
The Linux
Process Journey

version 6.0
September-2023

By Dr. Shlomi Boutnaru

Created using Craiyon, AI Image Generator

1



Table of Contents
Table of Contents 2
Introduction 4
swapper (PID 0) 5
init (PID 1) 6
Kernel Threads 7
kthreadd (PID 2) 8
migration 10
charger_manager 12
idle_inject 13
kworker 14
kdevtmpfs 15
cpuhp 17
khungtaskd 17
kswapd 18
kcompactd 20
md (Multiple Device Driver) 22
mld (Multicast Listener Discovery) 24
ksmd (Kernel Same Page Merging) 25
ttm_swap 26
watchdogd 27
zswap-shrink 29
khugepaged 30
krfcommd 31
ksgxd 32
jbd2 (Journal Block Device 2) 33
netns 34
oom_reaper 35
kpsmoused 36
slub_flushwq 37
pgdatinit 38
kblockd 39
writeback 40
kdamond (Data Access MONitor) 41
kintegrityd 42
kthrotld 43
scsi_eh (Small Computer System Interface Error Handling) 44
blkcg_punt_bio 45
napi (New API) 46

2



kauditd (Kernel Audit Daemon) 47
tpm_dev_ wq 48
ipv6_addrconf 49
mm_percpu_wq 51
inet_frag_wq 52
kstrp (Stream Parser) 53
devfreq_wq 54
dmcrypt_write 55
ModemManager (Modem Management Daemon) 56
kerneloops 57

3



Introduction
When starting to learn OS internals I believe that we must understand the default processes
executing (roles, tasks, etc). Because of that I have decided to write a series of short writeups
named "Process ID Card" (aimed at providing the OS vocabulary).

Overall, I wanted to create something that will improve the overall knowledge of Linux in
writeups that can be read in 1-3 mins. I hope you are going to enjoy the ride.

In order to create the list of processes I want to explain, I have installed a clean Ubuntu 22.10
VM (Desktop version) and executed ps (as can be seen in the following image - not all the output
was included ).

Probably the best way to do it is to go over the processes by the order of their PID value.
The first one I want to talk about is the one we can’t see on the list, that is PID 0 (we can see it is
the PPID for PID 1 and PID 2 - on them in the next posts).

Lastly, you can follow me on twitter - @boutnaru (https://twitter.com/boutnaru). Also, you can
read my other writeups on medium - https://medium.com/@boutnaru.

Lets GO!!!!!!

4



swapper (PID 0)
Historically, old Unix systems used swapping and not demand paging. So, swapper was
responsible for the “Swap Process” - moving all pages of a specific process from/to
memory/backing store (including related process’ kernel data structures). In the case of Linux
PID 0 was used as the “idle process”, simply does not do anything (like nops). It was there so
Linux will always have something that a CPU can execute (for cases that a CPU can’t be stopped
to save power). By the way, the idle syscall is not supported since kernel 2.3.13 (for more info
check out “man 2 idle”). So what is the current purpose of swapper today? helping with pageout
? cache flushes? idling? buffer zeroning? I promise we will answer it in more detail while going
through the other processes and explaining the relationship between them.

But how can you believe that swapper (PID 0) even exists? if you can’t see it using ps. I am
going to use “bpftrace” for demonstrating that (if you don’t know about bpftrace, I strongly
encourage you to read about it). In the demo I am going to trace the kernel function
“hrtimer_wakeup” which is responsible for waking up a process and move it to the set of
runnable processes. During the trace I am going to print the pid of the calling process (BTW, in
the kernel everything is called a task - more on that in future posts) and the executable name (the
comm field of the task_struct [/include/linux/sched.h]). Here is the command: sudo bpftrace -e
'kfunc:hrtimer_wakeup { printf("%s:%d\n",curtask->comm,curtask->pid); }'.

From the output we can see we have 3 instances of swapper: swapper/0, swapper/1 and
swapper/2 all of them with PID 0. The reason we have three is because my VM has 3 virtual
CPUs and there is a swapper process for each one of them - see the output of the command in the
following image.

5



init (PID 1)
After explaining about PID 0, now we are going to talk about PID 1. Mostly known as “init”. init
is the first Linux user-mode process created, which runs until the system shuts down. init
manages the services (called demons under Linux, more on them in a future post). Also, if we
check the process tree of a Linux machine we will find that the root of the tree is init.

There are multiple implementations for init, each of them provide different advantages among
them are: SysVinit, launched, systemd, runit, upstart, busybox-init and OpenRC (those are
examples only and not a full list). Thus, based on the implementation specific configuration files
are read (such as /etc/inittab - SysVinit), different command/tools to manage demons (such as
service - SysVinit and systemctl - systemd), and different scripts/profiles might be executed
during the boot process (runlevels of SysVinit vs targets in systemd).

The creation of init is done by the kernel function “rest_init”1. In the code we can see the call to
“user_mode_thread” which spawns init, later in the function there is a call to “kernel_thread”
which creates PID 2 (more information about it in the upcoming pages ;-).

Now we will go over a couple of fun facts about init. First, in case a parent process exits before
all of its children process, init adopts those child processes. Second, only the signals which have
been explicitly installed with a handler can be sent to init. Thus, sending “kill -9 1” won’t do
anything in most distributions (try it and see nothing happens). Remember that different init
implementations handle signals in different ways.

Because they are multiple init implementations (as we stated before) we can determine the one
installed in the following manner. We can perform “ls -l /sbin/init”. If it is not a symlink it is
probably SysVinit, else if it points to “/lib/systemd/systmed” than systemd is in use (and of
course they are other symlinks to the other implementation - you can read about it in the
documentation of each init implementation). As you can see in the attached screenshot Ubuntu
22.10 uses systemd.

1 https://elixir.bootlin.com/linux/v6.1.8/source/init/main.c#L683

6



Kernel Threads
Before we will go over kthreadd I have decided to write a short post about kernel threads (due to
the fact kthreadd is a kernel thread). We will go over some characteristics of kernel threads. First,
kernel threads always execute in Kernel mode and never in User mode. Thus, kernel threads
have basically all privileges and have no userspace address associated with them.

Second, both user mode process and kernel threads are represented by a task_struct inside the
Linux kernel. As with all other user tasks, kernel threads are also part of the OS scheduling flow
and can be executed on any CPU (there are cases in which there is a specific kernel thread for
each CPU, we have seen it with swapper in the first post). Third, all kernel threads are
descendants of kthreadd - Why is that? We will explain it in the next post focused on kthreadd.

Lastly, let’s investigate kernel threads using /proc and see the difference in information retrieved
from a regular user process (aka user task). There are multiple file entries in “/proc/pid” that
contain information in case of a user mode process but are empty in case of a kernel thread, such
as: “maps”, “environ”, “auxv”, “cmdline” (I suggest reading “man proc” to get more info about
them). Also, the fd and fdinfo directories are empty and the link “exe” does not point to any
executable. In the attached screenshot we can see some of the difference between PID 1
[example of a regular user mode process] and PID 2 [example for a kernel thread]. BTW, the
screenshot below was taken from an online/browser based Linux implementation called JSLinux
- https://bellard.org/jslinux.

7



kthreadd (PID 2)
After explaining about PID 1, now we are going to talk about PID 2.Basically, kthreadd is the
“kernel thread daemon". Creation of a new kernel thread is done using kthreadd (We will go over
the entire flow). Thus, the PPID of all kernel threads is 2 (checkout ps to verify this). As
explained in the post about PID 1 (init) the creation of “kthreadd” is done by the kernel function
“rest_init”2. There is a call to the function “kernel_thread” (after the creation of init).

Basically, the kernel uses “kernel threads” (kthreads from now on) in order to run background
operations. Thus, it is not surprising that multiple kernel subsystems are leveraging kthreads in
order to execute async operations and/or periodic operations. In summary, the goal of kthreadd is
to make available an interface in which the kernel can dynamically spawn new kthreads when
needed.

Overall, kthreadd continuously runs (infinite loop3) and checks “kthread_create_list” for new
kthreads to be created. In order to create a kthread the function “kthread_create”4 is used, which
is a helper macro for “kthread_create_on_node”5. We can also call “kthread_run”6 could also be
used, it is just a wrapper for “kthread_create”. The arguments passed to the creating function
includes: the function to run in the thread, args to the function and a name.

While going over the source code we have seen that “kthread_create” calls
“kthread_create_on_node”, which instantiates a “kthread_create_info” structure (based on the
args of the function). After that, that structure is queued at the tail of “kthread_create_list” and
“kthreadd” is awakened (and it waits until the kthread is created, this is done by
“__kthread_create_on_node”7). What “kthreadd” does is to call “create_thread” based on the
information queued. “create_thread” calls “kernel_thread”, which then calls “kernel_clone”.
“kernel_clone” executes “copy_process”, which creates a new process as a copy of an old one -
the caller needs to kick-off the created process (or thread in our case). By the way, the flow of
creating a new task (recall every process/thread under Linux is called task and represented by
“struct task_struct”) from user mode also gets to “copy_process”.

For the sake of simplicity, I have created a flow graph which showcases the flow of creating a
kthread, not all the calls are there, only those I thought are important enough. Also, in both cases
of macros/functions I used the verb “calls”. The diagram appears at the end of the post. Let me
know if it is clear enough or do you think I should change something.

7 https://elixir.bootlin.com/linux/v6.1.12/source/kernel/kthread.c#L414
6 https://elixir.bootlin.com/linux/v6.1.12/source/include/linux/kthread.h#L51
5 https://elixir.bootlin.com/linux/v6.1.12/source/kernel/kthread.c#L503
4 https://elixir.bootlin.com/linux/v6.1.12/source/include/linux/kthread.h#L27
3 https://elixir.bootlin.com/linux/v6.1.12/source/kernel/kthread.c#L731
2 https://elixir.bootlin.com/linux/v6.1.8/source/init/main.c#L683

8



9



migration
One of the goals of an operating system is to handle and balance resources across the hardware
of the compute entity. In order to do that, Linux has a kernel thread named “migration” which
has an instance on every vCPU. By the way, the naming format is “migration/N” where N is the
id of the vCPU.

