DEVELOPPEZ V0S
APPLICATIONS POUR

iPHONE
- iPAD

Jean-Pierre IMBERT

Developpez
vos applications pour

IPhone, iPod Touch, iPad

Copyright

Auteur

Avertissement
aux utilisateurs

© 2010 Micro Application
20-22, rue des Petits-Hotels
75010 Paris

187 Edition - Mai 2010

Jean-Pierre IMBERT

Toute représentation ou reproduction, intégrale ou partielle, faite sans le
consentement de MICRO APPLICATION est illicite (article L122-4 du code
de la propriété intellectuelle).

Cette représentation ou reproduction illicite, par quelque procédé que ce
soit, constituerait une contrefagon sanctionnée par les articles L335-2 et
suivants du code de la propriété intellectuelle.

Le code de la propriété intellectuelle n"autorise aux termes de I'article
L122-5 que les reproductions strictement destinées a l'usage privé et
non destinées a l'utilisation collective d'une part, et d’autre part, que les
analyses et courtes citations dans un but d’exemple et d’illustration.

Les informations contenues dans cet ouvrage sont données a titre indicatif
et nont aucun caractere exhaustif voire certain. A titre d’exemple non
limitatif, cet ouvrage peut vous proposer une ou plusieurs adresses de
sites Web qui ne seront plus d’actualité ou dont le contenu aura changé
au moment ou vous en prendrez connaissance.

Aussi, ces informations ne sauraient engager la responsabilité de I'Edi-
teur. La société MICRO APPLICATION ne pourra étre tenue responsable
de toute omission, erreur ou lacune qui aurait pu se glisser dans ce
produit ainsi que des conséquences, quelles qu’elles soient, qui résul-
teraient des informations et indications fournies ainsi que de leur utili-
sation.

Tous les produits cités dans cet ouvrage sont protégés, et les marques
déposées par leurs titulaires de droits respectifs. Cet ouvrage n’est ni
édité, ni produit par le(s) propriétaire(s) de(s) programme(s) sur le(s)
quel(s) il porte et les marques ne sont utilisées qu’a seule fin de dési-
gnation des produits en tant que noms de ces derniers.

ISBN : 978-2-300-028021
ISSN : 1950-0289

MICRO APPLICATION Support technique :
20-22, rue des Petits-Hotels Egalement disponible sur
75010 PARIS www.microapp.com

Tél.: 0153 34 20 20
Fax: 0153 34 20 00
http://www.microapp.com

Retrouvez des informations sur cet ouvrage !

Rendez-vous sur le site Internet de Micro Application
www.microapp.com. Dans le module de recherche,
sur la page d’accueil du site, entrez la référence

a 4 chiffres indiquée sur le présent livre.

Vous accédez directement a sa fiche produit.

Avant-propos

Destinée aussi bien aux débutants qu’aux utilisateurs initiés, la col-
lection Guide Complet repose sur une méthode essentiellement pra-
tique. Les explications, données dans un langage clair et précis,
s’appuient sur de courts exemples. En fin de chaque chapitre, décou-
vrez, en fonction du sujet, des exercices, une check-list ou une série
de FAQ pour répondre a vos questions.

Vous trouverez dans cette collection les principaux thémes de I'uni-
vers informatique : matériel, bureautique, programmation, nouvel-
les technologies...

Conventions typographiques

Afin de faciliter la compréhension des techniques décrites, nous
avons adopté les conventions typographiques suivantes :

m gras : menu, commande, boite de dialogue, bouton, onglet.

m italique: zone de texte, liste déroulante, case a cocher, bouton
radio.

B Police baton : Instruction, listing, adresse internet, texte a saisir.

m ¢<:indique un retour a la ligne volontaire d(i aux contraintes de la
mise en page.

b

REMARQUE
|

Il s’agit d’'informations supplémentaires relatives au sujet traité.

A

ATTENTION

Met I'accent sur un point important, souvent d’ordre technique qu'il ne
faut négliger a aucun prix.

Propose conseils et trucs pratiques.

DEFINITION
L

Donne en quelques lignes la définition d'un terme technique ou d’une
abréviation.

4

Chapitre 1
1.1.

1.2
1.3.
1.4.

1.5.

1.6.
1.7.

Chapitre 2
2.1.

2.2.

2.3.

2.4,

2.5.

Chapitre 3
3.1.

3.2.

Sommaire

Premiers pas

Créer un projet avec XCodecvviiiiiiiiieiiiiiiieeiiiiieeeeaanns
(=Y o =1 g O2o Yo L=
Créer UN ProJET .« ettt e
(L= =Y g = o o) = S
Composer l'interface utilisateurccoviiiiiii i,
Tester 'applicationovviiii i
Finaliser I'application ...t
Ajouter un fichierau projetc.covviiiiiiiii i
Déclarer le logo de I'applicationc.ccooiiiiiiiiiiiiii s
Agrémenter I'applicationcccoviiiiiiiiiiiii
Mettre notreimage danslavuecooeeviiiiiiiiiiiiinnnnn.
ChalleNge . s
CheCK-lIST .ot

Interactions simples

Programmation orientée objetccooiiiiiiiiiii
(O] 1=] & J T
L T
1Y 1TSS Vo 1=
Mécanisme Cible-ACtionoiieiiiiiiiiiii e
Créerles outletsooviiiiiiiii e
Préparer I'interface utilisateurcooiiiiiiiiiiiiiiiin e,
Connecter 1es OULIELSuuiiii it s
Déclarer 1es actionsoooviiiiiiiii i
DEéfinirles actionsoooviiiiiiiii i
Connecterlesciblesoiiiiiiii i
Construire et tester I'application Convertisseur1
Hiérarchie des classes de ConvertisseurTcccvvivviinnnnn.
HErtagE vt e
Hiérarchie desVUESccieiiiiiiii it
Manipulation des objets en Objective-Ccccvvvviiiiinnnnn..
Déclarationoiiiiiiii i e
DA fiNItiON Lo
1Y 1TSS o TP
Propri€tes ..o s
[0 4T) o T
LI Eration ...,
[0 Y=Y o S T

Gestion de la mémoire

Diagnostiquer les fuites mémoire avec Leaksocuvees
7400] 2 1 o 1
Détecter les fuites MEMOIreccooeiiiiiiiii e
Diagnostiquer les fuites Mémoireoovevevviiiiiiiin i
Eviter Ies fuites MEMOIreceevvueeeieeeeieeeieeeieeeeeeeenn,
Compteur de référencesccvvvviiiiiiiii i e
Gestion des Propriétésooveeiiiiiiii i

17

19
19
20
23
25
28
30
30
32
34
35
36
38

39

41
42
43
44
44
45
47
50
51
52
57
59
60
60
62
63
63
68
68
69
70
72
73

3.3.

3.4.

Chapitre 4

4.1.

4.2,

4.3.
4.4,

4.5.

Chapitre 5

5.1.

5.2.

5.3.

5.4.

5.5.

5.6.

Responsabilités des objetscoooiiiiiiiiii 88

Ameéliorer ConvertisseurToiiiiiiiii i 90
Instances Manipuléesooeviiiiiiii e 90
Mise en conformité aveclarégleccoviiiiiiiiiiiiiiiiiinnnn. 91
Références obsoletesoovviiiiiiiiiiiii 94
ChECK-liSt ottt e e 98
Motifs fondamentaux 99
Mécanisme de délégationccvviiiiiiiiii i 101
DEIEGUE ...t 101
Déléguerle champ dollarooeiiiiiiiiii e 102
Délégué pourunchampdetexteooovvvviiiiiiiiniiiiinnnn. 105
Déclarer un protoColeooeiiiiiiiiii i 107
Lancement de I'applicationccooiiiiiiiiiiiiii e 108
Structurer une application ...ttt 114
Améliorer ConvertisseurToieviiiiiiii e ns 115
Retrouverlavirguleooiiiiiiii s 115
Localiser I'applicationccooiiiiiiiiiiiiii e 120
Utiliser le motif KVC ... 125
Autres ameéliorationscceviiiiiiiii i 129
MOtif IMIVC . 133
[0 F= 1 1= g o = 134
Améliorer encore ConvertisseurTovveviiiiiiiiieinienannenn. 134
Explorer les contréles simples ..., 135
CheCK-liSt . e 140
Applications multivues 143
Application de type utilitaireccoooiiiiiiiiiiiiii 145
Comprendre le fonctionnement d’un utilitaire 145
Activerunevue modalecoiiiiiiiiiii e 153
Application ConvertisSeUr2ccoovuiiiiiiiiiiiiiiiiiieaaiaeens 154
Composerlavue principaleooieeiiiiiiiiiiiii i 154
Paramétrer le taux de cONVersioncccvieviiiiiiiinnnnnnn. 155
Factoriser le délégué de champ detextecoooeeeiinnnn 156
Finaliser les controleursde vueccoooiiiiiiiiiiiiieniiinns 159
Communiquer entre les deux contréleursccocvvvinnnn 166
Messages d'alertecoevviiiiiiin i 168
Afficherunealertecoooiiiiiiii 169
Feuilles d'actioncuiiiiiiie i e 172
Délégué de feuille d'actionccoovieiiiiiiiiii i 174
DEIEQUE d'alertecvvveiei e e 174
Barre d'ongletsoooiiiiiiii e 175
Créerunebarred’ongletcoovviiiiiiii e 175
Utiliser un contréleur de barre d’'ongletscccviivinnnt. 177
Modifier la navigation parongletsccoviiiiiiiiiiiinnannn.. 180
Barres de navigationoeiiiiiiiii 181
Créer une barre de navigationcoooviiiiiiiiiiiiiiiinnns 182
Utiliser une barre de navigationccoevviiiiiiniiiiinn... 182
CheCKlist ..t e 183
Sommaire

5

w
e
>
=
=
o
0

6

Chapitre 6

6.1.

6.2.

6.3.

6.4.

Chapitre 7

7.1.

7.2.

7.3.

Chapitre 8

8.1.

8.2.

8.3.

8.4.

Sommaire

Contréoles complexes

Utiliser un sélectionneurcoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaas
Sélectionneurde date ...t
Sélectionneurstandard ...t e
SoUrce de dONNBES ...uviiiiiiii et eiieeee s
Adapter le sélectionneur au contextec.vviiiieiiiiiiinnn..
Utiliser les conteneurs CoCOacvvviiireiieeriiinneeenennnnnen.
TableauX NSAITAY .o e
Dictionnaires NSDictionaryccoviiiiiiiiiii i
Conteneurs mutablesooieiiiiiiiiii e
Utiliser les Vuesentablecoooiiiiiiiiiiiiiiiiiiiiiiiiiiiiies
Présentation généraleccooiiiiiiiiiiiiii s
Créerunevueentable ..o
Afficherlatable ...
Réagiraune sélectionccooviiiiiiiiiiiii s
Ajouter Un él8mMeNntuviiiiiiii e
Pouraller plus1oin ... s
ChecKliSt ..o e

Persistance des données

Utiliser le framework CoreDatacccovvviiiiiiinniiiiinnn.
Décrire le modéle de donNéescvvviiiiiiieiiiiiiieniainns
Comprendre le fonctionnement de Core Data
Formuler des requUétesooiiiniiiiiiiiiii it
AJouter Un Objet ...
SUPPHMEr UN ODJEt ..uvtiei i
Utiliser les listes de propriétéscoooviiiiiiiiiiiiiiiiiiiinnnns
Format des listes de propriétéscoovvviiiiiiiiiiiinninnnnns
Utilisation des listes de propriétéscccoiiiiiiiviiiiinnnn..
Mise N PratiqQUeoviiee e
CheCKliSt e e

Dessins et animations

ANIMEr 1€S IMAgES .ottt aeeeens
IMAagES ANIMEES . ..uutiii it eenaaes
Sonoriser une applicationoooiiiiiiiii
Déplacer UN€ iMage ...ouvoiieie e e e eanees
Dessineravec QUartz2Dc.oviiiiiiii i
Principe de fonctionnementccoiiiiiiiiii i
MiSE €N PratiqUe ...oeviiee e e
Primitives graphiques ..o s
Débuter la 3D avec OpenGLESc.c.oviiiiiiiiiiiiiiii s
Présentation d’OpenGLESo
Intégration dans Cocoa TOUChcvviiiiiiiiiiiii i
Exemple d’applicationcccoviiiiiiiiiiiiiii s
CheCKliSt . e

185

187
187
196
200
202
205
205
207
208
208
208
211
212
218
221
228
228

231

233
234
239
247
251
254
258
258
259
260
264

Chapitre 9
9.1.

9.2.

9.3.

9.4.

Chapitre 10

10.1.

10.2.

10.3.

10.4.
10.5.

10.6.

Chapitre 11
11.1.

Tapes, touches et gestes 301
Comprendre 1es éVENEeMEeNtSovvviiiiiiee it eeiiieeeeenns 303
Classe UIRESPONAEr ...uiiiiiiiiiiiie i e iieee e 303
Evénements €l6mMentairesueeereereeeneeenieeeeneennss 304
Ecran MUMi-TOUCK ..oeiiiiiiii e 306
Traiter les veNemMentsooiiiiiiiiiiiiiii e 307
Recevoirles événementsooiiiiiiiiiiiiiiiiii i 307
Notification d’événementsccovviiiiiiiiii it 310
Tapes MUILIPIES ..o e 312
Mettre en ceuvre [eS gestesvviviiviiiiiii i 313
ChiQUeNaUde ..o eaas 313
PiNnCeMENt ..o 317
CheCKlist .nn et e 320
Appareil photo 321
Sélectionner une Photoooiveiiiiiiiiii i 323
Codage de l'interfaceoooeeeviiiiiii e 323
Codage ducontréleurde vuecooveviveiiiiiie i, 325
Classe UllmagePickerControllercoooviiiiiiiiiiiiiiiinnnnns 328
Protocole UllmagePickerControllerDelegate 330
Prendre des photosciiiiiiiiiiiiii e 331
Adapter l'interface utilisateurcoooiiiiiiiiiiiiiiiiien 331
Adapter le sélectionneur de photoscccoiiiiiiiiiiiiinn.. 331
Enregistrer ses photosc.vviiviiiiiii i i 332
Géreruneimage sous Core Dataceovvviiiieiiiiiinnnnnnnnnns 332
Enregistrerdans l’album ... 334
Editer 185 PROTOS ..uvveeiseeit e 336
ENVOyer ses PhotoS ...vviiiiiie i e 336
Classe MFMailComposeViewControllerccevviiinnn... 337
Protocole MFMailComposeViewControllerDelegate 338
ChallenNge . e 339
CheCKIST .o 339
Géo-localisation 341
Déterminer sa POSItiONovviiiiiiiin i 343
Technologies de géo-localisationcccovviiiiiiiiiinn... 343
Classe CLLocationManagerooeviiiiiiiiiiiiiiiiiieaiinennns 343
Protocole CLLocationManagerDelegatecccevviiinnnnn.. 347
Classe CLLOCAtION ...oiuiiiei e 348
ChallENge v s 349
Déterminer I'orientation géographiquecccoviiiinn... 349
Mise en ceuvre du compas magnétiquecevvevviinnnnnn. 350
Calibration magnétiquecccevviiiiiiiiei it 351
Classe CLHEadingoiueeiei e 351
Framework MapKitooviiiiii i e 352
Afficher Une carteo.eeiie e 352
Connaitre lazone affichée ... 354
Controéler lazone affichée ... 357
Appréhender lavuesatellite ... 358

Sommaire

7

8

ANNOTEr la Carte ...
T1.4, ChecKlist ... e

Chapitre 12 Accélérometres

12.1. Utiliser les acCelérometresccccooiiiiiiiiiiiiiiiiiiiiiiiannn,
Visualiser I'accélérationccovvviiiiiiiiiii i
Visualiserlaverticaleoiiiiiiiiiiiiiiii e
Filtrerlesdonnées ...

12.2. Déterminer les mouvements de lI'appareilccccovviinnnnn.

12.3. Connaitre I'orientationde I'appareilccoviiiiiiiiiiiinnn.
Retour surlaclasse UIDeviceccvvviiiiiiiiniiiiiiiennininnns
S’abonner aux changements d’orientation
Orienter automatiquementlesvuescoveevvviiiiinnnnnnn.

124, ChecKlist ..une s

Chapitre 13 Spécificités de I'iPad
13.1. Un SDK, deux Ciblescciiiiiiiiiiiiiiiiiii i
Choisir sa cible de déploiementcccoviiiiiiiii i
Créer une application universellecccooiiiiiiiiiiiiinnnn.
13.2. Nouveautés de l'interface visuellecccvviiiiiiiiiiinnnn..
Recommandations généralesc.ooviiiiiiiiiiiiiiiiinanns
VUES MOAAIES ..t
Vues contextuellesveviiiiiii e
VUEBS SCINAEES . .uvviiiiiiteet e et aeeens
13.3. Reconnaissance des gestescccevviiiiiiiieiiiiiiiieeniiiinnenn,
Gestesde baseooiiii
Utiliser un analyseurde gestec.ovviiiiiiiiiiiiiiniiiiieenns
Synchroniserles analyseursoocoeeviiiiiiiiii i
13.4. Checklist .o e

Chapitre 14 Annexe

140, EPIOGUE .vnieeee e e e
14.2. Politique d’ APPIe ..o
Les différents statuts de développeurcooeevviiiiiinennnnn.
Diffusion des applicationsccoiiiiiiiiiiiii i
Signature ducodeooveeiiiii s
Certificats ..uuii i
14.3. Processus de diffusionccooiiiiiiiiiiiiiiii
S’enregistrer comme développeurccvvvviiiiiiiiiiiiiiennas
S’inscrire au programme des développeursccceviuennns
Certifier un développeuroiiei i
Tester son application sur un appareilcoovvvevviiiiinn...
Diffusion limitée de son applicationc..ccoiiiiiiiniannn.
Diffuser son application sur I’AppStorecccvvviiviiinnnnnn..

Chapitre 15 Index

Sommaire

363
365
366
369
372
375
375
377
377
378
381

383

385
385
387
387
387
389
390
392
396
396
399
404
405

407
409
409
409
410
411
412
412
413
413
417
420
426
434

439

=z
(@)
-
O
=)
[m)]
(@)
o
l—
=

INTRODUCTION

Pour qui est ce livre ?

Ce livre est destiné a tous ceux qui souhaitent développer leur propre
application pour iPhone, iPod Touch ou pour iPad. Il vous accompa-
gnera dans |'étude de la programmation pour ces équipements, dans
la découverte des outils de développement d’Apple et du langage
Objective-C; et jusqu’a la distribution de votre application sur
I’AppStore.

ﬁ iPhone, iPod Touch, iPad
Nous employons le terme iPhone pour évoquer indistinctement I'iPhone
I'iPod Touch ou I'iPad. Lorsqu’une caractéristique est disponible uniquement
sur I'un ou l'autre de ces appareils, nous le précisons en indiquant par
exemple : "cette caractéristique n’est pas disponible sur iPod Touch".

Vous explorerez les techniques permettant d’utiliser les caractéristi-
ques les plus innovantes de I'iPhone (accélérateur, géo-localisation,
capacités graphiques, gestes, etc.) et serez certainement séduit par la

désarmante facilité avec laquelle vous mettrez en ceuvre ces techni-
ques en utilisant les frameworks et le SDK d'Apple.

Cet ouvrage est destiné a ceux qui ont déja une connaissance de la
programmation d’applications logicielles. Si ce n’est pas le cas, nous
vous recommandons la lecture de Débutez en Programmation (édi-
tions Micro Application).

Développer pour iPhone ou pour iPad ?

Les applications développées pour iPhone et iPod Touch peuvent
étre exécutées sur iPad. L'utilisateur a alors la possibilité de visuali-
ser l'interface dans sa taille originale ou dans une taille double.
A I'inverse, une application développée pour iPad ne peut générale-
ment pas étre exécutée sur iPhone ou iPod Touch, ne serait ce que
pour la taille de I'écran. Pour ces trois appareils, il faut utiliser le SDK
iPhone OS.

Il est donc a priori plus intéressant de développer pour iPhone plutot
que seulement pour iPad. La plupart des chapitres de cet ouvrage
traitent donc de I'iPhone et de I'iPod Touch. Le dernier chapitre traite
des spécificités de I'iPad et de la réalisation d’applications qui
s’adaptent a I'appareil sur lequel elles s’exécutent.

De quoi avez-vous besoin ?
Comment I'obtenir ?

Le matériel

10

A SDK Apple

ATTENTION

Le SDK Apple ne fonctionne pas sur un PC sous Windows ou Linux.

L’environnement de développement utilisé dans cet ouvrage est le
SDK 3.2 qui permet de développer des applications pour iPhone,
iPod Touch et iPad. Il ne peut s’exécuter que sur un Macintosh a
processeur Intel doté du systéme d’exploitation Snow Leopard (Mac
OS X 10.6) ou ultérieur.

Introduction

@ Intel ou PowerPC

REMARQUE

Durant de longues années, une particularité des Macintosh d’Apple était
de fonctionner sur un processeur de la famille PowerPC, développé en colla-
boration avec IBM et Motorola, et pas sur un processeur de la famille Pentium
ou équivalent comme les PC. A partir du début des années 2000, I'écart de
performances entre ces deux types de processeur s’est progressivement
accru en faveur d’Intel, si bien que Steve Jobs a annoncé en juin 2005 le
changement de processeur. Tous les Macintosh a partir de 2006 sont a
processeur Intel et conviennent pour le développement sur iPhone.

Si ce n’est déja fait, il vous faudra donc impérativement vous procu-
rer un Mac si vous voulez développer des applications pour iPhone.

\
7

ASTUCE

Le Refurb Store
Apple commercialise des produits reconditionnés sur son site marchand
http://store.apple.com/fr. Il est possible d’y faire de bonnes affaires. Si vous étes

étudiant, pensez aussi aux offres spéciales "Education” d’Apple.

Mac reconditionnés

iPod reconditionnés

Déstockage %

MacBook Pro a
Reconditionné

2,66 CHz
Intel Core 2 2 -
Duo —
1.899,00 €

Refurbished iPod Touch

32 Go (1le
génération)
195,00 €

Figure 1: Les produits reconditionnés sur I'’Apple Store

Plusieurs revendeurs commercialisent également des machines d'occasion,
soyez sOr de choisir un Mac a processeur Intel.

Le logiciel

L'environnement de développement est disponible gratuitement sur
le site des développeurs d’Apple http://developer.apple.com. Dans la suite

De quoi avez-vous besoin ? Comment U'obtenir ?

1"

de cet ouvrage, nous emploierons le terme de SDK (Software Deve-
lopment Kit) pour désigner I'environnement de développement.

¢ éi Inscription obligatoire

REMARQUE . O - . . ; ;
L'inscription sur le site des développeurs d’Apple est obligatoire pour

télécharger le SDK. Cette inscription est gratuite, elle vous permettra égale-

ment d’accéder aux ressources techniques du site des développeurs (vidéos

d’apprentissage, documentation technique, exemples de code source, forum

des développeurs).

A I'heure ou nous rédigeons ces lignes, le
SDK est disponible en version 3.1.2 qui per-
met de développer des applications pour les
versions 2 et 3 d'iPhone OS. Il est fourni au
format .dmg (format d’image disque stan-
dard sur Mac OS X) et sa taille est environ de
2,7 Go ; il faut généralement plusieurs heu-
res pour le télécharger. Vous obtiendrez un
SDK complet et d’excellente qualité :

m outils de développement ;
m frameworks iPhone/iPod Touch/iPad et Mac OS X ;

m simulateur d’'iPhone et d’iPad pour tester vos applications sur
votre Macintosh ;

m outils et instruments divers (mesure de performance, recherche de
bogues, ateliers de composition graphique, etc.).

1 Double-cliquez sur le fichier que vous venez de télécharger ; une
fenétre du Finder s’ouvre qui vous permet de visualiser le contenu
de I'image disque.

2 Double-cliquez sur le fichier iPhone SDK ; le programme d’instal-
lation s’exécute et suit le processus standard sur Mac OS X:
approbation de la licence d’utilisation des outils de développe-
ment puis du kit iPhone, personnalisation de I'installation (laisser
les parameétres par défaut) et installation.

EREQMAREUE Installation et droits d’administration
L'installation du SDK nécessite les droits d’administration de I'ordinateur.

12 ‘ Introduction

800 |_| iPhone SDK =
>

3 éléments, 20 Ko disponibles
A
Aok

About iPhane SDK

o

iPhone 5DK

[es——

Packages

o |

Figure 2: Contenu de I'image disque du SDK iPhone

Un appareil de test

Vous pourrez tester plusieurs applications de ce livre en utilisant le
simulateur fourni avec le SDK mais votre satisfaction sera décuplée
lorsque vous exécuterez votre application sur votre appareil.

Il n"est généralement pas nécessaire de disposer d'un appareil spé-
cifique pour effectuer vos tests ; I'iPhone, I'iPod Touch ou I'iPad que
vous utilisez quotidiennement fera I'affaire.

Si vous souhaitez améliorer les tests avant de diffuser votre applica-
tion, vous devrez disposer de plusieurs appareils, par exemple un
iPhone 3G, un iPhone 3GS, un iPod Touch et un iPad. Certaines
personnes de votre entourage disposent slirement de ces appareils
et seront sans doute fiers de vous aider a tester vos applications.

Afin de viser une plus large diffusion, il faudra tester vos applications
non seulement sur plusieurs appareils mais aussi sous plusieurs
versions d'OS. Il vaudra mieux a ce moment-la que vous disposiez
d’appareils dont I'usage sera réservé aux tests ; vous risquez d'avoir
moins d’amis si les changements d'OS ont provoqué des pertes de
données sur les appareils qu'ils vous ont confiés.

L'inscription au programme des développeurs
iPhone

Cette inscription payante, moins de 100 € par an, est indispensable
pour tester son application sur un appareil réel. Elle vous permettra de :

m tester ou diffuser en mode Privé vos applications sur des appareils
réels (jusqu’a 100) ;

De quoi avez-vous besoin ? Comment U'obtenir ?

m diffuser vos applications sur I’AppStore (et gagner de I'argent) ;
m disposer des versions Béta de I'iPhone OS ;
m accéder a certaines informations spécifiques.

. L'inscription se fait sur le site web des développeurs
é (http://developer.apple.com). Le processus d’inscription et de prépara-
REWOI — tion aux tests réels est détaillé en annexe.

Une petite présentation

Les éléments de base

Pour développer une application logicielle, nous avons besoin des
éléments suivants :

m Un langage de programmation ; pour développer sur I'iPhone OS,
ce sera Objective-C.

m Des outils de développements (éditeur, compilateur, composition
de l'interface graphique, débogueur, etc.) : nous utiliserons princi-
palement XCode et Interface Builder.

m Une bibliotheque d'API (Application Programming Interface) per-
mettant au code écrit dans le langage de programmation d’accé-
der aux fonctions fournies par le systeme d’exploitation ; sur les
systémes Mac OS X et iPhone OS, ces bibliothéeques se nomment
des frameworks. Si vous étes familier de la terminologie PC/Win-
dows, les DLL sont I'équivalent des frameworks.

Nous commencerons notre étude par la découverte des outils XCode
et Interface Builder et du langage Objective-C puis nous aborderons
progressivement les différents frameworks d’iPhoneQOS.

Vous avez vraisemblablement déja entendu parler de Cocoa Touch.
s’agit de la partie de I'iPhone OS que nous utiliserons le plus souvent
tout au long de notre parcours. Cocoa Touch est composé de 2 fra-
meworks :

m UIKit prend en charge la gestion de I'interface utilisateur (U1 pour
User Interface) :

_ différents éléments de l'interface utilisateur (boutons, champs
de texte, etc.) ;

_ gestion des événements (tapes et gestes) ;

_ fonctionnement général des applications.

14 Introduction

m Foundation contient des classes utilitaires et des interfaces de haut
niveau vers les fonctions du systeme :

— classes de collection (tableaux, ensembles et dictionnaires) ;
— classes utilitaires (dates, chaines de caracteres, etc.) ;

— acces vers le gestionnaire de fichiers, les fonctions graphiques,
I"accés au réseau, etc.

Spécificités du développement sur iPhone/
iPod touch/iPad

Le développement d’application pour iPhone OS
présente peu de difficultés ; il existe de nombreux
points communs avec le développement pour un
ordinateur. Il faudra cependant tenir compte des
limitations technologiques de ces objets épatants :
écran de petite taille, nécessité d’économiser I'éner-
gie, limitation de la mémoire. Quelques conséquen-
ces de ces limitations sont détaillées ci-apres :

m Une seule application s'exécute a un instant donné (si I'on excepte
le systéeme d’exploitation) ; la premiére conséquence est qu’il est
impossible de créer une application qui tourne en tache de fond.

m Une seule fenétre est affichée a I'écran.

m Chaque application posséde un bac a sable (sandbox), un systéme
de fichiers privé qui contiendra toutes ses données (fichiers de pa-
rametres et fichiers de données) ; il est impossible a deux applica-
tions d'accéder au méme fichier et donc d’échanger leur virus.

m La taille d’écran est limitée a 480 x 320 pixels sur iPhone et iPod
Touch, et a 1024 x 768 pixels sur iPad.

m Lataille de RAM d'uniPhone est de 128 Mo, approximativement la
moitié de cette mémoire est utilisée par I'0OS ; 'application en
cours d’exécution doit se contenter d’environ 64 Mo, il faudra
économiser la mémoire.

Langage Objective C

Objective-C est le langage de programmation "naturel" sur iPhone
OS et aussi sur Mac OS X. Il est vrai que ce langage est rarement
utilisé sur d’autres plateformes mais présente de nombreuses simi-

Une petite présentation | 15

larités avec le langage Java plus largement employé. Objective-C est
une extension "objet" du langage C, au méme titre que C++, mais
beaucoup plus simple que celui-ci et plus facile a apprendre.

Pour aller plus loin

Ce livre vous expliquera toutes les techniques fondamentales mises
en ceuvre dans les frameworks de I'iPhone OS. Il vous donnera les
clés qui vous permettront de continuer votre exploration et de déve-
lopper des applications dont la seule limite sera votre imagination.

Do you speak English ?

Ou plutét, Do you read english ?

Pour aller plus loin, il vous faudra exploiter la riche documentation
d’Apple celle intégrée a I'environnement de développement et celle
disponible sur le site des développeurs. Cette documentation est en
anglais. Ce sera donc un atout si vous étes a l'aise avec la langue de
Shakespeare.

Tout n'est pas perdu

16

Si vous étes allergique a I'anglais, tout n’est pas perdu. Pour aller
plus loin, il sera alors indispensable de vous inscrire sur un forum de
développeurs francais ou vous trouverez toujours une bonne ame
pour vous aider et vous transmettre son savoir, par exemple http:
//forum.macbidouille.com ou www.pommedev.com.

Les applications que nous détaillerons

Au fur et a mesure de notre parcours dans les frameworks de
I'iPhone, nous développerons quelques applications. Vous pourrez
les utiliser telles quelles sur votre iPhone et méme les améliorer. En
voici la liste :

m HelloWorld graphique ;

m Convertisseur de monnaie ;

m Préts aux amis ;

m Détecteur de verticale.

Bonne exploration !

Introduction

PREMIERS PAS

Créer un projet aVeC XCOUE .. ereresssessasssesesssessssssessssesesssessasssenes
Composer l'interface utilisateur ...
Tester I'applicationoooencnenns
Finaliser I'application
Agrémenter l'application
Challenge
Check-list

17

—
w
o
=
o
<
T
o

Dans ce chapitre, nous créerons notre premiére application. Comme
le veut la tradition, il s"agira d'un "Hello World". Rien de trés specta-
culaire donc mais ce sera l'occasion de prendre en main les trois
outils fondamentaux du SDK: XCode, Interface Builder et iPhone
Simulator, le simulateur d’'iPhone et d’iPad.

1.1. Créer un projet avec XCode

Lancer XCode

XCode est I'application qui va nous permettre de :

m gérer nos projets ;

m gérer et éditer les fichiers de code source ;

m construire et tester nos applications.

Un projet est I'ensemble des données nécessaires pour construire

une application :

m code source ;

m ressources (images, sons, etc.) ;

m liste des frameworks utilisés ;

m informations complémentaires (fichier d’information, paramé-
trage de la construction, etc.).

Pour créer un projet, il faut d’abord lancer I'application XCode. L'ins-
tallation standard du SDK place cette application dans le dossier
/Developer/Applications. Double-cliquez sur I'icobne XCode.

=i Macintosh HD

¥ APPAREILS
E Macintosh HD » [@& Applications 11 0c
5 iDisk » [l Bibliotheque 26 féy
v [Developer 1loc
¥ EMPLACEMENTS | About iPhone SDK.pdf 9 juill
B Bureau [About Xcode Tools.pdf 7 Juill
@} microapp v [Applications 12 og
e » [Audio 110c
A Applications
%) Documents [# Dashcode 11 og|
» [Graphics Tools 11 oc
¥ RECHERCHER (@ Instruments 11 0c
© Aujourd’hui 7 Interface Builder 11 oc
O Hier » [performance Tools 12 oc
= . B £# Quartz Composer 11 0c
@ ErsimEre » [utlities 1loc
& Toutes les images. » [WebObjects 11 oc
 Tous s s
[&] Tous les documents » [l Documentation 12 oc
» [Examples 1locs
» [Extras 11 0c Y . -
i+»_| Figure 1.1:Localisation de
o— m— , L.
L2z 160,35 Codsponioes I'application XCode

1.1. Créer un projet avec XCode 19

Si c’est la premiere fois que vous lancez XCode, la fenétre d'accueil
apparait a I’écran. Vous pouvez fermer cette fenétre.

Yors

(Recent Projects

Welcome to Xcode

Version 3.2.2 (1648)

Create a new Xcode project

Start a new software project for Mac OS X or
iPhone 05

Getting started with Xcode

it Follow the tutorial to learn how to get productive
- quickly with Xcode

Apple Developer Connection
Visit the Mac and iPhone Dev Centers at
developer.apple.com

i £ Gancel=A
(Open Other...) Eshowthls window when Xcode launches (Cancel) Open

Figure 1.2: Fenétre d'accueil de XCode

\

7

Accéder plus facilement a XCode
Vous aurez a vous servir intensément de XCode. Il sera plus pratique
d’avoir I'application a disposition rapidement en la gardant dans le Dock.

ASTUCE

Options » v Garder dans le Dock
Ouvrir avec la session

Masquer Afficher dans le Finder

Quitter

Figure 1.3 : Garder XCode dans le
Dock

Créer un projet
Procédez ainsi :

1 Sous XCode, activez la commande New Project... du menu File.
Vous pouvez également cliquer sur Create a new Xcode project
dans le panneau d’accueil.

20 | 1. Premiers pas

Edit View Project

Builg

New Project...
New Empty File
Open...
Open Quickly...
Open Recent File
Open Recent Project

Cet Info

Close Project

Close Current File

Save
Save As..

Revert to Saved

Make Snapshot

Snapshots

Print..

L'Assistant New Project s’affiche, vous permettant de choisir le type

de projet que vous souhaitez créer.

Figure 1.4 : Création d'un projet

8,00

New Project

Choose a template for your new project:

U iPhone 05 a

W

OpenGL ES
Application

View-based
Application

=)
™
Split View-based Tab Bar
Application Application

Window-based
Application

Library
e] Navigation-
1 User Templates based
= = Application
MacFUSE
ﬂ' Mac 05 X i}
Application
Framework & Library Utility
Application Plug-in Application
System Plug-in
Other

. View-based Application

This template provides a starting point for an application that uses a single view. *
It provides a view controller to manage the view, and a nib file that contains the b

(Cancel) (‘Choose:...)

A

Figure 1.5: Assistant Nouveau Projet

1.1. Créer un projet avec XCode

21

22

4 Les autres modeles d'application

REMARQUE

XCode prend en charge plusieurs types de projet. Lorsqu’on crée un
projet, il faut choisir le bon modeéle. Afin de vous faciliter le choix, la
partie gauche de I’Assistant présente les groupes de modeles. Dans

la suite de I'ouvrage, nous choisirons toujours le groupe Application
pour iPhone OS.

2 Sélectionnez View-based Application, vérifiez que le menu dérou-

lant Product est bien sélectionné sur iPhone et cliquez sur le bouton
Choose....

Nous verrons les autres modeles d’applications dans la suite de cet
ouvrage.

3 Un panneau s’affiche qui vous permet de nommer le projet en
cours de création. Saisissez Helloliorld dans la zone de texte Save
As puis cliquez sur le bouton Save.

OO New Project
Choose a template
———| Save As: [HelloWorld] E]

“ iPhone OS5

- . | Where: [(i@ Documents &]

Library

l User Templates Application

Application

MacFUSE

‘j Mac 05 X ¢ } a . }
- Applicaton | Z

Framework & Library

Utility View-based Window-based
Application Plug-in Application Application Application
System Plug-in
Other 2
Product | iPhone 4

. View-based Application

This template provides a starting point for an application that uses a single view. .
It provides a view controller to manage the view, and a nib file that contains the Y

(" Cancel) (Choose...)

