droite	 qui
constituent	la	figure	voulue2.

import	javax.swing.*	;	import	java.awt.*	;

class	MaFenetre	extends	JFrame

{	public	MaFenetre	()

{	setTitle	("Dessin	permanent")	;

262

setSize	(300,	150)	;

pan	=	new	Panneau	()	;	getContentPane().add(pan)	;

}

private	Panneau	pan	;

}

class	Panneau	extends	JPanel

{	private	static	final	int	x	=	30,	y	=	20,	l	=	120,	h	=	50	;

public	void	paintComponent	(Graphics	g)

{	super.paintComponent(g)	;		//

//	trace	du	rectangle

g.drawLine	(x,	y,	x+l,	y)	;

g.drawLine	(x+l,	y,	x+l,	y+h)	;

g.drawLine	(x+l,	y+h,	x,	y+h)	;

g.drawLine	(x,	y+h,	x,	y)	;

//	trace	des	diagonales

g.drawLine	(x,	y,	x+l,	y+h)	;

g.drawLine	(x,	y+h,	x+l,	y)	;

}

}

public	class	DesPer

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

Vous	 pourrez	 constater	 que	 le	 dessin	 (de	 taille	 fixe)	 subsiste,	 quelles	 que	 soient	 les
opérations	que	l’on	fait	subir	à	la	fenêtre.

Il	 peut	 être	 intéressant	de	voir	 ce	que	 fait	 ce	programme	 lorsqu’on	 supprime	 l’appel
super.paintComponent	dans	la	méthode	paintComponent.

263

108	Synthèse	:	dessin	permanent	et
changement	de	couleur

Adapter	le	programme	de	l’exercice	100,	de	façon	que	chaque	clic	(complet)	dans
la	fenêtre	en	modifie	la	couleur.	On	se	fixera	une	liste	de	quelques	couleurs	qu’on
parcourra	de	manière	cyclique.

Comme	le	panneau	couvre	toute	la	fenêtre,	un	clic	dans	la	fenêtre	a	en	fait	le	panneau
comme	 source.	 Il	 faut	 donc	 écouter	 les	 événements	 de	 type	MouseEvent	 ayant	 pour
source	le	panneau.	Ici,	nous	faisons	du	panneau	son	propre	écouteur,	ce	qui	facilite	la
définition	de	la	méthode	mouseClicked.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame

{	public	MaFenetre	()

{	setTitle	("Dessin	permanent")	;

setSize	(300,	150)	;

pan	=	new	Panneau	()	;

pan.addMouseListener	 (pan)	 ;	 	 //	 le	 panneau	 sera	 son	 propre

ecouteur

getContentPane().add(pan)	;

}

private	Panneau	pan	;

}

class	Panneau	extends	JPanel	implements	MouseListener

{	private	static	final	int	x	=	30,	y	=	20,	l	=	120,	h	=	50	;

private	static	final	Color[]	couleurs	=	{Color.yellow,	Color.blue,

	Color.green,	Color.red	}	;

public	void	paintComponent	(Graphics	g)

264

{	super.paintComponent(g)	;

//	trace	du	rectangle

g.drawLine	(x,	y,	x+l,	y)	;

g.drawLine	(x+l,	y,	x+l,	y+h)	;

g.drawLine	(x+l,	y+h,	x,	y+h)	;

g.drawLine	(x,	y+h,	x,	y)	;

//	trace	des	diagonales

g.drawLine	(x,	y,	x+l,	y+h)	;

g.drawLine	(x,	y+h,	x+l,	y)	;

}

public	void	mouseClicked	(MouseEvent	e)

{	setBackground	(couleurs[numCoul])	;

numCoul++	;

if	(numCoul	>=	couleurs.length)	numCoul	=	0	;

}

public	void	mousePressed	(MouseEvent	e)	{}

public	void	mouseReleased	(MouseEvent	e)	{}

public	void	mouseEntered	(MouseEvent	e)	{}

public	void	mouseExited	(MouseEvent	e)	{}

private	int	numCoul	=	0	;

}

public	class	DesCoul

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

1.	Initialement	le	panneau	est	peint	en	gris,	et	non	en	jaune.	Pour	qu’il	soit	jaune	dès
le	 début,	 il	 faudrait	 fixer	 la	 couleur	 de	 fond	 à	 couleur[0]	 par	 exemple	 lors	 de	 la
construction	du	panneau	et	fixer	numCoul	à	1	et	non	à	0.
2.	 Ici,	 il	n’est	pas	nécessaire	d’appeler	 la	méthode	repaint	 après	avoir	modifié	 la
couleur	 de	 fond	 du	 panneau	 car	 cela	 est	 fait	 automatiquement	 par	 la	 méthode
setBackground.	 Le	 programme	 modifié	 dans	 ce	 sens	 figure	 sur	 le	 site	 Web
d’accompagnement	sous	le	nom	DesCoul1.java.

265

109	Synthèse	:	dessin	permanent,
coloration	et	adaptation	à	la	taille
d’une	fenêtre

Écrire	un	programme	qui	affiche	en	permanence	dans	une	fenêtre	un	rectangle	et	ses
deux	diagonales	 ;	 les	dimensions	du	 rectangle	seront	déterminées	de	manière	à	ce
qu’il	soit	 toujours	situé	à	5	pixels	de	la	bordure	de	la	fenêtre.	Un	bouton	placé	en
haut	de	la	fenêtre	permettra	d’en	modifier	la	couleur	de	fond	;	un	autre	bouton	placé
en	bas	permettra	de	modifier	la	couleur	des	traits	du	dessin.

On	 se	 fixera	 une	 (seule)	 liste	 de	 quelques	 couleurs	 qu’on	 parcourra	 de	 manière
cyclique.

Nous	 conservons	 le	 gestionnaire	 par	 défaut	 de	 la	 fenêtre.	 Le	 dessin	 est	 fait	 dans	 un
panneau	 placé	 au	 centre	 et	 les	 deux	 boutons	 sont	 placés	 respectivement	 avec	 les
paramètres	"North"	et	"South".
Nous	écoutons	les	deux	boutons	dans	la	fenêtre	elle-même	et	nous	dotons	le	panneau	de
deux	méthodes	publiques	changeCoulFond	et	changeCoulTrait	 chargées	 de	modifier
les	couleurs.
Dans	changeCoulTrait,	il	ne	suffit	pas	de	modifier	la	couleur	d’avant-plan	du	panneau
(par	setForeground).	Il	faut	en	outre	forcer	le	dessin	par	appel	de	repaint.
Pour	 adapter	 la	 taille	du	dessin	 à	 la	 fenêtre	 (ou	plutôt	 au	panneau),	nous	utilisons	 la
méthode	getSize	qui	nous	fournit	les	dimensions	du	panneau	sous	forme	d’un	objet	de

266

type	Dimension.

import	javax.swing.*	;

import	java.awt.event.*	;

import	java.awt.*	;

class	MaFenetre	extends	JFrame	implements	ActionListener

{

public	MaFenetre	()

{	setTitle	("Dessin	et	Couleurs")	;

setSize	(300,	150)	;

Container	contenu	=	getContentPane()	;

pan	=	new	Panneau()	;

contenu.add(pan)	;

coulFond	=	new	JButton	("Couleur	fond")	;

contenu.add(coulFond,	"North")	;

coulFond.addActionListener	(this);

coulTrait	=	new	JButton	("Couleur	trait")	;

contenu.add	(coulTrait,	"South")	;

coulTrait.addActionListener	(this)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	if	(e.getSource()	==	coulFond)	pan.changeCoulFond()	;

if	(e.getSource()	==	coulTrait)	pan.changeCoulTrait()	;

}

private	int	numCouleur	;

private	JButton	coulFond,	coulTrait	;

private	Panneau	pan	;

}

class	Panneau	extends	JPanel

{	 final	 Color[]	 couleurs	 =	 {	 Color.red,	 Color.yellow,	 Color.blue,

Color.green,

	Color.gray,	Color.pink,	Color.cyan,	Color.white	}	;

public	void	paintComponent	(Graphics	g)

{	super.paintComponent	(g)	;

setBackground	(couleurs[numCoulFond])	;

setForeground	(couleurs[numCoulTrait])	;

Dimension	dim	=	getSize()	;

int	x	=	5,	y	=	5	;

267

int	l	=	dim.width,	h	=	dim.height	;

//	trace	du	rectangle

g.drawLine	(x,	y,	l-x,	y)	;

g.drawLine	(l-x,	y,	l-x,	h-y)	;

g.drawLine	(l-x,	h-y,	x,	h-y)	;

g.drawLine	(x,	h-y,	x,	y)	;

//	trace	des	diagonales

g.drawLine	(x,	y,	l-x,	h-y)	;

g.drawLine	(x,	h-y,	l-x,	y)	;

}

public	void	changeCoulFond()

{	numCoulFond++	;

if	(numCoulFond	>=	couleurs.length)	numCoulFond	=	0	;

repaint()	;

}

public	void	changeCoulTrait()

{	numCoulTrait++	;

if	(numCoulTrait	>=	couleurs.length)	numCoulTrait	=	0	;

repaint()	;

}

private	int	numCoulFond=0,	numCoulTrait=1	;

}

public	class	DesCoul2

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

Nous	 aurions	 pu	 ne	 pas	 appeler	 setBackground	 et	 setForeground	 dans
paintComponent	et	nous	contenter	:

–	d’appeler	setBackground	dans	changeCoulFond,
–	d’appeler	setForeground	et	repaint	dans	changeCoulTrait.

268

110	Dessin	à	la	volée

Écire	un	programme	qui	dessine	"au	vol"	dans	une	fenêtre	en	joignant	par	des	traits
les	différents	points	auquel	l’utilisateur	clique	:

Ici,	on	ne	cherchera	pas	à	assurer	la	permanence	du	dessin	qui	sera	effacé	dès	que
l’utilisateur	 déplace	 la	 fenêtre	 ou	modifie	 sa	 taille	 (on	 demande	 toutefois	 que	 cet
effacement	soit	toujours	complet).

Bien	 qu’il	 s’agisse	 de	 dessin	 au	 vol,	 nous	 travaillons	 sur	 un	 panneau.	 Cela	 nous
permettra	d’effacer	 la	 fenêtre	en	définissant	une	méthode	paintComponent	 réduite	 au
simple	appel	super.paintComponent.
Le	dessin	proprement	dit	 est	 réalisé	dans	 la	méthode	mouseClicked	 de	 l’écouteur	du
panneau	 (ici,	 le	 panneau	 lui-même).	 Rappelons	 que	 pour	 ce	 faire,	 il	 est	 nécessaire
d’obtenir	un	contexte	graphique	pour	 le	panneau	(getGraphics)	et	de	 le	 libérer	après
emploi	(dispose).
Pour	 traiter	 le	 premier	 clic	 différemment	des	 suivants,	 nous	 employons	un	 indicateur
booléen	(enCours)	qu’on	place	à	la	valeur	false	au	début	et	à	chaque	effacement	de	la
fenêtre.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame

{	public	MaFenetre	()

269

{	setTitle	("Crayon	magique")	;

setSize	(300,	150)	;

pan	=	new	Panneau	()	;

pan.addMouseListener	(pan)	;

getContentPane().add(pan)	;

}

private	Panneau	pan	;

}

class	Panneau	extends	JPanel	implements	MouseListener

{	public	void	paintComponent	(Graphics	g)

{	super.paintComponent(g)	;

enCours	=	false	;

}

public	void	mouseClicked	(MouseEvent	e)

{	int	xFin	=	e.getX()	;	yFin	=	e.getY()	;

if	(enCours)	{	Graphics	g	=	getGraphics()	;

	g.drawLine	(xDeb,	yDeb,	xFin,	yFin)	;

	g.dispose()	;

	}

xDeb	=	xFin	;	yDeb	=	yFin	;

enCours	=	true	;

}

public	void	mousePressed	(MouseEvent	e)	{}

public	void	mouseReleased	(MouseEvent	e)	{}

public	void	mouseEntered	(MouseEvent	e)	{}

public	void	mouseExited	(MouseEvent	e)	{}

private	boolean	enCours	=	false	;

private	int	xDeb,	yDeb,	xFin,	yFin	;

}

public	class	DesVol

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

270

Si	 l’énoncé	 n’avait	 pas	 imposé	 l’effacement	 de	 la	 fenêtre,	 nous	 aurions	 pu	 dessiner
directement	 dans	 la	 fenêtre	 en	 définissant	 la	 même	 méthode	mouseClicked	 dans	 un
écouteur	qui	aurait	pu	être	 la	 fenêtre	elle-même.	Le	dessin	aurait	 alors	pu	se	 trouver
effacé	 partiellement	 lors	 d’actions	 sur	 la	 fenêtre	 ;	 de	 plus	 la	 gestion	 de	 l’indicateur
enCours	n’aurait	plus	été	possible…

271

111	Synthèse	:	ardoise	magique	en
couleur

Adapter	le	programme	de	l’exercice,	de	manière	que	:

•	l’utilisateur	puisse	dessiner	plusieurs	lignes	brisées	(bouton	Nouvelle	ligne),

•	qu’il	puisse	effacer	le	contenu	de	la	fenêtre	(bouton	Effacer),

•	qu’il	puisse	choisir	à	chaque	instant	une	couleur	de	dessin	à	l’aide	d’un	bouton
placé	 à	 gauche	 ;	 on	 se	 fixera	 une	 liste	 de	 quelques	 couleurs	 (constantes	 de	 la
classe	Color)	 qu’on	 parcourra	 de	 façon	 cyclique	 ;	 le	 bouton	 de	 sélection	 sera
peint	dans	la	couleur	courante	:

Note	 :	 pour	 choisir	 la	 couleur	 de	 dessin	 d’un	 contexte	 graphique,	 on	 utilisera	 la
méthode	setColor	de	la	classe	Graphics.

Nous	 utilisons	 toujours	 un	 panneau	 pour	 dessiner.	 Les	 boutons	 sont	 placés
classiquement	dans	 la	 fenêtre	en	utilisant	 les	paramètres	"North",	"South"	et	"West".
Le	bouton	de	sélection	de	couleur	dispose	d’un	 titre	"vide"3	 et	 sa	couleur	est	 fixée	à
l’aide	de	sa	méthode	setBackground.
La	gestion	du	dessin	se	fait	là	encore	avec	un	indicateur	booléen	enCours	mais,	cette
fois,	 celui-ci	 doit	 être	 également	 réinitialisé	 à	 false	 lors	 de	 l’action	 sur	 le	 bouton
Nouvelle	Ligne.
Nous	avons	choisi	d’écouter	les	trois	boutons	dans	la	fenêtre	elle-même,	ce	qui	impose

272

un	 échange	 d’informations	 entre	 fenêtre	 et	 panneau.	 Pour	 ce	 faire,	 nous	 dotons	 notre
panneau	de	méthodes	publiques	setCoul,	nouvelleLigne	et	efface.
Nous	 faisons	 tout	 naturellement	 du	 panneau	 son	 propre	 écouteur	 de	 clics	 et	 nous
dessinons	"à	la	volée"	dans	la	méthode	mouseClicked.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame	implements	ActionListener

{	 public	 static	 Color[]	 couleurs	 =	 {Color.yellow,	 Color.red,

Color.blue,

Color.green,	Color.black,	Color.cyan	}	;

public	MaFenetre	()

{	setTitle	("Ardoise	magique")	;

setSize	(400,	180)	;

Container	contenu	=	getContentPane()	;

pan	=	new	Panneau	()	;

pan.addMouseListener	(pan)	;

contenu.add(pan)	;

boutNouv	=	new	JButton	("Nouvelle	ligne")	;

contenu.add(boutNouv,	"North")	;

boutNouv.addActionListener	(this)	;

boutEff	=	new	JButton	("Effacer")	;

contenu.add(boutEff,	"South")	;

boutEff.addActionListener	(this)	;

boutCoul	=	new	JButton	("")	;

contenu.add(boutCoul,	"West")	;

boutCoul.addActionListener	(this)	;

boutCoul.setBackground	(couleurs[numCoul])	;

pan.setCoul	(couleurs[numCoul])	;

}

public	void	actionPerformed	(ActionEvent	e)

{	if	(e.getSource()	==	boutCoul)

{	numCoul++	;

if	(numCoul	>=	couleurs.length)	numCoul	=	0	;

boutCoul.setBackground	(couleurs[numCoul])	;

273

pan.setCoul	(couleurs[numCoul])	;

}

if	(e.getSource()	==	boutNouv)

{	pan.nouvelleLigne()	;

}

if	(e.getSource()	==	boutEff)

{	pan.efface()	;

}

}

private	Panneau	pan	;

private	JButton	boutNouv,	boutEff,	boutCoul	;

private	int	numCoul	=	0	;

}

class	Panneau	extends	JPanel	implements	MouseListener

{	public	void	paintComponent	(Graphics	g)

{	super.paintComponent(g)	;

enCours	=	false	;

}

public	void	setCoul(Color	couleur)

{	this.couleur	=	couleur	;

}

public	void	nouvelleLigne()

{	enCours	=	false	;

}

public	void	efface	()

{	repaint()	;

}

public	void	mouseClicked	(MouseEvent	e)

{	int	xFin	=	e.getX()	;	yFin	=	e.getY()	;

if	(enCours)	{	Graphics	g	=	getGraphics()	;

	g.setColor	(couleur)	;

	g.drawLine	(xDeb,	yDeb,	xFin,	yFin)	;

	g.dispose()	;

	}

xDeb	=	xFin	;	yDeb	=	yFin	;

enCours	=	true	;

}

public	void	mousePressed	(MouseEvent	e)	{}

public	void	mouseReleased	(MouseEvent	e)	{}

274

public	void	mouseEntered	(MouseEvent	e)	{}

public	void	mouseExited	(MouseEvent	e)	{}

private	boolean	enCours	=	false	;

private	int	xDeb,	yDeb,	xFin,	yFin	;

private	Color	couleur	;

}

public	class	ArdMag

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

1.	En	revanche,	un	gestionnaire	de	 type	FlowLayout	 exploiterait	 la	 taille	de	ce	panneau	qui,	par	défaut,	 est	 très
petite.	Il	faudrait	alors	recourir	à	setPreferredSize.
2.	Le	tracé	du	rectangle	pourrait	s’effectuer	plus	facilement	avec	drawRect.
3.	Nous	aurions	pu	également	utiliser	un	constructeur	JButton	sans	arguments.

275

Chapitre	10

Les	principaux	contrôles	de	Swing

Connaissances	requises

•	Cases	à	cocher	(JCheckBox)	et	boutons	radio	(JRadioButton)	;
construction	;	événements	générés	:	Action	et	Item	(méthode	itemStateChanged
)	;	méthodes	isSelected	et	setSelected	;	groupes	de	boutons	radio	(ButtonGroup
)

•	Étiquettes	(JLabel)	;	construction	;	modification	de	libellé	(setText)

•	Champs	de	texte	(JTextField)	;	construction	;	méthodes	getText,	setEditable
et	setColumns	;	événements	générés	:	Action	et	Focus	(méthodes	focusGained
et	focusLost)	;	exploitation	fine	(interface	DocumentListener,	méthodes
insertUpdate,	removeUpdate	et	changedUpdate)

•	Boîtes	de	liste	(JList)	;	construction	et	choix	du	type	de	sélection	(simple,
multiple,	intervalle)	;	méthodes	getSelectedValue,	getSelectedValues,
getSelectedIndex	et	getSelectedIndices	;	événements	générés	:	ListSelection
(méthodes	valueChanged	et	getValueIsAdjusting)

•	Boîte	combo	(JComboBox)	;	construction	;	méthodes	setEditable	et
getSelectedIndex	;	événements	générés	:	Action,	Item	(méthode
itemStateChanged),	Focus	(méthodes	focusGained	et	focusLost)	;	évolution
dynamique	:	addItem,	addItemAt	et	removeItem

Note	:	les	boutons	(JButton)	ont	fait	l’objet	du	Chapitre	8.

276

112	Cases	à	cocher

Écrire	un	programme	qui	affiche	deux	boutons	marqués	RAZ	et	Etat	et	trois	cases	à
cocher,	de	la	façon	suivante	:

L’action	 sur	 le	 bouton	 Etat	 provoquera	 l’affichage	 en	 fenêtre	 console	 des	 cases
sélectionnées.	L’action	sur	RAZ	remettra	les	trois	cases	à	l’état	non	coché.	Enfin,	on
signalera	 en	 fenêtre	 console	 les	 événements	 de	 type	 Action	 et	 Item	 associés	 à
chacune	des	trois	cases	(en	précisant	la	source	concernée).

Nous	placerons	les	trois	cases	dans	un	panneau	associé	à	la	fenêtre.	Nous	faisons	de	la
fenêtre	 l’écouteur	 des	 boutons	 et	 des	 cases.	 Comme	 l’impose	 l’énoncé,	 nous
redéfinissons	à	la	fois	les	méthodes	actionPerformed	et	itemStateChanged.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	 MaFenetre	 extends	 JFrame	 implements	 ActionListener,

ItemListener

{	public	MaFenetre	()

{	setTitle	("Cases	a	cocher")	;

setSize	(300,	140)	;

Container	contenu	=	getContentPane	()	;

	//	les	deux	boutons

boutRaz	=	new	JButton	("RAZ")	;

277

boutRaz.addActionListener	(this)	;

contenu.add	(boutRaz,	"North")	;

boutEtat	=	new	JButton	("Etat")	;

boutEtat.addActionListener	(this)	;

contenu.add	(boutEtat,	"South")	;

	//	les	cases	a	cocher	dans	un	panneau

pan	=	new	JPanel	()	;

contenu.add	(pan)	;

cercle	=	new	JCheckBox	("Cercle")	;

pan.add	(cercle)	;

cercle.addActionListener	(this)	;

cercle.addItemListener	(this)	;

rectangle	=	new	JCheckBox	("Rectangle")	;

pan.add	(rectangle)	;

rectangle.addActionListener	(this)	;

rectangle.addItemListener	(this)	;

triangle	=	new	JCheckBox	("Triangle")	;

pan.add	(triangle)	;

triangle.addActionListener	(this)	;

triangle.addItemListener	(this)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	==	boutRaz)

{	cercle.setSelected	(false)	;

rectangle.setSelected	(false)	;

triangle.setSelected	(false)	;

}

if	(source	==	boutEtat)

{	System.out.print	("Cases	selectionnees	:	")	;

if	(cercle.isSelected())	System.out.print	("	cercle	")	;

if	(rectangle.isSelected())	System.out.print	("	rectangle	")	;

if	(triangle.isSelected())	System.out.print	("	triangle	")	;

System.out.println()	;

}

if	(source	==	cercle)	System.out.println	("Action	case	cercle")	;

if	 (source	 ==	 rectangle)	 System.out.println	 ("Action	 case

rectangle")	;

278

if	 (source	 ==	 triangle)	 System.out.println	 ("Action	 case

triangle")	;

}

public	void	itemStateChanged	(ItemEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	==	cercle)	System.out.println	("Item	case	cercle")	;

if	 (source	 ==	 rectangle)	 System.out.println	 ("Item	 case

rectangle")	;

if	 (source	 ==	 triangle)	 System.out.println	 ("Item	 case

triangle")	;

}

private	JButton	boutRaz,	boutEtat	;

private	JPanel	pan	;

private	JCheckBox	cercle,	rectangle,	triangle	;

}

public	class	Coches

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible(true)	;

}

}

Item	case	cercle

Action	case	cercle

Item	case	rectangle

Action	case	rectangle

Cases	selectionnees	:	cercle	rectangle

Item	case	cercle

Item	case	rectangle

Item	case	triangle

Item	case	cercle

Action	case	cercle

Item	case	rectangle

Action	case	rectangle

Cases	selectionnees	:	cercle	rectangle

On	 notera	 qu’à	 chaque	 événement	 Action	 relatif	 à	 une	 case	 à	 cocher	 correspond
toujours	un	événement	 Item.	La	 réciproque	est	 fausse	puisqu’un	événement	 Item	 peut
être	généré	suite	à	une	modification	par	programme	de	l’état	d’une	case	;	dans	ce	cas,
elle	ne	génère	pas	d’événement	Action.

279

Plusieurs	instructions	semblables	doivent	être	écrites	pour	chaque	case	à	cocher.	Si	le
nombre	 de	 cases	 devenait	 important,	 cela	 pourrait	 s’avérer	 fastidieux.	 Il	 serait	 alors
préférable	 de	 s’acheminer	 vers	 une	 solution	 plus	 concise	 telle	 que	 l’écriture	 de
méthodes	 (statiques)	 d’intérêt	 général,	 par	 exemple	 pour	 l’ajout	 d’une	 case	 de
référence	donnée	à	 la	 fenêtre.	On	pourrait	 aussi	 conserver	dans	 la	 fenêtre	un	 tableau
des	 références	 des	 cases	 ainsi	 qu’un	 tableau	 de	 chaînes	 correspondant	 à	 leurs
libellés…

280

113	Cases	à	cocher	en	nombre
quelconque

Généraliser	le	programme	de	l’exercice	105,	de	manière	que	le	nombre	de	cases	à
cocher	 puisse	 être	 quelconque	 et	 déterminé	 lors	 de	 l’appel	 du	 constructeur	 de	 la
fenêtre,	 auquel	 on	 fournira	 un	 tableau	de	 chaînes	 contenant	 les	 libellés	 à	 associer
aux	cases	:

Les	messages	en	fenêtre	console	continueront	de	repérer	une	case	à	cocher	par	son
libellé.

On	continue	naturellement	à	placer	les	cases	dans	un	panneau.	Les	différents	écouteurs
restent	 les	mêmes.	Mais,	cette	fois,	on	va	conserver	 les	références	des	cases	dans	un
tableau	 dont	 la	 taille	 est	 égale	 à	 celle	 du	 tableau	 de	 chaînes	 reçu	 en	 argument	 du
constructeur	de	la	fenêtre.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	 MaFenetre	 extends	 JFrame	 implements	 ActionListener,

ItemListener

{	public	MaFenetre	(String	libelles[])

{	setTitle	("Cases	a	cocher")	;	setSize	(400,	160)	;

Container	contenu	=	getContentPane	()	;

281

	//	les	deux	boutons

boutRaz	=	new	JButton	("RAZ")	;

boutRaz.addActionListener	(this)	;

contenu.add	(boutRaz,	"North")	;

boutEtat	=	new	JButton	("Etat")	;

boutEtat.addActionListener	(this)	;

contenu.add	(boutEtat,	"South")	;

	//	les	cases	a	cocher	dans	un	panneau

pan	=	new	JPanel	()	;	contenu.add	(pan)	;

this.libelles	=	libelles	;

nbCases	=	libelles.length	;

cases	=	new	JCheckBox	[nbCases]	;

for	(int	i=0	;	i<nbCases	;	i++)

{	cases[i]	=	new	JCheckBox	(libelles[i])	;

pan.add	(cases[i])	;

cases[i].addActionListener	(this)	;

cases[i].addItemListener	(this)	;

}

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	==	boutRaz)

for	(int	i=0	;	i<nbCases	;	i++)

cases[i].setSelected	(false)	;

if	(source	==	boutEtat)

{	System.out.print	("Cases	selectionnees	:	")	;

for	(int	i=0	;	i<nbCases	;	i++)

if	(cases[i].isSelected())	System.out.print	(libelles[i]+	"	")	;

System.out.println()	;

}

for	(int	i=0	;	i<nbCases	;	i++)

if	 (source	 ==	 cases[i])	 System.out.println	 ("Action	 case	 "	 +

libelles[i])	;

}

public	void	itemStateChanged	(ItemEvent	e)

{	Object	source	=	e.getSource()	;

for	(int	i=0	;	i<nbCases	;	i++)

if	 (source	 ==	 cases[i])	 System.out.println	 ("Item	 case	 "	 +

libelles[i])	;

}

282

private	JButton	boutRaz,	boutEtat	;

private	JPanel	pan	;

private	JCheckBox	cases[]	;

private	String	libelles[]	;

private	int	nbCases	;

}

public	class	Cochesb

{	public	static	void	main	(String	args[])

{	 String	 libelles[]	 =	 {"Cercle",	 "Rectangle",	 "Triangle",

"Pentagone",

	"Ellipse",	"Carre"}	;

MaFenetre	fen	=	new	MaFenetre(libelles)	;

fen.setVisible(true)	;

}

}

283

114	Boutons	radio	en	nombre
quelconque

Écrire	 un	 programme	 qui	 affiche	 un	 bouton	marqués	Etat	 et	 un	 (seul)	 groupe	 de
boutons	radio	de	la	façon	suivante	:

Les	 libellés	 des	 boutons	 radio	 seront	 fournis	 en	 argument	 du	 constructeur	 de	 la
fenêtre.
L’action	 sur	 le	 bouton	 Etat	 provoquera	 l’affichage	 en	 fenêtre	 console	 du	 libellé
associé	au	bouton	radio	sélectionné.	On	signalera	en	fenêtre	console	les	événements
de	type	Action	associés.

On	peut	facilement	adapter	le	programme	de	l’exercice	106,	en	remplaçant	les	objets
de	type	JCheckBox	par	des	objets	de	type	JRadioButton	et	en	supprimant	l’écoute	des
événements	 Item.	 Il	 faut	 simplement	 prendre	 soin	 de	 rattacher	 les	 différents	 boutons
radio	à	un	groupe	(objet	de	type	ButtonGroup),	afin	d’obtenir	le	comportement	attendu
d’un	groupe	:	la	sélection	d’un	des	boutons	du	groupe	désactive	tous	les	autres.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame	implements	ActionListener

{	public	MaFenetre	(String[]	libelles)

284

{	setTitle	("Boutons	radio")	;

setSize	(400,	160)	;

Container	contenu	=	getContentPane	()	;

boutEtat	=	new	JButton	("Etat")	;

boutEtat.addActionListener	(this)	;

contenu.add	(boutEtat,	"South")	;

	//	les	boutons	radio	dans	un	panneau

pan	=	new	JPanel	()	;

contenu.add	(pan)	;

this.libelles	=	libelles	;

nbBoutons	=	libelles.length	;

ButtonGroup	groupe	=	new	ButtonGroup()	;

boutons	=	new	JRadioButton	[nbBoutons]	;

for	(int	i=0	;	i<nbBoutons	;	i++)

{	boutons[i]	=	new	JRadioButton	(libelles[i])	;

pan.add	(boutons[i])	;

groupe.add	(boutons[i])	;

boutons[i].addActionListener	(this)	;

}

if	(nbBoutons	>	0)	boutons[0].setSelected(true)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	==	boutEtat)

{	System.out.print	("Bouton	selectionne	=	")	;

for	(int	i=0	;	i<nbBoutons	;	i++)

if	 (boutons[i].isSelected())	 System.out.print	 (libelles[i]+	 "

")	;

System.out.println()	;

}

for	(int	i=0	;	i<nbBoutons	;	i++)

if	(source	==	boutons[i])

	System.out.println	("Action	bouton	"	+	libelles[i])	;

}

private	JButton	boutDef,	boutEtat	;

private	JPanel	pan	;

private	JRadioButton	boutons[]	;

private	String	libelles[]	;

private	int	nbBoutons	;

285

}

public	class	Radios

{	public	static	void	main	(String	args[])

{	 String	 libelles[]	 =	 {"Cercle",	 "Rectangle",	 "Triangle",

"Pentagone",

	"Ellipse",	"Carre"}	;

MaFenetre	fen	=	new	MaFenetre(libelles)	;

fen.setVisible(true)	;

}

}

Action	bouton	Triangle

Action	bouton	Carre

Bouton	selectionne	=	Carre

Action	bouton	Pentagone

Action	bouton	Rectangle

Bouton	selectionne	=	Rectangle

Action	bouton	Cercle

Notez	 que	 nous	 avons	 pris	 soin	 de	 sélectionner	 initialement	 le	 premier	 bouton	 du
groupe	(en	nous	assurant	que	la	dimension	du	tableau	de	libellés	était	non	nulle).

Ici,	rien	ne	montre	à	l’utilisateur	que	nos	boutons	radio	font	partie	d’un	même	groupe.
Dans	un	programme	réel,	on	sera	souvent	amené	à	mettre	en	évidence	un	groupe	en	le
plaçant	dans	un	panneau	qu’on	pourra	colorer	différemment	du	 reste	de	 la	 fenêtre	ou
encore	doter	d’une	"bordure"	à	l’aide	de	la	méthode	setBorder.

286

115	Champs	de	texte

Écrire	un	programme	qui	permet	à	 l’utilisateur	de	saisir	un	nombre	entier	dans	un
champ	texte	et	qui	en	affiche	le	carré	lorsqu’il	agit	sur	un	bouton	marqué	CALCUL	:

Le	programme	devra	gérer	convenablement	le	cas	où	l’utilisateur	entre	autre	chose
qu’un	 nombre	 dans	 le	 champ	 texte	 ;	 il	 pourra	 par	 exemple	 remettre	 ce	 champ	 à
blanc.

Ici,	nous	pouvons	nous	permettre	d’introduire	directement	dans	la	fenêtre	les	différents
contrôles	 dont	 nous	 avons	 besoin.	 Nous	 remplaçons	 simplement	 le	 gestionnaire	 par
défaut	par	un	gestionnaire	de	type	FlowLayout.
Nous	utilisons	des	objets	de	type	JLabel	pour	les	libellés,	ainsi	que	pour	la	valeur	du
carré.	La	saisie	du	nombre	se	fait	dans	un	objet	nommé	nombre	de	type	JTextField.
Ici,	nous	n’avons	pas	à	nous	préoccuper	des	événements	générés	par	nombre	puisque	le
calcul	proprement	dit	 est	déclenché	par	une	action	extérieure	 à	 l’objet.	En	 revanche,
nous	devons	 traiter	 les	 événements	de	 type	Action	 déclenchés	 par	 le	 bouton.	Nous	 y
récupérons	le	contenu	du	champ	texte	que	nous	convertissons	en	entier	avec	la	méthode
Integer.parseInt.	Celle-ci	 déclenche	 une	 exception	NumberFormatException	 lorsque
la	chaîne	ne	correspond	pas	à	un	nombre	entier	(y	compris	lorsqu’elle	contient	trop	de
chiffres).	 Dans	 le	 gestionnaire	 d’exception	 correspondant,	 nous	 nous	 contentons	 de
remettre	à	blanc	le	contenu	du	champ	texte.
Ici,	nous	calculons	le	carré	du	nombre	dans	le	type	long,	ce	qui	évite	tout	problème	de
dépassement	de	capacité.

import	java.awt.*	;

import	java.awt.event.*	;

287

import	javax.swing.*	;

class	MaFenetre	extends	JFrame	implements	ActionListener

{	public	MaFenetre	()

{	setTitle	("Carres")	;

setSize	(400,	100)	;

Container	contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

labNombre	=	new	JLabel	(etiqNombre)	;

contenu.add(labNombre)	;

nombre	=	new	JTextField	(10)	;

contenu.add(nombre)	;

boutonCalcul	=	new	JButton	("CALCUL")	;

contenu.add(boutonCalcul)	;

boutonCalcul.addActionListener(this)	;

labCarre	=	new	JLabel	(etiqCarre)	;

contenu.add(labCarre)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	if	(e.getSource()	==	boutonCalcul)

try

{	String	texte	=	nombre.getText()	;

int	n	=	Integer.parseInt(texte)	;

long	carre	=	(long)n*(long)n	;

labCarre.setText	(etiqCarre	+	carre)	;

}

catch	(NumberFormatException	ex)

{	nombre.setText	("")	;

labCarre.setText	(etiqCarre)	;

}

}

private	JLabel	labNombre,	labCarre	;

private	JTextField	nombre	;

static	 private	 String	 etiqNombre	 =	 "Nombre	 :	 ",	 etiqCarre	 =

"Carre	:	"	;

private	JButton	boutonCalcul	;

}

public	class	Carre

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

288

fen.setVisible(true)	;

}

}

289

116	Champ	de	texte	et	événements
Action	et	Focus

Adapter	 le	 programme	de	 l’exercice	 108	 en	 supprimant	 le	 bouton	CALCUL	et	 de
manière	que	 le	carré	du	nombre	s’affiche	 lorsque	l’utilisateur	valide	 l’information
saisie	ou	lorsque	le	champ	de	texte	perd	le	focus	:

Il	 suffit	 que	 les	 actions	 précédemment	 réalisées	 dans	 l’écouteur	 du	 bouton	 soient
transposées	:

•	dans	l’écouteur	de	l’événement	focusLost	associé	au	champ	de	texte,

•	dans	l’écouteur	de	l’événement	Action	associé	à	ce	même	champ	de	texte.
Pour	éviter	de	dupliquer	les	instructions	correspondantes,	nous	prévoyons	une	méthode
de	service	nommée	actualise.

import	java.awt.*	;

import	java.awt.event.*	;

import	javax.swing.*	;

class	 MaFenetre	 extends	 JFrame	 implements	 ActionListener,

FocusListener

{	public	MaFenetre	()

{	setTitle	("Carres")	;

setSize	(400,	100)	;

Container	contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

labNombre	=	new	JLabel	(etiqNombre)	;

290

contenu.add(labNombre)	;

nombre	=	new	JTextField	(10)	;

contenu.add(nombre)	;

nombre.addFocusListener	(this)	;				//	pour	la	perte	de	focus

nombre.addActionListener	(this)	;			//	pour	la	validation

labCarre	=	new	JLabel	(etiqCarre)	;

contenu.add(labCarre)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	actualise	()	;

}

public	void	focusLost	(FocusEvent	e)

{	actualise	()	;

}

public	void	focusGained	(FocusEvent	e)

{

}

public	void	actualise()

{	try

{	String	texte	=	nombre.getText()	;

int	n	=	Integer.parseInt(texte)	;

long	carre	=	(long)n*(long)n	;

labCarre.setText	(etiqCarre	+	carre)	;

}

catch	(NumberFormatException	ex)

{	nombre.setText	("")	;

labCarre.setText	(etiqCarre)	;

}

}

private	JLabel	labNombre,	labCarre	;

private	JTextField	nombre	;

static	 private	 String	 etiqNombre	 =	 "Nombre	 :	 ",	 etiqCarre	 =

"Carre	:	"	;

private	JButton	boutonCalcul	;

}

public	class	Carre1

291

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible(true)	;

}

}

Comme	 notre	 fenêtre	 ne	 comporte	 qu’un	 seul	 composant	 susceptible	 de	 recevoir	 le
focus,	 le	seul	moyen	de	faire	perdre	 le	 focus	au	champ	de	 texte	consiste	 ici	à	 rendre
active	une	autre	fenêtre.

292

117	Écoute	permanente	d’un	champ
de	texte

Adapter	 le	 programme	de	 l’exercice	 108	 en	 supprimant	 le	 bouton	CALCUL	et	 de
manière	que	le	carré	du	nombre	s’affiche	en	permanence,	indépendamment	de	toute
validation	ou	de	transfert	de	focus	:

Ainsi,	ici	(si	l’utilisateur	n’a	pas	fait	de	corrections	au	cours	de	la	frappe),	on	verra
s’afficher	successivement	les	carrés	de	1,	de	11,	de	111…	et	enfin	de	11111.

Cette	fois,	il	faut	savoir	que	pour	implémenter	un	objet	de	type	JTextField,	Java	utilise
à	la	fois	un	objet	dit	"document"	(de	type	Document)	pour	y	conserver	l’information	et
un	objet	dit	 "vue"	pour	en	 fournir	 la	 représentation	visuelle.	Toute	modification	d’un
objet	 de	 type	Document	 génére	 un	 des	 événements	 de	 la	 catégorie	Document	 qu’on
traite	 à	 l’aide	 d’un	 écouteur	 implémentant	 l’interface	 DocumentListener.	 Celle-ci
comporte	 trois	méthodes	 insertUpdate,	removeUpdate	 et	changedUpdate.	 Seules	 les
deux	premières	sont	concernées	par	un	champ	de	texte.	L’objet	document	associé	à	un
composant	s’obtient	par	la	méthode	getDocument.
Il	 nous	 faut	 donc	 transposer	 dans	 ces	 deux	 méthodes	 les	 actions	 précédemment
réalisées	 dans	 l’écouteur	 du	 bouton	 de	 l’exercice.	 Pour	 éviter	 de	 dupliquer	 les
instructions	 correspondantes,	 nous	 prévoyons	 une	 méthode	 de	 service	 nommée
actualise.
Cette	fois,	cependant,	en	cas	d’exception,	nous	évitons	de	remettre	à	blanc	le	contenu
du	champ	de	texte.	En	effet,	une	telle	modification	risquerait	de	provoquer	une	boucle
infinie	 et	 elle	 est	 interdite	 par	 Java	 (elle	 provoque	 une	 exception).	 Nous	 nous
contentons	d’effacer	la	valeur	affichée	comme	carré.

import	java.awt.*	;

293

import	java.awt.event.*	;

import	javax.swing.*	;

import	javax.swing.event.*	;		//	utile	pour	DocumentListener

class	MaFenetre	extends	JFrame	implements	DocumentListener

{	public	MaFenetre	()

{	setTitle	("Carres")	;

setSize	(400,	100)	;

Container	contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

labNombre	=	new	JLabel	(etiqNombre)	;

contenu.add(labNombre)	;

nombre	=	new	JTextField	(10)	;

contenu.add(nombre)	;

nombre.getDocument().addDocumentListener	(this)	;

labCarre	=	new	JLabel	(etiqCarre)	;

contenu.add(labCarre)	;

}

public	void	insertUpdate	(DocumentEvent	e)

{	actualise	()	;

}

public	void	removeUpdate	(DocumentEvent	e)

{	actualise	()	;

}

public	void	changedUpdate	(DocumentEvent	e)

{

}

public	void	actualise()

{	try

{	String	texte	=	nombre.getText()	;

int	n	=	Integer.parseInt(texte)	;

long	carre	=	(long)n*(long)n	;

labCarre.setText	(etiqCarre	+	carre)	;

}

catch	(NumberFormatException	ex)

{	//nombre.setText	("")	;	generait	une	exception

labCarre.setText	(etiqCarre)	;

294

}

}

private	JLabel	labNombre,	labCarre	;

private	JTextField	nombre	;

static	 private	 String	 etiqNombre	 =	 "Nombre	 :	 ",	 etiqCarre	 =

"Carre	:	"	;

private	JButton	boutonCalcul	;

}

public	class	Carre2

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible(true)	;

}

}

295

118	Synthèse	:	série	harmonique

Écrire	 un	 programme	 permettant	 d’afficher	 la	 somme	 partielle	 de	 la	 série
harmonique	:

s	=	1	+	1/2	+1/3	+1/4	+	…	+	1/n
La	valeur	de	n	sera	initialisée	à	0	(on	conviendra	alors	que	s	vaut	0)	et	deux	boutons
marqués	N++	et	N--	permettront	de	la	faire	évoluer	:

Nous	 conservons	 le	 gestionnaire	 par	 défaut	 de	 la	 fenêtre,	 ce	 qui	 nous	 permettra	 de
disposer	le	bouton	N++	avec	l’option	"North"	et	le	bouton	N--	avec	l’option	"South".
Au	 centre	 de	 la	 fenêtre,	 nous	 plaçons	 un	 panneau	 dans	 lequel	 nous	 disposons	 deux
étiquettes	(JLabel)	qui	serviront	à	afficher	les	informations	voulues.	Les	actions	sur	les
boutons	sont	gérées	dans	la	fenêtre	et	elles	conduisent	à	l’actualisation	des	valeurs	de	n
et	de	la	somme	correspondante.

import	java.awt.*	;

import	java.awt.event.*	;

import	javax.swing.*	;

class	MaFenetre	extends	JFrame	implements	ActionListener

{	private	static	String	texteN	=	"n	=	"	;

private	static	String	texteSomme	=	"Serie	=	"	;

public	MaFenetre	()

{	setTitle	("Serie	harmonique")	;

296

setSize	(200,	150)	;

Container	contenu	=	getContentPane()	;

pan	=	new	JPanel	()	;

contenu.add(pan)	;

boutPlus	=	new	JButton	("N++")	;

boutPlus.addActionListener	(this)	;

contenu.add	(boutPlus,	"North")	;

boutMoins	=	new	JButton	("N--")	;

boutMoins.addActionListener	(this)	;

contenu.add	(boutMoins,	"South")	;

n	=	0	;

somme	=	0.	;

valeurN	=	new	JLabel	(texteN	+	n	+	"	")	;

pan.add	(valeurN)	;

valeurSomme	=	new	JLabel	(texteSomme	+	somme)	;

pan.add	(valeurSomme)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	==	boutPlus)	{	n++	;

somme	+=	1./n	;

}

if	(source	==	boutMoins	&&	n>0)	{	somme	-=	1./n	;

n--	;

}

valeurN.setText	(texteN	+	n	+	"	")	;

valeurSomme.setText	(texteSomme	+	somme)	;

}

private	JPanel	pan	;

private	JButton	boutPlus,	boutMoins	;

private	JLabel	valeurN,	valeurSomme	;

private	int	n	;

private	double	somme	;

}

public	class	Serie

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

297

fen.setVisible(true)	;

}

}

Ici,	nous	avons	actualisé	la	valeur	de	la	somme	en	lui	ajoutant	ou	en	lui	soustrayant	la
valeur	 1/n.	 Dès	 lors	 que	 l’utilisateur	 incrémente	 et	 décrémente	 la	 valeur	 de	 n	 à
diverses	reprises,	ce	mode	de	calcul	conduit	à	un	cumul	des	erreurs.	Pour	l’éviter,	on
pourrait	 recalculer	 entièrement	 la	 valeur	 de	 la	 somme	 à	 chaque	 action	 sur	 l’un	 des
boutons.

