The Linux
Process Journey

version 6.0
September-2023

By Dr. Shlomi Boutnaru

Table of Contents

Table of Contents
Introduction

swapper (PID 0)

init (PID 1)

Kernel Threads

kthreadd (PID 2)

migration

charger_manager

idle_inject

kworker

kdevtmpfs

cpuhp

khungtaskd

kswapd

kcompactd

md (Multiple Device Driver)
mld (Multicast Listener Discovery)
ksmd (Kernel Same Page Merging)
ttm_swap

watchdogd

zswap-shrink

khugepaged

krfcommd

ksgxd

jbd2 (Journal Block Device 2)
netns

oom_reaper

kpsmoused

slub_flushwq

pgdatinit

kblockd

writeback

kdamond (Data Access MONitor)
kintegrityd

kthrotld

scsi_eh (Small Computer System Interface Error Handling)

blkcg_punt_bio
napi (New API)

o NoO O AN

10
12
13
14
15
17
17
18
20
22
24
25
26
27
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

kauditd (Kernel Audit Daemon)

tpm_dev_ wq

ipv6_addrconf

mm_percpu_wq

inet_frag_wq

kstrp (Stream Parser)

devfreq_wq

dmcrypt_write

ModemManager (Modem Management Daemon)
kerneloops

47
48
49
51
52
53
54
55
56
57

Introduction

When starting to learn OS internals I believe that we must understand the default processes
executing (roles, tasks, etc). Because of that I have decided to write a series of short writeups
named "Process ID Card" (aimed at providing the OS vocabulary).

Overall, I wanted to create something that will improve the overall knowledge of Linux in
writeups that can be read in 1-3 mins. I hope you are going to enjoy the ride.

In order to create the list of processes I want to explain, I have installed a clean Ubuntu 22.10
VM (Desktop version) and executed ps (as can be seen in the following image - not all the output

was included).

TIME CMD
/1 emd/systemd splash --system --deserialize 26

root
root
root

ts_highpri]

Probably the best way to do it is to go over the processes by the order of their PID value.
The first one I want to talk about is the one we can’t see on the list, that is PID 0 (we can see it is
the PPID for PID 1 and PID 2 - on them in the next posts).

Lastly, you can follow me on twitter - @boutnaru (https:/twitter.com/boutnaru). Also, you can
read my other writeups on medium - https://medium.com/(@boutnaru.

swapper (PID 0)

Historically, old Unix systems used swapping and not demand paging. So, swapper was
responsible for the “Swap Process” - moving all pages of a specific process from/to
memory/backing store (including related process’ kernel data structures). In the case of Linux
PID 0 was used as the “idle process”, simply does not do anything (like nops). It was there so
Linux will always have something that a CPU can execute (for cases that a CPU can’t be stopped
to save power). By the way, the idle syscall is not supported since kernel 2.3.13 (for more info
check out “man 2 idle”). So what is the current purpose of swapper today? helping with pageout
? cache flushes? idling? buffer zeroning? I promise we will answer it in more detail while going
through the other processes and explaining the relationship between them.

But how can you believe that swapper (PID 0) even exists? if you can’t see it using ps. [am
going to use “bpftrace” for demonstrating that (if you don’t know about bpftrace, I strongly
encourage you to read about it). In the demo I am going to trace the kernel function
“hrtimer_wakeup” which is responsible for waking up a process and move it to the set of
runnable processes. During the trace I am going to print the pid of the calling process (BTW, in
the kernel everything is called a task - more on that in future posts) and the executable name (the
comm field of the task struct [/include/linux/sched.h]). Here is the command: sudo bpftrace -e
'kfunc:hrtimer wakeup { printf("%s:%d\n",curtask->comm,curtask->pid); }'.

Attaching 1 probe...
swapper ,."rr : 0

swapperf

swapper ,."I

swapperf

swapper/

swapperf
swappe r‘,-"
swapper/0:0
swapper/2:0
swapper/0:0

From the output we can see we have 3 instances of swapper: swapper/0, swapper/1 and
swapper/2 all of them with PID 0. The reason we have three is because my VM has 3 virtual
CPUs and there is a swapper process for each one of them - see the output of the command in the
following image.

init (PID 1)

After explaining about PID 0, now we are going to talk about PID 1. Mostly known as “init”. init
is the first Linux user-mode process created, which runs until the system shuts down. init
manages the services (called demons under Linux, more on them in a future post). Also, if we
check the process tree of a Linux machine we will find that the root of the tree is init.

There are multiple implementations for init, each of them provide different advantages among
them are: SysVinit, launched, systemd, runit, upstart, busybox-init and OpenRC (those are
examples only and not a full list). Thus, based on the implementation specific configuration files
are read (such as /etc/inittab - SysVinit), different command/tools to manage demons (such as
service - SysVinit and systemctl - systemd), and different scripts/profiles might be executed
during the boot process (runlevels of SysVinit vs targets in systemd).

The creation of init is done by the kernel function “rest_init”'. In the code we can see the call to
“user_mode thread” which spawns init, later in the function there is a call to “kernel thread”
which creates PID 2 (more information about it in the upcoming pages ;-).

Now we will go over a couple of fun facts about init. First, in case a parent process exits before
all of its children process, init adopts those child processes. Second, only the signals which have
been explicitly installed with a handler can be sent to init. Thus, sending “kill -9 1”” won’t do
anything in most distributions (try it and see nothing happens). Remember that different init
implementations handle signals in different ways.

Because they are multiple init implementations (as we stated before) we can determine the one
installed in the following manner. We can perform “Is -1 /sbin/init”. If it is not a symlink it is
probably SysVinit, else if it points to “/lib/systemd/systmed” than systemd is in use (and of
course they are other symlinks to the other implementation - you can read about it in the
documentation of each init implementation). As you can see in the attached screenshot Ubuntu
22.10 uses systemd.

!https:/elixir.bootlin.com/linux/v6.1.8/source/init/main.c#L.683

Kernel Threads

Before we will go over kthreadd I have decided to write a short post about kernel threads (due to
the fact kthreadd is a kernel thread). We will go over some characteristics of kernel threads. First,
kernel threads always execute in Kernel mode and never in User mode. Thus, kernel threads
have basically all privileges and have no userspace address associated with them.

Second, both user mode process and kernel threads are represented by a task struct inside the
Linux kernel. As with all other user tasks, kernel threads are also part of the OS scheduling flow
and can be executed on any CPU (there are cases in which there is a specific kernel thread for
each CPU, we have seen it with swapper in the first post). Third, all kernel threads are
descendants of kthreadd - Why is that? We will explain it in the next post focused on kthreadd.

Lastly, let’s investigate kernel threads using /proc and see the difference in information retrieved
from a regular user process (aka user task). There are multiple file entries in “/proc/pid” that
contain information in case of a user mode process but are empty in case of a kernel thread, such
as: “maps”, “environ”, “auxv”, “cmdline” (I suggest reading “man proc” to get more info about
them). Also, the fd and fdinfo directories are empty and the link “exe” does not point to any
executable. In the attached screenshot we can see some of the difference between PID 1
[example of a regular user mode process] and PID 2 [example for a kernel thread]. BTW, the
screenshot below was taken from an online/browser based Linux implementation called JSLinux

- https://bellard.org/jslinux.

localhost:/# uname -a
Linux localhost 4.12.0-rc6-g48eclf@-dirty #21 Fri Aug 4 21:02:28 CEST 2017 i586
Linux

localhost:/# cat /etc/issue
elcome to Alpine Linux 3.12
Kernel \r on an \m (\1)

-1 /proc/1l/exe
root root @ Aug 11 23:17 /proc/l/exe -> /bin/bu

-1 /proc/2/exe
1ls: /proc/2/exe: cannot read link: No such file or directory
lrwxrwxrwx 1 root root @ Aug 11 23:16 /proc/2/exe
localhost:/# cat /proc/1l/environ
HOME=/TERM=1inuxTZ=UTC+07:001localhost: /#
localhost:/# cat /proc/2/environ

kthreadd (PID 2)

After explaining about PID 1, now we are going to talk about PID 2.Basically, kthreadd is the
“kernel thread daemon". Creation of a new kernel thread is done using kthreadd (We will go over
the entire flow). Thus, the PPID of all kernel threads is 2 (checkout ps to verify this). As
explained in the post about PID 1 (init) the creation of “kthreadd” is done by the kernel function
“rest_init”. There is a call to the function “kernel thread” (after the creation of init).

Basically, the kernel uses “kernel threads” (kthreads from now on) in order to run background
operations. Thus, it is not surprising that multiple kernel subsystems are leveraging kthreads in
order to execute async operations and/or periodic operations. In summary, the goal of kthreadd is
to make available an interface in which the kernel can dynamically spawn new kthreads when
needed.

Overall, kthreadd continuously runs (infinite loop®) and checks “kthread create list” for new
kthreads to be created. In order to create a kthread the function “kthread create”™ is used, which
is a helper macro for “kthread create on node™. We can also call “kthread run”® could also be
used, it is just a wrapper for “kthread create”. The arguments passed to the creating function
includes: the function to run in the thread, args to the function and a name.

While going over the source code we have seen that “kthread create” calls
“kthread_create on node”, which instantiates a “kthread create info” structure (based on the
args of the function). After that, that structure is queued at the tail of “kthread create list” and
“kthreadd” is awakened (and it waits until the kthread is created, this is done by
“ kthread create_on node”). What “kthreadd” does is to call “create_thread” based on the
information queued. “create thread” calls “kernel thread”, which then calls “kernel clone”.
“kernel clone” executes “copy_process”, which creates a new process as a copy of an old one -
the caller needs to kick-off the created process (or thread in our case). By the way, the flow of
creating a new task (recall every process/thread under Linux is called task and represented by
“struct task struct”) from user mode also gets to “copy_process”.

For the sake of simplicity, I have created a flow graph which showcases the flow of creating a
kthread, not all the calls are there, only those I thought are important enough. Also, in both cases
of macros/functions I used the verb “calls”. The diagram appears at the end of the post. Let me
know if it is clear enough or do you think I should change something.

2 https://elixir.bootlin.com/linux/v6.1.8/source/init/main.c#L.683

3 https://elixir.bootlin.com/linux/v6.1.12/source/kernel/kthread.c#1.731

4 https://elixir.bootlin.com/linux/v6.1.12/source/include/linux/kthread.h#1.27
P NTRTEE - -

6

https://elixir.bootlin.com/linux/v6.1.12/source/include/linux/kthread.h#L.51
7] -Jelixic.bootli T LD l Ukd LAl

The Flow Starts Here

/

Mostly calls one of those calls l

¥

calls l

Queues “kthread_create_info"

Wakes | up

Reads queued data (used later

Calls (using queued data)

Calls

Calls J

|

migration

One of the goals of an operating system is to handle and balance resources across the hardware
of the compute entity. In order to do that, Linux has a kernel thread named “migration” which
has an instance on every vCPU. By the way, the naming format is “migration/N” where N is the
id of the vCPU.

By default threads are not constrained to a vCPU and can be migrated between them in the next
call to “schedule()” (which calls the main scheduler function, which is “ scheduler()”®). It is
done mainly in case the scheduler identifies an unbalanced across the runqueues (the queue in
which processes which are in ready/runnable state are waiting to use the processor) of the
vCPUs.

It is important to state that we can influence this flow by setting the affinity of a thread (for more
read “man 2 sched setaffinity”. We will talk about that in a future post). There could be
performance, cache and other impacts for doing that (but that is also a topic for a different
writeup).

I have created a small demo which shows the working of “migration”. For that I have created a
VM running Ubuntu 22.04 with 3 vCPUs. In order to trace the usage of “move queue task” I
have used bpftrace with the following command: sudo bpftrace -e 'kfunc:move _queued_task {
printf("' %s moved %s to %d CPU\n",curtask->comm,args->p->comm,args->new_cpu); }'.
The output of the command is shown below. The one-liner prints: the name of the task calling
“move_queued task”, the name of the task which is moved and id the vCPU which the task is

moved to.
Attaching 1 -
ation/2 sudo to 1 CPU
migration/1 dpkg to CPU
apt to PU
d update-motd-upd to @ CPU
(snap) D CPU
ve to 6 CPU
1 to 0 CPU
_ PU
migration/2 (di) to 0 CPU
migration/1 (d) to PU
migration/2 (direx CO CPU
migratio (dir to @ CPU

migration/2

migration/1 (d to 0 CPU
migration/1 m (direxec) to PU
migration/ ' (direxec) to PU
migration/1 (di) to PU
migration/1 ' (di) to O CPU

¥ https://elixir.bootlin.com/linux/latest/source/kernel/sched/core.c#L6544

10

In summary, what the kernel thread “migration” does is to move threads from highly loaded
vCPUs to others which are less crowded (by inserting them to a different run-queue). A function
which is used by “migration” in order to move a task to a new run-queue is “move_queued_task”
(https://elixir.bootlin.com/linux/latest/source/kernel/sched/core.c#1.2325).