4

Figure 1.6 : Panneau de sauvegarde

1. Premiers pas

u@ Le dossier de projet

REMARQUE , . . . L o
XCode crée un dossier, du méme nom que le projet, et y insére les fichiers

composant le projet. Ce dossier recevra vos propres fichiers (images, icones,
..). Il est créé par défaut dans votre dossier Documents. Vous pouvez choisir

un autre emplacement avant de cliquer sur le bouton Save.

A ce stade, nous avons créé le dossier de projet et la fenétre de projet

de XCode s'affiche.

Gérer le projet

La fenétre de projet permet de gérer tous les éléments d’'un projet.

¥ {3 NIB Files

“»

ano ™ HelloWorld =
lSlmuIa(or 3.1.3 | Debug ~ I - E] ’& ' ﬂ Qy String Matching
Overview Action Breakpoints Build and Run Tasks Info Search
Groups & Files Il File Name a[= [Code =) A | ©
¥ @& Helloworld B| §= CoreGraphics.framework o
P[] Classes §= Foundation.framewark L]
» [] Other Sources [£] Hellowerld-Info.plist]
»[| Resources {4 Helloworld.app B
¥ [] Frameworks [Hellowerld_Prefix.pch
» [] Products [11] HellowerldAppDelegate.h
¥ (@) Targets [HellowerldAppDelegare.m v o
b ¢ Executables [11] HellowerldviewController.h
v \-L Find Results E[HelloWerldViewController.m v [C]
¥ LI Bookmarks [HellowerldviewController.xib]
[=F1a"] “ |m main.m v)
. Project Symbols |—_\.[MainWindow.xib]
» (3 Implementation Files §= UIKit.framework]

Figure 1.7 : Lafenétre de projet

Cette fenétre est composée des éléments suivants :

m une barre d’outils en haut ;

m |la zone des Groupes et Fichiers (Groups and Files) sur la partie
gauche de la fenétre, qui structure les différentes informations et

les fichiers composant le projet ;

m |la Vue Détaillée au centre de la partie droite de la fenétre, dans
laquelle on peut visualiser les attributs principaux de chacun des

composants du projet ;

1.1. Créer un projet avec XCode

23

¢ éi Structure mais pas sous-dossiers
REMARQUE

24

m une Zone d’Edition en bas de la partie droite de la fenétre qui nous
permettra d’éditer les fichiers du projet (c'est dans cette zone que
nous saisirons le code source de l'application) ;

m une Barre d’Etat en bas de la fenétre ; nous y lirons les messages
émis par XCode lors de la construction de I'application.

Les fichiers sont répartis sous XCode en Classes, Autres Sources, Ressour-
ces, etc. Cette structuration est indépendante de la fagon dont les fichiers sont
structurés en sous-dossiers dans le dossier du projet ; par défaut, seul un
sous-dossier Classes est créé ; tous les autres fichiers sont "a plat" dans le
dossier du projet.

Nous verrons I'utilisation de ces différentes parties dans la suite du
livre. Pour I'heure, et si ce n'est pas déja le cas, sélectionnez Hel-
loWorld dans la zone des Groupes et Fichiers pour afficher la liste de
tous les fichiers du projet dans la Zone Détaillée.

XCode a créé pour nous les fichiers suivants :

m Les fichiers de type .framework sont des liens vers les frameworks
d’'iPhone OS nécessaires pour notre application HelloWorld :

— CoreGraphics.framework pour les fonctions de base de I'affi-
chage graphique ;

— Foundation.framework pour les accés aux fonctions de base du
systeme (fichiers, réseau, etc.) ;

— UIKit.framework qui contient toutes les classes d’'objet de base

pour créer une application sous Cocoa Touch (boutons, champs
de texte, etc.).

m HelloWorld-Info.plist est le fichier des propriétés de I'application ;
nous utiliserons bient6t ce fichier.

m HelloWorld.app est notre application. Son nom apparait en rouge
pour signaler que l'application n’est pas encore créée.

m Les fichiers de type .pch sont des fichiers intermédiaires dans le
processus de construction de I'application ; nous ne nous en oc-
cuperons pas.

m Les fichiers .m (fichier des définitions) et .h (fichiers des déclara-
tions) contiennent les codes source Objective-C de I'application :

1. Premiers pas

— main.m a l'instar de main.c en langage C contient le code de la
fonction main exécutée au lancement de l'application ; nous
n‘aurons généralement pas a modifier ce fichier.

— HelloWorldAppDelegate.h et HelloWorldAppDelegate.m contien-
nent le code source du Délégué de I'application.

— HelloWorldViewController.h et HelloWorldViewController.m
contiennent le code source du Contréleur de la Vue principale de
I"application. Ces fichiers sont créés par XCode car nous avons
utilisé le modele View-based Application a la création du projet.

m Les fichiers de type .xib sont des fichiers NIB.

Les Délégués et les Contréleurs sont des motifs de conception (Design
Pattern) abondamment utilisés dans la programmation Cocoa Touch
et que nous expliquerons trés bientot.

Les fichiers NIB contiennent des objets préts a I'emploi, endormis en
quelque sorte, qui sont réveillés lorsque le fichier est chargé dans
I"application. L'interface utilisateur en particulier est définie dans les
fichiers NIB, c’est pourquoi ces derniers sont édités avec I'outil
Interface Builder. Découvrons sans plus tarder cet outil.

1.2. Composer lI'interface utilisateur

Sous XCode, vérifiez que dans le menu overview de la barre d'outils,
la valeur Active SDK est bien positionnée sur iPhone Simulator 3.1.3.

aeno m| main.m - HelloWorld =
lSimuIat{)l - 3.1.3 ! Debug 'I E] "& ' 6 a- String Matching)
Active SDK 'inkpomls Build and Run Tasks Info Search
(iPhone Device 3.1.3 (Base SDK) | a| & Code] A 5]
iPhone Device 3.2 ts.framewark L)
iPhone Simulator 3.2 fInfo.plist B
app a
Active Configuration Prefix.pch
¥ Debug \ppDelegate.h
Release \ppDelegate.m 37K o
fiewController.h
Active Target fiewController.m 28K L)
¥ % HelloWorld fiewController.xib =
5K]
Active Executable w.xib o
¥ HelloWorld - iPhone Simulator (3.1.3) uork o
v i386 E re=
T main.m:1 $ <No selected symbol> 2 Jd_ ™ |C.|#. | ®|a&
" =

Figure 1.8 : Activation du SDK pour le simulateur d'iPhone

Vous modifierez la valeur du SDK actif pour tester votre application
dans différents environnements :

1.2. Composer lUinterface utilisateur 25

26

Simulator 3.1.3 pour tester sur le simulateur d’iPhone ;
Simulator 3.2 pour tester sur le simulateur d’'iPad ;

Device 3.1.3 pour tester sur un iPhone ou iPod Touch réels ;
Device 3.2 pour tester sur un iPad réel.

- B H B ©®

Sous XCode, double-cliquez sur le fichier HelloWorldViewControl-
ler.xib dans la Zone Détaillée de la fenétre de projet; Interface
Builder se lance.

Interface Builder File Edit Font Layout Tools Window Help

000 Library

Objects | Media

» [l uibrary

Navigation Controller - A controller
that manages navigation through a g
hierarchy of views

Tab Bar Controller - A controlier that
manages a set of view controllers that

represent tab bar items.

Table View Controller - A controller
that manages a table view.

@==, Image Picker Controller - A controller
lﬁl that manages views for choosing and
&= taking pictures.

- Object - Provides a template for
" | objects and controllers not directly
' available in Interface Builder.
1 External Object - Provides a
placeholder for an object that exists
Eemnfivinnds

View Controller
UlViewController

toolbars, navigation bars, and application views.
The UlviewController class also supports modal
views and rotating views when device orientation
changes.

Figure 1.9: Interface Builder

2 Trois fenétres apparaissent. De gauche a droite :
— une fenétre dont le titre est le nom du fichier NIB que I'on vient
d’ouvrir, c’est le contenu du fichier NIB ;

— une fenétre dans laquelle nous composerons la Vue (View) de
notre interface utilisateur ;

— une fenétre Library qui contient les objets que nous utiliserons
pour composer l'interface utilisateur.

3 Cherchez I'objet Label dans la fenétre Library et faites-le glisser sur
la Vue de notre projet (voir Figure 1.10).

4 Sélectionnez le Label nouvellement déposé sur la Vue afin de le
positionner ou vous souhaitez (voir Figure 1.11).

1. Premiers pas

u Classes = Media
i [l Library -
= dates and times.
Library - Cocoa Touch - Inputs & Values
Segmented Control - Displays
@ multiple segments, each of which
functions as a discrete button.

)

Label - A variably sized amount of

Label static text. .

Round Rect Button - Intercepts touch
events and sends an action message to
a target object when it's tapped.

Text Field - Displays editable text and

Text sends an action message to a target
~ object when Return is tapped.

.: Switch - Displays an element showing

Label
Label jy pel

<

Implements a read-only text view. A label can
contain an arbitrary ameount of text, but UlLabel
may shrink, wrap, or truncate the text,
depending on the size of the bounding rectangle
and properties you set. You can control the font,
text color, alignment, highlighting, and

(T @Filt:r)

2| Figure 1.10 : Objet Label dans la fenétre Library

Figure 1.11 : Label positionné sur la Vue principale
de I'application

1.2. Composer linterface utilisateur | 27

5 (Double-cliquez sur le Label pour sélectionner le texte et
saisissez Helloliorld. Enregistrez le fichier (commande
Save du menu File), puis revenez dans XCode et cliquez
sur le bouton Build and Run de la barre d’outils pour construire et
lancer I'application.

Build and Run

6 Il est possible qu’une boite de dialogue apparaisse pour signaler
que nous n'avons pas enregistré tous les fichiers que nous avons
modifiés. Cliquez alors sur le bouton Save All.

a0

Save before building?

*“.
| HelloWorldViewController.xib - [Users /microapp/Documents/Hel |

(_ DontSave) (Cancel) (SaveaAl) | Figure 1.12:Sauvegarder les
fichiers modifiés

.

L'application HelloWorld est construite par XCode et lancée dans le
simulateur d’'iPhone

1.3. Tester I'application

28

iPhone Simulator est I'outil qui nous permet de tester les applications
sur Mac. Il s’agit de la premiére étape de test. Bien sar, il faudra tester
I'application sur des appareils réels avant de la diffuser au public. Le
test sur simulateur est intéressant; il permet de déboguer plus
facilement I'application (voir Figure 1.13).

Explorez les menus du simulateur. On peut basculer et méme se-
couer virtuellement I'appareil. Une caractéristique intéressante est la
possibilité de tester rapidement notre application sur des versions
différentes d'iPhone OS : menu Matériel, sous-menu Version.

Explorez également le simulateur, comme si vous utilisiez votre
iPhone (cliquez sur le gros bouton en bas de I'iPhone afin de revenir
a I’écran d’accueil). Les applications Photos, Contacts et Safari fonc-
tionnent normalement ; on pourra ainsi tester les applications utili-
sant les photos et les contacts de I'iPhone.

1. Premiers pas

@ Simulateur iPhone Edition Matériel Fenétre Aide

_all Carrier = 11:42PM

Hello World

Figure 1.13: Simulateur d'iPhone

\
7

Gestes avec 2 doigts
Les gestes avec 2 doigts sont simulés en maniant la souris tout en pressant
la touche (Alt) du clavier. Essayez avec I'application Safari.

ASTUCE

Vous pouvez aussi lancer votre application sur le simulateur d’iPad
en sélectionnant le SDK iPhone Simulator 3.2 sous XCode.

Simulateur iPhone

Hello World

Figure 1.14 : Simulateur d'iPad

En explorant le simulateur, vous verrez que le logo permettant de
lancer notre application HelloWorld est un carré blanc. Nous amélio-
rerons cela immédiatement.

1.3. Tester U'application

29

12:15 AM

Figure 1.15 : Application sans logo

1.4. Finaliser I'application

Nous allons maintenant ajouter un logo a notre application Hel-
loWorld.

Revenez dans l'application XCode et choisissez sur votre ordinateur
I'image que vous souhaitez utiliser comme logo. Il est recommandé
de choisir une image carrée au format PNG.

\
7

Changer d'application
Sur Mac OS X, on peut changer rapidement d’application par la combinai-
son de touches #+%).

ASTUCE

L'ajout du logo se fait en deux temps :
1 Ajoutez I'image au projet.
2 Déclarez cette image comme étant le logo de I'application.

Ajouter un fichier au projet

1 Dans XCode, sélectionnez Resources dans HelloWorld dans la zone
Groupes et Fichiers de la fenétre du projet et activez la commande
Add to project ... du menu Project. Le panneau standard de Mac OS
X permettant de choisir un fichier s’affiche.

2 Recherchez I'image désirée a |I'aide de ce panneau et cliquez sur le
bouton Add.

30 | 1.Premiers pas

Project
Class Browser
Rename...

New Group
Ungroup
New Smart Group

rade Current

New Build Phase
New Custom Executable...

Set Active Target

Set Active Architecture

Set Active SDK

Set Active Build Configuration
Set Active Executable

Edit Project Settings
Edit Active Target "HelloWorld”

Add to Project...
Add Current File to Project
New Target...
rade All Targets in Project to

o Native

arget for iPad..

Edit Active Executable “HelloWorld"

tc

yvYyY Yy wyywy

HE
X

Figure 1.16 : menu Project de XCode

Un panneau s’affiche pour que vous puissiez préciser la fagon dont
vous souhaitez ajouter le fichier au projet.

™ Copy items into destination group's folder (if needed)

Reference Type: | Default I-ﬂ
Text Encoding: [Unicode (UTF-8) |"3-!
) Recursively create groups for any added folders
(O) Create Folder References for any added folders
_Add To Targets
@ gy HelloWorld

Figure 1.17 : Ajout d'un fichier au
2l projet

Lorsque la case Copy items into destination group’s folder de ce pan-
neau est cochée, le fichier sélectionné est copié dans le dossier du
projet et rangé dans le groupe sélectionné (en |I'occurrence Resour-

ces).

1.4. Finaliser Uapplication

31

3 Cochez cette case.

Par défaut, la case HelloWorld est cochée dans la liste Add To Targets.
Cela signifie que le fichier que nous ajoutons sera copié dans le

dossier des ressources de l'application HelloWorld lors de la cons-
truction.

4 Laissez cette case cochée et cliquez sur le bouton Add.

5 L'image apparait dans la liste des fichiers du projet. Sélectionnez
ce fichier dans la zone groupes et fichiers pour vérifier son contenu
dans la zone d’édition.

anom [LogoApp.png - HelloWorld =
[S\mulator 3.1.3| Debug ~] - E] & l- 6 4Q- String Matching i
Overview Action Breakpoints Build and Run Tasks Info Search
Croups & Files I+ File Name A! 4, Code [] A [c]
¥ E HelloWorld B r_:| HelloWorld-Info.plist (s}
P[] Classes I—_‘| HelloWerldViewController.xib =
|| Other Sources E| LogoApp.png [C)
[A] Mainwindow.xib]

P[] Frameworks
W[| Products

> Targets
» (/ Executables
¥ 4, Find Results
1) Bookmarks
[g=p"a]

‘ Project Symbols
¥ [Implementation Files
b (@ NIE Files

<+ | = LogoApp.png #

(I

Figure 1.18: L'image est ajoutée au projet

Vous savez maintenant ajouter un fichier a un projet. Vous procéde-
rez exactement ainsi chaque fois que vous aurez besoin d’ajouter
une image, une vidéo, un son ou tout autre fichier a un projet.

Déclarer le logo de I'application

Il faut maintenant indiquer que I'image que nous venons d’ajouter
doit étre utilisée comme logo de I'application HelloWorld.

1 Toujours sous XCode, sélectionnez le fichier HelloWorld-Info.plist
dans le groupe Resources. Ce fichier contient les propriétés de
I"application ; le logo est une de ces propriétés. Lorsque le fichier
est sélectionné, son contenu apparait dans la zone d’édition.

32 | 1.Premiers pas

2 Sélectionnez la zone de texte a c6té de la propriété Icon File et
saisissez-y le nom du fichier contenant le logo.

@enNo ' HelloWorld-Info.plist - HelloWorld —
[Simulator - 3.3 | Debug - [3 -] (=] G) (@ s vachn
Overview Action Breakpoints Build and Run Tasks Info Search

Groups & Files II» File Name 4| A Code e A O

¥ [Helloworld B [§ Helloworld-info.plist o
»[] Classes [HelloworldviewController.xib L]
#[_| Other Sources E| LogoApp.png L]
|| Resources [& Mainwindow.xib L]
[Frameworks
¥ | Products

(@) Targets

» ¢ Executables

¥ O Find Results

» 1% Bookmarks

» 5 scm =
@ Project Symbols | < | » B Helloworld-Info.plist % J ™ C.l#. [® |@

» (] Implementation Files U [okey Value m
b (3 NIB Files VTAtormation Property LISt TIZ ems]

Localization native development re France

Bundle display name ${PRODUCT_NAME}

Executable file S{EXECUTABLE_NAME}

Icon file 4 |LogoApp.png +)

Bundle identifier com.yourcompany.5{PRODUCT_NAME:rfc1034ident]

InfoDictionary version 6.0

Bundle name ${PRODUCT_NAME}

Bundle OS Type code APPL

Bundle creator OS Type code "

Bundle version 1.0

Application requires iPhone enviror ™ '."

Main nib file base name MainWindow v
Debugging d. @Succeeded |

Figure 1.19: Nom du fichier contenant e logo

3 Cliquez sur le bouton Build and Go de la barre d'outils de XCode. Si
votre application est toujours en train de s’exécuter dans le simu-
lateur, une boite de dialogue s’affiche pour vous prévenir et vous
demander si vous souhaitez arréter I'exécution en cours. Cliquez
sur OK.

Stop Executable

-
HelloWorld 2 M
Project:*HelloWorld.xcodeproj” Target:*HelloWorld”

(Cancel)(-—ax—a

2l Figure 1.20 : Arréter I'exécution en cours

1.4. Finaliser Uapplication

33

4 Le cas échéant, acceptez d’enregistrer les fichiers modifiés (vous
venez de modifier HelloWorld-Info.plist). L'application s'exécute
sur le simulateur d'iPhone. Cliquez sur le gros bouton du simula-
teur pour vérifier votre logo.

.l Carrier & 12:19 AM

Figure 1.21 : HelloWorld avec logo

1.5. Agrémenter I'application

Nous n’allons pas nous arréter en si bon chemin. Nous agrémente-
rons notre application par une illustration car pour l'instant, elle est
un peu triste.

Choisissez une autre image et ajoutez-la au projet HelloWorld sous
XCode.

34 | 1.Premiers pas

g“ Reportez-vous a la section précédente si vous ne vous souvenez

RENVOI

plus comment on ajoute un fichier au projet.

800

= MicroApp.png - HelloWorld =

o e N -
fiew

Overvi Action Breakpoints Build andRun Tasks Info Search

b sem

¥ [NIE Files

Debugging

W Project Symbols
¥ [Implementation Files

Groups & Files Il File Name a| % [Code) A | ®

v [Helloworld B B Helloworld-info.plist [E]
» [Classes [+ HelloworldviewController.xib o
» (| Other Sources [¥ LogoApp.ong o
» (| Resources % MainWindow.xib o
» [Framenoris
» (] Products

> @ Targets

b (4 Executables
v (), Find Results
» 1 Bookmarks

4 » = MicroApp.png *

d, = |C. 4, | b |&

. . Micro
Application

Figure 1.22: Une nouvelle image est ajoutée au projet

Mettre notre image dans la vue

Pour rendre visible cette image lors de I'exécution de I"application, il
faut retourner sous Interface Builder afin de modifier I'interface uti-
lisateur.

1 Dans la fenétre Library d'Interface Builder, cliquez sur le bouton
Media pour obtenir la liste de tous les fichiers de type media
(Image, Vidéo ou Son) de votre projet.

800

Library

Objects Classes |- Media |

[[l Library o)

unmw

-

mm MicroApp.png

Ulimage

) (@ Filter

Figure 1.23 : Media du projet disponible sous Interface
Builder

1.5. Agrémenter 'application 35

2 Faites glisser I'image souhaitée sous I'objet Label a I'aide de la
souris. Si vous faites attention pendant ce positionnement, vous
verrez apparaitre des lignes pointillées de couleur bleue. Ces li-
gnes de positionnement vous aide a aligner I'objet que vous étes
en train de déplacer.

il Carrier & 12:12 AM

Hello World

" Micro
Application

Figure 1.24 : Application avec un Label et une Image

\
7

Image au lancement de I'application
Si votre projet contient une image dont le nom est Default.png, cette
image sera automatiquement pendant le lancement de I'application. Nous

nous en souviendrons lorsque nous batirons des applications un peu longues
au démarrage.

ASTUCE

1.6. Challenge

Avant de passer au chapitre suivant, nous vous invitons a modifier
les attributs graphiques des objets Label et Image de notre interface
utilisateur afin de découvrir les différentes possibilités.

Pour modifier les attributs d'un objet :

1 Activez I'inspecteur a I'aide du menu Tools sous Interface Builder et
sélectionner le premier onglet de la fenétre Inspecteur.

36 | 1.Premiers pas

2 Sélectionnez I'objet sur lequel vous souhaitez travailler pour en
visualiser les attributs dans lI'inspecteur et les éditer.

Library {ra8L
Inspector 43l
Attributes Inspector #®1
Connections Inspector ®2
Size Inspector #®3
Identity Inspector ¥4
Reveal in Document Window Nt
Reveal in Workspace NEL
Reveal in Classes NE—~
Select Parent ~3T
Select Child ~¥8l
Select Previous Sibling ~EE -
Select Next Sibling ~88
Select Next Object with Clipped Content #K
Select Previous Object with Clipped Content {+3K
Strings ~8
000 Label Attributes
*+ [o [2 [®
¥ Label
Text Hello World
Baseline
Layout == 1] [3)
Alignment # Lines
Fant
FontSize M Adjust to fit 10 D
Minimum
o — —]
Text Highlight
o] ()] (@)
H. Offset e W. Offset i
Enabled
¥ View
Mode
Alpha — [1.00] @
Background E
Tag o
Drawing] opaque [l Hidden
Clear Context Before Drawing
Clip Subviews
Autoresize Subviews
Stretching T 0.0 C 0.00] [
X Y
Width Height
Interaction [| User Interaction Enabled
] Multiple Touch
Y,

Figure 1.25 : Menu Tools d'Interface
Buider

Figure 1.26 : Inspection des attributs de |'objet Label

1.6. Challenge | 37

1.7. Check-list

38

Nous venons de terminer notre premiéere application pour iPhone.
Pour cela, nous avons utilisé :

m XCode afin de:
— créer un projet ;
— ajouter des fichiers au projet ;
— modifier les propriétés de I'application ;
— construire I'application ;

— lancer son exécution dans le simulateur.

m Interface Builder afin de :

— composer l'interface utilisateur ;

— ajouter un media a l'interface utilisateur.

m Et le simulateur d’'iPhone pour tester notre application.

Au passage, nous remarquons que cette réalisation a été obtenue
sans saisir une seule ligne de code Objective-C. C’est le résultat
d’une caractéristique intéressante du framework Cocoa Touch et des
modeles d’applications de XCode ; chaque modeéle permet de cons-
truire une application qui fonctionne sans modification, le déve-
loppeur se concentre sur I’écriture du code pour le comportement
qu’il veut ajouter.

Notre application HelloWorld est imparfaite car nous ne pouvons pas
interagir avec elle. Notre prochaine production sera plus satisfai-
sante et nous permettra d’écrire nos premiéres lignes de code.

1. Premiers pas

INTERACTIONS
SIMPLES

Programmation orientée objet ..
Mécanisme Cible-AcCtioNn ... sesesssesenees
Hiérarchie des classes de Convertisseur1
Manipulation des objets en Objective-C

(O] Y= o] 113 T

39

Notre objectif dans ce chapitre sera de réaliser une application pour
notre prochain voyage aux Etats-Unis. Nous voulons connaitre
I’équivalent en euros des prix exprimés en dollars.

La premiére version de notre application se présentera ainsi. Nous la
perfectionnerons ensuite.

il Carrier = 7:38 PM [t | | il Carrier = 7:42 PM =
Convertisseur de Monnaie Convertisseur de Monnaie
T T
Montant en dollars Montant en dollars 5
P —
Montant en euros Montant en euros 3.35

1]2]3]e]s]e]7]s]o]o
aaannopee

wll.ﬂ-ﬂ

Figure 2.1: Application Convertisseur1

Vous devrez d’abord patienter car il faut que vous compreniez ce
qu’est la programmation orientée objet.

2.1. Programmation orientée objet

La programmation orientée objet est un style de programmation qui
permet d’améliorer la testabilité, de faciliter la maintenance et donc
de produire des logiciels de meilleure qualité aux fonctionnalités
sont plus complexes. Nous n'exposerons pas ici la théorie de la POO
(Programmation orientée objet). Notre ambition se limitera a com-
prendre comment nous utiliserons cette théorie dans le langage
Objective-C, langage a objets, et avec les frameworks de Cocoa
Touch, qui contiennent les objets prédéfinis dont nous aurons be-
soin. La terminologie POO employée sera celle du développement
pour iPhone OS.

2.1. Programmation orientée objet | 41

Ob

=

DEFINITION

42

Nous traiterons ici les notions élémentaires ; d’autres notions plus
avancées seront évoquées plus loin.

jetS
Un objet Objective-C permet de représenter un objet du monde
“réel" ou manipulable par I'utilisateur. Par exemple, un label ou une
image sur une interface sont des objets, I'application que nous
développons est un objet, et nous aurons besoin plus loin de créer
nos propres objets : un livre prété, une monnaie a convertir, etc.
Les objets d'un langage de programmation comprennent :
B un état, c'est-a-dire la situation de I'objet a un moment donné de

sa vie. Par exemple I'état d'un objet bouton pourrait contenir ;

— sa position sur la fenétre ;

— I'image actuellement affichée ;

— l'image a afficher si I’'on clique sur le bouton, etc.

B un comportement, c’'est-a-dire toutes les actions dont I'objet est
capable :

— cliquer sur un bouton (ou toucher le bouton pour se conformer
a la terminologie iPhone OS).

Chose
flag Etat de I'objet Chose
nombre
FaireUneChose Comportement de I'objet Chose
\. A4 "~ “FaireUneChose"

Figure 2.2 : Représentation d'un objet

£)

Objets du langage Objective-C
Un objet comprend des variables d’instance et des méthodes. Les varia-
bles d'instance permettent de représenter I'état de I'objet, et les méthodes
permettent de représenter son comportement.

2. Interactions simples

Ne vous inquiétez pas si vous ne comprenez pas tout de suite les
subtilités induites par cette définition ; cela viendra avec la pratique.

Les variables d’instance sont des variables du langage Objective-C.
On peut également utiliser des variables du langage C puisque
Objective-C en est une extension. Pourquoi parle-t-on d’instance ?
Simplement pour préciser la portée de la variable ; elle est accessible
uniquement depuis I'une des méthodes de l'objet (l'instance) et
inaccessible depuis "l'extérieur" de I'objet.

é" Si vous avez besoin de vous rafraichir la mémoire ou d’apprendre

p 4
wwo |es bases du langage C, reportez-vous a I'annexe B.

Classes

Les informaticiens emploient rarement le terme Objet car il est am-
bigu (et les informaticiens n‘aiment pas I'ambiguité), ils emploient
les termes Classe ou Instance.

Une classe est un modeéle qui permet de reproduire des instances. La
classe est un type d'objet, I'instance est un objet particulier de ce type.

1 e
| clesse T > | Chosel
' Chose
Fommmmmmmma- i flag
! flag AN, nombre
1 nombre | S
| : S
1 RS

i ~
',.F. i A FaireUneChose
' FaireUneChose
' J Chose2

__________ flag
nombre

FaireUneChose

. 4

Figure 2.3: Une classe et 2 instances du méme type

EE

= Classe
DEFINITION R s . e -
Une classe est un modele (type) d’objet qui permet de définir les variables
d’instances et les méthodes qui devront exister pour toutes les instances de
cette classe.

2.1. Programmation orientée objet

Chosel et Chose2 sont deux instances de la classe Chose. Chaque
instance possede ses propres variables d’'instance, méme si elles ont
le méme nom défini par la classe.

Messages

DEFINITION

DEFINITION

Lorsqu'une méthode est exécutée, elle doit pouvoir accéder aux
variables d’instance de I'objet. Il faut donc que le programmeur
précise, lorsqu’il écrit son programme, sur quelle instance il veut
exécuter cette méthode. On dit que le programmeur envoie un mes-
sage a 'objet.

3

Message

n message est la demande transmise a une instance pour exécuter une
méthode particuliére dans le contexte de I'instance (en utilisant les variables
d’instances lui appartenant).

Récepteur
Le récepteur d’'un message est I'objet qui recoit le message.

Aprés cet interméde d’explications théoriques, voyons comment on
utilise ces concepts pour programmer sous Cocoa Touch, en com-
mencant par le mécanisme cible-action.

2.2. Meécanisme Cible-Action

44

Nous allons mettre en pratique immédiatement le mécanisme cible-
action en développant notre application Convertisseurl. La copie
d’écran en début de chapitre montre le résultat auquel nous voulons
arriver :

m un champ de texte dans lequel I'utilisateur saisit le montant en
dollars ;

m un champ de texte dans lequel I'utilisateur peut lire le résultat de la
conversion du montant en euros.

Nous souhaitons que la conversion soit réalisée pendant que nous
inscrivons le montant en dollars; la valeur en euros doit a tout
instant étre le résultat de la conversion de la valeur en dollars.

Nous avons donc besoin de trois objets :

2. Interactions simples

m 2 instances de la classe UITextField pour les champs de texte ;
m 1 objet chargé de faire la conversion.

N
UlTextField

text
action EditingChanged = changeValue

S)) '
‘~ \ ConvertisseurlViewController
W
UlTextField A labelDollar
g labelEuro
text .
B changeValue
_4
—

Figure 2.4 : Structure des objets pour I'application Convertisseur1

L’objet chargé d’effectuer les conversions sera une instance de la
classe ConvertisseurlViewController ; NOUS verrons pourquoi dans un
instant.

Créer les outlets

Notre ConvertisseurlViewController a besoin de connaitre les deux
champs de texte puisqu’il faudra qu’il "lise" la valeur en dollars et
qu’il "écrive" la valeur en euros. Il a donc besoin de 2 variables
d’'instance de type "instance de classe UITextField".

1 Ouvrez XCode et créez un projet de type View-based Application-
comme au chapitre précédent.

2 Intitulez ce projet Convertisseurl ; ce sera notre premiére version
du Convertisseur de monnaies.

3 Sélectionnez le fichier Convertisseur1ViewController.h dans la fené-
tre de projet et modifiez son contenu, dans la zone d’édition, pour
obtenir le texte suivant :

#import <UIKit/UIKit.h>

@interface ConvertisseurlViewController
UIViewController {

IBOutlet UITextField *labelDollar;

IBOutlet UITextField *labelEuro;
}
@property (retain,nonatomic) UITextField *labelDollar;
@property (retain,nonatomic) UITextField *labelEuro;

@end

2.2. Mécanisme Cible-Action

45

DEFINITION

46

Nous venons de définir deux variables d’instance, labelDollar et
labelEuro de type UITextField pour les instances de la classe
ConvertisseurlViewController. La ligne de code 1IBOutlet UIText
Field *labelDollar; signifie que labelDollar est une variable de type
UITextField * (les adeptes du Cliront "est un pointeur sur une structure
de type UlTextField") et que de plus, cette variable est un outlet (dé-
claré par IBOutlet).

Qu’est-ce gqu’un outlet ? C'est simplement le moyen de dire a Inter-
face Builder que I'on souhaite connecter cette variable d’instance ;
nous allons expliquer cela. Au passage, notons que le "18" de IBOutlet
signifie Interface Builder.

Qutlet

Un outlet est une sorte de variable d’'instance, c¢’est un pointeur vers un
autre objet. Un outlet est configurable a I'aide d’Interface Builder.

Apres avoir saisi les quelques lignes de code précédentes dans le
fichier Convertisseur1ViewController.h, I'icone de ce dernier est grisée
dans la fenétre de projet de XCode. Les icOnes grisées signalent les
fichiers qui ont été modifiés.

enNO b ConvertisseurlViewController.h - Convertisseurl =
[simulator - 3.1.3 | Debug -] E ‘& - o Q- String Matching
Overview Action Breakpoints Build and Run Tasks Info Search
Groups & Files I File Name A & |Code) A @
v 5 Convertisseurl B [u] ConvertisseurlAppDelegate.h
¥ |Classes [w] ConvertisseurlAppDelegate.m v]
[1] Convertisseur1AppDe [ConvertisseurlViewController.n
[Convertisseur1AppDe [ConvertisseurlViewController.m v o

B convertisseurLViewC(
[m] Convertisseur1ViewC

<+ | ConvertisseurlViewController.n:16 3 [/abelfuro + 3, [=.[Cs s
» (] Other Sources 7
» (] Resources 7/ ConvertisseurlViewController.h
» [Frameworks // Convertisseurl
» il Products // Created by MicroApp on 18/18/09.
¥ @) Targets // Copyright _ MyCompanyName__ 2889. All rights reserved.
I gy Convertisseurl i "

» ¢/ Executables

#import <UIKit/UIKit.h»
¥ 3 Find Results

» (18] Bookmarks @interface ConvertisseurlViewController : UIViewController {
»isom I80utlet UITextField *labelDollar;
i 180utlet UITextField *labelEuro;
W Project Symbols 3
» @ Implementation Files. @property (retain,nonatomic) UITextField #labelbollar;
» @ NIB Files @property (retain,nonatomic) UITextField #labelEuro;

- (IBAction) changeValue;

~
<
N ——— Y1

@end

Figure 2.5: Fichier Convertisseur1ViewController.h modifié

4 Sauvegardez le fichier que I'on vient de modifier soit par la com-
binaison de touches #+(S), soit en choisissant la commande Save
du menu File sous XCode.

2. Interactions simples

\

e

ASTUCE

Cliquez dans la zone d’édition
Pour sauvegarder un fichier sous XCode, il faut qu’il soit sélectionné et il
faut cliquer dans la zone d’édition de la fenétre de projet.

Préparer I'interface utilisateur

1 Double-cliquez sur le fichier Convertisseur1ViewController.xib dans
la fenétre de projet sous XCode ; Interface Builder se lance.

2 Préparez l'interface utilisateur de l'application Convertisseur1 a
I'aide de 3 labels et de 2 champs de texte (Text Field).

HEIOION - e —

Convertisseur de Monnaie

1
Montant en dollars

Montant en euros

806 Library

@' Classes = Media

Inputs & Values I":“'i

Segmented Control - Displays
| 1| 2 | multiple segments, each of which
——— functions as a discrete button.

Label - A variably sized amount of
Label static text.

~~——_ Round Rect Button - Intercepts touch
| events and sends an action message to
“——— atarget object when it's tapped.

s/~ Text Field - Displays editable text and

Text sends an action message to a target
object when Return is tapped.

Switch - Displays an element showing
! the boolean state of a value. Allows
tapping the control to toggle the value.

Text Field

—_
Toxt | rrextrield

Displays a rounded rectangle that can contain
editable text. When a user taps a text field, a
keyboard appears; when a user taps Return in the
keyboard, the keyboard disappears and the text
field can handle the input in an application-
specific way. UlTextField supports overlay views

(%) (QFiler

4 Figure 2.6 : Interface utilisateur de Convertisseur1

Figure 2.7 : Champ de texte

2.2. Mécanisme Cible-Action 47

3 Si vous souhaitez que votre interface ait exactement le méme
aspect, utilisez I'inspecteur pour modifier les attributs graphiques
des objets conformément au tableau.

Tableau 2.1: Configuration des objets de lI'interface

Champ Type Police Couleur
Convertisseur de Monnaies | Label Helvetica Bold Oblique 24 | Grape

Montant en dollars Label Helvetica 17 Couleur par défaut
Montant en euros Label Helvetica 17 Couleur par défaut
- Text Field| Helvetica 17 Couleur par défaut

Rappelez-vous ; pour modifier les attributs d’un objet, on utilise
I'inspecteur aprés avoir sélectionné |'objet que I'on veut modifier.

000 Label Attributes
= [0o [¢ | o
¥ Label "

Text Convertisseur de Monnaie
Baseline Align Centers D
Line Breaks | Truncate Tail

= 1 [

Layout =

Alignment # Lines

Font Helvetica Bold Oblique, 24.0

FontSize M Adjust to fit 10] [2)
Minimum
Color
Text Highlight
o] [2) ENE
H. Offset V. Offset
™ Enabled

¥ View e/

Mode Scale To Fil r
Alpha Em— Y oo] 2]

Tag 0

Drawing [Opaque [Hidden

NI

Clear Context Before Drawing
=

Figure 2.8 : Attributs du label de titre

4 Cliquez sur la description de I'attribut Font pour afficher la fenétre
flottante Fonts. Il faut cliquer sur la case de couleur Color-Text pour
afficher la fenétre flottante Colors (voir Figure 2.9).

\
7

Sélection multiple
Vous pouvez sélectionner simultanément plusieurs objets graphiques du
méme type (label ou text field) afin d’en modifier les attributs graphiques
en une fois avec l'inspecteur. Cliquez sur le premier objet puis cliquez sur les
suivants en maintenant la touche enfoncée pour étendre la sélection.