298

119	Gestion	d’une	boîte	de	liste

Écrire	un	programme	affichant	dans	une	fenêtre	des	boutons	dont	les	étiquettes	sont
des	 noms	 de	 langage	 sélectionnés	 dans	 une	 boîte	 de	 liste.	 La	 liste	 permettra	 de
sélectionner	 un	 nombre	 quelconque	 de	 plages	 de	 valeurs.	 Les	 noms	 des	 langages
seront	 fixés	 dans	 la	 méthode	main	 (et	 non	 dans	 la	 fenêtre).	 On	 proposera	 deux
solutions	:

•	une	où	la	sélection	sera	validée	par	l’action	sur	un	bouton	OK	:

•	 une	 où	 les	 boutons	 affichés	 dans	 la	 fenêtre	 seront	 actualisés	 à	 chaque
modification	de	la	sélection	dans	la	liste	(il	n’y	aura	plus	de	bouton	OK).

Les	noms	de	langages	sont	définis	par	un	tableau	de	chaînes	de	la	méthode	main	qu’on
fournit	 en	 argument	 au	 constructeur	 de	 la	 fenêtre.	 La	 boîte	 de	 liste	 est	 ajoutée	 à	 la
fenêtre	elle-même	avec	l’option	"West".	Un	panneau	est	ajouté	au	centre	de	la	fenêtre,
en	vue	d’y	afficher	les	boutons	voulus.
Le	 bouton	 OK	 est	 ajouté	 avec	 l’option	 "South"	 et	 on	 gère	 ses	 événements	 de	 type
Action.	La	méthode	actionPerformed	réalise	les	actions	suivantes	:

•	suppression	des	boutons	du	panneau	par	la	méthode	removeAll	(qui	supprime	tous
les	composants	d’un	conteneur)	;

299

•	 récupération	 des	 valeurs	 sélectionnées	 dans	 la	 boîte	 de	 liste	 à	 l’aide	 de
getSelectedValues.	 Elle	 fournit	 un	 tableau	 d’éléments	 de	 type	 Object	 qui	 seront
convertis	en	String,	avant	d’être	transmis	au	constructeur	de	chacun	des	boutons	;

•	appel	de	la	méthode	validate	du	panneau	pour	forcer	le	recalcul	par	le	gestionnaire
de	mise	en	forme.
import	java.awt.*	;

import	java.awt.event.*	;

import	javax.swing.*	;

class	MaFenetre	extends	JFrame	implements	ActionListener

{	public	MaFenetre	(String	noms[])

{	setTitle	("Liste")	;

setSize	(300,	220)	;

Container	contenu	=	getContentPane()	;

liste	=	new	JList	(noms)	;

contenu.add	(liste,	"West")	;

ok	=	new	JButton	("OK")	;

contenu.add	(ok,	"South")	;

ok.addActionListener	(this)	;

pan	=	new	JPanel	()	;

contenu.add	(pan)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	if	(e.getSource()	==	ok)

{	pan.removeAll	()	;		//	supprime	tous	les	composants	de	pan

Object	noms[]	=	liste.getSelectedValues()	;

for	(int	i=0	;	i<noms.length	;	i++)

{	JButton	bouton	=	new	JButton	((String)noms[i])	;

pan.add	(bouton)	;

}

pan.validate()	;

}

}

private	JList	liste	;

private	JButton	ok	;

private	JPanel	pan	;

}

public	class	Liste

{	public	static	void	main	(String	args[])

300

{	String	[]	nomsLangages	=	{"Java",	"C",	"C++",	"Pascal",	"Basic",

"Cobol",

"Fortran"}	;

MaFenetre	fen	=	new	MaFenetre(nomsLangages)	;

fen.setVisible(true)	;

}

}

On	supprime	le	bouton	OK	et	on	associe	à	la	boîte	de	liste	un	écouteur	(ici	la	fenêtre)
implémentant	l’interface	ListSelectionListener	:

liste.addListSelectionListener	(this)	;

L’interface	 ListSelectionListener	 comporte	 une	 seule	 méthode	 valueChanged.	 Les
événements	 correspondants	 sont	générés	plus	 souvent	qu’il	 n’est	 nécessaire	pour	une
gestion	 usuelle	 de	 la	 boîte.	 Il	 est	 préférable	 de	 faire	 appel	 à	 la	 méthode
getValueIsAdjusting	de	 la	classe	ListSelectionEvent,	 afin	d’éviter	 les	événements	de
transition.	Voici	comment	pourrait	se	présenter	la	méthode	valueChanged	:

public	void	valueChanged	(ListSelectionEvent	e)

{	if	((e.getSource()	==	liste)	&&	(!e.getValueIsAdjusting()))

{	pan.removeAll	()	;		//	supprime	tous	les	composants	de	pan

Object	noms[]	=	liste.getSelectedValues()	;

for	(int	i=0	;	i<noms.length	;	i++)

{	JButton	bouton	=	new	JButton	((String)noms[i])	;

pan.add	(bouton)	;

}

pan.validate()	;

}

}

Le	programme	complet	ainsi	adapté	figure	sur	le	site	Web	d’accompagnement	sous	le
nom	Liste1.java.

Rappelons	que,	par	défaut,	un	boîte	de	liste	autorise	la	sélection	de	plusieurs	plages	de
valeurs.	On	a	affaire	au	 type	MULTIPLE_INTERVAL_SELECTION.	On	peut	 imposer
un	autre	type	à	l’aide	de	la	méthode	setSelectionMode.
D’autre	 part,	 une	 boîte	 de	 liste	 ne	 dispose	 pas	 de	 barre	 de	 défilement.	 Si	 celle-ci

301

s’avère	 nécessaire,	 il	 faut	 alors	 introduire	 la	 boîte	 de	 liste	 dans	 un	 "panneau	 de
défilement"	(JScroll-Panel)	et	définir	le	nombre	de	valeurs	visibles	à	un	moment	donné
par	setVisibleRowCount.

302

120	Synthèse	:	pendule

Afficher	une	pendule	indiquant	l’heure	fournie	par	le	biais	de	deux	champs	de	texte
(et	validée	par	un	bouton	"Mise	à	l’heure")	:

La	pendule	sera	dessinée	sur	un	fond	de	couleur	jaune	et	on	s’arrangera	pour	qu’elle
soit	 la	plus	grande	possible	(tout	en	étant	entièrement	visible)	en	tenant	compte	du
fait	 que	 l’utilisateur	 peut	 modifier	 les	 dimensions	 de	 la	 fenêtre.	 On	 utilisera	 la
méthode	 drawOval	 (int	 abscisse,	 int	 ordonnee,	 int	 largeur,	 int	 hauteur)	 pour
dessiner	un	cercle.

On	utilise	deux	panneaux	:	un	pour	les	champs	de	texte	et	le	bouton,	un	pour	le	dessin
de	la	pendule.	Ils	sont	disposés	dans	la	fenêtre	en	conservant	le	gestionnaire	par	défaut.
Les	trois	contrôles	sont	écoutés	par	la	fenêtre	elle-même.
Pour	 que	 la	 pendule	 s’ajuste	 à	 une	 éventuelle	 modification	 de	 la	 fenêtre,	 il	 est
préférable	de	la	dessiner	dans	la	méthode	paintComponent	du	panneau	dans	lequel	elle
se	trouve.	Il	faut	donc	créer	une	classe	spécialisée	(nommée	ici	PanPendule)	dérivée
de	JPanel.	 Il	 apparaît	 alors	un	besoin	de	communication	des	valeurs	 saisies	entre	 la
fenêtre	et	le	panneau.	Pour	le	régler,	les	valeurs	saisies	sont	conservées	dans	la	fenêtre
qu’on	dote	de	deux	méthodes	d’accès	getHeures	et	getMinutes.

303

Nous	prévoyons	par	défaut	des	valeurs	nulles	pour	l’heure	(heures	et	minutes).	D’autre
part,	 nous	 gérons	 les	 éventuelles	 erreurs	 de	 saisie	 de	 l’utilisateur	 (valeurs	 non
numériques	ou	simplement	incompatibles).	Dans	ce	cas,	nous	avons	prévu	de	redonner
son	ancienne	valeur	au	champ	de	texte	correspondant.
L’actualisation	de	la	pendule	est	tout	simplement	déclenchée	par	l’appel	de	la	méhode
repaint	du	panneau,	en	réponse	à	une	action	sur	le	bouton.
Nous	dessinons	une	grande	aiguille	ayant	une	taille	égale	au	rayon	de	la	pendule	et	une
petite	aiguille	ayant	la	moité	de	cette	taille.	Pour	dessiner	la	petite	aiguille,	nous	tenons
compte	du	fait	qu’elle	se	déplace	non	seulement	en	fonction	du	nombre	d’heures,	mais
aussi	en	fonction	du	nombre	de	minutes.

import	java.awt.*	;

import	java.awt.event.*	;

import	javax.swing.*	;

class	MaFenetre	extends	JFrame	implements	ActionListener

{	public	MaFenetre	()

{	setTitle	("PENDULE")	;

setSize	(400,	250)	;

Container	contenu	=	getContentPane()	;

panControles	=	new	JPanel()	;

contenu.add	(panControles,	"North")	;

saisieHeures	=	new	JTextField	(4)	;

panControles.add	(saisieHeures)	;

etiqHeures	=	new	JLabel	("	Heures")	;

panControles.add	(etiqHeures)	;

saisieMinutes	=	new	JTextField	(4)	;

panControles.add	(saisieMinutes)	;

etiqMinutes	=	new	JLabel	("	Minutes")	;

panControles.add	(etiqMinutes)	;

ok	=	new	JButton	("Mise	a	l'heure")	;

panControles.add	(ok)	;

ok.addActionListener	(this)	;

panPendule	=	new	PanPendule(this)	;

contenu.add	(panPendule)	;

panPendule.setBackground	(Color.yellow)	;

}

public	int	getMinutes	()

{	return	minutes	;

}

304

public	int	getHeures	()

{	return	heures	;

}

public	void	actionPerformed	(ActionEvent	e)

{	int	h,	m	;			//	pour	les	valeurs	saisies

if	(e.getSource()	==	ok)

{	try

{	String	chHeures	=	saisieHeures.getText()	;

h	=	Integer.parseInt	(chHeures)	;

}

catch	(NumberFormatException	ex)

{	h	=	-1	;		//	on	force	une	valeur	invalide

saisieHeures.setText	("")	;

}

try

{	String	chMinutes	=	saisieMinutes.getText()	;

m	=	Integer.parseInt	(chMinutes)	;

}

catch	(NumberFormatException	ex)

{	m	=	-1	;		//	on	force	une	valeur	invalide

saisieMinutes.setText	("")	;

}

//	si	les	valeurs	obtenues	sont	valides,	on	les	place	dans

//	les	champs	heures	et	minutes	et	on	force	le	dessin

//	sinon,	on	replace	les	anciennes	valeurs	dans	les	champs	texte

if	((h>=0)	&&	(h<24)	&&	(m>=0)	&&	(m<60))

{	heures	=	h	;	minutes	=	m	;

repaint()	;

}

	else

{	saisieMinutes.setText	(""+minutes)	;

saisieHeures.setText	(""+heures)	;

}

}

}

private	JPanel	panControles	;

private	PanPendule	panPendule	;

private	JTextField	saisieHeures,	saisieMinutes	;

private	JLabel	etiqHeures,	etiqMinutes	;

305

private	JButton	ok	;

private	int	minutes=0,	heures=0	;

}

class	PanPendule	extends	JPanel

{	public	PanPendule	(MaFenetre	fen)

{	this.fen	=	fen	;

}

public	void	paintComponent	(Graphics	g)

{	super.paintComponent(g)	;

	//	dessin	du	cercle

Dimension	dim	=	getSize()	;

int	largeur	=	dim.width,	hauteur	=	dim.height	;

boolean	panTropLarge	=	(largeur>hauteur)	;

int	xCentre	=	largeur/2,	yCentre	=	hauteur/2	;

int	rayon	;

if	(panTropLarge)	rayon	=	hauteur/2	-	2	;	else	rayon	=	largeur/2	-

2	;

g.drawOval	(xCentre-rayon,	yCentre-rayon,	2*rayon,	2*rayon)	;

	//	dessin	grande	aiguille

int	minutes	=	fen.getMinutes()	;

double	angle	=	Math.PI/2	*	(1.	-	minutes/15.)	;

g.drawLine	(xCentre,	yCentre,

(int)(xCentre+rayon*Math.cos(angle)),

(int)(yCentre-rayon*Math.sin(angle)))	;

	//	dessin	petite	aiguille

int	heures	=	fen.getHeures()	;

angle	=	Math.PI/2	*	(1.	-	heures/3.	-	minutes/180.)	;

g.drawLine	(xCentre,	yCentre,

(int)(xCentre+rayon/2.*Math.cos(angle)),

(int)(yCentre-rayon/2.*Math.sin(angle)))	;

}

private	MaFenetre	fen	;

}

public	class	Pendule

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible(true)	;

}

306

}

307

Chapitre	11

Les	boîtes	de	dialogue

Connaissances	requises

•	Boîtes	de	message	:	méthode	showMessageDialog	(choix	du	contenu	du
message,	du	titre	de	la	boîte,	du	type	d’icône)

•	Boîtes	de	confirmation	:	méthode	showConfirmDialog	(choix	du	texte	de	la
question,	du	titre	de	la	boîte,	des	boutons)

•	Boîtes	de	saisie	:	méthode	showInputDialog	(choix	du	texte	de	la	question,	du
titre	de	la	boîte,	du	type	d’icône)

•	Boîtes	d’options	:	méthode	showInputDialog	ou	showOptionDialog

•	Boîtes	de	dialogue	personnalisées	:	classe	JDialog,	méthode	setVisible,
gestion	du	dialogue,	transfert	d’information	entre	la	boîte	de	dialogue	et	son
conteneur

308

121	Utilisation	de	boîtes	de	message
et	de	confirmation

Écrire	un	programme	qui	affiche	les	carrés	des	nombres	impairs	à	partir	de	1.	Après
l’affichage	de	chaque	carré,	on	demandera	à	l’utilisateur	s’il	souhaite	continuer.	On
utilisera	 des	 boîtes	 de	 message	 et	 des	 boîtes	 de	 confirmation	 comme	 dans	 les
illustrations	de	la	page	suivante	:

Ici,	 il	 n’est	 pas	 nécessaire	 de	 créer	 une	 fenêtre,	 de	 sorte	 que	 le	 programme	 sera
réduit	à	une	simple	méthode	main.

Nous	utilisons	une	boîte	de	message	pour	afficher	chacun	des	carrés.	Comme	celle-ci
n’est	 rattachée	 à	 aucune	 fenêtre,	 le	 premier	 argument	 de	 la	 méthode
showMessageDialog	 est	 null.	 Les	 arguments	 suivants	 précisent	 respectivement	 le
message	 à	 afficher	 (ici	 le	 nombre	 impair	 courant	 et	 son	 carré),	 le	 titre	 de	 la	 boîte
(CARRES)	et	le	type	d’icône	(information).
Après	 chaque	 affichage	 d’un	 carré,	 nous	 demandons	 à	 l’utilisateur	 s’il	 souhaite
continuer	 en	 utilisant	 une	 boîte	 de	 confirmation	 créée	 par	 la	 méthode
showConfirmDialog.	 Là	 encore	 le	 premier	 argument	 est	 null.	 Les	 autres	 précisent
respectivement	la	question	à	afficher	(impair	suivant	?),	le	titre	de	la	boîte	et	la	nature
des	boutons	figurant	dans	la	boîte	(YES	et	NO).
Notez	 que	 le	 choix	 du	 type	 d’icône	 ou	 celui	 de	 la	 nature	 des	 boutons	 est	 exprimé	 à
l’aide	de	constantes	prédéfinies	de	la	classe	JOptionPane,	ce	qui	est	plus	pratique	que
d’utiliser	les	valeurs	entières	correspondantes.

import	javax.swing.*	;

309

public	class	Carres

{

public	static	void	main(String[]	args)

{	int	n	=	1	;

int	rep	;

do

{	JOptionPane.showMessageDialog	(null,	n	+	"	a	pour	carre	"	+	n*n,

"CARRES",	JOptionPane.INFORMATION_MESSAGE)	;

n+=2	;

rep	=	JOptionPane.showConfirmDialog	(null,	"impair	suivant	?",

"CARRES",	JOptionPane.YES_NO_OPTION)	;

}

while	(rep	==	JOptionPane.YES_OPTION)	;

}

}

310

122	Utilisation	de	boîtes	de	message,	de
confirmation	et	de	saisie

Écrire	 un	 programme	 qui	 lit	 des	 valeurs	 flottantes	 et	 en	 affiche	 la	 moyenne.	 Les
valeurs	seront	lues	par	l’intermédiaire	d’une	boîte	de	saisie.	Une	réponse	incorrecte
fera	l’objet	d’un	message	d’avertissement	(en	cas	d’action	sur	le	bouton	Cancel	ou
de	fermeture	de	la	boîte,	on	redemandera	la	valeur).
Après	chaque	valeur	correctement	lue,	on	demandera	à	l’utilisateur	s’il	en	a	d’autres
à	fournir.	A	la	fin,	une	boîte	de	message	fournira	le	nombre	de	valeurs	lues	et	leur
moyenne.
Ici,	il	n’est	pas	nécessaire	de	créer	une	fenêtre	(le	programme	sera	donc	réduit	à	une
simple	méthode	main).	 Voici	 quelques	 illustrations	 du	 dialogue	 avec	 l’utilisateur
pour	cet	exemple	:

Nous	utiliserons	donc	les	boîtes	de	dialogue	standard	construites	automatiquement	par
les	 méthodes	 showMessageDialog,	 showConfirmDialog	 et	 showInputDialog.	 Le
premier	 argument	 de	 leur	 appel	 est	 toujours	 null	 puisque	 nous	 ne	 cherchons	 pas	 à
rattacher	ces	boîtes	à	une	fenêtre	particulière.	Le	choix	des	formes	d’icône	ou	du	type

311

des	 boutons	 est	 fait	 à	 l’aide	 des	 constantes	 prédéfinies	 de	 la	 classe	 JOptionPane	 :
JOptionPane.QUESTION_MESSAGE	 pour	 l’icône	 "point	 d’interrogation",
JOptionPane.YES_NO_OPTION	pour	ne	disposer	que	des	deux	boutons	YES	et	NO.
En	ce	qui	concerne	la	saisie	des	valeurs,	nous	convertissons	la	chaîne	lue	en	un	double
avec	 la	 méthode	 Double.parseDouble.	 Nous	 traitons	 les	 valeurs	 incorrectes	 en
interceptant	l’exception	NumberFormatException	qu’elle	génère.
Rappelons	que	si	l’utilisateur	clique	sur	le	bouton	Cancel	d’une	boîte	de	saisie	ou	s’il
la	ferme,	la	méthode	showInputDialog	fournit	la	valeur	null.

import	javax.swing.*	;

public	class	Moyenne

{

public	static	void	main(String[]	args)

{	int	n	=	0	;

double	x=0,	somme=0,	moyenne	;

int	continuer	;

	//	lecture	des	differentes	valeurs

do

{	boolean	ok	;

n++	;

do		//	boucle	de	lecture	d'une	valeur	jusqu'a	correcte

{	ok	=	false	;

String	rep	=	(String)JOptionPane.showInputDialog

	(null,	"donnez	la	valeur	de	rang	"	+	n,

"MOYENNES",	JOptionPane.QUESTION_MESSAGE)	;

if	 (rep	 ==	 null)	 continue	 ;	 	 //	 si	 action	 sur	 Cancel	 ou

fermeture

try

{	x	=	Double.parseDouble(rep)	;

ok	=	true	;

}

catch	(NumberFormatException	e)

{	JOptionPane.showMessageDialog	(null,	"reponse	incorrecte")	;

}

}

while	(!ok)	;

somme	+=	x	;

continuer	=	JOptionPane.showConfirmDialog

(null,	"Avez-vous	encore	des	valeurs	?	",

312

"MOYENNES",	JOptionPane.YES_NO_OPTION)	;

}

while	(continuer	==	JOptionPane.YES_OPTION)	;

//	calcul	de	la	moyenne	et	affichage

moyenne	=	somme/n	;

JOptionPane.showMessageDialog

	(null,	"moyenne	des	"	+	n	+	"	valeurs	=	"	+	moyenne,

	"RESULTATS",	JOptionPane.INFORMATION_MESSAGE)	;

}

}

313

123	Programmation	d’une	boîte	de
message

Sans	 utiliser	 les	 boîtes	 de	 dialogue	 standard,	 écrire	 une	 méthode	 statique
afficheMessage	(d’une	classe	nommée	Util)	affichant	une	boîte	de	message	comme
le	 fait	 la	 méthode	 JOptionPane.showMessageDialog	 (qu’on	 ne	 devra	 donc	 pas
utiliser).	Pour	simplifier	les	choses,	la	boîte	affichée	ne	comportera	pas	d’icône	et
sera	 de	 taille	 fixe	 (par	 exemple	 200x100)	 et	 son	 titre	 sera	 toujours	 "MESSAGE"
comme	dans	cet	exemple	:

La	méthode	afficheMessage	ne	comportera	que	deux	arguments	:	la	référence	de	la
fenêtre	 parent	 (supposée	 de	 type	 JFrame	 ou	 dérivé)	 et	 le	 texte	 du	 message	 à
afficher.
Ecrire	un	petit	programme	d’essai.

Comme	 l’énoncé	 nous	 interdit	 d’utiliser	 les	 boîtes	 de	 dialogue	 standard,	 il	 est
nécessaire	de	créer	un	objet	boîte	de	dialogue	d’une	classe	JDialog	ou	dérivée.	Nous
vous	proposons	deux	solutions	 :	 l’une	utilisant	directement	 la	classe	JDialog,	 l’autre
créant	une	classe	spécialisée	dérivée	de	JDialog.

Première	solution
Dans	 la	 méthode	 afficheMessage,	 nous	 créons	 donc	 un	 objet	 de	 type	 JDialog,	 en
fournissant	true	comme	troisième	argument,	ce	qui	correspond	au	cas	usuel	d’une	boîte
"modale".	Nous	y	plaçons	deux	composants	:	un	bouton	OK	et	une	étiquette	(JLabel).
Comme	 le	gestionnaire	par	défaut	d’une	boîte	de	dialogue	est	de	 type	BorderLayout,
nous	le	remplaçons	par	un	gestionnaire	de	type	FlowLayout.

314

L’affichage	 de	 la	 boîte	 est	 provoqué	 par	 l’appel	 de	 sa	 méthode	 setVisible	 avec
l’argument	true.	La	fin	du	dialogue	doit	être	déclenchée	par	l’écouteur	des	événements
Action	associés	au	bouton	OK.	 Ici,	cet	écouteur	ne	peut	être	qu’un	objet	d’une	classe
spécifique	(nommée	EcoutOK).	Nous	 transmettons	 la	 référence	de	 la	boîte	concernée
au	constructeur	:	la	méthode	actionPerformed	se	contente	de	lui	appliquer	la	méthode
setVisible	(false)	pour	mettre	fin	au	dialogue	(aucun	test	n’a	besoin	d’être	réalisé	dans
la	 méthode	 afficheMessage).	 Avant	 de	 quitter	 la	 méthode	 afficheMessage,	 nous
prenons	soin	d’appeler	 la	méthode	dispose	afin	de	 libérer	 la	boîte	de	dialogue	et	 les
différents	objets	qui	lui	sont	associés.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	Util

{	static	void	afficheMessage	(JFrame	parent,	String	message)

{	//	creation	de	l'objet	boite	de	dialogue

JDialog	boiteMessage	=	new	JDialog	(parent,	"MESSAGE",	true)	;

boiteMessage.setSize	(200,100)	;

//	mise	en	place	des	composants	:	bouton	OK,	etiquette

Container	contenu	=	boiteMessage.getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

JLabel	txt	=	new	JLabel	(message)	;

contenu.add	(txt)	;

JButton	ok	=	new	JButton	("OK")	;

contenu.add	(ok)	;

ok.addActionListener	(new	EcouteOK(boiteMessage))	;

//	affichage	du	dialogue

boiteMessage.setVisible	(true)	;

//	fin	sur	OK	-	rien	a	tester	ici

boiteMessage.dispose()	;

}

}

class	EcouteOK	implements	ActionListener

{	public	EcouteOK	(JDialog	bd)

{	this.bd	=	bd	;

}

public	void	actionPerformed	(ActionEvent	e)

{	bd.setVisible	(false)	;

}

315

private	JDialog	bd	;

}

public	class	TstMess

{	public	static	void	main	(String	args[])

{	JFrame	fen	=	new	JFrame("Essai	afficheMessage")	;

fen.setSize	(400,	300)	;

fen.setVisible	(true)	;

Util.afficheMessage	(fen,	"bonjour")	;

Util.afficheMessage	(fen,	"et	au	revoir")	;

}

}

Deuxième	solution

Nous	 créons	une	 classe	BoiteMessage	 dérivée	 de	 JDialog.	 Cette	 fois,	 l’écouteur	 du
bouton	OK	peut	être	l’objet	boîte	de	message	lui-même,	de	sorte	qu’aucune	information
n’a	besoin	d’être	transmise	à	l’écouteur.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	Util

{	static	void	afficheMessage	(JFrame	parent,	String	message)

{	BoiteMessage	boiteMessage	=	new	BoiteMessage	(parent,	message)	;

boiteMessage.setVisible	(true)	;

boiteMessage.dispose()	;

}

}

class	BoiteMessage	extends	JDialog	implements	ActionListener

{	public	BoiteMessage(JFrame	parent,	String	message)

{	super	(parent,	"MESSAGE",	true)	;

setSize	(200,100)	;

Container	contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

JLabel	txt	=	new	JLabel	(message)	;

contenu.add	(txt)	;

JButton	ok	=	new	JButton	("OK")	;

contenu.add	(ok)	;

ok.addActionListener	(this)	;

316

}

public	void	actionPerformed	(ActionEvent	e)

{	setVisible	(false)	;

}

}

public	class	TstMess2

{	public	static	void	main	(String	args[])

{	JFrame	fen	=	new	JFrame("Essai	afficheMessage")	;

fen.setSize	(400,	300)	;

fen.setVisible	(true)	;

Util.afficheMessage	(fen,	"bonjour")	;

Util.afficheMessage	(fen,	"et	au	revoir")	;

}

}

317

124	Programmation	d’une	boîte	de
confirmation

Sans	 utiliser	 les	 boîtes	 de	 dialogue	 standard,	 écrire	 une	 méthode	 statique
afficheConfirme	 (d’une	 classe	 nommée	Util)	 affichant	 une	 boîte	 de	 confirmation
comme	 le	 fait	 la	 méthode	 JOptionPane.showConfirmDialog.	 Pour	 simplifier	 les
choses,	 la	 boîte	 affichée	 ne	 comportera	 pas	 d’icône	 et	 sera	 de	 taille	 fixe	 (par
exemple	200x100),	son	titre	sera	toujours	"CHOIX"	et	elle	comportera	toujours	les
boutons	Oui,	Non	et	Annul	comme	dans	cet	exemple	:

La	méthode	afficheConfirm	ne	comportera	que	deux	arguments	:	la	référence	de	la
fenêtre	parent	 (supposée	de	 type	JFrame	 ou	dérivé)	 et	 le	 texte	de	 la	question.	Sa
valeur	de	retour,	de	type	int,	précisera	l’action	effectuée	:	0	pour	Oui,	1	pour	Non,	2
pour	Annul,	-1	pour	la	fermeture	de	la	boîte.
Écrire	un	petit	programme	d’essai.

Ici,	nous	créons	un	objet	d’une	classe	spécialisée	BoiteConfirme	(dérivée	de	JDialog)
dont	nous	faisons	son	propre	écouteur	des	actions	sur	les	différents	boutons.	Un	champ
privé	nommé	etat	 est	utilisé	pour	 identifier	 le	bouton	actionné	par	 l’utilisateur.	Nous
utilisons	les	valeurs	prévues	en	retour	de	afficheConfirme.	Pour	éviter	d’avoir	à	traiter
l’événement	"fermeture	de	la	boîte	de	dialogue",	nous	plaçons	initialement	ce	champ	à
la	valeur	-1	(valeur	de	retour	prévue	en	cas	de	fermeture	de	la	boîte).
Une	 méthode	 d’accès	 nommée	 getEtat	 permet	 à	 la	 méthode	 afficheConfirme	 de
connaître	le	choix	fait	par	l’utilisateur	après	la	fin	du	dialogue.

import	javax.swing.*	;

import	java.awt.*	;

318

import	java.awt.event.*	;

class	BoiteConfirme	extends	JDialog	implements	ActionListener

{

public	BoiteConfirme	(JFrame	parent,	String	message)

{	super	(parent,	"CHOIX",	true)	;

setSize	(200,100)	;

//	mise	en	place	des	composants	:	bouton	OK,	étiquette

Container	contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

JLabel	txt	=	new	JLabel	(message)	;

contenu.add	(txt)	;

yes	=	new	JButton	("Oui")	;

yes.addActionListener	(this)	;

contenu.add	(yes)	;

no	=	new	JButton	("Non")	;

contenu.add	(no)	;

no.addActionListener	(this)	;

cancel	=	new	JButton	("Annul")	;

contenu.add	(cancel)	;

cancel.addActionListener	(this)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	if	(e.getSource()	==	yes)	etat	=	0	;

if	(e.getSource()	==	no)	etat	=	1	;

if	(e.getSource()	==	cancel)	etat	=	2	;

setVisible	(false)	;

}

public	int	getEtat()

{	return	etat	;

}

private	JButton	yes,	no,	cancel	;

private	int	etat	=	-1	;

}

class	Util

{	static	int	afficheConfirme	(JFrame	parent,	String	message)

{	//	creation	de	l'objet	boite	de	dialogue

BoiteConfirme	boiteConf	=	new	BoiteConfirme	(parent,	message)	;

319

//	affichage	du	dialogue

boiteConf.setVisible	(true)	;

//	fin	du	dialogue

boiteConf.dispose()	;

return	boiteConf.getEtat()	;

}

}

public	class	TstChoix

{	public	static	void	main	(String	args[])

{	JFrame	fen	=	new	JFrame("Essai	Boite	Confirmation")	;

fen.setSize	(400,	300)	;

fen.setVisible	(true)	;

int	rep	=	Util.afficheConfirme	(fen,	"Voulez-vous	continuer	?")	;

System.out.println	("reponse	=	"	+	rep)	;

}

}

320

125	Programmation	d’une	boîte	de
saisie

Sans	 utiliser	 les	 boîtes	 de	 dialogue	 standard,	 écrire	 une	 méthode	 statique
afficheSaisie	 (d’une	 classe	 nommée	 Util)	 affichant	 une	 boîte	 de	 confirmation
comme	 le	 fait	 la	 méthode	 JOptionPane.showInputDialog.	 Pour	 simplifier	 les
choses,	 la	 boîte	 affichée	 ne	 comportera	 pas	 d’icône,	 elle	 sera	 de	 taille	 fixe	 (par
exemple	240x150),	son	titre	sera	toujours	"SAISIE"	et	elle	comportera	toujours	les
boutons	OK	et	Annul	comme	dans	cet	exemple	:

La	méthode	afficheSaisie	 ne	 comportera	 que	 deux	 arguments	 :	 la	 référence	 de	 la
fenêtre	parent	(supposée	de	type	JFrame	ou	dérivé)	et	le	texte	à	afficher.	Sa	valeur
de	retour,	de	type	String	sera	l’information	saisie	ou	la	valeur	null	en	cas	d’action
sur	Annul	ou	de	fermeture	de	la	boîte.
Écrire	un	petit	programme	d’essai.

Ici,	 nous	 créons	 un	 objet	 d’une	 classe	 spécialisée	BoiteSaisie	 (dérivée	 de	 JDialog)
dont	 nous	 faisons	 son	 propre	 écouteur	 des	 actions	 sur	 les	 deux	 boutons	 qui	 doivent
déclencher	 la	 fin	 du	 dialogue.	 Les	 événements	 du	 champ	 de	 texte	 n’ont	 pas	 besoin
d’être	pris	en	compte	puisque	la	validation	de	l’information	se	fait	par	le	bouton	OK.
Un	champ	privé	nommé	 infoLue	 est	 utilisé	pour	 conserver	 la	 chaîne	 lue.	Pour	 éviter
d’avoir	 à	 traiter	 l’événement	 "fermeture	 de	 la	 boîte	 de	 dialogue",	 nous	 plaçons
initialement	ce	champ	à	la	valeur	null	(valeur	de	retour	prévue	en	cas	de	fermeture	de
la	boîte).
Une	méthode	d’accès	nommée	getInfo	permet	à	la	méthode	afficheSaisie	de	connaître

321

le	choix	fait	par	l’utilisateur	après	la	fin	du	dialogue.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	BoiteSaisie	extends	JDialog	implements	ActionListener

{

public	BoiteSaisie	(JFrame	parent,	String	message)

{	super	(parent,	"SAISIE",	true)	;

setSize	(240,150)	;

	//	mise	en	place	des	composants

Container	contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

JLabel	txt	=	new	JLabel	(message)	;

contenu.add	(txt)	;

saisie	=	new	JTextField	(20)	;

contenu.add	(saisie)	;

ok	=	new	JButton	("OK")	;

ok.addActionListener	(this)	;

contenu.add	(ok)	;

cancel	=	new	JButton	("Annul")	;

contenu.add	(cancel)	;

cancel.addActionListener	(this)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	if	(e.getSource()	==	ok)

	{	infoLue	=	saisie.getText()	;

	}

setVisible	(false)	;

}

public	String	getInfo	()

{	return	infoLue	;

}

private	JButton	ok,	cancel	;

private	JTextField	saisie	;

private	String	infoLue	=	null	;

}

class	Util

{	static	String	afficheSaisie	(JFrame	parent,	String	message)

322

{	//	creation	de	l'objet	boite	de	dialogue

BoiteSaisie	boiteSaisie	=	new	BoiteSaisie	(parent,	message)	;

//	affichage	du	dialogue

boiteSaisie.setVisible	(true)	;

//	fin	du	dialogue

boiteSaisie.dispose()	;

return	boiteSaisie.getInfo()	;

}

}

public	class	TstSaisie

{

public	static	void	main	(String	args[])

{	String	rep	;

JFrame	fen	=	new	JFrame("Essai	Boite	de	saisie")	;

fen.setSize	(400,	300)	;

fen.setVisible	(true)	;

do		//	on	interroge	l'utilisateur	jusqu'a	ce	qu'il	reponde	"fin"

{	rep	=	Util.afficheSaisie	(fen,	"Donnez	un	texte	?")	;

if	(rep	!=	null)

System.out.println	("reponse	=	"	+	rep)	;

}

while	((rep	==	null)	||	!rep.equals("fin"))	;

}

}

323

126	Synthèse	:	saisie	d’une	heure

Réaliser	 une	 classe	 nommée	 DialogueSaisieHeure	 permettant	 à	 l’utilisateur	 de
saisir,	 dans	 une	 boîte	 de	 dialogue,	 une	 heure	 exprimée	 sous	 la	 forme	 de	 deux
nombres	entiers	:	un	nombre	d’heures	compris	entre	0	et	23,	un	nombre	de	minutes
compris	entre	0	et	59.	La	boîte	de	dialogue	comportera	deux	champs	de	texte	pour	la
saisie	des	entiers,	un	bouton	OK	et	un	bouton	Annul	:

Si	 l’utilisateur	 agit	 sur	OK	 alors	 que	 les	 valeurs	 fournies	 sont	 incorrectes	 (non
numériques	ou	hors	plage),	on	lui	demandera	d’en	fournir	d’autres	(on	ne	mettra	pas
fin	au	dialogue)	:

La	classe	disposera	:

•	 d’un	 constructeur	 à	 un	 argument	 de	 type	 JFrame	 correspondant	 à	 la	 fenêtre
parent	à	utiliser	pour	la	boîte	;

•	 d’une	 méthode	 lanceDialog	 permettant	 d’afficher	 la	 boîte	 et	 de	 gérer	 le
dialogue.	 Elle	 fournira	 en	 retour	 :	 la	 valeur	 true	 si	 le	 dialogue	 s’est	 terminé
normalement	 (valeurs	correctes	puis	action	sur	OK),	 la	valeur	 false	 dans	 le	 cas
contraire	(Annul	ou	fermeture	de	la	boîte)	;

•	 de	 deux	 méthodes	 getHeures	 et	 getMinutes	 permettant	 de	 "récupérer"	 les
valeurs	saisies.

324

Écrire	un	petit	programme	de	test.

Ici	encore,	 la	boîte	de	dialogue	sera	 son	propre	écouteur	des	actions	sur	 les	boutons
OK	et	Annul.	Il	n’est	pas	nécessaire	d’écouter	les	champs	de	texte	puisque	leur	contenu
n’est	pris	en	compte	qu’au	moment	de	l’action	sur	OK.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	DialogueSaisieHeure	extends	JDialog	implements	ActionListener

{	public	DialogueSaisieHeure	(JFrame	parent)

{	super	(parent,	"ENTREZ	UNE	HEURE",	true)	;

this.parent	=	parent	;

setSize	(240,120)	;

//	mise	en	place	des	composants

Container	contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

JLabel	etiqHeures	=	new	JLabel	("Heures	")	;

contenu.add	(etiqHeures)	;

saisieHeures	=	new	JTextField	(3)	;

contenu.add	(saisieHeures)	;

JLabel	etiqMinutes	=	new	JLabel	("Minutes	")	;

contenu.add	(etiqMinutes)	;

saisieMinutes	=	new	JTextField	(3)	;

contenu.add	(saisieMinutes)	;

ok	=	new	JButton	("OK")	;

ok.addActionListener	(this)	;

contenu.add	(ok)	;

cancel	=	new	JButton	("Annul")	;

contenu.add	(cancel)	;

cancel.addActionListener	(this)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	if	(e.getSource()	==	ok)

{			//	recuperation	infos	saisies

String	chHeures	=	saisieHeures.getText()	;

String	chMinutes	=	saisieMinutes.getText()	;

325

//	essai	de	conversion	en	entiers

try

{	heures	=	Integer.parseInt	(chHeures)	;

minutes	=	Integer.parseInt	(chMinutes)	;

}

catch	(NumberFormatException	eX)

{	 JOptionPane.showMessageDialog	 (parent,	 "Valeurs	 non

numériques")	;

saisieHeures.setText	("")	;

saisieMinutes.setText	("")	;

return	;

}

//	conversion	reussie	-	verification	des	plages

if	((heures>=0)	&&	(heures<24)	&&	(minutes>=0)	&&	(minutes<60))

correct	=	true	;

else

{	JOptionPane.showMessageDialog	(parent,	"Valeurs	hors	plage")	;

saisieHeures.setText	("")	;

saisieMinutes.setText	("")	;

return	;

}

}

setVisible	(false)	;

}

public	int	getHeures()

{	return	heures	;

}

public	int	getMinutes()

{	return	minutes	;

}

public	boolean	lanceDialog	()

{	correct	=	false	;

	//	affichage	du	dialogue

setVisible	(true)	;

//	fin	du	dialogue

dispose()	;

return	correct	;

}

private	JFrame	parent	;

326

private	JButton	ok,	cancel	;

private	JTextField	saisieHeures,	saisieMinutes	;

private	int	heures,	minutes	;

private	boolean	correct	;

}

public	class	TstHM

{	public	static	void	main	(String	args[])

{	DialogueSaisieHeure	boiteHeure	;

JFrame	fen	=	new	JFrame("Essai	boite	saisie	heure")	;

fen.setSize	(400,	300)	;

fen.setVisible	(true)	;

boiteHeure	=	new	DialogueSaisieHeure	(fen)	;

if	(boiteHeure.lanceDialog	()	==	true)

	{	System.out.println	("Heure	fournie	:	"	+	boiteHeure.getHeures()

+	"h	"

+	boiteHeure.getMinutes()	+	"mn")	;

	}

else

System.out.println	("dialogue	abandonne")	;

boiteHeure.dispose()	;

}

}

L’énoncé	nous	 imposait	de	 recourir	à	une	méthode	 lanceDialog	membre	de	 la	classe
DialogueSaisieHeure	 et	 non	 plus	 à	 une	méthode	 statique.	 Il	 est	 donc	 nécessaire	 que
l’objet	boîte	de	dialogue	ait	été	créé	avant	l’appel	de	cette	méthode.	C’est	ce	que	nous
faisons	ici	dans	la	méthode	main.	Cette	démarche	est	plus	contraignante	que	celle	qui
consisterait	à	créer	automatiquement	la	boîte	lors	de	l’appel	d’une	méthode	statique.	En
revanche,	elle	permettrait,	si	on	 le	souhaitait,	de	ne	créer	qu’une	seule	fois	une	boîte
qu’on	utilise	ensuite	à	diverses	reprises

327

Chapitre	12

Les	menus

Connaissances	requises

•	Barre	de	menus	(JMenuBar)	;	construction	;	rattachement	à	une	fenêtre
(méthode	setJMenuBar)

•	Objets	menus	(JMenu)	;	construction	;	ajout	à	une	barre	de	menus	;
événements	générés	(MenuEvent),	méthodes	menuSelected,	menuDeselected,
menuCanceled	;	ajout	d’une	barre	séparatrice	(méthode	addSeparator)

•	Options	de	menus	(JMenuItem)	;	construction	;	ajout	à	un	menu	;	événements
Action	générés

•	Options	case	à	cocher	(JCheckBoxMenuItem)	;	options	boutons	radio
(JRadiButtonMenuItem)	;	groupe	de	boutons	radio

•	Menus	surgissants	(JPopupMenu)

•	Composition	d’options	de	menu

•	Menus	dynamiques	;	activation/désactivation	d’options	(setEnabled)

328

127	Création	d’un	menu	déroulant
usuel

Créer	une	fenêtre	(dérivée	de	JFrame)	munie	d’une	barre	de	menus	constituée	:

•	d’un	menu	Fichier	comportant	les	options	:	Ouvrir,	Sauvegarder	et	Fermer,

•	d’un	menu	Edition	comportant	les	options	:	Copier	et	Coller.

On	ne	cherchera	pas	ici	à	traiter	les	actions	correspondantes.

Dans	le	constructeur	de	la	fenêtre,	nous	créons	un	objet	de	type	JMenuBar	et	nous	le
rattachons	 à	 la	 fenêtre	 avec	 la	 méthode	 add.	 Puis	 nous	 créons	 deux	 objets	 de	 type
JMenu	 (nommés	 fichier	 et	 edition)	 que	 nous	 rattachons	 à	 la	 barre	 des	menus.	 Pour
chaque	 menu,	 nous	 créons	 les	 options	 voulues	 (de	 type	 JMenuItem)	 et	 nous	 les
associons	au	menu	par	add.

import	java.awt.*;

import	javax.swing.*	;

class	FenMenu	extends	JFrame

{	public	FenMenu	()

{	setTitle	("Exemple	de	menus")	;

setSize	(300,	120)	;

	/*	creation	barre	des	menus	*/

barreMenus	=	new	JMenuBar()	;

setJMenuBar(barreMenus)	;

329

	/*	creation	menu	Fichier	et	ses	options	*/

fichier	=	new	JMenu	("Fichier")	;

barreMenus.add(fichier)	;

ouvrir	=	new	JMenuItem	("Ouvrir")	;

fichier.add	(ouvrir)	;

sauvegarder	=	new	JMenuItem	("Sauvegarder")	;

fichier.add	(sauvegarder)	;

fermer	=	new	JMenuItem	("Fermer")	;

fichier.add	(fermer)	;

	/*	creation	menu	Edition	et	ses	options	*/

edition	=	new	JMenu	("Edition")	;

barreMenus.add	(edition)	;

copier	=	new	JMenuItem	("Copier")	;

edition.add	(copier)	;

coller	=	new	JMenuItem	("Coller")	;

edition.add	(coller)	;

}

private	JMenuBar	barreMenus	;

private	JMenu	fichier,	edition	;

private	JMenuItem	ouvrir,	sauvegarder,	fermer,	copier,	coller	;

}

public	class	Fiched1

{	public	static	void	main	(String	args[])

{	FenMenu	fen	=	new	FenMenu()	;

fen.setVisible(true)	;

}

}

Dans	 la	 précédente	 solution,	 le	 constructeur	 de	 la	 fenêtre	 comportait	 plusieurs
instructions	 semblables,	 notamment	 la	 création	 d’une	 option	 et	 son	 rattachement	 au
menu.	 Si	 le	 nombre	 d’options	 de	 chaque	menu	 devenait	 important,	 on	 pourrait	 avoir
intérêt	à	écrire	une	méthode	statique	regroupant	ces	différentes	tâches	comme	dans	cet
exemple	(où	cette	méthode	se	nomme	ajoute)	:

import	java.awt.*;

import	javax.swing.*	;

class	FenMenu	extends	JFrame

330

{	public	FenMenu	()

{	setTitle	("Exemple	de	menus")	;

setSize	(300,	150)	;

	/*	creation	barre	des	menus	*/

barreMenus	=	new	JMenuBar()	;

setJMenuBar(barreMenus)	;

	/*	creation	menu	Fichier	et	ses	options	*/

fichier	=	new	JMenu	("Fichier")	;

barreMenus.add(fichier)	;

ouvrir	=	ajoute	("Ouvrir",	fichier)	;

sauvegarder	=	ajoute	("Sauvegarder",	fichier)	;

fermer	=	ajoute	("Fermer",	fichier)	;

	/*	creation	menu	Edition	et	ses	options	*/

edition	=	new	JMenu	("Edition")	;

barreMenus.add	(edition)	;

copier	=	ajoute	("Copier",	edition)	;

coller	=	ajoute	("Coller",	edition)	;

}

private	static	JMenuItem	ajoute	(String	libelle,	JMenu	menu)

{	JMenuItem	option	=	new	JMenuItem	(libelle)	;

menu.add	(option)	;

return	option	;

}

private	JMenuBar	barreMenus	;

private	JMenu	fichier,	edition	;

private	JMenuItem	ouvrir,	sauvegarder,	fermer,	copier,	coller	;

}

public	class	Fichedb1

{	public	static	void	main	(String	args[])

{	FenMenu	fen	=	new	FenMenu()	;

fen.setVisible(true)	;

}

}

Il	est	nécessaire	que	la	méthode	ajoute	renvoie	la	référence	à	l’option	qu’elle	a	créée.
Il	n’est	pas	possible	de	l’écrire	par	exemple	de	cette	manière	:

331

private	 static	 void	 ajoute	 (String	 libelle,	 JMenu	 menu,	 JMenuItem

option)

{	option	=	new	JMenuItem	(libelle)	;

menu.add	(option)	;

}

On	peut	également	envisager	d’employer	des	tableaux	d’options	et	de	libellés	comme
dans	cet	exemple	:

import	java.awt.*;

import	javax.swing.*	;

class	FenMenu	extends	JFrame

{	public	FenMenu	()

{	setTitle	("Exemple	de	menus")	;

setSize	(300,	120)	;

	/*	creation	barre	des	menus	*/

barreMenus	=	new	JMenuBar()	;

setJMenuBar(barreMenus)	;

	/*	creation	menu	Fichier	et	ses	options	*/

fichier	=	new	JMenu	("Fichier")	;

barreMenus.add(fichier)	;

int	nOptionsFichier	=	nomsOptionsFichier.length	;

optionsFichier	=	new	JMenuItem	[nOptionsFichier]	;

for	(int	i=0	;	i<nOptionsFichier	;	i++)

{	optionsFichier[i]	=	new	JMenuItem	(nomsOptionsFichier[i])	;

fichier.add	(optionsFichier[i])	;

}

	/*	creation	menu	Edition	et	ses	options	*/

edition	=	new	JMenu	("Edition")	;

barreMenus.add	(edition)	;

int	nOptionsEdition	=	nomsOptionsEdition.length	;

optionsEdition	=	new	JMenuItem	[nOptionsEdition]	;

for	(int	i=0	;	i<nOptionsEdition	;	i++)

{	optionsEdition[i]	=	new	JMenuItem	(nomsOptionsEdition[i])	;

edition.add	(optionsEdition[i])	;

}

}

332

private	JMenuBar	barreMenus	;

private	JMenu	fichier,	edition	;

private	JMenuItem	[]	optionsFichier,	optionsEdition	;

private	 String[]	 nomsOptionsFichier	 =	 {"Ouvrir",	 "Sauvegarder",

"Fermer"}	;

private	String[]	nomsOptionsEdition	=	{	"Copier",	"Coller"}	;

}

public	class	Fiched1a

{	public	static	void	main	(String	args[])

{	FenMenu	fen	=	new	FenMenu()	;

fen.setVisible(true)	;

}

}

Cette	démarche	ne	sera	cependant	pas	toujours	facile	à	associer	avec	le	traitement	des
événements	générés	par	les	différentes	options	(non	demandé	ici).