By default threads are not constrained to a vCPU and can be migrated between them in the next
call to “schedule()” (which calls the main scheduler function, which is “__scheduler()”8). It is
done mainly in case the scheduler identifies an unbalanced across the runqueues (the queue in
which processes which are in ready/runnable state are waiting to use the processor) of the
vCPUs.

It is important to state that we can influence this flow by setting the affinity of a thread (for more
read “man 2 sched_setaffinity”. We will talk about that in a future post). There could be
performance, cache and other impacts for doing that (but that is also a topic for a different
writeup).

I have created a small demo which shows the working of “migration”. For that I have created a
VM running Ubuntu 22.04 with 3 vCPUs. In order to trace the usage of “move_queue_task” I
have used bpftrace with the following command: sudo bpftrace -e 'kfunc:move_queued_task {
printf("%s moved %s to %d CPU\n",curtask->comm,args->p->comm,args->new_cpu); }'.
The output of the command is shown below. The one-liner prints: the name of the task calling
“move_queued_task”, the name of the task which is moved and id the vCPU which the task is
moved to.

8 https://elixir.bootlin.com/linux/latest/source/kernel/sched/core.c#L6544

10



In summary, what the kernel thread “migration” does is to move threads from highly loaded
vCPUs to others which are less crowded (by inserting them to a different run-queue). A function
which is used by “migration” in order to move a task to a new run-queue is “move_queued_task”
(https://elixir.bootlin.com/linux/latest/source/kernel/sched/core.c#L2325).

11



charger_manager

The “charger_manager” kernel thread is created by a freezable workqueue9. Freezable
workqueues are basically frozen when the system is moved to a suspend state10. Based on the
kernel source code “charger_manager” is responsible for monitoring the health (like temperature
monitoring) of the battery and controlling the charger while the system is suspended to
memory11. The “Charger Manager” kernel module is written by MyungJoo Ham12.

Moreover, the kernel documentation states that the “Charger Manager'' also helps in giving an
aggregated view to user-space in case there are multiple chargers for a battery. In case they are
multiple batteries with different chargers on a system, that system would need multiple instances
of “Charger Manager”13 .

On my Ubuntu VM (22.04.1 LTS) this kernel module is not compiled as a separate “*.ko” file. It
is compiled into the kernel itself (builtin), as you can see in the output of “modinfo” in the
screenshot below.

13 https://www.kernel.org/doc/html/v5.3/power/charger-manager.html
12 https://elixir.bootlin.com/linux/latest/source/drivers/power/supply/charger-manager.c#L1768

11 https://elixir.bootlin.com/linux/latest/source/drivers/power/supply/charger-manager.c
10 https://lwn.net/Articles/403891/
9 https://elixir.bootlin.com/linux/latest/source/drivers/power/supply/charger-manager.c#L1749

12



idle_inject
On our plate this time we are going to talk about the kernel thread “idle_inject”, which was
merged to the kernel in about 2009. The goal of “idle_inject” is forcing idle time on a CPU in
order to avoid overheating.

If we think about it, “idle_inject” adds latency, thus it should be considered only if CPUFreq
(CPU Frequency scaling) is not supported. Due to the fact the majority of modern CPUs are
capable of running a different clock frequency and voltage configuration we can use CPUFreq in
order to avoid overheating.

Overall, there is one “idle_inject” kernel thread per processor (with the name pattern
“idle_inject/N”, where N is the id of the processor) - as shown in the screenshot below. Also, all
of them are created at init time.

The “idle_inject” kernel threads will call “idle_inject_fn()”->”play_idle_precise()” to inject a
specified amount of idle time. After all of the kernel threads are woken up, the OS sets a timer
for the next cycle. When the timer interrupt handler wakes the threads for all processors based on
a defined “cpu-mask” (affected by idle injection). By the way, when I set a kprobe on
“idle_inject_fn()” for 3 hours on my VM it was never called ;-)

13



kworker

A kworker is a kernel thread that performs processing as part of the kernel, especially in the case
of interrupts, timers, I/O, etc. It is based on workqueues which are async execution mechanisms,
that execute in “process context” (I will post on workqueus in more details separately, for now it
is all that you need to know).

Overall, there are a couple of kworkers running on a Linux machine. The naming pattern of
kworkers includes: the number of the core on which it is executed, the id of the thread and can
contain also string that hints what the kworker does (check the output of ‘ps -ef | grep kworker’).

The big question is - “How do we know what each kwoker is doing?”. It’s a great question, the
way in which we are going to answer it is by using ftrace (function tracing inside the kernel - I
suggest reading more about that - https://www.kernel.org/doc/Documentation/trace/ftrace.txt).
The command we are going to use are:

echo workqueue:workqueue_queue_work > /sys/kernel/debug/tracing/set_event
cat /sys/kernel/debug/tracing/trace_pipe > /tmp/trace.log

The first one enables the tracing regarding workqueus. The second reads the tracing data and
saves it to a file. We can also run “cat /sys/kernel/debug/tracing/trace_pipe | grep kworker” and
change the grep filter to a specific kworker process. In the trace we will see the function name
that each kworker thread is going to execute.

14



kdevtmpfs
“kdevtmpfs” is a kernel thread which was created using the “kthread_run” function14.
“kdevtmpfs” creates a devtmpfs which is a tmpfs-based filesystem (/dev). The filesystem is
created during bootup of the system, before any driver code is registered. In case a driver-core
requests a device node it will result in a node added to this filesystem15.

We can see the specific line of code that is used in order to create the mounting point “/dev”16.
The mountpoint is created using the function “init_mount”17. A nice fact is that it is part of
“init_*” functions which are routines that mimic syscalls but don’t use file descriptors or the user
address space. They are commonly used by early init code18.

Thus, we can say the “kdevtmpfs” is responsible for managing the “Linux Device Tree”. Also,
by default the name created for nodes under the filesystem is based on the device name (and
owned by root) - as shown in the screenshot below (taken from copy.sh based Linux). By the
way, not all devices have a node in “/dev” think about network devices ;-)

18 https://elixir.bootlin.com/linux/v6.2-rc1/source/fs/init.c#L3
17 https://elixir.bootlin.com/linux/v6.2-rc1/source/fs/init.c#L16
16 https://elixir.bootlin.com/linux/v6.2-rc1/source/drivers/base/devtmpfs.c#L377
15 https://elixir.bootlin.com/linux/v6.2-rc1/source/drivers/base/devtmpfs.c#L3
14 https://elixir.bootlin.com/linux/v6.2-rc1/source/drivers/base/devtmpfs.c#L474

15



16



cpuhp
This kernel thread is part of the CPU hotplug support. It enables physically removing/adding
CPUs on a specific system. There is one kernel thread per vCPU, and the pattern of the thread’s
name is “cpuhp/N” (where N is the id of the vCPU) - as can be seen in the screenshot below.
Also, today the CPU hotplug can be used to resume/suspend support for SMP (Symmetric
Multiprocessing).

If we want our kernel to support CPU hotplug the CONFIG_HOTPLUG_CPU should be enabled
(it’s supported on a couple of architectures such as: MIPS, ARM, x86 and PowerPC). The kernel
holds the current state for each CPU by leveraging “struct cpuhp_cpu_state”19.

We can configure the CPU hotplug mechanism using sysfs (/sys/devices/system/cpu). For
example we can shut down and bring up a CPU by writing “0” and “1” respectively to the
“online” file in the directory representing the CPU (for which we want to change the status) -
checkout the screenshot below (the Linux VM I am testing on has 3 vCPUs).

In order to bring the CPU down the function “cpu_device_down”20 is called. In order to bring up
a CPU function “cpu_device_up”21 is called.

21 https://elixir.bootlin.com/linux/latest/source/kernel/cpu.c#L1439
20 https://elixir.bootlin.com/linux/latest/source/kernel/cpu.c#L1225

19 https://elixir.bootlin.com/linux/latest/source/kernel/cpu.c#L65

17



khungtaskd

This kernel thread “khungtaskd” is used in order to help with identifying and debugging “Hung
Tasks”. This kernel thread is scheduled every 120 seconds (that is the default value). We can say
“khungtaskd” is used for detecting tasks which are stuck in uninterruptible sleep (state “D” in ps
output). We can also go over the code of the kernel thread as part of the Linux kernel source
code22.

The basic algorithm of “khungtaskd” is as follows: Iterate over all running tasks on the system
and if there are ones marked as TASK_UNINTERRUPTIBLE and it was scheduled at least
once in the last 120 seconds it is considered as hung. When a task is considered hung it’s “call
stack” is dumped and if the CONFIG_LOCKDEP is also enabled then all of the locks held by the
tasks are outpted also.

If we want we can change the sampling interval using the sysctl interface,
“/proc/sys/kernel/hung_task_timeout_secs” .We can also verify that the default is 120 seconds by
reading it - as shown in the screenshot below.

In order to demonstrate the operation of “khungtaskd” I have executed the following bpftrace
one liner - “sudo bpftrace -e 'kfunc:check_hung_uninterruptible_tasks { printf("
%s:%d\n",curtask->comm,curtask->pid); }'”. The trace prints the name of the task and it’s pid
when the function “check_hung_uninterruptible_tasks” is called23 - You can see the output in the
screenshot below.

kswapd
The kernel thread “kswapd” is the background page-out daemon of Linux (swaps processes to
disk). You can see the creation of the kernel thread in the source of the kernel -
https://elixir.bootlin.com/linux/latest/source/mm/vmscan.c#L4642. In the code we can see that a

23 https://elixir.bootlin.com/linux/latest/source/kernel/hung_task.c#L178
22 https://elixir.bootlin.com/linux/latest/source/kernel/hung_task.c

18



dedicated instance of “kswapd” is created for each NUMA zone (on my Ubuntu 22.10 VM I
have only “kswapd0” - as shown in the screenshot below).

Overall, the goal of the “kswapd” is to reclaim pages when memory is running low. In the old
days, the “kswapd” was woken every 10 seconds but today it is only wakened by the page
allocator, by calling “wakeup_kswapd”24. The code of the page allocator is located at
“mm/page_alloc.c”25.

Basically, “kswapd” trickles out pages so the system has some free memory even if no other
activity frees up anything (like by shrinking cache). Think about cases in which operations work
in asynchronous contexts that cannot page things out.