ASTUCE

48 2. Interactions simples

000 Fonts

CREECER][] A 2 L Qas

Collections Family Typeface Size
All Fonts Gill 5ans. | Normal 24
francais m Gill Sans MT Italique 9
Favorites Gill Sans Ultra Bold Cras 10
Utilisés récemment Gloucester MT Extr m GCras italique 1 m
Amusante Goudy Old Style 12
Chinois Haettenschweiler

Chinoise Handwriting - Daki 13
Classigue \; Harrington ‘I 14 :
Comparible Windov v | Helvetica v l? v

— [Search !

| EN

Opacity
i

(150)x

A |
Figure 2.9: Fenétres flottantes d'attributs graphiques

Pour finaliser notre interface, nous allons indiquer que nous souhai-
tons que le clavier numérique s’affiche lorsque I'utilisateur touchera
le champ de texte pour saisir le montant en dollars a convertir.

5 sélectionnez ce champ de texte sur la vue et choisissez Numbers &
Punctuation dans la liste déroulante pour I'option Keyboard dans
I'inspecteur .

Maintenant que notre interface utilisateur est terminée, nous pou-
vons connecter les outlets de notre application aux objets que nous
venons d’agencer.

¥ Text Field

Text

Placeholder

Background | =)

Disabled |

Alignment [=]=]=]

e (FTE T 5SS

Clear Button
Clear When Editing Begins

Font

FontSize) Adjust To Fit |17 Ny

Min Size

Text Input Traits

capraze

Correctjpn

Keyboard
Appearar
-

[Auto-enable Return Key
[Secure

¥ Control

Cantent [Tl =10 Ed = w1 il

NEIE

Figure 2.10 : Choix du clavier pour un champ de texte

2.2. Mécanisme Cible-Action

49

Connecter les outlets

50

1 Toujours sous Interface Builder, sélectionnez File’s Owner dans la
fenétre du contenu du fichier NIB puis sélectionnez I'onglet
Connections de l'inspecteur (le deuxieme onglet en partant de la
gauche).

® O O - ConvertisseurlViewContr...

First Responder

Figure 2.11 : Sélection de File's Owner

Nous découvrons dans l'inspecteur les deux outlets que nous avons
ajoutés dans le fichier Convertisseur1ViewController.h.

2 Pour connecter un outlet a un objet de I'interface utilisateur, effec-
tuez un cliquer-glisser-relacher allant du petit cercle a droite de

I'outlet dans l'inspecteur jusqu’a I'objet que vous souhaitez ratta-
cher.

A6 “ View A
=}
¥ Qutlets
Convertisseur de Monnaie .| =i :
searchDisplaxSeraralier Q
r . Tview {3 View ®
Montant en dollars a1
ound Style Text F ™ Qutlet {9
Montant en euros -
fred

Figure 2.12: Connexion d'un outlet a un objet

3 Connectez I'outlet /abelDollar au champ de texte a c6té du label
Montant en dollars puis connectez |'outlet /abelEuro au champ de
texte a c6té du label Montant en euros.

¥ Outlets

(labelDollar —{(% Round Style Text Field @)
(labelEuro (% Round Style Text Field @)
searchDisplayContraller Q
(view % View ®
¥ Referencing Outlets
New Referancing Outlet ()

Figure 2.13 : Les outlets connectés

2. Interactions simples

\
7

Tester I'interface
La combinaison de touches #+[R) sous Interface Builder provoque le
lancement du simulateur d'iPhone pour visualiser l'interface que nous ve-
nons de construire. L'application ne fonctionne pas mais nous pouvons
activer tous les objets de I'interface pour vérifier leur comportement graphi-
que.

ASTUCE

Notre objet comprend 4 outlets alors que nous n’en avons défini que
2. Les outlets supplémentaires sont obtenus par héritage. Nous étu-
dierons ce concept important dans quelques pages.

Pour le moment, nous terminons "application Convertisseur.

Déclarer les actions

Nous avons construit l'interface utilisateur de notre application
Convertisseur1, nous lui avons indiqué comment communiquer avec
le cceur de l'application en définissant des outlets et en établissant
les connexions. Il nous faut maintenant définir précisément le com-
portement de I'application.

Revenez dans XCode et complétez le fichier Convertisseur1

ViewController.h de la fagon suivante :

#import <UIKit/UIKit.h>

@interface ConvertisseurlViewController : UIViewController ({
IBOutlet UITextField *labelDollar;

IBOutlet UITextField *labelEuro;

}
@property (retain,nonatomic) UITextField *labelDollar;
@property (retain,nonatomic) UITextField *labelEuro;

- (IBAction) changeValue;

@end

Nous venons de déclarer une action dont le nom est changevalue.

— Action
DEFINITION . , . . ‘A 3
Une action est une méthode d’instance dont la vocation est d’'étre exécu-
tée lorsqu’un événement survient. Elle est configurable a I'aide d’Interface
Builder.

2.2. Mécanisme Cible-Action

Nous souhaitons que cette action soit appelée chaque fois que I'uti-
lisateur change le montant en dollar, et qu’elle calcule le montant en
euros puis l'affiche dans le champ adéquat. La connexion entre
I'action et I'’événement sera réalisée a l'aide d’Interface Builder. Le
comportement de I'action est décrit en Objective-C dans la définition
de I'action.

Définir les actions

Sauvegardez le fichier Convertisseur1ViewController.h que nous ve-
nons de modifier et, toujours sous XCode, ouvrez le fichier
Convertisseur1ViewController.m.

Déclaration et Définition

A I'instar des langages C et C++, les déclarations et les définitions-
sont séparées en Objective-C. Par convention, une classe d'objets
NomDeLaClasse est décrite dans 2 fichiers sources NomDeLaClasse.h et
NomDelLaClasse.m.

ﬁ Regle de nommage des classes

Afin de faciliter la lecture du code source, il est d'usage d'adopter des
regles de nommage. En particulier, on essaiera de trouver un nom explicite ;
il faut éviter les noms abrégés (par exemple Nd1C au lieu de NomDeLaClasse) ;
ils nuiront a la lisibilité et donc a notre capacité a modifier le code dans
Iavenir.

En Objective-C, le nom d'une classe est une série de mots accolés et chaque
mot commence par une majuscule y compris le premier mot, par exemple :
NomDeLaClasse.

Le fichier avec I'extension .h contient la déclaration de la classe,
interface en anglais, c’est-a-dire tout ce qui est nécessaire pour utili-
ser une instance de cette classe ; le type et le nom de chaque variable
d’instance et de chaque méthode.

Le fichier avec l'extension .m contient la définition de la classe,
implementation en anglais, c’est-a-dire le détail du comportement de
I'objet.

Encapsulation
DEFINITION

L’encapsulation est le principe selon lequel on doit pouvoir utiliser un
objet sans connaitre le détail de la fagon dont cet objet travaille.

52 ‘ 2. Interactions simples

Pour illustrer le principe d’encapsulation, prenons un exemple : lors-
que je veux démarrer ma voiture je tourne la clé de contact et le
moteur se met en marche ; j'utilise l'interface, c’est simple. Imagi-
nons tout ce que je devrais faire si je n'avais pas cette interface ;
mettre en marche la pompe a essence, régler la richesse du mélange
en fonction de la température du moteur, mettre le pignon du démar-
reur en contact avec I'arbre du moteur, faire tourner le démarreur
pour lancer le moteur, activer les soupapes de fagon synchronisée
avec la position des pistons et dans le méme temps injecter le
mélange dans le moteur, déclencher les explosions dans les cylin-
dres au bon moment (toujours en fonction de la température du
moteur et enfin expulser les gaz brilés. Tous les objets, y compris les
objets Objective-C, devraient étre aussi simples a utiliser que ma
voiture.

L'encapsulation est importante pour faciliter la maintenance des
applications. Lorsque nous sommes amenés a modifier un objet,
nous n'avons pas nécessairement besoin de modifier tous les objets
qui l'utilisent ; nous pouvons changer de voiture, nous n‘avons pas

besoin de changer notre fagon de la démarrer.

Inclusion des déclarations

Vous n’avez peut-étre pas fait attention mais nous avons déja
utilisé le principe d’encapsulation. Dans notre fichier
Convertisseur1ViewController.h, nous employons les noms prédéfinis
IBOutlet, IBAction, UIViewController et UITextField. Ou sont définis
tous ces noms ? Dans le framework UIKit d'iPhone OS. Comment
indique-t-on qu'’il faut utiliser ce framework ? La premiére instruction
du fichier indique qu'il faut employer les déclarations du framework
UIKit : #import <UIKit/UIKit.h>.

#import

#import demande au compilateur d’inclure un fichier dans le fichier
courant. Cette instruction est utilisée principalement afin de récupé-
rer les déclarations nécessaires pour employer un framework ou des
objets définis ailleurs.

Syntaxe : #import FichierAInclure

Fichier global Le chemin d'accés au fichier a inclure doit étre
mis entre crochets lorsqu’il se situe dans la bi-
bliotheque des frameworks d’'iPhone OS. Par
exemple, #import <UIKit/UIKit.h>.

2.2. Mécanisme Cible-Action

53

@ #import et#include

REMARQUE

ASTUCE

54

Fichier local Le nom du fichier a inclure doit étre mis entre
guillemets lorsqu’il se situe dans le méme dos-
sier que le fichier dans lequel il est inclus, par
exemple :

#import. "ConvertisseurlViewController.h"

Lorsque nous avons créé notre projet Convertisseurl de type
View-based Application, XCode a créé pour nous une classe
Convertisseur1ViewController et ses 2 fichiers .h et .m. C'est d’abord
dans cette classe que nous devons introduire le comportement de
notre application et c'est pourquoi nous modifions les fichiers
Convertisseur1ViewController.h et Convertisseur1ViewController.m. Le
fichier .h sera inclus partout ou nécessaire. Vous devinez ou il faut
I'inclure en tout premier lieu ? Dans le fichier .m, bien sir; cela
permettra au compilateur de vérifier que la déclaration et la défini-
tion de notre classe sont cohérentes.

Les développeurs C utilisent la clause #include. #import joue exactement
le méme role mais en évitant d’inclure plusieurs fois le méme fichier. UIKit.h,
par exemple, est inclus dans presque tous les .h. Dés que I'on inclut deux
fichiers .h dans le méme fichier .m, on y inclut plusieurs fois le fichier UIKit.h
(les inclus de mes inclus sont mes inclus) ; le compilateur signalerait alors des
erreurs car il n'aime pas que les mémes noms soient déclarés plusieurs fois.
La clause #import évite ce genre d'inconvénient.

Regardez le contenu du fichier ConvertisseuriViewController.m,
XCode l'a préparé pour nous et il commence par l'instruction
#import "ConvertisseurlViewController.h".

\
7

Basculer entre déclaration et définition
Sous XCode, la combinaison de touches #+~:+(*) permet de basculer du
fichier .h vers le fichier .m et réciproquement. Cette astuce est trés utile ; vous
aurez souvent a passer de I'un a I'autre pendant la saisie du code source.

Il nous reste a terminer notre classe Convertisseur1ViewController.

Définition de I'action changeValue

Si ce n'est pas déja fait, sélectionnez le fichier Convertisseur1View
Controller.m pour en visualiser le contenu dans la zone d’édition de
XCode. Modifiez-le afin d’obtenir le code suivant :

2. Interactions simples

#import "ConvertisseurlViewController.h"
@implementation ConvertisseurlViewController

@synthesize labelDollar;
@synthesize labelEuro;

- (IBAction) changeValue {

NSString *textDollar = labelDollar.text;

float dollar = [textDollar floatValue];

float euro = dollar / 1.4908;

NSString *textEuro = [[NSString alloc]

initWithFormat: @"%.2f",euro];

labelEuro. text = textEuro;

[textEuro release];
}
Lorsque vous saisissez ce code source (veillez a le saisir trés préci-
sément tel que nous vous l'indiquons) vous constatez que XCode
vous propose de compléter les mots au fur et a mesure de la frappe.
Cette fonctionnalité de XCode est la Terminaison de Code (Code Com-
pletion) et permet de gagner beaucoup de temps lors de la saisie de
code source.

\
7

Saisie des crochets droits et des accolades
Les accolades { et } sont obtenues par les combinaisons de touches ~=+(()
et ~=+(). Les crochets droits [et] sont obtenus par les combinaisons de

touches Majl+~\=+(() et (Majj+~=+().

ASTUCE

\
7

Utilisation de la Terminaison de Code
Lors de la saisie, si le mot proposé par XCode vous convient, pressez la
touche (%5). S'il ne vous convient pas, continuez la saisie ou pressez la touche
afin d’obtenir une liste de suggestions. Vous pouvez alors sélectionner
le mot approprié.

ASTUCE

Fimport "Convertiszeurl¥iewController.h"
@implementation ConvertisseurlViewControl ler

asy|

@synchronized

initiolizer. Override to perform

A Name: (NSString *InibNomenriil bung Figure 2.14 : Suggestions de la terminaison
if {self = [super ?niFWithNibNume:nibNumeDrNil de CO(jB

Nous comprendrons bientot de fagon détaillée ces quelques lignes
de code et leur syntaxe particuliere, et vous serez méme capable
d’écrire la fonction changeValue en seulement une ou deux lignes.

2.2. Mécanisme Cible-Action 55

ASTUCE

56

\

Nous avons préféré décomposer les instructions pour vous aider a
en suivre la logique :

m Les instructions ésynthesize servent a générer les accesseurs pour
les propriétés labelDollar et labelEuro.

m L’action changeValue est ensuite définie par les instructions entre
les accolades { et }, soit dans |'ordre :

— Un objet de type NSString est déclaré et initialisé avec la valeur
écrite par l'utilisateur dans le champ de texte labelDollar.

— Un nombre de type float est déclaré et initialisé avec le montant
en dollars. (Nous avons besoin d’'un nombre de type float pour
faire notre calcul de conversion en euros car on ne peut pas
effectuer de calculs sur un objet de type NSString.)

— Un nombre de type float est déclaré et initialisé avec le montant
converti en euros, avec un taux de conversion de 1,4908 $ pour
1 € (c’est le taux officiel a la date de rédaction de ces lignes).

— Un objet de type NSString est créé et initialisé avec une chaine
de caracteres représentant le montant en euros, avec une pré-
cision de 2 chiffres aprés la virgule.

— Le montant en euros est affiché dans le champ de texte /labe-
IEuro, I'utilisateur peut le lire.

— L'objet NSString textEuro est détruit car a chaque appel de
changeValue, un nouvel objet est créé ; il faut éviter les fuites de
mémoire.

Nous voyons ici I'intérét d'avoir défini des outlets; notre action

changevValue peut "lire" et "écrire" les contenus des champs de texte
connectés aux outlets.

Comme c’est notre premier bout de code, il nest pas certain que
nous l'ayons saisi correctement. Sous XCode, enregistrez le fichier
modifié et construisez I'application sans lancer I'exécution.

7

Vérifier le code source
On peut vérifier le code source de I'application en la construisant sans
I'exécuter. Sous XCode, sélectionnez la commande Build du menu Build ou
tapez la combinaison de touches #+(8).

Par exemple, si nous avons saisi LabelEuro a la place de labelEuro, I'erreur
nous est signalée dans la barre d’état de la fenétre de projet et dans le code
source.

2. Interactions simples

\
7

AsTUCE (e Mo} [m Convertisseur1ViewController.m - Convertisseurl =
mulator - 3.1.3 | Debug - [E ’h ' ﬁ Q~ String Matching
Overview Action Breakpoints Buildand Run Tasks Info Search
Groups & Files 13 File Name -ll “ Code (-] a c]
v [Convertisseurl B | [i] CenvertisseurlAppDelegate.n
¥] Classes |m] Convertisseur1AppDelegate.m 37K o
[ii] ConvertisseurLAppDe | [u] Convertisseur1ViewController.h
[m| ConvertisseurLAppDe | [m| Convertisseur1ViewController.m v]
[1] ConvertisseurlViewCe
| Convertisseur1ViewC = = e
(6] Comvertisseur viewc < |+ | [ConvertisseurlViewController.m:14 ¢ [LabelEuro ¢ o™ [Cel o[W @
b (] Other Scurces 77 e - — -
¥ [| Resources
¥ [Frameworks #import "ConvertisseurlViewController.h"
» | |Preduct: s
Ml Pracucts @implenentation ConvertisseurlViewController
¥ (@) Targets
¥ By Convertisseurl fl @synthesize labelDollar;
b (/ Executables a [esynthesize LabelEuro; @ No declaration of property 'LabelEure’ found in the interface
¥ (4 Find Results - (IBAction) changeValue {
¥ L] Bookmarks NSString #textDollar = labelDollar.text;
> scm float dollar = [textDollar floatValuel;
8 Project Symbols float euro = dollar / 1.4908;
ject X NSString *textEuro = [[NSString alloc] initWithFormat: @'%.2f",eurol;
¥ (& Implementation Files labelEuro.text = textEuro;
b 3] NIB Files [textEuro releasel;)
}

I
// The designated initializer. Override to perform setup that is required before the *
- lid)initWithNibName: (NSString *)nibNameOrNil bundle: (NSBundle *)nibBundleOrNil { |¥
= R 4w
Build failed (1 error, 2 warnings) QFailed L2 01

Figure 2.15: Erreur signalée a la construction

Vérifiez que votre code source ne contient pas d’erreurs et corrigez
ces derniéres éventuellement avant de passer a I'étape suivante.

Connecter les cibles

1 Retournez vers l'application Interface Builder pour modifier le
fichier Convertisseur1ViewController.xib. Sélectionnez le champ de
texte dans lequel nous aurons le montant en dollars et visualisez
I'onglet Connections de |'inspecteur.

Nous allons indiquer a Interface Builder que nous souhaitons
que l'action changevalue du propriétaire du fichier Convertisseur1View
Controller.xib(c'est-a-dire uneinstance de laclasse Convertisseur1View
Controller) soit déclenchée a chaque modification, par I'utilisateur, du
contenu du champ de texte contenant le montant en dollar. Nous
allons pour cela utiliser le mécanisme Cible-Action (Target-Action) de
Cocoa-Touch. Pour mettre en ceuvre ce mécanisme nous avons be-
soin :

m d'un objet dont les événements sont observés ; le champ de texte
contenant le montant en dollars ;

m d'un événement qui va déclencher I'action ; ici ce sera |'événe-
ment Editing Changed ;

2.2. Mécanisme Cible-Action 57

58

m d'un objet qui va recevoir I'action — la cible ; notre instance de la
classe ConvertisseuriViewController ;

m d'une méthode a activer sur la cible — I'action ; la méthode chan-
geValue.

2 Effectuez un cliquer-glisser-relacher allant du petit cercle a droite
de I'événement Editing Changed dans l'inspecteur jusqu’a I'objet
File’s Owner dans la fenétre du contenu du fichier NIB.

OI00 ~ View

Convertisseur de

Montant en dollars *

Montant en euros

00000000®0| (O

Figure 2.16 : Connexion d'une cible

Une liste sur fond gris s’affiche en surimpression sur la cible que
nous avons sélectionnée.

3 Cliquez sur changeValue, I'unique ligne de cette liste. Cette liste
nous permet de choisir une action parmi celles définies pour la
cible. Comme nous avons déclaré une seule action sur notre cible,
la liste comprend une seule ligne.

®00 ConvertisseurlViewController.xib =)
o3 [4 (CO
El=m [i] Q

View Mode Infa. Search Field

File's Owner First Responder View

Figure 2.17 : Liste des actions définies sur la cible

4 Sélectionnez a nouveau File’s Owner pour visualiser ses
connexions dans l'inspecteur.

0O O O Convertisseurl View Controller Conne..

= [o] ¢]| @

¥ Qutlets

labelDollar % Round Style Text Field (@)
((labelEuro (% Round Style Text Field @)
searchDisplayController Q
(view (% View O]

¥ Received Actions

((thangeValue * Round Style Text Field
Editing Changed

¥ Referencing Outlets
New Referencing Outlet iy

Figure 2.18 : Connexions de File's Owner

2. Interactions simples

Construire et tester I'application Convertisseur1

1 Sauvegardez le fichier NIB sous Interface Builder et revenez sous
XCode pour construire et lancer I'application (& +(R)).

2 Si la construction ne fonctionne pas correctement, vérifiez que le
SDK actif est le simulateur et vérifiez votre code source.

Project

Project %80
Class Browser ©8C

Rename...

New Group BN
Ungroup A {e]
New Smart Group >
Add to Project. N #A

Add Current File to Project

New Target...

Upgrade All Targets in Project to Native
Upgrade Current Target for iPad

New Build Phase >
New Custom Executable...

Set Active Target >

Set Active Architecture » i 3
Set Active SDK » iPhone Device 3.1.3 (Base SDK)
Set Active Build Configuration > iPhone Device 3.2

Set Active Executable [l v iPhone Simulator 3.1.3

iPhone Simulator 3.2

Edit Project Settings.
Edit Active Target “HelloWorld” LRE
Edit Active Executable “HelloWorld” 38X

Figure 2.19 : Vérifiez que le SDK
actif est le simulateur

3 Testez votre application sur le simulateur d'iPhone. N'hésitez pas a
tout essayer : saisir des chiffres et des lettres, dans le champ des
montants en dollars et dans celui des montants en euros, etc.

-ail Carrier < 7:42 PM =

Convertisseur de Monnaie
Montant en dollars 5
Montant en euros 3.35

1]2]3]4]s]s]7]sfs]o]
-1/ LD slale]]

Figure 2.20 : Test de I'application Convertisseur1

Nous nous rendons compte de tous les petits défauts de notre
application. Il faudra I'améliorer avant de réellement I'utiliser :

m empécher que l'utilisateur tape des lettres ;

2.2. Mécanisme Cible-Action

m pouvoir faire disparaitre le clavier ;

m pouvoir effectuer les conversions dans les deux sens, des dollars
en euros et vice-versa ;

m lorsqu’on revient dans l'application, retrouver les montants tels
qu’ils étaient lorsqu’on I'a quittée ;
m pouvoir modifier facilement le taux de conversion.

Nous aborderons ces améliorations aprés avoir approfondi ce que
nous venons de voir.

2.3. Hiérarchie des classes

de Convertisseur1

Vous étes sans doute un peu frustré car nous venons de créer une
application mais vous n'avez sans doute pas compris tous les détails
du code que nous avons écrit. Nous allons approfondir tout cela et
vous comprendrez mieux le code de Convertisseur1 a la fin de ce
chapitre.

Héritage

60

Notre classe Convertisseur1ViewController offre deux outlets supplé-
mentaires que nous n‘avons pas déclarés. lls appartiennent a notre
classe par héritage. Nous avons représenté |'arbre d'héritage des
objets que nous avons manipulés pour notre application Convertis-
seurT (voir Figure 2.21).

Convertisseur1ViewController hérite de ou "est une sorte de" UlView-
Controller. En plus des variables d’instances et des méthodes que
nous avons définies pour Convertiseur1ViewController, ce dernier
possede également les attributs et le comportement de UlViewCon-
troller ; en particulier les deux outlets supplémentaires que nous
avons vus précédemment.

Notre classe Convertisseur1ViewController contient, par héritage, tout
le code des classes UlViewController, UIResponder et NSObject.

Examinons plus attentivement la classe UlTextField :

B NSObject est la classe de base; tous les objets doivent dériver
(doivent hériter) de NSObject.

B UIResponder ; un Répondeur est un objet possédant la capacité de
recevoir des événements et de les traiter ou de les transmettre soit

2. Interactions simples

par le mécanisme Cible-Action, soit au répondeur suivant dans la
chaine des répondeurs. Nous expliquerons plus loin la chaine de
répondeurs.

| NSObject
S J
g T ------- S T Hérite de
+ UIResponder :
A J
i Ulview | UlViewController !
et i b 4
e ; A |
+ UlControl ' ________ T _______ .
R | . Convertisseurl
ECREEEEEEEEE . ViewController
g 3 L L 1
Sy I |
| UlTextField ! e g
S J

Figure 2.21: Graphe d'héritage de Convertisseur1

®m UIView; une Vue est un objet qui apparait a I'écran et appartient a
la hiérarchie des vues (voir ci-apres). Une vue est également un
répondeur puisqu’elle recoit et réparti les événements créés par le
systéme lorsque |'utilisateur touche cette vue sur I'écran.

2.3. Hiérarchie des classes de Convertisseur1 61

B UIControl; un Contrdle est une vue particuliére qui présente une
liste d'événements spécifiques et peut activer une action sur une
cible pour chacun de ces événements.

m UITextField; un champ de texte est un contrdle particulier (et donc
aussi une Vue et un Répondeur) qui permet a l'utilisateur de
visualiser et modifier une ligne de texte.

Et utLabel ? Vous devinez de quoi il hérite ? Réfléchissons... C'est un
objet, cela s’affiche sur I'écran, c’est donc vraisemblablement une
vue. Est-ce un contréle ? Peut-on configurer le mécanisme Cible-
Action a partir d'un UILabel ? Vous pouvez consulter l'onglet
Connections de |'inspecteur sous Interface Builder, aprés avoir sélec-
tionné I'un des deux labels de l'application Convertisseurl, vous
constaterez qu’aucun événement n’est défini pour un UlLabel ; on ne
peut pas définir des Cibles-Actions pour un label. Donc UTLabel hérite
de UIView mais pas de UIControl.

Hiérarchie des vues

62

Chaque application d’un iPhone affiche une fenétre unique qui oc-
cupe tout I’écran. Une fenétre est un objet de type UIWindow qui hérite
de vtview (une fenétre est un type particulier de vue). Cette fenétre
contient généralement une vue qui elle-méme contient une ou plu-
sieurs vues et qui, a leur tour, peuvent contenir des vues, etc. La
fenétre et toutes les vues incluses constituent la hiérarchie des vues.
La hiérarchie des vues peut évoluer pendant |I'exécution de I'appli-
cation. Par exemple dans 'application Contacts, lorsque |'utilisateur
passe de la liste des contacts a la visualisation d’'une fiche des
contacts, I'apparence visuelle de I'interface évolue ; la hiérarchie des
vues a changé.

Vous pouvez visualiser la hiérarchie de vues de I'application Conver-
tisseur1 sous Interface Builder, dans la fenétre du contenu du fichier
NIB. Cliquez sur le bouton du milieu de la rubrique View Mode.
Cliquez sur le triangle a c6té de l'objet view pour visualiser son
contenu (voir Figure 2.22).

I nN'y a pas de fenétre de type UIWindow dans le fichier
Convertisseur1ViewController.h. La racine de la hiérarchie est une vue
dont le nom est View, elle contient les 5 labels et les 2 champs de
texte que nous y avons ajoutés. La fenétre se trouve en fait dans le
fichier MainWindow.xib, vous pouvez ouvrir ce fichier pour vous en
convaincre.

2. Interactions simples

® O O -+ ConvertisseurlViewController.xib —

Name | Type

File's Owner Convertisseurl...
@ First Responder UlResponder
v View UlView
| Label (Convertisseur de Monnaie) UlLabel
| Label (Montant en dollars) UlLabel
| Label (Montant en euros) UlLabel
| Round Style Text Field UlTextField
| Round Style Text Field UlTextField

Figure 2.22 : Hiérarchie des vues de

(GRS Eodre A ConvertisseurT

Toutes les applications pour iPhone sont structurées de la méme
facon :

m une fenétre unique (UIwWindow) qui restera affichée pendant toute
I'exécution de [|'application (elle est décrite dans le fichier
MainWindow.xib) ;

m une ou plusieurs vues principales qui occupent chacune toute la
fenétre (chacune de ces vues est décrite dans un fichier NIB spé-
cifique).

Nous avons créé un projet de type View-based Application sous
XCode pour construire notre application Convertisseur1. Ce type
d’application ne comprend qu’une vue principale, nous aurons l'oc-
casion de créer d'autres types d’'application avec plusieurs vues
principales.

2.4. Manipulation des objets en

Objective-C

Apres ces quelques éléments théoriques, voyons comment on ma-
nipule les objets dans le langage Objective-C.

Déclaration

La déclaration d'une classe s’effectue dans un fichier source qui porte
le nom de la classe et dont I’extension est .h. Par exemple MaClasse.h
pour la classe MaClasse. Une déclaration suit toujours le méme
schéma :

2.4. Manipulation des objets en Objective-C

63

m Une instruction @éinterface précisant le nom de classe déclarée et
le nom de la classe dont elle hérite ; cette derniere est appelée la
superclasse de la classe en cours de création. Toutes les classes
doivent dériver d'une superclasse.

m Un bloc, délimité par des accolades, contenant les déclarations de
chaque variable d'instance de la classe.

m Les déclarations de chaque méthode de la classe.
m L'instruction @end pour indiquer la fin du bloc @interface :

@interface MaClasse : SuperClasse
{
// déclaration des variables d’instance
}
// déclaration des méthodes
@end

\
7

Commentaires
Sur chaque ligne de code source, le texte a partir de la double barre
oblique "//", jusqu’a la fin de la ligne, est considéré comme un commentai-
re par le compilateur.

ASTUCE

Déclaration des variables d’'instance

Chaque variable d’instance a un nom et un type. Vous choisissez le
nom de chaque variable ; c’est ce nhom que vous utiliserez pour
employer cette variable. Bien s(ir, deux variables d’instances ne
peuvent porter le méme nom.

type noml, nom2, .., nomN ;
On peut déclarer une ou plusieurs variables dans la méme instruc-

tion ; on utilise la virgule pour séparer les variables. L’instruction de
déclaration se termine par un point-virgule.

ﬁ Ne pas oublier le point-virgule
L’oubli du point-virgule en fin d’instruction est une erreur courante que
méme les programmeurs confirmés peuvent faire. Le point-virgule est le
marqueur de fin d’instruction du langage C et du langage Objective-C.

Vous pouvez utiliser :

m N'importe quel type défini dans le langage C (int, long, float,
double, pointeur, etc.) ou un type élaboré a l'aide des regles du
langage C (typedef).

64 | 2.Interactions simples

B@ Regle de nommage des variables

REMARQUE

m Un pointeur sur une classe d’objets, par exemple labelDollar de
type UITextField * ; un pointeur sur une classe d'objet permet de
manipuler les instances de cette classe ;

m Le type id, qui est un type prédéfini dans Objective-C, pointeur
vers une classe non précisée ; on utilise le type id pour manipuler
des instances dont on ne connait pas la classe.

Comme les classes, les variables doivent porter un nom explicite et il faut
éviter les noms abrégés (par exemple 1D au lieu de labelDollar).

En Objective-C, le nom d’une variable est une série de mots accolés et chaque
mot commence par une majuscule sauf la premiere lettre qui reste minus-
cule, par exemple : labelDollar.

Déclaration des méthodes

Nous arrivons aux caractéristiques d'Objective-C les plus déroutan-
tes pour les programmeurs C ou C++ : la déclaration et I'appel des
méthodes.

Commencons par le plus facile, la déclaration d’'une méthode qui n’a
pas de parametres :

// déclaration d’une méthode d’instance
- (type-de-la-valeur-de-retour) nomDeLaMethode ;
// déclaration d’une méthode de classe
+ (type-de-la-valeur-de-retour) nomDeLaMethode ;

CommeenC, le type est void si la méthode ne retourne pas de valeur.

IBAction est équivalent a void ; une action ne retourne pas de valeur.

Fl

Méthode d'instance / de classe

DEFI

NITION i K , :
Une méthode d’instance s’exécute dans le contexte d'une instance de

classe, elle accéde aux variables propres a cette instance.

Lors de son exécution, une méthode de classe n’est pas attachée a une
instance particuliere ; elle ne peut accéder aux variables d’instance.

@ Variables de classe ?

REM

ARQUE - R L .
Contrairement a d'autres langages objet, il n'y a pas de variables de classe

en Objective-C, seulement des variables d’instance. Nous verrons comment
nous en passer dans la suite de I'ouvrage.

2.4. Manipulation des objets en Objective-C

65

@ Regle de nommage des méthodes

REMARQUE

66

Pour comprendre la déclaration des méthodes ayant des parame-
tres, nous allons détailler un exemple :

- (void)getCharacters: (unichar *)buffer
range: (NSRange) aRange ;

Cet exemple déclare une méthode d’instance :

m dont le nom est getCharacters:range: ;
B qui ne retourne pas de valeur ; type de retour (void) ;

m dont le premier parametre est de type pointeur sur un unichar -
unichar * (un unichar est un caractere Unicode) ;

m dont le second paramétre est de type NSRange (intervalle).

La méthode -getCharacters:range: est une méthode d’instance de
NSString qui permet d’obtenir au format Unicode les caractéres situés
dans un intervalle donné dans la chaine de caractere.

Une méthode prend des parameétres lorsque son nom comprend des
caracteres deux-points, autant de parametres que de caractéres
deux-points. Ceci est un peu déroutant pour les programmeurs C ou
C++ qui ont I'habitude de bien séparer le nom de la fonction de la
liste des parametres qui est mise entre parenthéses. En Objective-C,
on mélange. Vous verrez a lI'usage que ce procédé améliore la lisibi-
lité du code ; le réle de chaque parametre est identifié.

En Objective-C, la régle de nommage est identique pour les méthodes et
les variables : une série de mots accolés et chague mot commence par une
majuscule sauf la premiere lettre qui reste minuscule, par exemple:
changeValue.

Accesseurs et Manipulateurs

En respect du principe d’encapsulation, les variables d’instance ap-
partiennent en propre a chaque instance, elles sont accessibles uni-
quement par une méthode d’instance de la méme classe. Comment
faire si I'on a besoin de modifier I'état d'un objet ? (voir Figure 2.23)

Le seul moyen pour accéder depuis un objet A a une variable d’ins-
tance appartenant a un objet B, est de définir des méthodes d’ins-
tance dans la classe de I'objet B pour cet usage. La méthode qui
permet d’obtenir la valeur d'une variable d’instance est appelées
accesseur (getter). La méthode qui permet de définir la valeur d'une
variable d’instance est appelée manipulateur (setter).

2. Interactions simples

Instance .

—"

flag 4" Acces Interdit
nombre

FaireUneChose

o A * “FaireUneChose"

Figure 2.23: Les variables d'instances sont privées

Accesseur
La méthode permettant d’obtenir la valeur d’une variable d’instance est
appelée accesseur. L'accesseur porte le méme nom que la variable d'ins-
tance, son type de retour est le type de la variable d’instance et il ne prend pas
de parameétre.

DEFINITION

@interface MaClasse : SuperClasse
{
// déclaration d’une variable d’instance
typeVar varInstance
}
// déclaration de 1’accesseur de varInstance
- (typeVar) varlInstance ;

@end

DEFINITION

Manipulateur
La méthode permettant de définir la valeur d’'une variable d’instance est
appelée manipulateur. Le nom du manipulateur est construit en mettant une
majuscule au nom de la variable puis en le préfixant par set. Le manipulateur
ne retourne pas de valeur (void) et prend un unique parameétre du méme type
que la variable d’instance.

@interface MaClasse : SuperClasse
{
// déclaration d’une variable d’instance
typeVar varInstance ;
}
// déclaration du manipulateur de varInstance
- (void) setVarInstance: (typeVar) nouvelleValeur ;

@end

2.4. Manipulation des objets en Objective-C

67

Nous verrons que les propriétés permettent de déclarer et définir
plus facilement les accesseurs et les manipulateurs.

Définition

La définition d'une classe s’effectue dans un fichier source qui porte
le nom de la classe et dont I'extension est .m, par exemple MaClas-
se.m pour la classe MaClasse :

m l'importation du fichier .h de la classe (clause #import) ;

®m uneinstruction @implementation précisant le nom de classe définie ;
m les définitions de chaque méthode de la classe ;

m l'instruction eend pour indiquer la fin du bloc @implementation :

#import "MaClasse.h"
@implementation MaClasse

// définition des méthodes
@end

La définition d’'une méthode :

m commence par une ligne de code qui reprend la déclaration de la
méthode sans le point-virgule a la fin ;

m se poursuit par un bloc d’instructions entre accolades.

Par exemple :

#import "ConvertisseurlViewController.h"
@implementation ConvertisseurlViewController
- (IBAction) changeValue {
NSString *textDollar = labelDollar.text;
float dollar = [textDollar floatValue];
float euro = dollar / 1.4908;
NSString *textEuro = [[NSString alloc]
initWithFormat: @"%.2f",euro];
labelEuro.text = textEuro;
[textEuro release];
}
@end

Messages

68

Nous savons maintenant déclarer et définir une classe d’objets ; il
s’agit d'un modele pour créer des instances d'objet. La programma-
tion orientée objet consiste a créer des objets, leur envoyer des
messages puis a les libérer lorsque nous n’en avons plus besoin (sur
un iPhone, il faut économiser la mémoire). Lorsqu’un objet recoit un
message, il peut a son tour créer des objets, leur envoyer des mes-
sages ou les libérer, etc.

2. Interactions simples

La syntaxe pour envoyer un message a un objet est la suivante :
[objet appel-de-méthode]. objet est une variable désignant l'instance
(pointeur sur l'instance) si la méthode est une méthode d’instance ou
le nom de la classe si c’est une méthode de classe. appel-de-methode
est le nom de la méthode avec les parameétres a utiliser.