333

128	Gestion	des	actions	sur	les	options
d’un	menu

On	 se	 propose	 de	 traiter	 les	 actions	 sur	 les	 options	 des	 deux	 menus	 créés	 dans
l’exercice	 120.	 On	 ne	 cherchera	 pas	 à	 manipuler	 véritablement	 un	 fichier	 mais
seulement	un	nom	de	fichier	fourni	par	une	boîte	de	saisie	déclenchée	par	l’option
Ouvrir.
On	 "tracera"	 en	 fenêtre	 console	 les	 opérations	 résultant	 des	différentes	 actions	de
l’utilisateur	comme	dans	cet	exemple	:

On	ouvre	truc

copie	d'information

on	sauvegarde	truc

collage	d'information

Rien	a	coller

on	sauvegarde	truc

On	ferme	truc

On	ouvre	chose

On	ferme	chose

Pas	de	fichier	ouvert	a	sauvegarder

pas	de	fichier	ouvert

Pour	les	options	du	menu	Fichier,	on	précisera	la	nature	de	l’opération	(ouverture,
sauvegarde,	 fermeture)	et	 le	nom	du	fichier	concerné.	On	supposera	qu’on	ne	peut
ouvrir	qu’un	seul	fichier	à	la	fois	et	que	l’ouverture	d’un	nouveau	fichier	entraîne	la
fermeture	de	l’ancien	(une	même	option	peut	donc	déclencher	plusieurs	opérations).
On	signalera	 les	 choix	 incohérents	 telle	une	demande	de	 fermeture	alors	qu’aucun
fichier	n’est	ouvert.
Pour	les	options	du	menu	Edition,	on	se	contentera	de	préciser	l’opération	réalisée
et	de	signaler	les	choix	incohérents.	On	supposera	qu’une	même	information	ne	peut
être	collée	qu’une	seule	fois.

Il	nous	suffit	de	traiter	les	événements	Action	déclenchés	par	les	différentes	options	des
menus.	Ici,	nous	faisons	de	la	fenêtre	son	propre	écouteur.

334

En	 réponse	 à	 l’option	Ouvrir,	 nous	 demandons	 à	 l’utilisateur	 de	 fournir	 un	 nom	 de
fichier	 dans	 une	 boîte	 de	 saisie	 standard.	Nous	 tenons	 compte	 du	 fait	 qu’il	 peut	 très
bien	 abandonner	 la	 saisie	 (fermeture	 de	 la	 boîte	 ou	 action	 sur	Cancel)	 et	 donc	 ne
fournir	aucun	nom.	De	même,	nous	considérons	qu’un	nom	vide	n’est	pas	une	réponse
satisfaisante.
Des	 indicateurs	 booléens	 fichierOuvert	 et	 infoCopiee	 nous	 permettent	 de	 suivre
l’évolution	de	la	situation.

import	java.awt.*;

import	java.awt.event.*	;

import	javax.swing.*	;

import	javax.swing.event.*	;

class	FenMenu	extends	JFrame	implements	ActionListener

{	public	FenMenu	()

{	setTitle	("Exemple	de	menus")	;

setSize	(300,	130)	;

	/*	creation	barre	des	menus	*/

barreMenus	=	new	JMenuBar()	;

setJMenuBar(barreMenus)	;

	/*	creation	menu	Fichier	et	ses	options	*/

fichier	=	new	JMenu	("Fichier")	;

barreMenus.add(fichier)	;

ouvrir	=	new	JMenuItem	("Ouvrir")	;

fichier.add	(ouvrir)	;

ouvrir.addActionListener	(this)	;

sauvegarder	=	new	JMenuItem	("Sauvegarder")	;

fichier.add	(sauvegarder)	;

sauvegarder.addActionListener	(this)	;

fermer	=	new	JMenuItem	("Fermer")	;

fichier.add	(fermer)	;

fermer.addActionListener	(this)	;

	/*	creation	menu	Edition	et	ses	options	*/

edition	=	new	JMenu	("Edition")	;

barreMenus.add	(edition)	;

copier	=	new	JMenuItem	("Copier")	;

edition.add	(copier)	;

copier.addActionListener	(this)	;

coller	=	new	JMenuItem	("Coller")	;

edition.add	(coller)	;

335

coller.addActionListener	(this)	;

/*	etat	initial	:	pas	de	fichier	ouvert,	pas	d'info	copiee	*/

fichierOuvert	=	false	;	infoCopiee	=	false	;

nomFichier	=	null	;

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	==	ouvrir)

{	 String	 nom	 =	 JOptionPane.showInputDialog	 (this,	 "nom	 fichier	 a

ouvrir")	;

if	((nom	==	null)	||	(nom.equals("")))	return	;

if	 (fichierOuvert)	 System.out.println	 ("On	 ferme	 "	 +

nomFichier)	;

nomFichier	=	nom	;	fichierOuvert	=	true	;

System.out.println	("On	ouvre	"	+	nomFichier)	;

}

if	(source	==	fermer)

{	 if	 (fichierOuvert)	 System.out.println	 ("On	 ferme	 "	 +

nomFichier)	;

	else	System.out.println	("pas	de	fichier	ouvert")	;

fichierOuvert	=	false	;

}

if	(source	==	sauvegarder)

{	 if	 (fichierOuvert)	 System.out.println	 ("on	 sauvegarde	 "	 +

nomFichier)	;

else	 System.out.println	 ("Pas	 de	 fichier	 ouvert	 a

sauvegarder")	;

}

if	(source	==	copier)

{	System.out.println	("copie	d'information")	;

infoCopiee	=	true	;

}

if	(source	==	coller)

{	if	(infoCopiee)	System.out.println	("collage	d'information")	;

	else	System.out.println	("Rien	a	coller")	;

infoCopiee	=	false	;

}

}

private	JMenuBar	barreMenus	;

private	JMenu	fichier,	edition	;

336

private	JMenuItem	ouvrir,	sauvegarder,	fermer,	copier,	coller	;

private	boolean	fichierOuvert,	infoCopiee	;

private	String	nomFichier	;

}

public	class	Fiched2

{	public	static	void	main	(String	args[])

{	FenMenu	fen	=	new	FenMenu()	;

fen.setVisible(true)	;

}

}

337

129	Activation,	désactivation
d’options

Modifier	 le	 programme	 réalisé	 dans	 l’exercice	 121	 de	 manière	 que	 ne	 soient
activées	 que	 les	 seules	 les	 options	 réellement	 utilisables	 à	 un	moment	 donné.	Par
exemple,	tant	qu’un	fichier	n’est	pas	ouvert,	les	options	Sauvegarder	et	Fermer	ne
seront	pas	actives.
On	proposera	deux	solutions	:

•	l’une	où	l’on	continuera	de	ne	traiter	que	les	événements	de	type	Action,

•	l’autre	où	l’on	traitera	en	plus	les	événements	de	type	MenuItem.

Nous	 utiliserons	 la	 méthode	 setEnabled	 de	 la	 classe	 JMenuItem	 pour	 activer	 ou
désactiver	une	option.	Initialement	(à	la	construction	de	la	fenêtre),	seules	les	options
Ouvrir	 et	 Copier	 sont	 activées.	 Lors	 du	 traitement	 des	 actions	 sur	 les	 différentes
options,	nous	actualisons	les	options	actives.	Plus	précisément,	à	la	fin	de	la	méthode
actionPerformed,	nous	utilisons	les	valeurs	des	indicateurs	booléens	fichierOuvert	et
infoCopiee	 pour	 décider	 de	 l’état	 des	 différentes	 options.	 Cette	 démarche	 est	 plus
simple	que	 celle	qui	 consisterait	 à	modifier	 l’état	 d’activation	d’une	ou	de	plusieurs
options	en	fonction	de	l’option	sélectionnée.
Notez	 qu’il	 est	 nécessaire	 de	 définir	 l’état	 d’activation	 initial	 des	 options	 dans	 le
constructeur	 de	 la	 fenêtre.	Dans	 le	 cas	 contraire,	 lors	 de	 la	 première	 sélection	 d’un
menu,	toutes	les	options	seraient	actives.
En	ce	qui	 concerne	 les	messages	affichés	en	 fenêtre	 console,	 certains	n’ont	plus	 lieu
d’être,	par	exemple	"pas	de	fichier	ouvert"…	Nous	les	avons	supprimés.

import	java.awt.*;

import	java.awt.event.*	;

import	javax.swing.*	;

import	javax.swing.event.*	;

class	FenMenu	extends	JFrame	implements	ActionListener

{	public	FenMenu	()

338

{	setTitle	("Exemple	de	menus")	;

setSize	(300,	130)	;

	/*	creation	barre	des	menus	*/

barreMenus	=	new	JMenuBar()	;

setJMenuBar(barreMenus)	;

	/*	creation	menu	Fichier	et	ses	options	*/

fichier	=	new	JMenu	("Fichier")	;

barreMenus.add(fichier)	;

ouvrir	=	new	JMenuItem	("Ouvrir")	;

fichier.add	(ouvrir)	;

ouvrir.addActionListener	(this)	;

sauvegarder	=	new	JMenuItem	("Sauvegarder")	;

fichier.add	(sauvegarder)	;

sauvegarder.addActionListener	(this)	;

fermer	=	new	JMenuItem	("Fermer")	;

fichier.add	(fermer)	;

fermer.addActionListener	(this)	;

	/*	creation	menu	Edition	et	ses	options	*/

edition	=	new	JMenu	("Edition")	;

barreMenus.add	(edition)	;

copier	=	new	JMenuItem	("Copier")	;

edition.add	(copier)	;

copier.addActionListener	(this)	;

coller	=	new	JMenuItem	("Coller")	;

edition.add	(coller)	;

coller.addActionListener	(this)	;

	/*	etat	initial	:	pas	de	fichier	ouvert,	pas	d'info	copiee	*/

fichierOuvert	=	false	;	infoCopiee	=	false	;

nomFichier	=	null	;

ouvrir.setEnabled	(true)	;

sauvegarder.setEnabled	(false)	;

fermer.setEnabled	(false)	;

copier.setEnabled	(true)	;

coller.setEnabled	(false)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	==	ouvrir)

{	 String	 nom	 =	 JOptionPane.showInputDialog	 (this,	 "nom	 fichier	 a

339

ouvrir")	;

if	((nom	==	null)	||	(nom.equals("")))	return	;

if	 (fichierOuvert)	 System.out.println	 ("On	 ferme	 "	 +

nomFichier)	;

nomFichier	=	nom	;	fichierOuvert	=	true	;

System.out.println	("On	ouvre	"	+	nomFichier)	;

}

if	(source	==	fermer)

{	System.out.println	("On	ferme	"	+	nomFichier)	;

fichierOuvert	=	false	;

}

if	(source	==	sauvegarder)

{	System.out.println	("on	sauvegarde	"	+	nomFichier)	;

}

if	(source	==	copier)

{	System.out.println	("copie	d'information")	;

infoCopiee	=	true	;

}

if	(source	==	coller)

{	System.out.println	("collage	d'information")	;

infoCopiee	=	false	;

}

/*	activation	-	desactivation	des	options	*/

copier.setEnabled	(true)	;				//	par	securite

coller.setEnabled	(infoCopiee)	;

ouvrir.setEnabled	(true)	;				//	par	securite

sauvegarder.setEnabled	(fichierOuvert)	;

fermer.setEnabled	(fichierOuvert)	;

}

private	JMenuBar	barreMenus	;

private	JMenu	fichier,	edition	;

private	JMenuItem	ouvrir,	sauvegarder,	fermer,	copier,	coller	;

private	boolean	fichierOuvert,	infoCopiee	;

private	String	nomFichier	;

}

public	class	Fiched3a

{	public	static	void	main	(String	args[])

{	FenMenu	fen	=	new	FenMenu()	;

fen.setVisible(true)	;

340

}

}

Cette	 fois,	 nous	 tenons	 compte	 des	 événements	 de	 type	MenuEvent	 générés	 lors	 de
l’affichage	 ou	 de	 la	 disparition	 d’un	 menu	 déroulant.	 Ceux-ci	 sont	 traités	 par	 un
écouteur	 implémentant	 l’interface	 MenuListener	 comportant	 trois	 méthodes
menuSelected,	menuDeselected	et	menuCanceled.	Dans	 la	première,	nous	prévoyons
de	définir	l’état	d’activation	des	différentes	options.	Ici	encore,	celui-ci	est	déduit	des
valeurs	des	indicateurs	booléens	fichierOuvert	et	infoCopiee.	Par	souci	de	simplicité,
nous	ne	testons	pas	la	source	(menu	Fichier	ou	menu	Edition)	et	nous	définissons	l’état
de	toutes	les	options	(alors	que	manifestement	ne	sont	concernées	que	celles	du	menu
choisi).
Notez	 que	 cette	 fois	 il	 n’est	 plus	 nécessaire	 de	 prévoir	 une	 initialisation	 de	 l’état
d’activation	 des	 options	 puisque	 la	 méthode	 menuSelected	 sera	 nécessairement
appelée	avant	le	premier	affichage	d’un	menu.	Toutes	les	opérations	de	gestion	de	l’état
d’activation	se	trouvent	regroupées	en	un	seul	emplacement	du	programme.

import	java.awt.*;

import	java.awt.event.*	;

import	javax.swing.*	;

import	javax.swing.event.*	;

class	FenMenu	extends	JFrame	implements	ActionListener,	MenuListener

{	public	FenMenu	()

{	setTitle	("Exemple	de	menus")	;

setSize	(300,	130)	;

	/*	creation	barre	des	menus	*/

barreMenus	=	new	JMenuBar()	;

setJMenuBar(barreMenus)	;

	/*	creation	menu	Fichier	et	ses	options	*/

fichier	=	new	JMenu	("Fichier")	;

barreMenus.add(fichier)	;

fichier.addMenuListener	(this)	;

ouvrir	=	new	JMenuItem	("Ouvrir")	;

fichier.add	(ouvrir)	;

ouvrir.addActionListener	(this)	;

sauvegarder	=	new	JMenuItem	("Sauvegarder")	;

fichier.add	(sauvegarder)	;

341

sauvegarder.addActionListener	(this)	;

fermer	=	new	JMenuItem	("Fermer")	;

fichier.add	(fermer)	;

fermer.addActionListener	(this)	;

	/*	creation	menu	Edition	et	ses	options	*/

edition	=	new	JMenu	("Edition")	;

barreMenus.add	(edition)	;

edition.addMenuListener(this)	;

copier	=	new	JMenuItem	("Copier")	;

edition.add	(copier)	;

copier.addActionListener	(this)	;

coller	=	new	JMenuItem	("Coller")	;

edition.add	(coller)	;

coller.addActionListener	(this)	;

	/*	etat	initial	:	pas	de	fichier	ouvert,	pas	d'info	copiee	*/

fichierOuvert	=	false	;	infoCopiee	=	false	;

nomFichier	=	null	;

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	==	ouvrir)

{	 String	 nom	 =	 JOptionPane.showInputDialog	 (this,	 "nom	 fichier	 a

ouvrir")	;

if	((nom	==	null)	||	(nom.equals("")))	return	;

if	 (fichierOuvert)	 System.out.println	 ("On	 ferme	 "	 +

nomFichier)	;

nomFichier	=	nom	;	fichierOuvert	=	true	;

System.out.println	("On	ouvre	"	+	nomFichier)	;

}

if	(source	==	fermer)

{	System.out.println	("On	ferme	"	+	nomFichier)	;

fichierOuvert	=	false	;

}

if	(source	==	sauvegarder)

{	System.out.println	("on	sauvegarde	"	+	nomFichier)	;

}

if	(source	==	copier)

{	System.out.println	("copie	d'information")	;

infoCopiee	=	true	;

}

342

if	(source	==	coller)

{	System.out.println	("collage	d'information")	;

infoCopiee	=	false	;

}

}

public	void	menuSelected	(MenuEvent	e)

{	/*	activation	-	desactivation	des	options	*/

copier.setEnabled	(true)	;

coller.setEnabled	(infoCopiee)	;

ouvrir.setEnabled	(true)	;

sauvegarder.setEnabled	(fichierOuvert)	;

fermer.setEnabled	(fichierOuvert)	;

}

public	void	menuDeselected	(MenuEvent	e)	{}

public	void	menuCanceled	(MenuEvent	e)	{}

private	JMenuBar	barreMenus	;

private	JMenu	fichier,	edition	;

private	JMenuItem	ouvrir,	sauvegarder,	fermer,	copier,	coller	;

private	boolean	fichierOuvert,	infoCopiee	;

private	String	nomFichier	;

}

public	class	Fiched3b

{	public	static	void	main	(String	args[])

{	FenMenu	fen	=	new	FenMenu()	;

fen.setVisible(true)	;

}

}

343

130	Synthèse	:	calculs	sur	des	rectangles

Créer	une	fenêtre	disposant	d’une	barre	de	menus	dotée	de	deux	menus	Dimensions
et	Calcul	destinés	à	effectuer	des	calculs	de	périmètre	et	d’aire	de	rectangles	dont
on	fournit	la	longueur	et	la	largeur.
Le	menu	Dimensions	comportera	les	options	:

•	Nouvelle	 longueur	 qui	 demandera	 à	 l’utilisateur	 d’entrer	 dans	 une	 boîte	 de
saisie	un	entier	représentant	une	longueur,

•	Nouvelle	largeur	qui	demandera	à	l’utilisateur	d’entrer	dans	une	boîte	de	saisie
un	entier	représentant	une	largeur,

•	 Dimensions	 actuelles	 qui	 affichera	 dans	 une	 boîte	 de	 message	 les	 valeurs
courantes	de	la	longueur	et	de	la	largeur

Le	 menu	 Calculs	 comportera	 les	 options	 Perimètre	 et	 Aire	 qui	 afficheront
l’information	requise	dans	une	boîte	de	message
Voici	 un	 exemple	 d’exécution	 illustrant	 le	 fonctionnement	 de	 l’option	 Nouvelle
longueur	du	menu	Dimensions	:

Pour	 nous	 faciliter	 la	 création	 des	 différentes	 options,	 nous	 avons	 défini	 (dans	 la
fenêtre)	une	méthode	ajoute	recevant	en	argument	la	référence	d’un	menu,	un	libellé	et
la	référence	de	l’écouteur	requis.
Ici	encore,	il	nous	suffit	de	traiter	les	événements	Action	déclenchés	par	les	différentes
options	des	menus.	Nous	les	écoutons	dans	la	fenêtre	elle-même.

344

Une	méthode	statique	lire	permet	de	lire	une	information	numérique	positive	dans	une
boîte	 de	 saisie.	 Nous	 y	 traitons	 le	 cas	 d’une	 réponse	 non	 numérique	 en	 interceptant
l’exception	 NumberFormatException.	 Nous	 signalons	 à	 l’utilisateur	 les	 réponses
incorrectes	par	une	boîte	de	message	et	nous	lui	demandons	une	nouvelle	valeur.	Nous
faisons	de	même	pour	les	valeurs	non	positives.
En	revanche,	nous	laissons	à	l’utilisateur	la	possibilité	de	"changer	d’avis"	en	quittant
la	boîte	de	saisie	 (par	 fermeture	ou	par	Cancel).	Nous	convenons	alors	que,	dans	ce
cas,	la	méthode	lire	renverra	la	valeur	0.

import	java.awt.*;

import	java.awt.event.*	;

import	javax.swing.*	;

import	javax.swing.event.*	;

class	FenCalculs	extends	JFrame	implements	ActionListener

{	public	FenCalculs	()

{	setTitle	("CALCULS	sur	des	rectangles")	;

setSize	(400,	150)	;

	/*	creation	barre	des	menus	*/

barreMenus	=	new	JMenuBar()	;

setJMenuBar(barreMenus)	;

	/*	creation	menu	dimensions	*/

dimensions	=	new	JMenu	("Dimensions")	;

barreMenus.add	(dimensions)	;

longueur	=	ajoute	(dimensions,	"Nouvelle	longueur",	this)	;

largeur	=	ajoute	(dimensions,	"Nouvelle	largeur",	this)	;

infos	=	ajoute	(dimensions,	"Dimensions	actuelles",	this)	;

calculs	=	new	JMenu	("Calculs")	;

barreMenus.add	(calculs)	;

perimetre	=	ajoute	(calculs,	"Perimetre",	this)	;

aire	=	ajoute	(calculs,	"Aire",	this)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	==	longueur){	int	n	=	lire	("Donnez	la	longueur")	;

	if	(n	>	0)	L	=	n	;

	}

if	(source	==	largeur)	{	int	n	=	lire	("Donnez	la	largeur")	;

	l	=	n	;

	}

345

if	(source	==	perimetre)

	 JOptionPane.showMessageDialog	 (null,	 "Perimetre	 =	 "	 +	 (2*

(L+l)))	;

if	(source	==	aire)

	JOptionPane.showMessageDialog	(null,	"Aire	=	"	+	(L*l))	;

if	(source	==	infos)

	JOptionPane.showMessageDialog	(null,	"Longueur	=	"	+	L

+	"	Largeur	=	"	+	l)	;

}

private	static	JMenuItem	ajoute	(JMenu	menu,	String	libelle,

	ActionListener	ecouteur)

{	JMenuItem	option	=	new	JMenuItem	(libelle)	;

menu.add	(option)	;

option.addActionListener	(ecouteur)	;

return	option	;

}

private	static	int	lire	(String	question)

{	/*	ici	on	demande	une	valeur	jusqu'a	ce	qu'elle	soit	correcte	*/

/*	c'est-a-dire	entière	et	positive	*/

boolean	correct	=	false	;

int	valeur=0	;

do

{	String	rep	=	JOptionPane.showInputDialog	(null,	question)	;

if	(rep	==	null)	break	;		//	on	renvoie	0	si	fermeture	ou	Cancel

try

{	valeur	=	Integer.parseInt	(rep)	;

if	(valeur	>0)	correct	=	true	;

}

catch	(NumberFormatException	ex)	{}

if	 (!correct)	 JOptionPane.showMessageDialog	 (null,	 "Valeur

incorrecte	")	;

}

while	(!correct)	;

return	valeur	;

}

private	JMenuBar	barreMenus	;

private	JMenu	dimensions,	calculs	;

private	JMenuItem	longueur,	largeur,	perimetre,	aire,	infos	;

private	int	l=0,	L=0	;

}

346

public	class	Calculs

{	public	static	void	main	(String	args[])

{	FenCalculs	fen	=	new	FenCalculs()	;

fen.setVisible(true)	;

}

}

1.	 Le	 troisième	 argument	 de	 ajoute	 a	 été	 prévu	 ici	 de	 type	ActionListener.	 Nous
appliquons	ainsi	les	possibilités	de	polymorphisme	aux	interfaces	;	ajoute	peut	être
appelée	 avec	 un	 argument	 d’un	 type	 quelconque	 implémentant	 l’interface
ActionListener.
2.	On	pourrait	être	tentés	d’écrire	la	méthode	ajoute	de	cette	manière	:

private	 static	 void	 ajoute	 (JMenu	 menu,	 JMenuItem	 option,	 String

libelle,

ActionListener	ecouteur)

{	option	=	new	JMenuItem	(libelle)	;

menu.add	(option)	;

option.addActionListener	(ecouteur)	;

}

et	de	l’appeler	de	cette	façon	:
ajoute	(longueur,	dimensions,	"Nouvelle	longueur",	this)	;

En	 effet,	 ajoute	 recevrait	 alors	 dans	menu	 une	 copie	 de	 la	 référence	 figurant	 dans
longueur	 (ici	 null),	 avant	 de	 placer	 dans	menu	 la	 référence	 de	 l’objet	 menu	 créé
ensuite.	 Mais	 la	 valeur	 du	 champ	 menu	 de	 l’objet	 fenêtre	 ne	 serait	 aucunement
modifiée.	 Le	 programme	 fonctionnerait	 partiellement	 mais	 on	 ne	 traiterait	 pas	 les
actions	sur	les	options.

347

131	Synthèse	:	coloration	par	boutons
radio

Créer	une	fenêtre	munie	d’une	barre	de	menus	comportant	un	seul	menu	(Couleur)
offrant	le	choix	de	la	couleur	de	la	fenêtre	par	des	boutons	radio	:

Pendant	 l’affichage	 du	 menu,	 la	 fenêtre	 deviendra	 blanche.	 Si	 le	 menu	 est
abandonné,	la	fenêtre	reprendra	sa	couleur	précédente.

Les	couleurs	sont	conservées	dans	un	tableau	statique	couleurs	d’objets	de	type	Color
accompagné	 d’un	 tableau	 de	 chaînes	 nomsCouleurs	 fournissant	 le	 libellé
correspondant.	 Il	 est	 facile	d’introduire	de	nouvelles	 couleurs	dans	 le	programme	en
modifiant	ces	deux	tableaux.
La	création	du	menu	Couleur	ne	pose	aucun	problème.	Celle	de	ses	options	se	fait	par
une	boucle	sur	 les	différentes	couleurs	 ;	 le	nombre	de	répétitions	est	simplement	fixé
par	la	dimension	du	tableau	couleurs.
Ici,	il	est	nécessaire	de	traiter	à	la	fois	les	événements	Action	et	Menu	générés	par	les
options	 du	menu	Couleur.	 Les	 premiers	 fixent	 la	 couleur	 de	 fond	 de	 la	 fenêtre,	 les
seconds	permettent	de	décider	du	moment	où	la	fenêtre	doit	être	repeinte	en	blanc.
En	ce	qui	concerne	le	changement	de	couleur	de	la	fenêtre,	on	ne	peut	pas	se	contenter
d’appeler	 sa	 méthode	 setBackground	 aux	 moments	 opportuns	 (actionPerformed,
menuSelected…).	En	effet,	les	modifications	d’affichage	du	menu	lui-même	nécessitent
que	 la	 fenêtre	 soit	 repeinte.	Nous	 pourrions	 redéfinir	 la	méthode	paint	 de	 la	 fenêtre

348

elle-même	 mais,	 par	 souci	 de	 généralité,	 nous	 préférons	 utiliser	 la	 méthode
paintComponent	d’un	panneau	occupant	toute	la	fenêtre.	Nous	créons	donc	une	classe
Panneau,	 dérivée	 de	 JPanel.	 La	 couleur	 courante	 est	 définie	 par	 une	 variable
couleurCourante	figurant	dans	la	fenêtre	et	à	laquelle	le	panneau	peut	accéder	par	une
méthode	getCouleur	 (il	 a	 fallu	 fournir	 au	 constructeur	 du	panneau	 la	 référence	de	 la
fenêtre	concernée).
Le	traitement	d’une	action	sur	une	option	consite	à	trouver	la	couleur	correspondante	en
explorant	 le	 tableau	 d’options.	 En	 fait,	 nous	 définissons	 à	 la	 fois	 une	 couleur	 et	 un
numéro,	ce	dernier	nous	permettant	de	retrouver	l’ancienne	couleur	courante	(ou	celle
qui	 vient	 d’être	 sélectionnée)	 lorsque	 se	 produit	 l’événement	 correspondant	 à
menuDeselected.	On	notera	que	ce	dernier	 se	produit	 après	 l’événement	Action	 (s’il
existe).	 Si	 l’on	 tient	 à	 être	 indépendant	 de	 cet	 ordre,	 on	 peut	 toujours	 définir	 la
(nouvelle)	couleur	courante	à	la	fois	dans	menuDeselected	et	dans	actionPerformed	et
en	appeler	repaint	dans	actionPerformed	 (ce	 qui	 n’est	 pas	 nécessaire	 puisqu’il	 sera
appelé	après	menuDeselected	suite	à	l’effacement	du	menu).

import	java.awt.*;

import	java.awt.event.*	;

import	javax.swing.*	;

import	javax.swing.event.*	;

class	FenMenu	extends	JFrame	implements	ActionListener,MenuListener

{	static	Color	[]	couleurs	=

	{	Color.red,	Color.yellow,	Color.blue,	Color.green}	;

static	String[]	nomsCouleurs	=

	{	"Rouge",	"Jaune",	"Bleu",	"Vert"	}	;

public	FenMenu	()

{	setTitle	("COULEURS")	;	setSize	(300,	150)	;

	/*	creation	panneau	occupant	toute	la	fenetre	*/

panneau	=	new	Panneau	(this)	;

getContentPane().add(panneau)	;

	/*	creation	barre	des	menus	*/

barreMenus	=	new	JMenuBar()	;

setJMenuBar(barreMenus)	;

	/*	creation	menu	Couleur	et	ses	options	*/

menuCouleur	=	new	JMenu	("Couleur")	;

barreMenus.add(menuCouleur)	;

menuCouleur.addMenuListener	(this)	;

nbCouleurs	=	couleurs.length	;

optionsCouleurs	=	new	JRadioButtonMenuItem	[nbCouleurs]	;

ButtonGroup	groupe	=	new	ButtonGroup	()	;

349

for	(int	i=0	;	i<nbCouleurs	;	i++)

{	 optionsCouleurs[i]	 =	 new	 JRadioButtonMenuItem

(nomsCouleurs[i])	;

menuCouleur.add	(optionsCouleurs[i])	;

optionsCouleurs[i].addActionListener	(this)	;

groupe.add(optionsCouleurs[i])	;

}

couleurCourante	=	couleurs	[numCouleur]	;

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

for	(int	i=0	;	i<nbCouleurs	;	i++)

if	(source	==	optionsCouleurs[i])

	{	numCouleur	=	i	;

	couleurCourante	=	couleurs[numCouleur]	;

	 repaint()	 ;	 	 //	 pour	 forcer	 a	 repeindre	 l’ensemble	 de	 la

fenetre

	}

}

public	void	menuSelected	(MenuEvent	e)

{	couleurCourante	=	Color.white	;

}

public	void	menuDeselected	(MenuEvent	e)

{	couleurCourante	=	couleurs	[numCouleur]	;

}

public	void	menuCanceled	(MenuEvent	e)	{}

public	Color	getCouleur	()

{	return	couleurCourante	;

}

private	Panneau	panneau	;

private	JMenuBar	barreMenus	;

private	JMenu	menuCouleur	;

private	JRadioButtonMenuItem	optionsCouleurs[]	;

private	int	nbCouleurs	;

private	int	numCouleur=0	;

private	Color	couleurCourante	;

}

class	Panneau	extends	JPanel

{	public	Panneau	(FenMenu	fen)

{	this.fen	=	fen	;

350

}

public	void	paintComponent	(Graphics	g)

{	super.paintComponent	(g)	;

setBackground	(fen.getCouleur())	;

}

private	FenMenu	fen	;

}

public	class	Coul1

{	public	static	void	main	(String	args[])

{	FenMenu	fen	=	new	FenMenu()	;

fen.setVisible(true)	;

}

}

Si	 on	 n’appelle	 pas	 la	 méthode	 repaint	 dans	 actionPerformed,	 la	 fenêtre	 risque	 de
n’être	que	partiellement	repeinte.	En	effet,	lors	de	la	fermeture	du	menu,	Java	appelle
bien	paintComponent	 pour	 repeindre	 la	 fenêtre,	mais	 en	 se	 limitant	 à	 la	 seule	partie
endommagée1	(nommée	souvent	"rectangle	invalide").

351

132	Synthèse	:	choix	de	couleur	de	fond
et	de	forme	par	des	menus
composés

Afficher	 un	 rectangle	 coloré	 de	 taille	 fixe	 dans	 une	 fenêtre.	 Un	 menu	 Couleur,
constitué	de	deux	sous-menus	Fond	et	Forme	permettra	de	choisir	la	couleur	du	fond
ou	du	rectangle	dans	une	liste	de	couleurs	(qui	sera	la	même	pour	les	deux	cas)	:

Les	couleurs	et	 leurs	noms	seront	 fournis	 sous	 forme	de	 tableaux	en	arguments	du
constructeur	de	la	fenêtre.
Le	 dessin	 d’un	 rectangle	 de	 couleur	 donnée	 se	 fait	 en	 appliquant	 au	 contexte
graphique	 concerné	 successivement	 la	 méthode	 setColor	 (en	 argument	 l’objet	 de
type	Color	voulu)	et	la	méthode	fillRect	(int	abscisse,	int	ordonnee,	int	largeur,	int
hauteur)).

Nous	 dessinons	 dans	 un	 panneau	 dont	 nous	 redéfinissons	 classiquement	 la	 méthode
paintComponent.	Cela	nécessite	la	création	d’une	classe	spécialisée	Panneau	dérivée
de	JPanel.
Ici,	nous	avons	affaire	à	des	menus	composés	:	le	menu	Couleur	comporte	deux	sous-
menus	Forme	et	Fond	(qui	sont	toujours	des	objets	de	type	JMenu).	A	ces	derniers,	on

352

rattache	des	options	de	type	JMenuItem.	Il	nous	suffit	d’écouter	les	événements	Action
qu’ils	générent.	Les	variables	couleurFond	et	couleurForme	servent	à	mémoriser	dans
la	fenêtre	la	dernière	couleur	sélectionnée.	La	méthode	paintComponent	du	panneau	y
accède	à	l’aide	des	méthodes	getCouleurFond	et	getCouleurForme.

import	java.awt.*;

import	java.awt.event.*	;

import	javax.swing.*	;

import	javax.swing.event.*	;

class	FenRect	extends	JFrame	implements	ActionListener

{	public	FenRect	(Color	[]	couleurs,	String	[]	nomsCouleurs)

{	setTitle	("Couleurs	de	fond	et	de	forme")	;

setSize	(350,	220)	;

this.couleurs	=	couleurs	;

this.nomsCouleurs	=	nomsCouleurs	;

	/*	creation	barre	des	menus	*/

barreMenus	=	new	JMenuBar()	;

setJMenuBar(barreMenus)	;

	/*	creation	menu	Couleur	et	sous-menus	Fond	et	Forme	*/

couleur	=	new	JMenu	("Couleur")	;

barreMenus.add	(couleur)	;

menuCouleurFond	=	new	JMenu	("Fond")	;

couleur.add	(menuCouleurFond)	;

menuCouleurForme	=	new	JMenu	("Forme")	;

couleur.add	(menuCouleurForme)	;

	/*	creation	des	options	de	couleur	et	ajout	aux	deux	sous-menus

*/

nbCouleurs	=	couleurs.length	;

optionsCouleurFond	=	new	JMenuItem	[nbCouleurs]	;

optionsCouleurForme	=	new	JMenuItem	[nbCouleurs]	;

for	(int	i=0	;	i<nbCouleurs	;	i++)

	{	optionsCouleurForme[i]	=	new	JMenuItem	(nomsCouleurs[i])	;

	optionsCouleurForme[i].addActionListener	(this)	;

	menuCouleurForme.add	(optionsCouleurForme[i])	;

	optionsCouleurFond[i]	=	new	JMenuItem	(nomsCouleurs[i])	;

	optionsCouleurFond[i].addActionListener	(this)	;

	menuCouleurFond.add	(optionsCouleurFond[i])	;

	}

	/*	creation	panneau	de	dessin	*/

353

panneau	=	new	Panneau	(this)	;

getContentPane().add	(panneau)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

for	(int	i=0	;	i<nbCouleurs	;	i++)

	 {	 if	 (source	 ==	 optionsCouleurFond[i])	 couleurFond	 =

couleurs[i]	;

	 if	 (source	 ==	 optionsCouleurForme[i])	 couleurForme	 =

couleurs[i]	;

	}

	panneau.repaint()	;		//	pour	forcer	a	repeindre	l'ensemble	de	la

fenetre

}

public	Color	getCouleurFond	()	{	return	couleurFond	;	}

public	Color	getCouleurForme	()	{	return	couleurForme	;	}

private	Color[]	couleurs	;

private	String[]	nomsCouleurs	;

private	JMenuBar	barreMenus	;

private	Panneau	panneau	;

private	JMenu	couleur,	menuCouleurFond,	menuCouleurForme	;

private	JMenuItem[]	optionsCouleurFond,	optionsCouleurForme	;

private	int	nbCouleurs	;

private	Color	couleurFond=Color.white,	couleurForme=Color.black	;

}

class	Panneau	extends	JPanel

{	private	static	int	x=10,	y=10,	largeur=200,	hauteur=120	;

public	Panneau	(FenRect	fen)

{	this.fen	=	fen	;

}

public	void	paintComponent	(Graphics	g)

{	super.paintComponent(g)	;

setBackground	(fen.getCouleurFond())	;

g.setColor	(fen.getCouleurForme())	;

g.fillRect	(x,	y,	largeur,	hauteur)	;

}

private	FenRect	fen	;

}

public	class	Composes

354

{	private	static	Color	[]	couleurs	=

	 {Color.yellow,	 Color.red,	 Color.blue,	 Color.pink,	 Color.green

}	;

private	static	String[]	nomsCouleurs	=

	{"jaune",	"rouge",	"bleu",	"rose",	"vert"	}	;

public	static	void	main	(String	args[])

{	FenRect	fen	=	new	FenRect(couleurs,	nomsCouleurs)	;

fen.setVisible(true)	;

}

}

355

133	Synthèse	:	choix	de	couleurs	et
de	dimensions	par	des	menus
surgissants

Afficher	 un	 rectangle	 coloré	 dans	 une	 fenêtre.	 Un	 clic	 dans	 le	 rectangle	 fera
apparaître	un	menu	surgissant	permettant	de	modifier	les	dimensions	du	rectangle	ou
sa	 couleur.	 Un	 clic	 en	 dehors	 du	 rectangle	 fera	 apparaître	 un	 menu	 surgissant
permettant	de	modifier	la	couleur	du	fond.

Les	couleurs	et	leurs	noms	seront	les	mêmes	pour	le	fond	et	pour	le	rectangle	et	ils
seront	fournis	sous	forme	de	tableaux	en	arguments	du	constructeur	de	la	fenêtre.
Le	 dessin	 d’un	 rectangle	 de	 couleur	 donnée	 se	 fait	 en	 appliquant	 au	 contexte
graphique	 concerné	 successivement	 la	 méthode	 setColor	 (en	 argument	 l’objet	 de
type	Color	voulu)	et	la	méthode	fillRect	(int	abscisse,	int	ordonnee,	int	largeur,	int
hauteur)).

Note	:	la	résolution	de	cet	exercice	sera	facilitée	par	celle	de	l’exercice	132.