The major function which is called by “kswapd” is “balance_pgdat()”26. In order to see that
process happening we can use the following bpftrace one-liner: “sudo bpftrace -e
'kfunc:balance_pgdat { printf("%s:%d\n",curtask->comm,curtask->pid); }'” - You can
see “kswapd0” calling it in the screenshot below. The flow of “kswapd” is based on limits, when
to start shirking and “until when” to shrink (low and high limits).

26 https://elixir.bootlin.com/linux/latest/source/mm/vmscan.c#L4146

25 https://elixir.bootlin.com/linux/latest/source/mm/page_alloc.c

24 https://elixir.bootlin.com/linux/latest/source/mm/vmscan.c#L4555

19



kcompactd
When a Linux system is up and running, memory pages of different processes/tasks are scattered
and thus are not physically-contiguous (even if they are contiguous in their virtual address). We
can move to bigger pages size (like from 4K to 4M) but it still has its limitations like: waste of
space in case of regions with small sizes and the need for multiple pages in case of large regions
that can still be fragmented. Due to that, the need for memory compaction was born27.

“kcompatd” is performing in the background the memory compaction flow. The goal of memory
compaction is to reduce external fragmentation. This procedure is heavily dependent on page
migration28 to do all the heavy lifting29. In order for “kcompactd” to work we should compile the
kernel with “CONFIG_COMPACTION” enabled. Also, when a Linux system identifies that it is
tight low in available memory the “kcompactd” won’t perform memory compaction memory30.

Overall, the “kcompactd” kernel thread is created in “kcompactd_run” function31 which is called
by “kcompactd_init”32.. The function “kcompactd_init” is started by “subsys_initcall”33, which
is responsible for initializing a subsystem.

The kernel thread starts the function “static int kcompactd(void *p)”34.. An instance of the kernel
thread is created for each node (like vCPU) on the system35.. The pattern of the kernel thread
name is “kcompactd[IndexOfNode]” for example “kcompactd0” as we can see in the screenshot
below.

“kcompactd” can be called in one of two ways: woken up or by using a timeout. It can be woken
up by kswapd36.. Also, we can configure it using modification of the filesystem
(“/proc/sys/vm/compact_memroy” for example). By the way, in the memory compaction flow of
the function “compact_zone”37 is executed in the context of “kcompactd”. In order to
demonstrate that we can use the following one-liner using bpftrace: sudo bpftrace -e
'kfunc:compact_zone { printf("%s:%d\n",curtask->comm,curtask->pid); }' - The output
can be seen in the screenshot below.

37 https://elixir.bootlin.com/linux/v6.2-rc3/source/mm/compaction.c#L2289
36 https://www.slideshare.net/AdrianHuang/memory-compaction-in-linux-kernelpdf
35 https://elixir.bootlin.com/linux/v6.2-rc3/source/mm/compaction.c#L3061
34 https://elixir.bootlin.com/linux/v6.2-rc3/source/mm/compaction.c#L2921
33 https://elixir.bootlin.com/linux/v6.2-rc3/source/mm/compaction.c#L3065
32 https://elixir.bootlin.com/linux/v6.2-rc3/source/mm/compaction.c#L3048
31 https://elixir.bootlin.com/linux/v6.2-rc3/source/mm/compaction.c#L2996
30 https://www.linux-magazine.com/Issues/2015/179/Kernel-News
29 https://elixir.bootlin.com/linux/v6.2-rc3/source/mm/compaction.c#L5
28 https://lwn.net/Articles/157066/
27 https://lwn.net/Articles/368869/

20



21



md (Multiple Device Driver)
“md” is a kernel thread which is based on a workqueue38. It is responsible for managing the
Linux md (multiple device) driver which is also known as the “Linux software RAID”. RAID
devices are virtual devices (created from two or more real block devices). This allows multiple
devices (typically disk drives or partitions thereof) to be combined into a single device to hold
(for example) a single filesystem39.

By using the “md” driver we can create from one/more physical devices (like disk drivers) a
virtual device(s). By the use of an array of devices we can achieve redundancy, which is also
known as RAID (Redundant Array of Independent Disks). For more information I suggest
reading https://man7.org/linux/man-pages/man4/md.4.html.

Overall, “md” supports different RAID types: RAID 1 (mirroring), RAID 4, RAID 5, RAID 6
and RAID 10. For more information about RAID types I suggest reading the following link
https://www.prepressure.com/library/technology/raid. Besides that, “md” also supports pseudo
RAID technologies like: RAID 0, LINAR, MULTIPATH and FAULTY40.

The code of “md” is included as a driver/kernel module in the source code of Linux. Thus, it can
be compiled directly into the kernel or as a separate “*.ko” file. In my VM (Ubuntu 22.04) it is
compiled directly into the kernel image as shown in the screenshot below.

40 https://doxfer.webmin.com/Webmin/Linux_RAID
39 https://linux.die.net/man/8/mdadm
38 https://elixir.bootlin.com/linux/v6.1/source/drivers/md/md.c#L9615

22



The block devices that can be used in order to access the software RAID on Linux are in the
pattern “/dev/mdN” (where N is a number [0–255])41. It can also be configured to allow access
using “/dev/md/N” or “/dev/md/name”. If we want information about the current state of “md”
we can query the file “/proc/mdstat” — for more information you can read
https://raid.wiki.kernel.org/index.php/Mdstat. There is also the command line utility “mdadm”
that can help with managing those devices42.

Lastly, the init function is declared using “subsys_initcall” (and not the “module_init”) which
ensures that it will run before the device drivers that needs it (if they are using “module_init”) —
https://elixir.bootlin.com/linux/v6.1/source/drivers/md/md.c#L9947. More information about
initcalls will be included on a future writeup.

42 https://linux.die.net/man/8/mdadm

41 https://www.oreilly.com/library/view/managing-raid-on/9780596802035/ch01s03.html

23



mld (Multicast Listener Discovery)
“mld” is a kernel thread which was created using a workqueue43. It is the Linux implementation
for the multicast listener (MLD) protocol. This protocol is used by IPv6 based routers in order to
discover multicast listeners on the local network and identify which multicast addresses are of
interest to those listeners. MLD is supported on different operating systems such as Windows44

and Linux45.

We can think about it like IGMP46 which is used on IPv4 based networks (MLDv1 is derived
from IGMPv2 and MLDv2 is similar to IGMPv3). One important difference is that MLD uses
ICMPv6 message types, rather than IGMP message types47.

Overall, MLD has three major message types: “Multicast Listener Query”, “Multicast Listener
Report” and “Multicast Done”. For more information about them I suggest reading the following
link48. Also, a more detailed explanation about the different MLD operations can be found in
https://ipcisco.com/lesson/mld-operations/.

What “mld” does is to send MLD report messages49 which are sent by an MLD host (see the
diagram below50) and processes messages51. From the source code we can see that there are
definitions for structs representing both MLDv1 and MLDv2 headers.

51 https://elixir.bootlin.com/linux/latest/source/net/ipv6/mcast.c#L1359

50https://techhub.hpe.com/eginfolib/networking/docs/switches/5130ei/5200-3944_ip-multi_cg/content/images/image
33.png

49 https://elixir.bootlin.com/linux/latest/source/net/ipv6/mcast.c#L3185

48 https://community.cisco.com/t5/networking-knowledge-base/multicast-listener-discovery-mld/ta-p/3112082

47 https://www.ibm.com/docs/en/zos/2.2.0?topic=protocol-multicast-listener-discovery
46 https://www.cloudflare.com/learning/network-layer/what-is-igmp/
45 https://lwn.net/Articles/29489/
44 https://learn.microsoft.com/en-us/windows/win32/winsock/igmp-and-windows-sockets
43 https://elixir.bootlin.com/linux/latest/source/net/ipv6/mcast.c#L3185

24



ksmd (Kernel Same Page Merging)
The kernel thread “ksm” is also known as “Kernel Same Page Merging” (and “ksmd” is ksm
demon). It is used by the KVM hypervisor to share identical memory pages (supported since
kernel 2.6.32) Those shared pages could be common libraries or even user data which is
identical. By doing so KVM (Kernel-based Virtual Machine) can avoid memory duplication and
enable more VMs to run on a single node.

In order for “ksmd” to save memory due to de-duplication we should compile the kernel with
“CONFIG_KSM=y”. It is important to understand that the sharing of identical pages is done
even if they are not shared by fork(). If you want to go over “ksmd” source code you can use the
following link - https://elixir.bootlin.com/linux/latest/source/mm/ksm.c.

The way “ksmd” works is as follows. Scanning main memory for frames (“physical pages”)
holding identical data and collectes the virtual memory address that they are mapped. “ksmd”
leaves one of those frames and remaps each duplicate one to point to the same frame. Lastly,
“ksmd” frees the other frames. All of the merge pages are marked as COW (Copy-on-Write) for
cases in which one of the processes using them will want to write to the page. There is a concern
that even if the memory usage is reduced the CPU usage is increased.

The kernel thread “ksmd” is created using the function kthread_run52. We can see from the code
that the function which is the entry point of the thread is “ksm_scan_therad()” which is calling
“ksm_do_scan()” which is the ksm’s scanner main worker function (it gets as input the number
of pages to scan before returning). “ksmd” only merges anonymous private pages and not
pagecache. Historically, the merged pages were pinned into kernel memory. Today they can be
swapped like any other pages.

“ksmd” can be controlled by a sysfs interface (“/sys/kernel/mm/ksm”) - as can be seen in the
screenshot below. One of the files exported by sysfs is “run” that can react to one of the
following values 0/1/2. “0” means stop “ksmd” from running but keep the merged pages. “1”
means run “ksmd”. “2” means stop “ksmd” from running and unmerge all currently merge pages
(however leave the mergeable areas registered for next time).

52 https://elixir.bootlin.com/linux/v6.0/source/mm/ksm.c#L3188

25



ttm_swap

The kernel thread “ttm_swap” is responsible for swapping GPU’s (Graphical Processing Unit)
memory. Overall, TTM (Translation-Table Maps) is a memory manager that is used to accelerate
devices with dedicated memory. Basically, all the resources are grouped together by objects of
buffers in different sizes. TTM then handles the lifetime, the movements and the CPU mapping
of those objects53.