11

charger_manager

The “charger manager” kernel thread is created by a freezable workqueue’. Freezable
workqueues are basically frozen when the system is moved to a suspend state'®. Based on the
kernel source code “charger manager” is responsible for monitoring the health (like temperature
monitoring) of the battery and controlling the charger while the system is suspended to
memory''. The “Charger Manager” kernel module is written by MyungJoo Ham'?,

Moreover, the kernel documentation states that the “Charger Manager" also helps in giving an
aggregated view to user-space in case there are multiple chargers for a battery. In case they are
multiple batteries with different chargers on a system, that system would need multiple instances

2913

of “Charger Manager”" .

On my Ubuntu VM (22.04.1 LTS) this kernel module is not compiled as a separate “*.ko” file. It
is compiled into the kernel itself (builtin), as you can see in the output of “modinfo” in the
screenshot below.

Troller $ modinfo charger manager
Iname : charger_manager
filename: (builtin)
License: GPL

file: drivers/power/supply/charger-manager
description: Charger Manager

lauthor: MyungJoo Ham <=myungjoo.ham@samsung.com:=
Troller 5 B

9 https://elixir.bootlin.com/linux/latest/source/drivers/power/supply/charger-manager.c#L 1749
10 https://lwn.net/Articles/403891/

" hitps://elixir.bootlin.com/linux/latest/source/drivers/power/supply/charger-manager.c

12 hitps://elixir.bootlin.com/linux/latest/source/drivers/power/supply/charger-manager.c#L. 1768
3 https://www.kernel.org/doc/html/v5.3/power/charger-manager.html

12

Idle_inject

On our plate this time we are going to talk about the kernel thread “idle inject”, which was
merged to the kernel in about 2009. The goal of “idle inject” is forcing idle time on a CPU in
order to avoid overheating.

If we think about it, “idle inject” adds latency, thus it should be considered only if CPUFreq
(CPU Frequency scaling) is not supported. Due to the fact the majority of modern CPUs are
capable of running a different clock frequency and voltage configuration we can use CPUFreq in
order to avoid overheating.

Overall, there is one “idle inject” kernel thread per processor (with the name pattern
“idle_inject/N”, where N is the id of the processor) - as shown in the screenshot below. Also, all
of them are created at init time.

The “idle_inject” kernel threads will call “idle inject fn()”->"play idle precise()” to inject a
specified amount of idle time. After all of the kernel threads are woken up, the OS sets a timer
for the next cycle. When the timer interrupt handler wakes the threads for all processors based on
a defined “cpu-mask” (affected by idle injection). By the way, when I set a kprobe on
“idle_inject fn()” for 3 hours on my VM it was never called ;-)

Troller# ps -eo user,comm,pid,ppid | grep idle inject
root LC] 16 p.
root] 19

root idle_inj /2 25

Troller# |}

13

kworker

A kworker is a kernel thread that performs processing as part of the kernel, especially in the case
of interrupts, timers, I/O, etc. It is based on workqueues which are async execution mechanisms,
that execute in “process context” (I will post on workqueus in more details separately, for now it
is all that you need to know).

Overall, there are a couple of kworkers running on a Linux machine. The naming pattern of
kworkers includes: the number of the core on which it is executed, the id of the thread and can
contain also string that hints what the kworker does (check the output of ‘ps -ef | grep kworker’).

o

1H-kblox
0]

12:1-events_unbound]

1-events]

4

[T %]

e |

2-kcryptd/2)
-inet _frag wqg]

}:0-events unbound]

2-events]

]
£
')
£
2
L
~
Z
)
Z
’)
£
]
£
')
£
2
L

A

The big question is - “How do we know what each kwoker is doing?”. It’s a great question, the
way in which we are going to answer it is by using ftrace (function tracing inside the kernel - I

suggest reading more about that - https://www.kernel.org/doc/Documentation/trace/ftrace.txt).
The command we are going to use are:

echo workqueue:workqueue queue work > /sys/kernel/debug/tracing/set event
cat /sys/kernel/debug/tracing/trace pipe > /tmp/trace.log

The first one enables the tracing regarding workqueus. The second reads the tracing data and
saves it to a file. We can also run “cat /sys/kernel/debug/tracing/trace pipe | grep kworker” and
change the grep filter to a specific kworker process. In the trace we will see the function name
that each kworker thread is going to execute.

24 po : workqueue_queue_work: work struct=08)00dale6721 function=flush_to_ldisc
unbound

workqueue_queue_work: work struct=00000000be96 function=ata_sff_pio_ta

queue_work: work struct=000000001elee94f function=kcryptd_crypt

work struct=00)be96cc25 function=ata_sff_pilo_ta

work struct=00000000be96 function=ata_sff_pio_ta

work struct=000000001elee94f function=kcryptd_crypt

work struct=00)e@béb12c function=kecryptd crypt

kdevtmpfs

“kdevtmpfs” is a kernel thread which was created using the ‘“kthread run” function'.
“kdevtmpfs” creates a devtmpfs which is a tmpfs-based filesystem (/dev). The filesystem is
created during bootup of the system, before any driver code is registered. In case a driver-core
requests a device node it will result in a node added to this filesystem'?,

We can see the specific line of code that is used in order to create the mounting point *“/dev’'®.
The mountpoint is created using the function “init mount™’. A nice fact is that it is part of
“init_*” functions which are routines that mimic syscalls but don’t use file descriptors or the user
address space. They are commonly used by early init code'®,

Thus, we can say the “kdevtmpfs” is responsible for managing the “Linux Device Tree”. Also,
by default the name created for nodes under the filesystem is based on the device name (and
owned by root) - as shown in the screenshot below (taken from copy.sh based Linux). By the
way, not all devices have a node in “/dev” think about network devices ;-)

root@localhost: # mount | grep “~dev"l head -1
dev on sdev type devtmpfs (ruw,nosuid,relatine,size=10240k,nr_inodes=58635,node=735)
root@localhost: # 1s —lah | head -20
total 1.0K
druxr-xr-x 11 root root 3.4K Nou
druxruxrux 17 root root 0 Nou
Ccry-r—r—— root root 10, 235 Nou
druxr—xr—x root root Z2.5K Nou
root root 5, 1 Now
lrwxarwcrux root root 11 NHou
druxr—xr—x root root 60 Nou
root root 125 Nowu
druxr—xr—x root root 60 Nou
druxr—xr—x root root 60 Nou
root root 0 Nou
Irwsrwxrux root root 13 Nou
Cr'u—ru—ru-— root root 7 Nou
druxr—xr—x root root 80 Nowu
Cru—r——r—— root root 11 NHou
Cruy—r———— root root 1 Nou
druxruxrut root root 40 Nou
CIr—Tru—ru-— root root 3 Nou
root root 144 Nou

02:51 .

02:50 ..

02:50 autofs

02:50 char

02:51 console

02:50 core -»> rprocskcore
02:50 cpu

0Z2:50 cpu_dma_latency
02:50 dma_heap

02:51 dri

02:51 fho

02:50 fd -> sprocsself-fd
02:50 full

02:50 input

02:50 km=sg

0Z2:50 men

02:50 ngueue

02:50 null

02:50 nuram

=1 =] =] =] =] =] =] =] e]] sd md md md s s s =]

4 https://elixir.bootlin.com/linux/v6.2-rc1/source/drivers/base/devtmpfs.c#1.474
15 https://elixir.bootlin.com/linux/v6.2-rc1/source/drivers/base/devtmpfs.c#L.3
18 https:/elixir.bootlin.com/linux/v6.2-rcl/source/drivers/base/devtmpfs.c#1 377

7 https:/elixir.bootlin.com/linux/v6.2-rc 1/source/fs/init.c#L.16

'8 https://elixir.bootlin.com/linux/v6.2-rc1/source/fs/init.c#1.3

15

16

cpuhp

This kernel thread is part of the CPU hotplug support. It enables physically removing/adding
CPUs on a specific system. There is one kernel thread per vCPU, and the pattern of the thread’s
name is “cpuhp/N” (where N is the id of the vCPU) - as can be seen in the screenshot below.
Also, today the CPU hotplug can be used to resume/suspend support for SMP (Symmetric
Multiprocessing).

If we want our kernel to support CPU hotplug the CONFIG_ HOTPLUG_CPU should be enabled
(it’s supported on a couple of architectures such as: MIPS, ARM, x86 and PowerPC). The kernel

holds the current state for each CPU by leveraging “struct cpuhp cpu_state”’.

We can configure the CPU hotplug mechanism using sysfs (/sys/devices/system/cpu). For
example we can shut down and bring up a CPU by writing “0” and “1” respectively to the
“online” file in the directory representing the CPU (for which we want to change the status) -
checkout the screenshot below (the Linux VM I am testing on has 3 vCPUs).

In order to bring the CPU down the function “cpu_device_down™? is called. In order to bring up

a CPU function “cpu_device up”?' is called.

roller # pwd
/sys/devices/system/cpu

roller # 1s

isolated offline uevent
kernel max online present
: modalias possible
roller # echo © > ./cpu2/online

roller | tail -2
[147586.05 4] kvm-clock: cpu 1, msr b7001041, secondary cpu clock
[1488:¢ npboot: CPU 2 1s now offline
echo 1 = ./cpu2fonline
dmesg | tail -2
£.12] smpboot: CPU 2 is now offline
smpboot: Booting Node : 2 APIC 0OxZ2

19 hitps://elixir.bootlin.com/linux/l rce/kernel L

20 hitps://elixir.bootlin.com/linux/latest/source/kernel/cpu.c#L.1225

2 https://elixir.bootlin.com/linux/latest/source/kernel/cpu.c#1.1439

17

kKhungtaskd

This kernel thread “khungtaskd” is used in order to help with identifying and debugging “Hung
Tasks”. This kernel thread is scheduled every 120 seconds (that is the default value). We can say
“khungtaskd” is used for detecting tasks which are stuck in uninterruptible sleep (state “D” in ps
output). We can also go over the code of the kernel thread as part of the Linux kernel source
code™.

The basic algorithm of “khungtaskd” is as follows: Iterate over all running tasks on the system
and if there are ones marked as TASK UNINTERRUPTIBLE and it was scheduled at least
once in the last 120 seconds it is considered as hung. When a task is considered hung it’s “call
stack” is dumped and if the CONFIG_LOCKDERP is also enabled then all of the locks held by the
tasks are outpted also.

If we want we can change the sampling interval using the sysctl interface,
“/proc/sys/kernel/hung_task timeout secs” .We can also verify that the default is 120 seconds by
reading it - as shown in the screenshot below.

In order to demonstrate the operation of “khungtaskd” I have executed the following bpftrace
one liner - “sudo Dbpftrace -e 'kfunc:check hung uninterruptible tasks { printf("
%s:%d\n",curtask->comm,curtask->pid); }"’. The trace prints the name of the task and it’s pid
when the function “check hung uninterruptible tasks” is called® - You can see the output in the
screenshot below.

cat /proc/sys/kernel/hung_task_timeout_secs

bpftrace -e 'kfunc:check_hung_uninterruptible_tasks { printf(" d\n",curtask->comm,curtask->pid); }
8. ..

khung
khu
khu
khu

khung
khu
khu

khungtas

22 https://elixir.bootlin.com/linux/latest/source/kernel/hung_task.c

3 https://elixir.bootlin linux/lat rce/kernel/hung_task.c#1.1

18

dedicated instance of “kswapd” is created for each NUMA zone (on my Ubuntu 22.10 VM 1
have only “kswapd0” - as shown in the screenshot below).

Overall, the goal of the “kswapd” is to reclaim pages when memory is running low. In the old
days, the “kswapd” was woken every 10 seconds but today it is only wakened by the page
allocator, by calling “wakeup kswapd”**. The code of the page allocator is located at

“mm/page_alloc.c”®.