Nous	 dessinons	 dans	 un	 panneau	 dont	 nous	 redéfinissons	 classiquement	 la	 méthode

356

paintComponent.	Cela	nécessite	la	création	d’une	classe	spécialisée	Panneau	dérivée
de	JPanel.
Dans	le	constructeur	de	la	fenêtre,	nous	créons	deux	menus	surgissants	menuForme	et
menuFond.	 Le	 premier	 est	 constitué	 de	 deux	 sous-menus	 (de	 type	 JMenu)
menuFormeDimensions	 et	 menuFormeCouleurs.	 Leurs	 options	 sont	 de	 type
JMenuItem.	Nous	avons	choisi	d’écouter	 les	différentes	options	dans	 la	 fenêtre	elle-
même	 (les	 écouter	 dans	 le	 panneau	 aurait	 nécessité	 de	 lui	 fournir	 les	 références	 de
toutes	les	options	concernées).
Les	variables	couleurFond,	couleurForme,	l	et	h	servent	à	mémoriser	dans	la	fenêtre
les	 dernières	 couleurs	 sélectionnées	 et	 les	 dimensions	 du	 rectangle.	 La	 méthode
paintComponent	 du	 panneau	 y	 accède	 à	 l’aide	 des	 méthodes	 getCouleurFond,
getCouleurForme,	getLargeur	et	getHauteur.
Les	dimensions	sont	lues	dans	des	boîtes	de	saisie.	On	traite	comme	à	l’accoutumée	les
exceptions	de	conversion.
Le	déclenchement	des	menus	surgissants	a	lieu	en	cas	de	clic	dans	le	panneau	dont	nous
faisons	son	propre	écouteur	d’événements	Mouse.	 Ici,	 l’affichage	du	menu	est	réalisé
lors	 du	 relâchement	 du	 bouton	 attribué	 aux	 menus	 surgissants	 :	 nous	 redéfinissons
mouseReleased	 et	 nous	 testons	 le	 bouton	 concerné	 à	 l’aide	 de	 la	 méthode
isPopupTrigger	de	la	classe	MouseEvent.	L’objet	panneau	n’a	besoin	de	connaître	que
la	 référence	 de	 la	 fenêtre	 et	 celles	 des	 deux	 menus	 surgissants.	 Celles-ci	 sont
transmises	au	constructeur.

import	java.awt.*;

import	java.awt.event.*	;

import	javax.swing.*	;

import	javax.swing.event.*	;

class	FenRect	extends	JFrame	implements	ActionListener

{	public	FenRect	(Color	[]	couleurs,	String	[]	nomsCouleurs)

{	setTitle	("Menus	surgissants	composes")	;

setSize	(300,	150)	;

this.couleurs	=	couleurs	;

this.nomsCouleurs	=	nomsCouleurs	;

/*	creation	menus	surgissants	Fond	et	Forme	*/

menuFond	=	new	JPopupMenu	()	;

menuForme	=	new	JPopupMenu	()	;

menuFormeCouleur	=	new	JMenu	("Couleur")	;

menuForme.add	(menuFormeCouleur)	;

menuFormeDimensions	=	new	JMenu	("Dimensions")	;

357

menuForme.add	(menuFormeDimensions)	;

	/*	creation	des	options	*/

nbCouleurs	=	couleurs.length	;

optionsCouleurFond	=	new	JMenuItem	[nbCouleurs]	;

optionsCouleurForme	=	new	JMenuItem	[nbCouleurs]	;

for	(int	i=0	;	i<nbCouleurs	;	i++)

	{	optionsCouleurForme[i]	=	new	JMenuItem	(nomsCouleurs[i])	;

	optionsCouleurForme[i].addActionListener	(this)	;

	menuFormeCouleur.add	(optionsCouleurForme[i])	;

	optionsCouleurFond[i]	=	new	JMenuItem	(nomsCouleurs[i])	;

	optionsCouleurFond[i].addActionListener	(this)	;

	menuFond.add	(optionsCouleurFond[i])	;

	}

optionHauteur	=	new	JMenuItem	("Hauteur")	;

optionLargeur	=	new	JMenuItem	("Largeur")	;

menuFormeDimensions.add	(optionHauteur)	;

menuFormeDimensions.add	(optionLargeur)	;

optionHauteur.addActionListener	(this)	;

optionLargeur.addActionListener	(this)	;

	/*	creation	panneau	de	dessin	*/

panneau	=	new	Panneau	(this,	menuForme,	menuFond)	;

panneau.addMouseListener	(panneau)	;

getContentPane().add	(panneau)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

for	(int	i=0	;	i<nbCouleurs	;	i++)

	 {	 if	 (source	 ==	 optionsCouleurFond[i])	 couleurFond	 =

couleurs[i]	;

	 if	 (source	 ==	 optionsCouleurForme[i])	 couleurForme	 =

couleurs[i]	;

	}

	if	((source	==	optionLargeur)	||	(source	==	optionHauteur))

	{	int	valeur=0	;	String	question	;

	boolean	ok=false	;

	if	(source	==	optionLargeur)	question	=	"Nouvelle	largeur	?"	;

else	question	=	"Nouvelle	hauteur	?"	;

	String	rep	=	JOptionPane.showInputDialog	(null,	question)	;

	try

	{	valeur	=	Integer.parseInt	(rep)	;

358

	ok	=	true	;

	}

	catch	(NumberFormatException	ex)	{	}

	if	(ok)	if	(source	==	optionLargeur)	l	=	valeur	;

else	h	=	valeur	;

	}

	panneau.repaint()	;		//	pour	forcer	a	repeindre	l'ensemble	de	la

fenetre

}

public	Color	getCouleurFond	()	{	return	couleurFond	;	}

public	Color	getCouleurForme	()	{	return	couleurForme	;	}

public	int	getLargeur	()	{	return	l	;	}

public	int	getHauteur	()	{	return	h	;	}

private	Color[]	couleurs	;

private	String[]	nomsCouleurs	;

private	Panneau	panneau	;

private	JPopupMenu	menuFond,	menuForme	;

private	JMenu	menuFormeCouleur,	menuFormeDimensions	;

private	JMenuItem[]	optionsCouleurFond,	optionsCouleurForme	;

private	JMenuItem	optionHauteur,	optionLargeur	;

private	int	nbCouleurs	;

private	Color	couleurFond=Color.white,	couleurForme=Color.black	;

private	int	l=100,	h=50	;

}

class	Panneau	extends	JPanel	implements	MouseListener

{	private	static	int	x=10,	y=10	;

public	 Panneau	 (FenRect	 fen,	 JPopupMenu	 menuForme,	 JPopupMenu

menuFond)

{	this.fen	=	fen	;

this.menuForme	=	menuForme	;

this.menuFond	=	menuFond	;

}

public	void	mouseReleased	(MouseEvent	e)

{	if(!e.isPopupTrigger	())	return	;

int	xClic	=	e.getX(),	yClic	=	e.getY()	;

if	 ((xClic>=x)	 &&	 (xClic<=x+largeur)	 &&	 (yClic>=y)	 &&

(yClic<=y+hauteur))

	menuForme.show	(fen,	xClic,	yClic)	;

else

359

menuFond.show	(fen,	xClic,	yClic)	;

}

public	void	mousePressed	(MouseEvent	e)	{}

public	void	mouseClicked	(MouseEvent	e)	{}

public	void	mouseEntered	(MouseEvent	e)	{}

public	void	mouseExited	(MouseEvent	e)	{}

public	void	paintComponent	(Graphics	g)

{	super.paintComponent(g)	;

setBackground	(fen.getCouleurFond())	;

g.setColor	(fen.getCouleurForme())	;

largeur	=	fen.getLargeur()	;

hauteur	=	fen.getHauteur()	;

g.fillRect	(x,	y,	largeur,	hauteur)	;

}

private	FenRect	fen	;

private	int	largeur,	hauteur	;

private	JPopupMenu	menuForme,	menuFond	;

}

public	class	Compsurg

{	private	static	Color	[]	couleurs	=

	 {Color.yellow,	 Color.red,	 Color.blue,	 Color.pink,	 Color.green

}	;

private	static	String[]	nomsCouleurs	=

	{"jaune",	"rouge",	"bleu",	"rose",	"vert"	}	;

public	static	void	main	(String	args[])

{	FenRect	fen	=	new	FenRect(couleurs,	nomsCouleurs)	;

fen.setVisible(true)	;

}

}

1.	Plus	précisément	au	plus	petit	rectangle	contenant	la	partie	endommagée.

360

Chapitre	13

Les	événements	de	bas	niveau

Connaissances	requises

•	 Événements	 de	 type	 MouseEvent	 liés	 aux	 boutons	 de	 la	 souris	 (rappel)	 ;
méthodes	mousePressed,	mouseReleased	et	mouseClicked
•	 Identification	 du	 bouton	 de	 la	 souris	 ;	 méthodes	 getModifiers	 et	 constantes
correspondantes	InputEvent.BUTTON1_MASK,	 InputEvent.BUTTON2_MASK	et
InputEvent.BUTTON3_MASK
•	Gestion	des	clics	multiples	;	méthode	getClickCount

•	Gestion	des	déplacements	de	la	souris	;	méthodes	mouseEntered,
mouseExited,	mouseMoved	et	mouseDragged

•	Événements	de	type	KeyEvent	;	méthodes	keyPressed,	keyReleased	et
keyTyped	;	identification	d’une	touche	par	son	code	de	touche	virtuelle
(méthode	getKeyCode)	ou	par	le	caractère	correspondant	(méthode
getKeyChar)	;	connaissance	de	l’état	des	touches	modificatrices	(méthodes
isXXXDown	et	getModifiers)	;	source	d’un	événement	clavier

361

134	Identification	des	boutons	de	la
souris

Afficher	en	permanence	un	segment	dans	une	fenêtre.	Son	origine	sera	définie	par	un
clic	sur	le	bouton	de	gauche	de	la	souris	et	elle	se	modifiera	à	chaque	nouveau	clic
sur	ce	même	bouton.	Son	extrémité	sera	définie	de	la	même	manière	avec	le	bouton
de	droite	:

Pour	obtenir	 la	permanence	du	dessin,	nous	tracerons	notre	segment	dans	un	panneau.
Ici,	 il	 est	 plus	 simple	d’écouter	 les	 clics	 (mouseClicked)	 dans	 le	 panneau	 lui-même.
Pour	 identifier	 le	 bouton	 de	 la	 souris,	 nous	 utilisons	 la	méthode	 getModifiers	 de	 la
classe	MouseEvent.	Elle	fournit	un	entier	dans	lequel	un	bit	de	rang	donné,	associé	à
chacun	 des	 boutons,	 prend	 la	 valeur	 1.	La	 classe	 InputEvent	 contient	 des	 constantes
qu’on	peut	utiliser	comme	masque	pour	faciliter	les	choses	;	ici,	ce	sont	les	constantes
BUTTON1_MASK	(bouton	de	gauche)	et	BUTTON3_MASK	(bouton	de	droite)	qui	nous
intéressent.
Le	segment	est	défini	par	les	coordonnées	de	son	origine	(xOr	et	yOr)	et	celles	de	son
extrémité	(xExt	et	yExt).	Deux	indicateurs	booléens	orConnue	et	extConnue	permettent
de	 savoir	 si	 ces	 informations	 sont	 disponibles	 (elles	 sont	 en	 fait	 placées	 à	 false	 au
début	 du	 programme).	 Le	 dessin	 proprement	 dit	 est	 réalisé	 dans	 la	 méthode
paintComponent	 qui	 exploite	 ces	différentes	 informations.	Notez	qu’il	 est	nécessaire
d’appeler	 repaint	 après	 un	 clic	 gauche	 ou	 droite,	 afin	 de	 provoquer	 l’appel	 de
paintComponent.

362

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame

{	public	MaFenetre	()

{	setTitle	("SEGMENT")	;

setSize	(300,	150)	;

pan	=	new	Panneau	()	;

getContentPane().add	(pan)	;

pan.addMouseListener	(pan)	;

}

private	Panneau	pan	;

}

class	Panneau	extends	JPanel	implements	MouseListener

{	public	void	paintComponent	(Graphics	g)

{	super.paintComponent	(g)	;

if	(orConnue	&&	extConnue)	g.drawLine	(xOr,	yOr,	xExt,	yExt)	;

}

public	void	mousePressed	(MouseEvent	e)

{	int	x=e.getX(),	y=e.getY()	;

int	modifieurs	=	e.getModifiers()	;

if	((modifieurs	&	InputEvent.BUTTON1_MASK)	!=	0)

{	/*	clic	bouton	gauche	*/

xOr	=	x	;	yOr	=	y	;

orConnue	=	true	;

repaint()	;

}

if	((modifieurs	&	InputEvent.BUTTON3_MASK)	!=	0)

{	/*	clic	bouton	droite	*/

xExt	=	x	;	yExt	=	y	;

extConnue	=	true	;

repaint()	;

}

}

public	void	mouseReleased	(MouseEvent	e)	{}

public	void	mouseClicked	(MouseEvent	e)	{}

public	void	mouseEntered	(MouseEvent	e)	{}

public	void	mouseExited	(MouseEvent	e)	{}

private	int	xOr,	yOr,	xExt,	yExt	;

363

private	boolean	orConnue=false,	extConnue=false	;

}

public	class	Segments

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

364

135	Vrais	doubles-clics

Java	ne	dispose	que	d’un	seul	compteur	de	clics	pour	 les	différents	boutons	de	 la
souris.	Dans	ces	conditions,	il	n’est	pas	possible	de	distinguer	un	véritable	double-
clic	de	deux	clics	successifs	sur	deux	boutons	différents.	Écrire	un	programme	qui
détecte	 les	 "vrais"	 doubles-clics	 sur	 le	 bouton	 de	 gauche	 et	 qui	 affiche	 alors	 un
message	en	fenêtre	console.

Nous	ferons	naturellement	de	la	fenêtre	son	propre	écouteur	d’événements	souris.	Nous
utiliserons	:

•	la	méthode	getClickCount	qui	fournit	le	nombre	de	clics	(rapprochés)	successifs,

•	la	méthode	getModifiers	pour	identifier	le	bouton	de	la	souris.
Un	 indicateur	 booléen	 clicGauche	 indique	 si	 le	 dernier	 clic	 concernait	 le	 bouton	 de
gauche.
Il	faut	bien	prendre	garde	à	:

•	mettre	l’indicateur	clicGauche	à	false	après	un	double-clic	gauche	(vrai	ou	faux)
ainsi	qu’après	tout	clic	sur	un	autre	bouton,

•	mettre	l’indicateur	clicGauche	à	true	après	un	simple	clic	gauche.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame	implements	MouseListener

{	public	MaFenetre	()

{	setTitle	("DOUBLES	CLICS")	;

setSize	(300,	150)	;

clicGauche	=	false	;

addMouseListener	(this)	;

}

public	void	mousePressed	(MouseEvent	e)	{}

365

public	void	mouseReleased	(MouseEvent	e)	{}

public	void	mouseClicked	(MouseEvent	e)

{	int	modifieurs	=	e.getModifiers	()	;

if	((modifieurs	&	InputEvent.BUTTON1_MASK)	!=	0)

	/*	ici,	on	a	affaire	a	un	clic	gauche	*/

{	if	((e.getClickCount()	==	2)	&&	clicGauche)

	{	System.out.println	("Double	clic	gauche")	;

	clicGauche	=	false	;

	}

else	clicGauche	=	true	;

}

else	clicGauche	=	false	;

}

public	void	mouseEntered	(MouseEvent	e)	{}

public	void	mouseExited	(MouseEvent	e)	{}

private	boolean	clicGauche	;

}

public	class	DoubClic

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

366

136	Suivi	des	déplacements	de	la
souris	(1)

Créer	une	 fenêtre	dotée	d’un	bouton.	Afficher	en	 fenêtre	console	des	messages	de
suivi	des	déplacements	de	la	souris	comme	dans	cet	exemple	:

la	souris	entre	dans	la	fenetre

la	souris	quitte	la	fenetre

la	souris	entre	dans	le	bouton

la	souris	quitte	le	bouton

la	souris	entre	dans	la	fenetre

la	souris	quitte	la	fenetre

la	souris	entre	dans	la	fenetre

la	souris	quitte	la	fenetre

la	souris	entre	dans	le	bouton

la	souris	quitte	le	bouton

la	souris	entre	dans	la	fenetre

la	souris	quitte	la	fenetre

Il	nous	suffit	de	suivre	les	événements	mouseEntered	et	mouseExited	ayant	pour	source
le	bouton	ou	la	fenêtre.
Ici,	nous	utilisons	pour	les	deux	un	même	écouteur,	à	savoir	la	fenêtre	elle-même.	Nous
y	 redéfinissons	 les	 six	méthodes	prévues	par	 l’interface	MouseListener	 ;	 ici	 ce	 sont
MouseEntered	 et	 MouseExited	 qui	 nous	 intéressent.	 Dans	 chacune	 de	 ces	 deux
méthodes,	getSource	nous	permet	d’identifier	la	source	de	l’événement.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame	implements	MouseListener

{	public	MaFenetre	()

{	setTitle	("Evenements	souris")	;

setSize	(300,	150)	;

367

contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

addMouseListener	(this)	;

bouton	=	new	JButton	("A")	;

contenu.add	(bouton)	;

bouton.addMouseListener	(this)	;

}

public	void	mousePressed	(MouseEvent	e)	{}

public	void	mouseReleased	(MouseEvent	e)	{}

public	void	mouseClicked	(MouseEvent	e)	{}

public	void	mouseEntered	(MouseEvent	e)

{	if	(e.getSource()	==	this)

System.out.println	("la	souris	entre	dans	la	fenetre")	;

if	(e.getSource()	==	bouton)

System.out.println	("la	souris	entre	dans	le	bouton")	;

}

public	void	mouseExited	(MouseEvent	e)

{	if	(e.getSource()	==	this)

System.out.println	("la	souris	quitte	la	fenetre")	;

if	(e.getSource()	==	bouton)

System.out.println	("la	souris	quitte	le	bouton")	;

}

private	JButton	bouton	;

private	Container	contenu	;

}

public	class	DpSour

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

L’exemple	 d’exécution	 de	 l’énoncé	 montre	 bien	 que	 lorsque	 la	 souris	 entre	 dans	 le
bouton,	elle	sort	de	la	fenêtre.

368

Voici	une	autre	solution	dans	laquelle	la	fenêtre	et	 le	bouton	ont	été	chacun	doté	d’un
écouteur	objet	d’une	classe	anonyme	(implémentant	l’interface	MouseAdapter).	 Ici,	 il
n’est	plus	nécessaire	de	tester	la	source	d’un	événement.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame

{	public	MaFenetre	()

{	setTitle	("Evenements	souris")	;

setSize	(300,	150)	;

contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

addMouseListener	(new	MouseAdapter()

{	public	void	mouseEntered	(MouseEvent	e)

{	System.out.println	("la	souris	entre	dans	la	fenetre")	;

}

public	void	mouseExited	(MouseEvent	e)

{	System.out.println	("la	souris	quitte	la	fenetre")	;

}

})	;

bouton	=	new	JButton	("A")	;

contenu.add	(bouton)	;

bouton.addMouseListener	(new	MouseAdapter()

{	public	void	mouseEntered	(MouseEvent	e)

{	System.out.println	("la	souris	entre	dans	le	bouton")	;

}

public	void	mouseExited	(MouseEvent	e)

{	System.out.println	("la	souris	quitte	le	bouton")	;

}

})	;

}

private	JButton	bouton	;

private	Container	contenu	;

}

public	class	DpSourb

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

369

}

}

Voici	 une	 troisième	 solution	 dans	 laquelle	 la	 fenêtre	 et	 le	 bouton	 partagent	 le	même
écouteur,	 là	 encore	 objet	 d’une	 classe	 anonyme	 implémentant	 l’interface
MouseAdapter.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame

{	public	MaFenetre	()

{	setTitle	("Evenements	souris")	;

setSize	(300,	150)	;

contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

MouseAdapter	ecout	=	new	MouseAdapter()

{	public	void	mouseEntered	(MouseEvent	e)

{	if	(e.getSource()	==	contenu)

System.out.println	("la	souris	entre	dans	la	fenetre")	;

if	(e.getSource()	==	bouton)

System.out.println	("la	souris	entre	dans	le	bouton")	;

}

public	void	mouseExited	(MouseEvent	e)

{	if	(e.getSource()	==	contenu)

System.out.println	("la	souris	quitte	la	fenetre")	;

if	(e.getSource()	==	bouton)

System.out.println	("la	souris	quitte	le	bouton")	;

}

}	;

contenu.addMouseListener	(ecout)	;

bouton	=	new	JButton	("A")	;

contenu.add	(bouton)	;

bouton.addMouseListener	(ecout)	;

}

private	JButton	bouton	;

private	Container	contenu	;

370

}

public	class	DpSoura

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

Ici,	 par	 souci	 de	 simplicité,	 nous	 avons	 intercepté	 les	 événements	 ayant	 pour	 source
non	plus	 la	fenêtre	elle-même,	mais	son	contenu.	En	effet,	dans	 la	classe	anonyme	de
l’écouteur,	 on	 ne	 peut	 plus	 identifier	 la	 fenêtre	 par	 this.	 On	 pourrait	 le	 faire	 en
conservant	la	référence	de	la	fenêtre	dans	un	champ.

371

137	Suivi	des	déplacements	de	la	souris
(2)

Réaliser	 une	 fenêtre	 disposant	 d’un	 bouton	 marqué	 CREATION_BOUTONS
permettant	de	créer	dynamiquement	des	boutons	marqués	B1,	B2,	B3…

Lorsque	 la	 souris	"passe"	sur	 l’un	de	ces	boutons,	 il	 se	colore	en	 fonction	de	son
numéro	(par	exemple,	le	premier	en	rouge,	le	second	en	jaune,	le	troisième	en	vert,
le	quatrième	en	bleu,	le	cinquième	à	nouveau	en	rouge…)	;	le	bouton	se	colore	en
blanc	lorsque	la	souris	en	sort

Ici,	nous	faisons	de	la	fenêtre	l’unique	écouteur	des	différentes	événements	:

•	Action	pour	le	bouton	de	création,

•	Mouse	pour	les	boutons	dynamiques.
Nous	nous	contentons	du	gestionnaire	par	défaut	de	la	fenêtre.
Pour	identifier	le	bouton	concerné	par	un	événement	souris,	nous	aurions	pu	utiliser	la
référence	 à	 la	 source	 fournie	 par	 getSource.	 Cela	 aurait	 toutefois	 nécessité	 de
conserver	 les	 références	 de	 tous	 les	 boutons	 créés	 dynamiquement.	 Ici,	 nous	 avons
choisi	d’exploiter	 la	chaîne	de	commande	de	 la	 source	 ;	elle	 s’obtient	à	 l’aide	de	 la
méthode	 getActionCommand	 qui	 figure	 dans	 toutes	 les	 classes	 dérivées	 de
AbstractButton,	donc	en	particulier	dans	JButton1.

import	javax.swing.*	;

372

import	java.awt.*	;

import	java.awt.event.*	;

class	 MaFenetre	 extends	 JFrame	 implements	 MouseListener,

ActionListener

{	 static	 final	 Color	 couleurs[]	 =	 {Color.red,	 Color.yellow,

Color.green,

	Color.blue}	;

public	MaFenetre	()

{	setTitle	("Evenements	souris")	;	setSize	(300,	150)	;

contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

boutonCreation	=	new	JButton	("CREATION_BOUTONS")	;

contenu.add	(boutonCreation)	;

boutonCreation.addActionListener	(this)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	if	(e.getSource()	==	boutonCreation)

	{	numBouton++	;

	JButton	b	=	new	JButton	("B"+numBouton)	;

	contenu.add	(b)	;

	b.addMouseListener	(this)	;

	}

}

public	void	mousePressed	(MouseEvent	e)	{}

public	void	mouseReleased	(MouseEvent	e)	{}

public	void	mouseClicked	(MouseEvent	e)	{}

public	void	mouseEntered	(MouseEvent	e)

{	Object	source	=	e.getSource	()	;

JButton	bSource	;

if	(source	instanceof	JButton)				//	par	precaution

{	bSource	=	(JButton)source	;

String	ch	=	bSource.getActionCommand()	;

if	(ch.charAt(0)	==	'B')

{	int	n	=	Integer.parseInt	(ch.substring(1))	;

int	numCoul	=	n	%	couleurs.length	;

bSource.setBackground	(couleurs[numCoul])	;

}

}

}

public	void	mouseExited	(MouseEvent	e)

373

{	Object	source	=	e.getSource	()	;

JButton	bSource	;

if	(source	instanceof	JButton)										//	par	precaution

{	bSource	=	(JButton)source	;

String	ch	=	bSource.getActionCommand()	;

if	(ch.charAt(0)	==	'B')

bSource.setBackground	(Color.white)	;

}

}

private	Container	contenu	;

private	JButton	boutonCreation	;

private	int	numBouton	=	0	;

}

public	class	BtDynCol

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

Dans	 les	méthodes	mouseEntered	 et	mouseExited,	 nous	 nous	 sommes	 assurés	 que	 la
source	 était	 bien	 d’un	 type	 JButton	 (opérateur	 instanceof)	 avant	 de	 lui	 appliquer	 la
méthode	getActionCommand.	 Ce	 n’était	 pas	 indispensable	 ici,	mais	 cela	 pourrait	 le
devenir	si	l’on	modifiait	le	programme	en	écoutant	les	événements	souris	générés	par
d’autres	composants.

374

138	Dessin	par	le	clavier	(1)

Écrire	un	programme	permettant	de	dessiner	à	la	volée	dans	une	fenêtre	en	utilisant
les	touches	fléchées	du	clavier	:

Le	dessin	commencera	en	un	point	donné	de	la	fenêtre	(ici	20	×	20).	On	pourra	fixer
un	incrément	de	plusieurs	pixels	(ici	5)	pour	chaque	appui	sur	une	touche.

Comme	 il	 s’agit	 ici	 de	 dessin	 à	 la	 volée,	 nous	 aurions	 pu	 opérer	 directement	 sur	 la
fenêtre	 (ou	plutôt	 sur	 son	contenu).	Mais,	pour	conserver	au	programme	un	caractère
plus	général,	nous	avons	préféré	dessiner	sur	un	panneau.
La	position	de	début	du	dessin	est	fixée	par	les	valeurs	initiales	des	variables	x	et	y	qui
désignent	ensuite	la	position	courante	de	fin	de	dessin.	L’incrément	du	déplacement	est
fixé	par	les	constantes	incx	et	incy.
Nous	pouvons	faire	de	 la	fenêtre	 l’écouteur	des	événements	clavier.	En	effet,	ceux-ci
seront	transmis	à	la	fois	au	panneau	et	à	son	conteneur,	c’est-à-dire	la	fenêtre.	Ici,	nous
redéfinissons	la	méthode	keyPressed,	ce	qui	revient	à	dire	que	nous	décidons	que	les
déplacements	seront	effectués	lors	de	l’appui	des	touches.	La	méthode	getKeyCode	de
la	 classe	KeyEvent	 nous	 permet	 de	 connaître	 le	 code	 de	 touche	 virtuelle	 concerné.
Nous	utilisons	les	constantes	telles	que	KeyEvent.KEY_UP	pour	identifier	les	touches
fléchées.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

375

class	MaFenetre	extends	JFrame	implements	KeyListener

{	static	int	incx=5,	incy=5	;

public	MaFenetre	()

{	setTitle	("DESSIN	AU	CLAVIER")	;	setSize	(350,	150)	;

addKeyListener	(this)	;

pan	=	new	JPanel	()	;

getContentPane().add	(pan)	;

}

public	void	keyPressed	(KeyEvent	e)

{	int	code	=	e.getKeyCode	()	;

switch	(code)

{	 case	 KeyEvent.VK_UP	 :	 dx	 =	 0	 ;	 dy	 =	 -incy	 ;	 bouge	 =	 true	 ;

break	;

case	 KeyEvent.VK_DOWN	 :	 dx	 =	 0	 ;	 dy	 =	 incy	 ;	 bouge	 =	 true	 ;

break	;

case	 KeyEvent.VK_LEFT	 :	 dx	 =	 -incx	 ;	 dy	 =	 0	 ;	 bouge	 =	 true	 ;

break	;

case	 KeyEvent.VK_RIGHT	 :	 dx	 =	 incx	 ;	 dy	 =	 0	 ;	 bouge	 =	 true	 ;

break	;

}

if	(bouge)

{	Graphics	g	=	pan.getGraphics()	;

g.drawLine	(x,	y,	x+dx,	y+dy)	;

g.dispose()	;

x	+=	dx	;	y	+=	dy	;

}

}

public	void	keyReleased	(KeyEvent	e)	{}

public	void	keyTyped	(KeyEvent	e)	{}

private	JPanel	pan	;

private	int	x=20,	y=20	;

private	int	dx,	dy	;

private	boolean	bouge	;

}

public	class	DesClav

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

376

139	Synthèse	:	dessin	par	le	clavier	(2)

Modifier	 le	 programme	 de	 l’exercice,	 de	 manière	 qu’on	 puisse	 interrompre	 le
dessin	et	le	reprendre	en	un	autre	point	:

Un	motif	(en	forme	de	x)	permettra	de	visualiser	la	position	courante	du	"curseur".
Les	 touches	 fléchées	 agiront	 toujours	 sur	 la	 position	 du	 curseur	 ;	 en	 revanche,	 le
dessin	n’aura	lieu	que	si	la	touche	Shift	est	enfoncée.

Note	 :	 cet	 exercice	 nécessite	 (en	 plus	 des	 prérequis	 mentionnés	 en	 début	 de	 ce
chapitre	 et	 du	 précédent)	 de	 savoir	 ce	 qu’est	 un	 "mode	 de	 dessin"	 et	 comment	 le
modifier.

Les	 touches	 fléchées	provoqueront	 donc	 toujours	 le	 déplacement	du	 curseur.	Pour	 ce
faire,	il	est	nécessaire	de	pouvoir	effacer	le	curseur	de	son	ancienne	position	et	de	le
tracer	dans	sa	nouvelle	position.	Pour	y	parvenir,	 le	plus	simple	consiste	à	utiliser	le
mode	de	dessin	dit	XOR,	en	le	paramétrant	par	la	couleur	de	fond	du	panneau.	Dans	ce
cas,	en	effet	:

•	le	dessin	sur	une	zone	ayant	la	couleur	de	fond	est	fait	avec	la	couleur	courante,

•	le	même	dessin	effectué	deux	fois	de	suite	efface	le	premier.
En	ce	qui	concerne	l’éventuel	tracé	du	trait,	il	faut	cette	fois	tenir	compte	de	l’état	de	la
touche	 Shift.	 On	 l’obtient	 avec	 la	 méthode	 getModifiers	 qui	 fournit	 un	 entier	 dans
lequel	un	bit	de	rang	InputEvent.SHIFT_MASK	correspond	à	la	touche	Shift.
On	notera	que	si	l’on	traçait	ce	trait	dans	le	mode	XOR,	on	effacerait	 le	point	situé	à

377

l’intersection	 des	 deux	 segments	 représentant	 le	 curseur.	 On	 pourrait	 éventuellement
prévoir	d’afficher	à	nouveau	ce	point	mais	cette	démarche	serait	dépendante	du	motif
utilisé	pour	le	curseur.	Le	plus	raisonnable	consiste	à	afficher	le	trait	dans	le	mode	de
dessin	normal	qu’on	obtient	par	appel	de	setPaintMode.
Initialement,	aucun	curseur	ne	s’affiche	dans	la	fenêtre.	En	effet,	nous	ne	pouvons	pas
effectuer	 ce	 tracé	 dans	 le	 constructeur	 de	 la	 fenêtre	 car	 aucun	 contexte	 graphique	 ne
serait	encore	disponible	pour	le	panneau	(la	méthode	getGraphics	fournirait	la	valeur
null).	Par	souci	de	simplicité,	nous	nous	sommes	donc	contentés	d’afficher	ce	curseur
après	la	première	action	sur	une	touche	fléchée	(nous	recourons	à	un	indicateur	booléen
nommé	debut).

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame	implements	KeyListener

{	static	int	incx=5,	incy=5	;

public	MaFenetre	()

{	setTitle	("DESSIN	AU	CLAVIER")	;

setSize	(350,	150)	;

addKeyListener	(this)	;

pan	=	new	JPanel	()	;

getContentPane().add	(pan)	;

}

public	void	keyPressed	(KeyEvent	e)

{	int	code	=	e.getKeyCode	()	;

bouge	=	false	;

switch	(code)

{	 case	 KeyEvent.VK_UP	 :	 dx	 =	 0	 ;	 dy	 =	 -incy	 ;	 bouge	 =	 true	 ;

break	;

case	 KeyEvent.VK_DOWN	 :	 dx	 =	 0	 ;	 dy	 =	 incy	 ;	 bouge	 =	 true	 ;

break	;

case	 KeyEvent.VK_LEFT	 :	 dx	 =	 -incx	 ;	 dy	 =	 0	 ;	 bouge	 =	 true	 ;

break	;

case	 KeyEvent.VK_RIGHT	 :	 dx	 =	 incx	 ;	 dy	 =	 0	 ;	 bouge	 =	 true	 ;

break	;

}

if	(bouge)

{	Graphics	g	=	pan.getGraphics()	;

g.setXORMode	(pan.getBackground())	;

	/*	efface	l'ancien	curseur	(s'il	existe)	et	affiche	le	nouveau

*/

378

if	(debut)	debut	=	false	;

	else	afficheCurseur	(g,	x,	y)	;

afficheCurseur	(g,	x+dx,	y+dy)	;

g.setPaintMode()	;

/*	on	ne	trace	que	si	la	touche	Shift	est	enfoncee	*/

if	((e.getModifiers()	&	InputEvent.SHIFT_MASK)	!=	0)

g.drawLine	(x,	y,	x+dx,	y+dy)	;

x	+=	dx	;

y	+=	dy	;

g.dispose()	;

}

}

private	void	afficheCurseur	(Graphics	g,	int	x,	int	y)

{	int	dx=2,	dy=2	;

g.drawLine	(x-dx,	y-dy,	x+dx,	y+dy)	;

g.drawLine	(x-dx,	y+dy,	x+dx,	y-dy)	;

}

public	void	keyReleased	(KeyEvent	e)	{}

public	void	keyTyped	(KeyEvent	e)	{}

private	JPanel	pan	;

private	int	x=20,	y=20	;

private	int	dx,	dy	;

private	boolean	bouge	;

private	boolean	debut	=	true	;

}

public	class	DesClav2

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

379

140	Sélection	d’un	composant	par	le
clavier

Afficher	dans	une	fenêtre	n	boutons	(n<=9)	étiquettés	de	1	à	n.	Faire	en	sorte	que	la
frappe	de	l’une	des	touches	1	à	n	sélectionne	le	bouton	de	numéro	n	 (lui	donne	 le
focus).

Nous	 introduisons	 classiquement	 les	 boutons	 dans	 la	 fenêtre,	 en	 conservant	 leurs
références	 dans	 un	 tableau	boutons.	 Nous	 faisons	 de	 la	 fenêtre	 son	 propre	 écouteur
d’événements	 clavier	 et	 nous	 redéfinissons	 les	méthodes	keyPressed,	keyReleased	 et
keyTyped	(seule	la	dernière	nous	intéresse	ici).
Pour	forcer	le	focus	sur	un	bouton,	nous	utilisons	la	méthode	requestFocus.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame	implements	KeyListener

{	private	static	int	nBoutons	=	7	;

public	MaFenetre	()

{	setTitle	("SELECTIONS	PAR	CLAVIER")	;

setSize	(350,	150)	;

Container	contenu	=	getContentPane()	;

380

contenu.setLayout	(new	FlowLayout())	;

addKeyListener	(this)	;	//	attention	:	ajouter	a	la	fenetre,	pas

au	contenu

boutons	=	new	JButton	[nBoutons]	;

for	(int	i=0	;	i<nBoutons	;	i++)

{	boutons[i]	=	new	JButton	("BOUTON	"+(i+1))	;

contenu.add(boutons[i])	;

}

}

public	void	keyPressed	(KeyEvent	e)	{}

public	void	keyReleased	(KeyEvent	e)	{}

public	void	keyTyped	(KeyEvent	e)

{	char	c	=	e.getKeyChar()	;

int	num	=	c	-'0'	;

if	((num>0)	&&	(num<=nBoutons))

boutons[num-1].requestFocus()	;

}

private	JButton	boutons[]	;

}

public	class	SelClav

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

381

141	Mise	en	évidence	d’un
composant	sélectionné

Afficher	dans	une	fenêtre	un	certain	nombre	de	boutons	de	couleur	 jaune.	Faire	en
sorte	que	lorsqu’un	bouton	prend	le	focus,	il	se	colore	en	rouge.

Ici,	 nous	 faisons	 de	 la	 fenêtre	 l’écouteur	 des	 événements	 Focus	 générés	 par	 les
différents	 boutons.	 Nous	 redéfinissons	 les	 méthodes	 focusGained	 et	 focusLost	 de
manière	à	modifier	comme	voulu	la	couleur	du	bouton.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

class	MaFenetre	extends	JFrame	implements	FocusListener

{	private	static	int	nBoutons	=	8	;

private	 static	 Color	 coulRepos	 =	 Color.yellow,	 coulSelec	 =

Color.red	;

public	MaFenetre	()

{	setTitle	("SELECTIONS	COLOREES")	;

setSize	(350,	150)	;

Container	contenu	=	getContentPane()	;

contenu.setLayout	(new	FlowLayout())	;

for	(int	i=0	;	i<nBoutons	;	i++)

382

{	bouton	=	new	JButton	("BOUTON	"+(i+1))	;

contenu.add(bouton)	;

bouton.addFocusListener	(this)	;

bouton.setBackground	(coulRepos)	;

}

}

public	void	focusGained	(FocusEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	instanceof	JButton)

{	JButton	bSource	=	(JButton)	source	;

	bSource.setBackground	(coulSelec)	;

}

}

public	void	focusLost	(FocusEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	instanceof	JButton)

{	JButton	bSource	=	(JButton)	source	;

bSource.setBackground	(coulRepos)	;

}

}

private	JButton	bouton	;

}

public	class	SelecCol

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible	(true)	;

}

}

1.	Bien	qu’elle	 fournisse	 le	même	 résultat,	 il	 s’agit	 bien	d’une	méthode	différente	 de	getActionCommand	 de	 la
classe	ActionEvent.

383

Chapitre	14

Les	applets

Connaissances	requises

•	La	classe	JApplet	;	les	méthodes	init,	start,	stop	et	destroy	;	le	gestionnaire
par	défaut

•	Écriture	d’un	fichier	HTML	permettant	de	lancer	une	applet	;	informations
code,	width	et	height

•	Transmission	d’informations	à	une	applet	par	le	fichier	HTML	et	récupération
par	la	méthode	getParameter

•	Transformation	d’une	application	en	une	applet

384

142	Comptage	des	arrêts	d’une
applet

Réaliser	 une	 applet	 affichant	 en	 permanence	 le	 nombre	 de	 fois	 où	 elle	 a	 été
interrompue.

Le	nombre	de	fois	où	l’applet	a	été	interrompue	peut	s’obtenir	en	comptant	le	nombre
de	 fois	 où	 sa	méthode	 stop	 a	 été	 appelée	 (avec	 la	 méthode	 start,	 on	 obtiendrait	 la
même	chose	à	une	unité	près).	Un	compteur	est	 initialisé	à	0	dans	sa	méthode	 init	 et
incrémenté	de	1	à	chaque	appel	de	stop.	D’autre	part,	à	chaque	appel	de	stop,	 il	 faut
actualiser	le	contenu	d’un	objet	étiquette	(JLabel)	indiquant	la	valeur	de	ce	compteur.
Cet	objet	est	ajouté	par	add	 au	contenu	de	 l’applet,	 sachant	que	 son	gestionnaire	par
défaut	(BorderLayout)	nous	convient	ici.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

public	class	Compteur	extends	JApplet		//	ne	pas	oublier	public

{	public	void	init	()

{	valeurCompteur	=	new	JLabel	(texte	+	compteur)	;

getContentPane().add(valeurCompteur)	;

}

public	void	stop	()

{	compteur++	;

valeurCompteur.setText	(texte	+	compteur)	;

}

private	JLabel	valeurCompteur	;

private	int	compteur	=	0	;

private	String	texte	=	"Nombre	d'arrets	=	"	;

}

Voici	un	exemple	de	fichier	HTML	permettant	de	lancer	cette	applet1	soit	au	sein	d’un
navigateur,	soit	dans	une	page	Web	(limitée	alors	ici	à	l’applet	et	ne	disposant	pas	de

385

titre)	:

HTML>

<BODY>

	<APPLET

CODE	=	"Compteur.class"

WIDTH	=	250

HEIGHT	=	120

	>

	</APPLET>

</BODY>

</HTML>

Voici	un	exemple	d’exécution	dans	un	visualisateur	d’applet	:

386

143	Dessin	dans	une	applet

Réaliser	 une	 applet	 qui	 affiche	 en	 permanence	 le	 dessin	 suivant	 (étoile	 dans	 un
cercle)	de	taille	fixe	:

Ecrire	un	exemple	de	fichier	HTML	de	lancement	de	cette	applet.

Afin	d’en	assurer	la	permanence,	le	dessin	est	réalisé	dans	un	panneau	dont	on	redéfinit
la	méthode	paintComponent.
Dans	 la	 méthode	 init	 de	 l’applet,	 on	 crée	 le	 panneau	 et	 on	 le	 rattache	 par	 add	 au
contenu	 de	 l’applet	 fourni	 par	 la	 méthode	 getContentPane	 (on	 procède	 exactement
comme	dans	le	constructeur	d’une	fenêtre).
Les	dimensions	du	dessin	sont	définies	par	les	constantes	xc,	yc	(coordonnées	du	centre
du	cercle)	et	rayon	de	la	classe	Panneau.
Le	tracé	de	l’étoile	est	réalisé	par	une	boucle	dessinant	successivement	chacun	de	ses	6
segments.	La	variable	angle	correspond	à	l’angle	que	forme	avec	l’axe	des	abcisses	le
rayon	passant	par	l’origine	de	chacun	des	segments.

import	java.awt.*	;

import	javax.swing.*	;

387

public	class	AppEtoil	extends	JApplet		//	ne	pas	oublier	public

{	public	void	init	()

{	Container	contenu	=	getContentPane()	;

pan	=	new	Panneau	()	;

contenu.add	(pan)	;

}

private	Panneau	pan	;

}

class	Panneau	extends	JPanel

{	private	static	int	xc	=	80,	yc	=	80,	rayon	=60	;

public	void	paintComponent	(Graphics	g)

{	super.paintComponent	(g)	;

/*	trace	du	cercle	*/

g.drawOval	(xc-rayon,	yc-rayon,	2*rayon,	2*rayon)	;

/*	trace	des	6	segments	de	l'etoile	*/

double	angle,	xd,	xf,	yd,	yf	;

int	i	;

{	for	(i=0,	angle=Math.PI/6.	;	i<6	;	i++,	angle+=	Math.PI/3)

{	xd	=	xc	+	rayon*Math.cos(angle)	;

yd	=	yc	-	rayon*Math.sin(angle)	;

xf	=	xc	+	rayon*Math.cos(angle+2*Math.PI/3)	;

yf	=	yc	-	rayon*Math.sin(angle+2*Math.PI/3)	;

g.drawLine	((int)xd,	(int)yd,	(int)xf,	(int)yf)	;

}

}

}

}

Voici	un	exemple	de	fichier	HTML	de	lancement	de	l’applet2	:

<HTML>

<BODY>

	<APPLET	CODE	=	"AppEtoil.class"	WIDTH	=	200	HEIGHT	=	150>

	</APPLET>

</BODY>

</HTML>

Dans	 notre	 précédente	 solution,	 les	 coordonnées	 des	 segments	 sont	 recalculées	 à

388

chaque	appel	de	paintComponent.	On	peut	en	réalité	profiter	du	fait	que	l’image	est	de
taille	fixe	pour	n’effectuer	qu’une	seule	fois	l’essentiel	des	calculs,	par	exemple	dans
le	constructeur	du	panneau	:

import	java.awt.*	;

import	javax.swing.*	;

public	class	AppEtoib	extends	JApplet		//	ne	pas	oublier	public

{	public	void	init	()

{	Container	contenu	=	getContentPane()	;

pan	=	new	Panneau	()	;

contenu.add	(pan)	;

}

private	Panneau	pan	;

}

class	Panneau	extends	JPanel

{	private	static	int	xc	=	80,	yc	=	80,	rayon	=60	;

public	Panneau	()

{	xd	=	new	int[6]	;

yd	=	new	int[6]	;

xf	=	new	int[6]	;

yf	=	new	int[6]	;

/*	 calculs	 des	 coordonnes	 des	 origines	 et	 extremites	 des	 6

segments	*/

double	angle	;

int	i	;

for	(i=0,	angle=Math.PI/6.	;	i<6	;	i++,	angle+=	Math.PI/3)

{	xd[i]	=	(int)	(xc	+	rayon*Math.cos(angle))	;

yd[i]	=	(int)	(yc	-	rayon*Math.sin(angle))	;

xf[i]	=	(int)	(xc	+	rayon*Math.cos(angle+2*Math.PI/3))	;

yf[i]	=	(int)	(yc	-	rayon*Math.sin(angle+2*Math.PI/3))	;

}

}

public	void	paintComponent	(Graphics	g)

{	super.paintComponent	(g)	;

/*	trace	du	cercle	*/

g.drawOval	(xc-rayon,	yc-rayon,	2*rayon,	2*rayon)	;

/*	trace	des	6	segments	de	l'etoile	*/

for	(int	i=0	;	i<6	;	i++)

389

g.drawLine	(xd[i],	yd[i],	xf[i],	yf[i])	;

}

private	int[]	xd,	yd,	xf,	yf	;

}

390

144	Synthèse	:	dessin	paramétré
dans	une	applet

Réaliser	 une	 applet	 qui	 affiche	 en	 permanence	 un	 rectangle	 coloré	 dont	 les
dimensions	 et	 la	 couleur	 sont	 fournies	 par	 des	 paramètres	 figurant	 dans	 le	 fichier
HTML	de	lancement	:

Le	 rectangle	 sera	 placé	 au	 centre	 de	 l’applet	 dont	 on	 supposera	 que	 la	 taille
n’évolue	 pasa.	 Donner	 un	 exemple	 de	 fichier	 HTML	 permettant	 de	 lancer	 cette
applet.

a.	Les	visualisateurs	d’applet	autorisent	cette	modification	de	taille,	mais	pas	les	navigateurs.

Le	rectangle	est	dessiné	dans	un	panneau	dont	on	redéfinit	la	méthode	paintComponent
pour	assurer	la	permanence	du	dessin.	Dans	l’objet	applet,	on	récupère	les	valeurs	des
paramètres	figurant	dans	le	fichier	HTML.	Rappelons	que	ces	derniers	sont	identifiés
par	un	nom	(chaîne	dans	laquelle	la	casse	n’est	pas	significative)	et	une	valeur	(chaîne
également).	On	récupère	la	valeur	d’un	paramètre	à	l’aide	de	la	méthode	getParameter
à	laquelle	on	fournit	en	argument	le	nom	du	paramètre	voulu.
En	 cas	 de	 besoin,	 les	 dimensions	 de	 l’applet	 (de	 nom	 width	 et	 height)	 peuvent
également	être	récupérés	de	cette	manière.	C’est	ce	qui	nous	permet	ici	de	calculer	la
position	du	rectangle	dans	la	fenêtre	de	l’applet.

391

Si	les	valeurs	de	ces	paramètres	ne	sont	pas	présentes	dans	le	fichier	HTML	ou	si	elles
ne	sont	pas	convertibles	en	un	entier,	nous	attribuons	au	rectangle	des	dimensions	par
défaut	 (celles	 de	 l’applet	 ne	 peuvent	 pas	 être	 incorrectes,	 sinon	 l’applet	 ne
s’exécuterait	pas).
La	 "valeur"	 d’une	 couleur	 est	 définie	 par	 une	 chaîne	 représentant	 son	 nom	 (rouge,
vert…).	On	lui	fait	correspondre	un	objet	de	type	Color	à	l’aide	de	deux	tableaux,	l’un
de	 type	 String	 contenant	 les	 noms	 de	 couleur,	 l’autre	 de	 type	 Color	 contenant	 les
couleurs	associées.
La	 communication	 entre	 l’applet	 et	 le	 panneau	 se	 fait	 par	 des	 méthodes	 d’accès	 de
l’applet.

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

public	class	AppRect	extends	JApplet		//	ne	pas	oublier	public

{	String	nomsCouleurs[]	=	{"rouge",	"vert",	"bleu",	"jaune"	}	;

Color	 couleurs[]	 =	 {Color.red,	 Color.green,	 Color.blue,

Color.yellow}	;

public	void	init	()

{	Container	contenu	=	getContentPane	()	;

pan	=	new	Panneau	(this)	;

contenu.add	 (pan)	 ;	 	 	 //	 avec	 le	 gestionnaire	 BorderLayout,	 le

panneau

//	occupe	toute	la	fenetre

	/*	recuperation	parametres	dimension	applet,	dimension	rectangle,

couleur	*/

String	chLargeurApplet	=	getParameter	("width")	;

String	chHauteurApplet	=	getParameter	("height")	;

String	chLargeurRect	=	getParameter	("Largeur")	;

String	chHauteurRect	=	getParameter	("Hauteur")	;

try

{	largeurApplet	=	Integer.parseInt	(chLargeurApplet)	;

hauteurApplet	=	Integer.parseInt	(chHauteurApplet)	;

largeurRect	=	Integer.parseInt	(chLargeurRect)	;

hauteurRect	=	Integer.parseInt	(chHauteurRect)	;

}

catch	(NumberFormatException	ex)

{	/*	on	attribue	des	dimensions	par	defaut	pour	le	rectangle	*/

	/*	(celles	de	l'applet	sont	toujours	bonnes)	*/

largeurRect	=	80	;	hauteurRect	=	50	;

392

}

nomCouleur	=	getParameter	("Couleur")	;

couleur	=	Color.black	;			//	couleur	par	defaut

for	(int	i=0	;	i<nomsCouleurs.length	;	i++)

{	if	(nomCouleur.equals(nomsCouleurs[i]))	couleur	=	couleurs[i]	;

}

}

public	int	getLargeurApplet	()	{	return	largeurApplet	;	}

public	int	getHauteurApplet	()	{	return	hauteurApplet	;	}

public	int	getLargeurRect	()	{	return	largeurRect	;	}

public	int	getHauteurRect	()	{	return	hauteurRect	;	}

public	Color	getCouleur	()	{	return	couleur	;	}

private	Panneau	pan	;

private	 int	 largeurApplet,	 hauteurApplet,	 largeurRect,

hauteurRect	;

private	String	nomCouleur	;

private	Color	couleur	;

}

class	Panneau	extends	JPanel

{	public	Panneau	(AppRect	ap)

{	this.ap	=	ap	;

}

public	void	paintComponent	(Graphics	g)

{	super.paintComponent	(g)	;

int	x	=	(ap.getLargeurApplet()	-	ap.getLargeurRect())/2	;

int	y	=	(ap.getHauteurApplet()	-	ap.getHauteurRect())/2	;

g.setColor(ap.getCouleur())	;

g.fillRect(x,	y,	ap.getLargeurRect(),	ap.getHauteurRect())	;

}

AppRect	ap	;

}

Voici	un	 fichier	HTML	de	 lancement	de	cette	applet3	 dans	une	 fenêtre	de	dimensions
350	×	120	avec	un	rectangle	de	dimensions	300	×	50	et	de	couleur	rouge	:

<HTML>

<BODY>

	<APPLET	CODE	=	"AppRect.class"	WIDTH	=	350	HEIGHT	=	120	>

	<PARAM	NAME	=	"Largeur"	VALUE	=	"300">

	<PARAM	NAME	=	"Hauteur"	VALUE	=	"50">

	<PARAM	NAME	=	"Couleur"	VALUE	=	"rouge">

393

	</APPLET>

</BODY>

</HTML>

Ici,	 les	dimensions	du	rectangle	sont	recalculées	à	chaque	appel	de	paintComponent.
Ce	calcul	pourrait	être	 fait	une	 fois	pour	 toutes,	par	exemple	dans	 la	méthode	 init,	 à
condition	toutefois	que	ce	soit	avant	le	premier	affichage	du	panneau.