Based on the kernel documentation, each DRM (Direct Rendering Manager) driver needs a
memory manager. There are two memory managers supported by DRM: TTM and GEM
(Graphics Execution Manager). I am not going to talk about GEM, if you want you can start
reading about in the following link - https://docs.kernel.org/gpu/drm-internals.html.

Moreover, “ttm_swap” is a single threaded workqueue as seen in the Linux source code54.
Also, the man pages describe TTM as a generic memory-manager provided by the kernel, which
does not provide a user-space interface (API). In case we want to use it you should checkout the
interface of each driver55.

TTM is at the end a kernel module, you can find the source code and the Makefile in the kernel
source tree56. Based on the module source code it is written by Thomas Hellstrom and Jerome
Glisse57. Also, it is described as “TTM memory manager subsystem (for DRM device)”58. As you
can see it is part of the “drivers/gpu/drm” subdirectory, which holds the code and Makefile of the
drm device driver, which provides support for DRI (Direct Rendering Infrastructure) in XFee86
4.1.0+. Lastly, on my VM (Ubuntu 22.04.01) it is compiled as a separate “*.ko” file
(/lib/modules/[KernelVersion]/kernel/drivers/gpu/drm/ttm.ko) - as shown in the screenshot
below.

58 https://elixir.bootlin.com/linux/v6.1-rc2/source/drivers/gpu/drm/ttm/ttm_module.c#L89

57 https://elixir.bootlin.com/linux/v6.1-rc2/source/drivers/gpu/drm/ttm/ttm_module.c#L89

56 https://elixir.bootlin.com/linux/v6.1-rc2/source/drivers/gpu/drm/ttm

55 https://www.systutorials.com/docs/linux/man/7-drm-ttm/

54 https://elixir.bootlin.com/linux/v5.12.19/source/drivers/gpu/drm/ttm/ttm_memory.c#L424
53 https://docs.kernel.org/gpu/drm-mm.html

26



watchdogd
This kernel thread “watchdogd” is used in order to let the kernel know that a serious problem has
occurred so the kernel can restart the system. It is sometimes called COP (Computer Operating
Properly). The way it is implemented is by opening “/dev/watchdog”, then writing at least once a
minute. Every time there is a write the restart of the system is delayed.

In case of inactivity for a minute the watchdog should restart the system. Due to the fact we are
not talking about a hardware watchdog the compilation of the operation depends on the state of
the machine. You should know that the watchdog implementation could be software only (there
are cases in which it won’t restart the machine due to failure) or using a driver/module in case of
hardware support59.

If we are talking about hardware support then the watchdog module is specific for a chip or a
device hardware. It is most relevant to systems that need the ability to restart themself without
any human intervention (as opposed to a PC we can reboot easily) - think about an unmanned
aircraft. We need to be careful because a problem in the watchdog configuration can lead to
unpredictable reboot, reboot loops and even file corruption due to hard restart60.

The relationship between the hardware and software is as follows: the hardware is responsible to
set up the timer and the software is responsible to reset the timer. When the timer gets to a
specific value (configured ahead) and it is not elapsed by the software the hardware will restart
the system. For an example of using hardware for this functionality you can read the following
link https://developer.toradex.com/linux-bsp/how-to/linux-features/watchdog-linux/.

The software part is being conducted by the “watchdogd” (the software watchdog daemon)
which opens “/dev/watchdog” and writes to it in order to postpone the restart of the system by
the hardware - for more information you can read https://linux.die.net/man/8/watchdog.
Examples for different watchdog drives/modules for specific chips can be found in the source
tree of linux here https://elixir.bootlin.com/linux/v6.0.11/source/drivers/watchdog. Some
example are apple_wdt (Apple’s SOC), ath79_wdt (Atheros AR71XX/AR724X/AR913X) and
w83977f_wdt (Winbond W83977F I/O Chip).

We can stop the watchdog without restarting the system by closing “/dev/watchdog”. It is not
possible if the kernel was compiled with “CONFIG_WATCHDOG_NOWAYOUT” enabled.

60 https://linuxhint.com/linux-kernel-watchdog-explained/
59 https://github.com/torvalds/linux/blob/master/Documentation/watchdog/watchdog-api.rst

27



Overall, in order for the watchdog to operate the kernel needs to be compiled with
CONFIG_WATCHDOG=y and “/dev/watchdog” character device should be created (with major
number of 10 and minor number of 130 - checkout “man mknod” if you want to create it).

Lastly, if you want to see the status of the watchdog you can use the command “wdctl”61 - As
can be seen in the screenshot below62. For more information about the concept I suggest reading
https://en.wikipedia.org/wiki/Watchdog_timer.

62 https://en.wikipedia.org/wiki/Watchdog_timer#/media/File:Wdctl_screenshot.png
61 https://man7.org/linux/man-pages/man8/wdctl.8.html

28



zswap-shrink
Based on the kernel source code zswap is a backend for frontswap. Frontswap provides a
“transcendent memory” interface for swap pages. In some cases we can get increased
performance by saving swapped pages in RAM (or a RAM-like device) and not on disk as swap
partition\swapfile63. The frontends are usually implemented in the kernel while the backend is
implemented as a kernel module (as we will show soon). Zswap takes pages that are in the
process of being swapped out and attempts to compress and store them in a RAM-based
memory pool64.

We can say that zswap trades CPU cycles for potentially reduced swap I/O. A significant
performance improvement can happen in case the reads from the swap device are much slower
than the reads from the compressed cache65. The “zswap_frontswap_store” is the function that
attempts to compress and store a single page66.

The kernel thread “zswap-shrink” is created created based on a workqueue67. On my VM
(Ubuntu 22.04.1) zswap is compiled part of the kernel itself and not as a separate “*.ko” (kernel
module). You can see in the screenshot below that it does not appear in the output of “lsmod”
and is marked as builtin (look at the filename field) in the output of “modinfo”.

For more information like the compression used by zswap (the default one is lzo) and other
parameters that can be configured for zswap I suggest reading the following link
https://wiki.archlinux.org/title/zswap. You can also read the parameter ons
“/sys/module/zswap/parameters”.

67 https://elixir.bootlin.com/linux/v6.1-rc2/source/mm/zswap.c#L1511

66 https://elixir.bootlin.com/linux/v6.1-rc2/source/mm/zswap.c#L1097

65 https://www.kernel.org/doc/html/v4.18/vm/zswap.html
64 https://elixir.bootlin.com/linux/latest/source/mm/zswap.c
63 https://www.kernel.org/doc/html/v4.18/vm/frontswap.html

29



khugepaged
The kernel thread “kugepaged” is created using the “kthread_run()” function68. It is responsible
for the “Transparent Hugepage Support” (aka THP). “kugepaged” scans memory and collapses
sequences of basic pages into huge pages69.

We can manage and configure TPH using sysfs70 or by using the syscalls “madvise”71 and
“prctl”72. The scan of memory is done by calling “khugepaged_do_scan()”73 which in turn calls
“khugepaged_scan_mm_slot()”74. In order to demonstrate that I have used the following bpftrace
oneliner “sudo bpftrace -e 'kfunc:khugepaged_scan_mm_slot{
printf("%s:%d\n",curtask->comm,curtask->pid); }'”. The output is shown in the screenshot
below.

Lastly, we can also monitor the modifications made by “khugepaged” by checking the
information on “/proc”. For example we can check the
“AnonHugePages”/”ShmemPmdMapped”/”ShmemHugePages” in “/proc/meminfo”, which is
global for the entire system. If we want information regarding a specific process/task we can use
“/proc/[PID]/smaps” and count “AnonHugePages”/”FileHugeMapped” for each mapping
(https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html).

74 https://elixir.bootlin.com/linux/v6.1.12/source/mm/khugepaged.c#L2250
73 https://elixir.bootlin.com/linux/latest/source/mm/khugepaged.c#L2404
72 https://man7.org/linux/man-pages/man2/prctl.2.html
71 https://man7.org/linux/man-pages/man2/madvise.2.html
70 https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html#thp-sysfs
69 https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html
68 https://elixir.bootlin.com/linux/latest/source/mm/khugepaged.c#L2551

30



krfcommd
“krfcommd” is a kernel which is started by executing “kthread_run()” function75. The kernel
thread executes the “rfcomm_run()” function76. Thus, we can say that “krfcommd” is responsible
for RFCOMM connections77.

RFCOMM (Radio Frequency Communication) is a set of transport protocols on top of L2CAP
which provides emulated RS-232 serial ports. It provides a simple reliable data stream (like
TCP). It is used directly by many telephony related profiles as a carrier for AT commands, as
well as being a transport layer for OBEX over Bluetooth78.

Moreover, there is also an “rfcomm” cli tool in Linux. It is used to inspect and maintain
RFCOMM configuration79. For more information about RFCOMM I suggest reading
https://www.btframework.com/rfcomm.htm. You can also go over the protocol specification80.

Also, RFCOMM protocol supports up to 60 simultaneous connections between two Bluetooth
devices. The number of connections that can be used simultaneously is implementation-specific.
For the purposes of RFCOMM, a complete communication path involves two applications
running on different devices (the communication endpoints) with a communication segment
between them81.

Lastly, RFCOMM is implemented as a kernel module. Thus, it can be compiled directly to the
kernel or separate kernel module - in the screenshot below we can see it compiled as a separate
file.

81 https://www.amd.e-technik.uni-rostock.de/ma/gol/lectures/wirlec/bluetooth_info/rfcomm.html
80 https://www.bluetooth.com/specifications/specs/rfcomm-1-1/
79 https://linux.die.net/man/1/rfcomm
78 https://en.wikipedia.org/wiki/List_of_Bluetooth_protocols
77 https://stackoverflow.com/questions/57152408/what-is-the-internal-mechanics-of-socket-function
76 https://elixir.bootlin.com/linux/latest/source/net/bluetooth/rfcomm/core.c#L2109
75 https://elixir.bootlin.com/linux/latest/source/net/bluetooth/rfcomm/core.c#L2215

31



ksgxd
The kernel thread “ksgxd” is part of the Linux support for SGX (Software Guard eXtensions).
Overall, SGX is a hardware security feature of Intel’s CPU that enables applications to allocate
private memory regions for data and code. There is a privilege opcode “ENCLS” which allows
creation of regions and “ENCLU” which is a privilege opcode that allows entering and executing
code inside the regions82. For more information about SGX you can read my writeup about it83.