Basically, “kswapd” trickles out pages so the system has some free memory even if no other
activity frees up anything (like by shrinking cache). Think about cases in which operations work
in asynchronous contexts that cannot page things out.

The major function which is called by “kswapd” is “balance pgdat()”*. In order to see that
process happening we can use the following bpftrace one-liner: “sudo bpftrace -e
'kfunc:balance_pgdat { printf(''%s:%d\n",curtask->comm,curtask->pid); }> - You can
see “kswapd0” calling it in the screenshot below. The flow of “kswapd” is based on limits, when
to start shirking and “until when” to shrink (low and high limits).

Troller # sudo bpftrace -e 'kfunc:balance_pgdat { printf(",curtask->comm,curtask-=pid);
1ing 1 probe...

24 https://elixir.bootlin.com/linux/latest/source/mm/vmscan,c#1 4555
25 hitps://elixir.bootlin.com/linux/latest/source/mm/page_alloc.c
2 hitps://elixir.bootlin.com/linux/l rce/mm/vmscan.c#l 414

19

kcompactd

When a Linux system is up and running, memory pages of different processes/tasks are scattered
and thus are not physically-contiguous (even if they are contiguous in their virtual address). We
can move to bigger pages size (like from 4K to 4M) but it still has its limitations like: waste of
space in case of regions with small sizes and the need for multiple pages in case of large regions
that can still be fragmented. Due to that, the need for memory compaction was born?’.

“kcompatd” is performing in the background the memory compaction flow. The goal of memory
compaction is to reduce external fragmentation. This procedure is heavily dependent on page
migration® to do all the heavy lifting®. In order for “kcompactd” to work we should compile the
kernel with “CONFIG_COMPACTION” enabled. Also, when a Linux system identifies that it is
tight low in available memory the “kcompactd” won’t perform memory compaction memory*’.

Overall, the “kcompactd” kernel thread is created in “kcompactd run” function®' which is called
by “kcompactd_init”™*?.. The function “kcompactd init” is started by “subsys_initcall** which

is responsible for initializing a subsystem.

The kernel thread starts the function “static int kcompactd(void *p)™**.. An instance of the kernel
thread is created for each node (like vCPU) on the system®.. The pattern of the kernel thread
name is “kcompactd[IndexOfNode]” for example “kcompactd0” as we can see in the screenshot
below.

“kcompactd” can be called in one of two ways: woken up or by using a timeout. It can be woken
up by kswapd®*.. Also, we can configure it using modification of the filesystem
(“/proc/sys/vm/compact memroy” for example). By the way, in the memory compaction flow of
the function “compact zone™’ is executed in the context of “kcompactd”. In order to
demonstrate that we can use the following one-liner using bpftrace: sudo bpftrace -e
'kfunc:compact_zone { printf("'%s:%d\n" ,curtask->comm,curtask->pid); }' - The output
can be seen in the screenshot below.

27 https:/lwn.net/Articles/368869/
28 https:/lwn.net/Articles/157066/

2 https://elixir.bootlin.com/linux/v6.2-rc3/source/mm/compaction.c#L.5
30 https://www.linux-magazine.com/Issues/2015/179/Kernel-News

31 https://elixir.bootlin.com/linux/v6.2-rc3/source/mm/compaction.c#1.2996
32 https://elixir.bootlin.com/linux/v6.2-rc3/source/mm/compaction.c#1.3048

33 https://elixir.bootlin.com/linux/v6.2-rc3/source/mm/compaction.c#L.3065

34 https://elixir.bootlin.com/linux/v6.2-rc3/source/mm/compaction.c#1.292 1
35 — - - -

36

https://www.slideshare.net/AdrianHuang/memory-compaction-in-linux-kernelpdf
37 https://elixirbootlin.com/linux/v6.2-rc¢3/source/mm/compaction.c#L.2289

20

| grep kcompactd
37) 00:15 ? 00:00:09 [kcompactdd]
ls -1 /proc/ pact_memory
1 root root O 4 1 proc/sys/vm/comp
sudo bpftrace -e 'kfunc:compact_zone { printf(" ,curtas comm,curtas
ing 1 probe...

npactdd
npactd

21

md (Multiple Device Driver)

“md” is a kernel thread which is based on a workqueue®. It is responsible for managing the
Linux md (multiple device) driver which is also known as the “Linux software RAID”. RAID
devices are virtual devices (created from two or more real block devices). This allows multiple
devices (typically disk drives or partitions thereof) to be combined into a single device to hold
(for example) a single filesystem®”.

By using the “md” driver we can create from one/more physical devices (like disk drivers) a
virtual device(s). By the use of an array of devices we can achieve redundancy, which is also
known as RAID (Redundant Array of Independent Disks). For more information I suggest
reading https://man7.org/linux/man-pages/man4/md.4.html.

Overall, “md” supports different RAID types: RAID 1 (mirroring), RAID 4, RAID 5, RAID 6
and RAID 10. For more information about RAID types I suggest reading the following link

https://www.prepressure.com/library/technology/raid. Besides that, “md” also supports pseudo
RAID technologies like: RAID 0, LINAR, MULTIPATH and FAULTY™.

The code of “md” is included as a driver/kernel module in the source code of Linux. Thus, it can
be compiled directly into the kernel or as a separate “*.ko” file. In my VM (Ubuntu 22.04) it is
compiled directly into the kernel image as shown in the screenshot below.

Troller $ ps -ef | grep -v grep | grep "\[md]"

root 78 2 0 Dec2l ? 00:00:00 [md]
Troller lsmod | grep " md "

Troller $ modinfo md

name: md mod

filename: (builtin)

alias: block-major-9-*

alias: md

description: MD RAID framework

license: GPL

file: drivers/md/md-mod

parm: start _dirty degraded:int
create_on_open:bool

3 https://linux.die.net/man/8/mdadm

0 https://doxfer.webmin.com/Webmin/Linux RAID

22

The block devices that can be used in order to access the software RAID on Linux are in the
pattern “/dev/mdN” (where N is a number [0-255])*. It can also be configured to allow access
using “/dev/md/N” or “/dev/md/name”. If we want information about the current state of “md”
we can query the file “/proc/mdstat” — for more information you can read
https://raid.wiki.kernel.org/index.php/Mdstat. There is also the command line utility “mdadm”
that can help with managing those devices®.

Lastly, the init function is declared using “subsys initcall” (and not the “module init”’) which
ensures that it will run before the device drivers that needs it (if they are using “module init”) —
https://elixir.bootlin.com/linux/v6.1/source/drivers/md/md.c#1.9947. More information about
initcalls will be included on a future writeup.

41 https://www.oreilly.com/library/view/managing-raid-on/9780596802035/ch01s03.html

42 pitps://linux.die.net/man/8/mdadm

23

mld (Multicast Listener Discovery)

“mld” is a kernel thread which was created using a workqueue®. It is the Linux implementation
for the multicast listener (MLD) protocol. This protocol is used by IPv6 based routers in order to
discover multicast listeners on the local network and identify which multicast addresses are of
interest to those listeners. MLD is supported on different operating systems such as Windows*
and Linux®.

We can think about it like IGMP*® which is used on IPv4 based networks (MLDv1 is derived
from IGMPv2 and MLDvV2 is similar to IGMPv3). One important difference is that MLD uses
ICMPv6 message types, rather than IGMP message types”’.

Overall, MLD has three major message types: “Multicast Listener Query”, “Multicast Listener
Report” and “Multicast Done”. For more information about them I suggest reading the following
link*®. Also, a more detailed explanation about the different MLD operations can be found in

https://ipcisco.com/lesson/mld-operations/.

What “mld” does is to send MLD report messages*’ which are sent by an MLD host (see the
diagram below™) and processes messages’'. From the source code we can see that there are
definitions for structs representing both MLDv1 and MLDv2 headers.

Source GE1i0i2 MLD guerier

Vlan-mt20 Switch A
1234 H
GE10N
11064 Wian-int10
2001::1/84
Switchs | SE10
GE1MZ GE10/4
GE1/2
Receiver Receiver Receiver
Host & Host B Host C
WVLAN 2 VLAN 3 VLAN 4
43 https://elixir.bootlin.com/linux/l rce/net/ipv6/mcast.c#L 31

44 https://learn.microsoft.com/en-us/windows/win32/winsock/iamp-and-windows-sockets

4 https://lwn.net/Articles/29489/

46 hitps://www.cloudflare.com/learning/network-layer/what-is-igmp/
4T https://www.ibm.com/docs/en/zos/2.2.02topic=protocol-multicast-listener-discover:
8 hitps: ity.ci rking-knowl Iticast-1i i

ksmd (Kernel Same Page Merging)

The kernel thread “ksm” is also known as “Kernel Same Page Merging” (and “ksmd” is ksm
demon). It is used by the KVM hypervisor to share identical memory pages (supported since
kernel 2.6.32) Those shared pages could be common libraries or even user data which is
identical. By doing so KVM (Kernel-based Virtual Machine) can avoid memory duplication and
enable more VMs to run on a single node.

In order for “ksmd” to save memory due to de-duplication we should compile the kernel with
“CONFIG_KSM=y”. It is important to understand that the sharing of identical pages is done
even if they are not shared by fork(). If you want to go over “ksmd” source code you can use the

following link - https://elixir.bootlin.com/linux/latest/source/mm/ksm.c.

The way “ksmd” works is as follows. Scanning main memory for frames (“physical pages”™)
holding identical data and collectes the virtual memory address that they are mapped. “ksmd”
leaves one of those frames and remaps each duplicate one to point to the same frame. Lastly,
“ksmd” frees the other frames. All of the merge pages are marked as COW (Copy-on-Write) for
cases in which one of the processes using them will want to write to the page. There is a concern
that even if the memory usage is reduced the CPU usage is increased.

The kernel thread “ksmd” is created using the function kthread run®’. We can see from the code
that the function which is the entry point of the thread is “ksm_scan_therad()” which is calling
“ksm_do scan()” which is the ksm’s scanner main worker function (it gets as input the number
of pages to scan before returning). “ksmd” only merges anonymous private pages and not
pagecache. Historically, the merged pages were pinned into kernel memory. Today they can be
swapped like any other pages.

“ksmd” can be controlled by a sysfs interface (“/sys/kernel/mm/ksm”) - as can be seen in the
screenshot below. One of the files exported by sysfs is “run” that can react to one of the
following values 0/1/2. “0” means stop “ksmd” from running but keep the merged pages. “1”
means run “ksmd”. “2” means stop “ksmd” from running and unmerge all currently merge pages
(however leave the mergeable areas registered for next time).

ttm_swap

The kernel thread “ttm swap” is responsible for swapping GPU’s (Graphical Processing Unit)
memory. Overall, TTM (Translation-Table Maps) is a memory manager that is used to accelerate
devices with dedicated memory. Basically, all the resources are grouped together by objects of
buffers in different sizes. TTM then handles the lifetime, the movements and the CPU mapping
of those objects™

Based on the kernel documentation, each DRM (Direct Rendering Manager) driver needs a
memory manager. There are two memory managers supported by DRM: TTM and GEM
(Graphics Execution Manager). I am not going to talk about GEM, if you want you can start
reading about in the following link - https://docs.kernel.org/gpu/drm-internals.html.

Moreover, “ttm_swap” is a single threaded workqueue as seen in the Linux source code™

Also, the man pages describe TTM as a generic memory-manager provided by the kernel, which
does not provide a user-space interface (API). In case we want to use it you should checkout the
interface of each driver®.

TTM is at the end a kernel module, you can find the source code and the Makefile in the kernel
source tree®. Based on the module source code it is written by Thomas Hellstrom and Jerome
Glisse”. Also, it is described as “TTM memory manager subsystem (for DRM device)”*®. As you
can see it is part of the “drivers/gpu/drm” subdirectory, which holds the code and Makefile of the
drm device driver, which provides support for DRI (Direct Rendering Infrastructure) in XFee86
4.1.0+. Lastly, on my VM (Ubuntu 22.04.01) it is compiled as a separate “*.ko” file
(/lib/modules/[Kernel Version]/kernel/drivers/gpu/drm/ttm.ko) - as shown in the screenshot
below.

s/gpu/drm/ttm/ttm. ko

52-generic SMP mod_unload modversions

ted kernel k
6 41:27:D0:B

55 https: //www svstutorlals com/docs/lmux/manﬁ drm-ttm/

56
https://elixir.bootlin.com/linux/v6.1 -re2/source/drivers/epw/drm/ttm
57 https://elixir.bootlin.com/linux/v6. 1-rc2/source/drivers/gpu/drm/ttm/ttm_module.c#L.89
58
h

lixir. lin.com/linux/v6.1-rc2/source/driver. rm/ttm/ttm module.c#L

26

watchdogd

This kernel thread “watchdogd” is used in order to let the kernel know that a serious problem has
occurred so the kernel can restart the system. It is sometimes called COP (Computer Operating
Properly). The way it is implemented is by opening “/dev/watchdog”, then writing at least once a
minute. Every time there is a write the restart of the system is delayed.