394

145	Synthèse	:	tracé	de	courbe	dans	une
applet

Réaliser	une	applet	permettant	de	représenter	sous	forme	d’une	courbe	une	suite	de
valeurs	 entières	 positives	 ou	 nulles	 figurant	 en	 paramètres	 dans	 le	 fichier	HTML
correspondant,	comme	dans	cet	exemple	:

Le	 titre	 sera	 fourni	 en	 paramètre.	 Le	 nombre	 de	 valeurs	 devra	 pouvoir	 être
quelconque	 et	 sera	 également	 fourni	 en	 paramètre.	 L’applet	 affichera	 la	 valeur
maximale.
Donner	un	exemple	de	fichier	HTML	permettant	de	lancer	cette	applet.

Nous	 introduisons	 dans	 la	 fenêtre	 de	 notre	 applet	 un	 panneau	 pour	 la	 courbe	 et	 un
champ	 de	 texte	 pour	 le	 titre.	 Nous	 conservons	 le	 gestionnaire	 par	 défaut
(BorderLayout)	en	plaçant	le	titre	en	haut	("North")	et	le	panneau	au	centre.
Les	paramètres	du	fichier	HTML	sont	récupérés	classiquement	dans	la	méthode	init	en
utilisant	 getParameter.	 Nous	 supposons	 ici	 que	 les	 noms	 de	 ces	 paramètres	 sont
TITRE,	NB_VALEURS,	VALEUR1,	VALEUR2,	VALEUR3…	Notez	 que	 les	 noms	 des
différentes	valeurs	sont	formés	d’un	même	préfixe	(ici	VALEUR)	suivi	du	"numéro"	de
valeur.	 Ceci	 nous	 permet	 de	 traiter	 un	 nombre	 quelconque	 de	 valeurs.	 Ici,	 nous	 ne
traitons	 pas	 les	 éventuelles	 exceptions	 que	 pourraient	 déclencher	 des	 valeurs

395

incorrectes	ou	manquantes	;	l’applet	se	terminerait	alors	simplement	avec	un	message
d’erreur.
La	méthode	paintComponent	du	panneau	en	détermine	la	taille	à	l’aide	de	la	méthode
getSize.	 Les	 valeurs	 à	 tracer	 sont	 obtenues	 par	 la	 méthode	 d’accès	 getValeurs	 de
l’applet.	Les	coordonnées	des	différents	points	 sont	 alors	calculées	en	 tenant	compte
d’un	facteur	d’échelle	(echelle)	déterminé	de	manière	que	:

•	le	point	correspondant	à	la	plus	grande	valeur	s’affiche	tout	en	haut	du	panneau,

•	le	premier	point	s’affiche	à	l’extrémité	gauche	du	panneau,	le	dernier	à	l’extrémité
droite.

Notez	que	nous	employons	des	variables	de	 type	double	pour	éviter	une	 imprécision
résultant	de	division	d’entiers.
Notez	également	qu’il	est	nécessaire	d’inverser	les	ordonnées	afin	d’obtenir	un	axe	des
y	dirigé	vers	le	haut.

import	java.awt.*	;

import	javax.swing.*	;

public	class	AppCourb	extends	JApplet		//	ne	pas	oublier	public

{	public	void	init	()

{	/*	les	deux	composants	de	l'applet	:	champ	texte	et	panneau	*/

Container	contenu	=	getContentPane	()	;

JLabel	champTitre	=	new	JLabel	(getParameter	("TITRE"))	;

contenu.add	(champTitre,	"North")	;			//	titre	en	haut

pan	=	new	Panneau	(this)	;

contenu.add	(pan)	;																			//	panneau	pour	la	courbe	au

centre

	 /*	 recuperation	 des	 parametres	 HTML	 :	 nombre	 de	 valeurs	 et

valeurs	*/

nValeurs	=	Integer.parseInt	(getParameter	("NB_VALEURS"))	;

if	(nValeurs	<=	1)	System.exit	(-1)	;	//	au	moins	2	valeurs	pour

une	courbe

valeurs	=	new	int	[nValeurs]	;

for	(int	i=0	;	i<nValeurs	;	i++)

valeurs[i]	=	Integer.parseInt(getParameter	("VALEUR"+(i+1)))	;

}

public	int[]	getValeurs	()

{	return	valeurs	;

}

private	Panneau	pan	;

396

private	int	nValeurs	;

private	int	valeurs[]	;

}

class	Panneau	extends	JPanel

{	public	Panneau	(AppCourb	ap)

{	this.ap	=	ap	;

}

public	void	paintComponent	(Graphics	g)

{	super.paintComponent	(g)	;

	/*	determination	de	la	dimension	du	panneau	*/

Dimension	dimPanneau	=	getSize	()	;

int	hauteur	=	dimPanneau.height	;

int	largeur	=	dimPanneau.width	;

	/*	recuperation	des	valeurs	*/

int[]	valeurs	=	ap.getValeurs()	;

int	nValeurs	=	valeurs.length	;

	/*	recherche	de	la	valeur	maximale	*/

int	valMax	=	valeurs	[0]	;

for	(int	i=1	;	i<nValeurs	;	i++)

if	(valeurs[i]	>	valMax)	valMax	=	valeurs	[i]	;

	/*	trace	de	la	courbe	point	par	point	*/

double	ecart	=	(double)largeur/(nValeurs-1)	;		//	on	a	nValeurs	>1

double	echelle	=	(double)hauteur/valMax	;

double	xDeb	=	0,	yDeb	=	hauteur	-	valeurs[0]	*	echelle	;

double	xFin,	yFin	;

for	(int	i=1	;	i<nValeurs	;	i++)

{	xFin	=	xDeb	+	ecart	;

yFin	=	hauteur	-	valeurs[i]	*	echelle	;

g.drawLine	((int)xDeb,	(int)yDeb,	(int)xFin,	(int)yFin)	;

xDeb	=	xFin	;

yDeb	=	yFin	;

}

}

AppCourb	ap	;

}

Voici	un	exemple	de	fichier	HTML	permettant	d’exploiter	ce	programme4	(il	fournit	la
courbe	présentée	dans	l’énoncé)	:

<HTML>

397

<BODY>

	<APPLET	CODE	=	"AppCourb.class"	WIDTH	=	250	HEIGHT	=	120>

	<PARAM	NAME	=	"TITRE"	VALUE	=	"Evolution	des	ventes">

	<PARAM	NAME	=	"NB_VALEURS"	VALUE	=	"6">

	<PARAM	NAME	=	"VALEUR1"	VALUE	=	"175">

	<PARAM	NAME	=	"VALEUR2"	VALUE	=	"288">

	<PARAM	NAME	=	"VALEUR3"	VALUE	=	"352">

	<PARAM	NAME	=	"VALEUR4"	VALUE	=	"181">

	<PARAM	NAME	=	"VALEUR5"	VALUE	=	"135">

	<PARAM	NAME	=	"VALEUR6"	VALUE	=	"285">

	</APPLET>

</BODY>

</HTML>

Ici,	 les	 coordonnées	 du	 tracé	 sont	 calculées	 à	 chaque	 appel	 de	 paintComponent.	 Si
l’on	utilise	un	visualisateur	qui	 autorise	 le	 redimensionnement	de	 l’applet,	on	pourra
ainsi	voir	le	tracé	s’adapter	à	la	taille	courante	de	la	fenêtre.	Il	n’en	irait	pas	ainsi	si
l’on	déterminait	ces	dimensions	dans	la	méthode	init.

398

146	Différences	entre	applet	et
application

Adapter	 l’exercice	103	du	 chapitre	8	 de	manière	 que	 l’utilisateur	 puisse	 dessiner
dans	une	applet	et	non	plus	dans	une	fenêtre.

Il	suffit	d’adapter	le	code	en	tenant	compte	des	quelques	remarques	suivantes	:

•	supprimer	la	méthode	main	(si	on	la	conservait,	elle	ne	serait	pas	appelée	lors	du
lancement	du	code	depuis	un	fichier	HTML)	;

•	 transformer	 la	 classe	 fenêtre	 (MaFenetre)	 en	une	 classe	 (ici	DesVol)	 dérivée	 de
JApplet	;

•	 transposer	dans	 la	méthode	 init	de	 la	classe	DesVol	 les	actions	 réalisées	dans	 le
constructeur	de	la	fenêtre	MaFenetre	;

•	supprimer	les	appels	à	setTitle	et	setSize	qui	n’ont	plus	de	raison	d’être	pour	une
applet	(pas	de	titre,	dimensions	définies	par	les	paramètres	WIDTH	et	HEIGHT	du
fichier	HTML	de	lancement).

import	javax.swing.*	;

import	java.awt.*	;

import	java.awt.event.*	;

public	class	DesVol	extends	JApplet			//	ne	pas	oublier	public

{	public	void	init	()

{	pan	=	new	Panneau	()	;

pan.addMouseListener	(pan)	;

getContentPane().add(pan)	;

}

private	Panneau	pan	;

}

class	Panneau	extends	JPanel	implements	MouseListener

{	public	void	paintComponent	(Graphics	g)

{	super.paintComponent(g)	;

399

enCours	=	false	;

}

public	void	mouseClicked	(MouseEvent	e)

{	int	xFin	=	e.getX()	;	yFin	=	e.getY()	;

if	(enCours)	{	Graphics	g	=	getGraphics()	;

	g.drawLine	(xDeb,	yDeb,	xFin,	yFin)	;

	g.dispose()	;

	}

xDeb	=	xFin	;	yDeb	=	yFin	;

enCours	=	true	;

}

public	void	mousePressed	(MouseEvent	e)	{}

public	void	mouseReleased	(MouseEvent	e)	{}

public	void	mouseEntered	(MouseEvent	e)	{}

public	void	mouseExited	(MouseEvent	e)	{}

private	boolean	enCours	=	false	;

private	int	xDeb,	yDeb,	xFin,	yFin	;

}

À	titre	indicatif,	voici	un	fichier	HTML	très	simple	(DesVol.html)	permettant	de	lancer
cette	applet	:

<HTML>

<BODY>

	<APPLET

CODE	=	"DesVol.class"

WIDTH	=	350

HEIGHT	=	100

	>

	</APPLET>

</BODY>

</HTML>

1.	Certains	navigateurs	emploient	la	balise	OBJECT	ou	EMBED	à	la	place	de	la	balise	APPLET.
2.	Certains	navigateurs	emploient	la	balise	OBJECT	ou	EMBED	à	la	place	de	la	balise	APPLET.
3.	Certains	navigateurs	emploient	la	balise	OBJECT	ou	EMBED	à	la	place	de	la	balise	APPLET.
4.	Certains	navigateurs	emploient	la	balise	OBJECT	ou	EMBED	à	la	place	de	la	balise	APPLET.

400

Chapitre	15

Les	flux	et	les	fichiers

Connaissances	requises

•	Notion	de	flux	;	flux	d’entrée,	flux	de	sortie	;	flux	binaire,	flux	texte

•	Création	séquentielle	d’un	fichier	binaire	;	classes	OutputStream,
FileOutputStream	et	DataOutputStream

•	Liste	séquentielle	d’un	fichier	binaire	;	classes	InputStream,	FileInputStream
et	DataInputStream

•	Accès	direct	à	un	fichier	binaire	;	classes	RandomAccessFile	;	action	sur	le
pointeur	de	fichier

•	Création	d’un	fichier	texte	;	classe	PrintWriter

•	Lecture	d’un	fichier	texte	;	classes	FileReader,	BufferedReader	et
StringTokenizer

•	Gestion	des	fichiers	avec	la	classe	File

401

147	Création	séquentielle	d’un
fichier	binaire

Écrire	 un	 programme	 permettant	 de	 créer	 séquentiellement	 un	 fichier	 binaire
comportant	pour	différentes	personnes	 les	 informations	suivantes	 :	nom,	prénom	et
année	de	naissance.
Le	dialogue	de	saisie	de	l’information	s’effectuera	en	fenêtre	console	comme	dans
cet	exemple	:

Nom	du	fichier	a	creer	:

e:\repert

nom	1	:	Carre

Prenom	:	Thibault

annee	naissance	:	1997

.....

nom	5	:	Mitenne

Prenom	:	Thomas

annee	naissance	:	2001

nom	6	:

****	fin	creation	fichier	****

On	proposera	deux	solutions	:
1.	 Les	 informations	 relatives	 au	 nom	 et	 au	 prénom	 seront	 conservées	 dans	 le
fichier	 sous	 la	 forme	 d’une	 suite	 de	 20	 caractères	 (comportant	 d’éventuels
espaces	à	la	fin).
2.	Ces	mêmes	informations	seront	conservées	sous	 la	forme	d’une	chaîne	codée
dans	le	format	UTFa	;	aucune	contrainte	ne	portera	sur	leur	longueur.

a.	Ce	format	(Unicode	Text	Format)	permet	de	coder	une	chaîne	sous	forme	d’une	suite	d’octets	en	nombre	variable
(chaque	caractère	étant	codé	sur	un	à	 trois	octets).	La	méthode	writeUTF	de	 la	classe	DataOutputStream	 réalise
cette	transformation	d’une	chaîne	en	une	suite	de	caractères	UTF.

Nous	utiliserons	la	démarche	la	plus	classique	qui	consiste	à	exploiter	les	méthodes	de
la	classe	flux	DataOutputStream.	Pour	ce	faire,	nous	associerons	un	objet	de	ce	type
(nommé	 sortie)	 à	 un	 fichier	 dont	 le	 nom	 est	 fourni	 par	 l’utilisateur	 dans	 la	 chaîne

402

nomFichier	:
DataOutputStream	sortie	=	new	DataOutputStream

(new	FileOutputStream	(nomFichier))	;

Les	variables	chNom	et	chPrenom	servent	à	lire	les	informations	nom	et	prénom	sous
forme	de	chaînes	de	caractères.	Nous	en	 transférons	ensuite	chacun	des	caractères	 (à
concurrence	de	20)	dans	des	tableaux	de	20	caractères	nom	et	prenom,	préalablement
remplis	avec	des	espaces.
L’écriture	dans	 le	 fichier	est	 réalisée	à	 l’aide	des	méthodes	writeChar	 (écriture	d’un
caractère)	et	writeInt	(écriture	d’un	entier)	de	la	classe	DataOutputStream.
import	java.io.*	;

public	class	CrFich

{	public	static	void	main	(String	args[])	throws	IOException

{	final	int	longMaxNom	=	20	;

final	int	longMaxPrenom	=	20	;

String	chNom,	chPrenom	;

char[]	nom	=	new	char	[longMaxNom]	;

char[]	prenom	=	new	char	[longMaxPrenom]	;

int	annee	;

String	nomFichier	;

System.out.println	("Nom	du	fichier	a	creer	:	")	;

nomFichier	=	Clavier.lireString()	;

DataOutputStream	sortie	=	new	DataOutputStream

(new	FileOutputStream	(nomFichier))	;

int	i	;

int	num	=	0	;				//	pour	compter	les	differents	enregistrements

while	(true)					//	on	s'arretera	sur	nom	vide

{	/*	lecture	infos	*/

num++	;

System.out.print	("nom	"	+	num	+	"	:	")	;

chNom	=	Clavier.lireString()	;

if	(chNom.length()	==	0)	break	;

System.out.print	("Prenom	:	")	;

chPrenom	=	Clavier.lireString()	;

System.out.print	("annee	naissance	:	")	;

annee	=	Clavier.lireInt()	;

/*	 transfert	 nom	 et	 prenom	 dans	 tab	 de	 char	 termines	 par	 des

espaces	*/

for	(i=0	;	i<longMaxNom	;	i++)	nom[i]	=	'	';

403

for	(i=0	;	i<longMaxPrenom	;	i++)	prenom[i]	=	'	'	;

for	(i	=	0	;	(i	<	chNom.length())&&(i<longMaxNom)	;	i++)

nom[i]	=	chNom.charAt(i)	;

for	(i	=	0	;	(i	<	chPrenom.length())&&(i<longMaxPrenom)	;	i++)

prenom[i]	=	chPrenom.charAt(i)	;

/*	ecriture	fichier	*/

for	(i=0	;	i<longMaxNom	;	i++)	sortie.writeChar	(nom[i])	;

for	(i=0	;	i<longMaxPrenom	;	i++)	sortie.writeChar	(prenom[i])	;

sortie.writeInt(annee)	;

}

sortie.close()	;

System.out.println	("****	fin	creation	fichier	****")	;

}

}

1.	La	clause	throws	IOException	figurant	dans	la	méthode	main	est	nécessaire,	dès
lors	 qu’on	 n’y	 traite	 pas	 les	 exceptions	 susceptibles	 d’être	 déclenchées	 par	 les
méthodes	de	la	classe	DataOutputstream.
2.	Plutôt	que	d’écrire	un	à	un	chacun	des	caractères	de	nom	et	de	prenom,	on	aurait
pu	espérer	appliquer	directement	à	chNom	et	chPrenom	la	méthode	writeChars	qui
écrit	tous	les	caractères	d’une	chaîne.	Cependant,	cette	démarche	ne	correpond	pas	à
la	demande	de	l’énoncé	(informations	de	taille	fixe	dans	le	fichier)	;	de	plus,	elle	ne
permettrait	pas	de	relire	ultérieurement	le	fichier	(à	moins	de	connaître	par	ailleurs
les	longueurs	de	chacune	des	informations	y	figurant	!).

Comme	précédemment,	 nous	 créons	un	objet	 de	 type	DataOutputStream.	Mais,	 cette
fois,	nous	pouvons	appliquer	la	méthode	writeUTF	aux	chaînes	correspondant	au	nom
et	au	prénom.
import	java.io.*	;

public	class	CrFich2

{	public	static	void	main	(String	args[])	throws	IOException

{	String	chNom,	chPrenom	;

int	annee	;

String	nomFichier	;

404

System.out.println	("Nom	du	fichier	a	creer	:	")	;

nomFichier	=	Clavier.lireString()	;

DataOutputStream	sortie	=	new	DataOutputStream

(new	FileOutputStream	(nomFichier))	;

int	i	;

int	num	=	0	;				//	pour	compter	les	differents	enregistrements

while	(true)					//	on	s'arretera	sur	nom	vide

{	/*	lecture	infos	*/

num++	;

System.out.print	("nom	"	+	num	+	"	:	")	;

chNom	=	Clavier.lireString()	;

if	(chNom.length()	==	0)	break	;

System.out.print	("Prenom	:	")	;

chPrenom	=	Clavier.lireString()	;

System.out.print	("annee	naissance	:	")	;

annee	=	Clavier.lireInt()	;

/*	ecriture	fichier	*/

sortie.writeUTF	(chNom)	;

sortie.writeUTF	(chPrenom)	;

sortie.writeInt(annee)	;

}

sortie.close()	;

System.out.println	("****	fin	creation	fichier	****")	;

}

}

Cette	seconde	démarche	peut	paraître	plus	souple	que	la	première	puisqu’elle	n’impose
aucune	limite	à	la	taille	des	chaînes	fournies.	Néanmoins,	elle	présente	l’inconvénient
de	ne	plus	être	adaptée	à	l’exploitation	ultérieure	du	fichier	en	accès	direct.

405

148	Liste	séquentielle	d’un	fichier
binaire

Écrire	un	programme	permettant	de	lister	en	fenêtre	console	le	contenu	d’un	fichier
binaire	tel	que	celui	créé	par	l’exercice.	On	proposera	deux	solutions	correspondant
aux	deux	situations	:
1.	 Les	 informations	 relatives	 au	 nom	 et	 au	 prénom	 ont	 été	 enregistrées	 dans	 le
fichier	 sous	 la	 forme	 d’une	 suite	 de	 20	 caractères	 (comportant	 d’éventuels
espaces	à	la	fin).
2.	Ces	mêmes	informations	ont	été	enregistrées	sous	la	forme	d’une	chaîne	codée
dans	le	format	UTF	;	aucune	contrainte	ne	portera	sur	leur	longueur.

Nous	exploitons	les	méthodes	de	la	classe	flux	DataInputStream.	Pour	ce	 faire,	nous
associons	un	objet	de	ce	 type	(nommé	entree)	à	un	fichier	dont	 le	nom	est	 fourni	par
l’utilisateur	dans	la	chaîne	nomFichier	:
DataInputStream	entree	=	new	DataInputStream

	(new	FileInputStream	(nomFichier))	;

Les	 informations	 relatives	 au	 nom	 et	 au	 prénom	 sont	 lues	 dans	 des	 tableaux	 de	 20
caractères	 nom	 et	 prenom	 à	 l’aide	 de	 la	 méthode	 readChar	 de	 la	 classe
DataInputStream.
La	gestion	de	la	fin	de	fichier	est	réalisée	en	interceptant	l’exception	EOFException	 :
la	 boucle	 de	 lecture	 des	 informations	 est	 contrôlée	 par	 un	 indicateur	 booléen	 eof
initialisé	à	false	et	mis	à	true	par	le	gestionnaire	d’exception.

import	java.io.*	;

public	class	LecFich

{

public	static	void	main	(String	args[])	throws	IOException

{	final	int	longMaxNom	=	20	;

final	int	longMaxPrenom	=	20	;

String	chNom,	chPrenom	;

406

char[]	nom	=	new	char	[longMaxNom]	;

char[]	prenom	=	new	char	[longMaxPrenom]	;

int	annee	;

int	i	;

String	nomFichier	;

System.out.println	("Nom	du	fichier	a	lister	:	")	;

nomFichier	=	Clavier.lireString()	;

DataInputStream	entree	=	new	DataInputStream

	(new	FileInputStream	(nomFichier))	;

System.out.println	("****	Liste	du	fichier	****")	;

boolean	 eof	 =	 false	 ;	 //	 sera	 mis	 a	 true	 par	 gestionnaire

exception	EOFile

	while	(!eof)

{	try

{	/*	lecture	infos	*/

for	(i=0	;	i<longMaxNom	;	i++)	nom[i]	=	entree.readChar	()	;

for	 (i=0	 ;	 i<longMaxPrenom	 ;	 i++)	 prenom[i]	 =	 entree.readChar

()	;

annee	=	entree.readInt	()	;

/*	affichage	infos	*/

for	(i=0	;	i<longMaxNom	;	i++)	System.out.print	(nom[i])	;

System.out.print	("	")	;

for	(i=0	;	i<longMaxPrenom	;	i++)	System.out.print	(prenom[i])	;

System.out.print	("	")	;

System.out.println	(annee)	;

}

catch	(EOFException	e)

{	eof	=	true	;

}

}

entree.close()	;

System.out.println	("****	fin	liste	fichier	****")	;

}

}

À	titre	indicatif,	voici	l’allure	des	résultats	fournis	par	ce	programme	:
Nom	du	fichier	a	lister	:

e:\repert

****	Liste	du	fichier	****

Carre					Thibault							1997

407

Dubois				Louis										1975

Dutronc			Jean	Philippe		1958

Duchene			Alfred									1994

Mitenne			Thomas									2001

***	fin	liste	fichier	****

Comme	 précédemment,	 on	 fait	 appel	 à	 un	 objet	 de	 type	DataInputStream.	 Mais	 les
informations	relatives	au	nom	et	au	prénom	sont	lues	directement	à	l’aide	de	la	méthode
readUTF.	La	gestion	de	la	fin	de	fichier	se	déroule	toujours	de	la	même	manière.

import	java.io.*	;

public	class	LecFich2

{

public	static	void	main	(String	args[])	throws	IOException

{	final	int	longMaxNom	=	20	;

final	int	longMaxPrenom	=	20	;

String	chNom,	chPrenom	;

int	annee	;

int	i	;

String	nomFichier	;

System.out.println	("Nom	du	fichier	a	lister	:	")	;

nomFichier	=	Clavier.lireString()	;

DataInputStream	entree	=	new	DataInputStream

	(new	FileInputStream	(nomFichier))	;

System.out.println	("****	Liste	du	fichier	****")	;

boolean	 eof	 =	 false	 ;	 //	 sera	 mis	 a	 true	 par	 gestionnaire

exception	EOFile

while	(!eof)

{	try

{	/*	lecture	infos	*/

chNom	=	entree.readUTF	()	;

chPrenom	=	entree.readUTF	()	;

annee	=	entree.readInt	()	;

/*	affichage	infos	*/

System.out.print	(chNom	+	"	")	;

System.out.print	(chPrenom	+	"	")	;

System.out.println	(annee)	;

408

}

catch	(EOFException	e)

{	eof	=	true	;

}

}

entree.close()	;

System.out.println	("****	fin	liste	fichier	****")	;

}

}

Les	résultats	se	présentent	alors	sous	cette	forme	:

Nom	du	fichier	a	lister	:

e:\reputf

****	Liste	du	fichier	****

Carre	Thibault	1997

Dubois	Louis	1975

Dutronc	Jean	Philippe	1958

Duchene	Alfred	1994

Mitenne	Thomas	2001

****	fin	liste	fichier	****

409

149	Synthèse	:	consultation	d’un
répertoire	en	accès	direct

Réaliser	un	programme	permettant	de	consulter	un	fichier	du	type	de	celui	créé	par
la	 première	 solution	 à	 l’exercice.	 Le	 dialogue	 s’opérera	 à	 travers	 des	 contrôles
disposés	dans	une	fenêtre	comme	illustrée	ci-aprèsa	:

L’utilisateur	pourra	agir	indifféremment	sur	les	champs	de	texte	indiquant	le	nom	de
fichier	 ou	 le	 nom	 d’enregistrement.	 On	 signalera	 par	 des	 boîtes	 de	 message	 les
erreurs	suivantes	:

•	fichier	inexistant,

•	information	de	numéro	d’enregistrement	non	numérique,	négative	ou	supérieure	à
la	taille	du	fichier.

Lorsqu’un	fichier	sera	correctement	ouvert,	 son	nom	s’affichera	dans	 le	 titre	de	 la
fenêtre.

Note	:	pour	que	les	contrôles	soient	disposés	comme	dans	notre	exemple,	on	pourra
utiliser	 un	 gestionnaire	 de	 mise	 en	 forme	 de	 type	 GridLayout	 créé	 par	 new
GridLayout(5,	2).

a.	On	pourra	utiliser	un	gestionnaire	de	mise	en	forme	de	type	GridBag.

410

Les	 dimensions	 des	 tableaux	 de	 caractères	 sont	 définies	 par	 des	 constantes
symboliques	 LG_NOM	 et	 LG_PRENOM.	 Il	 en	 va	 de	 même	 pour	 la	 taille	 d’un
enregistrement	(TAILLE_ENREG)	dont	on	notera	que	le	calcul	doit	tenir	compte	du	fait
que	les	caractères	sont	enregistrés	en	binaire	et	qu’ils	occupent	donc	2	octets.
La	disposition	des	différents	contrôles	ne	pose	pas	de	problème	particulier.	On	notera
que,	avec	un	gestionnaire	de	type	GridLayout,	le	conteneur	est	rempli	ligne	par	ligne,
suivant	 l’ordre	dans	 lequel	 ils	 sont	 ajoutés.	Nous	utilisons	des	 champs	de	 texte	pour
toutes	les	informations	mais	seuls	les	deux	premiers	sont	"éditables".
Nous	 écoutons	 les	 événements	Focus	 et	Action	 des	 deux	 champs	 de	 saisie	 (nom	 de
fichier	 et	 numéro	 d’enregistrement).	 Deux	 méthodes	 de	 service	 nommées
nouveauFichier	et	nouvelEnreg	nous	évitent	de	dupliquer	certaines	instructions.
La	demande	d’ouverture	d’un	nouveau	fichier	entraîne	tout	d’abord	la	fermeture	de	tout
autre	fichier	éventuellement	ouvert.	Puis,	nous	vérifions	l’existence	du	fichier	de	nom
indiqué	en	traitant	convenablement	l’exception	générée	par	sa	demande	d’ouverture	en
cas	 d’inexistence.	 Lorsque	 les	 choses	 se	 sont	 convenablement	 déroulées,	 nous
déterminons	 la	 taille	 du	 fichier	 en	 octets	 (méthode	 length)	 et	 nous	 déterminons	 le
nombre	d’enregistrements	correspondants.
Dans	la	demande	d’un	nouvel	enregistrement,	nous	vérifions	que	:

•	l’information	fournie	peut	être	convenablement	convertie	en	un	entier,

•	qu’elle	possède	une	valeur	compatible	avec	la	taille	du	fichier.
Si	le	numéro	d’enregistrement	est	convenable,	nous	positionnons	le	pointeur	à	l’endroit
correspondant	 du	 fichier	 (méthode	 seek).	 Nous	 lisons	 les	 différentes	 informations
voulues	et	nous	 les	 affichons	dans	 les	 champs	appropriés.	Notez	que	 les	 tableaux	de
caractères	constituant	le	nom	et	le	prénom	doivent	être	convertis	en	chaînes	;	pour	ce
faire,	nous	utilisons	un	constructeur	de	la	forme	String(char[]).

import	java.awt.*	;

import	java.awt.event.*	;

import	javax.swing.*	;

import	java.io.*	;

class	 MaFenetre	 extends	 JFrame	 implements	 ActionListener,

FocusListener

{	private	static	final	int	LG_NOM	=	20,	LG_PRENOM	=	20	;

private	 static	 final	 int	 TAILLE_ENREG	 =	 2*LG_NOM	 +	 2*LG_PRENOM	 +

4	;

private	 static	 final	 String	 titreFenetre	 =	 "Consultation

repertoire"	;

411

public	MaFenetre	()

{	nom	=	new	char[LG_NOM]	;

prenom	=	new	char[LG_PRENOM]	;

setTitle	(titreFenetre)	;

setSize	(400,	200)	;

Container	contenu	=	getContentPane()	;

contenu.setLayout	(new	GridLayout(5,	2))	;

labNomFichier	=	new	JLabel	(etiqNomFichier)	;

contenu.add(labNomFichier)	;

txtNomFichier	=	new	JTextField	(20)	;

contenu.add(txtNomFichier)	;

txtNomFichier.addActionListener	(this)	;

txtNomFichier.addFocusListener	(this)	;

labNumEnreg	=	new	JLabel	(etiqNumEnreg)	;

contenu.add	(labNumEnreg)	;

txtNumEnreg	=	new	JTextField	(20)	;

contenu.add	(txtNumEnreg)	;

txtNumEnreg.addActionListener	(this)	;

txtNumEnreg.addFocusListener	(this)	;

labNom	=	new	JLabel	(etiqNom)	;

contenu.add	(labNom)	;

txtNom	=	new	JTextField	(20)	;	txtNom.setEditable	(false)	;

contenu.add	(txtNom)	;

labPrenom	=	new	JLabel	(etiqPrenom)	;

contenu.add	(labPrenom)	;

txtPrenom	=	new	JTextField	(20)	;	txtPrenom.setEditable	(false)	;

contenu.add	(txtPrenom)	;

labAnnee	=	new	JLabel	(etiqAnnee)	;

contenu.add	(labAnnee)	;

txtAnnee	=	new	JTextField	(20)	;	txtAnnee.setEditable	(false)	;

contenu.add	(txtAnnee)	;

}

public	void	actionPerformed	(ActionEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	==	txtNomFichier)	nouveauFichier()	;

if	(source	==	txtNumEnreg)	nouvelEnreg()	;

}

public	void	focusGained	(FocusEvent	e)

412

{}

public	void	focusLost	(FocusEvent	e)

{	Object	source	=	e.getSource()	;

if	(source	==	txtNomFichier)	nouveauFichier()	;

if	(source	==	txtNumEnreg)	nouvelEnreg()	;

}

private	void	nouveauFichier()

{	try

{	if	(fichierOuvert)

{	fichier.close()	;

fichierOuvert	=	false	;

setTitle	(titreFenetre)	;

}

nomFichier	=	txtNomFichier.getText	()	;

fichier	=	new	RandomAccessFile	(nomFichier,	"r")	;

}

catch	(IOException	e)	//	erreur	ouverture

{	JOptionPane.showMessageDialog	(null,	"FICHIER	INEXISTANT")	;

txtNomFichier.setText	("")	;

return	;

}

fichierOuvert	=	true	;

setTitle	(titreFenetre	+	"	"	+	nomFichier)	;

try

{	tailleFichierOctets	=	fichier.length()	;

tailleFichierEnreg	=	tailleFichierOctets/TAILLE_ENREG	;

}

catch	(IOException	e)	{}

txtNumEnreg.setText("")	;	txtNom.setText("")	;

txtPrenom.setText("")	;	txtAnnee.setText("")	;

}

private	void	nouvelEnreg()

{	if	(!fichierOuvert)

{	JOptionPane.showMessageDialog	(null,	"Pas	de	fichier	ouvert")	;

txtNumEnreg.setText	("")	;

return	;

}

/*	lecture	numero	enregistrement	et	controles	validite	*/

413

String	chNumEnreg	=	txtNumEnreg.getText	()	;

boolean	converti	=	false	;

try

{	num	=	Integer.parseInt	(chNumEnreg)	;

converti	=	true	;

}

catch	(NumberFormatException	e)	{}

if	(!converti	||	(num<=0)	||	(num>tailleFichierEnreg))

{	JOptionPane.showMessageDialog	(null,	"Numero	enreg	incorrect")	;

txtNumEnreg.setText	("")	;	txtNom.setText("")	;

txtPrenom.setText("")	;	txtAnnee.setText("")	;

return	;

}

/*	numero	correct	-	lecture	de	l'enregistrement	correspondant	*/

try

{	numEnreg	=	num	;

fichier.seek	(TAILLE_ENREG*(numEnreg-1))	;

for	(int	i=0	;	i<LG_NOM	;	i++)	nom[i]	=	fichier.readChar()	;

for	 (int	 i=0	 ;	 i<LG_PRENOM	 ;	 i++)	 prenom[i]	 =

fichier.readChar()	;

annee	=	fichier.readInt	()	;

/*	conversion	des	informations	en	chaine	et	affichage	*/

String	chNom	=	new	String	(nom)	;

String	chPrenom	=	new	String	(prenom)	;

String	chAnnee	=	String.valueOf	(annee)	;

txtNom.setText	(chNom)	;

txtPrenom.setText	(chPrenom)	;

txtAnnee.setText	(chAnnee)	;

}

catch	(IOException	e)	{}

}

private	boolean	fichierOuvert	=	false	;

private	String	nomFichier	;

private	RandomAccessFile	fichier	;

private	long	tailleFichierEnreg,	tailleFichierOctets	;

private	int	numEnreg,	num	;

private	char[]	nom,	prenom	;

private	int	annee	;

private	 JLabel	 labNomFichier,	 labNumEnreg,	 labNom,	 labPrenom,

labAnnee	;

414

private	 JTextField	 txtNomFichier,	 txtNumEnreg,	 txtNom,	 txtPrenom,

txtAnnee	;

static	 private	 String	 etiqNomFichier	 =	 "Nom

fichier	:													",

etiqNumEnreg	=	"Numero	enregistrement	:			",

etiqNom	=	"Nom	:																										",

etiqPrenom	=	"Prenom	:																				",

etiqAnnee	=	"Annee	naissance	:												",

}

public	class	ListAD

{	public	static	void	main	(String	args[])

{	MaFenetre	fen	=	new	MaFenetre()	;

fen.setVisible(true)	;

}

}

1.	En	vertu	des	règles	relatives	à	la	redéfinition	d’une	méthode,	il	n’est	pas	possible
de	mentionner	de	clause	throws	IOException	dans	les	méthodes	actionPerformed	ou
focusLost.	 Dans	 ces	 conditions,	 il	 est	 nécessaire	 d’y	 traiter	 (ici	 artificiellement)
l’exception	IOException.
2.	 On	 constate	 qu’en	 cas	 d’anomalie	 (fichier	 inexistant,	 numéro	 d’enregistrement
incorrect),	on	obtient	deux	fois	l’affichage	du	message	correspondant.	Ceci	provient
de	la	mise	à	blanc	des	champs	correspondants.	Par	souci	de	simplicité,	nous	n’avons
pas	 cherché	 à	 régler	 le	 problème	 (par	 exemple,	 en	 recourant	 à	 des	 indicateurs
booléens).

415

150	Synthèse	:	liste	d’un	fichier	texte
avec	numérotation	des	lignes

Écrire	un	programme	qui	liste	en	fenêtre	console	le	contenu	d’un	fichier	texte	en	en
numérotant	les	lignes.	On	prévoira	4	caractères	pour	l’affichage	du	numéro	de	ligne.
Les	 lignes	 de	 plus	 de	 60	 caractères	 seront	 affichées	 sur	 plusieurs	 lignes	 d’écran
comme	dans	cet	exemple

Donnez	le	nom	du	fichier	texte	a	lister	:	e:\book\essai.txt

	1	Ceci	est	la	premiere	ligne	d'un	exemple	de	fichier	texte

	2	Il	contient	des	lignes	de	chiffres	de	longueurs	variables

	dont	une	de	59	caracteres,	une	de	60	caracteres	et	une	de	61

	caracteres

	3	12345678901234567890

	 4

123456789012345678901234567890123456789012345678901234567890

	5	12345678901234567890123456789012345678901234567890123456789

	 6

123456789012345678901234567890123456789012345678901234567890

	1

	7	1234567890123456789012345678901234567890

	8	la	ligne	suivante	est	vide

	9

10	les	deux	lignes	suivantes	sont	egalement	vides

11

12

13	Ceci	est	la	derniere	ligne	du	fichier

***	fin	liste	fichier	***

Rappelons	que,	pour	la	lecture	d’un	fichier	texte,	il	n’existe	pas	de	classe	parfaitement
symétrique	 de	 la	 classe	 PrintWriter.	 Il	 faut	 se	 contenter	 de	 la	 classe	 FileReader
(symétrique	 de	 FileWriter,	 classe	 plus	 rudimentaire	 que	 PrintWriter)	 qu’on	 couple
avec	 la	 classe	BufferedReader,	 laquelle	 dispose	 d’une	méthode	 readLine	 de	 lecture
d’une	 ligne.	Nous	 créons	donc	un	objet	 de	 ce	 type	nommé	entree	 en	 procédant	 ainsi

416

(nomfich	étant	la	chaîne	correspondant	au	nom	du	fichier)	:
BufferedReader	 entree	 =	 new	 BufferedReader	 (new	 FileReader

(nomfich))	;

La	méthode	readLine	de	 la	classe	BufferedReader	 fournit	une	référence	à	une	chaîne
correspondant	 à	 une	 ligne	 du	 fichier.	 Si	 la	 fin	 de	 fichier	 a	 été	 atteinte	 avant	 que	 la
lecteur	 n’ait	 commencé,	 autrement	 dit	 si	 aucun	 caractère	 n’est	 disponible	 (pas	même
une	fin	de	ligne	!),	readLine	fournit	la	valeur	null.	Il	est	donc	possible	de	parcourir	les
différentes	lignes	du	fichier,	sans	avoir	besoin	de	recourir	à	la	gestion	des	exceptions.
En	 ce	 qui	 concerne	 l’affichage	 du	 numéro	 de	 ligne	 (numLigne),	 il	 est	 nécessaire	 de
convertir	 l’entier	 le	 représentant	 en	 une	 suite	 de	 4	 caractères.	 Pour	 ce	 faire,	 nous
employons	un	tableau	de	4	caractères	nommé	charNumLigne	que	nous	initialisons	avec
des	 caractères	 "espace",	 avant	 d’y	 introduire,	 à	 partir	 de	 la	 fin,	 les	 caractères	 de	 la
chaîne	obtenue	par	conversion	de	la	valeur	de	numLigne.
La	 gestion	 des	 lignes	 de	 plus	 de	 60	 caractères	 se	 fait	 simplement	 en	 affichant	 un
changement	de	ligne	et	une	suite	de	4+1	espaces.

import	java.io.*	;

public	class	ListText

{	public	static	void	main	(String	args[])	throws	IOException

{	 final	 int	 longNumLigne	 =	 4	 ;	 	 //	 nombre	 de	 caracteres	 utilises

pour

	//	afficher	le	numero	de	ligne

final	int	nbCarParLigne	=	60	;

String	nomfich	;

String	ligne	;							//	ligne	courante	du	fichier	texte

char	 charNumLigne[]	 =	 new	 char[longNumLigne]	 ;	 	 //	 pour	 les

caracteres

//	du	numero	de	ligne

System.out.print	("Donnez	le	nom	du	fichier	texte	a	lister	:	")	;

nomfich	=	Clavier.lireString()	;

BufferedReader	 entree	 =	 new	 BufferedReader	 (new	 FileReader

(nomfich))	;

int	numLigne	=	0	;

do

{	/*	lecture	d'une	ligne	du	fichier	*/

ligne	=	entree.readLine()	;

if	(ligne	==	null)	break	;

numLigne++	;

/*	 determination	 des	 caracteres	 correspondant	 au	 numero	 de

ligne	*/

417

String	ch	=	String.valueOf	(numLigne)	;

int	i,	j	;		//	pour	parcourir	le	numero	de	ligne

for	(i=0	;	i<longNumLigne-ch.length()	;	i++)	charNumLigne[i]	=	'

'	;

for	 (j=0	 ;	 i<longNumLigne	 ;	 i++,	 j++)	 charNumLigne[i]	 =

ch.charAt(j)	;

/*	affichage	numero	de	ligne	suivi	d'un	espace*/

for	 (i=0	 ;	 i<longNumLigne	 ;	 i++)	 System.out.print

(charNumLigne[i])	;

System.out.print	('	')	;

/*	affichage	ligne	courante	*/

int	n=0	;		//	pour	parcourir	la	ligne	courante

while	(n	<	ligne.length())

{	if	((n	!=	0)	&&	(n%nbCarParLigne	==	0))	/*	on	change	de	ligne

*/

{	System.out.println	()	;

for	(int	k=0	;	k<longNumLigne+1	;	k++)

System.out.print	('	')	;

}

System.out.print	(ligne.charAt(n))	;

n++	;

}

System.out.println	()	;

}

while	(ligne	!=	null)	;

entree.close	()	;

System.out.println	("***	fin	liste	fichier	***");

}

}

418

151	Liste	d’un	répertoire

Écrire	un	programme	qui	affiche	le	contenu	d’un	répertoire	(dont	le	nom	est	fourni
au	clavier),	 en	précisant	pour	chaque	nom	s’il	 s’agit	d’un	 sous-répertoire	ou	d’un
fichier	;	dans	ce	dernier	cas,	il	en	fournira	également	la	taille	en	octets.

nom	du	repertoire	:	e:\truc

Nom	incorrect	(inexistant	ou	non	repertoire)

nom	du	repertoire	:	e:\book\exosjav

evbn.fm	FICHIER	84992	octets

control.fm	FICHIER	96256	octets

divers	REPERTOIRE

menuac.fm	FICHIER	112640	octets

classes	REPERTOIRE

essai.txt	FICHIER	5120	octets

fichiers.fm	FICHIER	82944	octets

ap.fm	FICHIER	35840	octets

Il	nous	suffit	de	recourir	aux	possibilités	offertes	par	la	classe	File.	Plus	précisément,	à
partir	du	nom	fourni	par	 l’utilisateur	dans	 la	chaîne	nomRepert,	nous	créons	un	objet
objRep	de	type	File	:
objRep	=	new	File	(nomRepert)	;

La	 méthode	 isDirectory	 nous	 permet	 de	 savoir	 si	 ce	 nom	 correspond	 bien	 à	 un
répertoire.	Notez	qu’il	n’est	pas	nécessaire	ici	de	recourir	à	la	méthode	exists,	dans	la
mesure	où	nous	n’avons	pas	cherché	à	distinguer	le	cas	d’un	nom	ne	désignant	pas	un
répertoire	du	cas	d’un	nom	inexistant.
Lorsque	 le	 nom	 correspond	 bien	 à	 un	 répertoire,	 nous	 faisons	 appel	 à	 la	 méthode
listFiles	 qui	 nous	 fournit	 un	 tableau	 d’objets	 de	 type	 File,	 chaque	 élément
correspondant	à	un	des	membres	du	répertoire.	Il	nous	suffit	alors	d’appliquer	à	chacun
d’entre	eux	les	méthodes	isDirectory,	getName	et	length	pour	obtenir	les	informations
voulues.

import	java.io.*	;					//	pour	la	classe	File

419

public	class	ListRep

{	public	static	void	main	(String	args[])

{	String	nomRepert	;

File	objRep	;

boolean	ok	;

/*	lecture	nom	de	repertoire	*/

ok	=	false	;

do

{	System.out.print	("nom	du	repertoire	:	")	;

nomRepert	=	Clavier.lireString	()	;

objRep	=	new	File	(nomRepert)	;

if	(objRep.isDirectory())

ok	=	true	;

else

System.out.println	 ("Nom	 incorrect	 (inexistant	 ou	 non

repertoire)")	;

}

while	(!ok)	;

/*	affichage	des	informations	correspondantes	*/

File	[]	membres	=	objRep.listFiles()	;

for	(int	i=0	;	i<membres.length	;	i++)

{	String	type	;

System.out.print	(membres[i].getName()+	"	")	;

if	(membres[i].isFile())

System.out.println	 ("FICHIER	 "	 +	 membres[i].length()	 +	 "

octets")	;

else

System.out.println	("REPERTOIRE	")	;

}

}

}

1.	L’utilisateur	peut	fournir	indifféremment	un	nom	relatif	(au	répertoire	courant)	ou
un	nom	absolu.
2.	Au	lieu	de	la	méthode	 listFiles,	nous	aurions	pu	aussi	utiliser	 list	qui	 fournit	un
tableau	 de	 chaînes	 dans	 lequel	 chaque	 élément	 représente	 un	 nom	 de	 membre.	 Il
aurait	 alors	 fallu	 créer	 les	 objets	 de	 type	 File	 correspondants	 pour	 obtenir	 les

420

informations	voulues.