Par exemple, dans l'instruction dollar = [textDollar floatValue];, la
variable dollar prend pour valeur le retour de I'appel de la méthode
d’'instance -floatvalue (qui ne prend pas de parameétre) sur l'instance
désignée par textDollar.

Ou encore, dans l'instruction [window addSubview:myView];, la fenétre
désignée par window regoit le message -addSubview: avec le parameétre
myView. Ce message ne retourne pas de valeur.

Propriétés
Une propriété (property) est un attribut de |I'objet auquel on peut
accéder par un accesseur et par un manipulateur. Généralement, cet

attribut est concrétisé par une variable d’'instance mais ce n’est pas
une obligation.

Le langage Objective-C (plus précisément a partir de sa version 2.0)
propose des mécanismes pour faciliter 'emploi des propriétés.

@property

La directive eproperty permet de déclarer I'accesseur et le manipula-
teur d'une propriété. Elle s’utilise a I'endroit ou I’'on aurait déclaré ces
méthodes. Il faut préciser le type et le nom de la propriété.

@property UITextField *labelDollar;
Dans cet exemple, nous déclarons une propriété labelDollar de type

UITextField * (pointeur sur une instance de la classe UlTextField).
Cette déclaration est totalement équivalente aux deux déclarations :
- (UITextField *) labelDollar ;

- (void) setLabelDollar: (UITextField *) newLabelDollar ;

@synthesize

La directive @synthesize s'utilise dans la définition d'une classe (fi-
chier .m) pour générer le code de l'accesseur et du manipulateur
d’une propriété.

@synthesize labelDollar;

Cette instruction génére le code permettant d’accéder a la propriété
labelDollar.

2.4. Manipulation des objets en Objective-C 69

Notation pointée
La notation pointée permet d’alléger la lecture du code source.

[objet propriete] et [objet setPropriete:newValue] sont remplacés
par objet.propriété.
NSString *textDollar = labelDollar.text;

labelEuro.text = textEuro;
équivaut a
NSString *textDollar = [labelDollar text];

[labelEuro setText:textEuro];

Création

@ Echec lors de I'allocation

REMARQUE

70

EEl

DEFINITION

La création d'une instance s’effectue en deux étapes :

m allocation de la mémoire ;
m initialisation des variables d’instance.

L'allocation de mémoire est effectuée par I'envoi du message
+alloc (définie dans la classe NSObject, mére de toutes les classes) a
la classe de l'instance a créer. Ce message renvoie un pointeur sur
I'instance qui vient d’étre allouée. Par exemple, pour allouer une
nouvelle chaine de caractéres :

// déclaration d’un pointeur sur UITextField

UITextField *monTextField;
monTextField = [UITextField alloc];

Si la création de I'objet échoue (par exemple s’il n'y a plus de mémoire
disponible), le message retourne la constante nil.

nil
nil est la constante de type id qui signifie pointeur nul. nil est équivalent
a NULL a la seule différence qu'’il est de type pointeur sur un objet alors que
NULL est un pointeur générique.

On doittoujours initialiser une instance avant de I'utiliser, c’est-a-dire
définir les valeurs de ses variables d’'instance. Les méthodes d’ins-
tance dont le nom commence par init servent a initialiser les varia-
bles d’instance.

2. Interactions simples

Initialiseur
Un initialiseur est une méthode d’instance destinée a initialiser les varia-
bles de l'instance sur laquelle elle est appelée. Une classe peut comporter
plusieurs initialiseurs, leur nom commence toujours par init. L'initialiseur
renvoie un pointeur sur l'instance initialisée.

DEFINITION

Chaque classe doit avoir un initialiseur désigné unique, généralement celui
qui offre le plus de parameétres. Tous les autres initialiseurs appellent I'initia-
liseur désigné qui est le seul a effectuer réellement le travail.

Tout initialiseur désigné doit commencer par appeler l'initialiseur désigné de
sa superclasse.

g éi Retourde-init

REMAROUE
Si l'initialisation ne se déroule pas correctement, par exemple dans le cas

ou les parametres passés ne sont pas corrects, l'initialiseur désigné doit
libérer la mémoire allouée et retourner nil.

Le message +alloc renvoie un pointeur sur une instance, et le mes-
sage -init est susceptible de modifier ce pointeur, c’est pourquoi il
est d'usage de grouper l'allocation et l'initialisation dans une seule

instruction.
UlITextField *monTextField;
monTextField = [[UITextField alloc] initWithFrame:rect];

On peut méme combiner la déclaration, I'allocation et l'initialisation

en une seule instruction.
UITextField *monTextField = [[UITextField alloc]

initWithFrame:rect];

. éi messageanil

REMARQUE A . L - , .
Que se passe-t-il si I'allocation renvoie nil puis que I'on envoie un mes-

sage d’initialisation au pointeur nul ? Rien. Le langage Objective-C autorise
I’envoi de messages a nil.

Un initialiseur doit appeler l'initialiseur désigné de sa superclasse. Le

schéma habituel pour définir un initialiseur est le suivant :
- (id)init {
if (self = [super init]) {
// initialisation des variables d’instances

}

return self;

2.4. Manipulation des objets en Objective-C

71

}

C’est I'occasion de faire la connaissance de deux mots-clés impor-
tants en Objective-C : super et self.

super
super est un mot-clé Objective-C qui désigne la superclasse de I'instance
courante. On I'utilise dans une méthode d’instance pour appeler une mé-
thode de sa superclasse.

DEFINITION

Par exemple, le message [super init] dans un initialiseur appelle l'initiali-
seur de la superclasse ; avant d’initialiser les variables d’instance définies
dans une classe, on initialise les variables définies dans la superclasse.

self
self est un mot-clé Objective-C qui désigne I'instance courante. On I'uti-
lise par exemple dans une méthode d’instance pour envoyer un autre mes-
sage a cette méme instance.

=
DEFINITION

Libération

Lorsqu’un objet doit étre détruit, il recoit un message dealloc. La
meéthode d’instance -dealloc ne retourne pas de valeur.

Avant d’étre détruit, une instance doit penser a détruire, ou du moins
libérer (nous verrons bientot la subtile différence) les instances
qu’elle posséde. En d’autres termes, les variables d’'instances qui
occupent de la mémoire doivent étre libérées dans la méthode d’ins-
tance —-dealloc ; il s'agit des variables de type pointeur, en particulier
les pointeurs sur des objets. Pour libérer un objet, il suffit de lui
envoyer le message release.

[textDollar release];

Le langage Objective-C 2.0 sous MacOSX dispose d'un ramasse-
miettes (garbage collector), comme le langage Java, qui rend inutiles
les instructions de libération (release). Cette caractéristique n’est
actuellement pas disponible sous iPhone OS en raison du manque
de mémoire (il faut la libérer dés que possible) et du manque de
performance du processeur (le ramasse-miettes est gourmand en
processeur).

Les initialiseurs commencent par initialiser les variables d’instances
de la superclasse ; a I'inverse, la méthode -dealloc doit se terminer

72 2. Interactions simples

par un appel a la méme méthode sur la superclasse. La structure
classique d’'une méthode -dealloc est la suivante :
- (void)dealloc {
// libération des variables d’instances
[super dealloc];

}

@ Release et pas dealloc

REMARQUE L . . .
Pour libérer une instance, on lui transmet le message release. On ne doit
jamais transmettre directement un message dealloc a un objet.

Le message release informe I'instance que I'un des objets qui I'utilisent n’en
a plus besoin. Le message dealloc sera transmis automatiquement a cette
instance lorsqu’elle ne sera plus employée par aucun objet.

2.5. Check-list

Ce chapitre a commencé par une introduction a la Programmation
Orientée Objet, ce qui nous a permis de découvrir :

m les objets, classes et instances ;

m |'état des objets, leur comportement et la transmission de messages ;
m le principe d’encapsulation ;

m |'héritage.

Nous avons réalisé notre premiére application interactive Convertis-

seurl pour notre prochain voyage aux Etats-Unis. Nous avons fait
connaissance avec :

m les outlets, les actions et le mécanisme cible-action ;

m le champ de texte UITextField;

m |'arbre d’héritage de UITextField;

m la hiérarchie des vues ;

m |a saisie de code source sous XCode et la terminaison de code.

Nous avons terminé par un approfondissement de la syntaxe du
langage Objective-C :

m clause #import ;

m déclaration d'une classe :
— @interface ;
— déclaration des variables d’instance ;
— Rproperty pour déclarer les propriétés ;

2.5. Check-list | 73

— déclaration des méthodes de classe et d’'instance.

m définition d’une classe :

— @implementation ;
— Rsynthesize pour générer [‘accesseur et le manipulateur d'une
propriété.
m envoi de message ;
m mots-clés super et self et nil ;
m méthodes impliquées dans le cycle de vie des objets :
— +alloc,
— initialiseurs -init et initialiseur désigné ;
— —release ;
— —dealloc.

L'application Convertisseur1 est bourrée de défauts. Nous allons cor-
riger cela dés le prochain chapitre. Ce sera |’'occasion de découvrir de
nouveaux mécanismes de Cocoa Touch.

74 | 2.Interactions simples

GESTION
DE LA MEMOIRE

Diagnostiquer les fuites mémoire avec Leaksnrevrensenenensenessensenenne 77
Eviter les fuites mémoire
Ameéliorer Convertisseur1
(6 Y=o ' 1 =3 TP

75

™
w
o
=
o
<
T
o

Alors qu’un ordinateur dispose fréequemment de 1 Go de RAM ou
plus, la mémoire est limitée a 128 Mo sur un iPhone. Cet espace est
partagé entre le systéme iPhone OS, I'affichage graphique et I'appli-
cation en cours d’exécution ; cette derniere ne dispose que d’environ
64 Mo. La mémoire est donc une ressource précieuse qu’il faudra
économiser.

Nous allons comprendre dans ce chapitre comment est gérée la
meémoire sous Cocoa Touch et Objective-C. Nous mettrons en ceuvre
les Instruments du SDK pour chasser les erreurs courantes relatives a
la gestion de la mémoire et nous améliorerons le comportement de
notre application Convertisseurl vis-a-vis de la mémoire.

3.1. Diagnostiquer les fuites mémoire

avec Leaks

Zombi

Vous connaissez certainement les morts-vivants de cinéma et autres
zombis de méme nature. Un zombi Objective-C est aussi un objet
mort-vivant.

A la création d’une instance, il faut conserver son adresse dans une
variable de type pointeur sur un objet. Cette variable est appelée
référence sur l'instance. Pour pouvoir émettre un message vers un
objet, vous devez disposer d'une référence sur cet objet. Dans
I'exemple, les messages sont transmis a l'instance référencée par la
variable textEuro.

// création d’une instance

NSString *textEuro = [NSString alloc];

// émission d’un message

textEuro = [textEuro initWithFormat: @"%.2f",euro];

// émission d’un autre message

valeur = [texteuro floatValue];

Si nous perdons la référence a un objet, nous ne pouvons plus lui
envoyer de message. Dans le deuxieme exemple, nous créons une
instance (appelons-la Objet1) référencée par le pointeur textEuro puis
une seconde instance (Objet2) référencée par le méme pointeur ; la
valeur précédente de textEuro est alors perdue.

// création d’une instance Objetl

NSString *textEuro = [NSString alloc];
// émission d’un message vers Objetl référencé par textEuro
textEuro = [textEuro initWithFormat: @"%.2f",euro];

// création d’une instance Objet2

3.1. Diagnostiquer les fuites mémoire avec Leaks

77

textEuro = [NSString alloc];

// émission d’un message vers Objet2,

// Objetl n’est plus accessible

textEuro = [textEuro initWithFormat: @"%.2f",euro];

Nous n’avons plus de référence vers Objet1. Cette instance n’est pas
détruite (elle est toujours vivante) mais n’est plus accessible (comme
si elle était morte) ; Objet7 est un zombi.

EE

— Zombi
DEFINITION A .
Un zombi est un objet qui n'est pas accessible car il n'est référencé par
aucun pointeur dans l'application. Cet objet est inutilisable ; il occupe donc
inutilement de la mémoire.

Si vous avez déja vu des zombis au cinéma, vous savez qu’ils ne sont
pas trés sympathiques. Et les zombis Objective-C, gentils ou mé-
chants ? Vous |'avez déja deviné ; ils ne sont pas trés sympathiques
non plus, pas vraiment dangereux, mais nuisibles car ils occupent un
espace mémoire qui est irrémédiablement perdu ; cet espace sera
récupéré par le systeme uniquement lorsque l'utilisateur quittera
I"application.

Détecter les fuites mémoire

Définition d'une fuite mémoire

Un zombi apparait a cause d'une erreur de programmation (perte de
la derniére référence d’un objet non libéré). Lorsque ces erreurs sont
trop nombreuses ou lorsqu’elles sont rencontrées plusieurs fois au
cours de I'exécution, le nombre de zombis s’accroit au fur et a
mesure ; c'est ce que I'on nomme une fuite mémoire. Cette erreur
trés courante peut dégrader les performances de I'application, voire
provoquer un plantage.

numou Fuite mémoire
Erreur courante en programmation orientée objet. Une fuite mémoire est
I"accroissement progressif, tout au long de I'exécution d’une application, de
la mémoire allouée inutilement. Ce phénomene peut aboutir a une diminu-
tion des performances ou un plantage de 'application.

Nous allons provoquer une fuite mémoire dans notre application Conver-
tisseur1. Modifiez le code source de Convertisseur1ViewController.m ;
mettez en commentaire I'instruction qui libére texteEuro.

78 | 3. Gestion de la mémoire

- (IBAction) changeValue {
NSString *textDollar = labelDollar.text;
float dollar = [textDollar floatValue];
float euro = dollar / 1.4908;
NSString *textEuro = [[NSString alloc]
initWithFormat: @"%.2f",euro];
labelEuro.text = textEuro;
// [textEuro release];

}

A chaque exécution de la méthode —changevalue, c'est-a-dire a cha-
que modification du champ de texte contenant la valeur en dollars,
une nouvelle instance de NSString est référencée par textFuro ; l'ins-
tance précédente devient un zombi.

enNO m ConvertisseurlViewController.m - Convertisseurl =
[Simulator— 3.1.3 | Debug v] E & u ﬂ Q- String Matching
Overview Action Breakpoints Build and Run Tasks Info Search
Groups & Files I File Name 4| & Code) A ©
¥ [Convertisseurl B[4 ConvertisseurlAppDelegate.h
»[] Classes [w) ConvertisseurlAppDelegate.m v [
¥ [Other Sources [ConvertisseurLviewController.h
¥ |Resources . Convertisseur LViewController.m v L
¥ [] Frameworks
¥] Product = —_——— e
L Products [< » | B ConvertisseurlViewController.m:74 ¢ [-dealloc 2= Col s a
¥ @) Targets 77 LUPYTIQNL _ MyCONpEnyNane_ Z8ws. ALL T IgNCS TESETVEU. 3
¥ oy Convertisseurl /"
¥ < Executables #import "ConvertisseurlViewController.h"
¥ (4 Find Results |
» L1f] Bookmarks @inplementation ConvertisseurlViewController
» 5 sc @synthesize labelDollar;
W Project Symbols @synthesize labelEuro;
¥ (i Implementation Files
» (0 B Files - (IBAction) changevValue {

NSString *textDollar = labelDollar.text;
float dollar = [textDollar floatValuel;
float euro = dollar / 1.4908;
NSString extEuro = [INSString allec] initWithFormat: @"%.2f",eurol;
| abelEuro. text = TERLENLQ;
| /7 [textEuro release];

(4 7+ a
// The designated initializer. Dverride to perform setup that is required before the ',
& ccioing neniY S

o i) inis it N N ame: (MEEt cing w)nibMamenchii] bundle: INERUnd]e wloihBundlan bl

alr

A

Figure 3.1: Création d'une fuite mémoire

Instruments Leaks

Il est indispensable d’instrumenter |'application en cours d’exécution
pour détecter les fuites mémoire (/eaks). Nous allons mettre en ceu-
vre les instruments fournis avec le SDK d’Apple sur notre application
Convertisseur1 modifiée.

1 Reconstruisez I'application mais ne lancez pas son exécution im-
médiatement ; commande Build du menu Build sous XCode ou

H+(B).

2 Lancez I'exécution sous instrumentation des fuites mémoire. Pour
cela, sélectionnez la commande Leaks du sous-menu Start with
Performance Tools du menu Run sous XCode.

3.1. Diagnostiquer les fuites mémoire avec Leaks

79

80

m Design SCM Window & Help
™ Run e —
Run - Breakpoints Off #R l
Debug - Breakpoints On Y
Stop {r38+ Zombies
Attach to Process » Ul Recorder
Time Profiler
Debugger TRY Threads
Mini Debugger cuh Sudden Termination
| Console ¥R Multicore
Clear Console ~#R GC Monitor
Show » File Activity
Debugger Display L N
Variables View > Core Data
I System Usage
G Activate Breakpoints ~E\ OpenGL ES
| Stop on Objective-C Exceptions Core Animation
E: Manage Breakpoints 2 Object Allocations
o CPU Sampler
1 ;a" & Activity Monitor
Step Into
Step Over Shark
Step Out
Next T Ller
Previous ead
Sync with Debugger
v Stop on Debugger()/DebugStr() | .
Enable Guard Malloc ?t

o

=

Figure 3.2 : Lancement du détecteur de fuites mémoire

L'application Convertisseur1 se lance dans le simulateur iPhone en
méme temps que l'application Instruments; I'enregistrement des
événements mémoire débute automatiquement.

3 Manipulez I'application avec le simulateur ; saisissez des chiffres
dans le champ de texte contenant le montant en dollars, effacez
des caracteres puis recommencez pendant une trentaine de secon-

des.

4 Quittez l'application Convertisseur1 en pressant le bouton Ho-
me du simulateur ou a l'aide de la sélection de touches ~z+38+(H).
L'enregistrement des données sous Instruments s’arréte automa-

tiquement.

Dans la fenétre principale de I'application Instruments, réalisez les

opérations suivantes :

1 Sélectionnez I'outil Leaks dans la liste des instruments sur la partie

gauche, en haut de la fenétre.

2 [@] Cliquez sur l'icone Extended Detailed View (Vue détaillée éten-
due) sur la barre d’'état en bas de la fenétre.

3 Dans la partie centrale de la fenétre, chaque ligne est un zombi.
Sélectionnez une de ces lignes ; I'état de la pile (stack trace) au

3. Gestion de la mémoire

moment de la derniére opération mémoire sur cet objet apparait
dans la partie droite de la fenétre (vue détaillée étendue).

®00 Instrumentsl =
()(®)(@) (M convertisenrs_+] [[3]]| 00:00:91 0 |[©IG[O] (o=]
Record Defaulc Target Flags 4 Run20f2 > eciion Range Mini View Libry

Instruments 00:00 < lor.00 Extended Detail

= WebCore
» g ObjectAlloc (i} l J WebEditorClient:: respondToChangedC.
Webkit
1

SendDelegateMessage(NSinvocation®)
WebCore
~[NSlnvocation invoke]
Coreroundation
_invoking__

CoreFoundation
~[NSNetificationCenter postNotification...
Foundation

_CRNotificationFostotification
Coreroundation
@] =————————] _nsnote_callback
Leaks - Convertisseurl Leaked Object # Address Size |Responsible Library |1
 Leaks Configuration » NSCFString 30 < multiple > 752 Bytes Foundation

-[UIFieldEditor webViewDidChange:]

@ Automatic Leaks Checking ¥ NSCFSuring | 25|<multiple> | 656 Eytes|Foundation |} it
0 Gather Leaked Memory Contents » NSCFstring 2 < multiple > 32 Bytes Foundation ~{UTextield fieldEditorDidChange:]
T Malloc 128 Bytes Ox3c13660 128 Bytes CoreGraphics .
sec Between Auto Detections: | 10.0 | NSCFString 0x392¢860 16 Bytes Foundation AR SN,
s Malloc 128 Bytes 0x392a770 128 Bytes UIKit S e
. |-lUiControl(Deprecated) sendAction o
ke S Malloc 128 Bytes 0x3921e60 128 Bytes CoreGraphics
 Check Manually TvertisseurViewController chang™
Check for Leaks Now urs Us...enC
 Groupi R
T Eolion
~[NSPlaceholderString initWithFormat |
© Identical Backtraces
 Call Tree _CFStringCreateWithFermatAndrgume. .
Invert Call Tree Corefoundation
Hide Missing Symbols CrstringCreateCopy
Hide System Libraries o
Show Ob}-C Only _CFStringCreatelmmutableFunnel3
Flatten Recursion P e
» Call Tree Constraints _CRRuntimeCreateinstance
- Specific Data Mining &= =) < Coreroundation
ERRED B = | =2]2 | 2 (O)Leaked Blocks) Q- Al Fields [T P

Figure 3.3: Instrument détecteur de zombis (leaks)
Il n"est pas inhabituel que la pile contienne une cinquantaine d’élé-
ments. Chaque élément est décrit sur deux lignes :

m le nom de la fonction appelée ;

m le nom du framework ou du projet XCode et du fichier source
auquel appartient cette fonction.

Pile
La Pile (Stack) est I'espace mémoire utilisé par le processeur pour conser-
ver le contexte (paramétres et variables locales) d'une fonction ou d’une
méthode.

DEFINITION

L’état de la pile permet de connaitre I’enchainement des appels de fonction a
un instant donné ainsi que les valeurs des parameétres et des variables locales
de chaque fonction lors de I'appel a la suivante.

La pile informatique fonctionne comme une pile d’assiettes. Lors de I'appel a
une fonction, une assiette est ajoutée en haut de la pile pour contenir le
contexte de la fonction appelée. Lorsqu’une fonction se termine (instruction
return), I'assiette en haut de la pile est enlevée ; le contexte de la fonction qui
se termine est détruit et I’'on revient au contexte de la fonction appelante.

3.1. Diagnostiquer les fuites mémoire avec Leaks 81

S’il y a des erreurs de programmation, elles sont probablement
davantage dans le code que nous avons écrit que dans les fra-
meworks du SDK.

Recherchons dans la vue détaillée étendue (partie droite de la fenétre
d’Instruments) les fonctions appartenant au projet Convertisseurl.
Nous en trouvons trois :

m Tout en haut de la liste ; les fonctions start et main. Ce n’est pas
étonnant, toutes les applications commencent par I'exécution de
ces deux fonctions.

m Vers le bas de la liste, nous trouvons le message -[Convertisseurl
ViewController changeValue].

L'application Instruments détecte les fuites mémoire que nous avons
créées.

Diagnostiquer les fuites mémoire

82

Une fois identifiées la fonction ou la méthode en cause, il faut
déterminer quel est précisément I'objet qui se transforme en zombi.

1 Double-cliquez sur le message -[ConvertisseurlViewController
changevalue] dans la vue détaillée étendue sous Instruments. Ce
double-clic vous renvoie vers le code source de la méthode en
cause, sous XCode ; une ligne de code est surlignée.

00 Instruments1 =
WEE Cwlslal(0o:80:9/ 0 |(©10]0) (@] (=)

Record Default Target Flags 4 Run20f2 »J ingpection Range Mini View Library

Instruments 000 = Tovah Extended Detail

S + Stack Trace =
> ObjectAlloc o ox1 Il
Convertisseurl I
st I
Convertisseurl I

ota! v

Unppicatonan I
e I

E— I
= I

I
2 ¢

3 2

4| |7

s| |77 Created by MicroApp on 18/10/09.

5| |77 Copyright _MyConpanyName__ 2009. ALL rights reserved. -
7| |11

s

isseurlViewController.h”

it
~{UiApplication handleEvent withNewsy.

rtisseurlVieuController

un
~{UIKeyboardLayoutstar handleHardwa.

~[UIKeyboardLayoutstar sendstringActi
ke

~{UIKeyboardimpl addinputstring:from.
un

oc] initWithFormat: @"%.2",euro

v Figure 3.4:
Identification

du zombi

£ "
Q- Instrument Detai

L'instruction de notre application qui provoque une fuite mémoire
est celle qui crée une instance de NSString référencée par la variable
textEuro. C'est cette instance qu’il faut libérer pour éviter les zombis.

3. Gestion de la mémoire

REMARQUE

2 Enlevez la mise en commentaire de linstruction [textEuro
release];, reconstruisez l'application et testez-la a nouveau en
utilisant I'instrument Leaks. Il y a beaucoup moins de fuites mé-
moire.

XX} Instruments2 =
(W)(®)(®) (B oomenissewrt] [u]%] w)[00:00:23 0 (=,
Eae e T 5l Runlofl d e e
Instruments Tor:00 Extended Detail
= v Stack Trace #- Q
» g ObjectAlloc [} } Ox1
Convertisseurt
start
Convertisseur!
main
Convertisseur] /Us...tisseur2 fmain.m:14]
UldpplicationMain
e
GSEventRun
Graphicsservices
GsEventRunModal
O = 1 GraphicsServices
Leaks - Convertisseurl Leaked Object # Address Size |Responsible Libr _|CHRunLoopRuninMode
 Leaks Configuration M Malioc 128 Bytes Ox3c19ac0 128 Bytes UIKit Corefowadistion
 Automatic Leaks Checking || Malloc 128 Bytes 0x3920c90 128 Bytes CoreGraphics CFRunLoopRunSpecific
) Gather Leaked Memory Comtents || CoreFaldtn,
PurpleEventCallback
0004 00 | GraphcsServices
sec Between Auto Detections: |10.0 || _UlApplicationHandleEvent
 Leaks Status | e
Auto-Leaks: Idle | ~{UiApplication sendEvent:]
= Check Manually | e
Check for Leaks Now | FALERTEIE S F)
5 | uic
L | ~[UN¥indow _sendGesturesForEvent]
O individual Leaks | e
(B vk ke | -{UiGestureRecognizer _updateCesture..
v Call Tree | e
Linstde LHIL | ~[UTextinteractionAssistant onefinger.
Hide Missing Symbols |
Hide System Libraries. U ~{UTextField becomeFirstResponder]
Show Obi~C Only
Flatten Recursion & ~{UIFieldEdicor becomeFieldEditorForView] ,
» Call Tree Constraints [=) s -
% 3 |E| = | =2 |2 | (S| OO LeakedBlocks) Q-All Fields [} 4

Figure 3.5: Vérification de la diminution des fuites mémoires

Selon la version du SDK que vous utilisez, il est méme possible qu’il
n'y ait plus du tout de fuites mémoire. Il est aussi possible qu’il reste
quelques lignes, vérifiez que le code que vous avez écrit n'est pas
impliqué dans ces lignes résiduelles.

Nous venons d’illustrer la recherche des fuites mémoire en utilisant
une application dans laquelle nous avons introduit une erreur de
programmation. Bien sr, la recherche de ce type d’erreur est un peu
moins facile dans la réalité mais le principe est toujours le méme :
mettre en ceuvre l'instrument Leaks.

La premiere chose a faire est tout de méme d’éviter d'introduire ce
genre d’erreur dans notre code source. C'est pourquoi nous allons
étudier les regles qui régissent la gestion de la mémoire.

@ Chassez les fuites mémoire

Malgré tout le soin que nous mettrons a respecter les régles de gestion de
la mémoire, il est indispensable de vérifier que notre programmation est
correcte en testant notre application a I'aide de I'instrument Leaks.

3.1. Diagnostiquer les fuites mémoire avec Leaks

83

3.2. Eviter les fuites mémoire

Compteur de références

=
DEFINITION

Chaque instance dispose d’un compteur de références qui lui est
propre, quelle que soit sa classe d’appartenance. Lorsqu’une ins-
tance est créée, son compteur de références (retain count) prend la
valeur 1.

Lorsqu’une instance recoit le message retain, son compteur de réfé-
rences est incrémenté, tandis que lorsqu’elle recoit le message
release, il est décrémenté. Le message retainCount permet de connai-
tre la valeur du compteur de références.

Lorsque son compteur de références atteint la valeur nulle, le mes-
sage dealloc est transmis a l'instance :

// création le compteur vaut 1

MaClasse *monInstance = [[MaClasse alloc] init];

// le compteur est incrémenté, il vaut 2

[monInstance retain];

// compteur vaut 2

int compteur = [monInstance retainCount];

// le compteur est décrémenté, il vaut 1

[monInstance release];

// le compteur est décrémenté a 0, 1’instance est détruite
[monInstance release];

Compteur de références
Chaque objet dispose d'un compteur de références (retain count) qui
vaut 1 a la création de I'instance. Ce compteur est incrémenté par le message
retain, il est décrémenté par le message release. L'objet est détruit lorsque
son compteur de référence est égal a 0.

Rappelez-vous, pour chacune des classes que vous écrivez, il est
important de définir une méthode -dealloc dans laquelle vous trans-
mettez un message release a chaque instance retenue par la I'objet
de la classe (en particulier les propriétés). |l faut invoquer dealloc sur
la superclasse.

Gestion des propriétés

84

Logiquement, s’il faut libérer les propriétés d'une instance
lorsqu’elle est détruite, c’est qu’elles ont été retenues auparavant.

3. Gestion de la mémoire

Attributs des propriétés

Souvenez-vous du fichier Convertisseur1ViewController.h :

#import <UIKit/UIKit.h>

@interface ConvertisseurlViewController : UIViewController ({
IBOutlet UITextField *labelDollar;
IBOutlet UITextField *labelEuro;

}

@property (retain,nonatomic) UITextField *labelDollar;

@property (retain,nonatomic) UITextField *labelEuro;

- (IBAction) changeValue;

@end

Nous avons ajouté deux attributs a la clause Gproperty: retain et
nonatomic. L'attribut retain indique que le manipulateur de la pro-
priété doit la retenir et gqu’il doit libérer la valeur précédente. Le
principe du code du manipulateur généré par la clause
@synthesize est alors le suivant :
- (void) setLabelDollar: (UlITextField *) textField {
[textField retain];
[labelDollar release];
labelDollar = textField;
}

Le tableau résume les attributs utilisables avec la clause @property.

Tableau 3.1: Principaux attributs de la clause @property

Theme Attribut Role

Nom des méthodes générées |getter= Permet de définir un nom pour l'ac-
nom-de-l-accesseur | cesseur autre que celui par défaut.
setter= Permet de définir un nom pour le
nom-du-manipulateur | manipulateur autre que celui par

défaut.

Propriété modifiable readwrite @synthesize générera l'acces-
(attribut par défaut) | seur et le manipulateur.
readonly @synthesize générera seule-

ment l'accesseur.

Gestion de la mémoire Le com- |assign Dans le manipulateur généré par

pilateur émet un avertissement @synthesize, la nouvelle valeur

sil'un de ces attributs n'est pas remplace simplement I'ancienne
utilisé valeur.
retain Dans le manipulateur généré par

@synthesize, la nouvelle valeur
est retenue et I'ancienne valeur
est libérée.

copy Dans le manipulateur généré par
@synthesize, la nouvelle valeur
est dupliquée et I'ancienne valeur
est libérée.

3.2. Eviter les fuites mémoire 85

86

Tableau 3.1 : Principaux attributs de la clause @property

Theme Attribut Role

Atomicité nonatomic Permet d’améliorer les performan-
ces dans une application n’utilisant

pas le parallélisme d’exécution
(multi-threading).

Recommandations d’emploi

nonatomic

Sur iPhone OS, il est recommandé d’employer I'attribut nonatomic,
sauf dans les cas rares ou les instances de la classe sont susceptibles
d’étre utilisées dans un contexte d’exécution concourante. Nous
n’étudierons pas ces situations dans le cadre de cet ouvrage.

retain

L'attribut retain est recommandé pour les propriétés qui sont des
instances de classe Objective-C. Il n‘est pas utilisable pour les pro-
priétés de type scalaire.

Objet A
B L'objet A "possede" B

‘) Objet B

Figure 3.6 : Relation d'appartenance

Dans cet exemple, I'objet 2 posséde I'objet B. La propriété B doit étre
retenue (déclarée avec l'attribut retain). Les propriétés retenues doi-
vent étre libérées dans la méthode —dealloc.

Un objet B peut appartenir simultanément a plusieurs autres objets.
Si chacun des propriétaires retient cet objet B, son compteur de
références sera égal au nombre de propriétaires. Cela garantit que
I'objet B sera détruit seulement lorsqu’il naura plus de propriétaires.

3. Gestion de la mémoire

assign

L'attribut assign est employé avec des propriétés de type scalaire
(par opposition a Objet), c’est-a-dire les types fondamentaux du
langage C (int, float, double, char, struct, etc.) ou leur équivalent
Cocoa Touch (NSInteger, CGRect, etc.).

On l'utilise également avec des propriétés de type Objet lorsque I'on
souhaite qu’un objet connaisse un autre objet sans pour autant le
posséder. Dans |I'exemple, I'objet o possede |'objet B, et donc la
propriété B de I'objet » est déclarée avec |'attribut retain. Il est alors
incorrect que I'objet B possede I'objet 2. Par analogie, vous possédez
votre iPhone mais lui ne vous posseéde pas. Il vous connait néan-
moins car vous avez saisi votre nom lorsque vous l'avez initialisé ; la
propriété 2 de I'objet B est déclarée avec |'attribut assign.

)
Objet A

L'objet A "possede" B

L'objet B "connait" A

Figure 3.7 : Connaissance (Assign) n'est pas possession (retain)

copy

L'attribut copy indique que le paramétre passé au manipulateur doit
étre dupliqué avant d’étre affecté a la propriété.
- (void)setString: (NSString *)newString {

if (string != newString) {
[string release];
string = [newString copy];

}

La méthode —copy est déclarée dans NsObject. Elle doit étre définie
dans toutes les classes ou I'on souhaite en disposer. Elle duplique
I'instance (et toutes ses propriétés) et renvoie un pointeur sur le
duplicata.

3.2. Eviter les fuites mémoire

87

Responsabilités des objets

=

DEFINITION

88

Regle de gestion de la mémoire
La regle qui permet d’éviter les zombis est simple.

f]

Regle de gestion de la mémoire
Une classe d’objet qui obtient une instance par +alloc, par —copy (ou ses
dérivés) ou qui retient une instance (retain) est responsable de sa libération.
Les instances obtenues par un autre moyen ne doivent pas étre libérées.

Dire qu'une classe est responsable de la libération des instances
obtenues, cela signifie que le programmeur doit veiller a envoyer le
message release aux variables référencant un objet avant de les
modifier ; c’est ce que nous avons fait dans la méthode -changevalue
de la classe ConvertisseurlViewController.

Quels sont les autres moyens d’obtenir une instance ? Il s’agit de
facon générale de la valeur de retour d’'une méthode autre que +alloc
ou —-copy. Vous voyez un exemple ? Un accesseur bien sir, renvoie
une référence sur un objet sans l'intention d’en transférer la pro-
priété ; il appartient a celui qui le recoit de le retenir s’il le souhaite.

Cycle de vie des objets

La durée de vie des objets pendant I'exécution d’une application est
trés variable. Certains objets sont créés au lancement de I'applica-
tion et vont perdurer jusqu’a sa terminaison, par exemple les
champs de texte de notre Application Convertisseur1. D'autres ont
une vie extrémement breve: l'instance textfFuro de la méthode
—changeValue.

Dans le contexte de I'iPhone OS ou la mémoire est une denrée
précieuse, il est recommandé de détruire les objets dés que possible.
Mais que se passe-t-il dans le cas ou nous voulons écrire une mé-
thode qui crée un objet pour le retourner. Par exemple, nous voulons
ajouter a la classe Convertisseur1ViewController une méthode qui
retourne une chaine de caractéres contenant la valeur convertie en
euros.
- (NSString *) euroAsString {

NSString *textDollar = labelDollar.text;

float dollar = [textDollar floatValuel];

float euro = dollar / 1.4908;

NSString *textEuro = [[NSString alloc]
initWithFormat: @"%.2f",euro];

3. Gestion de la mémoire

return textEuro;

}

Le probléme ici est que nous violons la regle de gestion de la
mémoire : la méthode obtient une instance par +alloc mais ne se
préoccupe pas de sa libération ; si la méthode libérait cette instance,
elle ne pourrait pas la retourner a I'appelant.

Heureusement, il existe une autre facon de libérer les objets qui va
nous permettre de continuer a respecter la regle.

Pool d’autolibération

Il faut ajouter une toute petite instruction importante, avant de re-
tourner l'instance nouvellement créée :
- (NSString *) euroAsString {

NSString *textDollar = labelDollar.text;

float dollar = [textDollar floatValue];

float euro = dollar / 1.4908;

NSString *textEuro = [[NSString alloc]

initWithFormat: @"%.2f",euro];
[textEuro autorelease];
return textEuro;

}

Le message autorelease programme la libération pour plus tard.
Ainsi la méthode —euroAsString s'occupe de libérer I'instance créée ;
elle respecte donc la régle mais le fait de fagon a se laisser le temps
de renvoyer la valeur attendue.

Et quand la libération sera-t-elle opérée ? En fait, les objets auxquels
ont transmet le message autorelease sont ajouté au pool d'autolibé-
ration (autorelease pool) courant. Lorsque le pool est détruit, tous les
objets qui y sont rattachés sont libérés.

Sous Cocoa Touch, un pool d'autolibération est créé au début de
chaque boucle d’événement et détruit a la fin de la boucle.