In case of inactivity for a minute the watchdog should restart the system. Due to the fact we are
not talking about a hardware watchdog the compilation of the operation depends on the state of
the machine. You should know that the watchdog implementation could be software only (there
are cases in which it won’t restart the machine due to failure) or using a driver/module in case of
hardware support™.

If we are talking about hardware support then the watchdog module is specific for a chip or a
device hardware. It is most relevant to systems that need the ability to restart themself without
any human intervention (as opposed to a PC we can reboot easily) - think about an unmanned
aircraft. We need to be careful because a problem in the watchdog configuration can lead to
unpredictable reboot, reboot loops and even file corruption due to hard restart®.

The relationship between the hardware and software is as follows: the hardware is responsible to
set up the timer and the software is responsible to reset the timer. When the timer gets to a
specific value (configured ahead) and it is not elapsed by the software the hardware will restart
the system. For an example of using hardware for this functionality you can read the following
link https://developer.toradex.com/linux-bsp/how-to/linux-features/watchdog-linux/.

The software part is being conducted by the “watchdogd” (the software watchdog daemon)
which opens ““/dev/watchdog” and writes to it in order to postpone the restart of the system by
the hardware - for more information you can read https:/linux.die.net/man/8/watchdog.
Examples for different watchdog drives/modules for specific chips can be found in the source
tree of linux here https:/elixir.bootlin.com/linux/v6.0.11/source/drivers/watchdog. Some
example are apple wdt (Apple’s SOC), ath79 wdt (Atheros AR71XX/AR724X/AR913X) and
w83977f wdt (Winbond W83977F 1/O Chip).

We can stop the watchdog without restarting the system by closing “/dev/watchdog”. It is not
possible if the kernel was compiled with “CONFIG_ WATCHDOG NOWAYOUT” enabled.

59 https://github.com/torvalds/linux/blob/master/Documentation/watchdog/watchdog-api.rst

80 https://linuxhint.com/linux-kernel-watchdog-explained/

27

Overall, in order for the watchdog to operate the kernel needs to be compiled with
CONFIG_WATCHDOG=y and “/dev/watchdog” character device should be created (with major
number of 10 and minor number of 130 - checkout “man mknod” if you want to create it).

Lastly, if you want to see the status of the watchdog you can use the command “wdctl™' - As
can be seen in the screenshot below®. For more information about the concept I suggest reading
https://en.wikipedia.org/wiki/Watchdog_timer.

61}

https://man7.org/linux/man-pages/man8/wdctl.8.html
82 https://en.wikipedia.org/wiki h imer#/m

zswap-shrink

Based on the kernel source code zswap is a backend for frontswap. Frontswap provides a
“transcendent memory” interface for swap pages. In some cases we can get increased
performance by saving swapped pages in RAM (or a RAM-like device) and not on disk as swap
partition\swapfile®. The frontends are usually implemented in the kernel while the backend is
implemented as a kernel module (as we will show soon). Zswap takes pages that are in the
process of being swapped out and attempts to compress and store them in a RAM-based
memory pool®.

We can say that zswap trades CPU cycles for potentially reduced swap 1/0. A significant
performance improvement can happen in case the reads from the swap device are much slower
than the reads from the compressed cache®. The “zswap frontswap store” is the function that
attempts to compress and store a single page®.

The kernel thread “zswap-shrink™ is created created based on a workqueue®’. On my VM
(Ubuntu 22.04.1) zswap is compiled part of the kernel itself and not as a separate “*.ko” (kernel
module). You can see in the screenshot below that it does not appear in the output of “lsmod”
and is marked as builtin (look at the filename field) in the output of “modinfo”.

Comp

Seth Jennings

sshold _percent:uint
parm: S i _pages_enabled:bool
jr p
[1 : =d using pool lzo/zbud
Troller #

For more information like the compression used by zswap (the default one is 1zo) and other
parameters that can be configured for zswap 1 suggest reading the following link
https://wiki.archlinux.org/title/zswap. ~ You can also read the parameter ons

“/sys/module/zswap/parameters”.

% https://www.kernel.org/doc/html/v4.18/vm/frontswap.html
% https://elixir.bootlin.com/linux/latest/source/mm/zswap.c

% https: kernel.or html/v4.18/vin/z html

% https://elixir.bootlin.com/linux/v6.1-rc2/source/mm/zswap.c#L 1097

o7 https://elixir.bootlin.com/linux/v6.1-rc2/source/mm/zswap.c#L 1511

29

kKhugepaged

The kernel thread “kugepaged” is created using the “kthread run()” function®. It is responsible
for the “Transparent Hugepage Support” (aka THP). “kugepaged” scans memory and collapses
sequences of basic pages into huge pages®.

9971

We can manage and configure TPH using sysfs’® or by using the syscalls “madvise and

73 which in turn calls

“prct””?. The scan of memory is done by calling “khugepaged do_scan()
“khugepaged_scan_mm_slot()”’". In order to demonstrate that I have used the following bpftrace
oneliner “sudo bpftrace -e 'kfunc:khugepaged_scan_mm_slot{
printf(" %s:%d\n" ,curtask->comm,curtask->pid); }'”. The output is shown in the screenshot

below.

Lastly, we can also monitor the modifications made by “khugepaged” by checking the
information on “/proc”. For example we can check the
“AnonHugePages”/”ShmemPmdMapped”/’ShmemHugePages” in ““/proc/meminfo”, which is
global for the entire system. If we want information regarding a specific process/task we can use
“/proc/[PID]/smaps” and count “AnonHugePages”/’FileHugeMapped” for each mapping

(https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html).

$ sudo bpftrace -e 'kfunc:khugepaged_scan_mm_slot{ printf(
robe...

88 https:/elixir.bootlin.com/linux/latest/source/mm/khugepaged.c#1.2551

8 https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html

70 https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge. html#thp-sysfs
™ https://man7.org/linux/man-pages/man2/madvise.2.html

"2 https://man7.org/linux/man-pages/man2/pretl.2.html

73 https://elixir.bootlin.com/linux/latest/source/mm/khugepaged.c#1.2404

74 https://elixir lin lin 1.12/source/mm/kh 122

30

krfcommd

“krfcommd” is a kernel which is started by executing “kthread run()” function”. The kernel
thread executes the “rfcomm_run()” function’. Thus, we can say that “krfcommd” is responsible
for RFCOMM connections’”.

RFCOMM (Radio Frequency Communication) is a set of transport protocols on top of L2ZCAP
which provides emulated RS-232 serial ports. It provides a simple reliable data stream (like
TCP). It is used directly by many telephony related profiles as a carrier for AT commands, as
well as being a transport layer for OBEX over Bluetooth™,

Moreover, there is also an “rfcomm” cli tool in Linux. It is used to inspect and maintain
RFCOMM configuration”. For more information about RFCOMM 1 suggest reading
https://www.btframework.com/rfcomm.htm. You can also go over the protocol specification®.

Also, RFCOMM protocol supports up to 60 simultaneous connections between two Bluetooth
devices. The number of connections that can be used simultaneously is implementation-specific.
For the purposes of RFCOMM, a complete communication path involves two applications
running on different devices (the communication endpoints) with a communication segment
between them®'.

Lastly, RFCOMM is implemented as a kernel module. Thus, it can be compiled directly to the
kernel or separate kernel module - in the screenshot below we can see it compiled as a separate

fil(j_ root@localhost: # modinfo rfcomm
i #libsmoduless5.19.?-archi-1.0,kernel/net bluetooths rfconn rfoonn . ko . zst

bt-proto-3

GPL

1.11

Bluetooth RFCOMM ver 1.11

Marcel Holtmamm <marcel@holtmann.org>
Z2787EECAECZB2A1AZ4A7701

bluetooth

¥

¥

rfconn

5.19.7-archl-1.0 SMP preempt mod_unload 686

PRCS#?

Build time autogenerated kermel ke
30:9A1:19:01:BA:9C:BA:D5:CO:8D:F?:A5:39:AR:C?:54:A6:CI:D8: ZB

5:33:03:12:81:D6:77:59:54:F5:BE:5B:D5:FF:C4:5D:D1:F1:
:16:68:2E:33:84:97:2D:FD:BE:35:1B:30:EB: 17:AA:DD:01:EA:

disable_cfc:Disable credit based flow control (bool)
channel_mtu:Default MTU for the RFCOMM channel (int)
12cap_ertm:Use LZCAP ERTM mode for comnnection (bool)

75 https://elixir.bootlin.com/linux/latest/source/net/bluetooth/rfcomm/core.c#1.2215

78 https://elixir.bootlin.com/linux/latest/source/net/bluetooth/rfcomm/core.c#L.2109

7 https://stackoverflow.com/questions/57152408/what-is-the-internal-mechanics-of-socket-function
78 https://en.wikipedia.org/wiki/List_of Bluetooth protocols

™9 https:/linux.die.net/man/1/rfcomm

80 https://www.bluetooth.com/specifications/specs/rfcomm-1-1/

8 https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/rfcomm html

31

ksgxd

The kernel thread “ksgxd” is part of the Linux support for SGX (Software Guard eXtensions).
Overall, SGX is a hardware security feature of Intel’s CPU that enables applications to allocate
private memory regions for data and code. There is a privilege opcode “ENCLS” which allows
creation of regions and “ENCLU” which is a privilege opcode that allows entering and executing
code inside the regions®?. For more information about SGX you can read my writeup about it®,

“ksgxd” is a kernel which is started by executing “kthread run()” function®. The kernel thread
executes the “ksgxd” function®. “ksgxd” is started while SGX is initializing and at boot time it
re-initializes all enclave pages. In case of over commitment “ksgxd” is also responsible for
swapping enclave memory®*® like “kswapd™®’.

If you want to know if your CPU supports SGX you can use the following command: “cat
/proc/cpuinfo | grep sgx” (you can also use Iscpu). You can also check your UEFI (legacy BIOS)
configuration to check if you - check out the screenshot below®,

Lastly, there is a great guide for an example SGX app using a Linux VM on Azure that I
encourage you to read®. For more information about the Linux stack for SGX I suggest reading
https://download.01.org/intelsgxstack/2021-12-08/Getting_Started.pdf and going over the
following github repo https:/github.com/intel/linux-sgx.

My Favorites Main Ai Tweaker Advanced Monitor Boot

ard Extensions (SGX) Disabled

Tec Offset Time Window Auto

Hardware Prefetcher Enabled
Adjacent Cache Line Prefetch Enabled

Intel (VMX) Virtualization Technology Disabled

Hype

> Per Core Hyper-Threading

82 https://docs.kernel.org/x86/sgx.htmlhttps://docs.kernel.org/x86/sgx.html

8 https://medium.com/@boutnaru/security-sgx-software-guard-extension-695cab7dbcb2
8 https://elixir.bootlin.com/linux/v6.1.10/source/arch/x86/kernel/cpu/sgx/main.c#L427
8 https://elixir.bootlin.com/linux/v6.1.10/source/arch/x86/kernel/cpu/sgx/main.c#1.395
8 https://elixir.bootlin.com/linux/v6.1.10/source/arch/x86/kernel/cpu/sgx/main.c#L 188
87 https://medium.com/@boutnaru/the-linux-process-journey-kswapd-22754e¢783901

8 https://phoenixnap.com/kb/intel-sgx

8 https:/tsmatz.wordpr

jbd2 (Journal Block Device 2)

“JBD” stands for “Journal Block Device™. “jbd2” is a kernel which is started by executing
“kthread run()” function’. The name of the kernel thread has the following pattern
“ibd2/[DeviceName]”. The code is part of a kernel module - as you can see in the screenshot
below.

Moreover, as we can see from the code it is a file system journal-writing code (part of the ext2fs
journaling system). The journal is an area of reserved disk space used for logging transactional
updates. The goal of “jbd2” is to schedule updates to that log™.