421

Chapitre	16

La	programmation	générique

Connaissances	requises

•	Notion	de	classe	générique	et	de	paramètre	de	type

•	Définition	et	utilisation	d’une	classe	générique

•	Notion	d’effacement	du	paramètre	de	type	et	les	limitations	qui	en	découlent
(instanciation	d’un	objet	d’un	type	générique,	tableaux	d’objets	d’un	type
paramétré,	champs	statiques	d’un	type	paramétré)

•	Notion	de	méthode	générique

•	Limitation	des	paramètres	de	type	d’une	classe	générique	ou	d’une	méthode
générique

•	Différentes	possibilités	de	dérivation	d’une	classe	générique

•	Relation	de	«	faux	héritage	»	:	si	T’	dérive	de	T,	C<T’>	ne	dérive	pas	de
C<T>

•	Notion	de	joker	simple

•	Joker	avec	contraintes

Note	:	La	programmation	générique	n’est	disponible	qu’à	partir	du	JDK	5.0.

422

152	Classe	générique	à	un
paramètre	de	type

Écrire	 une	 classe	 générique	Triplet	 permettant	 de	manipuler	 des	 triplets	 d’objets
d’un	même	type.	On	la	dotera	:

•	d’un	constructeur	à	trois	arguments	(les	objets	constituant	le	triplet),

•	 de	 trois	méthodes	 d’accès	getPremier,	getSecond	 et	 getTroisieme,	 permettant
d’obtenir	la	référence	de	l’un	des	éléments	du	triplet,

•	d’une	méthode	affiche	affichant	la	valeur	des	éléments	du	triplet.
Écrire	un	petit	programme	utilisant	cette	classe	générique	pour	instancier	quelques
objets	et	exploiter	les	méthodes	existantes.

La	définition	d’une	classe	générique	se	fait	à	l’aide	d’un	symbole	(ici,	T)	 représentant
un	type	classe	quelconque	que	l’on	précise	dans	le	nom	de	la	classe	comme	dans	:
class	Triplet<T>

On	utilise	ce	symbole	T	dans	la	suite	de	la	définition	de	la	classe,	comme	s’il	s’agissait
d’un	type	donné.
Voici	comment	nous	pouvons	définir	la	classe	générique	Triplet	:
class	Triplet<T>

{	private	T	x,	y,	z	;						//	les	trois	éléments	du	triplet

public	Triplet	(T	premier,	T	second,	T	troisieme)

{	x	=	premier	;	y	=	second	;	z	=	troisieme	;

}

public	T	getPremier	()

{	return	x	;

}

public	T	getSecond	()

{	return	y	;

}

public	T	getTroisieme	()

423

{	return	z	;

}

public	void	affiche	()

{	 System.out.println	 ("premiere	 valeur	 :	 "	 +	 x	 +	 "	 -	 deuxieme

valeur	:	"	+	y

+	"	-	troisieme	valeur	:	"	+	z)	;

}

}

Notez	 que	 dans	 la	méthode	affiche	 nous	 nous	 fondons	 implicitement	 sur	 la	 méthode
toString	des	objets	concernés.
Voici	un	petit	programme	utilisant	cette	classe	Triplet	:

public	class	TstTriplet

{	public	static	void	main	(String	args[])

{	Integer	oi1	=	3	;				//	équivalent	à	:	Integer	oi1	=	new	Integer

(3)	;

Integer	oi2	=	5	;				//	équivalent	à	:	Integer	oi2	=	new	Integer

(5)	;

Integer	oi3	=	12	;			//	équivalent	à	:	Integer	oi3	=	new	Integer

(12)	;

Triplet	<Integer>	ti	=	new	Triplet<Integer>	(oi1,	oi2,	oi3)	;

//	on	aurait	aussi	pu	écrire	directement	:

//	Triplet	<Integer>	ti	=	new	Triplet<Integer>	(3,	5,	12)	;

ti.affiche	()	;

Triplet	<Double>	td	=	new	Triplet	<Double>	(2.0,	12.0,	2.5)	;

//	on	peut	fournir	des	arguments	de	type	double	qui	seront

//	convertis	automatiquement	en	Double

td.affiche()	;

Integer	n	=	ti.getTroisieme()	;

System.out.println("troisieme	element	du	triplet	ti	=	"	+	n)	;

Double	p	=	td.getPremier	()	;

System.out.println	("premier	element	du	triplet	td	=	"	+	p)	;

	}

}

premiere	valeur	:	3	-	deuxieme	valeur	:	5	-	troisieme	valeur	:	12

premiere	valeur	:	2.0	-	deuxieme	valeur	:	12.0	-	troisieme	valeur	:

2.5

troisieme	element	du	triplet	ti	=	12

premier	element	du	triplet	td	=	2.0

424

153	Classe	générique	à	plusieurs
paramètres	de	type

Écrire	 une	 classe	 générique	 TripletH	 semblable	 à	 celle	 de	 l’exercice	 précédent,
mais	 permettant	 cette	 fois	 de	manipuler	 des	 triplets	 d’objets	 pouvant	 être	 chacun
d’un	type	différent.	Écrire	un	petit	programme	utilisant	cette	classe	générique	pour
instancier	quelques	objets	et	exploiter	les	méthodes	existantes.

Dans	la	définition	de	la	classe,	il	suffit	de	prévoir	cette	fois	trois	paramètres	de	type.
Si	nous	les	nommons	T,	U	et	V,	ils	seront	annoncés	ainsi	dans	le	nom	de	classe	:

class	TripletH	<T,	U,	V>

Voici	ce	que	pourrait	être	la	définition	de	TripletH	:
class	TripletH	<T,	U,	V>

{	private	T	x	;	private	U	y	;	private	V	z	;			//	les	trois	éléments

du	triplet

public	TripletH	(T	premier,	U	second,	V	troisieme)

{	x	=	premier	;	y	=	second	;	z	=	troisieme	;

}

public	T	getPremier	()

{	return	x	;

}

public	U	getSecond	()

{	return	y	;

}

public	V	getTroisieme	()

{	return	z	;

}

public	void	affiche	()

{	 System.out.println	 ("premiere	 valeur	 :	 "	 +	 x	 +	 "	 -	 deuxieme

valeur	:	"	+	y

+	"	-	troisieme	valeur	:	"	+	z)	;

}

425

}

Et	en	voici	un	petit	programme	d’utilisation	:
public	class	TstTripletH

{	public	static	void	main	(String	args[])

{	Integer	oi	=	3	;

Double	od	=	5.25	;

String	os	="hello"	;

TripletH	<Integer,	Double,	String>	tids

	=	new	TripletH	<Integer,	Double,	String>	(oi,	od,	os)	;

tids.affiche	()	;

Integer	n	=	tids.getPremier()	;

System.out.println("premier	element	du	triplet	ti	=	"	+	n)	;

Double	d	=	tids.getSecond	()	;

System.out.println	("second	element	du	triplet	td	=	"	+	d)	;

}

}

premiere	 valeur	 :	 3	 -	 deuxieme	 valeur	 :	 5.25	 -	 troisieme	 valeur	 :

hello

premier	element	du	triplet	ti	=	3

second	element	du	triplet	td	=	5.25

426

154	Conséquences	de	l’effacement
(1)

Repérer	les	erreurs	commises	dans	les	instructions	suivantes	:
class	C	<T>

{	T	x	;

T[]	t1	;

T[]	t2	;

public	static	T	inf	;

public	static	int	compte	;

void	f	()

{	x	=	new	T	()	;

t2	=	t1	;

t2	=	new	T	[5]	;

}

}

Rappelons	que,	lors	de	la	compilation,	la	technique	dite	«	de	l’effacement	»,	consiste	à
remplacer	un	type	générique	par	un	«	type	brut	».	En	l’absence	d’indications	contraires
(limitations	des	paramètres	de	type),	ce	type	brut	est	tout	simplement	Object.	Dans	ces
conditions,	un	certain	nombre	d’opérations	sont	impossibles,	notamment	:

•	définition	d’un	champ	statique	d’un	type	générique,

•	instanciation	d’un	type	générique	ou,	a	fortiori,	d’un	tableau	d’un	type	générique.
class	C	<T>

{	T	x	;																							//	OK

T[]	t1	;																				//	OK

T[]	t2	;																				//	OK

public	 static	 T	 inf	 ;	 	 	 //	 champ	 statique	 d'un	 type	 générique

interdit

public	static	int	compte	;

void	f	()

427

{	 x	 =	 new	 T	 ()	 ;	 	 	 	 	 	 	 	 //	 instanciation	 d'un	 type	 générique

impossible

t2	=	t1	;																	//	OK

t2	 =	 new	 T	 [5]	 ;	 	 	 	 	 	 //	 instanciation	 d'un	 tableau	 d'un	 type

générique

//	impossible

}

}

428

155	Conséquences	de	l’effacement
(2)

Quels	seront	les	résultats	fournis	par	ce	programme	?
public	class	TstStatic

{	public	static	void	main	(String	args[])

{	C<Integer>	ci	=	new	C<Integer>	()	;

ci.affiche()	;

C<Double>	cd	=	new	C<Double>	()	;

ci.affiche()	;	cd.affiche()	;

Class	cci	=	ci.getClass()	;

Class	ccd	=	cd.getClass()	;

if	(cci	==	ccd)	System.out.println

	("ci	et	cd	sont	de	la	meme	classe")	;

else	 System.out.println	 ("ci	 et	 cd	 ne	 sont	 pas	 de	 la	 meme

classe")	;

System.out.println	(cci.getName()	+	"	"	+	ccd.getName())	;

}

}

class	C<T>

{	public	C	()	{compte++	;}

public	void	affiche	()

{	System.out.println	("compte	=	"	+	compte)	;

}

public	void	aff	()

{	System.out.println	("compte	=	"	+	compte)	;

}

private	static	int	compte=0	;

}

Compte	 tenu	 de	 l’effacement,	 lors	 de	 l’exécution,	 il	 n’existe	 qu’une	 seule	 classe
correspondant	au	type	brut	de	C<Integer>	ou	C<Double>,	à	savoir	simplement	C.	Le

429

champ	 statique	 compte	 n’est	 finalement	 qu’un	 champ	 statique	 de	 cette	 classe	 C.	 Il
n’existe	 donc	 qu’un	 seul	 «	 compteur	 »	 nommé	 compte	 pour	 tous	 les	 objets	 de	 type
C<T>,	quelle	que	soit	la	valeur	de	T.	De	même,	la	méthode	getClass	appliquée	à	ces
différents	objets	fournit	la	même	valeur,	à	savoir	la	référence	à	un	objet	de	type	Class
dont	le	nom	est	C.	Voici	finalement	les	résultats	fournis	par	ce	programme	:
compte	=	1

compte	=	2

compte	=	2

ci	et	cd	sont	de	la	meme	classe

C	C

430

156	Méthode	générique	à	un
argument

Écrire	une	méthode	générique	fournissant	en	retour	un	objet	 tiré	au	hasard	dans	un
tableau	fourni	en	argument.	Écrire	un	petit	programme	utilisant	cette	méthode.

Il	suffit	de	réaliser	une	méthode	générique	possédant	un	seul	paramètre	de	type,	ayant
un	entête	de	la	forme	suivante	:
static	<T>	T	hasard	(T	[]	valeurs)

Le	choix	d’un	élément	se	fait	en	tirant	sa	position	au	hasard,	en	recourant	à	la	méthode
Math.random	 qui	 fournit	 une	 valeur	 au	 hasard	 dans	 l’intervalle	 [0,	 1[.	 Voici	 la
définition	de	notre	méthode	accompagnée	d’un	petit	programme	de	test	:
public	class	Hasard

{	static	<T>	T	hasard	(T	[]	valeurs)

	{	if	(valeurs	==	null)	return	null	;

	int	n	=	valeurs.length	;

	if	(n	==	0)	return	null	;

	int	i	=	(int)	(n	*	Math.random())	;

	return	valeurs[i]	;

	}

	public	static	void	main(String	args[])

	{	Integer[]	tabi	=	{	1,	7,	8,	4,	9}	;		//	ici	boxing	automatique

	System.out.println	("hasard	sur	tabi	=	"	+	hasard	(tabi))	;

	String[]	tabs	=	{"Java",	"C",	"C++",	"C#",	"Visual	Basic"}	;

	System.out.println	("hasard	sur	tabs	=	"	+	hasard	(tabs))	;

	}

}

hasard	sur	tabi	=	4

hasard	sur	tabs	=	Visual	Basic

431

157	Méthode	générique	et
effacement

Écrire	 une	 méthode	 qui	 renvoie	 au	 hasard	 un	 objet	 choisi	 parmi	 deux	 objets	 de
même	type	fournis	en	argument.	Écrire	un	petit	programme	utilisant	cette	méthode.

Là	encore,	il	suffit	de	réaliser	une	méthode	générique	à	un	seul	paramètre	de	type,	et	à
deux	arguments	de	ce	type	:
public	static	<T>	T	hasard	(T	x,	T	y)

{	double	v	=	Math.random	()	;

if	(v	<	0.5)	return	x	;

else	return	y	;

}

En	 revanche,	 cette	 fois,	 compte	 tenu	 de	 l’effacement,	 cette	 méthode	 sera	 compilée
comme	si	on	l’avait	écrite	de	la	façon	suivante	:
public	static	Object	hasard	(Object	x,	Object	y)

{	double	v	=	Math.random	()	;

if	(v	<	0.5)	return	x	;

else	return	y	;

}

Ainsi,	des	appels	de	hasard	avec	des	arguments	de	types	différents	seront	acceptés	par
le	compilateur.	Il	reste	cependant	possible	de	forcer	le	compilateur	à	s’assurer	que	les
arguments	effectifs	sont	d’un	même	type,	ou	d’un	type	compatible	avec	un	type	donné.
On	le	précise	lors	de	l’appel	à	l’aide	d’une	syntaxe	de	la	forme	suivante,	dans	laquelle
nomClasse	correspond	au	nom	de	la	classe	où	la	méthode	générique	est	définie	:
nomClasse<Type>.nomMéthode	(arguments)

Nous	en	fournissons	quelques	exemples	en	commentaires	du	petit	programme	de	test	de
la	méthode	hasard	:
public	class	MethGen2arg

{	public	static	void	main	(String	args[])

{	Integer	i1	=	3	;	Integer	i2	=	5	;

432

System.out.println	("hasard	(i1,	i2)	=	"	+	hasard	(i1,	i2))	;

String	s1	=	"Salut"	;	String	s2	=	"bonjour"	;

System.out.println	("hasard	(s1,	s2)	=	"	+	hasard	(s1,	s2))	;

System.out.println	("hasard	(i1,	s1)	=	"	+	hasard	(i1,	s1))	;

//	Les	appels	suivants	seront	rejetés	en	compilation	:

//			MethGen2arg.<Integer>	hasard	(i1,	s1)	;

//			MethGen2arg.<String>	hasard	(i1,	s1)	;

//	En	revanche,	ceux-ci	seront	acceptés	:

//			MethGen2arg.<Integer>	hasard	(i1,	i2)	;

//			MethGen2arg.<Number>	hasard	(i1,	i2)	;

}

public	static	<T>	T	hasard	(T	x,	T	y)

{	double	v	=	Math.random	()	;

if	(v	<	0.5)	return	x	;

else	return	y	;

}

}

433

158	Dérivation	de	classes	génériques

On	dispose	de	la	classe	générique	suivante	:
class	Couple<T>

{	private	T	x,	y	;						//	les	deux	éléments	du	couple

public	Couple	(T	premier,	T	second)

{	x	=	premier	;	y	=	second	;

}

	public	void	affiche	()

{	System.out.println	("premiere	valeur	:	"	+	x

+	"	-	deuxieme	valeur	:	"	+	y)	;

}

}

1.	 Créer,	 par	 dérivation,	 un	 classe	CoupleNomme	 permettant	 de	manipuler	 des
couples	analogues	à	ceux	de	la	classe	Couple<T>,	mais	possédant,	en	outre,	un
nom	de	type	String.	On	redéfinira	convenablement	les	méthodes	de	cette	nouvelle
classe	en	réutilisant	les	méthodes	de	la	classe	de	base.
2.	Toujours	par	dérivation	à	partir	de	Couple<T>,	créer	cette	fois	une	«	classe
ordinaire	»	(c’est-à-dire	une	classe	non	générique),	nommée	PointNomme,	dans
laquelle	les	éléments	du	couple	sont	de	type	Integer	et	 le	nom,	toujours	de	type
String.
3.	Écrire	un	petit	programme	de	test	utilisant	ces	deux	classes	CoupleNomme	et
PointNomme.

1.	Il	suffit	d’exploiter	les	possibilités	de	dérivation	de	classes	génériques,	en	créant
une	 nouvelle	 classe	 possédant	 le	même	 paramètre	 de	 type	 que	 la	 classe	 de	 base.
Voici	ce	que	pourrait	être	la	définition	de	notre	classe	CoupleNomme	:
class	CoupleNomme	<T>	extends	Couple	<T>

{	private	String	nom	;

public	CoupleNomme	(T	premier,	T	second,	String	nom)

{	super	(premier,	second)	;

this.nom	=	nom	;

434

}

public	void	affiche	()

{	System.out.print	("nom	=	"	+	nom	+	"	-	")	;

super.affiche()	;

}

}

2.	Cette	fois,	on	crée	une	classe	non	générique,	dérivant	d’un	classe	générique,	dans
laquelle	on	fixe	le	paramètre	de	type	(ici	T	=	Integer).	Voici	ce	que	pourrait	être	la
défintion	de	notre	classe	PointNomme	:
class	PointNomme	extends	Couple	<Integer>

{	private	String	nom	;

public	PointNomme	(Integer	premier,	Integer	second,	String	nom)

{	super	(premier,	second)	;

this.nom	=	nom	;

}

public	void	affiche	()

{	System.out.print	("nom	=	"	+	nom	+	"	-	")	;

super.affiche()	;

}

3.	 Voici	 un	 programme	 utilisant	 ces	 deux	 nouvelles	 classes,	 accompagné	 d’un
exemple	d’exécution	:
public	class	TstDerivCouple

{	public	static	void	main	(String	args[])

{	Couple	<Double>	cd1	=	new	Couple	<Double>	(5.0,	2.5)	;

cd1.affiche	()	;

Couple	<Double>	cd2	=	new	Couple	<Double>	(5.0,	2.5)	;

cd2.affiche	()	;

CoupleNomme	<String>	cns

	=	new	CoupleNomme	<String>	("hello",	"bonjour",	"saluts")	;

cns.affiche	()	;

CoupleNomme	<Couple<Double>>	cnd

	=	new	CoupleNomme	<Couple<Double>>	(cd1,	cd2,	"cf1")	;

cnd.affiche	()	;

PointNomme	p1	=	new	PointNomme	(2,	5,	"Point1")	;

p1.affiche()	;

	}

}

premiere	valeur	:	5.0	-	deuxieme	valeur	:	2.5

435

premiere	valeur	:	5.0	-	deuxieme	valeur	:	2.5

nom	=	saluts	-	premiere	valeur	:	hello	-	deuxieme	valeur	:	bonjour

nom	 =	 cf1	 -	 premiere	 valeur	 :	 Couple@923e30	 -	 deuxieme	 valeur	 :

Couple@130c19b

nom	=	Point1	-	premiere	valeur	:	2	-	deuxieme	valeur	:	5

Notez	 qu’ici,	 nous	 avons	 exploité	 les	 possibilités	 de	 «	 composition	 »	 dans
l’instanciation	de	 la	classe	générique	cnd,	 en	créant	un	objet	de	 type	CoupleNomme,
dans	lequel	les	éléments	sont	d’un	type	Couple<Double>.	On	constate	que	la	méthode
affiche	 fournit	 alors	 simplement	 les	 adresses	 des	 deux	 éléments	 (de	 type
Couple<Double>)	 du	 couple.	 En	 effet,	 ici,	 cette	 méthode	 se	 contente	 d’utiliser
implicitement	la	méthode	toString	du	type	concerné	(Couple<Double>).

436

159	Les	différentes	sortes	de
relation	d’héritage

On	suppose	qu’on	a	défini	une	classe	générique	nommée	C	:
class	C	<T>	{	}

ainsi	qu’une	classe	ordinaire	nommée	X.
Pour	chacune	des	définitions	suivantes,	donner	les	relations	d’héritage	existant	entre
les	classes	mentionnées	en	commentaires	:

class	D<T>	extends	C<T>	{	}	/*															définition	1

*/

//	C<Object>,	C<Double>,	D<Object>,	D<Double>

class	D<T,	U>	extends	C<T>	{	}	/*													définition	2

*/

//	C<Double>,	D(Double,	Integer),	D(Double,	Double),

//	D(Integer,	Double)

class	D<T	extends	Number>	extends	C<T>	{	}	/*			définition

3	*/

//	D<Double>,	C<Double>,	D<String>,	C<String>

class	D<T>	extends	X	{	}	/*																			définition	4

*/

//	D<Double>,	X,	D<String>

class	D<T>	extends	C<String>	/*																					définition	5

*/

//	D<String>,	D<Integer>,	C<String>,	C<Integer>

1.	D<Double>	dérive	de	C<Double>
D<Object>	dérive	de	C<Object>
En	revanche,	 il	n’existe	aucune	relation	d’héritage	entre	D<Double>	et	D<Object>,
pas	plus	qu’entre	C<Double>	et	C<Object>.
2.	D<Double,	Integer>	dérive	de	C<Double>
D<Double,	Double>	dérive	de	C<Double>
En	revanche,	D<Integer,	Double>	et	C<Double>	 ne	 sont	 pas	 liés	 par	 une	 relation

437

d’héritage.
3.	 D<Double>	 dérive	 de	 C<Double>	 car	 Double	 implémente	 bien	 l’interface
Number.	 En	 revanche,	 D<String>	 ne	 dérive	 pas	 de	 C<String>	 puisque	 String
n’implémente	pas	Number.
4.	D<Double>	dérive	de	X
D<String>	dérive	de	X
5.	D<String>	dérive	de	C<String>
D<Integer>	dérive	e	C<String>
En	revanche,	D<Integer>	ne	possède	aucun	lien	d’héritage	avec	C<Integer>.

438

160	Limitations	des	paramètres	de
type	d’une	méthode

Ecrire	 une	méthode	 générique	 déterminant	 le	 plus	 grand	 élément	 d’un	 tableau,	 la
comparaison	des	éléments	utilisant	 l’ordre	 induit	par	 la	méthode	compareTo	 de	 la
classe	des	éléments	du	tableau.

On	pourrait	envisager	pour	notre	méthode,	nommée	max,	un	en-tête	de	cette	forme	:
static	<T>	T	max	(T[]	valeurs)

Mais,	dans	ce	cas,	le	compilateur	refuserait	l’application	de	la	méthode	compareTo	à
des	éléments	de	type	T.	Pour	que	ce	soit	possible,	il	est	nécessaire	de	préciser	que	le
type	T	implémente	l’interface	Comparable<T>,	en	employant	un	en-tête	de	cette	forme
static	<T	extends	Comparable<T>	>	T	max	(T[]	valeurs)

Voici	la	définition	de	la	méthode	et	un	exemple	d’utilisation	:
public	class	MaxTab

{	public	static	void	main	(String	args[])

{	Integer	[]	td	=	{2,	8,	1,	7,	4,	9	}	;

System.out.println("maxi	de	td	=	"	+	max	(td))	;

String	[]	ts	=	{"bonjour",	"hello",	"salut"}	;

System.out.println	("maxi	de	ts	=	"	+	max	(ts))	;

}

static	<T	extends	Comparable<T>	>	T	max	(T[]	valeurs)

{	if	(valeurs	==	null)	return	null	;

	if	(valeurs.length	==	0)	return	null	;

	T	maxi	=	valeurs[0]	;

	for	(T	v	:	valeurs)	if	(v.compareTo(maxi)	>	0)	maxi	=	v	;

	return	maxi	;

}

}

maxi	de	td	=	9

maxi	de	ts	=	Visual	Basic

439

En	 toute	 rigueur,	 dans	 certains	 cas,	 la	 spécification	Comparable<T>	 de	 l’en-tête	 de
max	pourra	poser	des	problèmes	et	il	faudra	recourir	à	des	jokers	de	type	super,	en	la
remplaçant	par	<	T	extends	Comparable	<?	super	T>	>,	à	 l’instar	de	ce	qui	se	fait
dans	certaines	méthodes	relatives	aux	collections.	Ce	point,	dont	la	justification	sort	du
cadre	 de	 ce	 manuel,	 concerne	 essentiellement	 les	 développeurs	 de	 bibliothèques
génériques.

440

161	Redéfinition	de	la	méthode
compareTo

Compléter	 la	 classe	Point	 suivante,	 de	manière	 à	 ce	 que	 l’on	puisse	 appliquer	 la
méthode	 générique	 max	 précédente	 à	 un	 tableau	 d’objets	 de	 type	 Point.	 On
conviendra	que	les	points	sont	ordonnés	par	leur	distance	à	l’origine.

class	Point

{	private	int	x,	y	;

Point	(int	x,	int	y)

{	this.x	=	x	;	this.y	=	y	;

}

public	void	affiche()

{	System.out.println	("coordonnees	:	"	+	x	+	"	"	+	y)	;

}

}

Il	 faut	 faire	 implémenter	 à	 la	 classe	 Point,	 l’interface	 Comparable	 <Point>	 dont
l’unique	méthode	a	pour	en-tête	:
public	int	compareTo	(Point	p)

D’où	 la	nouvelle	définition	de	notre	classe	Point	 (ne	pas	oublier	de	mentionner	que,
dorénavant,	la	classe	Point	implémente	Comparable	<Point>	:
class	Point	implements	Comparable	<Point>

{	private	int	x,	y	;

Point	(int	x,	int	y)

{	this.x	=	x	;	this.y	=	y	;

}

public	void	affiche()

{	System.out.println	("coordonnees	:	"	+	x	+	"	"	+	y)	;

}

public	int	compareTo	(Point	p)

{	int	norme1	=	x	*	x	+	y	*	y	;

441

int	norme2	=	p.x	*	p.x	+	p.y	*	p.y	;

if	(norme1	==	norme2)	return	0	;

if	(norme1	>	norme2)	return	1	;

	else	return	-1	;

}

Voici	 un	 petit	 programme	 appliquant	 la	 méthode	max	 à	 des	 objets	 du	 nouveau	 type
Point	(par	souci	de	lisibilité,	nous	avons	reproduit	la	liste	de	la	méthode	max)	:
public	class	MaxTabPoints

{	public	static	void	main	(String	args[])

{	Point	p1	=	new	Point	(0,	5)	;

Point	p2	=	new	Point	(3,	1)	;

Point	p3	=	new	Point	(0,	12)	;

Point	p4	=	new	Point	(3,	5)	;

Point	[]	tp	=	{p1,	p2,	p3,	p4}	;

Point	maxp	=	max	(tp)	;

System.out.println	("Point	maxi	:	")	;

maxp.affiche()	;

}

static	<T	extends	Comparable	<T>	>	T	max	(T[]	valeurs)

{	if	(valeurs	==	null)	return	null	;

	if	(valeurs.length	==	0)	return	null	;

	T	maxi	=	valeurs[0]	;

	for	(T	v	:	valeurs)	if	(v.compareTo(maxi)	>	0)	maxi	=	v	;

	return	maxi	;

}

}

point	maxi	:

coordonnees	:	0	12

442

Chapitre	17

Les	collections	et	les	tables	associatives

Connaissances	requises

•	Principales	méthodes	de	l’interface	Collection,	indépendantes	d’un	itérateur	:
add,	size,	contains,	addAll,	retainAll	et	removeAll

•	Interface	Iterator	et	méthodes	next,	hasNext	et	remove

•	Interface	ListIterator	et	méthodes	previous,	hasPrevious,	set	et	add

•	Ordre	des	éléments	d’une	collection	;	interface	Comparable	et	méthode
compareTo	;	objets	comparateurs

•	Relativité	de	la	notion	d’égalité	de	deux	éléments	d’une	même	collection	;
rôle	de	la	méthode	equals

•	Utilisation	de	la	boucle	for…	each	sur	des	collections

•	Classe	LinkedList	et	méthodes	spécifiques	removeFirst	et	removeLast

•	Classe	ArrayList	et	méthodes	spécifiques	travaillant	avec	une	position
donnée	:	get,	set,	add	et	remove

•	Classe	HashSet	et	méthodes	hashCode	et	equals

•	Classe	TreeSet	et	méthode	compareTo

Note	:	nous	supposons	que	nous	travaillons	avec	une	version	Java	5	ou	postérieure,	ce
qui	nous	permet	d’utiliser	des	 collections	 et	 des	 tables	génériques,	 l’emballage	 et	 le
déballage	automatique,	ainsi	que	la	boucle	dite	for…each.	En	revanche,	nous	ne	ferons
pas	 appel	 aux	 spécificités	 du	 JDK	 8,	 lesquelles	 ne	 seront	 exploitées	 que	 dans	 le
chapitre	suivant.

443

•	 Algorithmes	 applicables	 aux	 collections	 :	 tri,	 recherche	 de	 maximum	 ou	 de
minimum,	recherche	binaire,	copie	;	rôle	de	la	méthode	compareTo	ou	d’un	objet
comparateur

•	 Tables	 associatives,	 interface	Map,	 classes	HashMap	 et	 TreeMap,	 méthodes
put,	get	et	remove

•	Notion	de	vue	 associée	 à	une	 table	 :	 classe	Map.Entry	 et	méthodes	 entrySet,
keySet,	getKey	et	getValue

444

162	Dépendance	ou	indépendance	d’un
itérateur

Quels	résultats	fournira	ce	programme	:
import	java.util.*;

public	class	Essai

{	public	static	void	main	(String	args[])

{	LinkedList<Integer>	liste	=	new	LinkedList	<Integer>	()	;

liste.add	(3)	;	liste.add	(5)	;	nliste.add	(3)	;

liste.add	(12)	;nliste.add	(3)	;

System.out.println	(liste)	;

liste.remove	(3)	;	System.out.println	(liste)	;

liste.remove	(new	Integer(3))	;	System.out.println	(liste)	;

Iterator	<Integer>	it	=	liste.iterator	()	;

while	(it.hasNext())if	(it.next()==3)	it.remove()	;

System.out.println	(liste)	;

}

}

Rappelons	 tout	 d’abord	 que,	 depuis	 Java	 5,	 les	 possibilités	 dites	 d’emballage	 et	 de
déballage	automatiques	(autoboxing)	permettent	 le	 recours	automatique	à	des	classes
enveloppes.	Ainsi,	l’appel	:

liste.add	(3)	;

remplace	avantageusement	:
liste.add	(new	Integer(3))	;

Cependant,	cette	démarche	ne	s’applique	plus	dans	l’appel	:
liste.remove	(3)	;

En	effet,	 il	existe	une	méthode	remove	(int)	qui,	compte	tenu	des	règles	relatives	à	la
surdéfinition,	se	trouvera	appelée	ici.	Elle	supprime	l’élément	de	rang	3	de	liste.
En	revanche	:

liste.remove	(new	Integer(3))	;

445

supprime	bien	le	premier	élément	de	la	liste	dont	la	valeur	est	égale	à	3.	Rappelons	que
l’égalité	se	fonde	sur	la	méthode	equals	laquelle,	dans	le	cas	des	classes	enveloppes,
considère	bien	la	valeur	des	objets.
Enfin,	la	boucle	:

while	(it.hasNext())if	(it.next()==3)	it.remove()	;

permet	de	supprimer	tous	les	éléments	(restants)	dont	la	valeur	est	égale	à	3.	Rappelons
que	 la	 méthode	 remove	 supprime	 l’élément	 courant	 (c’est-à-dire	 celui	 désigné	 par
l’itérateur).
Enfin,	dans	une	instruction	telle	que	:

System.out.println	(liste)	;

il	 y	 a	 appel	 de	 la	 méthode	 toString	 de	 l’objet	 liste.	 Celle-ci,	 comme	 pour	 toute
collection,	appelle	la	méthode	toString	de	chacun	de	ses	éléments.
En	définitive,	ce	programme	fournit	les	résultats	suivants	:

[3,	5,	3,	12,	3]

[3,	5,	3,	3]

[5,	3,	3]

[5]

446

163	Manipulation	d’un	tableau	de	type
ArrayList

On	dispose	d’un	objet	tab	déclaré	ainsi	:
ArrayList	<Integer>	tab	;

Écrire	les	instructions	réalisant	les	actions	suivantes	sur	les	valeurs	de	tab	:

•	affichage	dans	l’ordre	naturel	(on	proposera	au	moins	4	solutions)	;

•	affichage	dans	l’ordre	inverse	(au	moins	2	solutions)	;

•	affichage	des	éléments	de	rang	pair	(0,	2,	4…)	(au	moins	2	solutions)	;

•	mise	à	zéro	des	éléments	de	valeur	négative	(au	moins	2	solutions).

L’affichage	dans	l’ordre	naturel	peut	se	faire	:

•	en	utilisant	la	boucle	dite	for…	each	:
for	(int	elem	:	tab)	System.out.print	(elem	+	"	")	;

•	en	utilisant	le	recours	automatique	à	la	méthode	toString	de	ArrayList	:
System.out.println	(tab)	;

•	en	recourant	à	la	méthode	get	pour	parcourir	les	différents	éléments	du	tableau	:
for	(int	i=0	;	i<tab.size()	;	i++)	System.out.print	(tab.get(i)+	"

")	;

•	en	utilisant	un	itérateur	:
ListIterator	<Integer>	it	=	tab.listIterator()	;

while	(it.hasNext())	System.out.print	(it.next()	+	"	")	;

L’affichage	 dans	 l’ordre	 inverse	 ne	 peut	 plus	 utiliser	 les	 deux	 premières	 démarches.
Les	deux	dernières	restent	applicables	:

for	(int	i=tab.size()-1	;	i>=0	;	i--)	System.out.print	(tab.get(i)+

"	")	;

ListIterator	<Integer>	itr	=	tab.listIterator(tab.size())	;	//	fin

de	liste

while	(itr.hasPrevious())	System.out.print(itr.previous()	+	"	")	;

447

Il	en	va	de	même	pour	l’affichage	des	éléments	de	rang	pair	:
for	(int	i=0	;	i<tab.size()	;	i+=2)	System.out.print	(tab.get(i)+	"

")	;

System.out.println	("\nelements	de	rang	pair	-	methode	2")	;

while	(itp.hasNext())

{	System.out.print(itp.next()	+	"	")	;

itp.next();

}

La	mise	à	zéro	des	éléments	négatifs	ne	peut,	là	encore,	se	faire	qu’en	utilisant	soit	les
méthodes	get	et	set,	soit	un	itérateur	:

for	(int	i=0	;	i<tab.size()	;	i++)	if	(tab.get(i)	<	0)	tab.set	(i,

0)	;

ListIterator	<Integer>	itz	=	tab.listIterator()	;

while	(itz.hasNext())if	(itz.next()	<	0)	itz.set(0)	;

Notez	 bien	 que	 la	 boucle	 for…	 each	 ne	 permet	 que	 des	 consultations	 des	 éléments
d’une	 collection.	 Elle	 n’est	 donc	 pas	 utilisable	 ici.	 Bien	 que	 correcte	 sur	 un	 plan
syntaxique,	 l’instruction	 suivante	 se	 contenterait	 d’agir	 à	 plusieurs	 reprises	 sur	 la
valeur	de	elem	(la	mettant	à	zéro	lorsqu’elle	est	négative),	mais	laisserait	inchangée	la
valeur	correspondante	du	tableau	:
for	(int	elem	:	tab)	if	(elem	<	0)	elem	=	0	;

Voici	 un	 exemple	 de	 programme	 complet	 reprenant	 ces	 diverses	 démarches,
accompagné	d’un	exemple	d’exécution.	Notez	que,	pour	tester	les	démarches	de	mise	à
zéro	des	éléments	négatifs,	nous	avons	dû	travailler	sur	une	copie	du	tableau	initial.
import	java.util.*	;

public	class	Tableau

{	public	static	void	main	(String	args[])

{	int	t[]	=	{	3,	-5,	9,	2,	0,	-8,	12,	7,	3,	12	}	;

ArrayList	<Integer>	tab	=	new	ArrayList<Integer>	()	;

for	(int	elem	:	t)	tab.add	(elem)	;

//	affichage	ordre	naturel

System.out.println	("ordre	naturel	-	methode	1")	;

for	(int	elem	:	tab)	System.out.print	(elem	+	"	")	;

System.out.println	("\nordre	naturel	-	methode	2")	;

System.out.println	(tab)	;

System.out.println	("ordre	naturel	-	methode	3")	;

for	(int	i=0	;	i<tab.size()	;	i++)	System.out.print	(tab.get(i)+	"

")	;

448

System.out.println	("\nordre	naturel	-	methode	4")	;

ListIterator	<Integer>	it	=	tab.listIterator()	;

while	(it.hasNext())	System.out.print(it.next()	+	"	")	;

//	affichage	ordre	inverse

System.out.println	("\nordre	inverse	-	methode	1")	;

for	 (int	 i=tab.size()-1	 ;	 i>=0	 ;	 i--)	 System.out.print

(tab.get(i)+	"	")	;

System.out.println	("\nordre	inverse	-	methode	2")	;

ListIterator	<Integer>	itr	=	tab.listIterator(tab.size())	;	//	fin

de	liste

while	(itr.hasPrevious())	System.out.print(itr.previous()	+	"	")	;

	//	affichage	éléments	de	rang	pair

System.out.println	("\nelements	de	rang	pair	-	methode	1")	;

for	(int	i=0	;	i<tab.size()	;	i+=2)	System.out.print	(tab.get(i)+

"	")	;

System.out.println	("\nelements	de	rang	pair	-	methode	2")	;

ListIterator	<Integer>	itp	=	tab.listIterator()	;

while	(itp.hasNext())

{	System.out.print(itp.next()	+	"	")	;

itp.next();

}

	//	mise	a	zero	d'une	copie	de	tab

ArrayList	<Integer>	tab1	=	new	ArrayList<Integer>	(tab)	;

System.out.println	("\nmise	a	zero	-	methode	1")	;

for	(int	i=0	;	i<tab1.size()	;	i++)	if	(tab1.get(i)	<	0)	tab1.set

(i,	0)	;

System.out.println	(tab1)	;

tab1	=	new	ArrayList<Integer>	(tab)	;

System.out.println	("mise	a	zero	-	methode	2")	;

ListIterator	<Integer>	itz	=	tab1.listIterator()	;

while	(itz.hasNext())if	(itz.next()	<	0)	itz.set(0)	;

System.out.println	(tab1)	;

}

}

ordre	naturel	-	methode	1

3	-5	9	2	0	-8	12	7	3	12

ordre	naturel	-	methode	2

[3,	-5,	9,	2,	0,	-8,	12,	7,	3,	12]

449

ordre	naturel	-	methode	3

3	-5	9	2	0	-8	12	7	3	12

ordre	naturel	-	methode	4

3	-5	9	2	0	-8	12	7	3	12

ordre	inverse	-	methode	1

12	3	7	12	-8	0	2	9	-5	3

ordre	inverse	-	methode	2

12	3	7	12	-8	0	2	9	-5	3

elements	de	rang	pair	-	methode	1

3	9	0	12	3

elements	de	rang	pair	-	methode	2

3	9	0	12	3

mise	a	zero	-	methode	1

[3,	0,	9,	2,	0,	0,	12,	7,	3,	12]

mise	a	zero	-	methode	2

[3,	0,	9,	2,	0,	0,	12,	7,	3,	12]

450

164	Tri	d’une	collection	(1)

On	dispose	de	la	classe	Cercle	suivante	:
class	Cercle

{	public	Cercle	(int	x,	int	y,	double	rayon)

{	this.x	=	x	;	this.y	=	y	;	this.rayon	=	rayon	;	}

public	void	affiche	()

{	System.out.println	("Coordonnees	:	"	+	x	+	",	"	+	y

+	"	;	rayon	:	"	+	rayon)	;

}

public	double	getRayon	()	{	return	rayon	;	}

public	int	getX	()	{	return	x	;	}

private	int	x,	y	;

double	rayon	;

}

Écrire	les	instructions	permettant	de	trier,	sans	modifier	la	classe	Cercle,	un	tableau
(de	type	ArrayList)	d’objets	de	type	Cercle	:

•	suivant	les	valeurs	croissantes	de	leur	rayon	;

•	suivant	les	valeurs	croissantes	de	leur	abscisse.

La	classe	Collections	fournit	différents	algorithmes	de	tri	d’une	collection	quelconque
implémentant	l’interface	List,	ce	qui	est	le	cas	de	ArrayList.	L’ordre	de	tri	y	est	défini
soit	 par	 la	 méthode	 compareTo	 de	 la	 classe	 concernée	 qui	 doit	 alors	 implémenter
l’interface	Comparable,	 soit	 par	 ce	 que	 l’on	 nomme	un	 objet	 comparateur,	 fourni	 en
argument	de	l’algorithme	de	tri.
Manifestement	ici,	la	classe	Cercle	n’implémentant	pas	l’interface	Comparator,	il	faut
se	 tourner	vers	 la	seconde	démarche.	 Ici,	notre	objet	comparateur	devra	 implémenter
l’interface	 Comparator<Cercle>,	 c’est-à-dire	 disposer	 d’une	 méthode	 compare
(Cercle,	Cercle)	renvoyant	un	entier	(dont	la	valeur	exacte	est	sans	importance)	:

•	négatif	si	le	premier	argument	est	considéré	comme	inférieur	au	second	;

•	nul	si	le	premier	argument	est	considéré	comme	égal	au	second	;

451

•	positif	si	le	premier	argument	est	considéré	comme	supérieur	au	second.
Voici	 ce	 que	 pourrait	 être	 le	 code	 demandé.	 Ici,	 nous	 avons	 choisi	 (arbitrairement)
d’utiliser	 une	 classe	 comparateur	 pour	 le	 premier	 tri	 et	 une	 classe	 anonyme	 pour	 le
second.

import	java.util.*	;

public	class	EssaiComparateur

{	public	static	void	main	(String	args[])

{	ArrayList	<Cercle>	liste	=	new	ArrayList	<Cercle>	()	;

Cercle	c1	=	new	Cercle	(5,	3,	5.0)	;

Cercle	c2	=	new	Cercle	(1,	9,	3.5)	;

Cercle	c3	=	new	Cercle	(2,	9,	2.5)	;

liste.add	(c1)	;	liste.add	(c2)	;	liste.add	(c3)	;

//	tri	suivant	le	rayon	du	cercle

Collections.sort	(liste,	new	Comparateur1	())	;

System.out.println	("--	Cercles	tries	par	rayon	croissant")	;

for	(Cercle	c	:	liste)	c.affiche	()	;

//	tri	suivant	l'abcisse	du	cercle

Collections.sort	(liste,	new	Comparator	<Cercle>	()

	{	public	int	compare	(Cercle	c1,	Cercle	c2)

	{	double	x1	=	c1.getX	()	;	double	x2	=	c2.getX	()	;

	if	(x1	<	x2)	return	-1	;

	else	if	(x1	==	x2)	return	0	;

	else	return	1	;

	}

	})	;

System.out.println	("--	Cercles	tries	par	abscisse	croissante")	;

for	(Cercle	c	:	liste)	c.affiche	()	;

}

}

class	Comparateur1	implements	Comparator	<Cercle>

{	public	int	compare	(Cercle	c1,	Cercle	c2)

{	double	r1	=	c1.getRayon	()	;

double	r2	=	c2.getRayon	()	;

	if	(r1	<	r2)	return	-1	;

	else	if	(r1	==	r2)	return	0	;

	else	return	1	;

}

}

452

class	Cercle

{	public	Cercle	(int	x,	int	y,	double	rayon)

{	this.x	=	x	;	this.y	=	y	;	this.rayon	=	rayon	;	}

public	void	affiche	()

{	System.out.println	("Coordonnees	:	"	+	x	+	",	"	+	y

+	"	;	rayon	:	"	+	rayon)	;

}

public	double	getRayon	()	{	return	rayon	;	}

public	int	getX	()	{	return	x	;	}

private	int	x,	y	;

double	rayon	;

}

--	Cercles	tries	par	rayon	croissant

Coordonnees	:	2,	9	;	rayon	:	2.5

Coordonnees	:	1,	9	;	rayon	:	3.5

Coordonnees	:	5,	3	;	rayon	:	5.0

--	Cercles	tries	par	abscisse	croissante

Coordonnees	:	1,	9	;	rayon	:	3.5

Coordonnees	:	2,	9	;	rayon	:	2.5

Coordonnees	:	5,	3	;	rayon	:	5.0

Notez	 que	 l’écriture	 de	 la	 classe	 anonyme	 dans	 l’appel	 de	Collections.sort	 pourrait
également	utiliser	la	méthode	compareTo	de	la	classe	Integer,	moyennant	l’emploi	de
conversions	de	int	en	Integer	:
Collections.sort	(liste,	new	Comparator	<Cercle>	()

{	public	int	compare	(Cercle	c1,	Cercle	c2)

{	 return	 ((Integer)(c1.getX())).compareTo((Integer)

(c2.getX()))	;

}

})	;

Il	en	va	de	même	pour	la	méthode	compare	de	la	classe	Comparateur1	:
public	int	compare	(Cercle	c1,	Cercle	c2)

{	 return	 ((Double)(c1.getRayon())).compareTo((Double)

(c2.getRayon()))	;

}

453

165	Tri	d’une	collection	(2)

Modifier	 la	 classe	Cercle	 de	 l’exercice	 précédent,	 de	 manière	 à	 ce	 que	 l’appel
(liste	étant	un	objet	de	type	ArrayList<Cercle>)	:

Collections.sort	(liste)	;

trie	les	éléments	de	liste,	suivant	les	valeurs	croissantes	de	leur	rayon.