“ksgxd” is a kernel which is started by executing “kthread_run()” function84. The kernel thread
executes the “ksgxd” function85. “ksgxd” is started while SGX is initializing and at boot time it
re-initializes all enclave pages. In case of over commitment “ksgxd” is also responsible for
swapping enclave memory86 like “kswapd”87.

If you want to know if your CPU supports SGX you can use the following command: “cat
/proc/cpuinfo | grep sgx” (you can also use lscpu). You can also check your UEFI (legacy BIOS)
configuration to check if you - check out the screenshot below88.

Lastly, there is a great guide for an example SGX app using a Linux VM on Azure that I
encourage you to read89. For more information about the Linux stack for SGX I suggest reading
https://download.01.org/intelsgxstack/2021-12-08/Getting_Started.pdf and going over the
following github repo https://github.com/intel/linux-sgx.

89 https://tsmatz.wordpress.com/2022/05/17/confidential-computing-intel-sgx-enclave-getting-started/
88 https://phoenixnap.com/kb/intel-sgx
87 https://medium.com/@boutnaru/the-linux-process-journey-kswapd-22754e783901
86 https://elixir.bootlin.com/linux/v6.1.10/source/arch/x86/kernel/cpu/sgx/main.c#L188
85 https://elixir.bootlin.com/linux/v6.1.10/source/arch/x86/kernel/cpu/sgx/main.c#L395
84 https://elixir.bootlin.com/linux/v6.1.10/source/arch/x86/kernel/cpu/sgx/main.c#L427
83 https://medium.com/@boutnaru/security-sgx-software-guard-extension-695cab7dbcb2
82 https://docs.kernel.org/x86/sgx.htmlhttps://docs.kernel.org/x86/sgx.html

32



jbd2 (Journal Block Device 2)
“JBD” stands for “Journal Block Device”90. “jbd2” is a kernel which is started by executing
“kthread_run()” function91. The name of the kernel thread has the following pattern
“jbd2/[DeviceName]”. The code is part of a kernel module - as you can see in the screenshot
below.

Moreover, as we can see from the code it is a file system journal-writing code (part of the ext2fs
journaling system). The journal is an area of reserved disk space used for logging transactional
updates. The goal of “jbd2” is to schedule updates to that log92.

The kernel thread executes the “kjournald2()” function93. This main thread function is used to
manage a logging device journal. Overall, the thread has two main responsibilities: commit and
checkpoint. Commit is writing all metadata buffers of the journal. Checkpoint means flushing
old buffers in order to reuse an “unused section” of the log file94.

Lastly, JBD was written by Stephen Tweedie and it is filesystem independent. There are different
filesystems that are using it like etx3,etx4 and OCFS2. There are two versions: JBD created in
1998 with ext3 and JBD2 forked from JBD in 2006 with ext495.

95 https://en.wikipedia.org/wiki/Journaling_block_device
94 https://elixir.bootlin.com/linux/v6.2.1/source/fs/jbd2/journal.c#L152
93 https://elixir.bootlin.com/linux/v6.2.1/source/fs/jbd2/journal.c#L169
92 https://elixir.bootlin.com/linux/v6.2.1/source/fs/jbd2/journal.c
91 https://elixir.bootlin.com/linux/v6.2.1/source/fs/jbd2/journal.c#L277
90 https://manpages.ubuntu.com/manpages/jammy/man1/pmdajbd2.1.html

33



netns
The kernel thread “netns” is based on a single threaded workqueue96, which is created when the
network namespace is initialized (net_ns_init()). If you want to read more about “network
namespaces” you can use the following link
https://medium.com/@boutnaru/linux-namespaces-network-namespace-part-3-7f8f8e06fef3.
Also, for a reminder you can also check out the diagram below97.

“netns” is responsible for cleaning up network namespaces. When a namespace is destroyed the
kernel adds it to a cleanup list. The kernel thread “netns” goes over the list and performs the
cleanup process using the “cleanup_net()” function98.

If you want to see where all the magic happens is in “__put_net()” which queues the work on the
“netns” to execute “cleanup_net()” function99.

99 https://elixir.bootlin.com/linux/v6.2-rc4/source/net/core/net_namespace.c#L649
98 https://elixir.bootlin.com/linux/v6.2.3/source/net/core/net_namespace.c#L565
97 https://wizardzines.com/comics/network-namespaces/
96 https://elixir.bootlin.com/linux/v6.2-rc4/source/net/core/net_namespace.c#L1106

34



oom_reaper
“oom_reaper” is a kernel thread which was created using the “kthread_run” function100.
Basically, it is the implementation of the OMM (Out–of-Memory) killer function of the Linux
kernel - for more information about it I encourage you to read the following link
https://medium.com/@boutnaru/linux-out-of-memory-killer-oom-killer-bb2523da15fc.

The function which is executed by the thread is “oom_reaper”101 which calls “oom_reap_task”102.

Based on the documentation the goal of the “oom_reaper” kernel thread is to try and reap the
memory used by the OOM victim103. “oom_reaper” sleeps until it is waked up 104 which is after
OOM kills the process105.

After killing the process the victim is queued so the “oom_reaper” can release the resources106.
You can see an example of the log created by OOM after killing a process107.

107https://blog.capdata.fr/index.php/linux-out-of-memory-killer-oom-killer-pour-un-serveur-base-de-donnees-postgre
sql/

106 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_kill.c#L992
105 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_kill.c#L947
104 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_kill.c#L680
103 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_kill.c#L504
102 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_kill.c#L609
101 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_kill.c#L640
100 https://elixir.bootlin.com/linux/v6.2.5/source/mm/oom_kill.c#L735

35



kpsmoused
“kpsmoused” is a kernel thread which based on an ordered workqueue108 which is allocated
inside the “pmouse_init” function. “kpsmoused” is responsible for handling the input from PS/2
mouse devices.

Thus, “kpsmoused” transforms the raw data to high level event of mouse movements that be can
consume from “/dev/input/mice”, “/dev/input/mouseX”, or “/dev/input/eventX”109.

The kernel thread is created by the “psmouse” kernel module which is described as “PS/2 mouse
driver” - as shown in the screenshot below (which was created using copy.sh). By the way, the
“kpsmoused” is created as part of “/drivers/input/mouse/psmouse-base.c” since kernel 2.5.72110.

110 https://elixir.bootlin.com/linux/v2.5.72/source/drivers/input/mouse/psmouse-base.c
109 https://www.kernel.org/doc/html/v5.5/input/input.html
108 https://elixir.bootlin.com/linux/v6.2.6/source/drivers/input/mouse/psmouse-base.c#L2046

36



slub_flushwq
“slub_flushwq” is a kernel thread which based on a workqueue111 which is allocated inside the
“kmem_cache_init_late” function. Based on the source code the allocation is done only if
“CONFIG_SLUB_TINY” is enabled112. From the documentation “CONFIG_SLUB_TINY” is
for configuring SLUB allocation in order to achieve minimal memory footprint, it is not
recommended for systems with more than 16 GB of RAM113. The queuing of work is done
inside the “flush_all_cpus_locked” function114.

SLUB is also known as the “Unqueued Slab Allocator”115. Slab allocation is a memory
management mechanism which allows efficient memory allocation of objects. It is done using
reduction of fragmentation that is caused due to allocations/deallocations116. For more
information about slab allocation I suggest reading the following link
https://hammertux.github.io/slab-allocator.

Thus, SLUB is a slab allocator that limits the use of cache lines instead of using queued object
per cpu/per node list117. So, it is less complicated because it does not keep queues (like for each
CPU). The only queue is a linked list for all the objects in each of the slub pages118. The interplay
between the three main data structures (kmem_cache, kmem_cache_cpu, kmem_cache_node)
used by the SLUB allocator is shown in the diagram below119 .

119 https://hammertux.github.io/img/SLUB-DS.png
118 https://hammertux.github.io/slab-allocator
117 https://elixir.bootlin.com/linux/v6.2.6/source/mm/slub.c#L3
116 https://en.wikipedia.org/wiki/Slab_allocation
115 https://lwn.net/Articles/229096/
114 https://elixir.bootlin.com/linux/v6.2.6/source/mm/slub.c#L2822
113 https://cateee.net/lkddb/web-lkddb/SLUB_TINY.html
112 https://elixir.bootlin.com/linux/v6.2.6/source/mm/slub.c#L5056
111 https://elixir.bootlin.com/linux/v6.2.6/source/mm/slub.c#L5057

37



pgdatinit
“pgdatinit” is a kernel which is started by executing the “kthread_run()” function120. The kernel
thread executes the “deferred_init_memmap()” function121.

Thus, “pgdatinit” is responsible for initializing memory on every node of the system. For each
node a dedicated kernel thread is created with the name pattern “pgdatinit[NodeNumber]”122.

Overall, the kernel thread is created in case CONFIG_DEFERRED_STRUCT_PAGE_INIT is
enabled when compiling the kernel. Which states that initialization of struct pages is deferred to
kernel threads123.

Lastly, after the initialization flow is finished an information message is sent to the kernel ring
buffer124 - as you can see in the image below125.

125 https://www.mail-archive.com/debian-bugs-dist@lists.debian.org/msg1822096.html
124 https://elixir.bootlin.com/linux/v6.3-rc4/source/mm/page_alloc.c#L2177
123 https://cateee.net/lkddb/web-lkddb/DEFERRED_STRUCT_PAGE_INIT.html
122 https://elixir.bootlin.com/linux/v6.3-rc4/source/mm/page_alloc.c#L2283
121 https://elixir.bootlin.com/linux/v6.3-rc4/source/mm/page_alloc.c#L2108
120 https://elixir.bootlin.com/linux/v6.3-rc4/source/mm/page_alloc.c#L2284

38



kblockd
“kblockd” is a kernel thread based on a workqueue126 which is marked with high priority and that
it can be used for memory reclaim. It is used for performing I/O disk operations.

Moreover, we can deduct based on the location of the file in the Linux source tree (/block) that
“kblockd” is part of the “Block Layer” (which is responsible for managing block devices) - as
shown in the diagram below127.