The kernel thread executes the “kjournald2()” function®. This main thread function is used to
manage a logging device journal. Overall, the thread has two main responsibilities: commit and
checkpoint. Commit is writing all metadata buffers of the journal. Checkpoint means flushing
old buffers in order to reuse an “unused section” of the log file®*.

Lastly, JBD was written by Stephen Tweedie and it is filesystem independent. There are different
filesystems that are using it like etx3,etx4 and OCFS2. There are two versions: JBD created in
1998 with ext3 and JBD2 forked from JBD in 2006 with ext4”.

root@localhost: # modinfo jbd2

filename: #libsmodulesrs5.19.7-archl-1.0-kernel f=- jbd2-, jbd2 . ko .z=st
license: GPL

=rcuersion: 7072394n13FBB3ESFCCEOSC

¥

¥

JjbdZ2

5.19.7-archl-1.0 SHP preempt mod_unload 686

PECS#7

Build time autogenerated kermel key
30:9A:19:01:BA:9C:BA:D5:CO:BD:F?:A5:39:AA:C7:54:A6:C9: D8 : 2B
sha512
30:64:02:30:0E:96:1E:1D:03:C4:F6:FD:71:26:C9:EC:BA:98:49 :858:
91:E7:00:8A:90:43:6B8:89:D9:DD:F2:D0:64:27 :BE:3B :4F :0A:CA:BD:
3F:EC:76:4B:AD:26:79:0E:72:28 :FC:C6:02:30:01:CA:42:28 :FD:An:
D5:66:C5:16:05:2A:59:D5:BA:BE 4B :B4:DA:5E:DE:5F: 1B:1B:01:06:
7D:7B:59:12:58:D2:C5:5D:99:63:81:6B:60:D2:63:6C:0F:18:5A: 26
9D :93

9 https://manpages.ubuntu.com/manpages/jammy/man1/pmdajbd2.1.html
91 https://elixir.bootlin.com/linux/v6.2.1/source/fs/jbd2/journal.c#1. 277
92 https://elixir.bootlin.com/linux/v6.2.1/source/fs/jbd2/journal.c

%3 https://elixir.bootlin.com/linux/v6.2.1/source/fs/ibd2/journal.c#1.169
9 https://elixir.bootlin.com/linux/v6.2.1/source/fs/jbd2/journal.c#L 152

% https://en.wikipedia.org/wiki/Journaling_block_devi

33

netns

The kernel thread “netns” is based on a single threaded workqueue®, which is created when the
network namespace is initialized (net_ns_init()). If you want to read more about “network
namespaces” you can use the following link
https://medium.com/@boutnaru/linux-namespaces-network-namespace-part-3-7f8f8e06fef3.

Also, for a reminder you can also check out the diagram below®’

“netns” is responsible for cleaning up network namespaces. When a namespace is destroyed the
kernel adds it to a cleanup list. The kernel thread “netns” goes over the list and performs the
cleanup process using the “cleanup net()” function®®

If you want to see where all the magic happens is in “__put_net()” which queues the work on the
“netns” to execute “cleanup net()” function”

SuLla Evans 3
evork network namespaces
network namespaces namespaces usually every server listens
are Kinda confusing have 2 inferfaces on a port and network
00 (+ sometimes more) interface(s)
- —rthe leopback interface
for a process to have (127.0.0.1/8, for connections 0.0.0.0:8080
its own network?? inside the namespace) means

"port 8080 on every network

—ranother interface . . "
interface in my namespace

(for connections from

outside)
127.0.0.1 stays your physical network other namespaces are
inside your namespace card is in the host connected to the host

network namespace namespace with a bridge
- fwork
ol on 127.0.01 ihosi‘ ne‘i‘uork 'hos‘i‘ nefwork.l [Py
2 : namespace ‘. | nameapac;;/ﬁ'.?‘?lt‘_‘".‘f'ﬂ.
1

o
that's fine but nobody , |
[
requests from 168,
other computers | Bre \Lcﬂfd '
H M’fuo"

B)/"@ cantmner

outside your network
server| namespace will be able
to make requests to you!

% https://elixir.bootlin.com/linux/v6.2-rc4/source/net/core/net_namespace.c#L1106
97 - - -

98

https://wizardzines.com/comics/network-namespaces/
https://elixir.bootlin.com/linux/v6.2.3/source/net/core/net_namespace.c#L.565
% https://elixirbootlin.com/linux/v6.2-re4/source/net/core/net_namespace.c#L.649

34

oom_reaper

“oom_reaper” is a kernel thread which was created using the “kthread run” function'®.
Basically, it is the implementation of the OMM (Out—of-Memory) killer function of the Linux
kernel - for more information about it I encourage you to read the following link
https://medium.com/@boutnaru/linux-out-of-memory-killer-oom-Kkiller-bb2523dal Sfc.

99101

The function which is executed by the thread is “oom_reaper”'®! which calls “oom_reap task™'*.

Based on the documentation the goal of the “oom_reaper” kernel thread is to try and reap the

memory used by the OOM victim'®. “oom_reaper” sleeps until it is waked up '*

OOM Kkills the process'®.

which is after

After killing the process the victim is queued so the “oom_reaper” can release the resources'®.
You can see an example of the log created by OOM after killing a process'?’.

190 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_kill.c#1.735
101 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_Kkill.c#L640

192 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_kill.c#1.609

103 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_kill.c#L.504

104 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_kill.c#1.680

105 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_kill.c#1.947
106 NTRTE . : N .

Wihttps://blog.capdata.fr/ index.Dhn/linux-0ut-0f-memorv—l?iller—oom-killer-r)our-un-serveur-base-de-donnees-nostgre

sql/

35

Kpsmoused

“kpsmoused” is a kernel thread which based on an ordered workqueue'® which is allocated

inside the “pmouse_init” function. “kpsmoused” is responsible for handling the input from PS/2
mouse devices.

Thus, “kpsmoused” transforms the raw data to high level event of mouse movements that be can
consume from “/dev/input/mice”, “/dev/input/mouseX”, or *“/dev/input/eventX”'%.

The kernel thread is created by the “psmouse” kernel module which is described as “PS/2 mouse
driver” - as shown in the screenshot below (which was created using copy.sh). By the way, the
“kpsmoused” is created as part of ““/drivers/input/mouse/psmouse-base.c” since kernel 2.5.72'°.

root®Plocalhost: # modinfo psmouse
slibsmoduless5.19.7-archl-1.0-kernel driverssinput/mouse~psnouse . ko.zst
GPL
P3/Z mouse driver
Vo jtech Paulik <uojtech@suse.cz>
966B3C75C18D7DDE1706120
serio:tydSprxid=ex=
serioitydlprsid=exs
libps2,serio

¥

psmouse
5.19.7-archl-1.0 SMP preempt mod_unload 686

PKCS#?

Build time autogenerated kernel key
30:9A:19:01:BA:9C:BA:D5:C0:BD:F7:A5:39:AA:C7:54:A6:CT:DB:
shab12
J0:64:

:C6:2D:AB:F3:E1:53:
43:FB:7B 0h
02:30:08 :DA:0D :5E
76:0B:04 70 :

2:0B:9C:98 :EA:37:08:D5:39:72:38:50:87:7C:

tpdebug enable debugging, dumping packets to KERN_DEBUG. (hool)
recalib_delta:packets containing a delta this large will be discarded, and a recalibration may be scheduled.

Jjumpy_delay:delay (ms) before recal after jumpiness detected Cint)

spew_delay:delay (ms) before recal after packet spew detected (int)

recal_guard_time:interval (ms) during which recal will be restarted if packet received C(int)
post_interrupt_delay:delay (ms) before recal after recal interrupt detected (int)

autorecal :enable recalibration in the driver (bool)

hgpk_mode:default hgpk mode: mouse, glidesensor or pentablet (string)

elantech_smbus:Use a secondary bus for the Elantech device. (int)

synaptics_intertouch:Use a secondary bus for the Synaptics device. Cint)

proto:Highest protocol extension to probe (bare, imps, exps, any). Useful for KUM switches. (proto_abbrev)
resolution:Resolution, in dpi. (uint)

rate:Report rate, in reports per second. (uint)

smartscroll:Logitech Smartscroll autorepeat, 1 = enabled (default), 0 = disabled. (bool)
attech_workaround :A4Tech second scroll uwheel workaround, 1 = enabled, @ = disabled (default). (bool)
resetafter:Reset device after so many bad packets (@ = never). (uint)

resync_time:How long can mouse stay idle before forcing resync (in seconds, 0 = never). (uint)

108 https://elixir.bootlin.com/linux/v6.2.6/source/drivers/input/mouse/psmouse-base.c#1.2046
199 https.//www.kernel.org/doc/html/v5.5/input/input.html
10 https://elixir.bootlin.com/linux/v2.5.72/source/drivers/input/mouse/psmouse-base.c

36

slub_flushwq

“slub_flushwq” is a kernel thread which based on a workqueue''! which is allocated inside the
“kmem_cache init late” function. Based on the source code the allocation is done only if
“CONFIG_SLUB _TINY” is enabled'?. From the documentation “CONFIG_SLUB_TINY” is
for configuring SLUB allocation in order to achieve minimal memory footprint, it is not
recommended for systems with more than 16 GB of RAM'". The queuing of work is done
inside the “flush_all cpus_locked” function'*.

SLUB is also known as the “Unqueued Slab Allocator”'”®. Slab allocation is a memory
management mechanism which allows efficient memory allocation of objects. It is done using
reduction of fragmentation that is caused due to allocations/deallocations''®. For more
information about slab allocation I suggest reading the following link

https://hammertux.github.io/slab-allocator.

Thus, SLUB is a slab allocator that limits the use of cache lines instead of using queued object
per cpu/per node list''”. So, it is less complicated because it does not keep queues (like for each
CPU). The only queue is a linked list for all the objects in each of the slub pages''®. The interplay
between the three main data structures (kmem cache, kmem cache cpu, kmem cache node)
used by the SLUB allocator is shown in the diagram below'"” .

Cache Descriptor LUB r r Per Node data
kmem_cache: = kmem_cache_node:
flags partial list
offset list_lock
s1ze

object_size

Page Frame Descriptor
struct page: |'gozen

node

cpu_slab

Pagelock
kmem_cache_cpu: 40808
freelis
t objects
Page Frame Content: NULL 4 " inuse
. freelist

Object Object

Page frame

-

" https://elixir.bootlin.com/linux/v6.2.6/source/mm/slub.c#1.5057
"2 https://elixir.bootlin.com/linux/v6.2.6/source/mm/slub.c#L.5056

"3 hitps:/cateee.net/Ikddb/web-lkddb/SLUB_TINY.html
"4 https://elixir.bootlin.com/linux/v6.2.6/source/mm/slub.c#1.2822

M3 https://lwn.net/Articles/229096/

16 https://en.wikipedia.org/wiki/Slab_allocation
"7 — - ,

118

https://hammertux.github.io/slab-allocator
119 ttps://hammertux.github.jo/img/SLUB-DS.png

37

pgdatinit

“pgdatinit” is a kernel which is started by executing the “kthread run()” function'®. The kernel
thread executes the “deferred init memmap()” function'?.

Thus, “pgdatinit” is responsible for initializing memory on every node of the system. For each
node a dedicated kernel thread is created with the name pattern “pgdatinitfNodeNumber]”'?.

Overall, the kernel thread is created in case CONFIG_DEFERRED STRUCT PAGE INIT is
enabled when compiling the kernel. Which states that initialization of struct pages is deferred to

kernel threads!'%.

Lastly, after the initialization flow is finished an information message is sent to the kernel ring
buffer'* - as you can see in the image below'?.

[0.212320] node #0, CPUs: #1 #2 #3 #4 #5 #e6 #7 #8 #9
#10 #11 #12 #13 #14 #15 #1l6 #17 #18 #19 #20 #21 #22 #23
[0.260348] smp: Brought up 1 node, 24 CPUs

[0.260348] smpboot: Max logical packages: 2
[0.260348] smpboot: Total of 24 processors activated (182404.32 BogoMIPS)
[

(LY SYINNnode 0 deferred pages initialised in 96ms

120 https://elixir.bootlin.com/linux/v6.3-rc4/source/mm/page alloc.c#1.2284

121 https://elixir.bootlin.com/linux/v6.3-rc4/source/mm/page_alloc.c#1.2108

122 https://elixir.bootlin.com/linux/v6.3-rc4/source/mm/page _alloc.c#L.2283
123

124 https://elixir.bootlin.com/linux/v6.3-rc4/ source/mm/ page alloc.c#1.2177
125 : ail-archive.com/debian-bugs-dist@lists.debian.org/msg

38

kblockd

“kblockd” is a kernel thread based on a workqueue'?® which is marked with high priority and that
it can be used for memory reclaim. It is used for performing I/O disk operations.