Cette	 fois,	 l’énoncé	 nous	 interdit	 d’employer	 un	 objet	 comparateur,	 comme	 nous
l’avons	fait	dans	l’exercice	précédent.	Il	faut	donc	obligatoirement	que	la	clase	Cercle
implémente	 l’interface	Comparable	 et	 qu’elle	 définisse	 la	 méthode	 compareTo,	 de
façon	appropriée.
Voici	 la	classe	Cercle	modifiée	dans	ce	 sens,	 accompagnée	d’un	petit	 programme	de
test	et	d’un	exemple	d’exécution.
import	java.util.*	;

public	class	EssaiTri

{	public	static	void	main	(String	args[])

{	ArrayList	<Cercle>	liste	=	new	ArrayList	<Cercle>	()	;

Cercle	c1	=	new	Cercle	(5,	3,	5.0)	;

Cercle	c2	=	new	Cercle	(1,	9,	3.5)	;

Cercle	c3	=	new	Cercle	(2,	9,	2.5)	;

liste.add	(c1)	;	liste.add	(c2)	;	liste.add	(c3)	;

//	tri	suivant	le	rayon	du	cercle

Collections.sort	(liste)	;

System.out.println	("--	Cercles	tries	par	rayon	croissant")	;

for	(Cercle	c	:	liste)	c.affiche	()	;

	}

}

class	Cercle	implements	Comparable<Cercle>

{	public	Cercle	(int	x,	int	y,	double	rayon)

{	this.x	=	x	;	this.y	=	y	;	this.rayon	=	rayon	;	}

public	void	affiche	()

{	System.out.println	("Coordonnees	:	"	+	x	+	",	"	+	y

+	"	;	rayon	:	"	+	rayon)	;

454

}

public	int	compareTo	(Cercle	c)

{	if	(rayon	<	c.rayon)	return	-1	;

else	if	(rayon	==	c.rayon)	return	0	;

else	return	1	;

}

	//	on	peut	aussi	utiliser	compareTo	sur	des	Double	:

	//	return	((Double)(rayon)).compareTo	((Double)(c.rayon))

public	double	getRayon	()	{	return	rayon	;	}			//	inutilisee	ici

public	int	getX	()	{	return	x	;	}														//	inutilisee	ici

private	int	x,	y	;

double	rayon	;

}

--	Cercles	tries	par	rayon	croissant

Coordonnees	:	2,	9	;	rayon	:	2.5

Coordonnees	:	1,	9	;	rayon	:	3.5

Coordonnees	:	5,	3	;	rayon	:	5.0

Notez	que,	cette	fois,	les	méthodes	getX	et	getRayon	de	la	classe	Cercle	ne	sont	plus
utilisées,	puisque	notre	méthode	compareTo	a	bien	accès	aux	champs	privés.
Par	ailleurs,	l’ordre	de	tri	est	défini,	une	fois	pour	toutes,	dans	la	classe	Cercle	elle-
même.	Si	l’on	souhaite	effectuer	d’autres	sortes	de	tris,	il	faudra	quand	même	recourir
à	la	démarche	de	l’exercice	précédent	en	fournissant	un	objet	comparateur,	indépendant
de	la	classe	Cercle.

455

166	Réalisation	d’une	liste	triée	en
permanence

Réaliser	une	classe	nommée	ListeTriee	permettant	de	manipuler	une	liste	de	chaînes
de	 caractères,	 en	 s’arrangeant	 pour	 qu’elle	 soit	 triée	 en	 permanence.	 Outre	 le
constructeur,	on	la	dotera	des	méthodes	:

•	ajoute	qui	ajoute	un	nouvel	élément	à	la	bonne	place	;

•	affiche	qui	affiche	les	éléments	de	la	liste.

L’énoncé	 n’impose	 pas	 le	 type	 de	 collection	 à	 utiliser	 pour	 conserver	 les	 chaînes.
L’interface	List	nous	convient	 tout	à	fait	puisqu’elle	permet	de	parcourir	 les	éléments
de	 la	 collection	 et	 d’insérer	 un	 nouvel	 élément	 entre	 deux	 autres.	 Nous	 pouvons
indifféremment	employer	un	objet	de	type	ArrayList	ou	de	type	LinkedList.
La	 méthode	 ajoute	 (String	 ch)	 devra	 rechercher	 dans	 la	 liste	 le	 premier	 élément
supérieur	à	ch.	Si	un	tel	élément	existe,	on	ajoutera	ch	avant	(il	faudra	utiliser	previous
pour	 "reculer"	 l’itérateur).	Si	 un	 tel	 élément	 n’existe	 pas,	 il	 suffira	 d’ajouter	ch	 à	 la
position	courante	de	l’itérateur,	et	ceci	que	la	liste	soit	vide	ou	non.
Voici	ce	que	pourrait	être	 la	classe	demandée,	 implémentée	 ici	avec	un	objet	de	 type
LinkedList,	accompagnée	d’un	petit	programme	de	test	et	d’un	exemple	d’exécution.

import	java.util.*	;

public	class	TestListeTriee

{	public	static	void	main	(String	args	[])

{	ListeTriee	liste	=	new	ListeTriee	()	;

liste.ajoute	("c")	;

liste.affiche()	;

liste.ajoute	("b")	;

liste.affiche()	;

liste.ajoute	("f")	;

liste.affiche()	;

liste.ajoute	("e")	;

456

liste.affiche()	;

}

}

class	ListeTriee

{	public	ListeTriee	()

{	liste	=	new	LinkedList	<String>	()	;		//	ou	ArrayList

}

public	void	ajoute	(String	ch)

{	ListIterator	<String>	it	=	liste.listIterator	()	;

boolean	trouve	=	false	;

while	((it.hasNext())	&&	!	trouve)

{	if	(it.next().compareTo(ch)	>	0)	trouve	=	true	;

}

if	 (trouve)	 it.previous()	 ;	 	 	 	 //	 ici,	 il	 y	 obligatoirement	 un

precedent

it.add	(ch)	;

}

public	void	affiche	()

{

for	(String	ch	:	liste)	System.out.print	(ch	+	"	")	;

System.out.println	()	;

}

private	LinkedList	<String>	liste	;				//	ou	ArrayList

}

c

b	c

b	c	f

b	c	e	f

457

167	Création	d’un	index

Réaliser	une	classe	nommée	 Index	permettant	de	gérer	un	 index	d’ouvrage.	Un	 tel
index	associe	une	entrée	(mot	ou	suite	de	mots)	à	un	ou	plusieurs	numéros	de	page
(contrairement	à	ce	qui	 se	passe	dans	 les	 index	de	 la	plupart	des	ouvrages,	on	ne
prévoira	pas	d’entrées	à	plusieurs	niveaux).
La	classe	Index	disposera,	en	plus	d’un	constructeur,	des	méthodes	:

•	ajouter	pour	introduire	une	nouvelle	entrée,	associée	à	un	numéro	de	page	;

•	liste	pour	afficher	la	liste	de	l’index,	par	ordre	alphabétique	des	entrées,	la	liste
des	 numéros	 de	 page	 d’une	 même	 entrée	 étant	 triée	 par	 valeur	 croissante	 ;
l’affichage	d’une	entrée	d’index	se	présentera	sur	une	même	ligne	sous	la	forme	:
Java	:	12	25

On	prendra	bien	soin	de	n’associer	qu’une	seule	fois	un	même	numéro	de	page	à	une
entrée	donnée.

Pour	 représenter	 notre	 index,	 nous	 utiliserons	 une	 table	 associative.	Rappelons	 qu’il
s’agit	 d’un	ensemble	de	paires,	 formant	 chacune	une	association	 entre	une	clé	 et	 une
valeur.	 Ici,	 la	 clé	 sera	 une	 entrée	 d’index	 (de	 type	 String).	 Quant	 à	 la	 valeur,	 elle
correspondra	 à	 la	 liste	 des	 numéros	 associés	 à	 une	 entrée.	 Ceux-ci	 pourraient	 être
conservés	dans	un	objet	de	type	List,	mais	ce	dernier	devrait	alors	être	trié	au	moment
de	l’affichage	de	l’index	et	de	plus,	il	faudrait	y	éviter	les	doublons.	Il	est	plus	simple
d’utiliser	un	ensemble	(ce	qui	élimine	les	doublons)	de	type	TreeSet	(il	sera	alors	trié
en	permanence).
Quant	à	la	table	associative	elle-même,	nous	choisirons	également	le	type	TreeMap,	de
sorte	qu’elle	sera	toujours	triée	sur	les	entrées	d’index.	Rappelons	que,	dans	une	table
associative	(quel	que	soit	son	type	exact),	les	clés	sont	toujours	uniques.
En	définitive,	notre	index	sera	conservé	dans	un	objet	du	type	:
TreeMap	<String,	TreeSet	<Integer>	>

Pour	ajouter	une	nouvelle	entrée	à	l’index,	la	méthode
ajouter	(String	entree,	int	numero)

recherchera	 tout	 d’abord	 l’ensemble	 des	 numéros	 déjà	 associés	 à	 la	 clé	 entree,	 en

458

recourant	 à	 la	 méthode	 get	 (entree).	 Si	 cette	 entrée	 n’existe	 pas	 (la	 méthode	 get
fournira	alors	la	valeur	null),	on	introduira	une	nouvelle	paire	dans	l’index,	à	l’aide	de
la	méthode	put,	 à	 laquelle	on	 fournira	 comme	clé	entree	 et	 comme	valeur	 un	 nouvel
ensemble	formé	du	seul	numero.	Dans	 le	cas	contraire	 (get	 fournira	alors	une	valeur
non	 nulle	 correspondant	 à	 la	 référence	 sur	 la	 valeur	 associée	 à	 la	 clé	 fournie),	 on
ajoutera	 numero	 à	 l’ensemble	 des	 numéros	 existants	 et	 l’on	 utilisera	 également	 la
méthode	put	pour	introduire	la	paire	voulue	dans	l’index	;	comme	les	clés	sont	uniques,
la	paire	ainsi	ajoutée	prendra	bien	la	place	de	l’ancienne.
Une	table	associative	ne	dispose	pas	d’itérateur.	Pour	effectuer	la	liste	de	notre	index,
nous	 devrons	 utiliser	 la	 méthode	 entrySet	 qui	 permet	 de	 "voir"	 la	 table	 comme	 un
ensemble	de	paires	(clé,	valeur).	Chaque	paire	est	un	élément	de	type	Map.Entry	dont
les	méthodes	getKey	et	getValue	permettent	d’obtenir	respectivement	la	clé	et	la	valeur
correspondante.
En	définitive,	voici	notre	classe	Index,	accompagnée	d’un	petit	programme	de	test	:

import	java.util.*	;

public	class	TestIndex

{	public	static	void	main	(String	args[])

{	Index	monIndex	=	new	Index	()	;

monIndex.ajouter	("Java",	25)	;

monIndex.ajouter	("C++",	45)	;

monIndex.ajouter	("Java",	12)	;

monIndex.ajouter	("objet",	15)	;

monIndex.ajouter	("polymorphisme",	45)	;

monIndex.liste()	;

}

}

class	Index

{	public	Index	()

{	index	=	new	TreeMap	<String,	TreeSet	<Integer>	>	()	;	}

public	void	ajouter	(String	entree,	int	numero)

{			//	si	entree	n'existe	pas	dans	l'index,	on	l'ajoute,	associe	au

numero

//	sinon,	on	ajoute	le	numero	de	page	a	l'ensemble	des	numeros

//	deja	associes	a	entree

TreeSet	<Integer>	numerosExistants	=	index.get(entree)	;

if	(numerosExistants	==	null)

{	TreeSet	<Integer>	numeroNouveauNom	=	new	TreeSet	<Integer>	()	;

numeroNouveauNom.add	(numero)	;

index.put	(entree,	numeroNouveauNom)	;

459

}

else

{	numerosExistants.add	(numero)	;

index.put(entree,	 numerosExistants)	 ;	 	 //	 remplace	 l'entree

precedente

}

}

public	void	liste	()

{	Set	<Map.Entry	<String,	TreeSet	<Integer>	>	>

	elementsIndex	=	index.entrySet	()	;

for	 (Map.Entry	 <String,	 TreeSet	 <Integer>	 >	 elementCourant	 :

elementsIndex)

{	String	entreeCourante	=	elementCourant.getKey	()	;

TreeSet	<Integer>	numeros	=	elementCourant.getValue	()	;

System.out.print	(entreeCourante	+	"	:	")	;

for	(int	num	:	numeros)	System.out.print	(num	+	"	")	;

System.out.println	()	;

}

}

private	TreeMap	<String,	TreeSet	<Integer>	>	index	;

}

C++	:	45

Java	:	12	25

objet	:	15

polymorphisme	:	45

460

168	Inversion	d’un	index

Modifier	 la	 classe	 Index	 précédente,	 de	 sorte	 qu’elle	 dispose	 de	 deux	méthodes
supplémentaires	:

•	 creationIndexPage	 créant	 un	 "index	 inversé",	 associant	 un	 numéro	 de	 page
donné	à	la	liste	des	entrées	correspondantes	;	on	se	limitera	aux	numéros	de	page
associés	à	au	moins	une	entrée	;

•	 listeIndexPage	 affichant	 la	 liste	 de	 cet	 index	 inversé,	 par	 ordre	 croissant	 des
numéros	de	page,	les	entrées	d’une	même	page	étant	triées	par	ordre	alphabétique,
sous	la	forme	:
25	:	Java	langage

Nous	dotons	notre	classe	d’un	nouveau	champ	indexPage	destiné	à	représenter	l’index
inversé.	 Nous	 utiliserons	 également	 une	 table	 associative	 ;	 cette	 fois,	 la	 clé
correspondra	à	un	numéro	de	page	(type	Integer)	tandis	que	la	valeur	correspondra	à	la
liste	des	entrées	associées	à	la	page	correspondante.	Là	encore,	nous	pourrions	utiliser
un	objet	de	type	List,	mais	un	TreeSet	<String>	permettra	d’éliminer	 les	doublons	et
de	conserver	la	liste	des	entrées	d’une	page	triée	par	ordre	alphabétique.	Une	nouvelle
fois,	pour	 la	 table	associative,	nous	choisirons	 le	 type	TreeMap,	ce	qui	 lui	permettra
d’être	 triée	 automatiquement	 sur	 le	 numéro	 de	 page.	 En	 définitive,	 notre	 champ
indexPage	sera	déclaré	ainsi	:
private	TreeMap	<Integer,	TreeSet	<String>	>	indexPage	;

La	méthode	creationIndexPage	devra	parcourir	chacune	des	paires	de	 l’index	initial.
Pour	ce	faire,	on	utilisera	la	méthode	entrySet	qui	servira	à	"voir"	notre	index	comme
un	ensemble	de	paires	(clé,	valeur),	chaque	paire	étant	un	élément	de	type	Map.Entry
dont	 les	 méthodes	 getKey	 et	 getValue	 permettant	 d’obtenir	 respectivement	 la	 clé
(chaîne)	et	la	valeur	associée	(ensemble	de	numéros	de	page).
Parallèlement,	on	créera	l’index	inversé,	en	procédant	de	façon	similaire	à	ce	que	nous
avions	 fait	 dans	 la	méthode	ajouter	 de	 l’exercice	 précédent.	Cette	 fois,	 pour	 chaque
numéro	 de	 page	 n	 associé	 à	 une	 entrée	 e,	 on	 recherchera	 dans	 l’index	 inversé	 un
élément	de	clé	n.	S’il	 existe,	on	ajoutera	à	 sa	 liste	d’entrées	 l’entrée	e	 ;	 dans	 le	 cas
contraire,	on	créera	un	nouvel	élément	de	clé	n,	dont	la	valeur	sera	un	ensemble	formé

461

de	la	seule	entrée	e.
En	 définitive,	 voici	 notre	 nouvelle	 classe	 Index	 (nous	 n’avons	 pas	 reproduit	 les
méthodes	ajouter	et	liste),	accompagnée	d’un	petit	programme	de	test.
import	java.util.*	;

public	class	TestIndexParPage

{	public	static	void	main	(String	args[])

{	Index	monIndex	=	new	Index	()	;	monIndex.ajouter	("Java",	25)	;

monIndex.ajouter	("C++",	45)	;	monIndex.ajouter	("Java",	12)	;

monIndex.ajouter	 ("objet",	 15)	 ;	 monIndex.ajouter

("polymorphisme",	45)	;

monIndex.ajouter	 ("objet",	 45)	 ;	 monIndex.ajouter	 ("langage",

25)	;

monIndex.creationIndexPage	()	;

monIndex.listeIndexPage	()	;

}

}

class	Index

{	public	Index	()	{	//	comme	precedemment	}

public	 void	 ajouter	 (String	 entree,	 int	 numero)	 {	 //	 comme

precedemment	}

public	void	liste	()	{	//	comme	precedemment	}

public	void	creationIndexPage	()

{	indexPage	=	new	TreeMap	<Integer,	TreeSet	<String>	>	()	;

Set	<Map.Entry	<String,	TreeSet	<Integer>	>	>

	elementsIndex	=	index.entrySet	()	;

for	 (Map.Entry	 <String,	 TreeSet	 <Integer>	 >	 elementCourant	 :

elementsIndex)

{	String	entreeCourante	=	elementCourant.getKey	()	;

TreeSet	<Integer>	pagesCourantes	=	elementCourant.getValue	()	;

for	(Integer	numero	:	pagesCourantes)

{	TreeSet	<String>	entreesExistantes	=	indexPage.get(numero)	;

if	(entreesExistantes	==	null)

{	 TreeSet	 <String>	 entreeNouveauNumero	 =	 new	 TreeSet	 <String>

()	;

entreeNouveauNumero.add(entreeCourante)	;

indexPage.put(numero,	entreeNouveauNumero)	;

}

else

{	entreesExistantes.add(entreeCourante)	;

indexPage.put	(numero,	entreesExistantes)	;

462

}

}

}

}

public	void	listeIndexPage	()

{	if	(indexPage	==	null)	return	;

Set	<Map.Entry	<Integer,	TreeSet	<String>	>	>

elementsIndexPage	=	indexPage.entrySet	()	;

for	 (Map.Entry	 <Integer,	 TreeSet	 <String>	 >	 numero	 :

elementsIndexPage)

{	Integer	numeroCourant	=	numero.getKey	()	;

TreeSet	<String>	entrees	=	numero.getValue	()	;

System.out.print	(numeroCourant	+	"	:	")	;

for	(String	entree	:	entrees)	System.out.print	(entree	+	"	")	;

System.out.println	()	;

}

}

private	TreeMap	<String,	TreeSet	<Integer>	>	index	;

private	TreeMap	<Integer,	TreeSet	<String>	>	indexPage	;

}

12	:	Java

15	:	objet

25	:	Java	langage

45	:	C++	objet	polymorphisme

463

Chapitre	18

Les	expressions	lambda	et	les	streams

Connaissances	requises

•	Syntaxe	des	expressions	lambda

•	Interface	fonctionnelle	;	les	principales	interfaces	fonctionnelles	standards

•	Références	de	méthodes

•	L’interface	Comparator	;	méthodes	comparing,	reversed,	reversedOrder

•	Stream	séquentiel	et	stream	parallèle

•	Les	différentes	sources	pour	un	stream	:	collection,	liste	ou	tableau	de
valeurs,	génération

•	Les	méthodes	intermédiaires	:	filter,	map,	sorted,	limit,	peek

•	Les	méthodes	terminales	:	forEach,	forEachOrdered,	count,	sum,	min,	max,
average

•	La	méthode	reduce	(forme	usuelle)	;	la	méthode	collect	et	les	objets
Collectors	:	toList,	toMap,	groupingBy	et	joining

464

169	Lambda	et	interfaces
prédéfinies

Écrire	 la	 méthode	 affichage_selectif	 afin	 que	 le	 programme	 suivant	 affiche	 les
éléments	positifs	du	tableau	tab	:
public	class	Affichage

{	public	static	void	main	(String	[]	args)

{	int	[]	tab	=	{1,	4,	-2,	9,	-3,	5,	-3	}	;

System.out.print	("--	Les	positifs	de	tab	:	")	;

affichage_selectif	(tab,	ee	->	ee	>	0)	;

}

}

On	proposera	deux	solutions,	l’une	utilisant	une	interface	personnalisée,	l’autre	une
interface	prédéfinie.

On	 voit	 que	 la	 méthode	 affichage_selectif	 doit	 recevoir	 en	 second	 argument	 une
implémentation	 d’une	 interface	 fonctionnelle	 dont	 la	méthode	 fonctionnelle	 reçoit	 un
argument	 de	 type	 int	 et	 fournit	 un	 résultat	 de	 type	 booléen.	 Avec	 une	 interface
personnalisée,	il	pourrait	s’agir	de	(les	noms	Filtrage	et	filtre	étant	arbitraires)	:

interface	Filtrage

{	public	Boolean	filtre	(int	n)	;

}

Voici	ce	que	pourrait	être	alors	la	méthode	affiche_selectif	:
public	static	void	affichage_selectif	(int	[]	t,	Filtrage	f)

{	for	(int	val	:	t)	if	(f.filtre	(val))	System.out.print	(val	+	"

*	")	;

System.out.println	()	;

}

On	peut	se	passer	de	définir	 l’interface	Filtrage	en	recourant	à	 l’interface	prédéfinie
IntPredicate	 et	 à	 sa	 méthode	 fonctionnelle	 test	 (qui	 reçoit	 un	 int	 et	 renvoie	 un
booléen).	Voici	ce	que	deviendrait	notre	programme	complet	dans	ce	cas	:

import	java.util.function.*	;

465

public	class	Affichage

{	public	static	void	main	(String	[]	args)

{	int	[]	tab	=	{1,	4,	-2,	9,	-3,	5,	-3	}	;

System.out.print	("--	Les	positifs	de	tab	:	")	;

affichage_selectif	(tab,	ee	->	ee	>	0)	;

}

public	static	void	affichage_selectif	(int	[]	t,	IntPredicate	f)

{	for	(int	val	:	t)	if	(f.test	(val))	System.out.print	(val	+	"	*

")	;

System.out.println	()	;

}

}

--	Les	positifs	de	tab	:	1	*	4	*	9	*	5	*

466

170	Lambda	et	références

Compléter	 la	 dernière	 solution	 de	 l’exercice	 précédent,	 de	 manière	 que	 le
programme	 affiche,	 en	 plus	 des	 nombres	 positifs	 du	 tableau	 tab,	 les	 nombres
négatifs,	puis	les	nombres	pairs	:

--	Les	positifs	:

1	*	4	*	9	*	5	*	12	*	7	*	6	*

--	Les	negatifs	:

-2	*	-3	*	-3	*	-11	*

--	Les	pairs	:

4	*	-2	*	12	*	0	*	6	*

On	proposera	 tout	d’abord	une	solution	utilisant	des	expressions	 lambda,	puis	une
solution	utilisant	des	références	à	des	méthodes	qu’on	écrira.

La	première	 solution	 consiste	 simplement	 à	 utiliser	 comme	deuxième	 argument	 de	 la
méthode	affichage_selectif	l’une	des	expressions	lambda	suivantes	:
ee	->	ee	<	0

ee	->	2	*	(ee/2)	==	ee)

D’où	les	instructions	supplémentaires	:
System.out.print	("--	Les	negatifs	:	")	;

affichage_selectif	(tab,	ee	->	ee	<	0)	;

System.out.print	("--	Les	pairs	:	")	;

affichage_selectif	(tab,	ee	->	2	*	(ee/2)	==	ee)	;

La	 deuxième	 solution	 requiert	 que	 l’on	 puisse	 utiliser	 à	 la	 place	 des	 expressions
lambda,	 la	 référence	 d’une	 méthode.	 Ici,	 nous	 utiliserons	 tout	 naturellement	 des
méthodes	 statiques,	 recevant	un	argument	de	 type	 int	 et	 renvoyant	un	 résultat	de	 type
booléen.	Nous	les	nommerons	filtragePositifs,	filtrageNegatifs	et	filtragePairs.
Voici	ce	que	pourrait	être	le	programme	complet	dans	lequel	nous	avons	fait	figurer	les
deux	solutions	(expression	lambda	et	référence)	:
import	java.util.function.*	;

public	class	Affichage

{	public	static	void	main	(String	[]	args)

467

{	int	[]	tab	=	{1,	4,	-2,	9,	-3,	5,	-3,	12,	7,-11,	0,	6	}	;

System.out.println	("--	Les	positifs	:	")	;

affichage_selectif	(tab,	ee	->	ee	>	0)	;															//	lambda

affichage_selectif	 (tab,	 Affichage::filtragePositifs)	 ;	 	 //

reference

System.out.println	("--	Les	negatifs	:	")	;

affichage_selectif	(tab,	ee	->	ee	<	0)	;																	//	lambda

affichage_selectif	 (tab,	 Affichage::filtrageNegatifs)	 ;	 	 //

reference

System.out.println	("--	Les	pairs	:	")	;

affichage_selectif	(tab,	ee	->	2	*	(ee/2)	==	ee)	;						//	lambda

affichage_selectif	 (tab,	 Affichage::filtragePairs)	 ;	 	 	 	 	 //

reference

}

public	static	void	affichage_selectif	(int	[]	t,	IntPredicate	f)

{	for	(int	val	:	t)	if	(f.test	(val))	System.out.print	(val	+	"	*

")	;

System.out.println	()	;

}

public	static	Boolean	filtrageNegatifs	(int	n)	{	return	n	<	0	;	}

public	static	Boolean	filtragePositifs	(int	n)	{	return	n	>	0	;	}

public	static	Boolean	filtragePairs	(int	n)	{	return	2*(n/2)==n	;	}

}

--	Les	positifs	:

1	*	4	*	9	*	5	*	12	*	7	*	6	*

1	*	4	*	9	*	5	*	12	*	7	*	6	*

--	Les	negatifs	:

-2	*	-3	*	-3	*	-11	*

-2	*	-3	*	-3	*	-11	*

--	Les	pairs	:

4	*	-2	*	12	*	0	*	6	*

4	*	-2	*	12	*	0	*	6	*

468

171	L’interface	Comparator

On	dispose	de	la	classe	Point	définie	ainsi	:
class	Point

{	public	Point	(int	x,	int	y)	{	this.x	=	x	;	this.y	=	y	;	}

public	int	getX()	{	return	x	;	}

public	int	getY()	{	return	y	;	}

public	void	affiche	()

	{	System.out.print("	["	+	x	+	",	"	+	y	+	"]	")	;	}

private	int	x,	y	;

}

Écrire	une	méthode	statique	nommée	 traiteListe	 recevant	en	premier	argument	une
liste	de	points	sur	laquelle	elle	réalise	successivement	trois	opérations	paramétrées
par	les	trois	arguments	suivants	:

•	une	sélection	des	éléments	réalisant	une	condition	;

•	un	tri	(suivant	un	critère	variable)	des	éléments	sélectionnés	;

•	un	affichage	des	éléments	ainsi	triés.
La	méthode	traiteListe	s’utilisera	ainsi	(le	type	des	arguments	étant	à	préciser)	:

traiteListe	(liste,	selection,	tri,	affichage)	;

On	utilisera	cette	méthode	:

•	pour	sélectionner	les	points	d’abscisse	positive,	les	trier	sur	les	valeurs	de	leurs
abscisses	et	les	afficher	suivant	cette	forme	:
[2,	5]	[2,	3]	[6,	-3]

•	 pour	 sélectionner	 tous	 les	 éléments,	 les	 trier	 suivant	 la	 somme	 de	 leurs
coordonnées	et	les	afficher	ainsi	:
(abs	=	-3,	ord	=	4)	(abs	=	6,	ord	=	-3)	(abs	=	2,	ord	=	3)

Ici,	on	évitera	d’utiliser	des	streams.

Le	 premier	 argument	 de	 la	 méthode	 traiteListe	 est	 naturellement	 de	 type
ArrayList<Point>.	Les	suivants	sont	des	implémentations	des	interfaces	fonctionnelles

469

prédéfinies	suivantes	:

•	Predicate<Point>,	dont	la	méthode	fonctionnelle	est	test	;

•	Comparator<Point>	;

•	Consumer<Point>	dont	la	méthode	fonctionnelle	se	nomme	accept.
Comme	l’énoncé	nous	impose	de	ne	pas	utiliser	de	stream,	 il	est	nécessaire	de	créer
localement	 une	 liste	 nommée	 ici	 liste2	 contenant	 les	 éléments	 sélectionnés	 pour	 la
soumettre	au	tri.	Voici	ce	que	pourrait	être	notre	méthode	traiteListe	:
public	static	void	traiteListe	(ArrayList<Point>	liste,

Predicate<Point>	selec,

Comparator<Point>	comp,

Consumer<Point>	aff)

{	ArrayList<Point>	liste2	=	new	ArrayList	<Point>()	;

liste.forEach	(ee	->	{	if	(selec.test(ee))	liste2.add(ee)	;	})	;

liste2.sort(comp);

liste2.forEach(ee	->	aff.accept(ee))	;

}

Pour	le	premier	traitement,	la	sélection	peut	se	faire	à	l’aide	de	l’expression	lambda	:
ee	->	ee.getX()>0

Pour	 le	 comparateur	 à	 fournir	 en	 troisième	 argument,	 nous	 avons	 plusieurs
possibilités	:

•	utiliser	une	expression	lambda	pour	implémenter	la	méthode	fonctionnelle	compare
de	 l’interface	 Comparator<Point>,	 ce	 qui	 conduit	 à	 une	 expression	 assez
compliquée,	notamment	à	cause	des	conversions	en	Integer	dues	à	ce	que	la	méthode
getX	fournit	un	int	et	non	un	Integer	:
(pp1,	pp2)	->	((Integer)(pp1.getX()))

	.compareTo	(((Integer)(pp2.getX())))

•	 Utiliser	 la	 méthode	Comparator.comparing	 pour	 créer	 un	 comparateur	 à	 partir
d’une	expression	lambda	:
Comparator.comparing	(pp->	pp.getX())

•	Utiliser	à	la	fois	la	méthode	Comparator.comparing	et	une	référence	de	méthode	:
Comparator.comparing(Point::getX)

Nous	 choisirons	 la	 dernière	 pour	 sa	 simplicité	 (mais,	 à	 titre	 indicatif,	 nous
programmerons	également	la	première	dans	notre	exemple	complet).
Quant	 à	 l’affichage,	 il	 peut	 se	 faire	 simplement	 ici	 à	 l’aide	 de	 la	 méthode
Point::affiche.
Pour	 le	 deuxième	 traitement,	 il	 nous	 faut	 sélectionner	 tous	 les	 points	 ;	 nous	 utilisons

470

l’expression	lambda	:
xx	->	true

Pour	le	comparateur,	nous	ne	pouvons	plus	utiliser	de	référence	à	une	méthode	puisque
la	comparaion	porte	dorénavant	sur	la	somme	des	coordonnées	(à	moins	de	créer	une
méthode	 supplémentaire	 à	 cet	 effet).	 Nous	 utiliserons	 donc	 la	 méthode
Comparator.comparing	de	cette	manière	:

Comparator.comparing	(xx	->	xx.getX()	+	xx.getY())

Enfin,	l’affichage	ne	peut	plus	recourir	à	la	méthode	affiche	de	la	classe	Point.	Nous
aurions	pu	créer	une	méthode	statique	et	transmettre	sa	référence	en	argument.	Ici,	nous
avons	choisi	une	expression	lambda.
En	définitive,	notre	programme	pourrait	se	présenter	ainsi	:
import	java.util.function.*	;

import	java.util.*	;

public	class	TraiteListe

{	public	static	void	main	(String	[]	args)

{	Point	[]	tab	=	{	new	Point(2,	5),	new	Point(-3,	4),

	new	Point(2,	3),	new	Point(6,	-3)	}	;

ArrayList<Point>	l	=	new	ArrayList<Point>()	;

for	(Point	p	:	tab)	l.add(p)	;

	//	selection	des	points	d'abscisse	positive,

	//	tri	sur	l'abscisse	utilisant	Comparator.comparing

traiteListe	(l,	ee	->	ee.getX()>0,

	Comparator.comparing(Point::getX),

	Point::affiche)	;

System.out.println	()	;

	//	meme	chose	avec	un	comparateur	sous	forme	d’expression	lambda

traiteListe	(l,	ee	->	ee.getX()>0,

	(pp1,	pp2)	->	((Integer)(pp1.getX()))

	.compareTo	(((Integer)(pp2.getX()))),

	Point::affiche)	;

System.out.println	()	;

	//	tri	de	tous	les	points	suivant	la	somme	des	coordonnees

	//	avec	Comparator.comparing

traiteListe	(l,	xx	->	true,

	Comparator.comparing	(xx	->	xx.getX()	+	xx.getY()),

	(xx	->	System.out.print	("(abs	=	"	+	xx.getX()

+	",	ord	=	"	+	xx.getY()	+	")	")))	;

}

471

public	static	void	traiteListe	(ArrayList<Point>	liste,

Predicate<Point>	selec,

Comparator<Point>	comp,

Consumer<Point>	aff)

{	ArrayList<Point>	liste2	=	new	ArrayList	<Point>()	;

liste.forEach	(ee	->	{	if	(selec.test(ee))	liste2.add(ee)	;	})	;

liste2.sort(comp);

liste2.forEach(ee	->	aff.accept(ee))	;

}

}

class	Point

{	public	Point	(int	x,	int	y)	{	this.x	=	x	;	this.y	=	y	;	}

public	int	getX()	{	return	x	;	}

public	int	getY()	{	return	y	;	}

public	void	affiche	()	{	System.out.print("	["	+	x	+	",	"	+	y	+	"]

")	;	}

private	int	x,	y	;

}

[2,	5]	[2,	3]	[6,	-3]

[2,	5]	[2,	3]	[6,	-3]

(abs	=	-3,	ord	=	4)	(abs	=	6,	ord	=	-3)	(abs	=	2,	ord	=	3)	(abs	=	2,

ord	=	5)

472

172	Les	méthodes	usuelles	des	streams

Que	produit	le	programme	suivant	:
import	java.util.stream.*	;

public	class	ExoStream

{	public	static	void	main	(String	args[])

{	int	[]	tab	=	{	3,	5,	-3,	8,	12,	4,	7,	4,	8,	3	}	;

long	 nb	 =	 IntStream.of(tab).filter(xx	 ->	 xx

>0).count()	;							//	1

System.out.println	("nb	=	"	+	nb)	;

IntStream.of(tab).filter(xx	 ->	 xx	 >

3).sorted()																	//	2

	.forEach(xx	->	System.out.print	(xx	+	"	"))	;

System.out.println();

IntStream.of(tab).filter(xx	 ->	 xx

>3).sorted().distinct()							//	3

	.forEach(xx	->	System.out.print	(xx	+	"	"))	;

int	 s	 =IntStream.of(tab).map(xx	 ->

Math.abs(xx))																//	4

		.map(xx	->	xx	*	xx).sum()	;

System.out.println	("\nresultat	=	"	+	s)	;

}

}

L’instruction	1	crée	un	stream	à	partir	du	tableau	d’entiers	tab.	La	méthode	filter	filtre
les	éléments	positifs	et	ceux-ci	sont	comptabilisés	par	la	méthode	terminale	count.
L’instruction	2	crée	le	même	stream,	en	sélectionnant	cette	fois	les	éléments	de	valeur
supérieure	à	3,	en	les	triant	suivant	l’ordre	naturel	et	en	les	affichant.
L’instruction	3	fait	la	même	chose	que	l’instruction	2	avec	cette	différence	que,	après	le
tri,	on	évite	de	conserver	des	valeurs	en	double,	grace	à	la	méthode	distinct.
Enfin,	 l’instruction	4	effectue	une	première	 transformation	associant	à	chaque	nombre
sa	 valeur	 absolue,	 puis	 une	 seconde	 transformation	 associant	 à	 chaque	 élément	 son
carré	 (notez	 qu’ici	 on	 obtiendrait	 le	même	 résultat,	 en	 supprimant	 la	méthode	map).
Enfin,	la	méthode	terminale	sum	effectue	la	somme	de	ces	derniers.
En	définitive,	ce	programme	affiche	:
nb	=	9

473

4	4	5	7	8	8	12

4	5	7	8	12

resultat	=	405

474

173	Traitement	de	liste	avec	un	stream

L’exercice	 171	 proposait	 de	 réaliser	 une	méthode	 statique	 de	 traitement	 de	 liste,
laquelle	devait	nécessairement	créer	une	nouvelle	liste.
Écrire	un	programme	effectuant	les	mêmes	opérations,	en	utilisant	un	stream.
On	proposera	deux	solutions	:

•	l’une	utilisant	toujours	la	méthode	traiteListe	;

•	 l’autre	 n’utilisant	 plus	 cette	méthode	 et	 se	 contentant	 d’effectuer	 le	 traitement
directement	au	sein	de	la	méthode	main.

La	 première	 démarche	 consiste	 simplement	 à	 créer	 un	 stream	 dans	 la	 méthode
traiteListe	:
public	static	void	traiteListe	(ArrayList<Point>	liste,

	Predicate<Point>	selec,

	Comparator<Point>	comp,

	Consumer<Point>	aff)

{	liste.stream().filter(selec).sorted(comp).forEach(aff)	;

}

}

On	notera	que,	cette	fois,	il	n’est	plus	nécessaire	de	créer	une	nouvelle	liste	puisque	les
différentes	 opérations	 réalisées	 par	 le	 stream	 n’en	 modifient	 pas	 la	 source	 (liste
d’origine).	Le	reste	du	code	est	inchangé.
La	deuxième	démarche	possède,	là	encore,	plusieurs	variantes	suivant	la	manière	dont
on	fournit	les	arguments	aux	méthodes	filter,	sorted	et	forEach.	Voici	une	formulation
possible	:
import	java.util.*	;

public	class	ExoTraiteLlistStream

{	public	static	void	main	(String	[]	args)

{	Point	p1	=	new	Point	(2,	5),	p2	=	new	Point	(-2,	3),

p3	=	new	Point	(6,	-3),	p4	=	new	Point	(-3,	-2)	;

ArrayList<Point>	l	=	new	ArrayList<Point>()	;

l.add(p1)	;	l.add(p2)	;	l.add(p3)	;	l.add(p4)	;

	//	sélection	des	points	d'abscisse	positive,	tri	sur	l'abscisse

l.stream().filter(ee	->	ee.getX()	>	0)

475

.sorted(Comparator.comparing	(xx	->	xx.getX()))

.forEach(Point::affiche)	;

System.out.println	()	;

	//	tri	de	tous	les	points	suivant	la	somme	des	coordonnees

l.stream().sorted	 (Comparator.comparing	 (xx	 ->	 xx.getX()	 +

xx.getY()))

.forEach	(xx	->	System.out.print	("(abs="	+	xx.getX()

+	",	ord="	+	xx.getY()))	;

}

}

class	Point

{	public	Point	(int	x,	int	y)	{	this.x	=	x	;	this.y	=	y	;	}

public	int	getX()	{	return	x	;	}

public	int	getY()	{	return	y	;	}

public	void	affiche	()

	{	System.out.print("	["	+	x	+	",	"	+	y	+	"]	")	;	}

private	int	x,	y	;

}

[2,	5]	[6,	-3]

(abs=-3,	ord=-2)	(abs=-2,	ord=3)	(abs=6,	ord=-3)	(abs=2,	ord=5)

476

174	Répertoire

On	dispose	de	la	classe	Personne	suivante	:
class	Personne

{	public	Personne	(String	prenom,	String	nom,	int	annee)

{	 this.nom	 =	 nom	 ;	 this.prenom	 =	 prenom	 ;	 annee_naissance	 =

annee	;	}

public	String	getNom()	{	return	nom	;	}

public	String	getPrenom()	{	return	prenom	;	}

public	int	getAnnee()	{	return	annee_naissance	;	}

private	String	nom,	prenom	;

private	int	annee_naissance	;

}

}

Réaliser	 les	 opérations	 suivantes	 sur	 un	 tableau	 d’objets	 de	 type	 Personne,	 en
utilisant	un	stream	:

•	afficher	le	nom	des	personnes	nées	après	1985	;

•	afficher	le	nom	des	personnes	nées	avant	2000,	triés	par	ordre	alphabétique	sur
leur	nom,	et	afficher	leur	nombre	;

•	afficher	tous	les	noms	et	prénoms,	triés	par	ordre	alphabétique	sur	leur	nom	et
leur	prénom.

Si	tab	désigne	le	tableau	d’objets	en	question,	on	pourra	créer	un	stream	associé	à	ce
tableau,	à	l’aide	de	la	méthode	statique	of	de	la	classe	Stream,	en	procédant	ainsi	:
Stream.of(tab)

Pour	la	première	opération,	on	lui	appliquera	un	filtre	pour	sélectionner	les	personnes
correspondant	à	la	condition	voulue	:
.filter(pp	->	pp.getAnnee()	>	1985)

Enfin,	l’affichage	sera	provoqué	par	l’opération	terminale	forEach	:
.forEach(pp	->	System.out.print	(pp.getPrenom()	+	",	")

Pour	la	seconde	opération,	on	procédera	de	façon	similaire,	en	ajoutant	une	opération
intermédiaire	 de	 tri,	 à	 l’aide	 de	 la	 méthode	 sorted,	 à	 laquelle	 on	 fournira	 le
comparateur	voulu.	Plusieurs	démarches	sont	possibles,	la	plus	simple	étant	de	recourir
à	 la	 méthode	Comparator.comparing	 en	 lui	 fournissant	 la	 référence	 d’une	 méthode

477

existant	déja	dans	la	classe	Personne,	à	savoir	ici	Personne::getNom.
En	 revanche,	 cette	 fois,	 on	 ne	 peut	 plus	 utiliser	 forEach	 pour	 afficher	 les	 noms
demandés	puisque	cette	opération	terminale	déclencherait	l’exécution	du	stream,	alors
que	 nous	 voulons	 pouvoir	 l’utiliser	 pour	 lui	 appliquer	 la	 méthode	 count	 (à	 moins
d’utiliser	deux	streams	consécutifs,	l’un	pour	l’affichage,	l’autre	pour	le	comptage).	On
peut	 recourir	à	 la	méthode	peek	 qui,	 tout	 en	attendant	un	Consumer	 comme	 forEach,
présente	 la	particularité	d’être	une	méthode	 intermédiaire	 laissant	 le	 stream	 inchangé
(on	retrouve	en	sortie	le	stream	fourni	en	entrée).
Enfin,	 pour	 la	 troisième	 opération,	 on	 utilisera	 également	 la	 méthode	 sorted,	 en	 lui
fournissant	toujours	un	comparateur	créé	par	la	méthode	Comparator.comparing	mais,
cette	fois,	il	n’est	plus	possible	de	lui	fournir	une	référence	de	méthode	(à	moins	d’en
écrire	une	spécialement	pour	cela).	On	procèdera	ainsi	:
sorted(Comparator.comparing	(pp	->	pp.getNom()+pp.getPrenom()))

Voici	un	exemple	de	programme	complet	créant	un	"mini-répertoire"	de	cinq	personnes
(nous	n’avons	pas	rappelé	la	classe	Personne)	:
import	java.util.stream.*	;

import	java.util.*	;

public	class	ExoRepert

{	public	static	void	main	(String	[]	args)

{	Personne[]	tab	=	{	new	Personne	("thibault",	"Rougier",	2001),

	new	Personne	("thomas",	"Niesseron",	1987),

	new	Personne	("thifaine",	"Mitenne",	1959),

	new	Personne	("maxime",	"Forest",	1995),

	new	Personne	("jules",	"Forest",	1995)	}	;

System.out.println	("---	Nes	apres	1985	:	")	;

Stream.of(tab).filter(pp	->	pp.getAnnee()	>	1985)

.forEach(pp	->	System.out.print	(pp.getPrenom()	+	",	"))	;

System.out.println	("\n---	Nes	avant	2000	:")	;

long	nombre	=	Stream.of(tab).filter(pp	->	pp.getAnnee()	<	2000)

	.sorted(Comparator.comparing(Personne::getNom))

	.peek(pp	->	System.out.print	(pp.getNom()	+	"	"))

	.count()	;

	System.out.println	("\n	Ils	sont	"+nombre)	;

	System.out.println	("---	Tous	tries	sur	nom	+	prenom	:	")	;

	Stream.of(tab).sorted(Comparator.comparing

	(pp	->	pp.getNom()	+	pp.getPrenom()))

	.forEach(pp	->	System.out.print	("("	+	pp.getNom()	+	",	"

+	pp.getPrenom()	+")	"))	;

}

478

}

---	Nes	apres	1985	:

thibault,	thomas,	maxime,	jules,

---	Nes	avant	2000	:

Forest	Forest	Mitenne	Niesseron

	Ils	sont	4

---	Tous	tries	sur	nom	+	prenom	:

(Forest,	 jules)	 (Forest,	 maxime)	 (Mitenne,	 thifaine)	 (Niesseron,

thomas)

(Rougier,	thibault)

479

175	Répertoire	(bis)

On	suppose	qu’on	dispose	de	la	classe	Personne	de	l’exercice	précédent.
Écrire	 un	 programme	 qui,	 à	 partir	 d’une	 liste	 de	 personnes	 (List<Personne>)
utilise	un	stream	pour	afficher	l’année	de	naissance	de	la	plus	jeune.	On	proposera
deux	formulations	:

•	 l’une	 ne	 recourant	 pas	 à	 un	 comparateur	 et	 affichant	 seulement	 l’année
concernée	;

•	l’autre	affichant	le	nom,	prénom	et	année	de	naissance	de	la	personne	concernée
(on	peut,	cette	fois,	utiliser	un	comparateur).