Boucle d’événement

Une application sur iPhone passe son temps a attendre des événe-
ments et a y répondre.

Lorsque I'utilisateur saisit des caractéres sur le clavier ou lorsqu’il
touche un bouton, lorsque un appel est recu, que l'appareil est
secoué, etc. Tous ces événements sont représentés par des instances
de la classe UIEvent par le systéme iPhone OS puis transmis a l'ap-
plication.

3.2. Eviter les fuites mémoire

89

Lorsque l"application recoit un événement, elle débute une boucle
d'événement :
m création d’un pool d’autolibération ;

m détermination du contréle (instance de la classe UIControl) dans
I"application qui peut traiter I'événement (par exemple un champ
de texte dans le cas de saisie de caractéres) ;

m traitement par le contréle d'une partie de I'événement (affichage
du caractére) et génération de l'action éventuellement attachée
suivie d'une transmission a la cible ;

m traitement par la cible de I'action (-changevalue dans notre applica-
tion) ;

m fin de traitement de I'événement par I'application (mise a jour de
I'affichage des autres vues) ;

m destruction du pool d’autolibération ;
m attente de I'événement suivant.

3.3. Améliorer Convertisseurl

Nous allons vérifier que notre application respecte la regle de ges-
tion de la mémoire.

La seule classe que nous avons modifiée est Convertisseurl
ViewController ; nous allons donc y concentrer nos efforts.

Instances manipulées

90

Commencons par identifier la liste des instances obtenues. Nous
allons dresser un tableau pour préciser comment nous obtenons
chaque instance et comment nous la libérons.

Tableau 3.2: Liste des instances manipulées dans Convertisseur1ViewControlleur

Portée Instance Obtention Libération

Propriété labelDollar |-retain dansle
manipulateur

labelEuro —retain dansle
manipulateur

—changeValue | textDollar |accesseurde text [Inutile car obtenu autrement que
sur labelDollar |par+alloc,—retain ou
—-copy

textEuro +alloc -release

3. Gestion de la mémoire

Nous nous apercevons que nous ne gérons pas correctement les
propriétés. Il faut y remédier.

Mise en conformité avec la regle
Méthode -dealloc

Nous avons oublié de libérer les propriétés dans la méthode
—dealloc de la classe.

Sélectionnez le fichier Convertisseur1ViewController.m sous XCode.
La méthode -dealloc a déja été préparée par XCode ; modifiez cette
méthode pour libérer les propriétés.
- (void)dealloc {

self.labelDollar = nil;

self.labelEuro = nil;
[super dealloc];

¢ éi Libération des propriétés

REMARQUE i s] e
Notez la fagcon dont nous libérons les propriétés, au lieu d’écrire

[labelDollar release];, nous utilisons la notation pointée qui est équiva-

lente a [self setlLabelDollar:nil];. La propriété étant déclarée avec

I'attribut retain, le manipulateur commence par libérer la propriété

Actuelle ; c’est ce que nous souhaitons.

L'intérét d’employer self.labelDollar = nil est double:

1 la propriété vaut nil au lieu de contenir une référence obsoléte, ce qui va
éviter beaucoup de plantage ;

2 cette instruction fonctionne aussi bien quel que soit I'attribut (assign,
retain, copy) de la propriété, ce qui n’est pas le cas du message release
qui est une erreur de programmation si I'attribut est assign.

Ainsi le code de notre méthode —dealloc est insensible aux modifications
d’attribut que nous pourrions faire par la suite. Notre code est plus robuste ;
il est plus facile d’en assurer la maintenance.

Méthode -viewDidUnload

XCode a préparé d'autres méthodes dans la classe Convertisseurl
ViewController.

3.3. Améliorer Convertisseur1

M

92

N m| ConvertisseurlViewController.m - Convertisseurl =

[SimuLatar - 3.1.3 | Debug '] E ﬁ i 0 Qr String Matching

Overview Action Breakpoints BulldandRun Tasks Info Search

Groups & Files I+ File Name A‘ . Code 2 A =)
¥ [Convertisseurl = [ConvertisseurlAppDelegate.h

] Classes [wi ConvertisseurlAppDelegate.m 37K]

»[] Other Sources [l ConvertisseurlViewController.n

[] Resources | | ConvertisseurlViewController.m

¥ [Frameworks

> (i8] Products [<|* B ConverusseurlViewController.m68 ¢ [-viewDidUnload & o =Tc.[#. [= @
¥ (@) Targers T B

) (]

» gl Convertisseurl | | - (void)didReceiveMemoryWarning {
» <4 Executables | | /f Releases the view if it doesn't have a superview.
v Q4 Find Results [super didReceiveMemaryWarning];

¥ L8 Bookmarks | // Release any cached data, images, etc that aren't in use.
»Edscm il |
Project Symbols |
" lect Sy ; || - (void)viewDidunload {
(& Implementation Files | // Release any retained subviews of the main view.
b [NIB Files /7 e.g. self.myOutlet = nil;

I*
|

| |- tvoid)dealloc {
| self.labelDollar = nil;
self.labelEuro = nil;
| [super deallocl;

I £

| | gend 4

| [=] aTr
Debugging terminated. @ Succeeded |

Figure 3.8: XCode a préparé des méthodes

Nous pouvons voir juste au-dessus de la méthode -dealloc une
méthode -viewDidUnload dans laquelle nous pouvons lire un com-
mentaire nous incitant a y libérer les outlets ; c’est exactement ce
que nous venons de faire dans la méthode -dealloc.

La méthode —viewDidUnLoad est appelée lorsque la Vue contrdlée par
I'instance du contrdleur de Vue vient d’étre libérée. Cela se produit
quand la mémoire sature et que la Vue n’est pas affichée a I'écran ;
elle occupe inutilement de I'espace mémoire et pourra étre rechar-
gée a partir du fichier NIB si l'utilisateur y revient. Cette caractéristi-
que est utile uniquement dans les applications multivues, ou I'utili-
sateur peut passer d'une vue a l'autre; les vues qui sortent de
I'affichage @ un moment donné restent dans la mémoire afin de
pouvoir étre réaffichées plus rapidement.

Notre application Convertisseur1 n’est pas multivue, pour l'instant,
mais prenons tout de suite de bonnes habitudes. Modifiez le code de
la méthode -viewDidUnload :
- (void)viewDidUnload {

// Release any retained subviews of the main view.

// e.g. self.myOutlet = nil;

self.labelDollar = nil;

self.labelEuro = nil;
}

Factorisation du code

Les méthodes -dealloc et —-viewDidUnload se ressemblent beaucoup.

3. Gestion de la mémoire

C’est une bonne pratique de la programmation que d’éviter de telles
ressemblances ; elles rendent le code plus difficile a maintenir. L"éli-
mination de ces ressemblances s’appelle la factorisation du code.

numou Factorisation du code
La factorisation de code est I’élimination des séquences de code qui se
ressemblent. De telles ressemblances rendent le code difficile a maintenir et
sont sources d’erreurs.

Dans le cas présent, le code est facile a factoriser. Le rble de
-viewDidUnload est de libérer les outlets, et nous voulons que les
outlets soient libérés lors de I'appel de —dealloc : il suffit d’appeler
-viewDidUnload depuis -dealloc. Modifiez le code de la classe
ConvertisseurlViewController.
- (void)viewDidUnload {

// Release any retained subviews of the main view.

// e.g. self.myOutlet = nil;

self.labelDollar = nil;
self.labelEuro = nil;

- (void)dealloc {

[self viewDidUnload]; // libére les outlets

[super dealloc];
}
Nous avons fait un excellent travail. Reconstruisez |'application et
testez-la. Jetez un coup d’ceil avec I'instrument Leaks pour vérifier
que tout fonctionne, sans fuite mémoire provoquée par votre code.

Résumeé

Résumons les recommandations importantes qui vous serviront
pour tous les développements :

m Souvenez-vous de la régle de gestion de la mémoire : une classe
propriétaire d'un objet est responsable de sa libération.

m Elaborez un tableau des instances manipulées pour chaque classe
que vous développez, cela vous aidera a vérifier que la regle est
respectée.

m Factorisez votre code, il y aura moins d’erreurs.

m Utilisez I'instrument Leaks pour vérifier qu’il n'y a pas de fuites
mémoire.

3.3. Améliorer Convertisseur1 93

Références obsolétes

DEFINITION

94

Ce chapitre a traité jusqu’ici des zombis, des fuites mémoire, donc
des risques liés au manque de libération. Nous ne pouvons le clore
sans dire ce qui se passe si on libere trop. Que se passe-t-il si une
instance recoit trop de message release ? Autrement dit, que se
passe-t-il si I'on envoie un message a un objet qui a été détruit (on
parle de référence obsoléte) ? Essayons.

Référence obsolete
Une référence obsolete est une variable qui pointe sur une instance qui
n’existe plus.

Provoquer une référence obsolete

Modifiez la méthode -changevalue ; libérez l'instance textEuro avant
de I'affecter au champ de texte contenant le montant en euros.
- (IBAction) changeValue {
NSString *textDollar = labelDollar.text;
float dollar = [textDollar floatValue];
float euro = dollar / 1.4908;
NSString *textEuro = [[NSString alloc]
initWithFormat: @"%.2f",euro];
[textEuro release];
labelEuro.text = textEuro;
// [textEuro release];
}

Construisez I'application et testez-la. Inutile ici d’employer les instru-
ments.

L'application plante et on revient a XCode dés que I'on essaie de
saisir un caractere dans le champ de texte contenant le montant en
dollars. Ce plantage peut se manifester de différentes facons : I'affi-
chage peut simplement se figer ou un message d’erreur peut étre
émis ou l'application quitte brutalement sans message, ou encore il
ne se passe plus rien (voir Figure 3.9).

Si un message est affiché dans une boite de dialogue, vous pouvez
cliguer sur le bouton Rapport... pour avoir plus de détails sur l'erreur
(inutile d’envoyer le rapport a Apple) (voir Figure 3.10).

3. Gestion de la mémoire

-l Carrier = 7:58 AM =

Converﬁsseur de Manﬂaf.e L'application Convertisseurl a quitté

inopinément.
Mac OS5 X et les autres applications n'ont pas été affectés.
Montant en dollars |’I Cliquez sur Relancer pour lancer & nouveau l'application.

Cliquez sur Rapport pour avoir plus de détails ou pour
‘envoyer un rapport & Apple.

]
Montant en euros (Ignorer) (Rapport...) E—Hu!m—)

[Commentaires | Détails du probléme | Configuration systéme |

Process: Convertisseurl [6438]

Path: SUsers/jpimbert/Library/dpplication Support/iPhone Simulotor/User/ m
Applications/1A609215-1637-4CEE-JEAG-RCIFARY4AETE /Convert isseurl .app/Convert isseurl
Identifier: Convertisseurl

Version: TP

Code Type: ®E6 (Native)

Parent Process: launchd [145]

Interval Since Last Report: 2453412 sec

Crashes Since Lost Report: 9

Per-App Interval Since Last Report: A sec
Per-App Crashes Since Laost Report: 3

Date/Time: Z089-11-81 B85:02:65.221 +0168

05 Yersion: Mac 05 ¥ 18.5.5 {9L31a)

Report Version: 6

Anonymous UUID: 64136FFS-CCDA-464F -9AEE-FEDASSDIBESS

Exception Type: ERC_BAD_ACCESS (SIGSEGY)
t pdalalalalalalalaRralalalalzig

"
Crashed Thread: 8]
Vos i i ne sont pas ises avec ce rapport. Vious ne
® recevrez aucune réponse i cet envol. Pour obtenir une assistance sur ce produit @
Apple, consultez le site http:/ /www.apple.com /fr/support/ ou contactez votre
revendeur Apple le plus proche. /ﬂ

Figure 3.10: Rapport détaillé d'une référence obsolete

Ce rapport indique qu’'un acces mémoire illégal a été effectué :
EXC BAD ACCESS.

3.3. Améliorer Convertisseur1 95

96

Diagnostiquer I'erreur

Dans tous les cas, que le message s’affiche ou pas, nous pouvons
diagnostiquer I'erreur en utilisant le Debogueur de XCode (debug-
ger).

Sélectionnez la commande Debug - Breakpoints On du menu Run de
XCode ou utilisez la combinaison de touches ~=+3+(Y).

Testez votre application jusqu’au plantage. Si la fenétre du débo-
gueur ne s'affiche pas sous XCode, sélectionnez la commande
Debugger du menu Run (~:+36+(Y)). Une fois affichée, elle nous per-
met de visualiser I'état détaillé du programme au moment du plan-
tage. Sélectionnez la ligne numéro 2 dans la partie gauche de la
fenétre pour voir ce qui s’est passé dans notre méthode -changevalue.

eno [m| ConvertisseurlViewController.m: Convertisseurl - Debugger =
simuator-3.1..~| 3 Hh 0o ® @ O
Sl LI . W @ e O »
Active SUK:ﬁ'PhU"E Simulator 3.1.3 hand Debug Tasks Restart Conti Step Over Step Into Step Out
Active Configuration: Debug -
Th Wi bl Val S
s _rea!Active Target: Convertisseurl =il Lo R
0 obic_ active Executable: Convertisseurl m ¥ Arguments
1|72 Active Architecture: 386 P self 0x391bd30
=[ConvertisseurlViewController changeValue] _cmd Ox2e51
3 -[UIControl(Deprecated) sendAction:toTarget:forEw ¥ Locals
4 -[UIControl{internal) _sendActionsForEventMask:w P textDollar 0x394af80 5
5 -[UITextField fieldEditorDidChange:] dollar 5
6 -[UIFieldEditor webViewDidChange:] euro Ho
7 _nsnote_callback - P textEuro 0%394b070 out of scope
8 _CFXNotificationPostMotification : ¥ Globals
0 PRICRIosific s ST T ST T T b i E P,
f = -y RSl
« | » | [ConvertisseurlViewController.m:22 + [0 -changeValue 5 <y "% | Cv | #v -
NSString #textEuro = [[NS5tring alloc] initWithFormat: @"%.2f",eurol; -
[textEuro releasel];
[labelEuro.text = textEuro;
/f [textEuro releasel; m
I*
/f The designated initializer. Override to perform setup that is required before the view
- (id)initWithNibName: (N5String #)nibNameOrNil bundle:(NSBundle *)nibBundleOrNil { .
if (self = [super initWithNibName:nibMNameOrNil bundle:nibBundleOrNill) { s
/f Custom initialization v
(= g RIC
GDB: Program received signal: “EXC_BAD_ACCESS". @ Succeeded y

Figure 3.11: Etat du programme lors du plantage

Le programme s’est arrété alors qu’il essayait d'affecter I'instance
textEuro au champ de texte devant afficher la valeur en euros (partie
basse de la fenétre). Nous voyons aussi et surtout, sur la partie droite
de la fenétre, que la variable textEuro présente une valeur invalide
(out of scope). Cette variable pointe sur une instance qui n'existe pas
puisqu’elle vient d'étre détruite dans la ligne de code précédente.

3. Gestion de la mémoire

Si la barre d’état ne contient pas de message d’erreur, cliquez

sur le bouton Continue de la barre d’'outils. Vous pouvez alors
lire le message "GDB: Program received signal: EXC_BAD_ACCESS"
dans la ligne d’état en bas de la fenétre.

Nous venons de montrer que I'utilisation d’'une référence obsolete
provoquait généralement le plantage de |'application associé a
I"émission d'un signal £xc BAD AcCEss. Nous avons vu également
comment utiliser le débogueur pour localiser I'instruction ayant pro-
voqué ce plantage et visualiser I'état des variables a ce moment-la.

La fenétre du débogueur

Nous allons terminer par quelques explications concernant la fenétre
du débogueur qui est composée de quatre parties :

m une barre d'outils en haut, que nous apprendrons bientot a utili-
ser;

m |'état de la pile dans la partie gauche : les fonctions de notre
application y apparaissent en couleur foncée, signe que nous
pouvons en visualiser le code source ;

m le code source dans la partie basse ; lorsque nous sélectionnons
une fonction de notre application dans I'état de la pile, ou le code
machine lorsque nous sélectionnons une fonction de I'un des
frameworks de Cocoa Touch ;

m |'état des variables de la fonction sélectionnée dans la partie
droite. La aussi, cet état est facile a interpréter uniquement si nous
sélectionnons une fonction écrite dans notre application ;

m une barre d'état en bas de la fenétre.

Le code source et |I'état des variables sont lisibles dans le débogueur
uniquement pour les fonctions qui sont compilées en mode Debug.
Ce mode de compilation indique que le code exécutable doit étre
enrichi pour permettre au débogueur d’afficher ces informations.
Lorsque vous livrerez votre application sur I’AppStore, vous pourrez
les supprimer et compiler pour cela en mode Release.

Pour changer le mode de compilation, utilisez le sous-menu Set
Active Build Configuration du menu Project sous XCode (voir Fi-
gure 3.12).

Vous pouvez aussi utiliser le menu Overview de la barre d’outils de
XCode.

3.3. Améliorer Convertisseur1

97

Build Run Design SCM Window & Help

Project 3#0
Class Browser 48C
Rename...

New Group EN
Ungroup e
New Smart Croup >
Add to Project... A
Add Current File to Project

New Target...

Upgrade All Targ in Project to Native
Upgrade Current Target for iPac

New Build Phase »

New Custom Executable...

Set Active Target
Set Active Architecture
Set Active SDK

Set Active Build Configuration + Debug
Set Active Executable Release
Edit Project Settings

Edit Active Target “Convertisseurl” X BE
Edit Active Executable "Convertisseurl” 38X

\dv v~

v

Figure 3.12 : Changement du mode de
compilation sous XCode

3.4. Check-list

98

Nous avons vu dans ce chapitre comment gérer la mémoire, res-
source précieuse dans le contexte de I'iPhone : la regle de gestion de
la mémoire ainsi qu’une méthode pour s’assurer que la regle est
appliguée dans chacune de nos classes.

Nous avons également examiné les 2 erreurs les plus courantes et la
facon de les éliminer :

m les fuites mémoire et la chasse aux zombis avec l'instrument
Leaks ;

m les références obsolétes et leur localisation avec le Débogueur.

Ce parcours a été I'occasion d'approfondir quelques éléments de la
programmation sur iPhone :

m le compteur de références et les messages -retain et -release ;
m les attributs de la clause Gproperty ;

m le pool d’autolibération et le message -autorelease ;

|

le traitement des demandes de libération mémoire dans les
controleurs de vues dans la méthode -viewDidUnload ;

le fonctionnement de la boucle d’événement ;
le principe de factorisation du code.

3. Gestion de la mémoire

MOTIFS
FONDAMENTAUX

Mécanisme de délégation
Améliorer Convertisseur1
Motif MVC ..
Challenges ...nenenreneenenenns
L0 =Tl = T

99

Nous allons faire connaissance avec quelques motifs de conception-
(design patterns) fondamentaux de la programmation sur iPhone :
la délégation, le motif Modéle-Vue-Contréleur (MVC, Model-View-
Controller), le codage par valeur de clé (KVC et Key Value Coding). Ces
mécanismes permettront d’améliorer notre convertisseur de mon-
naies et d’aboutir a une application de niveau professionnel. Prenons
en compte les éléments suivants :

m Nous voulons interdire la frappe de lettres.
m Nous souhaitons pouvoir faire disparaitre le clavier.
m Nous allons vraisemblablement trouver d’autres améliorations.

4.1. Mécanisme de délégation

Délégué
Commencons par interdire a |'utilisateur de frapper des lettres.

Nous voulons modifier le comportement de I'objet UITextField vis-a-
vis de l'utilisateur. La maniére la plus directe d’y parvenir serait de
modifier I'objet lui-méme, ou de créer un autre objet nommé
UINumericField par exemple — qui hérite de UITextField. Il faudrait
ensuite réécrire quelques méthodes dérivées de celles de UITextField
pour donner a UINumericField le comportement souhaité. Tout cela
parait compliqué. La dérivation de classe est en effet une opération
délicate qui nécessite une trés bonne compréhension du fonctionne-
ment de la classe mere.

La délégation permet de modifier le comportement d'un objet sans
avoir a le modifier ni le dériver. Les objets UITextField disposent d’'un
outlet delegate (objet délégué) configurable sous Interface Builder
(voir Figure 4.1).

L'objet délégué recoit un message avant ou apres chaque opération
effectuée par son propriétaire :

m pour demander l'autorisation au délégué d’effectuer cette opéra-
tion ;
m pour l'informer et lui permettre de compléter I'opération.

De fagon générale, une information est transmise par un message
dont la méthode est fonction de I'opération, qui ne retourne pas de
valeur et prend comme unique parameétre une référence a I'objet
effectuant 'opération. Par exemple -(void) textFieldDidBegin

4.1. Mécanisme de délégation | 101

DEFINITION

Editing: (UITextField *)textField pour notifier au délégué que le
champ de texte vient d’entrer en mode Edition.

& \iew: ,- 1 a8 Text Field Identity

=M = | © & |

¥ Class Identity

Convertisseur de Monnaie Class UextField

¥ Class Actions

Montant en dollars - Round Style Text Field
¥ Outlere

delegate
¥ Events

Montant en euros ST G

Editing Changed ® File’s Owner
changeValue

Editing Did Begin
Editing Did End
Touch Cancel
Touch Down
Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag Outside
Touch Up Inside
Touch Up Outside
Value Changed
¥ Referencing Outlets
labelDollar % File's Owner
New Referencing Outlet

Dafanlr

Figure 4.1: Outlet delegate d'un objet UlTextField

Une demande d’autorisation est trés souvent un message qui ren-
voie une valeur de type B0OL. Si le délégué autorise I'opération, il
renvoie YES; autrement, il renvoie NOo. Par exemple - (BOOL)
textFieldShouldBeginEditing: (UITextField *)textField pour deman-
der au délégué si le champ de texte peut entrer en mode Edition.

Type BOOL
BOOL est un type prédéfini dans Objective-C qui représente une valeur
logique ou booléenne. Les deux seules valeurs que peut prendre une variable
de type BOOL sont YES et NO.

Déléguer le champ dollar

102

Nous allons apporter une premiére amélioration dans Convertisseur1
que nous perfectionnerons par la suite. Notre objectif sera de limiter
la frappe aux caractéres numériques dans le champ de texte conte-
nant la valeur en dollars.

4. Motifs fondamentaux

Creéation du délégué

1 Ouvrez le fichier Convertisseuri1ViewController.xib sous Interface
Builder et connectez |'outlet delegate du champ de texte a I'objet
File’s Owner.

View ~ ‘ 000 Text Fleld [dentity

=N - © &

¥ Class Identity

Convertisseur de Monnaie Class UlTextField |

¥ Class Actions

®00 Convertisseur1ViewController.xib > Montant en dollars
Outlets
~ E— v
sEBlo ¢ a delegate
ViewMode Info Search Field T —
Montant on-gurgs—
Name I Te— East-2 Hiad Did End On Exit o
File's Owser— Convertisseurl... | Editing Changed * File's Owner ®
@ First Responder UlResponder N changeValue
Editing Did Begin
b [view Ulview

Editing Did End

| Touch Drag
Touch Drag Inside
Touch Drag Qutside
| Touch Up Inside
| Touch Up Outside
| Value Changed
| ¥ Referencing Outlets
IabelDollar % File's Owner
New Referencing Qutlet

s ‘ — -‘—d._d E“" e

Figure 4.2 : Définir Convertisseur1ViewController comme délégué du champ dollar

0 Convertisseurl.xcodeproj

b éi Le contréleur de vue comme délégué
REMARQUE

Il est courant de définir le contréleur de vue comme délégué des objets
contenus dans cette vue principale, surtout dans les applications simples.

2 Sous XCode, modifiez le fichier ConvertisseuriViewController.h
pour indiquer que cette classe est aussi un délégué de champ de
texte :

#import <UIKit/UIKit.h>
@interface ConvertisseurlViewController
UIViewController <UITextFieldDelegate> {

IBOutlet UITextField *labelDollar;
IBOutlet UlITextField *labelEuro;

}

@property (retain,nonatomic) UITextField *labelDollar;

@property (retain,nonatomic) UITextField *labelEuro;

- (IBAction) changeValue;

@end

3 Ajoutez la définition de la méthode suivante dans le fichier
Convertisseur1ViewController.m :

- (BOOL) textField: (UITextField *)textField

4.1. Mécanisme de délégation

g éi Taille de la saisie de caractéres

REMARQUE

104

shouldChangeCharactersInRange: (NSRange) range
replacementString: (NSString *)string ({
return [[NSCharacterSet decimalDigitCharacterSet]
isSupersetOfSet: [NSCharacterSet
characterSetWithCharactersInString:string]];

}

La méthode -textField:shouldChangeCharactersInRange:replacement
String est invoquée sur le délégué chaque fois que I'utilisateur mo-
difie le contenu du champ de texte. Le parameétre range (intervalle)
indique a quel endroit dans le texte existant la modification sera
effectuée et éventuellement quels sont les caractéres qui seront
supprimés. Le parametre string contient la chaine de caractéres que
I'utilisateur souhaite insérer ou ajouter au champ de texte.

Classe NSCharacterSet

Nous en profitons pour faire connaissance avec la classe permettant
de manipuler des ensembles de caractéres, NSCharacterSet, et trois
de ses méthodes :

B +decimalDigitCharacterSet construit I'ensemble de caractéres
formé des chiffres de 0 a 9.

B +characterSetWithCharactersInString: construit I'ensemble des ca-
racteres inclus dans la chaine de caracteres passée en parametre.

B -isSuperSetOf: retourne YES si 'ensemble passé en parameétre est
inclus dans I'ensemble récepteur.

La démarche pour vérifier que l'utilisateur saisit uniguement des

chiffres est la suivante :

1 Constituez un ensemble de caractéres composé des caractéres
saisis.

2 Constituez I'ensemble des caractéres numériques (chiffres).

3 Vérifiez que le premier ensemble est inclus dans le second.

On pourrait simplifier I'écriture de cette méthode de délégué en supposant
que l'utilisateur ne peut saisir qu’un caractere a la fois ; il suffirait de tester si
ce caractére est compris entre 0 et 9. Malheureusement, cette simplification
serait erronée car |'utilisateur peut coller un texte préalablement copié et
donc "saisir" plusieurs caractéres en une fois dans un champ de texte.

4. Motifs fondamentaux

.all Carrier = 9:18 PM [t | |.uil Carrier = 9:19 PM (=~

CONy v sl rveay v Convertisseur de Monnaie

Montant en dollars ' 56543 Montant en dollars i55654338765443

Montant en euros | 37927.96 Montant en euros | 3793704347238...

1]2]3]4]s]6]7]8]o]o
aaannona

1]2]3]e]s]e]7]s]o]0
aaannopee

~ HEE0E <

espace Terminé

Figure 4.3 : Saisie de plusieurs caracteres

4 Reconstruisez |I'application et testez-la sur le simulateur. Vérifiez
que vous ne pouvez plus saisir de lettres ni de signes de ponctua-
tion. Notre délégué fonctionne.

Délégué pour un champ de texte

Dans la section précédente, nous avons défini I'objet Convertisseurl
ViewController comme délégué du champ de texte contenant le mon-
tant en dollars, puis nous y avons ajouté une méthode. Nous allons
détailler ici toutes les méthodes que I'on pourrait écrire au besoin.

Méthodes du délégué

Son délégué est interrogé par un champ de texte lors des situations
suivantes pour savoir si :
m |'édition peut commencer ;

m |'édition peut se terminer, c’est I'occasion de vérifier la validité du
texte saisi par 'utilisateur et d’alerter ce dernier si le champ n’est
pas correctement saisi ;

m le texte peut étre modifié lors de chaque opération de saisie, c'est
cette situation que nous venons d’utiliser ;

m le texte peut étre effacé en début de saisie ;

4.1. Mécanisme de délégation | 105

106

m l'action consécutive a la frappe de la touche est autorisée.

Le délégué est également informé dans les situations suivantes ; cela
lui permet ainsi d’effectuer des actions complémentaires que ne
saurait pas faire le champ de texte :

m L’édition vient de commencer.
m L'édition vient de se terminer.

Le tableau ci-aprés résume les messages émis vers le délégué par le
champ de texte dans chacune de ces situations. Pour chaque mes-
sage, la déclaration précise de la méthode est indiquée.

Tableau 4.1: Méthodes du protocole UlTextFieldDelegate

Signature de la méthode Objet de la méthode

— (BOOL) textFieldShouldBegin Demande au délégué si I'édition du champ de
Editing: (UITextField *)textField |texte peut commencer.

— (void)textFieldDidBegin Informe le délégué que I'édition du champ de
Editing: (UITextField *)textField |texte vientde commencer.

— (BOOL) textFieldShouldEnd Demande au délégué si I'édition du champ de
Editing: (UITextField *)textField |texte peutse terminer.

— (void)textFieldDidEnd Informe le délégué que I'édition du champ de
Editing: (UITextField *)textField |texte vientde se terminer.

— (BOOL) textField: (UITextField *)|Demande au délégué sile texte peut étre
textField shouldChangeCharacter- | modifié.

sInRange: (NSRange) range replace-
mentString: (NSString *)string

— (BOOL) textFieldShouldClear: Demande au délégué si le contenu du champ
(UITextField *)textField de texte peut étre effacé.

— (BOOL) textFieldShouldReturn: Demande au délégué s'il faut utiliser le com-
(UITextField *)textField portement par défaut de la touche («) qui

vient d'étre frappée.

Toutes les méthodes prennent un parametre textrield. Le champ de
texte communique systématiquement une référence sur lui-méme a
son délégué. Cela permet a un objet d'étre le délégué de plusieurs
autres objets ; il sait qui lui transmet un message.

Méthodes optionnelles

Dans notre classe ConvertisseurlViewController, nous avons écrit
seulement I'une des 7 méthodes définies pour un délégué de champ
de texte. Voici une caractéristique intéressante du langage
Objective-C : dans de nombreux autres langages, nous aurions été
obligés d’écrire les 7 méthodes dont 6 qui ne faisaient rien.

4. Motifs fondamentaux

Comment fait le champ de texte pour savoir s’il peut ou non émettre
un message vers son délégué ?

EREQMAREUE Appel de méthode inexistante
L'appel d'une méthode inexistante sur un objet provoque généralement le
| plantage de I'application et la levée de I'exception EXC_BAD INSTRUCTION.

respondsToSelector

La classe Nsobject, de laquelle dérive directement ou indirectement
toutes les autres classes, définit une méthode respondsToSelector:
disponible pour tous les objets.

- (BOOL) respondsToSelector: (SEL)aSelector

Le type SEL est un sélecteur, c’est-a-dire un pointeur sur une mé-
thode. La primitive géselector d’Objective-C permet d'obtenir un sé-
lecteur a partir du nom complet d'une méthode (sans les types ni les
noms de parameétres). Ainsi le champ de texte peut interroger le
délégué pour savoir s'il répond a une méthode avant de lui trans-
mettre un message.

SEL aSelector = @selector(

textField:shouldChangeCharactersInRange:replacementString:) ;
if ([delegate respondsToSelector:aSelector])

Déclarer un protocole

Adopter un protocole

Souvenez-vous de la petite modification que nous avons effectuée
dans le fichier Convertisseur1ViewController.h :
@interface ConvertisseurlViewController

UIViewController <UITextFieldDelegate> {
L'ajout de <UITextFieldDelegate> permet de préciser que la classe que
nous déclarons adopte le protocole UITextFieldDelegate. Nous pou-
vons spécifier une liste de protocoles entre les crochets, en les
séparant par une virgule.

Protocole
Un protocole est une liste de déclarations de méthodes, certaines requises
d’autres optionnelles. Cette liste n’est pas attachée a priori a une classe
particuliére. Il appartient a la classe qui adopte un protocole de définir toutes
les méthodes requises et les méthodes optionnelles nécessaires.

=
DEFINITION

Les protocoles Objective-C sont équivalents aux interfaces Java.

4.1. Mécanisme de délégation | 107

Les frameworks de Cocoa Touch définissent un protocole pour cha-
que type de délégué. Par exemple, la classe UlTextField a besoin d’'un
objet délégué qui adopte le protocole UITextFieldDelegate.

Lorsque vous définissez un objet qui doit étre un délégué, n'oubliez
pas d’indiquer le protocole qu’il adopte.

Définir un protocole

Vous pouvez définir vos propres protocoles a I'aide des mots-clés
@protocol, @optional et @end :

@protocol nom-du-protocole

// Déclarations des méthodes requises
@optional

// Déclarations des méthodes optionnelles
@end

Par exemple, le protocole UITextFieldDelegate pourrait étre déclaré
comme suit :

@protocol UITextFieldDelegate
@optional
(BOOL) textFieldShouldBeginEditing: (UITextField*) textField;
(void) textFieldDidBeginEditing: (UITextField *)textField;
- (BOOL) textFieldShouldEndEditing: (UITextField *)textField;
(void) textFieldDidEndEditing: (UITextField *)textField;
(BOOL) textField: (UITextField *)textField
shouldChangeCharactersInRange: (NSRange) range
replacementString: (NSString *)string;
- (BOOL) textFieldShouldClear: (UITextField *)textField;
- (BOOL) textFieldShouldReturn: (UITextField *)textField;
@end

Lancement de l'application

108

Les autres délégués

Nous avons détaillé le protocole du délégué pour un champ de texte.
Les frameworks de Cocoa Touch proposent une quarantaine de pro-
tocoles de délégué ; tous portent un nom qui se termine par Delegate.

Il est important de bien comprendre le mécanisme de délégation. En
effet, ce sont des objets délégués que le programmeur Cocoa Touch
créera pour modifier le comportement des objets standard fournis
par Apple : vues, contréleurs, etc.

4. Motifs fondamentaux

Vous étes-vous apergu que nous avons utilisé un autre délégué ?
Celui de la classe UIrpplication. Nous allons examiner dans cette
section ce qui se passe lorsqu’on lance I'application. Pour cela, nous
ferons connaissance avec le protocole UIApplicationDelegate.

UlApplication

Regardez sous XCode le contenu du fichier main.m :

#import <UIKit/UIKit.h>
int main(int argc, char *argv[]) {
NSAutoreleasePool * pool =
[[NSAutoreleasePool alloc] init];
int retVal = UIApplicationMain(argc, argv, nil, nil);
[pool release];
return retvVal;

}

Vous n'aurez généralement pas a modifier ce code mais il est inté-

ressant de comprendre le réle de cette fonction. Sous un systéme de

la famille UNIX, tel que Linux, iPhone OS ou MacOSX, toute appli-

cation doit contenir une fonction main appelée lors de son lancement.

Cette fonction réalise les opérations suivantes :

m création d'un pool d'autolibération principal pour I"application
I"application (rappelez-vous qu’il sert a libérer les instances dont la
durée de vie est limitée a une boucle d'événements) ;

m appel de la fonction UlapplicationMain qui va effectuer tout le tra-
vail :
— création d'un objet de la classe UIApplication ;

— chargement du fichier MainWindow.xib dont I'objet Ulapplication
sera propriétaire ;

— création de la boucle d'événement ;

— lancement de la boucle d’événement tant que I'application n’a
pas été quittée ;

— fonction terminée lorsque 'application est quittée.

m libération du pool d'autolibération puisque l'application se ter-
mine ;
m Fin de 'application.

MainWindow.nib

Le fichier MainWindow.xib est donc chargé au lancement de |'appli-
cation. Jetons un coup d’'ceil dans ce fichier a I'aide d’Interface
Builder.

4.1. Mécanisme de délégation

109

@ Nom du fichier NIB principal
REMARQUE

110

Le nom du fichier NIB principal est la valeur de la propriété Main nib file
base name du fichier Info.plist de |'application. XCode le définit par défaut a
MainWindow, il est possible de le changer.

Le fichier NIB principal contient 5 objets :

Le propriétaire (File’s Owner) comme dans tout fichier NIB. Il est ici
de type UlApplication puisque il doit étre chargé par I'application.

Le premier répondeur (First Responder) également comme dans
tout fichier NIB. Cet objet représente la vue de l'interface en cours
d’édition par I'utilisateur. On utilise cet objet comme cible pour
des actions que I'on veut transmettre a cette vue.

Un objet Window de type UlWindow. Cet objet est la fenétre de
I"application dans laquelle toutes les vues seront affichées.
Convertisseur1 App Delegate, de type Convertisseur1AppDelegate,
que nous allons examiner.

Convertisseur1 View Controller de type ConvertisseurlView
Controller que nous connaissons déja car nous avons modifié cette
classe.

MainWindow.xib

@ File's Owner UlApplication

@ First Responder UlResponder

& | Convertisseurl App Delegate Convertisseur LAppDelegate
() Convertisseurl View Controller Convertisseur1ViewController
| Window Ulwindow

Figure 4.4 : Contenu de

155l | \ainWindow.nib

Toujours sous Interface Builder, examinez les connexions entre ces
différents objets (voir Figure 4.5).

Au chargement du fichier MainWindow.xib, les objets du fichier sont
créés et reliés entre eux en utilisant les outlets (voir Figure 4.6).