Overall, one might think that we can use keventd128 for performing I/O operations. However,
because they can get blocked on disk I/O. Due to that, “kblockd” was created to run low-level
disk operations like calling relevant block device drivers129.

Thus, “kblockd” must never block on disk I/O so all the memory allocations should be
GFP_NOIO. We can sum up that it is used to handle all read/writes requests to block devices130.

130 https://elixir.bootlin.com/linux/v6.3-rc4/source/block/blk-core.c#L13

129https://mirrors.edge.kernel.org/pub/linux/kernel/people/akpm/patches/2.5/2.5.70/2.5.70-mm8/broken-out/kblockd.
patch

128 https://lwn.net/Articles/11351/
127 https://lwn.net/Articles/736534/
126 https://elixir.bootlin.com/linux/v6.2.9/source/block/blk-core.c#L1191

39



writeback
The kernel thread “writeback” is based on a workqueue131. The goal of the kernel thread is to
serve all async writeback tasks132. Thus, “writeback” is flushing dirty information from the page
cache (aka disk cache) to disks. The page cache is the main disk cache used by the kernel. The
kernel references the page cache when reading from/writing to disk133.

Overall, they are two ways of flushing dirty pages using writeback. The first is in case of an
explicit writeback request - like syncing inode pages of a superblock. Thus, the
“wb_start_writeback()” is called with the superblock information and the number of pages to
flush. The second one is when there is no specific writeback request, in this case there is a timer
that wakes up the thread periodically to flush dirty data134.

Moreover, from kernel 3.2 the original mechanism of “pdflush” was changed to “bdi_writeback”.
By doing so it solves one of the biggest limitations of “pdflush” in a multi-disk environment. In
that case “pdflush” manages the buffer/page cache of all the disks which creates an IO
bottleneck. On the other hand, “bdi_writeback” creates a thread for each disk135. By the way,
“bdi” stands for “Backing Device Information”136. Lastly, to get an overview of the “writeback”
mechanism you can checkout the diagram below137.

137 https://blog.csdn.net/younger_china/article/details/55187057
136 https://lwn.net/Articles/326552/
135 https://blog.csdn.net/younger_china/article/details/55187057
134 https://lwn.net/Articles/326552/
133 https://www.oreilly.com/library/view/understanding-the-linux/0596005652/ch15s01.html
132 https://elixir.bootlin.com/linux/v6.2.5/source/mm/backing-dev.c#L35
131 https://elixir.bootlin.com/linux/v6.2.5/source/mm/backing-dev.c#L363

40



kdamond (Data Access MONitor)
“kdamond” is a kernel thread which is created using the “kthread_run()” function138 which is part
of the DAMON (Data Access MONitor) subsystem. The kernel thread executes the
“kdamon_fn()” function139.Overall, DAMON provides a lightweight data access monitoring
facility that can help users in analyzing the memory access patterns of their systems140. Based on
the documentation DAMON increases the memory usage by 0.12% and slows the workloads
down by 1.39%141.

Also, DAMON has an API for kernel programs142. Moreover, there is also DAMOS
(DAMon-Based Operations Schemas). Using that, users can develop and run access-aware
memory management with no code and just using configurations143.

Probably the best way to go over DAMON data is by using visualization. A great demonstration
for that has been done by SeongJae Park using the PARSEC3/SPLASH-2X benchmarks144. The
output was heatmaps of the dynamic access patterns for heap area, mmap()ed area and the stack
area. One example is shown in the image below, it visualizes the data access pattern of the stack
area when running the parsec3-blackscholes145. Lastly, there are also other mechanisms in Linux
that can help with data access monitoring such as “Perf Mem” and “Idle Page Tracking”

145 https://lwn.net/Articles/813108/
144 https://parsec.cs.princeton.edu/parsec3-doc.htm
143 https://sjp38.github.io/post/damon/
142 https://www.kernel.org/doc/html/v5.17/vm/damon/api.html#functions
141 https://damonitor.github.io/doc/html/v20/vm/damon/eval.html
140 https://www.kernel.org/doc/html/latest/admin-guide/mm/damon/index.html
139 https://elixir.bootlin.com/linux/v6.3-rc5/source/mm/damon/core.c#L1304
138 https://elixir.bootlin.com/linux/v6.3-rc5/source/mm/damon/core.c#L632

41



kintegrityd
“kintegrityd” is a kernel thread based on a workqueue146 which is responsible for verifying the
integrity of block devices by reading/writing data from/to them. The function which is executed
by the workqueue is “bio_integrity_verify_fn”147. The function is called to complete a read
request by verifying the transferred integrity metadata and then calls the original bio end_io
function148.

This procedure is done to ensure that the data was not changed by mistake (like in a case of a bug
or an hardware failure149. This mechanism is also called “bio data integrity extensions“. And it
allows the user to get protection for the entire flow: from the application to storage device. The
implementation is transparent to the application itself and it is part of the block layer150.

Moreover, in order for it to work we should enable CONFIG_BLK_DEV_INTEGRITY, which is
defined as “Block layer data integrity support”151. The filesystem does not have to be aware that
the block device can include integrity metadata. The metadata is generated as part of the block
layer when calling the submit_bio() function152. We can toggle the writing of metadata using
“/sys/block/<BlockDevice>/integrity/write_generate“ and the verification of the metadata using
“/sys/block/<BlockDevice>/integrity/read_verify” - as shown in the screenshot below.

Lastly, there are also file systems which are integrity aware (and they will generate/verify the
metadata). There are also options for sending the metadata information from userspace, for more
information I suggest reading the following Linux’s kernel documentation
https://www.kernel.org/doc/Documentation/block/data-integrity.txt.

152 https://www.kernel.org/doc/Documentation/block/data-integrity.txt
151 https://elixir.bootlin.com/linux/v6.1/source/block/Kconfig#L60
150 https://www.kernel.org/doc/Documentation/block/data-integrity.txt
149 https://www.quora.com/What-is-the-purpose-of-kintegrityd-Linux-Kernel-Daemon/answer/Liran-Ben-Haim
148 https://elixir.bootlin.com/linux/v6.1/source/block/bio-integrity.c#L313
147 https://elixir.bootlin.com/linux/v6.1/source/block/bio-integrity.c#L317
146 https://elixir.bootlin.com/linux/v6.1/source/block/bio-integrity.c#L455

42



kthrotld
“kthrotld” is a kernel thread which was created using an workqueue153 which acts as an interface
for controlling IO bandwidth on request queues (throttling requests). Overall, read and write
requests to block devices are placed on request queues154.

In order to understand how request queues are used the best way is to check the source code of
the kernel. The first step is going over the definition of “struct request_queue”155 and then where
is it referenced156. By the way, in kernel version 6.1.1 it is referenced in 199 files. We can
summarize that a request queue holds I/O requests in a linked list. Also, it is a best practice to
create a separate request queue for every device157.

Thus, we can say that “kthrotld” acts as a block throttle, which provides block QoS (Quality of
Service). It is used to limit IOPS (I/O per second)/BPS (Bits per second) per cgroup (control
group)158.

Overall, IO throttling is done as part of the generic block layer and before the IO scheduler as
seen in the diagram below159. For more information on “Block Throttling” I suggest reading
https://developer.aliyun.com/article/789736.

159 https://blog.csdn.net/yiyeguzhou100/article/details/104044419
158 https://developer.aliyun.com/article/789736
157 https://www.oreilly.com/library/view/linux-device-drivers/0596000081/ch12s04.html
156 https://elixir.bootlin.com/linux/v6.1.1/C/ident/request_queue
155 https://elixir.bootlin.com/linux/v6.1.1/source/include/linux/blkdev.h#L395
154 https://www.halolinux.us/kernel-architecture/request-queues.html
153 https://elixir.bootlin.com/linux/v6.1.1/source/block/blk-throttle.c#L2470

43



scsi_eh (Small Computer System Interface Error
Handling)
The kernel thread “scsi_eh” is executed using the “kthread_run” function. The name pattern of
the kernel thread is “scsi_eh_<SCSI_HOST_NUMBER>”160. It is the “SCSI error handler”
which is responsible for all of the error handling targeting every SCSI host161. The kernel thread
is executing the “scsi_error_handler” function162.

Moreover, a SCSI controller which coordinates between other devices on the SCSI bus is called
a “host adapter”. It can be a card connected to a slot or part of the motherboard. You can see an
example of a SCSI connector in the image below163.

Lastly, SCSI stands for “Small Computer System Interface”. It is a set of standards (from ANSI)
for electronic interfaces in order to communicate with peripheral hardware like CD-ROM drives,
tap drivers, printers, disk drives and more164.. For more information about SCSI I suggest going
over https://hackaday.com/2023/03/02/scsi-the-disk-bus-for-everything/.

164 https://www.techtarget.com/searchstorage/definition/SCSI
163 https://computer.howstuffworks.com/scsi.htm
162 https://elixir.bootlin.com/linux/v6.4-rc1/source/drivers/scsi/scsi_error.c#L2233
161 https://elixir.bootlin.com/linux/v6.4-rc1/source/drivers/scsi/scsi_error.c#L2230
160 https://elixir.bootlin.com/linux/v6.4-rc1/source/drivers/scsi/hosts.c#L504

44



blkcg_punt_bio
“blkcg_punt_bio” is a kernel thread based on a workqueue. The workqueue itself is created in the
“blkcg_init” function165. It is part of the common block controller cgroup interface166.

Overall, when a shared kernel thread tries to issue a synchronized block I/O (bio) request for a
specific cgroup it can lead to a priority inversion. It can happen if the kernel thread is blocked
waiting for that cgroup167. An example of priority inversion is shown in the diagram below168.

Thus, to avoid the problem mentioned above the function “submit_bio”169 punts the issuing of
the bio request to a dedicated work item (per-block cgroup).
It calls “blkcg_punt_bio_submit”170, which will call “__blkcg_punt_bio_submit”171.