Dans	 les	 deux	 démarches	 imposées,	 il	 faut	manifestement	 recourir	 à	 la	méthode	min
d’un	stream.	Lorsqu’on	l’applique	à	un	Stream<T>,	il	est	nécessaire	de	lui	fournir	un
comparateur.	 En	 revanche,	 lorsqu’on	 l’applique	 à	 un	 IntStream,	 la	 méthode	min	 ne
dispose	d’aucun	argument	et	utilise	l’ordre	naturel	des	entiers.
Dans	les	deux	cas,	nous	travaillerons	sur	un	Stream<Personne>.	Dans	le	premier,	nous
utiliserons	la	méthode	mapToInt	pour	extraire	seulement	les	années	de	naissance,	sous
forme	d’un	IntStream	auquel	nous	appliquerons	la	méthode	max.
Dans	 le	 deuxième	 cas,	 nous	 appliquerons	 directement	 la	 méthode	 min	 sur	 ce
Stream<Personne>,	en	fournissant	un	comparateur	approprié,	ce	qui	nous	permettra	de
récupérer	l’ensemble	des	informations	sous	forme	d’un	objet	de	type	Personne.
Enfin,	il	faut	ajouter	que,	dans	les	deux	cas,	la	méthode	min	tient	compte	du	fait	que	le
stream	peut	être	vide,	en	fournissant	un	objet	de	type	OptionalInt	(pour	le	premier	cas)
ou	Optional<Personne>	 (pour	 le	 deuxième	 cas).	 Il	 faut	 alors	 utiliser	 la	 méthodes
isPresent	 pour	 savoir	 s’il	 y	 a	 bien	 présence	 d’une	 valeur	 que	 l’on	 récupère,	 le	 cas
échéant,	par	getAsInt	(dans	le	premier	cas)	ou	get	(dans	le	deuxième).
En	 définitive,	 voici	 un	 exemple	 complet	 de	 programme	 créant,	 là	 encore,	 un	 mini-
répertoire	 de	 cinq	 personnes.	 Notez	 que,	 l’énoncé	 imposant	 une	 liste,	 nous	 avons
d’abord	 créé	 un	 tableau	 de	 personnes,	 que	 nous	 transformons	 en	 liste	 à	 l’aide	 de	 la
méthode	asList	de	la	classe	utilitaire	Arrays.
import	java.util.*	;

public	class	OptionalPersonne

480

{	public	static	void	main	(String	[]	args)

{	Personne[]	tab	=	{	new	Personne	("thibault",	"Rougier",	2001),

	new	Personne	("thomas",	"Niesseron",	1987),

	new	Personne	("thifaine",	"Mitenne",	1959),

	new	Personne	("maxime",	"Forest",	1995),

	new	Personne	("jules",	"Forest",	1995)	}	;

List<Personne>	liste	=	Arrays.asList(tab)	;

	

//	 utilisation	 d'un	 Stream<Personne>	 transforme	 par	 map	 en

IntStream

OptionalInt	anneeJeune	=	liste.stream()

.mapToInt(pp	->	pp.getAnnee()).max()	;

if	(anneeJeune.isPresent())

	System.out.println	("---	Methode	1	-	Le	plus	jeune	est	ne	en	:

"

+	anneeJeune.getAsInt())	;

else	System.out.println	("---	Liste	vide")	;

//	recherche	de	min	sur	un	Stream<Personne>

Optional<Personne>	personneJeune	=liste.stream()

.max(Comparator.comparing(Personne::getAnnee))	;

if	(personneJeune.isPresent())

{	Personne	pj	=	personneJeune.get();

System.out.println	("---	Methode	2	-	Le	plus	jeune	est	:	"

+	 pj.getNom()	 +	 "	 "	 +	 pj.getPrenom()	 +	 "	 "	 +

pj.getAnnee())	;

}

else	System.out.println	("---	Liste	vide")	;

}

}

class	Personne

{	public	Personne	(String	prenom,	String	nom,	int	annee)

{	this.nom	=	nom	;	this.prenom	=	prenom	;	annee_naissance	=	annee	;

}

public	String	getNom()	{	return	nom	;	}

public	String	getPrenom()	{	return	prenom	;	}

public	int	getAnnee()	{	return	annee_naissance	;	}

private	String	nom,	prenom	;

private	int	annee_naissance	;

}

481

---	Methode	1	-	Le	plus	jeune	est	ne	en	:	2001

---	Methode	2	-	Le	plus	jeune	est	:	Rougier	thibault	2001

482

176	Reduce

Écrire	 un	 programme	 qui	 utilise	 un	 stream	 pour	 générer	 un	 nombre	 donné	 de
nombres	 réels	 compris	 dans	 l’intervalle	 [0.5,	 1.5[et	 en	 calculer	 le	 produit.	 On
affichera	les	nombres	compris	dans	l’intervalle	[1	-e,	1+e],	e	étant	une	petite	valeur
(par	exemple	0.01).
Faire	la	même	chose	en	générant	des	nombres	compris	dans	l’intervalle	[0,	2[et	en
filtrant	ceux	compris	entre	0.5	et	1.5.

Nous	 commençons	par	 créer	 un	 stream	d’éléments	 de	 type	double	 (DoubleStream)	 à
l’aide	de	 la	méthode	génératrice	generate,	 à	 laquelle	 on	 fournit	 l’expression	 lambda
(la	méthode	random	fournit	un	double	compris	dans	l’intervalle	[0,	1[)	:
()	->	(Math.random()+0.5)

Nous	 limitons	 les	valeurs	 ainsi	 produites	 à	 l’aide	de	 la	méthode	 intermédiaire	 limit.
Ensuite,	il	nous	faut	imprimer	certaines	valeurs,	sans	modifier	le	stream	;	nous	utilisons
pour	 cela	 la	 méthode	 peek,	 à	 laquelle	 nous	 fournissons	 l’instruction	 effectuant
l’impression	des	valeurs	voulues	:
.peek(xx	->	{	if	(xx	>	1-EPS	&&	xx	<	1+EPS)

System.out.print	(xx	+	"	")	;

})

Enfin,	comme	nous	ne	disposons	pas	de	méthode	"toute	faite"	pour	effectuer	l’opération
de	réduction	demandée	(calcul	du	produit	des	éléments),	nous	recourons	à	la	méthode
reduce,	 en	 utilisant	 1	 comme	 valeur	 initiale	 (et	 donc,	 comme	 élément	 neutre	 de	 la
réduction)	et	une	expression	lambda	pour	"l’accumulateur"	:
.reduce(1,	(xx,	yy)	->	xx	*	yy)

La	deuxième	question	 se	 résout	de	 façon	comparable.	 Il	 faut	 simplement	 effectuer	un
filtrage	préalable	des	valeurs	tirées	au	hasard,	avant	d’en	limiter	les	valeurs	par	limit.
import	java.util.stream.*	;

public	class	ExoReduce1

{	public	static	void	main	(String	args[])

{	final	int	NVALEURS	=	200	;

final	double	EPS	=	1e-2	;

483

double	 produit1	 =	 DoubleStream.generate	 (()	 ->

(Math.random()+0.5))

.limit(NVALEURS)

.peek(xx	->	{	if	(xx	>	1-EPS	&&	xx	<	1+EPS)

System.out.print	(xx	+	"	")	;

})

.reduce(1,	(xx,	yy)	->	xx	*	yy)	;

System.out.println	("\nProduit	1	:	"	+	produit1)	;

double	produit2	=	DoubleStream.generate	(()	->	2*Math.random())

.filter	(xx	->	xx>0.5	&&	xx	<1.5)

.limit(NVALEURS)

.peek(xx	->	{	if	(xx	>	1-EPS	&&	xx	<	1+EPS)

System.out.print	(xx	+	"	")	;

})

.reduce(1,	(xx,	yy)	->	xx	*	yy)	;

System.out.println	("\nProduit	2	:	"	+	produit2)	;

}

}

0.9975467498452386	 0.998138364621028	 0.99188663131875

1.0083743070821198

0.9928318680893621

Produit	1	:	2.697255477885424E-5

0.9902255816404553	 0.9940031238252993	 0.9997538300614459

1.003265020181365

Produit	2	:	5.127710428111979E-4

484

177	Collect	et	Collectors

On	suppose	qu’on	dispose	de	la	clase	Point	suivante	:
class	Point

{	public	Point	(int	x,	int	y)	{	this.x	=	x	;	this.y	=	y	;	}

public	int	getX()	{	return	x	;	}

public	int	getY()	{	return	y	;	}

private	int	x,	y	;

}

Écrire	un	programme	qui	réalise	les	opérations	suivantes	:

•	À	 partir	 d’un	 tableau	 de	 points,	 créer	 un	 ensemble	 formé	 des	 points	 dont	 les
abscisses	sont	positives	;

•	 À	 partir	 d’un	 tableau	 d’entiers,	 créer	 tout	 d’abord	 un	 Stream<Point>	 dont
chaque	 élément	 a	 pour	 abscisse	 un	 élément	 du	 tableau	 et	 pour	 ordonnée	 son
double	;	utiliser	ce	stream	pour	créer	un	map	dans	lequel	à	chaque	clé	correspond
la	liste	des	points	ayant	cette	clé	comme	abscisse.

•	 À	 partir	 d’un	 tableau	 de	 chaînes,	 créer	 une	 chaîne	 unique	 formée	 de	 la
concaténation	des	chaînes	de	 longueur	 supérieure	à	4,	 séparées	par	 le	caractère
"|".

•	 À	 partir	 de	 ce	 même	 tableau	 de	 chaînes,	 créer	 un	 map	 où	 à	 chaque	 clé
représentant	une	lettre	de	l’aphabet	correspond	la	liste	des	mots	commençant	par
cette	lettre.

Si	 notre	 tableau	 de	 points	 se	 nomme	 tabPoints,	 on	 voit	 qu’il	 faut	 créer	 un	 stream	 à
l’aide	de	la	méthode	of	:
Stream.of(tabPoints)

et	le	filtrer	avec	la	condition	:
.filter(xx	->	getX()>0)

puis,	 pour	 créer	 l’ensemble	 voulu,	 on	 utilise	 la	 méthode	 collect	 en	 lui	 fournissant
comme	paramètre	Collectors.toSet(),	ce	qui	permet	de	collecter	les	valeurs	du	stream
ainsi	obtenu	dans	un	Set<Point>.

485

Pour	 la	 seconde	 question,	 nous	 créons	 le	Stream<Point>	 demandé	 en	 appliquant	 la
méthode	map	de	cette	manière	:
.map(xx	->	new	Point(xx,	2*xx))

Puis,	comme	précédemment,	nous	collectons	les	points	obtenus	dans	une	liste	à	l’aide
de	la	méthode	collector	à	qui	l’on	fournit	le	paramètre	Collectors.toList().
Pour	 la	 question	 suivante,	 nous	 créons	 un	 Stream<String>	 à	 partir	 du	 tableau	 de
chaînes,	puis	nous	filtrons	les	éléments	voulus	par	:
.filter(xx	->	xx.length()>4)

Nous	 concaténons	 alors	 les	 chaînes	 sélectionnées	 à	 l’aide	 de	 la	 méthode
Collectors.joining()	fournie	en	argument	de	la	méthode	collect.
Pour	 la	dernière	question,	nous	choisirons	des	clés	de	 type	String	plutôt	que	de	 type
Character,	 ce	 qui	 nous	 évitera	 des	 opératons	 de	 conversion	 dans	 l’écriture	 du
comparateur.	Nous	créerons	donc	un	Map<String,	List<String>,	là	encore	à	l’aide	de
la	 méthode	 collect,	 mais	 cette	 fois	 nous	 employons	 Collectors.groupingBy	 pour
effectuer	le	regroupement	voulu,	la	clé	étant	la	première	lettre	des	éléments.
Voici	ce	que	pourrait	être	le	programme.
import	java.util.*	;

import	java.util.stream.*	;

public	class	ExoCollect

{	public	static	void	main	(String	[]	args)

{	 Point[]	 tabPoints	 =	 {	 new	 Point(2,	 4),	 new	 Point(3,	 8),	 new

Point(1,	3),

new	Point(-2,	4),	new	Point(3,	8),	new	Point(1,3)}	;

Set<Point>	ens	=	Stream.of(tabPoints).filter(xx	->	xx.getX()>0)

	.collect(Collectors.toSet())	;

System.out.print("Ensemble	:	")	;

ens.forEach	(pp	->	System.out.print	("["+pp.getX()+",	"

	+	pp.getY()	+	"]	"))	;

Integer	[]	tab	=	{	2,	15,	-3,	2,	-5,	23,	-8,	12	}	;

List<Point>	liste	=	Stream.of(tab).map(xx	->	new	Point	(xx,	2*xx))

.collect(Collectors.toList())	;

System.out.print("\nListe	:	")	;

liste.forEach	 (pp	 ->	 System.out.print	 ("["+pp.getX()+",

"+pp.getY()+"]	"))	;

String	[]	mots	=	{"bonjour",	"hello",	"buongiorno",	"hi",	"chao",

"bom	dia",	"guten	tag"	}	;

String	 mots_longs	 =

Stream.of(mots).collect(Collectors.joining("|"))	;

System.out.println	("\nchaine	des	mots	longs	:	"+mots_longs)	;

486

Map	<String,	List<String>>	map	=	Stream.of(mots)

	.filter(xx	->	xx.length()>4)

	.collect(Collectors.groupingBy(xx	->(xx.substring(0,1))))	;

System.out.println	("MAP:	"+map)	;

}

}

class	Point

{	public	Point	(int	x,	int	y)	{	this.x	=	x	;	this.y	=	y	;	}

public	int	getX()	{	return	x	;	}

public	int	getY()	{	return	y	;	}

private	int	x,	y	;

}

Ensemble	:	[1,	3]	[2,	4]	[1,	3]	[3,	8]	[3,	8]

Liste	:	[2,	4]	[15,	30]	[-3,	-6]	[2,	4]	[-5,	-10]	[23,	46]	[-8,	-16]

[12,	24]

chaine	 des	 mots	 longs	 :	 bonjour|hello|buongiorno|hi|chao|bom

dia|guten	tag

MAP:	{b=[bonjour,	buongiorno,	bom	dia],	g=[guten	tag],	h=[hello]}

487

Annexe	A

Les	constantes	et	fonctions
mathématiques

Elles	sont	fournies	par	la	classe	Math.	Les	angles	sont	toujours	exprimés	en	radians.

Constante	(double) Valeur
E 2.718281828459045
PI 3.141592653589793

Fonction Rôle En-têtes

abs Valeur	absolue

double	abs	(double	a)
float	abs	(float	a)
int	abs	(int	a)
long	abs	(long	a)

acos Arc	cosinus	(angle	dans
l’intervalle	[-	1,	1]) double	acos	(double	a)

asin Arc	sinus	(angle	dans	l’intervalle
[-1,	1]) double	asin	(double	a)

atan Arc	tangente	(angle	dans
l’intervalle	[-pi/2,	pi/2]) double	atan	(double	a)

atan2 Arc	tangente	(a/b)	(angle	dans
l’intervalle	[-pi/2,	pi/2])

double	atan2	(double	a,
double	b)

ceil Arrondi	à	l’entier	supérieur double	ceil	(double	a)
cos Cosinus double	cos	(double	a)
exp Exponentielle double	exp	(double	a)

488

floor Arrondi	à	l’entier	inférieur double	floor	(double	a)

IEEEremainder Reste	de	la	division	de	x	par	y double	IEEEremainder
(double	x,	double	y)

log Logarithme	naturel	(népérien) double	log	(double	a)

max Maximum	de	deux	valeurs

double	max	(double	a,
double	b)
float	max	(float	a,	float
b)
int	max	(int	a,	int	b)
long	max	(long	a,	long
b)

min Minimum	de	deux	valeurs

double	min	(double	a,
double	b)
float	min	(float	a,	float
b)
int	min	(int	a,	int	b)
long	min	(long	a,	long	b)

pow Puissance	(ab) double	pow	(double	a,
double	b)

random Nombre	aléatoire	dans	l’intervalle
[0,	1[double	random	()

rint Arrondi	à	l’entier	le	plus	proche double	rint	(double	a)

round Arrondi	à	l’entier	le	plus	proche long	round	(double	a)
int	round	(float	a)

sin Sinus double	sin	(double	a)
sqrt Racine	carrée double	sqrt	(double	a)
tan Tangente double	tan	(double	a)

toDegrees Conversion	de	radians	en	degrés double	toDegrees
(double	aRad)

toRadians Conversion	de	degrés	en	radians double	toRadians
(double	aDeg)

489

Annexe	B

Les	composants	graphiques	et	leurs
méthodes

Nous	 présentons	 ici	 les	 principales	 classes	 et	 méthodes	 des	 paquetages	 java.awt	 et
javax.swing,	en	particulier	celles	qui	sont	utilisées	dans	les	exercices	de	cet	ouvrage.
On	notera	que	:

•	lorsqu’une	méthode	est	mentionnée	dans	une	classe,	elle	n’est	pas	rappelée	dans	les
classes	dérivées	;

•	 lorsqu’une	 classe	 se	 révèle	 inutilisée	 en	 pratique	 (exemple	 Window,	 Frame,
Dialog),	 ses	 méthodes	 n’ont	 été	 mentionnées	 que	 dans	 ses	 classes	 dérivées	 ;	 par
exemple,	 la	 méthode	 setTitle	 est	 définie	 dans	 la	 classe	 Frame	 mais	 elle	 n’est
indiquée	que	dans	la	classe	JFrame.

Nous	 vous	 fournissons	 d’abord	 l’arborescence	 des	 classes	 concernées,	 avant	 d’en
décrire	 les	 différentes	méthodes,	 classe	 par	 classe	 (pour	 chacune,	 nous	 rappelons	 la
liste	de	ses	ancêtres).

490

1 	Les	classes	de	composants
Les	classes	précédées	d’un	astérisque	(*)	sont	abstraites.
*Component
*Container
Panel
Applet
JApplet

Window
JWindow
Frame
JFrame

Dialog
JDialog

JComponent
JPanel
AbstractButton
JButton
JToggleButton
JCheckBox
JRadioButton

JMenuItem
JCheckBoxMenuItem
JRadioButtonMenuItem
JMenu

JLabel
JTextComponent
JTextField
JList

JcomboBox

491

JMenuBar
JPopupMenu
JScrollPane
JToolBar

492

2 	Les	méthodes

*Component
Component	()

void add	(PopupMenu	menuSurgissant)
void addFocusListener	(FocusListener	écouteur)
void addKeyListener	(KeyListener	écouteur)
void addMouseListener	(MouseListener	écouteur)
void addMouseMotionListener	(MouseMotionListener	écouteur)
Color getBackground	()
Rectangle getBounds	()
Font getFont	()
FontMetrics getFontMetrics	(Font	fonte)
Color getForeground	()
Graphics getGraphics	()
int getHeight	()
Dimension getSize	()
Toolkit getToolkit	()
int getX	()
int getY	()
int getWidth	()
boolean hasFocus	()
boolean imageUpdate	(Image	image,	int	flags,	int	x,	int	y,	int	largeur,	int	hauteur)
void invalidate	()
boolean isEnabled	()
boolean isFocusTraversable	()
boolean isVisible	()
void paint	(Graphics	contexteGraphique)
void setBackground	(color	couleurFond)
void setBounds	(Rectangle	r)
void setBounds	(int	x,	int	y,	int	largeur,	int	hauteur)
void setCursor	(Cursor	curseurSouris)
void setEnabled	(boolean	activé)

493

void setFont	(Font	fonte)
void setForeground	(Color	couleurAvantPlan)
void setSize	(Dimension	dim)
void setSize	(int	largeur,	int	hauteur)
void setVisible	(boolean	visible)
void update	(Graphics	contexteGraphique)
void validate	()

*Container	(Component)
Container	()

Component add	(Component	composant)
void add	(Component	composant,	Object	contraintes)
Component add	(Component	composant,	int	rang)
Component add	(Component	composant,	Object	contraintes,	int	rang)
void setLayout	(LayoutManager	gestionnaireMiseEnForme
void remove	(int	rang)
void remove	(Component	composant)
void removeAll	()

Applet	(Panel	-Component	-	Container)
applet	()

void destroy	()
URL getCodeBase	()
Image getImage	(URL	adresseURL)
Image getImage	(URL	adresseURL,	String	nomFichier)
String getParameter	(String	nomParamètre)
void init	()
void resize	(Dimension	dim)
void resize	(int	largeur,	int	hauteur)
void start	()
void stop	()

JApplet	(Applet	-Panel	-	Component	-	Container)
JApplet	()

Container getContentPane	()
void setJMenuBar	(JMenuBar	barreMenus)
void setLayout	(LayoutManager	gestionnaireMiseEnForme)

494

JFrame	(Frame	-Window	-	Component	-	Container)
JFrame	()
JFrame	(String	titre)

Container getContentPane	()
Toolkit getToolkit	()
void setContentPane	(Container	contenu)
void setDefaultCloseOperation	(int	operationSurFermeture)
void setJMenuBar	(JMenuBar	barreMenus)
void setLayout	(Layout	gestionnaireMiseEnForme)
void setTitle	(String	titre)	//	héritée	de	Frame
void update	(Graphics	contexteGraphique)

JDialog	(Dialog	-	Window	-	Container)
JDialog	(Dialog	propriétaire,	boolean	modale)
JDialog	(Frame	propriétaire,	boolean	modale)
JDialog	(Dialog	propriétaire,	String	titre,	boolean	modale)
JDialog	(Frame	propriétaire,	String	titre,	boolean	modale)

void dispose	()
Container getContentPane	()
void setDefaultCloseOperation	(int	operationSurFermeture)
void setLayout	(LayoutManager	gestionnaireMiseEnForme)
void setJMenuBar	(JMenuBar	barreMenus)
void setTitle	(String	titre)	//	héritée	de	Dialog
void show	()
void update	(Graphics	contexteGraphique)

JComponent	(Container	-	Component)
JComponent	()

Graphics getGraphics	()
Dimension getMaximumSize	()
Dimension getMinimumSize	()
Dimension getPreferredSize	()
void paintBorder	(Graphics	contexteGraphique)
void paintChildren	(Graphics	contexteGraphique)
void paintComponent	(Graphics	contexteGraphique)
void revalidate	()
void setBorder	(Border	bordure)

495

void setMaximumSize	(Dimension	dimensions)
void setMinimumSize	(Dimension	dimensions)
void setPreferredSize	(Dimension	dimensions)
void setToolTipText	(String	texteBulleDAide)

JPanel	(Jcomponent	-	Container	-	Component)
JPanel	()
JPanel	(LayoutManager	gestionnaireMiseEnForme)

AbstractButton	(Jcomponent	-	Container	-	Component)
AbstractButton	()

void addActionListener	(ActionListener	écouteur)
void addItemListener	(ItemListener	écouteur)
String getActionCommand()
String getText()
boolean isSelected()
void setActionCommand	(String	chaineDeCommande)
void setEnabled	(boolean	activé)
void setMnemonic	(char	caractèreMnémonique)
void setSelected	(boolean	sélectionné)
void setText	(String	libellé)

JButton	(AbstractButton	-	JComponent	-	Container	-	Component)
JButton	()
JButton	(String	libellé)

JCheckBox	(JToggleButton	-	AbstractButton	-	JComponent	-	Container	-
Component)

JCheckBox	()
JCheckBox	(String	libellé)
JCheckBox	(String	libellé,	boolean	sélectionné)

JRadioButton	(JToggleButton	-	AbstractButton	-	JComponent	-
Container	-	Component)

JRadioButton	(String	libellé)
JRadioButton	(String	libellé,	boolean	sélectionné)

JLabel	(JComponent	-	Container	-	Component)

496

JLabel	(String	texte)
void setText	(String	libellé)

JTextField	(JTextComponent	-	JComponent	-	Container	-	Component)
JTextField	()
JTextField	(int	nombreColonnes)
JTextField	(String	texteInitial)
JTextField	(String	texteInitial,	int
nombreColonnes)

DocumentgetDocument	() //	héritée	de
JTextComponent

String getText	() //	héritée	de
JTextComponent

void setColumns	(int	nombreCaractères)

void setEditable	(boolean	éditable) //	héritée	de
JTextComponent

void setText	(String	texte) //	héritée	de
JTextComponent

JList	(JComponent	-	Container	-	Component)
JList	()
JList	(Object[]	données)

void addListSelectionListener	(ListSelectionListener	écouteur)
void setSelectedIndex	(int	rang)
int getSelectedIndex	()
int[] getSelectedIndices	()
Object getSelectedValue	()
Object	[] getSelectedValues	()
boolean getValueIsAdjusting	()
void setSelectedIndex	(int	rang)
void setSelectedIndices	(int	[]	rangs)
void setSelectionMode	(int	modeDeSelection)
void setVisibleRowCount	(int	nombreValeurs)

JComboBox	(JComponent	-	Container	-	Component)
JComboBox	()
JComboBox	(Object[]	données)

void addItem	(Object	nouvelleValeur)

497

int getSelectedIndex	()
Object getSelectedItem	()
void insertItemAt	(Object	nouvelleValeur,	int	rang)
void removeItem	(Object	valeurASupprimer)
void removeItemAt	(int	rang)
void removeAllItems	()
void setEditable	(boolean	éditable) //	héritée	de	JTextComponent
void setSelectedIndex	(int	rang)

JMenuBar	(JComponent	-	Container	-	Component)
JMenuBar	()

JMenu add	(JMenu	menu)
JMenu getMenu	(int	rang)

JMenu	(JMenuItem	-	AbstractButton	-	JComponent	-	Container	-
Component)

JMenu	()
JMenu	(String	nomMenu)

JMenuItem add	(Action	action)
JMenuItem add	(JMenuItem	option)
void addMenuListener	(MenuListener	écouteur)
void addSeparator	()
KeyStroke getAccelerator	()
void insert	(Action	action,	int	rang)
void insert	(JMenuItem	option,	int	rang)
void insertSeparator	(int	rang)
boolean isSelected	()
void remove	(int	rang)
void remove	(JMenuItem	option)
void removeAll	()
void setAccelerator	(KeyStroke	combinaisonTouches)
void setEnabled	(boolean	activé)
void setSelected	(boolean	sélectionné)

JPopupMenu	(JComponent	-	Container	-	Component)
JPopupMenu	()
JPopupMenu	(String	nom)

JMenuItem add	(Action	action)

498

JMenuItem add	(JMenuItem	option)
void addPopupMenuListener	(PopupMenuListener	écouteur)
void addSeparator	()
void insert	(Action	action,	int	rang)
void insert	(Component	composant,	int	rang)
void remove	(Component	composant)
void setVisible	(boolean	visible)
void show	(Component	composant,	int	x,	int	y)

JMenuItem	(AbstractButton	-	JComponent	-	Container	-	Component)
JMenuItem	()
JMenuItem	(String	nomOption)
JMenuItem	(Icon	icône)
JMenuItem	(String	nomOption,	Icon	icône)
JMenuItem	(String	nomOption,	int	caractèreMnémonique)

void setAccelerator	(KeyStroke	combinaisonTouches)
keyStroke getAccelerator	()

JCheckBoxMenuItem	(JMenuItem	-	AbstractButton	-	JComponent	-
Container	-	Component)

JChekBoxMenuItem	()
JChekBoxMenuItem	(String	nomOption)
JChekBoxMenuItem	(Icone	icône)
JChekBoxMenuItem	(String	nomOption,	Icon	icône)
JChekBoxMenuItem	(String	nomOption,	boolean	activé)
JChekBoxMenuItem	(String	nomOption,	Icon	icône,	boolean	activé)

JRadioButtonMenuItem	(JMenuItem	-	AbstractButton	-	JComponent	-
Container	-	Component)

JRadioButtonMenuItem	()
JRadioButtonMenuItem	(String	nomOption)
JRadioButtonMenuItem	(Icone	icône)
JRadioButtonMenuItem	(String	nomOption,	Icon	icône)
JRadioButtonMenuItem	(String	nomOption,	boolean	activé)
JRadioButtonMenuItem	(String	nomOption,	Icon	icône,	boolean	activé)

499

JScrollPane
JScrollPane	()
JScrollPane	(Component)

JToolBar
JToolBar	()
JToolBar	(int	orientation)

JButton add	(Action	action)
void addSeparator	()
void addSeparator	(Dimension	dimensions)
boolean isFloatable	()
void remove	(Component	composant)
void setFloatable	(boolean	flottante)

500

Annexe	C

Les	événements	et	les	écouteurs

Nous	 vous	 fournissons	 tout	 d’abord	 deux	 tableaux	 de	 synthèse,	 le	 premier	 pour	 les
événements	de	bas	niveau,	le	second	pour	les	événements	sémantiques.	Ils	fournissent
pour	chacune	des	principales	interfaces	écouteurs	correspondantes	:

•	le	nom	de	l’interface	écouteur	et	le	nom	de	la	classe	adaptateur	(si	elle	existe),

•	les	noms	des	méthodes	de	l’interface,

•	le	type	de	l’événement	correspondant,

•	les	noms	des	principales	méthodes	de	l’événement,

•	les	composants	concernés.
Vous	trouverez	ensuite	les	en-têtes	complètes	des	méthodes	des	classes	événement.

501

3 	Les	événements	de	bas	niveau

502

4 	Les	événements	sémantiques
Dans	 la	 dernière	 colonne	 de	 ce	 tableau,	 les	 termes	 génériques	 Boutons	 et	 Menus
désignent	les	classes	suivantes

•	Boutons	:	JButton,	JCheckBox,	JRadioButton,

•	Menus	:	JMenu,	JMenuItem,	JCheckBoxMenuItem,	JRadioButtonMenuItem.

503

5 	Les	méthodes	des	événements

MouseEvent
int getClickCount	()
Component getComponent	()
int getModifiers	()
Object getSource	()
int getX	()
int getY	()
Point getPoint	()
boolean isAltDown	()
boolean isAltGraphDown	()
boolean isControlDown	()
boolean isMetaDown	()
boolean isPopupTrigger	()
boolean isShiftDown	()

KeyEvent
Component getComponent	()
Object getSource	()
char getKeyChar	()
int getKeyCode	()
String getKeyText	(int	codeToucheVirtuelle)
int getModifiers	()
boolean isAltDown	()
boolean isAltGraphDown	()
boolean isControlDown	()
boolean isMetaDown	()
boolean isShiftDown	()

FocusEvent
Component getComponent	()
Object getSource	()
boolean isTemporary	()

504

WindowEvent
Component getComponent	()
Object getSource	()
Window getWindow	()

ActionEvent
Object getSource	()
String getActionCommand	()
int getModifiers	()

ItemEvent
Object getSource	()
Object getItem	()
int getStateChanged	()

ListSelectionEvent
Object getSource	()
boolean getValueIsAdjusting	()

DocumentEvent
Document getDocument	()

MenuEvent
Object getSource	()

PopuMenuEvent
Object getSource	()

505

Annexe	D

La	classe	Clavier

Voici	 la	 liste	de	la	classe	Clavier	présente	sur	 le	site	Web	d’accompagnement	et	que
vous	pouvez	utiliser	pour	la	solution	à	certains	des	exercices	de	cet	ouvrage.
Elle	fournit	des	méthodes	permettant	de	lire	sur	une	ligne	une	information	de	l’un	des
types	int,	float,	double	ou	String.	La	méthode	de	lecture	d’une	chaîne	est	utilisée	par
les	autres	pour	lire	la	ligne.

//	classe	fournissant	des	fonctions	de	lecture	au	clavier

import	java.io.*	;

public	class	Clavier

{	public	static	String	lireString	()			//	lecture	d’une	chaine

{	String	ligne_lue	=	null	;

try

{	InputStreamReader	lecteur	=	new	InputStreamReader	(System.in)	;

BufferedReader	entree	=	new	BufferedReader	(lecteur)	;

ligne_lue	=	entree.readLine()	;

}

catch	(IOException	err)

{	System.exit(0)	;

}

return	ligne_lue	;

}

public	static	float	lireFloat	()			//	lecture	d’un	float

{	float	x=0	;			//	valeur	a	lire

try

{	String	ligne_lue	=	lireString()	;

x	=	Float.parseFloat(ligne_lue)	;

506

}

catch	(NumberFormatException	err)

{	System.out.println	("***	Erreur	de	donnee	***")	;

System.exit(0)	;

}

return	x	;

}

public	static	double	lireDouble	()			//	lecture	d’un	double

{	double	x=0	;			//	valeur	a	lire

try

{	String	ligne_lue	=	lireString()	;

x	=	Double.parseDouble(ligne_lue)	;

}

catch	(NumberFormatException	err)

{	System.out.println	("***	Erreur	de	donnee	***")	;

System.exit(0)	;

}

return	x	;

}

public	static	int	lireInt	()									//	lecture	d’un	int

{	int	n=0	;			//	valeur	a	lire

try

{	String	ligne_lue	=	lireString()	;

n	=	Integer.parseInt(ligne_lue)	;

}

catch	(NumberFormatException	err)

{	System.out.println	("***	Erreur	de	donnee	***")	;

System.exit(0)	;

}

return	n	;

}

	//	programme	de	test	de	la	classe	Clavier

public	static	void	main	(String[]	args)

{	System.out.println	("donnez	un	flottant")	;

float	x	;

x	=	Clavier.lireFloat()	;

System.out.println	("merci	pour	"	+	x)	;

System.out.println	("donnez	un	entier")	;

507

int	n	;

n	=	Clavier.lireInt()	;

System.out.println	("merci	pour	"	+	n)	;

}

}

Notez	 que,	 en	 cas	 d’exception	 de	 type	 IOException	 (rare	 !),	 on	 se	 contente
d’interrompre	le	programme.	Si	nous	n’avions	pas	traité	cette	exception,	nous	aurions
dû	 la	 déclarer	 dans	une	 clause	 throws,	 ce	 qui	 aurait	 obligé	 l’utilisateur	 de	 la	 classe
Clavier	à	la	prendre	en	charge.
La	 lecture	 des	 informations	 de	 type	 entier	 ou	 flottant	 utilise	 la	 méthode
Clavier.lireString,	ainsi	que	 les	méthodes	de	conversion	de	chaînes	 Integer.parseInt,
Float.parseFloat	 et	 Double.parseDouble.	 Nous	 devons	 traiter	 l’exception
NumberFormatException	qu’elles	sont	susceptibles	de	générer.	Ici,	nous	affichons	un
message	et	nous	interrompons	le	programme.

508

Pour	suivre	toutes	les	nouveautés	numériques	du	Groupe	Eyrolles,	retrouvez-nous	sur	Twitter	et	Facebook
	@ebookEyrolles
	EbooksEyrolles

Et	retrouvez	toutes	les	nouveautés	papier	sur
	@Eyrolles
			Eyrolles

509

https://twitter.com/ebooksEyrolles
http://www.facebook.com/EbooksEyrolles
https://twitter.com/Eyrolles
http://www.facebook.com/Eyrolles

	Le résumé et la biographie auteur
	Page de titre
	Copyright
	Table des matières
	Avant-propos
	1. Les opérateurs et les expressions
	Exercice 1. Priorités des opérateurs arithmétiques et parenthèses
	Exercice 2. Conversions implicites
	Exercice 3. Exceptions flottantes et conventions IEEE 754
	Exercice 4. Le type char
	Exercice 5. Opérateurs logiques à "court circuit"
	Exercice 6. Priorités des opérateurs
	Exercice 7. Affectation et conversion
	Exercice 8. Opérateurs d’incrémentation, de décrémentation et d’affectation élargie
	Exercice 9. Opérateurs d’incrémentation et d’affectation élargie
	Exercice 10. Opérateur conditionnel

	2. Les instructions de contrôle
	Exercice 11. Syntaxe de if et de switch
	Exercice 12. Rôle de l’instruction switch
	Exercice 13. Syntaxe des boucles
	Exercice 14. Comparaison entre for, while et do... while
	Exercice 15. Rupture de séquence avec break et continue
	Exercice 16. Boucle while, opérateurs d’affectation élargie et d’incrémentation (1)
	Exercice 17. Boucle while, opérateurs d’affectation élargie et d’incrémentation (2)
	Exercice 18. Syntaxe générale des trois parties d’une boucle for
	Exercice 19. Synthèse : calcul d’une suite de racines carrées
	Exercice 20. Synthèse : calcul de la valeur d’une série
	Exercice 21. Synthèse : dessin d’un triangle en mode texte
	Exercice 22. Synthèse : calcul de combinaisons

	3. Les classes et les objets
	Exercice 23. Création et utilisation d’une classe simple
	Exercice 24. Initialisation d’un objet
	Exercice 25. Champs constants
	Exercice 26. Affectation et comparaison d’objets
	Exercice 27. Méthodes d’accès aux champs privés
	Exercice 28. Conversions d’arguments
	Exercice 29. Champs et méthodes de classe (1)
	Exercice 30. Champs et méthodes de classe (2)
	Exercice 31. Champs et méthodes de classe (3)
	Exercice 32. Bloc d’initialisation statique
	Exercice 33. Surdéfinition de méthodes
	Exercice 34. Recherche d’une méthode surdéfinie (1)
	Exercice 35. Recherche d’une méthode surdéfinie (2)
	Exercice 36. Recherche d’une méthode surdéfinie (3)
	Exercice 37. Surdéfinition et droits d’accès
	Exercice 38. Emploi de this
	Exercice 39. Récursivité des méthodes
	Exercice 40. Mode de transmission des arguments d’une méthode
	Exercice 41. Objets membres
	Exercice 42. Synthèse : repères cartésiens et polaires
	Exercice 43. Synthèse : modification de l’implémentation d’une classe
	Exercice 44. Synthèse : vecteurs à trois composantes
	Exercice 45. Synthèse : nombres sexagésimaux

	4. Les tableaux
	Exercice 46. Déclaration et initialisation de tableau
	Exercice 47. Utilisation usuelle d’un tableau (1)
	Exercice 48. Utilisation usuelle d’un tableau (2)
	Exercice 49. Affectation de tableaux (1)
	Exercice 50. Affectation de tableaux (2)
	Exercice 51. Affectation de tableaux (3)
	Exercice 52. Tableau en argument (1)
	Exercice 53. Tableau en argument (2)
	Exercice 54. Tableau en valeur de retour
	Exercice 55. Tableaux de tableaux
	Exercice 56. Synthèse : nombres aléatoires et histogramme
	Exercice 57. Synthèse : calcul vectoriel
	Exercice 58. Synthèse : utilitaires pour des tableaux de tableaux
	Exercice 59. Synthèse : crible d’Eratosthène

	5. L’héritage et le polymorphisme
	Exercice 60. Définition d’une classe dérivée, droits d’accès (1)
	Exercice 61. Définition d’une classe dérivée, droits d’accès (2)
	Exercice 62. Héritage et appels de constructeurs
	Exercice 63. Redéfinition
	Exercice 64. Construction et initialisation d’une classe dérivée
	Exercice 65. Dérivations successives et redéfinition
	Exercice 66. Dérivations successives et surdéfinition
	Exercice 67. Les bases du polymorphisme
	Exercice 68. Polymorphisme et surdéfinition
	Exercice 69. Les limites du polymorphisme
	Exercice 70. Classe abstraite
	Exercice 71. Classe abstraite et polymorphisme
	Exercice 72. Interface
	Exercice 73. Synthèse : comparaison entre héritage et objet membre

	6. La classe String et les chaînes de caractères
	Exercice 74. Construction et affectation de chaînes
	Exercice 75. Accès aux caractères d’une chaîne
	Exercice 76. Conversion d’un entier en chaîne
	Exercice 77. Comptage des voyelles d’un mot
	Exercice 78. Arguments de la ligne de commande
	Exercice 79. Redéfinition de toString
	Exercice 80. Synthèse : conjugaison d’un verbe
	Exercice 81. Synthèse : tri de mots
	Exercice 82. Synthèse : gestion d’un répertoire

	7. Les types énumérés
	Exercice 83. Définition et utilisation d’un type énuméré simple
	Exercice 84. Itération sur les valeurs d’un type énuméré
	Exercice 85. Accès par leur rang aux valeurs d’un type énuméré (1)
	Exercice 86. Lecture de valeurs d’un type énuméré
	Exercice 87. Ajout de méthodes et de champs à une énumération (1)
	Exercice 88. Ajout de méthodes et de champs à une énumération (2)
	Exercice 89. Synthèse : gestion de résultats d’examens

	8. Les exceptions
	Exercice 90. Déclenchement et traitement d’une exception
	Exercice 91. Transmission d’information au gestionnaire
	Exercice 92. Cheminement des exceptions
	Exercice 93. Cheminement des exceptions et choix du gestionnaire
	Exercice 94. Cheminement des exceptions
	Exercice 95. Instruction return dans un gestionnaire
	Exercice 96. Redéclenchement d’une exception et choix du gestionnaire
	Exercice 97. Bloc finally
	Exercice 98. Redéclenchement et finally
	Exercice 99. Synthèse : entiers naturels

	9. Les bases de la programmation événementielle
	Exercice 100. Écouteurs de clics d’une fenêtre
	Exercice 101. Écouteurs de clics de plusieurs fenêtres
	Exercice 102. Écouteur commun à plusieurs fenêtres
	Exercice 103. Création de boutons et choix d’un gestionnaire FlowLayout
	Exercice 104. Gestion de plusieurs boutons d’une fenêtre avec un seul écouteur
	Exercice 105. Synthèse : création et suppression de boutons (1)
	Exercice 106. Synthèse : création et suppression de boutons (2)
	Exercice 107. Dessin permanent dans une fenêtre
	Exercice 108. Synthèse : dessin permanent et changement de couleur
	Exercice 109. Synthèse : dessin permanent, coloration et adaptation à la taille d’une fenêtre
	Exercice 110. Dessin à la volée
	Exercice 111. Synthèse : ardoise magique en couleur

	10. Les principaux contrôles de Swing
	Exercice 112. Cases à cocher
	Exercice 113. Cases à cocher en nombre quelconque
	Exercice 114. Boutons radio en nombre quelconque
	Exercice 115. Champs de texte
	Exercice 116. Champ de texte et événements Action et Focus
	Exercice 117. Écoute permanente d’un champ de texte
	Exercice 118. Synthèse : série harmonique
	Exercice 119. Gestion d’une boîte de liste
	Exercice 120. Synthèse : pendule

	11. Les boîtes de dialogue
	Exercice 121. Utilisation de boîtes de message et de confirmation
	Exercice 122. Utilisation de boîtes de message, de confirmation et de saisie
	Exercice 123. Programmation d’une boîte de message
	Exercice 124. Programmation d’une boîte de confirmation
	Exercice 125. Programmation d’une boîte de saisie
	Exercice 126. Synthèse : saisie d’une heure

	12. Les menus
	Exercice 127. Création d’un menu déroulant usuel
	Exercice 128. Gestion des actions sur les options d’un menu
	Exercice 129. Activation, désactivation d’options
	Exercice 130. Synthèse : calculs sur des rectangles
	Exercice 131. Synthèse : coloration par boutons radio
	Exercice 132. Synthèse : choix de couleur de fond et de forme par des menus composés
	Exercice 133. Synthèse : choix de couleurs et de dimensions par des menus surgissants

	13. Les événements de bas niveau
	Exercice 134. Identification des boutons de la souris
	Exercice 135. Vrais doubles-clics
	Exercice 136. Suivi des déplacements de la souris (1)
	Exercice 137. Suivi des déplacements de la souris (2)
	Exercice 138. Dessin par le clavier (1)
	Exercice 139. Synthèse : dessin par le clavier (2)
	Exercice 140. Sélection d’un composant par le clavier
	Exercice 141. Mise en évidence d’un composant sélectionné

	14. Les applets
	Exercice 142. Comptage des arrêts d’une applet
	Exercice 143. Dessin dans une applet
	Exercice 144. Synthèse : dessin paramétré dans une applet
	Exercice 145. Synthèse : tracé de courbe dans une applet
	Exercice 146. Différences entre applet et application

	15. Les flux et les fichiers
	Exercice 147. Création séquentielle d’un fichier binaire
	Exercice 148. Liste séquentielle d’un fichier binaire
	Exercice 149. Synthèse : consultation d’un répertoire en accès direct
	Exercice 150. Synthèse : liste d’un fichier texte avec numérotation des lignes
	Exercice 151. Liste d’un répertoire

	16. La programmation générique
	Exercice 152. Classe générique à un paramètre de type
	Exercice 153. Classe générique à plusieurs paramètres de type
	Exercice 154. Conséquences de l’effacement (1)
	Exercice 155. Conséquences de l’effacement (2)
	Exercice 156. Méthode générique à un argument
	Exercice 157. Méthode générique et effacement
	Exercice 158. Dérivation de classes génériques
	Exercice 159. Les différentes sortes de relation d’héritage
	Exercice 160. Limitations des paramètres de type d’une méthode
	Exercice 161. Redéfinition de la méthode compareTo

	17. Les collections et les tables associatives
	Exercice 162. Dépendance ou indépendance d’un itérateur
	Exercice 163. Manipulation d’un tableau de type ArrayList
	Exercice 164. Tri d’une collection (1)
	Exercice 165. Tri d’une collection (2)
	Exercice 166. Réalisation d’une liste triée en permanence
	Exercice 167. Création d’un index
	Exercice 168. Inversion d’un index

	18. Les expressions lambda et les streams
	Exercice 169. Lambda et interfaces prédéfinies
	Exercice 170. Lambda et références
	Exercice 171. L’interface Comparator
	Exercice 172. Les méthodes usuelles des streams
	Exercice 173. Traitement de liste avec un stream
	Exercice 174. Répertoire
	Exercice 175. Répertoire (bis)
	Exercice 176. Reduce
	Exercice 177. Collect et Collectors

	A. Les constantes et fonctions mathématiques
	B. Les composants graphiques et leurs méthodes
	Exercice 1. Les classes de composants
	Exercice 2. Les méthodes

	C. Les événements et les écouteurs
	Exercice 3. Les événements de bas niveau
	Exercice 4. Les événements sémantiques
	Exercice 5. Les méthodes des événements

	D. La classe Clavier