Moreover, we can deduct based on the location of the file in the Linux source tree (/block) that
“kblockd” is part of the “Block Layer” (which is responsible for managing block devices) - as
shown in the diagram below'?’.

Overall, one might think that we can use keventd'*® for performing I/O operations. However,
because they can get blocked on disk I/O. Due to that, “kblockd” was created to run low-level

disk operations like calling relevant block device drivers'®’.

Thus, “kblockd” must never block on disk I/O so all the memory allocations should be
GFP_NOIO. We can sum up that it is used to handle all read/writes requests to block devices'*.

Block
/dev/sda etc el

N - _; Requests, Requests,
md Drbd, | Single- Multi-
Brd, '| queue | queue
S =] Umem,——————
8 E‘ B c % ‘= Bcache’ SCS',MA,
<<= 1S E Floppy, ps3disk,
A EEE NVME, nbd, ..

126 https://elixir.bootlin.com/linux/v6.2.9/source/block/blk-core.c#L.1191

127 https.//Iwn.net/Articles/736534/
128 https://lwn.net/Articles/11351/

39

writeback

The kernel thread “writeback” is based on a workqueue''. The goal of the kernel thread is to
serve all async writeback tasks'*2. Thus, “writeback” is flushing dirty information from the page
cache (aka disk cache) to disks. The page cache is the main disk cache used by the kernel. The
kernel references the page cache when reading from/writing to disk'®’.

Overall, they are two ways of flushing dirty pages using writeback. The first is in case of an
explicit writeback request - like syncing inode pages of a superblock. Thus, the

“wb_start writeback()” is called with the superblock information and the number of pages to
flush. The second one is when there is no specific writeback request, in this case there is a timer
that wakes up the thread periodically to flush dirty data'**.

Moreover, from kernel 3.2 the original mechanism of “pdflush” was changed to “bdi_writeback”.
By doing so it solves one of the biggest limitations of “pdflush” in a multi-disk environment. In
that case “pdflush” manages the buffer/page cache of all the disks which creates an 10
bottleneck. On the other hand, “bdi_writeback™ creates a thread for each disk'*. By the way,
“bdi” stands for “Backing Device Information™'*®. Lastly, to get an overview of the “writeback”
mechanism you can checkout the diagram below'*’.

{ handle ohject

Y
bdi_writeback thread e timer
FORK
; waleup timerout
I dl]'_ng bdi_forker thread schedil &

= managementl
T, Y -

regizter bdi_object
inte bdi_list, such

131 https://elixir.boouin.com/INuUX/vo.£.2/S0Urce/mm/ Dacking-aev.cxL 03

132 https://elixir.bootlin.com/linux/v6.2.5/source/mm/backing-dev.c#L.35
133 https://www.oreilly.com/library/view/understanding-the-1linux/0596005652/ch15s01.html
134 https://Ilwn.net/Articles/326552/

135

136 https://lwn.net/Articles/32655_2/
137 } .

40

kdamond (Data Access MONitor)

“kdamond” is a kernel thread which is created using the “kthread run()” function'** which is part
of the DAMON (Data Access MONitor) subsystem. The kernel thread executes the
“kdamon_fn()” function'*.Overall, DAMON provides a lightweight data access monitoring
facility that can help users in analyzing the memory access patterns of their systems'*’. Based on
the documentation DAMON increases the memory usage by 0.12% and slows the workloads
down by 1.39%"!.

Also, DAMON has an API for kernel programs'**. Moreover, there is also DAMOS
(DAMon-Based Operations Schemas). Using that, users can develop and run access-aware
memory management with no code and just using configurations'®.

Probably the best way to go over DAMON data is by using visualization. A great demonstration
for that has been done by SeongJae Park using the PARSEC3/SPLASH-2X benchmarks'*. The
output was heatmaps of the dynamic access patterns for heap area, mmap()ed area and the stack
area. One example is shown in the image below, it visualizes the data access pattern of the stack
area when running the parsec3-blackscholes'®. Lastly, there are also other mechanisms in Linux
that can help with data access monitoring such as “Perf Mem” and “Idle Page Tracking”

7x108 ‘ : : . : 3

6x108

5x10°8

4x10°

3x10°8

Virtual Address (bytes)

2x108

1x108

0 2x1010 4x1010 6x1010 8x1010 1x101 12x101

Time (ns)

138 https://elixir.bootlin.com/linux/v6.3-rc5/source/mm/damon/core.c#L.632

139 https://elixir.bootlin.com/linux/v6.3-rc5/source/mm/damon/core.c#L. 1304
140 https://www.kernel.org/doc/html/latest/admin-guide/mm/damon/index.html
" https://damonitor.github.io/doc/html/v20/vm/damon/eval. html

142 https://www.kernel.org/doc/html/v5.17/vm/damon/api.html#functions

143 https://sip38.github.io/post/damon/

144 https://parsec.cs.princeton.edu/parsec3-doc.htm

145 https:/Iwn.net/Articles/813108/

41

kintegrityd

“kintegrityd” is a kernel thread based on a workqueue'*® which is responsible for verifying the
integrity of block devices by reading/writing data from/to them. The function which is executed
by the workqueue is “bio integrity verify fn”'*’. The function is called to complete a read
request by verifying the transferred integrity metadata and then calls the original bio end io

function'*.

This procedure is done to ensure that the data was not changed by mistake (like in a case of a bug
or an hardware failure'®. This mechanism is also called “bio data integrity extensions*. And it
allows the user to get protection for the entire flow: from the application to storage device. The
implementation is transparent to the application itself and it is part of the block layer'*°

Moreover, in order for it to work we should enable CONFIG_BLK DEV INTEGRITY, which is
defined as “Block layer data integrity support™'. The filesystem does not have to be aware that
the block device can include integrity metadata. The metadata is generated as part of the block
layer when calling the submit_bio() function'?. We can toggle the writing of metadata using
“/sys/block/<BlockDevice>/integrity/write generate” and the verification of the metadata using
“/sys/block/<BlockDevice>/integrity/read_verify” - as shown in the screenshot below.

Lastly, there are also file systems which are integrity aware (and they will generate/verify the
metadata). There are also options for sending the metadata information from userspace, for more
information 1 suggest reading the following Linux’s kernel documentation
https://www.kernel.org/doc/Documentation/block/data-integrity.txt.

format protection_interval_bytes read verify tag_size write_generate

148 https://elixir.bootlin.com/linux/v6.1/source/block/bio-integrity.c#L.455
147 https://elixir.bootlin.com/linux/v6.1/source/block/bio-integrity.c#L.317
148 hitps://elixir.bootlin.com/linux/v6.1/source/block/bio-integrity.c#L.313
149 https://www.quora.com/What-is-the-purpose-of-kintegrityd-Linux-Kernel-Daemon/answer/Liran-Ben-Haim

190 https.//www.kernel.org/doc/Documentation/block/data-integrity.txt

51 https://elixir.bootlin.com/linux/v6.1/source/block/Kconfig#L60

182 https.//www.kernel.org/doc/Documentation/block/data-integrity.txt

42

kthrotld

“kthrotld” is a kernel thread which was created using an workqueue'*® which acts as an interface
for controlling 10 bandwidth on request queues (throttling requests). Overall, read and write
requests to block devices are placed on request queues'™,

In order to understand how request queues are used the best way is to check the source code of
the kernel. The first step is going over the definition of “struct request_queue”'> and then where
is it referenced'®. By the way, in kernel version 6.1.1 it is referenced in 199 files. We can
summarize that a request queue holds I/O requests in a linked list. Also, it is a best practice to
create a separate request queue for every device'’.

Thus, we can say that “kthrotld” acts as a block throttle, which provides block QoS (Quality of
Service). It is used to limit IOPS (I/O per second)/BPS (Bits per second) per cgroup (control

group)'®.

Overall, 10 throttling is done as part of the generic block layer and before the IO scheduler as
seen in the diagram below'”. For more information on “Block Throttling” 1 suggest reading
https://developer.aliyun.com/article/789736.

APP1

f

<

v

xfs/ext4...
Page cache
DM/flashcache/bcache

Generic block layer(
10 scheduler layer()

Scsi layer

Raid/HBA

HDD, SSD

183 https://elixir.bootlin.com/linux/v6.1.1/source/block/blk-throttle.c#1.2470
194 https://www.halolinux.us/kernel-architecture/request-queues.html
195 https://elixir.bootlin.com/linux/v6.1.1/source/include/linux/blkdev.h#1.395

1% https://elixir.bootlin.com/linux/v6.1.1/C/ident/request_gueue
157 : - . T - -

198 https://developer.aliyun.com/article/789736
'%9 https://blog.csdn.net/yiyeguzhoul00/article/details/104044419

43

scsi_eh (Small Computer System Interface Error
Handling)

The kernel thread “scsi_eh” is executed using the “kthread run” function. The name pattern of
the kernel thread is “scsi_eh <SCSI HOST NUMBER>'. 1t is the “SCSI error handler”
which is responsible for all of the error handling targeting every SCSI host'®'. The kernel thread
is executing the “scsi_error_handler” function'®,

Moreover, a SCSI controller which coordinates between other devices on the SCSI bus is called
a “host adapter”. It can be a card connected to a slot or part of the motherboard. You can see an
example of a SCSI connector in the image below'®.

Lastly, SCSI stands for “Small Computer System Interface”. It is a set of standards (from ANSI)
for electronic interfaces in order to communicate with peripheral hardware like CD-ROM drives,
tap drivers, printers, disk drives and more'*.. For more information about SCSI 1 suggest going
over https://hackaday.com/2023/03/02/scsi-the-disk-bus-for-everything/.

180 https:/elixir.bootlin.com/linux/v6.4-rc1/source/drivers/scsi/hosts.c#1.504

161 https://elixir.bootlin.com/linux/v6.4-rc1/source/drivers/scsi/scsi_error.c#L.2230
162 — - - - —

163

https://computer.howstuffworks.com/scsi.htm
164 |yttns-//www.techt /] Jefiniti

44

blkcg_punt_bio

“blkcg_punt bio” is a kernel thread based on a workqueue. The workqueue itself is created in the
“blkcg_init” function'®. It is part of the common block controller cgroup interface'®.

Overall, when a shared kernel thread tries to issue a synchronized block I/O (bio) request for a
specific cgroup it can lead to a priority inversion. It can happen if the kernel thread is blocked
waiting for that cgroup'®’. An example of priority inversion is shown in the diagram below'®®.

Thus, to avoid the problem mentioned above the function “submit bio”'® punts the issuing of
the bio request to a dedicated work item (per-block cgroup).
It calls “blkcg punt bio submit™'”’, which will call “ blkcg punt bio submit™'".

Priority inversion.

Priority
A Inversion!
H
M
L
=
time
Figure 2

185 https:/elixir.bootlin.com/linux/v6.2.5/source/block/blk-cgroup.c#L.2058
166 https://elixir.bootlin.com/linux/v6.2.5/source/block/blk-cgroup.c#L3
167 https://patchwork.kernel.org/project/linux-block/patch/20190627203952.386785-6-tj@kernel.org/

168 https://embeddedgurus.com/barr-code/2010/11/firmware-specific-bug-8-priority-inversion/
169 o . -

170 https://elixir.bootlin.com/linux/v6.2.5/source/block/blk-cgroup.h#1.380
171 Py . ;
https://elixir.bootlin.com/linux/v6.2.5/source/block/blk-cgroup.c#1.1657

45

napi (New API)

NAPI stands for “New API” which is used to reduce the number of received interrupts. Think
about cases in which the network driver receives a large number of packets at a fast pace'”. If we
think about it in the case of a Gigabit network card and an MTU of 1500 the CPU will get about
90K of interrupt per second. Thus, we can say that NAPI is an extension to the Linux packet
processing framework, which is done for improving performance for high speed networking.
This is performed using interrupt mitigation and packet throttling. It is important to say that the
addition of NAPI does not break backward compatibility'”. “napi” is a kernel thread which is
created using the “kthread run()”'”* function which is part of the NAPI (New API) subsystem.
The name of the kernel thread is based on the pattern “napi[DeviceName]-[NAPI-ID]”. It
executes the “napi_threaded poll”'”® function.