171 https://elixir.bootlin.com/linux/v6.2.5/source/block/blk-cgroup.c#L1657
170 https://elixir.bootlin.com/linux/v6.2.5/source/block/blk-cgroup.h#L380
169 https://elixir.bootlin.com/linux/v6.2.5/source/block/blk-core.c#L829
168 https://embeddedgurus.com/barr-code/2010/11/firmware-specific-bug-8-priority-inversion/
167 https://patchwork.kernel.org/project/linux-block/patch/20190627203952.386785-6-tj@kernel.org/
166 https://elixir.bootlin.com/linux/v6.2.5/source/block/blk-cgroup.c#L3
165 https://elixir.bootlin.com/linux/v6.2.5/source/block/blk-cgroup.c#L2058

45



napi (New API)
NAPI stands for “New API” which is used to reduce the number of received interrupts. Think
about cases in which the network driver receives a large number of packets at a fast pace172. If we
think about it in the case of a Gigabit network card and an MTU of 1500 the CPU will get about
90K of interrupt per second. Thus, we can say that NAPI is an extension to the Linux packet
processing framework, which is done for improving performance for high speed networking.
This is performed using interrupt mitigation and packet throttling. It is important to say that the
addition of NAPI does not break backward compatibility173. “napi” is a kernel thread which is
created using the “kthread_run()”174 function which is part of the NAPI (New API) subsystem.
The name of the kernel thread is based on the pattern “napi[DeviceName]-[NAPI-ID]”. It
executes the “napi_threaded_poll”175 function.

Due to that, drivers that support NAPI can disable hardware interrupts as a mechanism for packet
reception. In that case the network stack relies on polling for new packets at a specific interval. It
might seem that polling is less efficient but in case the network device is busy any time the
kernel will poll for a packet it will get something176. Lastly, the way NAPI does that is by
combining hardware interrupts and polling. When a hardware interrupt is received, the driver
disables it and notifies the kernel to read the packets.Then a kernel software interrupt polls the
network device for a specific time. When the time runs out/there is no more data the kernel will
enable the hardware interrupt again177. A detailed diagram of the NAPI flow is shown in the
diagram below178.

178https://www.researchgate.net/profile/Roberto-Bruschi-2/publication/228624515/figure/fig4/AS:301797211164675
@1448965470134/Detailed-scheme-of-the-forwarding-operations-in-26-kernel-NAPI.png

177 https://www.jianshu.com/p/7d4e36c0abe8
176 https://lwn.net/Articles/833840/
175 https://elixir.bootlin.com/linux/v6.4-rc4/source/net/core/dev.c#L662
174 https://elixir.bootlin.com/linux/v6.4-rc4/source/net/core/dev.c#L1371
173 https://wiki.linuxfoundation.org/networking/napi
172 https://www.hitchhikersguidetolearning.com/2023/04/09/handling-receive-packets-via-napi/

46



kauditd (Kernel Audit Daemon)
“kauditd” is a kernel thread which is started using the “kthread_run” function179. The kernel
thread is calling the “kauditd_thread” function, this function is responsible for sending audit logs
to userspace180.Overall, the kernel mechanism in the Linux kernel has a couple of goals: integrate
fully with LSMs181, minimal run-time overhead when performing auditing, ability to disable
system call auditing at boot time, allow to be used by other parts of the kernel for auditing,
netlink interface to userspace and support for filtering to minimize the information sent to
user-mode182.

Thus, we can say “kauditd” is the kernel component of the “Linux Auditing System” which
handles the audit events - as shown in the diagram below183 . In order to configure which set of
rules are going to be loaded in the kernel audit system we can use the “/etc/audit/audit.rules” file.
This file can hold configuration in one of three categories: control (configuring the audit system),
file system rules monitoring rules and system call monitoring rules184.

Lastly, by using the “Linux Auditing System” the system administrator can investigate what
happens in the system for the purpose of debugging or in case of a security incident. We can also
use the “auditctl” utility get/add/delete rules as part of Linux's kernel audit system185. Also, there
are great examples for “audit.rules” in GitHub (one example is
https://github.com/Neo23x0/auditd/blob/master/audit.rules).

185 https://linux.die.net/man/8/auditctl
184 https://manpages.debian.org/unstable/auditd/audit.rules.7.en.html
183 https://link.springer.com/chapter/10.1007/978-3-031-17143-7_30
182 https://elixir.bootlin.com/linux/v6.4-rc4/source/kernel/audit.c#L11
181 https://medium.com/@boutnaru/linux-security-lsm-linux-security-modules-907bbcf8c8b4
180 https://elixir.bootlin.com/linux/v6.4-rc4/source/kernel/audit.c#L828
179 https://elixir.bootlin.com/linux/v6.4-rc4/source/kernel/audit.c#L1700

47



tpm_dev_ wq
“tpm_dev_wq” is a kernel thread base on a workqueue186. It belongs a device file system
interface for “Trusted Platform Module” aka TPM187.

Overall, TPM is an international standard for secure cryptoprocessors. Those are
microprocessors which are used for a variety of security applications such as secure boot,
random number generating and crypto key storage188.

Moreover, a work is queued for “tpm_dev_wq” as part of the function “tpm_common_write”189.
In case we are working in non-blocking mode an async job for sending the command is
scheduled190.

Lastly, “tpm-dev-common.c” is compiled as part of the kernel TPM device drivers as shown in
the Makefile191. The information about the TPM module is shown in the screenshot below. I am
using Ubuntu “22.04.2”, in which the TPM module is compiled directly into the kernel itself.

191 https://elixir.bootlin.com/linux/v6.3-rc7/source/drivers/char/tpm/Makefile
190 https://elixir.bootlin.com/linux/v6.3-rc7/source/drivers/char/tpm/tpm-dev-common.c#L202
189 https://elixir.bootlin.com/linux/v6.3-rc7/source/drivers/char/tpm/tpm-dev-common.c#L209
188 https://wiki.archlinux.org/title/Trusted_Platform_Module
187 https://elixir.bootlin.com/linux/v6.3-rc7/source/drivers/char/tpm/tpm-dev-common.c#L13
186 https://elixir.bootlin.com/linux/v6.3-rc7/source/drivers/char/tpm/tpm-dev-common.c#L273

48



ipv6_addrconf
“ipv6_addrconf” is a kernel thread which is based on a workqueue192. This code is part of the
Linux INET6 implementation and is responsible for the IPv6 Address auto configuration193.
Overall, each IPv6 entity in the network needs a globally unique address for communicating
outside of the local segment. In order to get such an address there are a few options: manual
assignment of an address, DHCPv6 (Dynamic Host Configuration Protocol version 6) and
SLAAC (Stateless Address Autoconfiguration). When talking about stateless and stateful it
means if there is a server/device that keep tracks of a state for each address assignment194.

Moreover, the stateless address autoconfiguration has the following phases. The node configures
itself with a link-local address. The most known way for doing that is using the link-local prefix
“FE80::/64” and combining that with the EUI-64 identifier generated from the MAC address - as
shown in the diagram below.

The flow above It is done by the function “addrconf_addr_gen”195. We can see there the
link-local prefix196 and the call for generating the EUI-64 identifier by the function
“ipv6_generate_eui64”197. After that, the node performs DAD (Duplicate Address Detection) in
order to ensure that the address is unique in the local segment. It is done using NDP (Neighbor
Discovery Protocol), which defines 5 new packets types to ICMPv6 that allows to provide
different functionality like DAD and others like parameter discovery, next hop determination and

197 https://elixir.bootlin.com/linux/v6.2.11/source/net/ipv6/addrconf.c#L3345
196 https://elixir.bootlin.com/linux/v6.2.11/source/net/ipv6/addrconf.c#L3326
195 https://elixir.bootlin.com/linux/v6.2.11/source/net/ipv6/addrconf.c#L3314
194 https://www.networkacademy.io/ccna/ipv6/stateless-address-autoconfiguration-slaac
193 https://elixir.bootlin.com/linux/v6.2.11/source/net/ipv6/addrconf.c#L3
192 https://elixir.bootlin.com/linux/v6.2.11/source/net/ipv6/addrconf.c#L7292

49



more198. If there are no issues with the link-local address it is assigned to the specific device. The
DAD operation is performed by the function “addrconf_dad_work”199.

Lastly, there is also a similar flow for configuring a global unicast address. The difference is that
there is also a need for sending a “Router Solicitation” message for getting the global prefix of
the segment, I will leave the details of that for a future writeup.

199 https://elixir.bootlin.com/linux/v6.2.11/source/net/ipv6/addrconf.c#L4058
198 https://datatracker.ietf.org/doc/html/rfc4862

50



mm_percpu_wq
“mm_percpu_wq” is a kernel thread based on a workqueue which is created in the
“init_mm_internals” function200. It is part of the the statistics management regarding virtual
memory201. An overview diagram of virtual memory is shown below202.

Overall, “mm_percpu_wq” is the worker thread which updates different counters about the
virtual memory of a Linux system. It is also called the “vmstat worker”203. “vmstat” stands for
“Virtual Memory Statistics” which includes information such as: number of free pages, number
of mapped pages, number or dirty pages, amount of memory allocated to kernel stacks and more
(there are more than 150 different counters).

The statistics can be read from the file “/proc/vmstat”204. This proc entry is created with others
(“buddyinfo, “pagetypeinfo” and “zoneinfo”) in the same file in which “mm_percpu_mm” is
allocated205. We can see the list of the metric counters in the source code206.

As it names suggested the kernel thread is responsible for accumulating the vm events among all
CPUs207. It is done by going over all the “online” CPUs208. Lastly, we can use different cli tools
to review the different statistic counters. One of those tools is “vmstat”209.

209 https://linux.die.net/man/8/vmstat
208 https://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#L117
207 https://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#L126
206 https://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#L1168
205 https://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#L2123
204 https://man7.org/linux/man-pages/man5/proc.5.html
203 https://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#L2021
202 https://iboysoft.com/wiki/virtual-memory.html
201 https://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#L5
200 https://elixir.bootlin.com/linux/v6.4-rc5/source/mm/vmstat.c#L2100

51



inet_frag_wq
The kernel thread “inet_frag_wq” is created using a workqueue210, we could have guessed it
based on a workqueue do to the “wq” suffix. It is used for fragment management of IP packets.
Thus the goal of “inet_frag_wq” is to reassemble fragmented IPv4/IPv6 packets211.