4. Motifs fondamentaux

¥ Outlets ¥ Outlets

(viewController (% Convertisseurl Vie... @) labelDollar O
(window (% Window [C] labelEuro o]
¥ Referencing Outlets searchDisplayController O
(delegate (% File's Owner ® view o]
New Referencing Outlet (e} ¥ Received Actions
changeValue O
¥ Referencing Qutlets
(viewController (% Convertisseurl Ap... (@)
A New Referencing Outlet ()
4
Figure 4.5: Connexions dans MainWindow.xib
UlApplication

delegate
A /

ConvertisseurlAppDelegate
viewController
window \

i J

\ \ @ B\

ConvertisseurlViewController

UIWindow labelDollar
labelEuro

changeValue

A

Figure 4.6 : Structure d'objets créée au chargement de MainWindow.xib

Le délégué de I'application est créé et lié a I'application a ce moment-
la.

Délégué d'application

Nous connaissons le controleur de vue ConvertisseurlViewController.

Faisons connaissance au délégué d’'application que XCode a créé
pour nous.

Regardez le contenu du fichier Convertisseur1AppDelegate.h :

#import <UIKit/UIKit.h>
@class ConvertisseurlViewController;
@interface ConvertisseurlAppDelegate : NSObject
<UIApplicationDelegate> {
UIWindow *window;
ConvertisseurlViewController *viewController;

4.1. Mécanisme de délégation

111

DEFINITION

112

}

@property (nonatomic, retain) IBOutlet UIWindow *window;

@property (nonatomic, retain) IBOutlet
ConvertisseurlViewController *viewController;

@end

Seule l'instruction @class est nouvelle. Nous savons déja interpréter
les autres lignes de code :

m Une classe ConvertisseurlAppDelegate est déclarée, qui hérite de
NSObject et adopte le protocole UTApplicationDelegate ; il s'agitd’un
délégué d’'application.

m Les outlets window et viewController sont déclarés ; ce sont ceux
utilisés dans le fichier MainWindow.xib pour relier cette classe aux
autres objets du fichier NIB.

@class
La clause @class permet d’identifier un nom comme étant celui d'une
classe. Ce nom pourra ensuite étre utilisé pour déclarer des objets de cette
classe.

On utilise @class nom—-de-la—-classe; lorsqu’on veut simplement déclarer
des objets de cette classe, sans les utiliser. On emploie #import
"nom-de—la—classe.h" lorsqu’on veut utiliser des objets de cette classe, leur
transmettre des messages.

Ou en sommes-nous dans le processus de lancement de |'applica-
tion ?
m Un pool d’autolibération a été créé.
m Un objet UlApplication a été créé et il est activé.
m Le fichier MainWindow.nib a été chargé et une structure d’objets a
été créée qui comprend :
— une fenétre (window) pour l'application ;
— un délégué (Convertisseur1AppDelegate) ;
— un contrdleur de vue (Convertisseur1ViewController).
L'application est sur le point de lancer la boucle d’événement. Aupa-

ravant, elle va informer son délégué que le lancement vient de se
terminer en émettant le message applicationDidFinishLaunching.

Examinons le code source du délégué d'application, fichier
Convertisseur1AppDelegate.m :

4. Motifs fondamentaux

#import "ConvertisseurlAppDelegate.h"
#import "ConvertisseurlViewController.h"
@implementation ConvertisseurlAppDelegate
@synthesize window;
@synthesize viewController;
- (void)applicationDidFinishLaunching: (UIApplication *)
application {
// Override point for customization after app launch
[window addSubview:viewController.view];
[window makeKeyAndVisible];
}
- (void)dealloc {
[viewController release];
[window release];
[super dealloc];
}
@end

Le délégué affiche la vue contr6lée par notre instance de
ConvertisseurlViewController puis la fenétre est affichée et activée sur
I’écran de I"'appareil. Qu’est-ce qui est affiché a I’écran précisément ?
Examinez le contréleur de vue dans le fichier MainWindow.xib sous
Interface Builder.

¥ Si d User Interface El

Simulated Interface Elements

Status Bar [Cray

Top Bar [MNone

& @ @

Bottom Bar [None

¥ View Controller

Title

Layout ["] Wants Full Screen

NIE Name | Conve nisseueriewContmIIerH

View ™ Resize View From NIB
Loaded From "ConvertisseurlViewController"

Figure 4.7 : Convertisseur1ViewController dans MainWindow.xib

4.1. Mécanisme de délégation

113

Le chargement du fichier NIB MainWindow.xib crée un objet
ConvertisseurlViewController associé au fichier NIB Convertisseur1
ViewController.xib. C'est |'utilisation de la propriété view du contro-
leur de vue qui provoque le chargement du fichier NIB associé.

Structurer une application

114

Ce principe peut étre étendu a la plupart des applications sur iPhone
0S:

m L’application charge un fichier NIB qui contient :

— une fenétre et éventuellement des vues ;
— généralement un délégué pour le propriétaire du fichier NIB ;
— un ou plusieurs contréleurs de vue.

m Chaque contréleur de vue possede lui-méme un fichier NIB qui
contient :

— une hiérarchie de vue a lI'intérieur de sa vue principale ;
— a son tour, un ou plusieurs contréleurs de vue ;
— éventuellement d’autres objets.

m Chaque contréleur peut également posséder un fichier NIB, etc.

Application I
[Délégué d'Application |__| MainWindow.xib |
[|
[otz |

e -
Controleurl.xib Controleur2.xib Controleur3.xib

Contréleurd

| Vued }.LIContréleuM.xib

Figure 4.8 : Structuration classique d'une application

4. Motifs fondamentaux

4.2. Améliorer Convertisseur1

Nous avons réussi a mettre en ceuvre le délégué pour limiter la
frappe aux seuls chiffres mais le résultat n‘est pas trés satisfaisant,
en tout cas loin d’'une application professionnelle :

m Il n'y a plus moyen de saisir des chiffres apres la virgule.

m Ce n'est méme pas une virgule, c’est un point qui s’affiche pour
séparer les centimes.

m Toujours pas moyen de se débarrasser du clavier qui reste béte-
ment affiché tout le temps.

m Le nom de I'application ne s’affiche pas en entier sous le logo.

m La moindre des choses serait de pouvoir faire les conversions
dans les deux sens.

Nous avons du pain sur la planche ; ne trainons pas.

Retrouver la virgule

Si nous voulons pouvoir saisir un point décimal ou une virgule, il faut
autoriser la frappe de I'un de ces caractéres dans le délégué du
champ de texte. Ce n’est pas si simple; on pourrait alors saisir
plusieurs virgules, ce qui n’est pas autorisé pour représenter un
nombre.

Il serait plus simple de vérifier au fur et a mesure de la saisie que la
chaine de caractéres obtenue est la représentation d'un nombre. Et
pour le vérifier, le plus simple est de convertir cette chaine en nom-
bre. Puisqu’il faut économiser les ressources précieuses de I'iPhone,
évitez d’effectuer cette conversion une fois dans la méthode du
délégué et juste aprés dans la méthode changevalue.

Nous allons créer un objet dont le réle sera d’effectuer cette vérifica-
tion, la conversion en nombre et la conversion en dollars.

Objet Convertisseur

1 Créez un nouveau fichier de type classe Objective-C sous XCode,
en sélectionnant la commande New File... du menu File (F6+N)).
Nommez-le Convertisseur.m et cochez la case Also create "Conver-
tisseur.h" (voir Figure 4.9).

4.2. Améliorer Convertisseur1 115

- FON &) New File

Choose a template for your new file:

\!] iPhone O5 L - - -

Cocoa Touch Class m_ h m m -l
Obj-C Proto Test uvc

User Interface

Resource Objective-C Objective-C Objective-C test UlViewControlle
Code Signing class protocol case class r subclass
ﬂ: Mac 05 X

Cocoa Class ' <

Cand C++ Subclass of | NSObject -.

User Interface
Resource

Interface Builder Kit m Objective-C class
Other L =
An Objective-C class file, with an optional header which includes the
<Foundation/Foundation.h> header. +
v
(Cancel) Previous Next
ek

|

Figure 4.9: Créer une classe Objective-C

2 Modifiez le fichier Convertisseur.h comme suit :

#import <Foundation/Foundation.h>

@interface Convertisseur : NSObject {
float euro;
float dollar;
float dollarsPourUnEuro;

}

@property (nonatomic,assign) float euro;

@property (nonatomic,assign) float dollar;

@property (nonatomic,assign) float dollarsPourUnEuro;
- (BOOL) setDollarWithString: (NSString *) string;
@end

Notre intention est que la méthode -setDollarlithString: retourne
YES si la chaine string représente un montant en dollars. Dans ce cas,
il est aussi converti en euros. Si ce n'est pas le cas, la méthode doit
retourner NO et les valeurs euro et dollar ne sont pas modifiées.

Il faudra aussi initialiser la propriété dollarsPourUnEuro quelque part ;
dans la méthode -init de la classe, c’est le plus simple.
3 Modifiez le fichier Convertisseur.m :

#import "Convertisseur.h"
@implementation Convertisseur

@synthesize euro;
@synthesize dollar;
@synthesize dollarsPourUnEuro;

116 | 4. Motifs fondamentaux

-(id) init {
if (self = [super init]) {
self.dollarsPourUnEuro = 1.4908;
}

return self;

}

- (BOOL) setDollarWithString: (NSString *)string {
float wvaleur;
BOOL result;
NSScanner *scan = [NSScanner
localizedScannerWithString:string];
[scan scanFloat:&valeur];
result = [scan isAtEnd];
if (result) self.dollar = valeur;
return result;

}

- (void) setDollar: (float)newValue {
dollar = newValue;
euro = newValue / dollarsPourUnEuro;

}

@end

Classe NSScanner

Nous rencontrons la classe NSScanner pour la premiere fois. C’est une
chaine de caracteres a laquelle on a ajouté un curseur (propriété
scanLocation) initialisé a 0 a la création d'une instance. Chaque fois
qu’une instance de NSScanner re¢oit un message de conversion (par
exemple —scanFloat:), le curseur progresse jusqu’au prochain carac-
tére qui ne peut participer a la conversion. Une conversion est
effectuée a partir de la position du curseur. Ainsi, la chaine passée en
parametre a la méthode -setDollarWithString: est un nombre si le

curseur est a la fin de la chaine apres la conversion.

Nous avons ici une petite particularité : les méthodes de conversion
telle que -scanFloat: retourne 2 valeurs :

m La valeur de retour est un BOOL qui indique si la conversion est
réussie (que nous n’utilisons pas ici).
m Une valeur convertie au format souhaité (float pour —scanFloat:).

Le parametre passé a -scanFloat: est s«valeur et pas simplement
valeur. Comme nous souhaitons récupérer une valeur dans la varia-
ble valeur, ce n'est pas sa valeur qu'il faut passer mais I'adresse de la
variable. Nous utilisons donc s, I'opérateur de référencement du
langage C.

4.2. Améliorer Convertisseur1

117

EE]

N Opérateur de référencement
L’adresse d'une variable s’obtient en utilisant I'opérateur & juste avant le
nom de la variable.

Déclarer une propriété Convertisseur

Nous avons créé une classe Convertisseur. Pour I'utiliser, il faut en
déclarer une instance dans un des objets de notre application. Le
plus logique est de la créer dans la classe Convertisseurl
ViewController, ¢'est la que nous en aurons besoin. Nous allons donc
ajouter une propriété dans notre contréleur de vue.

1 Modifiez le fichier Convertisseur1ViewController.h :

#import <UIKit/UIKit.h>
@class Convertisseur;

@interface ConvertisseurlViewController : UIViewController
<UITextFieldDelegate> {
IBOutlet UITextField *labelDollar;
IBOutlet UITextField *labelEuro;
Convertisseur *convertisseur;
}
@property (retain,nonatomic) UITextField *labelDollar;
@property (retain,nonatomic) UITextField *labelEuro;
@property (retain,nonatomic) Convertisseur *convertisseur;

- (IBAction) changeValue;

@end

2 Dans le fichier Convertisseur1ViewController.m, modifiez les mé-
thodes -viewDidLoad (enlevez les commentaires /* et */) et
-viewDidUnload :

// Implement viewDidLoad to do additional setup after
// loading the view, typically from a nib.
- (void)viewDidLoad {
[super viewDidLoad];

convertisseur = [[Convertisseur alloc] init];
}
- (void)viewDidUnload {

// Release any retained subviews of the main view.

// e.g. self.myOutlet = nil;

self.labelDollar = nil;

self.labelEuro = nil;

self.convertisseur = nil;

118 | 4. Motifs fondamentaux

3 N’oubliez pas d'ajouter #import "Convertisseur.h" en téte du fichier
et @synthesize convertisseur; avec les autres synthétiseurs de
propriété.

La méthode -viewDidLoad est invoquée a la fin du chargement du

fichier NIB du controleur de vue. C'est le bon endroit pour effectuer

les initialisations du contrbleur ; on est certain que toutes les vues
sont créées et que les outlets sont utilisables si besoin.

Modifier le délégué

Modifiez la méthode de délégué dans le fichier Convertisseur1
ViewController.m :
- (BOOL) textField: (UITextField *)textField
shouldChangeCharactersInRange: (NSRange) range
replacementString: (NSString *)string {
NSString *resultingString = [textField.text
stringByReplacingCharactersInRange:range
withString:string];
return [self.convertisseur
setDollarWithString:resultingString];
}
Nous constituons une chaine de caractéres resultingString dont la
valeur est celle qu’aura le champ de texte apres lui avoir appliqué la
modification demandée par |'utilisateur. Ensuite, nous utilisons notre
instance de Convertisseur pour vérifier que I'on peut effectuer la
conversion.

Modifier I’action

1 Modifiez la méthode changevalue dans le fichier Convertisseur1
ViewController.m. Cette méthode devient beaucoup plus simple
car le travail de conversion est maintenant effectué par la classe
Convertisseur :

- (IBAction) changeValue ({
NSString *textEuro = [NSString localizedStringWithFormat:

@Q"%.2f",self.convertisseur.euro];
labelEuro. text = textEuro;

ﬁ textEuro n'est plus libéré
L'instance textEuro n’étant plus créée par la méthode +alloc, nous sa-
vons qu’elle est dans le pool d'autolibération. Il ne faut donc pas la libérer
explicitement, sauf si nous la retenions, ce qui n’est pas le cas ici.

2 Reconstruisez et testez I'application.

4.2. Améliorer Convertisseur1 119

Localiser I'application

Localiser les montants

Vous avez remarqué deux des nouvelles méthodes que nous avons
utilisées :

B +localizedScannerWithString: de la classe NSScanner ;

B +localizedStringWithFormat: de la classe NSString.

u Chaine localisée

ne chaine de caracteres localisée est un texte dont le format précis
dépend des réglages régionaux de l'appareil. Les textes localisés concernent
les dates, les heures, les numéros de téléphone et les nombres a virgule. Le
séparateur décimal est une virgule en France et un point dans les pays
anglo-saxons.

Pour vérifier si la localisation des montants en euros et en dollars
fonctionne, nous allons modifier les réglages du simulateur d’'iPhone.

1 Lancez l'application Settings (ou Réglages si le simulateur est réglé
en francais).

-ail Carrier = 8:43 AM

- Jo

Figure 4.10 : Application Settings sur le simulateur

120 | 4. Motifs fondamentaux

2 Choisissez Général puis International. L’option Format
régional (Region Format) vous permet de changer le parametre
régional du simulateur. Vous pouvez en profiter aussi pour chan-
ger la langue de I'iPhone OS.

[-ulCarrier = 8:46 AM =| [ulOpér... = 08:48 =
General | International General | International
Language English > Langue Frangais »
Keyboards 2> Claviers 2>
Region Format United States » Format régional France »
Region Format Example Exemple de format pour cette région
Monday, January 5, 2009 lundi 5 janvier 2009
12:34 AM 00:34
(408) 555-1212 01 41 68 22 30

Figure 4.11: Localisation du simulateur

3 Testez l'application dans les formats régionaux France et
Etats-Unis pour vérifier que le séparateur des nombres décimaux
est une virgule ou un point suivant le cas.

il Opér... = §:53 AM =| |.ul Opér... = 08:54 =
Convertisseur de Monnaie Convertisseur de Monnaie
Montant en dollars | 45.76) | Montant en doliars 6308 |
Montant en euros W] Montant en euros W]

1]2]3]4]s]e]7]e]ofo] 1]2]a]4]s]e]7]8]o]0

Figure 4.12: Test pour les régions Ftats-Unis et France

4.2. Améliorer Convertisseur1

121

122

Localiser I'interface utilisateur

Nous venons de voir comment prendre en compte les parametres régio-
naux pour mettre en forme les nombres ; pensez aux méthodes conte-
nant le terme localized dans leur nom. Pour localiser vraiment I'ap-
plication, il faut aussi que l'interface utilisateur soit présentée dans
sa langue. Nous localiserons donc le fichier NIB de la vue principale.

1 Sous XCode, sélectionnez le fichier Convertisseur1View
Controller.xib et cliquez du bouton droit pour afficher le menu
contextuel. Sélectionnez la commande Get Info.

80O [m| ConvertisseurlViewController.m - Convertisseurl =
= S
Simulator - 3.1.3 | Debug ___~ B "E O ﬂ Q- string Marching
overvien Action Breakpoints Build and Debug Tasks Info search
Groups & Files I File Name a[< [Code o a ©
v [Convertisseurl B[] Convertisseurl-Info.plist [5]
» [Other Sources [togopng | Add s o
| Resources. [4] Mainwindow, Open With Finder o
¥ Frameworks Open As »
» (] Products — X =
v @ Targets <[» @€ Reveal in Finder [-changeValue ¢ S, (=]C.[#.| ® |a
o Convertisseurl I Reveal in Group Tree Cl
> (F Executables 7/ opl Open in Separate Editor |ew hierarchy progranmatically, without using a ni
v Find Results - {void Add to Bookmarks
& (24 Bookmarks Ly /
> scm f Get Info
@ Project Symbaols Rename
Fi i
» @l molementation Fles 77 mpt Touch Honal setup after loading the view, typically fro
» (& NIB Files ~tvold Untouch
[su
} Delete
*t
Group
i Compile
11 over her than the default portrait orientation.
- (sooL Preprocess Jrientation: (UITnterfaceOrientation) interface0rien
// Show Assembly Code intations 3
= Ullnterface0rientationPortrait):
A

Figure 4.13 : Afficher les informations relatives au fichier NIB

2 Dans la fenétre d’'informations qui s’affiche, cliquez sur le bouton
Make File Localizable.

General | Targets Comments

Name: | Convertisseur1ViewController.xib]

Path: ConvertisseurlViewControllerxib

Full Path: [Users/jpimbert/Documents/MesDocuments/Temporaire/Intro-iPhone /Applications/
Chapitre04/Convertisseurl/Convertisseur1ViewController.xib

Path Type: | Relative to Enclosing Group)

File Type: [file.xib 2]
™ Include in index

File Encoding: | No Explicit File Encoding

Line Endings: | No Explicit Line Ending

Tab Width: 4 Indent Width: 4
¥ Editor uses tabs
] Editor wraps lines

{ Reset to Text Editing Defaults)

(_Make File Localizable)) Add Localization

o Figure 4.14 : Créer une version localisée du
4 fichier NIB

B

4. Motifs fondamentaux

La fenétre change de titre car nous venons de créer un groupe

localisé.

3 Dans l'onglet General, cliquez sur le bouton Add Localization pour
créer une version francaise (French) en plus de la version anglaise

(English) existante.

© O Localized Group “Convertisseur1ViewController.xib” Info

[Geneml | Targets Comments -

Name: ConvertisseurlViewController.xib

Path: None

Type [Relative to Enclosing Group ‘-H

Localizations
English

(Add Localization) Remove All Localizations)

@

Comme notre version actuelle est en francais, la version francaise du

Figure 4.15: Le groupe localisé
contient une version francaise et une
4l version anglaise

fichier NIB est correcte et il faut modifier la version anglaise.

4 Fermez la fenétre d'information et sous XCode, double-cliquez sur
la version anglaise du fichier Convertisseur1ViewController.xib (En-
glish) pour I'ouvrir sous Interface Builder.

Interface Builder est muni d’un outil trés pratique pour réaliser les

traductions.

5 Activez la commande Strings du menu Tools. Une fenétre s’affiche
qui présente toutes les chaines de caracteres contenues dans le

fichier NIB.

6 Saisissez les traductions dans la colonne Value pour chacune des
chaines de caractéres: Currency Converter, US $ amount et Euros

amount.

4.2. Améliorer Convertisseur1

123

Library {3l
Inspector 13l

Attributes Inspector ®1
Connections Inspector #2
Size Inspector 83
Identity Inspector 84
Reveal in Document Window st
Reveal in Workspace Nl
Reveal in Classes B~
Select Parent ~ET
Select Child ~EL
Select Previous Sibling -
Select Next Sibling ~¥8—-
Select Next Object with Clipped Content 8K
Select Previous Object with Clipped Content {+3K

U —— Figure 4.16 : Menu Tools d'Interface Builder

Strings - All Open Documents

| Property

[Value

[_ Label (Currency Converter) Currency Converter Text
9 _ Label (US § amount) US $ amauat, Text
10 " Label (Euros amount) Euros amaunL. Text

Figure 4.17 : Traduction des chaines de caractéres du fichier NIB

71 Enregistrez le fichier NIB et revenez sous XCode. Avant de recons-
truire l'application, il faut nettoyer les constructions précédentes.
Autrement, la version non localisée du fichier NIB continuera a
étre installée et utilisée.

Sélectionnez la commande Clean All Targets du menu Build.

Dans la boite de dialogue qui s’affiche, cochez toutes les cases et
cliguez sur Clean.

Build Results 4+ ®B
_ Clean “Convertisseurl” Target
Build B i
x Cleaning will remove all derived products and files for the
Build and Analyze A “Convertisseurl” target and targets it depends on. Do you
Build and Archive really want to clean this target?

Build and Run B
Build and Run - Breakpoints Off #R
Build and Debug - Breakpoints On ~ RY

M Also Clean Dependencies
M Also Remove Precompiled Headers

Ciean oK
Clean All Targets
Next Build Warning or Error ®=
Previous Build Warning or Error B+
Compile 8K
Preprocess
Show Assembly Code
Touch

Figure 4.18 : Nettoyage des constructions précédentes

124 | 4. Motifs fondamentaux

10 Reconstruisez I'application et testez-la avec le simulateur
d’'iPhone. Essayez-la avec les parametres régionaux US, UK et
France et dans les langues anglaise et francaise.

.all Carrier = 8:13 AM (=

Currency Converter

US $ amount 53.7|
Euros amount 36.02

1]2]3]4]s]6]7]8]o]o
aaannono

espace Terminé

Figure 4.19 : Application localisée

@ Nettoyage (Clean)

REMARQUE . . , . .

Lorsque nous modifions la liste des ressources de l'application, il est

prudent de faire un nettoyage des constructions afin que les ressources
devenues inutiles ne perturbent pas le fonctionnement de I'application.

Utiliser le motif KVC

Il est regrettable que notre convertisseur ne fonctionne que dans un
sens, des dollars vers les euros. Remédions a cela. Nous aurons ainsi
I'opportunité d’aborder le puissant codage par valeur de clé (KVC, Key
Value Coding).

Adapter la classe Convertisseur

1 Ajoutez une méthode -setkEuro: dans le fichier Convertisseur.m
pour effectuer la conversion en dollars. Cette méthode est analo-
gue a —setDollar: :

4.2. Améliorer Convertisseur1 125

@ setEuro est déja déclaré par @property

REMARQUE

126

- (void) setEuro: (float)newValue ({
euro = newValue;
dollar = newValue * dollarsPourUnEuro;

Il n"est pas utile de déclarer —setEuro: dans l'interface de la classe car
euro est déja déclaré comme une propriété. Nous écrivons en fait un mani-
pulateur qui remplace celui créé par défaut par la clause @synthesize.

Il faudrait également ajouter une méthode -setEuroWithString: qui
serait analogue a -setDollarWithString:. Nous allons pluté6t modifier
la méthode existante pour qu’elle fonctionne dans les deux cas.
Souvenez-vous ; il faut essayer de factoriser le code pour qu’il soit
plus facile a maintenir.

2 Modifiez le fichier Convertisseur.h. Remplacez la déclaration de la
méthode -setDollarWithString: par la méthode suivante.

- (BOOL) setValueForKey: (NSString *)key WithString:
(NSString *) string;

Notre intention est d’utiliser le parametre key pour transmettre le
nom de la propriété a modifier, euro ou dollar.

3 Modifiez la méthode -setDollarWithString: dans le fichier Conver-
tisseur.m.

- (BOOL) setValueForKey: (NSString ¥*)key
WithString: (NSString *)string {
float wvaleur;
BOOL result;
NSScanner *scan = [NSScanner
localizedScannerWithString:string];
[scan scanFloat:&valeur];
result = [scan isAtEnd];
if (result) [self setValue: [NSNumber
numberWithFloat:valeur] forKey:key];
return result;

Key Value Coding

Objective-C et NSObject nous proposent d'accéder aux propriétés
d’un objet en donnant le nom de la propriété dans une chaine de
caracteres.

4. Motifs fondamentaux

Acces par méthodes Acces par clé

— (id) property — (id) valueForKey: @"property"
— (void) setProperty: (id) |- (void) setValue: (id)value forKey:
value @"property"

Les méthodes —valueForKey: et —setValue:forKey: appellent respecti-
vement I'accesseur et le manipulateur par défaut de la propriété dont
le nom est passé dans le paramétre key. |l est donc indispensable
d’utiliser la régle standard de dénomination pour que le KVC fonc-
tionne.

Les méthodes du KVC manipulent des valeurs de type id, ¢’est-a-dire
une référence a une instance d’objet. Lorsque les propriétés sont de
type scalaire (int, float, etc.), il faut les encapsuler dans un objet
NSNumber. Les méthodes du KVC réalisent les conversions appro-
priées entre les instances de NSNumber et les valeurs scalaires.

Modifier le délégué

Nous avons modifié la classe Convertisseur, il faut donc prendre en
compte ce changement dans la méthode de délégué de champ de
texte que nous avons écrite dans la classe Convertisseurl
ViewController. De plus, nous voulons maintenant réagir aux actions
de l'utilisateur dans le champ de texte contenant le montant en
euros.

Modifiez la méthode de délégué dans le fichier Convertisseur1
ViewController.m :

- (BOOL) textField: (UITextField *)textField
shouldChangeCharactersInRange: (NSRange) range
replacementString: (NSString *)string {
NSString *resultingString = [textField.text
stringByReplacingCharactersInRange:range
withString:string];
if (textField==labelDollar)
return [self.convertisseur setValueForKey:@"dollar"
withString:resultingString];
else
return [self.convertisseur setValueForKey:(@"euro"
withString:resultingString];
}

Nous utilisons ici le paramétre textField de la méthode délégué pour
identifier quel champ de texte a transmis le message.

4.2. Améliorer Convertisseur1

127

=

128

Fl

DEFINITION

Constante NSString
Nous utilisons ici la notation @".." qui permet de définir une constante
de type NSString, par exemple @"dollar". En Objective-C, on utilise beau-
coup plus souvent les constantes NSString que les chaines de caractéeres C et
la notation "..".

Modifier I’action

La méthode -changevalue doit également étre modifiée car les deux
champs de texte sont susceptibles de lI'invoquer. Nous emploierons
une autre variante du prototype d’action -(IBAction) action:
(id) sender. Le parameétre sender est I'objet qui a déclenché I'action.

1

Modifiez le fichier Convertisseur1ViewController.h pour utiliser ce
nouveau prototype d’action :

@interface ConvertisseurlViewController : UIViewController
<UITextFieldDelegate> ({
IBOutlet UITextField *labelDollar;
IBOutlet UITextField *labelEuro;
Convertisseur *convertisseur;
}
@property (retain,nonatomic) UITextField *labelDollar;
@property (retain,nonatomic) UITextField *labelEuro;
@property (retain,nonatomic) Convertisseur *convertisseur;
- (IBAction) changeValue: (id) sender;
@end

Modifiez le code de la méthode changevalue dans le fichier
Convertisseur1ViewController.m :

- (IBAction) changeValue:sender ({
NSString *textEuro;
if (sender==labelDollar) {
textEuro = [NSString localizedStringWithFormat:
@Q"%.2f",self.convertisseur.euro];
labelEuro. text = textEuro;
} else {
textEuro = [NSString localizedStringWithFormat:
@Q"%.2f" ,self.convertisseur.dollar];
labelDollar. text = textEuro;

}

Enregistrez les fichiers modifiés sous XCode. Vous pouvez égale-
ment reconstruire I'application pour vérifier que le code saisi est
correct.

4. Motifs fondamentaux

Etablir les connexions

Il faut maintenant établir les connexions dans le fichier NIB de la vue
principale.

ﬁ Fichiers NIB localisés

Il faut effectuer les mémes modifications dans toutes les versions locali-
sées d'un fichier NIB. Il est parfois plus facile de commencer par supprimer
les localisations puis effectuer les modifications dans une version unique
pour enfin recréer les versions localisées a partir du fichier NIB unique.

Citons aussi I'outil ibtool dont la description sort de cadre de cet ouvrage. Il
permet d’automatiser en partie la localisation des différentes modifications
d’un fichier NIB.

1 Ouvrez successivement chacune des versions localisées du fichier
Convertisseur1ViewController.xib sous Interface Builder pour éta-
blir les connexions des actions et des délégués. Par prudence,
puisque nous venons de modifier la classe Convertisseurl
ViewController, nous pouvons recharger les déclarations des clas-
ses utilisées sous Interface Builder.

Sélectionnez la commande Reload All Class Files du menu File.

Dans chacune des versions du fichier NIB, sélectionnez successi-
vement les deux champs de texte pour établir les connexions avec
le propriétaire du fichier :

— l'outlet delegate ;

— I’'événement Editing Changed sur l'action changevalue:.

4 Reconstruisez I'application et testez-la. La conversion fonctionne
dans les deux sens.

Autres améliorations

Nous terminerons cette nouvelle version de I'application Convertis-
seur1 par quelques améliorations simples.

Voir le nom entier

Le nom de l'application Convertisseurl est trop long; il ne
s'affiche pas entier sous son logo sur I'iPhone.

4.2. Améliorer Convertisseur1

129

130

Nous allons en changer pour un nom plus court, par exemple
ConvertPro.

1 Dans la zone Groups & Files, sous XCode, sélectionnez la cible
Convertisseur1 dans le groupe Targets, cliquez du bouton droit et
activez la commande Get info pour afficher les informations rela-
tives a I'application Convertisseur1.

Add »

Rename

Touch

Untouch

Delete

Duplicate

Upgrade Current Target for iPad...

Build "Convertisseurl”

Build "Convertisseurl” and Start
Build "Convertisseurl” and Debug
Clean “Convertisseurl”

Preferences

v

Figure 4.20 : Afficher les informations de I'application

2 Sélectionnez l'onglet Build de la fenétre d'information qui est
apparue. Saisissez name dans le champ de recherche pour limiter la
liste des parameétres affichés et recherchez le parameétre Product
Name.

8,00 Target "Convertisseurl” Info
9

{ General | Build | Rules Properties Comments |

Confi [Debug) Qs name
Show: | All Settings ‘:]
Setting Value
Install Owner Jpimbert
Installation Build Products Location Jtmp/Convertis.

¥ Kernel Module
Module Identifier
Module Start Routine
Module Stop Routine
¥ Linking

Display Mangled Names =]

Dynamic Library Install Name

Initialization Routine

Order File

Path to Link Map File build/ Convertis
¥ Baskafing

Product Name ConvertPro

sngs file QuipurEntoding binary

¥Search Paths
Sub-Directories to Exclude in Recursive Searches *.nib *.Iproj *.fr.
Sub-Directories to Include in Recursive Searches

¥Versioning v
Generated Versioning Source Filename ConvertPro_vers.c v

Based On: | Nothing 5 @

Figure 4.21 : Modifier le nom de |"application

3 Double-cliquez sur ce parameétre et saisissez le nom souhaité, par
exemple ConvertPro.

4. Motifs fondamentaux

4 Reconstruisez I'application pour vérifier que le nom s’affiche sous
le logo.

Effacer le clavier

Nous souhaitons que le clavier disparaisse lorsque |'utilisateur
presse la touche Terminé (Done en anglais) sur le clavier.

La frappe de cette touche provoque I'émission de |I'événement Did
End On Exit par le champ de texte. Il nous faut donc créer une
nouvelle action, appelons-la donekditing, dans Convertisseurl
ViewController.

1 Modifiez la classe ConvertisseurlViewController pour déclarer cette
nouvelle action puis liez I'événement Did End On Exit des deux
champs de texte a cette action. N'oubliez pas d’enregistrer le
fichier modifié sous XCode et de recharger les fichiers de classe

sous Interface Builder.

- (IBAction) changeValue: (id) sender;
- (IBAction) doneEditing: (id)sender;

@end
¥ Outlets ~
(delegate (% _File's Owner ®
¥ Events
((Did End On Exit)—[® File's Owner @]
doneEditing:
(Editing Changed ® File's Owner @]
| changeValue:
Editing Did Begin (1)
Editing Did End ey
Touch Cancel O
Touch Down Q
Touch Down Repeat @]
Touch Drag Enter O W
Touch Drag Exit (0]
Touch Drag Inside [
Touch Drag Outside QO ke
Touch Up Inside 2 . N
Ao o |v| Figure 4.22: Champs de texte connectés a la nouvelle
2l action

2 Saisissez le code de I'action. Reconstruisez I'application et testez-
la.

- (IBAction) doneEditing: (id)sender ({
[sender resignFirstResponder];

}
Nous arrivons maintenant a effacer le clavier.

4.2. Améliorer Convertisseur1

Figure 4.23 : Le clavier est escamotable

La méthode -resignFirstResponder est définie dans la classe
UTResponder. Cette classe gere la chaine des répondeurs.

Application

Fenétre

Contréleur
A

Vue

Figure 4.24: Chaine des répondeurs

La chaine des répondeurs est constituée par les vues, les controleurs
de vue, la fenétre d'application et I'application. Le premier répondeur-

132 | 4. Motifs fondamentaux

(First responder) est généralement la vue, ou le contréle puisque
UlControl hérite de UlView, actif a un moment donné.

Lorsque I'utilisateur touche le champ de texte dollar, ce dernier
devient le premier répondeur. L'application transmet les actions au
premier répondeur. C'est I'objet actif a un moment donné qui est le
mieux placé pour répondre a une action. Si le premier répondeur,
généralement une vue, ne sait pas traiter I’action, cette derniére est
transmise au répondeur suivant dans la chaine, etc.

La chaine de répondeurs remonte la hiérarchie des vues a partir du
premier répondeur. Une vue transmet une action a son contréleur (si
elle en posséde un) avant de la transmettre a sa supervue.

Si un champ de texte recoit le message -resignFirstResponder, il
devient inactif et le clavier disparait alors.

4.3. Motif MVC

Regardons la structure générale de l'application que nous avons
produite.

CONTROLEUR

Convertisseurl
ViewController

VUE / \ MODELE

| Champ Euro | | Champ Dollar |

Figure 4.25: Structure MVC de I'application Convertisseur1

Nous pouvons identifier trois parties distinctes :

m Le Modéle ; c’est I'ensemble des classes qui gérent les données de
I"application, on les appelle les objets métiers. Pour I'application
Convertisseurl, il est constitué de la seule classe Convertisseur.

m La Vue ; composée de la hiérarchie des vues et de la fenétre de
I"application.

m Les Contréleurs ; qui comportent les contréleurs de vue et I"appli-
cation.

4.3. Motif MVC | 133

Les contrbéleurs connaissent les parties Vue et Modéle; la classe
ConvertisseurlViewController connait les outlets labelDollar et labe-
IEuro (Vue), et la propriété Convertisseur (Modeéle). Il n'y a en revanche
aucune communication directe entre les vues et le modeéle.

Ce motif de conception est nommé Modeéle-Vue-Contréleur (MIVC,
Model-View-Controller). Il consiste a identifier le role de chaque classe
avec l'objectif de faciliter la réutilisation des objets (Vue et Modéle)
ainsi que les tests.

Les objets composant la Vue sont des briques utilisables telles quel-
les dans toutes les applications. Ces briques sont indépendantes des
objets métiers.

Veillez & ce que les classes métiers (celles du Modele) n’aient a
connaitre ni les vues, ni les contréleurs. C'est la garantie de pouvoir
les réutiliser dans d’autres applications.

4.4. Challenges

Nous avons suffisamment avancé maintenant pour que vous puis-
siez créer de petites applications simples.

Améliorer encore Convertisseur1

134

Notre application est déja d’un bon niveau mais il reste encore un
comportement qui peut étre désagréable pour I'utilisateur.
Lorsqu’on entre en mode Edition dans un champ de texte, son
contenu est effacé, le contenu des deux champs n’est plus le résultat
d’une conversion de I'un vers l'autre (voir Figure 4.26).

Il existe deux possibilités pour éviter ce petit probléme :

m éviter que les champs soient effacés en début de saisie ;

m effacer les deux champs lorsque la saisie débute dans I'un des
deux.