Due to that, drivers that support NAPI can disable hardware interrupts as a mechanism for packet
reception. In that case the network stack relies on polling for new packets at a specific interval. It
might seem that polling is less efficient but in case the network device is busy any time the
kernel will poll for a packet it will get something'’®. Lastly, the way NAPI does that is by
combining hardware interrupts and polling. When a hardware interrupt is received, the driver
disables it and notifies the kernel to read the packets.Then a kernel software interrupt polls the
network device for a specific time. When the time runs out/there is no more data the kernel will
enable the hardware interrupt again'’’. A detailed diagram of the NAPI flow is shown in the
diagram below'”®

7Y Motfiter ook

m
= .ﬂ IP Processing | na:m.-w

Dovice 2 _?\.—.-Gdlll_m:.im_lla =
H Root Qdisc

4 == e doviceZ
o d ".__:- (1000 xllo‘}ng fouffers J—sm{"o1060_cloan_rx_ira) ; ’ ol

e L (atioc lkalh _typo._ ums)-»@ul- header)
—= - et

interrupt Rx_Ring
o e

Rx Interrupt
{(generated by the
Firat packst recsived)

uuuuu

NAPI / ﬂ) TX-API -~

/_
1)

7

8

{3

5

packots

DMA engine
of device 3 device

172
173

https://www.hitchhikersguidetolearning.com/2023/04/09/handling-receive-packets-via-napi/
https://wiki.linuxfoundation.org/networking/napi

74 https://elixir.bootlin.com/linux/v6.4-rc4/source/net/core/dev.c#L 1371

175 hitps://elixir.bootlin.com/linux/v6.4-rc4/source/net/core/dev.c#L 662

176 httDS'//lwn net/Articles/ 833840/

177

Bhttps:/www. research ate net/ roﬁle/Roberto Brusch1 2/ ubhcat10n/228624515/ﬁ ure/figd/AS:301797211164675
0 De ~

kauditd (Kernel Audit Daemon)

“kauditd” is a kernel thread which is started using the “kthread run” function'”. The kernel
thread is calling the “kauditd thread” function, this function is responsible for sending audit logs
to userspace'®’.Overall, the kernel mechanism in the Linux kernel has a couple of goals: integrate
fully with LSMs'®!, minimal run-time overhead when performing auditing, ability to disable
system call auditing at boot time, allow to be used by other parts of the kernel for auditing,
netlink interface to userspace and support for filtering to minimize the information sent to

user-mode!'®?.

Thus, we can say “kauditd” is the kernel component of the “Linux Auditing System” which
handles the audit events - as shown in the diagram below'® . In order to configure which set of
rules are going to be loaded in the kernel audit system we can use the ““/etc/audit/audit.rules” file.
This file can hold configuration in one of three categories: control (configuring the audit system),

file system rules monitoring rules and system call monitoring rules'*.

Lastly, by using the “Linux Auditing System” the system administrator can investigate what
happens in the system for the purpose of debugging or in case of a security incident. We can also
use the “auditct]” utility get/add/delete rules as part of Linux's kernel audit system'®*. Also, there
are great examples for “auditorules” in GitHub (one example is

https://github.com/Neo23x0/auditd/blob/master/audit.rules).

Audit log
Audit log Generation Maintenance
TR (Synchronous) (Asynchronous)
.| Audit Filters = kaudit buffer = kaudit
of @ Z
SLbL Syscall Har;dler :: i
SpaceyT. | Ne|t||mk
User Syscall Syscall :
Space ()start exit®) :
| h 4

. & INJAudi
[Applicatisn J E [fugid }1> Log

179 https://elixir.bootlin.com/linux/v6.4-rc4/source/kernel/audit.c#1.1700
180 https://elixir.bootlin.com/linux/v6.4-rc4/source/kernel/audit.c#L.828
181 https://medium.com/@boutnaru/linux-security-lsm-linux-security-modules-907bbcf8c8b4

182 https://elixir.bootlin.com/linux/v6.4-rc4/source/kernel/audit.c#L.11
183 - :

184

https://manpages.debian.org/unstable/auditd/audit.rules.7.en.html
185 |ttps:/linux.die.net/man/8/auditct]

47

tom_dev_ wq

“tpm_dev_wq” is a kernel thread base on a workqueue'®. It belongs a device file system
interface for “Trusted Platform Module” aka TPM'¥,

Overall, TPM is an international standard for secure cryptoprocessors. Those are
microprocessors which are used for a variety of security applications such as secure boot,
random number generating and crypto key storage'®®.

Moreover, a work is queued for “tpm_dev_wq” as part of the function “tpm_common_write”'®.

In case we are working in non-blocking mode an async job for sending the command is
scheduled™”.

Lastly, “tpm-dev-common.c” is compiled as part of the kernel TPM device drivers as shown in
the Makefile''. The information about the TPM module is shown in the screenshot below. I am
using Ubuntu “22.04.2”, in which the TPM module is compiled directly into the kernel itself.

Troller
Ubuntu

Troller $§ modinfo tpm
tpm
(builtin)

GPL

drivers/char/tpm/tpm

2.0

TPM Driver

Leendert n Doorn (leender atson.ibm.com)

suspend pcr:PCR to use for dumi arites to facilitate flush on suspend. (uint)

186 https://elixir.bootlin.com/linux/v6.3-rc7/source/drivers/char/tpm/tpm-dev-common.c#L.273
187 https://elixir.bootlin.com/linux/v6.3-rc7/source/drivers/char/tpm/tpm-dev-common.c#1.13
188 https://wiki.archlinux.org/title/Trusted Platform Module

189 https.//elixir.bootlin.com/linux/v6.3-rc7/source/drivers/char/tpm/tpm-dev-common.c#1.209
190 https://elixir.bootlin.com/linux/v6.3-rc7/source/drivers/char/tpm/tpm-dev-common.c#1.202
191 https://elixir lin linux -1 ree/drivers/char/tpm/Makefil

48

ipv6_addrconf

“ipv6_addrconf” is a kernel thread which is based on a workqueue'?. This code is part of the
Linux INET6 implementation and is responsible for the IPv6 Address auto configuration'®.
Overall, each IPv6 entity in the network needs a globally unique address for communicating
outside of the local segment. In order to get such an address there are a few options: manual
assignment of an address, DHCPv6 (Dynamic Host Configuration Protocol version 6) and
SLAAC (Stateless Address Autoconfiguration). When talking about stateless and stateful it
means if there is a server/device that keep tracks of a state for each address assignment'**.

Moreover, the stateless address autoconfiguration has the following phases. The node configures
itself with a link-local address. The most known way for doing that is using the link-local prefix
“FE80::/64” and combining that with the EUI-64 identifier generated from the MAC address - as
shown in the diagram below.

1. Take the interface’s MAC address (for this example 2. Insert OxFFFE in the middle of the MAC address:
7007.1234.5678):

7007123256 [78] » [70]o7][22] FF | FE] 34][56] 78]

4

3. Flip the 7™ bit of the MAC address. (Note that the MAC
is written in HEX, to flip the 7™ bit we must convert the
first two HEX digits to BINARY):

4. Combine the link-local prefix with the EUI-64 identifier:

[FEso::| 72] 07 [12 | Fr | FE |34 56] 78] [70 07 [12| FF [FE 32|56 | 73]
To binary
| <
The resulting IPv6 link-local address for this interface is: Flip the 7”‘ bit

[FE80::7207:12FF:FE34:5678/64 |

To HEX

[72] 07| 12]FF| FE]34]56] 78]

The flow above It is done by the function “addrconf addr gen™®. We can see there the

link-local prefix'*® and the call for generating the EUI-64 identifier by the function
“ipv6_generate eui64”"’. After that, the node performs DAD (Duplicate Address Detection) in
order to ensure that the address is unique in the local segment. It is done using NDP (Neighbor
Discovery Protocol), which defines 5 new packets types to ICMPv6 that allows to provide
different functionality like DAD and others like parameter discovery, next hop determination and

192 https://elixir.bootlin.com/linux/v6.2.11/source/net/ipv6/addrconf.c#1.7292

193 https:/elixir.bootlin.com/linux/v6.2.11/source/net/ipv6/addrconf.c#1.3

194 https://www.networkacademy.io/ccna/ipv6/stateless-address-autoconfiguration-slaac
195 — - - -

https://elixir.bootlin.com/linux/v6.2.11/source/net/ipv6/addrconf.c#1.3314
19 hittps://elixir.bootlin.com/linux/v6.2.11/source/net/ipv6/addrconf.c#1.3326
197 ttps-//elixir bootlin.com/linux/v6.2.1 Usource/net/ipvé/addreont.c#T 3345

49

more'®®, If there are no issues with the link-local address it is assigned to the specific device. The
DAD operation is performed by the function “addrconf dad work™'®”.

Lastly, there is also a similar flow for configuring a global unicast address. The difference is that
there is also a need for sending a “Router Solicitation” message for getting the global prefix of
the segment, I will leave the details of that for a future writeup.

198 https://datatracker.ietf.org/doc/html/rfc4862
199 1tps:/elixirbootlin.com/linux/v6 2.1 L/source/net/ipv6/addreonf. c#1 4058

50

mm_percpu_wq

“mm_percpu wq” is a kernel thread based on a workqueue which is created in the
“init mm_internals” function®”. It is part of the the statistics management regarding virtual
memory?”'. An overview diagram of virtual memory is shown below?*.

Overall, “mm_percpu_wq” is the worker thread which updates different counters about the
virtual memory of a Linux system. It is also called the “vmstat worker”*®. “vmstat” stands for
“Virtual Memory Statistics” which includes information such as: number of free pages, number
of mapped pages, number or dirty pages, amount of memory allocated to kernel stacks and more

(there are more than 150 different counters).

The statistics can be read from the file “/proc/vmstat™®. This proc entry is created with others
(“buddyinfo, “pagetypeinfo” and “zoneinfo”) in the same file in which “mm_percpu mm” is

allocated®®. We can see the list of the metric counters in the source code?*.

As it names suggested the kernel thread is responsible for accumulating the vm events among all
CPUs? . 1t is done by going over all the “online” CPUs*®, Lastly, we can use different cli tools
to review the different statistic counters. One of those tools is “vmstat™®.

VirtuallMemory
0o0

page 2

HiEN
L]

— LILIL]

Memory

pagen

Map

Virtual 2 Disk
Physical . .
s Storage

Memory
Memory

200 https://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#L.2100

201 htps://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#L5

202 witps://iboysoft.com/wiki/virtual-memory.html

203 https://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#1.202 1

204 https://man7.org/linux/man-pages/man5/proc.5.html

205 https://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#1.2123

206 https://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#L 1168
207 - : :

208

https://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#L.117
209 pttps://linux.die.net/man/8/vmstat

51

inet_frag_wq

The kernel thread “inet frag wq” is created using a workqueue®'’, we could have guessed it
based on a workqueue do to the “wq” suffix. It is used for fragment management of IP packets.

Thus the goal of “inet_frag_wq” is to reassemble fragmented IPv4/IPv6 packets®''.

Overall, the goal of IP fragmentation is to split packets into smaller chunks in order to allow
them to meet the MTU (Maximum Transmission Unit) requirement of a specific network. There
is an implementation difference between IP fragmentation in IPv4 and IPv6. On IPv4 the
information needed for fragmentation is part of the IPv4 header which in IPv6 there is a specific
“Fragmentation Header”*'2. An illustration of the flow is shown in the diagram below both for
IPv4*" and IPv6*'*,

Thus, “inet frag wq” is relevant when a fragmented IP packet arrives at a specific system. The
OS stores the fragmented packets in a queue and reassembles them before they are passing the
data to the upper layers of the network stack. The fragment queue is represented by "struct
inet_frag_queue"?". Moreover, we can see in the source code the function “ip_frag reasm”

which is responsible for building a new IP datagram from all of its fragments?'®.