Overall, the goal of IP fragmentation is to split packets into smaller chunks in order to allow
them to meet the MTU (Maximum Transmission Unit) requirement of a specific network. There
is an implementation difference between IP fragmentation in IPv4 and IPv6. On IPv4 the
information needed for fragmentation is part of the IPv4 header which in IPv6 there is a specific
“Fragmentation Header”212. An illustration of the flow is shown in the diagram below both for
IPv4213 and IPv6214.

Thus, “inet_frag_wq” is relevant when a fragmented IP packet arrives at a specific system. The
OS stores the fragmented packets in a queue and reassembles them before they are passing the
data to the upper layers of the network stack. The fragment queue is represented by "struct
inet_frag_queue"215. Moreover, we can see in the source code the function “ip_frag_reasm”
which is responsible for building a new IP datagram from all of its fragments216.

216 https://elixir.bootlin.com/linux/v6.2-rc1/source/net/ipv4/ip_fragment.c#L411
215 https://elixir.bootlin.com/linux/v6.2-rc1/source/include/net/inet_frag.h#L66
214 https://blog.quarkslab.com/analysis-of-a-windows-ipv6-fragmentation-vulnerability-cve-2021-24086.html
213 https://notes.shichao.io/tcpv1/ch10/
212 https://www.geeksforgeeks.org/ipv6-fragmentation-header/
211 https://elixir.bootlin.com/linux/v6.2-rc1/source/net/ipv4/inet_fragment.c#L6
210 https://elixir.bootlin.com/linux/v6.2-rc1/source/net/ipv4/inet_fragment.c#L211

52



kstrp (Stream Parser)
“kstrp” is based on a single threaded workqueue217. Form the source code documentation we can
see that “strparser” means “Stream Parser”218. A stream parser is a utility that gets data streams
and parsers the application layer protocol over those streams. A stream parser can work in one of
two modes: general mode or receive callback mode.

In general mode, a sequence of socket buffers (skbs) are given to the stream parser from an
outside source. Messages are parsed and delivered as the sequence is processed. This mode
allows a stream parser to be applied to any arbitrary stream of data. In receive callback mode, the
stream parser is called from the data_ready callback of the TCP socket. Messages are parsed and
delivered as they are received on the socket219.

Thus, we can say that we can parse application layer protocol messages in TCP. It is basically a
generalization of KCM (Kernel Connection Multiplexor)220.
KMC provides a message based interface over TCP for generic application protocols. With the
use of KMC applications can send/receive application messages efficiently over TCP221.

Lastly, “strparser” allows intercepting packets on TCP connections. This is done at the kernel
level which provides the ability to perform custom processing. The processing can be done using
the BPF/Kernel module222. One example for that is the implementation of KTLS223 (a Linux
TLS/DTLS kernel module). An illustration of the flow is shown below224.

224 https://docs.kernel.org/networking/tls-offload.html
223 https://github.com/ktls/af_ktls
222 https://zhuanlan.zhihu.com/p/543663512
221 https://www.kernel.org/doc/html/latest/networking/kcm.html
220 https://lwn.net/Articles/695982/
219 https://www.kernel.org/doc/html/v5.10/networking/strparser.html
218 https://elixir.bootlin.com/linux/v6.1.1/source/net/strparser/strparser.c#L3
217 https://elixir.bootlin.com/linux/v6.1.1/source/net/strparser/strparser.c#L539

53



devfreq_wq
“devfreq_wq” is a kernel thread which is based on a freezable workqueue225. It is part of the
Generic Dynamic Voltage and Frequency Scaling (DVFS) Framework for Non-CPU devices226.

Overall, DVFS enables Linux to scale the CPU frequency in order to minimize the power usage.
It is mostly done when the full performance of the CPU is not needed. By using DVFS the
system can set min/max CPU frequency. There is also the ability to set a “scaling governor”
which monitors the performance requirements and decides what CPU frequency to use each
time227.

Moreover, based on the Linux documentation there are 6 governors: “Performance”,
“Powersave”, “Userspace”, “Ondemand”, “Conservative” and “Schedutil”228. We can also
develop our own governor as a kernel module, we just need to register it using the function
“cpufreq_register_governor”229.

Lastly, we can use the sysfs filesystem to configure/read information regarding “cpufeq”. An
example of a file path for the first cpu is “/sys/devices/system/cpu/cpu0/cpufreq/” (if sysfs is
mounted at “/sys”). It might contain the information like (but not limited to): current frequency
of the CPU, the time it takes the CPU to switch frequencies (in nanosecs) and more230. An
example of reading the current configure governor is shown below231.

231 https://moisescardona.me/changing-the-cpu-governor-to-performance-in-linux/
230 https://www.kernel.org/doc/Documentation/cpu-freq/user-guide.txt
229 https://elixir.bootlin.com/linux/v6.5-rc2/source/drivers/cpufreq/cpufreq.c#L2443
228 https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
227 https://wiki.somlabs.com/index.php/How_to_scale_CPU_frequency_with_DVFS_framework
226 https://elixir.bootlin.com/linux/v6.2.5/source/drivers/devfreq/devfreq.c#L3
225 https://elixir.bootlin.com/linux/v6.2.5/source/drivers/devfreq/devfreq.c#L1997

54



dmcrypt_write
“dmcrypt_write” is a kernel thread which is created using the “kthread_run” function232. The
name of the kernel thread is in the pattern of "dmcrypt_write/%s", where the added string
represents the device name.Overall, “dm-crypt” is a device-mapper target233 supported from
kernel version 2.6.4234. It is responsible for transparent (aka real-time/on-the-fly encryption)
block device encryption while using the kernel crypto API235 .

This means the data is encrypted/decrypted while it is read/written. To enable the “dm-crypt”
support we need to enable “CONFIG_DM_CRYPT” in the compilation config of the kernel236.
Moreover, the function that is executed as part of the kernel thread is “dmcrypt_write”
function237. This function is part of the kernel module “dm_crypt” - as shown in the screenshot
below. We can use “modinfo dm_crypt” for more information, also shown in the screenshot
below.

237 https://elixir.bootlin.com/linux/v6.5-rc3/source/drivers/md/dm-crypt.c#L1922
236 https://elixir.bootlin.com/linux/v6.5-rc3/source/drivers/md/Makefile#L59
235 https://gitlab.com/cryptsetup/cryptsetup/-/wikis/DMCrypt
234 https://elixir.bootlin.com/linux/v2.6.4/source/drivers/md/dm-crypt.c
233 https://elixir.bootlin.com/linux/v6.5-rc3/source/drivers/md/dm-crypt.c#L3689
232 https://elixir.bootlin.com/linux/v6.5-rc3/source/drivers/md/dm-crypt.c#L3388

55



ModemManager (Modem Management Daemon)
“ModemManager” is an ELF binary located by default at “/usr/sbin/ModemManager” which is
used to provide a unified high level API for communication with mobile broadband modems238.
Alos, it is started by PID 1 (init/systemd) with the permission of the root user.

Overall, it is a DBus-powered239 Linux daemon which acts as a standard RIL (Radio Interface
Layer). “ModemManager” can be used by different connection managers (think about
“NetworkManager” for example). Moreover, if we want to control and manage
“ModemManager” we can use the CLI tool “mmcli”. By using it we can list all available
modems, connect to a modem, get/set properties of the modem and more240.

Thus, we can summarize “ModemManager” as a system daemon that controls WWAN
(2G/3G/4G/5G) devices and connections. It is the default mobile broadband management system
in most Linux distributions (like Ubuntu, Debian, Fedora and Arch). By the way, it is also used
by routers running OpenWRT241.

It is important to understand that “ModemManager” leverages “libqmi”242 and “libmbim”243 to
communicate over QMI (Qualcomm MSM Interface) and MBIM (Mobile Interface Broadband
Model) for setting connection to to the cellular network244. It does not matter if the modem is
builtin, USB connected or bluetooth-paired. A diagram of the architecture is shown below.
Lastly, if we want to go over the source code on “ModemManager” or contribute we can use its
repo245. I also suggest going over the documentation site of “ModemManager” and the relevant
libraries: libmbim, libqmi and libqrtr-glib246.

246 https://modemmanager.org/docs/
245 https://gitlab.freedesktop.org/mobile-broadband/ModemManager
244 https://developer.toradex.com/software/connectivity/modem-support/
243 https://github.com/linux-mobile-broadband/libmbim
242 https://github.com/linux-mobile-broadband/libqmi
241 https://modemmanager.org/
240 https://manpages.ubuntu.com/manpages/trusty/man8/mmcli.8.html
239 https://www.freedesktop.org/software/ModemManager/api/latest/
238 https://manpages.ubuntu.com/manpages/trusty/man8/ModemManager.8.html

56



kerneloops
“kerneloops” is an ELF binary located at “”. It is used to collect kernel crash information (as part
of a kernel oops) and submit them to kerneloops.org247. An example of such oops is shown in the
screenshot below248. By the way, they are also known as “soft panic”249.

Overall, a kernel oops is a serious but non-fatal error in the Linux kernel. It is a way for the
kernel to signal that it has found a problem that could potentially cause the system to crash.
However, the kernel will continue to run after an oops, although it may be unstable and can lead
to a kernel panic. This helps in debugging the error in order to find a solution for the problem250.

Moreover, if we want to debug the kernel with gdb it is suggested to compile it with
“CONFIG_DEBUG_INFO” enabled, which causes the kernel to be built with full debugging
information251. Also, I recommend also enabling “CONFIG_FRAME_POINTER”, which gives
very useful debugging information in case of kernel bugs - precise
oopses/stacktraces/warnings252.

Lastly, there is also a setting called “oops_limit” which states after what number of oops should
cause a panic. The default value by the way is 10000253.

253 https://docs.kernel.org/admin-guide/sysctl/kernel.html#oops-limit
252 https://cateee.net/lkddb/web-lkddb/FRAME_POINTER.html
251 https://www.oreilly.com/library/view/linux-device-drivers/0596005903/ch04.html
250 https://en.wikipedia.org/wiki/Linux_kernel_oops
249 https://www.opensourceforu.com/2011/01/understanding-a-kernel-oops/
248 https://nakedsecurity.sophos.com/2023/03/13/linux-gets-double-quick-double-update-to-fix-kernel-oops/
247 https://linux.die.net/man/8/kerneloops

57