Votre premier challenge consiste a implémenter I'une de ces deux
solutions :

m La premiere solution nécessite seulement la modification du fi-
chier NIB sous Interface Builder.

m Pour la seconde solution, on utilise :

— soit la méthode de délégué - (void)textFieldDidBeginEditing:
(UITextField *)textField;

4. Motifs fondamentaux

il Opér... = 21:08 =]

Convertisseur de Monnaie
Montant en dollars 653
Montant en euros |

1]2]3]4]s]6]7]8]o]o
/]: D felafe

espace ol Figure 4.26 : Effacement du champ en début de
saisie

— soit le mécanisme cible-action avec |I'événement Editing Did
Begin.

@ Risque de plantage

REMARQUE e .
Il ne faut pas modifier un champ de texte par programmation pendant son
édition par I'utilisateur.

Explorer les contrdles simples

Nous connaissons les contréles de classe UILabel et UITextField.
Nous avons exploré les techniques fondamentales de programma-
tion Cocoa Touch : cible-action, délégation, gestion de la mémoire,
KVC et MVC. Vous en savez maintenant suffisamment pour utiliser
d’autres controles simples et développer votre propre application.

Autres controles simples

Les contrdles les plus simples sont regroupés dans la rubrique Inputs
& Values de la bibliotheque d'objets d’Interface Builder.

4.4, Challenges | 135

136

Indicateur d'activité

Barre de progression
Sélecteur

Bouton

Bascule

Ascenseur

Controle de pages

Figure 4.27 : Controles simples de Inputs & Values

On utilise ces contréles de la facon suivante :

m Label (Label) ; ce contréle statique affiche un texte. Le programme
peut modifier le texte affiché par la propriété text.

m Barre de progression (Progress View) ; ce contrble statique est une
barre de progression. Le programme doit modifier la propriété
progress (un nombre compris entre 0 et 1) pour visualiser la pro-
gression.

m Indicateur d’activité (Activity Indicator) ; ce contrble statique affiche
une roue qui tourne indiquant a l'utilisateur qu’une tache est en
cours. Le programme émet les messages startAnimating et
stopAnimating pour démarrer et arréter le mouvement tournant. La
propriété hidesWhenStopped doit prendre pour valeur YES si I'on
souhaite que l'indicateur soit masqué lorsqu’il n‘est pas actif.

m Sélecteur (Segmented Control) ; ce contrble est un bouton a plu-
sieurs valeurs possibles, |'utilisateur sélectionne I'une de ces va-
leurs. Le programme utilise la propriété numberOfSegments pour
connaitre le nombre de choix possibles, et la propriété
selectedSegmentIndex pour connaitre le choix actuellement sélec-
tionné (nombre entier a partir de 0). Les cibles-actions doivent étre
connectées sur I'événement Value Changed.

m Bouton (Round Rect Button) ; ce contrble est un bouton simple. Les
cibles-actions doivent étre connectées sur I'événement Touch Up
Inside.

m Bascule (Switch) ; ce contrble est un bouton a deux états. Le pro-
gramme utilise la propriété on pour connaitre I'état YES ou NO de la
bascule. Les cibles-actions doivent étre connectées sur I'événe-
ment Value Changed.

4. Motifs fondamentaux

m Ascenseur (Slider) ; ce contrOle est un ascenseur horizontal ou
vertical. Les valeurs min et max sont précisées sous Interface
Builder. Le programme utilise la propriété value pour connaitre la
position de I'ascenseur. Les cibles-actions doivent étre connectées
sur I'événement Value Changed.

m Champ de Texte (TextField) ; ce contréle est un champ de texte.
Nous I'avons abondamment expliqué. C’est le contrdle le moins
facile a utiliser de cette liste ; il émet plusieurs événements et il est
le seul a posséder un délégué.

m Contréle de pages (Page Control) : ce contréle permet a |'utilisateur
de visualiser le nombre de pages et le numéro de la page en cours.
Le programme indique le nombre de pages par la propriété
numberOfPages, il utilise la propriété currentPage pour connaitre le
numéro (a partir de 0) de la page visualisée. La propriété
hidesForSinglePage permet de masquer le contrdle s’il n'y a qu’une
page. Les cibles-actions doivent étre connectées sur |'événement
Value Changed.

Tous les contréles dynamiques héritent successivement de NSObject,
NSResponder, UIView et UIControl. Les contrbles statiques n’héritent

pas de UlControl ; un "contrdle statique" est une vue.

Le tableau résume les classes, les propriétés, les méthodes et les
événements actifs pour chaque contréle simple.

Tableau 4.2: Utilisation des contrdles simples

Nom du Classe d'objet | Propriétés Méthodes Evénements
contréle
Label UILabel text - -
Progress View |UIProgress |progress - -
View
Activity UIActivity [hidesWhen start -
Indicator Indicator Stopped Animating
View Stop
Animating
Segmented UISegmented |numberOf - Value Changed
Control Control Segments
selectedSegment
Index
Round Rect UIButton - - Touch Up Inside
Button
Switch UISwitch on - Value Changed
Slider UISlider value - Value Changed

4.4, Challenges

137

138

Tableau 4.2: Utilisation des contrdles simples

Nom du Classe d'objet | Propriétés Méthodes Evénements
controle
TextField UITextField |text Posséde un | Did End On Exit
délégué. Editing Changed
Editing Did Begin
Editing Did End
Page Control | UIPage numberOfPages |- Value Changed
Control currentPage
hidesForSingle
Page

Créez votre propre application

Limitez-vous a des applications sur une seule vue, nous verrons les
techniques qui permettent de développer des applications multivues

au chapitre suivant.

Si vous n'avez pas d’idée, vous pouvez essayer d'ajouter des ascen-
seurs a Convertisseur1. L'utilisateur pourra ainsi effectuer des conver-
sions trés rapidement, sans avoir besoin de saisir un nombre dans
un champ de texte. Pour que I'application soit pratique, il faut que les
trois autres contréles changent de valeur, quel que soit le moyen

utilisé pour indiquer un montant.

ull Opér... =

22:56

=

Montant en euros

Convertisseur de Monnaie

Montant en dollars 675
——

b

452,78

-

Trouver plus d’informations

Les frameworks Cocoa Touch sont trés riches. Nous n’avons pré-
senté que l'utilisation la plus courante des contréles simples. Nous

4. Motifs fondamentaux

Figure 4.28 : Convertisseur1 avec des ascenseurs

verrons d’autres techniques par la suite mais vous pouvez d'ores et
déja accéder a des informations plus détaillées dans I'abondante
documentation fournie par Apple sur le site des développeurs (http:
//developer.apple.com/).

800

Apple Developer Connection

Develop for Mac OS X Snow Leopard

Take advantage of new capabilities that will make your application faster, more responsive,
and able to take advantage of the latest Mac hardware. Leam more »

Mac Developer Program
Apple expertise. From concept to market.

iPhone Developer Program
The fastest path from code to customer.

The Mac Developer Program
offers a range of technical
resources and support for
developers and IT professionals
innovating with Mac 05 X.
Learn more »

>

Figure 4.29: Site des développeurs d'Apple

‘The iPhone Developer Program
provides a complete and
integrated process for
developing applications for
iPhone and iPod touch.

Learn more »

Mac Dev Center
Access a complete set of resources that will
take you through every level of the powerful
technologies in Mac 05 X.

Visit Mac Dev Center »

iPhone Dev Center
Find a wealth of technical resources and
information on developing innovative
applications for iPhone and iPod touch
Visit iPhone Dev Center »

RIS

Sélectionnez iPhone Dev Center. Saisissez votre identifiant et votre
mot de passe pour accéder aux ressources de développement
iPhone ; documentation, exemples, vidéos, etc.

iPhone Dev Center - Apple Developer

Google

Developer Technologies Resources Programs Support Member Center

iPhone Dev Center

Hi, Jean-Pierre IMBERT

My Profile

Log out

Developing for iPhone 0S 3.2 (@ Search Phone Refere iPhone Developer Program
Phone Pr Portal
Resources for iPhone 0S 3.2 Featured Content IPhone Provisioning Portal
Downloads Munes Connect
Downioad the latest builds of iPhone O, Phone
SDK and iTunes.

W What's new in iPhone O 32

W start Developing iPad Apps Apple Developer Forums

© o © o

Getting Started Videos Developer Support Center
Watch Apple experts discuss a range of
introductory concepts for Phone development. .

W Apple Push Notification Service Programming

Renew Your Program
I In App Purchase Programming Guide
il in op o . Your iPhane Developer Program will

expire in 59 days. Don't vt
Renew your membership now »

Getting Started Documents
Learn the fundamental concepts and best
practices for IPhone development.

W Getting Started with In App Purchase

W Game Kit Programming Guide
iPhone Reference Library
Select from a range of technical documentation
on iPhone development.

W cut, Copy and Paste

W External Accessory Framework Reference
Coding How-To's
Learn how to incorporate features of Phone in
your application.

B E O W «

W Map Kit Framework Reference

W Media Player Framework Reference
sample Code
Use these samples to inspire development of
great applications

>

W Core Data Tutorial for iPhone OS

®

Ry Aple Developer Forums

&) App Store Resource Center
Q Prepare for App Submission
@ o0 store Approval Process
/A Managing Apps on the App

st

J Marketing Resources

Figure 4.30: Centre de développement iPhone

4.4, Challenges | 139

@ Identifiant Apple

REMARQUE

Il est indispensable d’étre inscrit comme développeur Apple pour accéder
aux ressources du centre des développeurs. Vous avez déja un identifiant si
vous avez téléchargé le SDK iPhone, utilisez le méme.

L’obtention d'un identifiant, le téléchargement du SDK iPhone et I'acces aux
ressources du centre des développeurs sont gratuits.

4.5. Check-list

140

Nous connaissions déja le mécanisme Cible-Action. Dans ce chapi-
tre, nous avons continué notre découverte des motifs de conception
fondamentaux : Délégation, MVC et KVC. Nous savons créer nos
propres classes d'objets. Nous avons maintenant des bases solides
pour aborder les techniques plus complexes.

Nous avons vu comment structurer les fichiers NIB et les controleurs
de vue d'une application. Nous avons appris dans quelle partie du
code il faut introduire le comportement spécifique désiré : délégué
d’application, délégués et contrdleurs de vue.

Plus précisément, nous avons avancé dans notre connaissance des
frameworks Cocoa Touch :

m Nous connaissons les protocoles de délégué d’application et de
champ de texte.

m Nous avons utilisé les classes NSCharacterSet et NSScanner.

m Nous savons localiser les formats de nombre et les fichiers NIB.

m Nous connaissons la chaine de répondeurs et la classe
UIResponder.

m Nous savons utiliser tous les contréles simples de la bibliotheque
Inputs & Values.

Concernant le langage Objective C, nous savons maintenant :
m définir un protocole, avec les clauses @protocol et @optional ;
m utiliser la clause @class ;

m utiliser la méthode -respondsToSelector et la fonction SEL ;

m utiliser le type BoOL et les constantes NSString.

Nous avons découvert quelques commandes supplémentaires dans
les outils du SDK:

4. Motifs fondamentaux

nettoyer les cibles sous XCode aprés avoir supprimé ou restruc-
turé des ressources ;

m changer le nom de I'application sous XCode ;

m recharger les fichiers de classe sous Interface Builder pour prendre
en compte les modifications effectuées sous XCode ;

changer la langue et les parametres régionaux du simulateur
d’'iPhone pour tester nos applications internationales.

4.5. Check-list 141

APPLICATIONS
MULTIVUES

Application de type utilitaire
Application Convertisseur2 ...
Messages d'alertecvvevenenee
Barre d'ongletserivienennes
Barres de navigation
Checklist

143

Lo
w
o
=
o
<
T
o

Dans ce chapitre, nous créerons une version 2 de notre convertis-
seur, avant de délaisser momentanément les dollars et les euros
dans les chapitres suivants qui nous porteront vers d’autres types
d’applications.

Notre objectif est de comprendre le fonctionnement général des
applications multivues : celles dans lesquelles I'utilisateur peut chan-
ger de vue principale.

5.1. Application de type utilitaire

Le taux de change des devises varie tous les jours a midi (le fixing).
Si notre utilisateur est pointilleux sur les centimes ou s'il est trés
riche et veut convertir de grosses sommes, il voudra pouvoir modi-
fier le taux de conversion utilisé par notre convertisseur. Nous allons
donc lui proposer cette fonctionnalité.

il Opér... = all Opér... =

Changer le taux

Montant en dollars I
Montant en euros

Valeur en dollars d'un euro :

1,49080

Figure 5.1: Application Convertisseur2
Comprendre le fonctionnement d'un utilitaire

Créer le projet Convertisseur2

1 Ouvrez XCode et créez un nouveau projet. Nous choisirons le
modele Utility Application (Utilitaire). Laissez la case Use Core Data
for storage décochée. Nommez ce projet Convertisseur?2.

5.1. Application de type utilitaire | 145

anNeo New Project
Choose a template for your new project:
@ iPhone 05 - [+ -
T .
Libra
. Navigation- OpenGL ES Split View- Tab Bar
based Application based Application
x User Templates Application Application
MacFUSE |
By s * H
Application L - bt
: View-based Window-based .
Framework & Library Application Application Application +
Application Plug-in
System Plug-in Product iPhone e
Other (] Use Core Data for storage
|¢ Utility Application
This template provides a starting point for a utility application that has a main
view and a flipside view. It sets up an Info button to flip the main view to the
flipside, and a navigation bar with a Done item to flip back to the main view. ."
v
(Cancel)
W

Figure 5.2 : Créer un projet de type Utility Application

2 Ajoutez un logo et nommez l'application ConvertPro. Vous savez
comment faire maintenant. N'oubliez pas d’activer la case a co-
cher Copy items into destination group’s folder (if needed) pour que
le logo soit copié dans le dossier du projet.

3 Construisez et lancez I'application (#+(R)) pour voir ce que cela
donne.

il Opér... = 21:23

_ull Opér... &

Figure 5.3: Un utilitaire al'ceuvre

146 | 5. Applications multivues

\

ASTUCE

Notre application se comporte comme si la Vue était a double face :

m Au recto, un petit bouton est affiché en bas a droite. Si on le
touche, la vue semble se retourner.

m Au verso, une barre de titre est affichée en haut, avec un bouton
Done qui nous permet de revenir au recto.

Examinons le détail du fonctionnement de ce squelette d’application.

Structure de base d'un utilitaire

Regardons la liste des fichiers créés par XCode. Nous avons d’abord
des classes Objective-C :

m MainViewController ;
m FlipsideViewController ;
m Convertisseur2AppDelegate.

Puis les fichiers NIB (les autres fichiers sont les mémes que pour
ConvertisseurT) :

m MainWindow.xib ;
m MainView.xib ;

m FlipsideView.xib.

7

Le navigateur de Classes
Sous XCode, la commande Class Browser du menu Project ((Maj)+35+(C))
affiche une fenétre qui vous permet de visualiser la hiérarchie des classes, la
liste des méthodes de chaque classe et leur code source. Vous pouvez filtrer
les classes définies dans le projet ou voir I'ensemble des classes. On obtient
la documentation des classes des frameworks en cliquant sur I'icbne en
forme de livre a c6té du nom de la classe.

8o [h| FlipsideViewController.h: Convertisseur2 - Class Browser —
[Hierarchy, project classes ¢] o
Option Set Configure Options. Project
Class Member Kind
¥NSObject @ [E dealloc Instance Method m
Convertisseur2AppDelegate [delegate Instance Method
T UIResponder @ didReceiveMemoryWarning Instance Method
¥ UIviewController @ [E done Instance Method]
FlipsideViewController ¥ setDelenare Instance Methad

MainViewController s o= o 2

¥ Protocols/Interfaces <> [mFipsideVienControlierhi1d ¢ B @interfar 2 [= €2 721 8 [a
Prot: FlipsideViewControllerDelegate 17

/7 FlipsideViewController.h

/7 Convertisseur2

| 77 Created by Jean-Pierre IMBERT on 15/83/10.

| 77 copyright JPI-Conseil 201@. ALl rights reserved.
#import <UTKit/UIKit.hs
@protocol FlipsideViewControllerDelegate;

| @interface FlipsideViewController : UIViewController {

id <FlipsideViewControllerDelegate> delegate;
¥ a

Gnroneriy (nonatomic _accion) id <ElinsidetlisuCantrollech |
<

Figure 5.4 : Navigateur de classes

5.1. Application de type utilitaire

147

148

Fonctionnement de base d’'un utilitaire

Examinez le code source des classes créées par XCode et les fichiers
NIB sous Interface Builder pour identifier les liens. Représentons la
structure de I'application obtenue.

@ E : b
UlApplication
(B
legate— i (2 \
deleg Convertisseur2AppDelegate UIWindow
mainViewContr —
(e window
- _4 J

MainViewController

(= ?
__________________ FlipsideViewController
showlInfoe---
~ - delegate
MainView done
\
FlipsideView
e Y

Figure 5.5: Structure d'une application de type Utilitaire

Nous reconnaissons une structure d’application classique : I'applica-
tion a un délégué Convertisseur2AppDelegate qui possede une fenétre
et un contréleur de vue principal MainviewController. Ce dernier pos-
sede a son tour un fichier NIB MainView.xib.

La nouveauté avec ce type d'application, c’est un contréleur
FlipsideViewController qui posséde un fichier NIB FlipsideView.xib.
Nous verrons comment cela fonctionne mais auparavant, nous al-
lons nous pencher sur une autre petite différence.

Attacher un contréleur a un fichier NIB

Souvenez-vous comment étaient liés le contréleur de vue principal et
son fichier NIB ; dans le ficher NIB MainWindow.xib du délégué de
I"application (voir Figure 5.6).

Dans notre application Convertisseur2, une autre méthode est utili-
sée. Regardez la méthode -applicationDidFinishLaunching: du délé-
gué d'application, en particulier les lignes qui ne se trouvent pas
dans le code du délégué de 'application Convertisseur1 :

5. Applications multivues

))) 4 Convertisseurl View Controller ~ [l © © O Convertisseurl View Controller Attributes
=] = | 0o | ¢ | @

¥ Si User Interface El
Simulated Interface Elements
Status Bar [Gray FG-‘
Top Bar [None FH
Bottom Bar [None i-ﬂ

¥ View Controller
Title
Layout [wants Full Screen
NIB Name | CunverlissEuerieanmmHErﬂ

View ™ Resize View From NIE
Loaded From "ConvertisseurlViewController"
/a

Figure 5.6 : Contrdleur de vue dans le fichier NIB du délégué d'application

- (void)applicationDidFinishLaunching:
(UIApplication *)application {
MainViewController *aController =
[[MainViewController alloc]
initWithNibName:Q@"MainView" bundle:nil];
self .mainViewController = aController;
[aController release];
mainViewController.view. frame =
[UIScreen mainScreen] .applicationFrame;
[window addSubview: [mainViewController view]];
[window makeKeyAndVisible];
}

La méthode -initWithNibName:bundle: permet d’initialiser un contro-
leur de vue en donnant le nom d’un fichier NIB (sans I'extension .xib
ou .nib) et un paquet (Bundle) dans lequel se trouve ce fichier NIB.
Par défaut (nil), le fichier NIB est recherché dans le paquet de
I"application courante.

‘ Paquet(Bundle)
DEFINITION . : _

n paquet est un dossier contenant du code exécutable, des fichiers NIB et
des ressources diverses.

5.1. Application de type utilitaire | 149

Le cadre (frame) de la vue principale (mainViewController.view.frame)
est ensuite défini comme étant le cadre dédié a I'application sur
I'écran ([UIScreen mainScreen].applicationFrame). Par défaut, une
barre d'état est affichée en haut de I'écran, la zone restante est dédiée
a l'application.

Cadre (frame)

DEFINITION .

Le cadre d’'une vue est le rectangle dans lequel cette vue est affichée dans

la vue ou la fenétre qui la contient. L'origine et la taille du rectangle sont
exprimées en pixels relativement au cadre de la vue qui contient.

iﬁ Cadre dédié a I'application

L’écran a une taille de 480 x 320 pixels sur un iPhone et un iPod Touch, et
de 1024 x 768 pixels sur un iPad. La hauteur de la barre d'état est de
20 pixels. La zone dédiée a l'application est la totalité de I’'écran excepté la
barre d’état.

Il est recommandé d'utiliser la classe UIScreen plutét que d'écrire la taille de
la vue principale "en dur" dans son code. Cela facilitera I'adaptation de votre
application sur différents appareils, voire de futurs appareils dont la taille de
I’écran serait différente.

Nous venons de voir que I'on peut définir et initialiser un contréleur
de vue:

m soit dans un fichier NIB comme dans Convertisseur1 ;
m soit par programmation comme dans Convertisseur?2.

Cette alternative est toujours vraie : il n'y a rien que I'on puisse faire
dans un fichier NIB et que I'on ne puisse obtenir par programmation.

Les deux méthodes donnent le méme résultat. Le fichier NIB est sans
doute plus facile a réaliser pour le développeur ; quelques clics au
lieu de plusieurs lignes de code. La programmation est beaucoup
plus souple et plus puissante car elle permet d’adapter la vue et son
contréleur au contexte en cours, alors que la définition dans un
fichier NIB est faite a priori, avant I'exécution de I'application, elle est
donc figée.

Animer le changement de vue

[Z] Intéressons-nous maintenant a la fagon dont le changement de
vue s’effectue. Lorsque I'utilisateur touche le bouton de la vue prin-
cipale, le message showInfo est transmis au contréleur de vue.

150 ‘ 5. Applications multivues

- (IBAction)showInfo {

FlipsideViewController *controller =
[[FlipsideViewController alloc]
initWithNibName:@"FlipsideView" bundle:nil];

controller.delegate = self;

controller.modalTransitionStyle =
UIModalTransitionStyleFlipHorizontal;

[self presentModalViewController:controller

animated:YES];

[controller release];

}

Nous connaissons déja la méthode -initWithNibName:bundle: qui
nous permet ici de créer une instance de FlipsideViewController et de
I"attacher au fichier NIB FlipsideView.xib.

Ensuite, I'instance de contrbéleur de la vue principale est définie
comme déléguée du contréleur nouvellement créé. Cela servira pour
revenir a la vue principale, nous en examinerons le mécanisme plus
loin.

Le changement de vue est déclenché par le message -presentModal
ViewController:animated:. La propriété modalTransitionStyle d'un
contréleur de vue permet de spécifier le type d’animation souhaitée.
Testez I'application en utilisant successivement les 4 styles proposés
par Apple.

Tableau 5.1: Type énuméré UlModalTransitionStyle

Constante Signification

UIModalTransition Style par défaut, la vue modale recouvre la vue courante en

StyleCoverVertical glissant vers le haut.

UIModalTransition La vue modale s'affiche comme si elle était au verso de la

StyleFlipHorizontal vue courante.

UIModalTransition La vue courante se dissout lors de I'affichage de la vue mo-

StyleCrossDissolve dale.

UIModalTransition La vue courante est "relevée" et reste apparente sur un angle

StylePartialCurl de la vue modale. Disponible uniqguement a partir de la ver-
sion 3.2.

Testez également les différents types de boutons proposés dans
I'inspecteur des attributs (#6+1) sous Interface Builder.

[600 swonawibwes |
Fon ‘ Custom I
[T foundedtoct =il
Type ¥ Info Light D
Info Dark
Befesibl 1 Contact
Title i iffe
me T W Figure 5.7 Différents types de bouton sous
=l Interface Builder

5.1. Application de type utilitaire | 151

DEFINITION

152

Vue modale
Une vue est dite modale lorsqu’elle remplace temporairement une autre
vue. Cette autre vue sera a nouveau présentée a l'utilisateur lorsque la vue
modale disparaitra.

Une vue modale peut a son tour passer le contréle a une autre vue modale.

L'instruction [controller release]; mérite une petite explication
complémentaire. Il faut respecter la regle de gestion de la mémoire.
L'instance controller de la classe FlipsideViewController vient d'étre
créée avec +alloc, il faut donc s’occuper de sa libération. Mais si on la
libére tout de suite a la fin de la méthode showInfo, ne va-t-elle pas
étre détruite ? La vue Flipside va-t-elle s'afficher correctement ? En
fait, tout va fonctionner correctement car le message —presentModal
ViewController:animated: retient le parameétre controller dans la pro-
priété modalviewController du contrOleur de la vue principale. La
libération de l'instance controller ne va donc pas provoquer sa
destruction immeédiate.

Revenir a la vue principale

Examinons maintenant comment le contréleur de la vue modale
revient a la vue principale. Lorsque [l'utilisateur touche le bouton
Done le message -done est envoyé au propriétaire du fichier NIB ;
vérifiez la cible-ation du bouton en ouvrant FlipsideView.xib sous
InterfaceBuilder.

Le contréleur de vue propriétaire de ce fichier NIB (Flipside
ViewController) définit la méthode —-done.
- (IBAction)done {

[self.delegate flipsideViewControllerDidFinish:self];
}

Souvenez-vous, le délégué de FlipsideViewController est le contro-

leur de la vue principale ; il est affecté dans sa méthode —showInfo.

Regardez le code de la méthode -flipsideViewControllerDidFinish:

dans le fichier MainViewController.m :

- (void) flipsideViewControllerDidFinish:
(FlipsideViewController *)controller {

[self dismissModalViewControllerAnimated:YES];
}

Lorsque l'utilisateur touche le bouton Done pour refermer la vue
modale, le contréleur de la vue modale informe le contréleur de la
vue principale. Ce dernier doit désactiver la vue modale puisque
c’est lui qui I'a activée.

5. Applications multivues

Activer une vue modale

Résumons le principe de gestion des vues modales :

m La vue modale est définie dans un fichier NIB et attachée a un
contréleur de vue spécifique.

m L’activation de la vue modale est déclenchée par I'émission du
message —presentModalViewController:animated: sur le contrbleur
de la vue principale.

m Le retour a la vue principale est déclenché par I'émission du
message —dismissModalViewControllerAnimated: sur le contréleur de
la vue principale.

Utilisation de la délégation

Vous avez sans doute remarqué le mécanisme de délégation mis en
ceuvre :

m Un protocole FlipsideViewControllerDelegate est défini dans la
classe FlipsideViewController.

m Ce protocole déclare la méthode -flipsideViewControllerDid
Finish: (vérifiez dans le fichier FlipSideViewController.h).

m Le contréleur de la vue principale MainviewController adopte le
protocole FlipsideViewControllerDelegate

m Le contréleur de la vue principale se définit comme délégué du
controleur de la vue modale a la création de ce dernier.

m Lorsqu’il souhaite que la vue modale soit fermée, son contréleur
de vue émet le message défini dans le protocole vers son délégué.

m Lorsque le controleur de la vue principale regoit ce message, il
désactive la vue modale.

Ce fonctionnement relativement complexe pourrait étre remplacé
par le code suivant de la méthode -done de la classe Flipside
ViewController :
- (IBAction)done {
[self.parentViewController
dismissModalViewControllerAnimated:YES];

}

Le code sans utiliser la délégation serait donc plus simple. La délé-
gation est tout de méme une bonne pratique de programmation ; le
contréleur de vue principale déclenche la vue modale puis reprend le
contrble lorsque I'utilisateur souhaite revenir a la vue principale.
Celui qui déclenche une action en récupere le résultat.

5.1. Application de type utilitaire | 153

5.2. Application Convertisseur2

Composer la vue principale

Nous souhaitons que la vue principale de |'application Convertis-
seur2 soit analogue a celle de Convertisseur1. Nous allons donc
récupérer les éléments dans le fichier NIB.

154

1

Ouvrez simultanément les deux fichiers NIB sous Interface Buil-
der:
_ fichier Convertisseur1ViewController.xib du projet ConverisseurT ;

— fichier MainView.xib du projet Convertisseur2.

Dans le premier fichier, sélectionnez les éléments a récupérer
(utilisez la touche pour étendre la sélection) :

— le titre "Convertisseur de Monnaie";

_ les labels "Montant en dollars" et "Montant en euros";

— les deux champs de texte.

Copiez la sélection du premier fichier pour la coller dans le second
fichier. Modifiez les couleurs des labels pour améliorer la visibilité.
Vous pouvez également changer la couleur de fond de la vue
principale si vous préférez.

(@0 - Main View ~
= =]

Montant en dollars _
Montant en euros -

Figure 5.8 : Composition de la vue principale

4 Enregistrez le fichier MainView.xib et fermez le fichier

Convertisseur1ViewController.xib.

5. Applications multivues

Paramétrer le taux de conversion

Composition de la vue modale

1 Ouvrez le fichier FlipsideView.xib du projet Convertisseur2 sous
Interface Builder pour y ajouter un label et un champ de texte.

2 Modifiez le titre de la barre de navigation (en haut de la vue).

Changer le taux

Valeur en dollars d'un euro :

Figure 5.9 : Composition de la vue modale

Adapter la classe Convertisseur

Ajoutez les fichiers Convertisseur.h et Convertisseur.m du projet
Convertisseur1 au projet Convertisseur2. N'oubliez pas de copier ces
fichiers dans le dossier du projet ; nous allons les modifier.

La classe Convertisseur doit prendre en compte le fait que I'utilisateur
peut changer le taux de conversion a tout moment. La propriété
dollarsPourUnEuro est donc modifiable durant I'exécution de I'appli-
cation mais les propriétés dollar et euro ne seront plus le résultat
d’une conversion de I'une vers l'autre. |l faudrait recalculer I'une des
deux valeurs, ou plus simplement les annuler lorsque la propriété
dollarsPourUnEuro est modifiée.

5.2. Application Convertisseur2 | 155

Ajoutez la méthode -setDollarsPourUnEuro: dans le fichier Convertis-
seur.m:

- (void) setDollarsPourUnEuro: (float)newValue ({

if (dollarsPourUnEuro != newValue) {
dollarsPourUnEuro = newValue;
self.euro = 0.;

}

Remarquez I'emploi de l'instruction self.euro=0.;. Elle provoque
I’émission du message -setEuro: qui modifie simultanément les pro-
priétés euro et dollar.

On remet a zéro les propriétés euro et dollar uniquement si le nou-
veau taux de conversion est différent de I'ancien.

Factoriser le délégué de champ de texte

156

Dans l'application Convertisseur1, le contréleur de la vue principale
est aussi le délégué des champs de texte ; il est chargé de vérifier que
I'utilisateur ne saisit que des nombres.

Nous avons besoin du méme mécanisme pour vérifier que le taux de
conversion saisi par |'utilisateur est un nombre. Nous allons donc
créer un objet spécifique pour cette délégation, plutdt que de confier
cette mission aux deux contréleurs de vue.

Objet délégué réutilisable

Il nous faut un objet qui implémente le protocole UITextFieldDelegate
et définisse la méthode -textField:shouldChangeCharactersInRange:
replacementString:. Dans la classe ConvertisseurlViewController, cette
méthode était utilisée pour définir les valeurs en euros ou en dollars
suivant le cas. Notre nouvel objet délégué devant étre réutilisable
dans d’autres contextes, il n'est pas de sa responsabilité de modifier
des propriétés d'autres objets.

Appelons cette classe NumericFieldDelegate. Sa responsabilité sera de
vérifier que le champ de texte contient uniquement des nombres et
de retenir ce nombre pour éviter que la conversion soit réalisée
plusieurs fois.

1 Créez les fichiers NumericFieldDelegate.h et NumericFieldDelega-
te.m dans le projet Convertisseur2.

5. Applications multivues

2 Déclarez I'utilisation du protocole UITextFieldDelegate et la pro-
priété value dans l'interface de la classe :

#import <Foundation/Foundation.h>
@interface NumericFieldDelegate : NSObject
<UITextFieldDelegate> {
float value;

}
@property (nonatomic,assign) float wvalue;
@end

3 Modifiez le fichier NumericFieldDelegate.m :

#import "NumericFieldDelegate.h"
@implementation NumericFieldDelegate
@synthesize value;
- (BOOL) textField: (UITextField *)textField
shouldChangeCharactersInRange: (NSRange) range
replacementString: (NSString *)string ({
NSString *resultingString = [textField.text
stringByReplacingCharactersInRange:range
withString:string];
NSScanner *scan = [NSScanner
localizedScannerWithString:resultingString];
[scan scanFloat:é&value];
return [scan isAtEnd];

}
@end

Le travail de conversion d'une chaine de caractéres en valeur numé-
rique effectué dans la méthode -setvalueForKey:WithString: de la
classe Convertisseur est maintenant réalisé par la classe Numeric
FieldDelegate. Vous pouvez supprimer cette méthode de la classe
Convertisseur, elle ne nous servira plus.

Connecter le délégué dans le fichier NIB

Nous allons effectuer chaque connexion entre un champ de texte et
son délégué dans les fichiers NIB. Nous créerons méme les objets
délégués dans les fichiers NIB.

1 Ouvrez le fichier MainView.xib et faites glisser un objet de type
NSObject dans la fenétre du fichier NIB (attention : pas dans la
fenétre de la vue principale) (voir Figure 5.10).

2 Sélectionnez I'objet nouvellement créé et affichez I'inspecteur
d’identité (#£+(4) pour définir sa classe (NumericFieldDelegate) et
son nom (Dollar Field Delegate) (voir Figure 5.11).

5.2. Application Convertisseur2 | 157

[EXeX Gbrary ®

@' Classes Media
Controllers HH

Tab Bar Controller - A controller that

Table View Controller - A controller
that manages a table view.

Image Picker Controller - A controller
that manages views for choosing and
taking pictures.

Object - Provides a template for
objects and controllers not directly
available in Interface Builder.

External Object - Provides a
placeholder for an object that exists]
outside of the document.)

158

-
r Object
> NSObject
Provides a template for objects that are not
directly available in Interface Builder. You can

turn this object into an instance of any class
using the custom class inspector.

(%) (QFilter
Vi

Name

| Type
File's Owner MainViewController
@ First Responder UlIResponder
Main View MainView

manages a set of view controllers that >

represent tab bar items. P Object NSObject

 MainView.xib O

Figure 5.10: Créer un objet dans MainWindow.xib

¥ Class ldentity

B S
Class wericFieldDelegate _Ej

¥ Interface Builder Id
—
Name [Dnllar Field Delegate)]
g —

Object ID 43

Lock [Nothing (Inherited) FH
Label x 8
Notes] Show With Selection

Figure 5.11 : Définition du type d'objet

3 Connectez I'outlet delegate du champ de texte destiné a contenir la
valeur en dollars a I'objet Dollar Field Delegate. Utilisez I'inspecteur
de connexions (#£+(2) (voir Figure 5.12).

4 Procédez de méme avec les deux autres champs de texte de

I"application :

_ Euro Field Delegate dans MainView.xib ;

_ Rate Field Delegate dans FlipsideView.xib.

5 Enregistrez les deux fichiers NIB.

5. Applications multivues

¥ Outlets

(delegate (% Dollar Field Delegate (@)

¥ Events
Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Touch Cancel
Touch Down

Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag Outside
Touch Up Inside
Touch Up Outside
Value Changed

¥ Referencing Outlets
MNew Referancing Outlet

| |[O000O000oO0000000

Figure 5.12 : Connexion du champ de texte a son
2 délégué

Finaliser les contréleurs de vue
Controleur de la vue principale

Déclaration

Déclarez les outlets et les actions dans le fichier MainViewControl-
ler.h :

#import "FlipsideViewController.h"
#import "Convertisseur.h"
#import "NumericFieldDelegate.h"
@interface MainViewController : UIViewController
<FlipsideViewControllerDelegate> {
IBOutlet UITextField * dollarField;
IBOutlet NumericFieldDelegate * dollarFieldDelegate;
IBOutlet UITextField * euroField;
IBOutlet NumericFieldDelegate * euroFieldDelegate;
IBOutlet Convertisseur * convertisseur;
}
@property (nonatomic,retain) UITextField *dollarField;
@property (nonatomic,retain)
NumericFieldDelegate *dollarFieldDelegate;
@property (nonatomic,retain) UITextField *euroField;
@property (nonatomic,retain)
NumericFieldDelegate *euroFieldDelegate;

5.2. Application Convertisseur2 | 159

@property (nonatomic,retain) Convertisseur *convertisseur;
- (IBAction) changeValue: (id) sender;

- (IBAction) beginEditing: (id) sender;

- (IBAction) doneEditing: (id) sender;

- (IBAction)showInfo;

@end

Nous déclarons la propriété convertisseur comme un outlet. Cela
nous permettra d'établir la connexion sous Interface Builder plut6t
gu’en modifiant le code de la classe MainViewController.

ﬁ Propriété pour les délégués

Les délégués dollarFieldDelegate et euroFieldDelegate sont déja
connectés aux champs de texte correspondants par leur propriété delegate
mais cette propriété est définie avec I'attribut assign au lieu de retain. Pour
éviter les problemes de gestion de mémoire, il faut que ces délégués soient
définis comme des propriétés avec l'attribut retain dans un autre objet;
c’est la raison pour laquelle nous les définissons dans le contrdleur de la vue
principale.