Unfragmentable part Fragmentable part
r - i -
<«+———— |Pv4 Datagrams ——— original HonbyH
riginal lop-by-Hop
P First Fragment packet IPv6 header options ICMPV8 header ICMPVE payload
H uoe UDP Data ‘ Total Length = 1500
eader | Header
UDP Length = 3000

Offset =0

MF=1 <+—— |P Payload (1480 bytes) —*
IPv4 Second Fragment Hop-by-Hop | Fragment

Header UDP Data ‘ Total Length = 1500 1sl':;1?(r:tent IPv6 header options (enr First fragment

Offset = 185

MF =1
IPv4 Last Fragment

UDP Data -

- Total Length = 60 2nd fragment IPV6 head Hop-by-Hop Fragment s d f t

Offset = 3704— > -) packet G2 options header B! W
: IP Payload

MF=0 (40 bytes) 20 + 8 + 2992 = 3020 bytes

3rd fragment Hop-by-Hop Fragment Last
packet (P (zzdley options header | fragment
210 . 1 : : 1 1
https:/elixir.bootlin.com/linux/v6.2-rc1/source/net/ipv4/inet fragment.c#L.211

2" https://elixir.bootlin.com/linux/v6.2-rc1/source/net/ipv4/inet fragment.c#L6

212 hitps://www.geeksforgeeks.org/ipv6-fragmentation-header/

213 https://notes.shichao.io/tcpv1/ch10/
214 . ,

] 2. quUArKSid dlld ‘) 49 ‘ J
218 hitps://elixir.bootlin.com/linux/v6.2-rc1/source/include/net/inet_frag. h#1.66
216 0o elixic boodli i % - 0§ I

52

kstrp (Stream Parser)

“kstrp” is based on a single threaded workqueue?®'”. Form the source code documentation we can
see that “strparser” means “Stream Parser’*'®. A stream parser is a utility that gets data streams
and parsers the application layer protocol over those streams. A stream parser can work in one of
two modes: general mode or receive callback mode.

In general mode, a sequence of socket buffers (skbs) are given to the stream parser from an
outside source. Messages are parsed and delivered as the sequence is processed. This mode
allows a stream parser to be applied to any arbitrary stream of data. In receive callback mode, the
stream parser is called from the data_ready callback of the TCP socket. Messages are parsed and
delivered as they are received on the socket*!’.

Thus, we can say that we can parse application layer protocol messages in TCP. It is basically a
generalization of KCM (Kernel Connection Multiplexor)®°.

KMC provides a message based interface over TCP for generic application protocols. With the
use of KMC applications can send/receive application messages efficiently over TCP*'.

Lastly, “strparser” allows intercepting packets on TCP connections. This is done at the kernel
level which provides the ability to perform custom processing. The processing can be done using
the BPF/Kernel module’”?. One example for that is the implementation of KTLS** (a Linux
TLS/DTLS kernel module). An illustration of the flow is shown below**.

G buffers @ ,,,,,,,,,,,

’ ktls ULP |

ﬁ scatter list J_L-

TCP stack |

ﬁ sk_buff @
Driver
ﬁ context + buffer@

Device

217 https://elixir.bootlin.com/linux/v6.1.1/source/net/strparser/strparser.c#L539

218 https://elixir.bootlin.com/linux/v6.1.1/source/net/strparser/strparser.c#1.3

219 https://www.kernel.org/doc/html/v5.10/networking/strparser.html

220 https://lwn.net/Articles/695982/

221 hittps://www.kernel.org/doc/html/latest/networking/kem.html

222 j .

22 hitps://github.com/ktls/af ktls

224 .
https:/docs.kernel.org/networking/tls-offload.htm]|

53

devfreq _wq

“devfreq wq” is a kernel thread which is based on a freezable workqueue®”. It is part of the
Generic Dynamic Voltage and Frequency Scaling (DVFS) Framework for Non-CPU devices™.

Overall, DVFS enables Linux to scale the CPU frequency in order to minimize the power usage.
It is mostly done when the full performance of the CPU is not needed. By using DVFS the
system can set min/max CPU frequency. There is also the ability to set a “scaling governor”
which monitors the performance requirements and decides what CPU frequency to use each
time**’.

Moreover, based on the Linux documentation there are 6 governors: “Performance”,
“Powersave”, “Userspace”, “Ondemand”, “Conservative” and “Schedutil”*®., We can also
develop our own governor as a kernel module, we just need to register it using the function

“cpufreq_register governor™%,

Lastly, we can use the sysfs filesystem to configure/read information regarding “cpufeq”. An
example of a file path for the first cpu is “/sys/devices/system/cpu/cpul/cpufreq/” (if sysfs is
mounted at “/sys”). It might contain the information like (but not limited to): current frequency
of the CPU, the time it takes the CPU to switch frequencies (in nanosecs) and more*’. An
example of reading the current configure governor is shown below®'.

= moisespr123@moisespri23-Lenovo-ldeaPad-Y510P: ~

File Edit WView Search Terminal Help
: § cat [sys/devices/system/cpu/cpu*/cpufreq/scaling_governor
schedutil
schedutil
schedutil
schedutil
schedutil
schedutil
schedutil
schedutil

225 https://elixir.bootlin.com/linux/v6.2.5/source/drivers/devfreq/devfreq.c#1.1997
226 hitps://elixir.bootlin.com/linux/v6.2.5/source/drivers/devireq/devfreq.c#L3

227 hitps://wiki.somlabs.com/index.php/How_to_scale CPU _frequency with DVFS framework

228 h1ns://www.kernel.org/doc/Documentation/cpu-freq/governors. txt
220 — - - ,

230 hitps://www.kernel.org/doc/Documentation/cpu-freq/user-guide.txt

231

dmcrypt_write

“dmerypt write” is a kernel thread which is created using the “kthread run” function®?. The
name of the kernel thread is in the pattern of "dmcrypt write/%s", where the added string
represents the device name.Overall, “dm-crypt” is a device-mapper target*® supported from
kernel version 2.6.4%*. It is responsible for transparent (aka real-time/on-the-fly encryption)
block device encryption while using the kernel crypto API* .

This means the data is encrypted/decrypted while it is read/written. To enable the “dm-crypt”
support we need to enable “CONFIG_DM_CRYPT” in the compilation config of the kernel**.
Moreover, the function that is executed as part of the kernel thread is “dmcrypt write”
function®’. This function is part of the kernel module “dm_crypt” - as shown in the screenshot
below. We can use “modinfo dm_crypt” for more information, also shown in the screenshot
below.

roller $§ modinfo dm_crypt
Filename: J P

device-mapper
Jana Saout <ja
FEC

retpoline:

v
Y
d
P
Buj
7
1
_.-_1_'-

232 hitps://elixir.bootlin.com/linux/v6.5-rc3/source/drivers/md/dm-crypt.c#L.3388
233 https://elixir.bootlin.com/linux/v6.5-rc3/source/drivers/md/dm-crypt.c#1.3689
234 https://elixir.bootlin.com/linux/v2.6.4/source/drivers/md/dm-crypt.c

238 hitps://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt

236 https://elixir.bootlin.com/linux/v6.5-rc3/source/drivers/md/Makefile#L.59

7 hitps://elixir.bootlin.com/linux/v6.5-rc3/source/drivers/md/dm-crypt.c#. 1922

55

ModemManager (Modem Management Daemon)

“ModemManager” is an ELF binary located by default at “/usr/sbin/ModemManager” which is
used to provide a unified high level API for communication with mobile broadband modems®*®.
Alos, it is started by PID 1 (init/systemd) with the permission of the root user.

Overall, it is a DBus-powered*® Linux daemon which acts as a standard RIL (Radio Interface
Layer). “ModemManager” can be used by different connection managers (think about
“NetworkManager” for example). Moreover, if we want to control and manage
“ModemManager” we can use the CLI tool “mmcli”. By using it we can list all available
modems, connect to a modem, get/set properties of the modem and more**,

Thus, we can summarize ‘“ModemManager” as a system daemon that controls WWAN
(2G/3G/4G/5G) devices and connections. It is the default mobile broadband management system
in most Linux distributions (like Ubuntu, Debian, Fedora and Arch). By the way, it is also used
by routers running OpenWRT?*!,

It is important to understand that “ModemManager” leverages “libgmi”** and “libmbim
communicate over QMI (Qualcomm MSM Interface) and MBIM (Mobile Interface Broadband
Model) for setting connection to to the cellular network®*. It does not matter if the modem is
builtin, USB connected or bluetooth-paired. A diagram of the architecture is shown below.

Lastly, if we want to go over the source code on “ModemManager” or contribute we can use its
245

99243 to

repo”™. I also suggest going over the documentation site of “ModemManager” and the relevant
libraries: libmbim, libqmi and libqrtr-glib®*.
Networkmanager |« > Modemmanager
Device - I - - I - AT
Discovered | libgmi | | libmbim |

I !

Kernel Modem Driver

238 https://manpages.ubuntu.com/manpages/trusty/man8/ModemManager.8 . html
29 https://www.freedesktop.org/software/ModemManager/api/latest/

24 https://manpages.ubuntu.com/manpages/trusty/man8/mmcli.8 html
241 https://modemmanager.org/

242 hitps://github.com/linux-mobile-broadband/libgmi

243 hitps://github.com/linux-mobile-broadband/libmbim
244 -

248 hitps://gitlab.freedesktop.org/mobile-broadband/ModemManager
246 hitps://modemmanager.org/docs/

56

kerneloops

“kerneloops” is an ELF binary located at “”. It is used to collect kernel crash information (as part
of a kernel oops) and submit them to kerneloops.org?’. An example of such oops is shown in the
screenshot below?*. By the way, they are also known as “soft panic”?*.

Overall, a kernel oops is a serious but non-fatal error in the Linux kernel. It is a way for the
kernel to signal that it has found a problem that could potentially cause the system to crash.
However, the kernel will continue to run after an oops, although it may be unstable and can lead
to a kernel panic. This helps in debugging the error in order to find a solution for the problem**.

Moreover, if we want to debug the kernel with gdb it is suggested to compile it with
“CONFIG_DEBUG INFO” enabled, which causes the kernel to be built with full debugging
information®'. Also, I recommend also enabling “CONFIG_FRAME POINTER”, which gives
very useful debugging information in case of kernel bugs - precise

oopses/stacktraces/warnings*>.

Lastly, there is also a setting called “oops_limit” which states after what number of oops should
cause a panic. The default value by the way is 10000>,

oops init (level = 1)
triggering oops via BUG()
[cut here]

invalid opcode: 0O0OO [#1] PREEMPT SMP PTI
CPU: O PID: 5531 Comm: insmod
: 0018:ffffb41340e6fdd8 EFLAGS: 00010246

000000P0OOROOER19 RBX: ffffffffc1015040 RCX: 0O0OOOOREOOROOOOO
0000000000000000 RSI: ffffffff83bc9d39 RDI: OOOOCOQOffffffff
ffff8de101bd1d50 RO8: OOEEOEAOOAEOEERO RO9G: ffffbg41340ebfca0
00000R0OPOOOERO3 R11: ffffffff83f3d1e8 R12: ffffb41340ebfde®
0000000000000000 R14: 0O0OOEOOOOOAEEEOEOO R15: OOOOOCOEEOEEOOOO0O
00007f6c290b31cO(OOOO) GS:ffff8d6411a00000(0000) knlGS: 00000
0010 DS: OOOO ES: 0000 CRO: APOOEEOORBOO50033
00000000004134f0 CR3: 000000018be34005 CR4: 0OOOOOCOOO37TO6TO
000000OEROLEOAEREO DR1: 00OOLOAOEEOEOLEOA DR2: MOEOOOOLEOEOEOLEOO
0000000000000000 DR6: 000000ROfffe®@ff@ DR7: Q0000000000400

Call Trace:

{TASK>

do_one_initcal |+O0x56-,0x230

do_init_module+@x4a-0x210

__do_sys_finit_module+0x9e/0xf0O

do_syscal | _64+0x37,0x90

247 https://linux.die.net/man/8/kerneloops

248 https://nakedsecurity.sophos.com/2023/03/13/linux-gets-double-quick-double-update-to-fix-kernel-oops/
249 hittps://www.opensourceforu.com/2011/01/understanding-a-kernel-oops/

250 https://en.wikipedia.org/wiki/Linux_kernel oops

21 hitps://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch04.html

252 hitps://cateee.net/Ikddb/web-lkddb/FRAME_POINTER .html

253 hitps://docs kernel.org/admin-guide/sysctl/kernel.html#oops-limit

57