Définition
1 Définissez les accesseurs de propriétés et les méthodes spécifi-
ques dans le fichier MainViewController.m :

@implementation MainViewController
@synthesize dollarField;
@synthesize dollarFieldDelegate;
@synthesize euroField;
@synthesize euroFieldDelegate;
@synthesize convertisseur;
- (IBAction) changeValue:sender ({
if (sender==dollarField) {
self.convertisseur.dollar = dollarFieldDelegate.value;
euroField.text = [NSString localizedStringWithFormat:
@Q"%.2f" ,self.convertisseur.euro];
} else {
self.convertisseur.euro = euroFieldDelegate.value;
dollarField.text = [NSString
localizedStringWithFormat:
@Q"%.2f",self.convertisseur.dollar];

}

(IBAction) beginEditing: (id)sender ({
if (sender==dollarField) {
euroField.text = @"";
} else {
dollarField.text = @"";
}

160 | 5. Applications multivues

- (IBAction) doneEditing: (id)sender ({
[sender resignFirstResponder];

}

2 Libérez les outlets du contrbéleur de vue :

- (void)viewDidUnload {
// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;
self.dollarField = nil;
self.dollarFieldDelegate = nil;
self.euroField = nil;
self.euroFieldDelegate = nil;
self.convertisseur = nil;

(void)dealloc {
[self viewDidUnload];
[super dealloc];

}

Connexions

1 Ouvrez le fichier MainView.xib sous Interface Builder. Ajoutez-y un
objet que vous définissez de type Convertisseur.

2 Etablissez les connexions du contréleur de la vue principale : champs
de texte, délégués de champ de texte, convertisseur et actions.

¥ Outlets

(convertisseur (% Convertisseur
searchDisplayCantroller o]
(view (% Main View [0]
¥ Received Actions

CbesnEgiing: ¥ Wuiioi

* Round Style Text Field

Editing Did Begin

e
Editing Did
% Round Style Text Field
Editing Changed
% Round Style Text Field

¥ s
% Round Style Text Field
Did End On Exit
* Round Style Text Field
Did End On Exit
% Light infa Button

Touch Up Inside

¥ Referencing Outlets

ek © | Figure 5.13: Connexions du contrdleur de la vue
principale

[

3 Construisez I'application et testez la vue principale. Vous devez
retrouver le comportement de Convertisseur1.

Il nous reste a faire fonctionner la modification du taux de conversion
dans la vue modale.

5.2. Application Convertisseur2 | 161

162

Controleur de la vue modale

Nous allons définir le contréleur de la vue modale FlipsideViewCon-
troller selon le méme principe que le contréleur de la vue principale :

m un outlet pour le champ de texte ;
m un outlet pour le délégué du champ de texte ;

B une propriété rate pour communiquer avec le contréleur de la vue
principale ;
m |'action -doneEditing:.

L'action -changevalue: ne sera pas utile pour ce contréleur; nous
n‘avons pas de mise a jour a faire sur la vue pendant I'édition.
L'action -beginEditing: sera inutile également.

Déclaration

Effectuez les déclarations dans le fichier FlipsideViewController.h :

@protocol FlipsideViewControllerDelegate;
#import "NumericFieldDelegate.h"
@interface FlipsideViewController : UIViewController ({
id <FlipsideViewControllerDelegate> delegate;
IBOutlet UITextField * rateField;
IBOutlet NumericFieldDelegate * rateFieldDelegate;
float rate;
}
@property (nonatomic, assign)
id <FlipsideViewControllerDelegate> delegate;
@property (nonatomic, retain) UITextField *rateField;
@property (nonatomic, retain)
NumericFieldDelegate *rateFieldDelegate;
@property (nonatomic, assign) float rate;
- (IBAction)doneEditing: (id) sender;
- (IBAction)done;
@end

@protocol FlipsideViewControllerDelegate

- (void) flipsideViewControllerDidFinish:
(FlipsideViewController *)controller;

@end

Définition

1 Modifiez le fichier FlipsideViewController.m pour définir les acces-
seurs et |'action :

@synthesize delegate;
@synthesize rateField;
@synthesize rateFieldDelegate;

5. Applications multivues

@synthesize rate;

- (IBAction) doneEditing: (id)sender ({
[sender resignFirstResponder];

}

Nous souhaitons que le champ de texte rateField soit initialisé avec
la valeur de la propriété rate lorsque la vue s’affiche.

2 Modifiez la méthode —viewbidLoad :

- (void)viewDidLoad {
[super viewDidLoad];
rateField.text = [NSString localizedStringWithFormat:

Q"%.5f",self.rate];
self.view.backgroundColor =

[UIColor viewFlipsideBackgroundColor];
}

Inversement, la propriété rate doit prendre la valeur du champ de
texte lorsque la vue est refermée par I'utilisateur.

3 Modifiez la méthode —done :

- (IBAction)done {
if (self.rateFieldDelegate.isModified) self.rate =
self.rateFieldDelegate.value;
[self.delegate flipsideViewControllerDidFinish:self];
}

Nous avons besoin de savoir si le contenu du champ de texte a été
modifié par l'utilisateur ; si ce n’est pas le cas, la propriété value du
délégué du champ de texte est nulle. Il faudra penser a définir une
propriété isModified dans notre classe NumericFieldDelegate.

4 Libérez les outlets du controleur de la vue modale :

- (void)viewDidUnload {
// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;
self.rateField = nil;
self.rateFieldDelegate = nil;

(void)dealloc {
[self viewDidLoad];
[super dealloc];

5.2. Application Convertisseur2

163

164

Propriété isModified

1 Ajoutez la propriété modified dans le fichier NumericFieldDelega-
te.h, en spécifiant qu’elle est en lecture seule et que son accesseur
est isModified:

@interface NumericFieldDelegate : NSObject
<UITextFieldDelegate> {
float value;
BOOL modified;
}

@property (nonatomic,assign) float value;
@property (nonatomic,readonly,getter=isModified)

BOOL modified;
@end

La propriété doit prendre la valeur N0 a la création de chaque instance
et la valeur YEs a chaque modification.

2 Ajoutez une méthode -init dans le fichier NumericFieldDelega-
te.m:
- (id) init {
if (self == [super init]) {
modified = NO ;
}

return self;

}

3 Modifiez la méthode -textField:shouldChangeCharactersInRange:
replacementString: dans le méme fichier :
NSString *resultingString = [textField.text
stringByReplacingCharactersInRange:range
withString:string];
NSScanner *scan = [NSScanner
localizedScannerWithString:resultingString];
[scan scanFloat:&value];
modified = YES;
return [scan isAtEnd];

Connexions

1 Ouvrez le fichier FlipsideView.xib sous Interface Builder.

2 Etablissez les connexions du contréleur de la vue modale : champ
de texte, délégués de champ de texte et actions (voir Figure 5.14).

3 Décochez la case Clear When Editing Begin dans les attributs du
champ de texte (#+(1)) afin d’empécher que le champ de texte ne
soit remis a zéro au début de I'édition (voir Figure 5.15).

5. Applications multivues

¥ OQutlets

delegate O
rateField }—{ % Round Style Text Field @
(ratefieldDelegate)—(% Rate Field Delegate @)
searchDisplayContraller O
(view (% Flipside View ®
¥ Received Actions
(done —{ % Bar Button Item (D... @

® Round Style Text Field (@)
Did End On Exit

¥ Referencing Outlets

New Referencing Outlet Q

Figure 5.14 : Connexions du contrdleur de la vue
2l modale

Text Input Traits

Correction
Keyboard Numbers & Punctuation | %
Appearance

] Auto-enable Return Key

¥ Text Field ru
Text

Placeholder

Background | H
Disabled | H
Alignment g‘; |]
Border (- - B8 I—(E—]
Clear Button | Never anneacs._ % b

Clear When Editing Begins
Font | T —tetvetiearire— |
Font Size W Adjust To Fit '].?—‘ @
Min Size

: Figure 5.15 : Décochez la case Clear When Editing
2l Begin

4 Construisez I'application

et testez la vue modale. Elle semble fonc-

tionner mais le taux de conversion saisi par I'utilisateur n'est pas
pris en compte dans la vue principale.

5.2. Application Convertisseur2

165

Communiquer entre les deux contrbleurs

Le contrbleur de la vue modale étant piloté par le contréleur de la vue
principale, il revient logiquement a ce dernier d'établir la communi-
cation :

m La propriété rate doit étre initialisée a la création du contréleur de
la vue modale.

m Lavaleur de cette propriété doit étre récupérée a la fermeture de la
vue modale.

Communiquer le taux de conversion

1 Modifiez la méthode -showInfo dans le fichier MainViewController.m
pour y initialiser la propriété rate :
- (IBAction)showInfo {

FlipsideViewController *controller =
[[FlipsideViewController alloc]
initWithNibName:@"FlipsideView" bundle:nil];

controller.delegate = self;

controller.rate = self.convertisseur.dollarsPourUnEuro;

controller.modalTransitionStyle =

UIModalTransitionStyleFlipHorizontal;

[self presentModalViewController:controller

animated:YES];

[controller release];

}

2 Modifiez également la méthode -flipsideViewControllerDid
Finish: :
- (void) flipsideViewControllerDidFinish:
(FlipsideViewController *)controller ({

self.convertisseur.dollarsPourUnEuro = controller.rate;
[self dismissModalViewControllerAnimated:YES];

}

3 Construisez et testez I'application Convertisseur2. Son fonctionne-
ment devrait étre satisfaisant.

Eviter le blocage du clavier

Peut-étre vous étes-vous apergcu que parfois, le clavier ne disparait
pas lorsque I'utilisateur touche le bouton Terminé (Done). Ce défaut
se manifeste lorsque le curseur de saisie n'apparait pas aprés le
dernier caractere dans le champ de texte actif.

166 | 5. Applications multivues

il Opér... = 22:37 [==]

Montant en dollars
Montant en euros [EXEiEeE

Alz]efr]T]v]u]ifofP
a|s|o|Ffafu]sfK|Lim
¢ DBE000 =

123 & espace Terminé

Figure 5.16 : blocage du clavier

On peut demander au champ de texte d’adopter le méme comporte-

ment quelle que soit la position du curseur. Vous savez déja com-

ment on peut modifier le comportement d’'un champ de texte ; il faut

agir sur son délégué. Ajoutez la meéthode -textFieldShould

Return: dans le fichier NumericFieldDelegate.m :

- (BOOL) textFieldShouldReturn: (UITextField *)textField{
return YES;

}

Lorsque cette méthode retourne la valeur YES, une pression sur la
touche Terminé et interprétée comme si le curseur était aprés le
dernier caractére.

Reconstruisez I'application et vérifiez que le défaut est corrigé.

Garder des montants cohérents

Lorsque le taux de conversion est modifié, il faudrait effacer le
contenu des champs de texte de la vue principale. Actuellement,
I'utilisateur voit deux montants qui sont le résultat de la conversion
en utilisant I'ancien taux. Le plus simple est d’afficher le contenu de
I'objet Convertisseur au retour de la fenétre modale ; nous savons
que ses propriétés sont toujours cohérentes.

5.2. Application Convertisseur2

167

Modifier le code

Modifiez la méthode -flipsideViewControllerDidFinish: dans le fi-
chier MainViewController.m :
- (void) flipsideViewControllerDidFinish:
(FlipsideViewController *)controller {
self.convertisseur.dollarsPourUnEuro = controller.rate;
euroField. text = [NSString localizedStringWithFormat:
Q"%.2f" ,self.convertisseur.euro];
dollarField. text = [NSString localizedStringWithFormat:
Q"%.2f" ,self.convertisseur.dollar];
[self dismissModalViewControllerAnimated:YES];
}

Factoriser

C’est la quatrieme fois que nous écrivons une instruction contenant
[NSString localizedStringWithFormat: @"%.2f",xxx]. Il est temps de
mettre en ceuvre la factorisation ; cela nous permettrait de modifier
seulement une ligne de code si nous souhaitons modifier le format
d’affichage par exemple.

Pour cette factorisation nous avons le choix, soit écrire une nouvelle
méthode, soit simplement une fonction Objective-C ou encore une
macro-instruction. Utilisons cette derniere possibilité. Définissez une
macro stringiithCurrency() au début du fichier MainViewControl-
lerm:

#import "MainViewController.h"

#define stringWithCurrency (currency)

[NSString localizedStringWithFormat: @"%.2f",currency]
@implementation MainViewController

Vous pouvez utiliser cette macro dans les méthodes —changevalue: et
—-flipsideViewControllerDidFinish:, par exemple : euroField.text =
stringWithCurrency (self.convertisseur.euro) ;.

Tester

Reconstruisez et testez I'application pour vérifier son comportement.
Effectivement les champs dollars et euros prennent la valeur 0.00
lorsque I'utilisateur modifie le taux de conversion, et uniquement
dans ce cas ; leur valeur est inchangée si I'utilisateur n'a pas édité le
taux de conversion.

5.3. Messages d'alerte

Rien n’interdit a 'utilisateur de Convertisseur2 de saisir un taux de
conversion négatif ou totalement anormal ; 123456, 54 par exemple.

168 ‘ 5. Applications multivues

Pour corriger ce léger défaut, nous pourrions enrichir la classe
NumericFieldDelegate de fagon a pouvoir en paramétrer le comporte-
ment, en fixant des bornes min et max, par exemple.

Une autre possibilité, celle que nous allons adopter, consiste a signa-
ler a l'utilisateur que le taux de conversion saisi est erroné.

Afficher une alerte

Nous souhaitons afficher une alerte si le taux de conversion est
erroné. Il faut donc définir une fonction qui en vérifie la validité.

Définir la validité du taux de conversion

Ajoutez une fonction verifyrRate dans le fichier FlipsideViewControl-
ler.m ; nous utilisons une fonction C cette fois, pour changer et
explorer une autre possibilité :

#import "FlipsideViewController.h"

BOOL verifyRate (float rate) {
return (rate >= 0.5) && (rate <= 2.);

}

@implementation FlipsideViewController

Un taux de conversion compris entre 0,5 et 2 est correct.

Nous avons créé cette fonction a I'extérieur de la définition de la
classe FlipsideViewController (avant la clause @implementation). Ainsi
nous n’avons pas besoin de la déclarer dans l'interface de la classe.
De ce fait, elle est inaccessible pour les autres objets ; nous avons
défini une fonction privée a la classe FlipsideViewController.

Tester la validité du taux saisi
Nous allons tester la validité du taux saisi par I'utilisateur :

m Lorsque l'utilisateur veut revenir a la vue principale, il doit rester
dans la fenétre modale tant que le taux est incorrect.

m Lorsque l'utilisateur touche le bouton Terminé pour effacer le cla-
vier ; si le taux est incorrect un message d’alerte est affiché et le
champ de texte doit rester en édition.

Modifiez la méthode -done dans le fichier FlipsideViewController.m :

- (IBAction)done {
if (!'(self.rateFieldDelegate.isModified &&
'verifyRate (self.rateFieldDelegate.value))) {
if (self.rateFieldDelegate.isModified) self.rate =
self.rateFieldDelegate.value;

5.3. Messages d’alerte | 169

[self.delegate flipsideViewControllerDidFinish:self];

}
Afficher une fenétre d’alerte

Modifiez la méthode -doneEditing: dans le fichier FlipsideViewCon-
troller.m :
- (IBAction) doneEditing: (id)sender {
if (self.rateFieldDelegate.isModified &&
'verifyRate (self.rateFieldDelegate.value)) ({
UIAlertView *alert = [[UIAlertView alloc]
initWithTitle:Q@"Taux incorrect" message:
@"Le taux de conversion doit étre compris entre 0,5 et 2"
delegate:nil
cancelButtonTitle:@"OK"
otherButtonTitles:nil];
[alert show];
[alert release];
[sender becomeFirstResponder];
} else {
[sender resignFirstResponder];

}
}

Remarquez I'émission du message -becomeFirstResponder sur le
champ de texte afin qu’il reste en mode Edition.

Nous faisons connaissance ici avec la classe UIRlertView et ses deux
méthodes principales :

B -initWithTitle:message:delegate:cancelButtonTitle:otherButton
Titles: :

— Le titre est une chaine de caracteres qui sera affichée en haut de
la fenétre d’alerte.

— Le message est une chaine de caractéres contenant des infor-
mations plus détaillées également affichées.

_ La possibilité est donnée d’affecter un délégué ; ici, c’est inutile
donc on met la valeur nil.

— Une chaine de caractéres contenant le titre du bouton principal.

— Il est possible aussi d'ajouter d'autres boutons, si besoin on
indique ici une liste de chaines séparées par une virgule et
terminée par nil.

m -show qui affiche la fenétre au milieu de I'alerte. Ensuite, I'instance
peut étre libérée et la fenétre sera détruite des que I'utilisateur
aura touché un bouton.

170 | 5. Applications multivues

Les principales méthodes et propriétés de la classe UTAlertView sont
résumeées dans le tableau ci-apres.

Tableau 5.2: Méthodes et propriétés principales de la classe UlAlertView

Type Titre Objet
Méthodes |- (id) initWithTitle: Crée une fenétre d'alerte avec un titre et
(NSString *)title message: |enfixantle délégué. La liste des autres
(NSString *)message boutons doit se terminer par nil.
delegate: (id) delegate
cancelButtonTitle: (NSString
*)cancelButtonTitle
otherButtonTitles:
(NSString *)otherButton
Titles,
— (NSString *) buttonTitle |Retourne le titre du bouton dontle nu-
AtIndex: (NSInteger)button méro d'indice est passé en parametre.
Index Les indices sont numérotés a partir de 0.
— (void) show Affiche le récepteur avec une animation.
Propriétés | @property (nonatomic, Retourne le nombre de boutons du ré-

readonly) NSInteger
numberOfButtons

cepteur.

@property (nonatomic)
NSInteger cancelButtonIndex

Indice du bouton principal. Ou -1 si
aucun bouton n’est défini.

Construisez 'application et testez-la. Un message d’alerte s’affiche
lorsque vous essayez de sortir du mode d’édition du taux de conver-
sion avec une valeur erronée.

Taux incorrect

Le taux de conversion doit étre

compris entre 0,5 et 2

oK

Figure 5.17 : Message d'alerte

5.3. Messages d’alerte

171

Feuilles d'action

172

Le fonctionnement que nous avons adopté pour I"application Conver-
tisseur2 interdit a I'utilisateur d’employer un taux de conversion jugé
erroné. Nous pourrions préférer un comportement plus souple:
signaler que le taux de conversion parait incorrect et laisser I'utilisa-
teur choisir de I'éditer a nouveau ou de I'utiliser tel quel.

Les feuilles d’action gérées par la classe UIActionSheet permettent

d’'implémenter ce mécanisme ; une alerte est affichée a I'écran avec

deux boutons ou plus:

® un bouton d’annulation (Cancel Button) permettant a |'utilisateur
d’annuler I'opération en cours ;

m un bouton d’action (Destructive Button) permettant a |'utilisateur
d’effectuer I'action.

Remarquez le nom anglais du bouton d’action (Destructive). Il évo-

que l'utilité des feuilles d'actions. L'utilisateur est prévenu que l'ac-

tion peut étre dangereuse. D'ailleurs, le bouton d’action est rouge

par défaut.

Le taux de conversion parait incorrect

Le taux est correct

Editer le taux a nouveau

Figure 5.18 : Feuille d"action

Les feuilles d’action s’utilisent de la méme fagon que les fenétres
d’alerte. Leur comportement differe sur les points suivants :

m Une feuille d’action s’affiche par-dessus une vue particuliére au
lieu de s'afficher au milieu de I'écran.

5. Applications multivues

m Elle est généralement activée par un contréleur de vue, par I'émis-
sion du message showInView:self.view.

m Une feuille d’action offre un titre mais pas de message détaillé.
m Par défaut, une feuille d’action propose une alternative a I'utilisa-
teur, c’est-a-dire deux boutons au lieu d'un.

Le tableau ci-apres résume les principales méthodes et propriétés de

la classe UIActionSheet.

Tableau 5.3: Méthodes et propriétés principales de la classe UlActionSheet

Type Titre Objet
Méthodes |- (id) initWithTitle: Crée une feuille d’action avec un titre en
(NSString *)title delegate: |précisantle délégué. La feuille présente
(id < UIActionSheet un bouton d'annulation et un bouton
Delegate >)delegate cancel |d‘action.La liste des autres boutons doit
ButtonTitle: (NSString *) se terminer par nil.
cancelButtonTitle
destructiveButtonTitle:
(NSString *)destructive
ButtonTitle otherButton
Titles: (NSString *)other
ButtonTitles,
— (NSString *) buttonTitle |Retourne le titre du bouton dontle nu-
AtIndex: (NSInteger)button méro d'indice est passé en parametre.
Index Les indices sont numérotés a partir de
0.
— (void)showInView: Affiche le récepteur avec une animation
(UIView *)view a partir de la vue passée en parametre.
Il est recommandé d'utiliser une vue
racine (vue principale dans une fenétre).
Propriétés | @property (nonatomic, Nombre de boutons du récepteur
readonly) NSInteger
numberOfButtons
@property (nonatomic) Indice du bouton d'annulation ou -1 s'il
NSInteger cancelButtonIndex |n'estpas défini
@property (nonatomic) Indice du bouton d'action ou -1 s'il
NSInteger destructive n'est pas défini
ButtonIndex

L’utilisateur pouvant toucher I'un ou I'autre bouton pour sortir de la
feuille daction, il faut que I"application puisse déterminer quel bou-
ton a été touché. Vous avez certainement déja deviné le mécanisme
mis en ceuvre : c'est encore la délégation.

173

5.3. Messages d’alerte

Délégué de feuille d'action

Le protocole de délégué pour la classe UIActionSheet est
UlActionSheetDelegate. Dans I'utilisation la plus courante, le contro-
leur de vue qui active une feuille d’action se définit comme son
délégué en passant sel1f comme parameétre delegate: lors de l'initia-
lisation de la feuille d"action.

Le délégué implémente généralement la méthode -actionSheet:
clickedButtonAtIndex: de la fagon suivante :
- (void)actionSheet: (UIActionSheet *) actionSheet
clickedButtonAtIndex: (NSInteger)buttonIndex {
if (buttonIndex == [actionSheet cancelButtonIndex]) {
// le bouton d’annulation a été touché

}
else if (buttonIndex ==
[actionSheet destructiveButtonIndex]) {
// le bouton d’action a été touché

}
Challenge

Modifiez I'application Convertisseur2 en utilisant une feuille d’action
a la place d’'une fenétre d’alerte. Ainsi, I'utilisateur pourra forcer un
taux de conversion qui nous parait anormal.

Délégué d'alerte

174

De la méme facon que Ila feuille d’'action, le protocole
UIAlertViewDelegate permet de définir des délégués pour les fenétres
d’alerte de la classe UTAlertView.

La principale méthode de ce délégué est -alertvView:clicked
ButtonAtIndex: qui se programme de la méme fagon que la méthode
équivalente du protocole UIActionSheetDelegate.

Dans son comportement par défaut, une fenétre d’alerte n'a pas
besoin de délégué puisqu’elle ne comporte qu’un bouton. Mais nous
pouvons créer une fenétre d’alerte avec plusieurs boutons et donc
un délégué. Inversement, il est possible de définir une feuille d’ac-
tion sans délégué avec un seul bouton.

En fait, les classes UlRlertView et UIActionSheet se programment
exactement de la méme facon, seule leur apparence visuelle differe.

5. Applications multivues

5.4. Barre d'onglets

Nous avons vu comment créer une application de type utilitaire qui
présente une vue principale et une vue secondaire (vue modale) a
I'utilisateur, et les mécanismes pour passer de |'une a 'autre.

Si nous voulons produire une application offrant trois vues ou plus,
la navigation par vue modale peut ne pas se révéler satisfaisante
pour l'utilisateur. La navigation par barre d’onglets est plus adaptée ;
I'utilisateur a toujours la possibilité d’accéder a n'importe quelle vue
en touchant l'onglet correspondant. Les copies d’écran montrent
notre application Convertisseur2 si elle avait été développée avec
une barre d'onglets.

il Opér... = 06:02 et | |.otl Opér... = 06:04 =

Changer le taux

Montant en dollars gEExRsl]

Montant en euros [ELLEEY

Valeur en dollars d'un euro :

1,49080

Taux de Conversion

Figure 5.19: Convertisseur2 avec une barre d'onglets

Créer une barre d’onglet
La barre d'onglets se situe en bas de |'écran, c’est un objet de la

classe UITabBar qui hérite de la classe UIView.

Figure 5.20 : Barre d'onglets comprenant
2 éléments

5.4. Barre d’onglets

175

176

On peut placer de 2 a 6 éléments sur une barre d'onglets ; il n’est pas
interdit d’en mettre plus, mais au-dela ils risquent de se chevaucher.
Chaque élément est un objet de la classe UITabBarItem affiché avec un
logo et un titre. Vous pouvez utiliser un des 12 éléments pour les-
quels le logo et le titre sont prédéfinis ou créer votre propre logo. Il
est également possible d’ajouter un badge contenant généralement
une valeur numérique sur un élément de barre d’onglets, mais on
peut y inscrire une chaine de caractére quelconque ; il est conseillé
d’en limiter la taille a deux ou trois caractéres.

Figure 5.21 : Eléments prédéfinis de barre
d'onglets, dont I'un avec un badge

Pour afficher un badge, il suffit d’affecter une chaine de caractéres a
la propriété badgevalue (de type Nsstring) de I'élément de barre d'on-
glets.

Les autres éléments sont définis dans I'un des fichiers NIB de I'ap-
plication ; nous allons détailler cela bient6t.

Pour créer une barre d'onglets, il suffit sous Interface Builder de faire
glisser un contréleur de barre d’onglets (Tab Bar Controller) dans la
fenétre du fichier NIB.

800n Library

[Objecls | Classes Media

| [@ Controllers HH

Navigation Controller - A controller
that manages navigation through a
T hierarchy of views.

Tab Bar Controller - A controller that
manages a set of view controllers that

S represent tab bar items.

Table View Controller - A controller
| ' that manages a table view.

&= Image Picker Controller - A controller
that manages views for choosing and
w—» taking pictures.
Object - Provides a template for
P 1 objects and controllers not directly .
available in Interface Builder. v

Tab Bar Controller
UlTabBarController

—

Manages a set of view controllers, each of which
represents a tab bar item. Each view controller
provides information about its tab bar item and
supplies the view to be displayed when the item
is selected.

Figure 5.22 : Contrdleur de barre d'onglets dans

#-) (QFile
labibliotheque d'Interface Builder

£

Une autre possibilité consiste a créer une application a barre d’on-
glets (Tab Bar Application) sous XCode. Dans ce cas, vous pouvez

5. Applications multivues

choisir le produit pour lequel I'application est développé : iPhone
(utilisable aussi sur iPod Touch et iPad) ou iPad.

.06 New Project

Choose a template for your new project:

| iPhone 05
B v -

Library

Navigation- OpenGL ES Split View-based Tab Bar
1 User Templates based Application Application Application
Application
MacFUSE

Split View-based Application

",J Mac 05 X P ; . }
Application =

Framework & Library Utility View-based Window-based
Application Plug-in Application Application Application
System Plug-in
Other

Product | iPhone -4

Tab Bar Application

This template provides a starting point for an application that uses a tab bar. It
provides a user interface configured with a tab bar controller, and a view
controller for the first tab bar itern.

(" Cancel) (Choose.,.)

Figure 5.23: Création d'une application a barre d'onglets

Utiliser un contrdleur de barre d’onglets

Le contréleur de barre d'onglets, instance de la classe
UITabBarController), prend en charge la navigation entre les onglets.
Son utilisation nécessite peu d’effort de la part du programmeur.

Deés que I'on ajoute un contréleur de barre d’onglets a un fichier NIB,
il est associé a:

m une barre d’onglets ; nous n"aurons généralement pas a nous en
occuper ;

m une liste de contréleurs de vue (UIViewController) qui contiennent
chacun:

— un élément de barre d’onglets ;

— éventuellement une vue, sauf si le contréleur de vue est associé
a un fichier NIB spécifique.

5.4. Barre d’onglets

177

178

@00 Untitled =)

Name | Type

File's Owner MNSObject
@ First Responder UlResponder
| Window UlWindow
¥ = Tab Bar Controller UlTabBarController
om Tab Bar UlTabBar
¥ () Selected View Controller (item 1) UlviewController
B4 Tab Bar item (item 1) UlTabBarltem
¥ () View Controller (Item 2) UlViewController . . B
{4 Tab Bar item (item 2) UlTabBaritem Flgure 5.24: AJOUt d'un
controleur de barre
d'onglets dans un fichier

I —— B

Les opérations le plus courantes pour définir une application par
onglets sont décrites ci-apres.

Ajouter un onglet

Pour ajouter un onglet sous Interface Builder, il suffit d'ajouter un
contréleur de vue dans le contréleur de barre d'onglets. Un élément
de barre d’onglets sera automatiquement ajouté au nouveau contré6-
leur de vue.

Adapter I'élément de barre d'onglet

L'inspecteur de I'élément de barre d’onglets, sous Interface Builder,
permet de définir son icone et son titre.

¥ Tab Bar Item

Badge

Identifier | ¥ Custom

¥ Bar ltem More

Favorites

|
|

Title

Image Top Rated
Recents
Tag Contacts
History
~ Bookmarks
Search
Downloads

Most Recent
Most Viewed

Figure 5.25 : Liste des éléments de barre
4 d'onglets prédéfinis

Vous pouvez également définir vos propres éléments de barre d’on-
glets en saisissant son titre et le nom du fichier a utiliser comme
icone. Ce fichier doit étre au format PNG et d'une taille de

5. Applications multivues

30 x 30 pixels. Seule la couche alpha (transparence) de I'image sera
utilisée lors de I'affichage.

Définir la vue de chaque onglet

Chaque onglet dispose de son propre contréleur de vue. Vous savez
déja comment utiliser un contréleur de vue :

m |l faut créer une nouvelle classe qui dérive de la classe
UIViewController pour y définir ses propres outlets et actions.

m |l faut associer une vue (UIview) a ce contréleur pour y ajouter les
controéles de l'interface utilisateur ; boutons, champs de texte, etc.
Cette vue peut étre associée.

— soit en faisant glisser un objet view dans le contréleur de vue ;

— soit en donnant le nom du fichier NIB qui décrit la Vue, dans
I'inspecteur du contréleur de vue sous Interface Builder.

m Pour finir, il faut établir les connexions entre les controles définis
dans la vue et les outlets et actions du contréleur de vue.

Les contréleurs de vue associés a un contréleur de barre d’onglets ne
dérogent pas a ce mode opératoire. Qu'un contréleur de vue appar-
tienne a un contréleur de barre d'onglets est presque transparent
pour l'utilisateur.

La propriété tabBarItem (de type UITabBarItem) contient I'élément de
barre d'onglets associé au controleur de vue. Elle est définie dans la
classe UIViewController et donc disponible dans toutes les classes
dérivées, par exemple pour y afficher un badge.

800 MainWindow.xib |

Name [Type

File's Owner UlApplication
@ First Responder UIResponder
¥ Convertisseur 2_1 App Delegate Convertisseur2_lAppDelegate
| Window Uwindow
¥ = Tab Bar Controller UlTabBarController
o Tab Bar UITabBar
W View UlView
Tab Bar Item (Canvertir) UlTabBaritem
¥ () Selected Flipside View Controller (Taux de Conversion) FlipsideViewController
P[] View Ulview
8 Tab Bar Item (Taux de Conversion) UlTabBarltem
& Dollar Field Delegate NumericFieldDelegate
& Euro Field Delegate NumericFieldDelegate
¥ Convertisseur Convertisseur - .
¥ Rate Field Delegate NumericFieldDelegate F_Igl_'lre 526 : Exemple de
fichier NIB contenant les

1 M, e pour tous les onglets

5.4. Barre d’onglets

179

Modifier la navigation par onglets

180

Insérer un contréleur de vue dans un contréleur de barre d'onglets
suffit pour le fonctionnement de la navigation entre les différents
onglets. Il n’est pas nécessaire de dériver la classe UITabBar
Controller, elle est utilisée telle quelle.

Si besoin, on peut en modifier le comportement en utilisant le délé-
gué de la classe UITabBarController. |l doit adopter le protocole
UITabBarControllerDelegate dont les méthodes principales sont don-
nées dans le tableau.

Tableau 5.4: Principales méthodes du protocole UlTabBarControllerDelegate

Signature de la méthode Objet de la méthode
— (BOOL) tabBarController: Demande au délégué si le controleur de vue
(UITabBarController *) peut étre activé.

tabBarController should
SelectViewController: (UIView
Controller *)viewController

— (void) tabBarController: Informe le délégué qu’un contréleur vient
(UITabBarController *)tabBar d'étre sélectionné. Ce peut étre le méme que
Controller didSelectView celui qui est déja sélectionné.
Controller: (UIViewController *)

viewController

Par exemple, dans une application Convertisseur2 basée sur une
barre d’onglets, nous pourrions utiliser la méthode -tabBar
Controller:shouldSelectViewController: afin de mettre a jour I'affi-
chage des champs de texte de la vue principale, lorsque |'utilisateur
a modifié le taux de conversion.
- (void) tabBarController: (UITabBarController *)
tabBarController didSelectViewController:
(UIViewController *)viewController {
if (viewController==self) {
dollarField.text =
stringWithCurrency (self.convertisseur.dollar);

euroField.text =
stringWithCurrency(self.convertisseur.euro) ;

}
Challenge

Inspirez-vous des éléments contenus dans cette section pour réécrire
I'application Convertisseur2 avec une barre d'onglets plutét qu’avec
une fenétre modale.

Le code de cette nouvelle version est plus simple ; les méthodes per-
mettant d'activer et d’'effacer la vue modale ne sont plus nécessaires.

5. Applications multivues

5.5.

Barres de navigation

Les barres de navigation (Navigation Bar) sont principalement utili-
sées pour parcourir une structure hiérarchique de données. L'appli-
cation Contacts en est un exemple :

La vue racine (Root View) contient la liste des groupes.

Lorsqu’on sélectionne un groupe, on accéde a une vue contenant
la liste des contacts de ce groupe.

Lorsqu’on sélectionne un contact, on affiche une vue contenant les
informations détaillées de ce contact.

Chacune de ces vues contient une barre de navigation, en haut de
I’écran, contenant le titre de la vue.

La barre de navigation de toutes les vues, sauf celle de la vue
racine, offre un bouton de retour (Back Button) qui permet de reve-
nir a la vue précédente ; la vue précédente et le bouton de retour
ont le méme titre.

La barre de navigation peut offrir un bouton supplémentaire a
droite.

[atl Opér... = 17:48 =] [l Opér... = 17:58 = [.ulOpér.. = 17:58 =
Groupes | Contacts (tous ¥ Contacts (tous) | INfOS Modifier
Contacts (tous) > | |(a) Kite Ball
A Producer
Friends > = Creative Consulting
John Appleseed
Work > e mobile 5555648583
Kate Bell principal 4155553695
N sonnerie Par défaut >
Anna Haro

Daniel Higgins Jr.

bureau kate-bell@mac.com

bureau www.creative-consulting-inc.com

David Taylor

7

L bureau 165 Davis Street
Hank M. Zakroff

Hillsborough CA 94010

#nEMs<clilboov0ozImlx - £8~mo Ol > 0

Figure 5.27 : Navigation dans I'application Contacts

4 Spécificité iPhone/iPod Touch

REMARQUE

L'application avec barre de navigation est spécifique a I'iPhone et a I'iPod
Touch du fait de leur écran de taille réduite. L’équivalent sur iPad est I'appli-
cation a vue fractionnée (Split View) détaillée dans le chapitre qui décrit les
spécificités de cet appareil.

5.5. Barres de navigation

181

Créer une barre de navigation

A l'instar de la barre d’onglets, pour créer une barre de navigation
sous Interface Buider, il faut faire glisser un contréleur de navigation-
(Navigation Controller) dans la fenétre du fichier NIB.

Le contrbéleur de navigation, instance de la classe UINavigation
Controller), prend en charge la navigation entre les vues. Son utili-
sation nécessite peu d’effort de la part du programmeur.

Des que I'on ajoute un contréleur de navigation a un fichier NIB, il est

associé a:

m une barre de navigation ; nous n‘aurons généralement pas a nous
en occuper ;

m une contrdleur de vue racine (UIViewController) qui contient un
élément de navigation.

MainWindow.xib

| Type
File's Owner UlApplication
@ First Responder UlResponder
& Nav App App Delegate NavAppAppDelegate
| Window Ulwindow
w & Navigation Controller UlNavigationController
%< Navigation Bar UlNavigationBar
¥ () Root View Controller RootViewController
4 Navigation Item UlNavigationlterm

Figure 5.28 : Controleur de navigation dans un fichier NIB

A la différence d’un contréleur de barre d’onglets, qui contient tous
les controleurs de vue accessibles a I'utilisateur, le contréleur de
navigation contient seulement le controleur de la vue racine. Les

autres vues devront étre ajoutées par programmation.

Utiliser une barre de navigation

182

La navigation par barre de navigation est adaptée pour présenter des
vues contenant des informations de plus en plus détaillées. A partir
d’une vue, on peut soit ajouter une vue contenant une information
plus détaillée, soit revenir a la vue précédente qui contient des
informations moins détaillées.

5. Applications multivues

On parle de pile de navigation pour désigner tous les contrdleurs de
vues gérés par le contréleur de navigation, ceux qui doivent étre
conserveés car |'utilisateur doit pouvoir y revenir.

Pile
DEFINITION N
Une pile est une collection dans laquelle seul le dernier objet ajouté est
accessible. On empile un objet pour I'ajouter a la collection, on le dépile pour
I’en retirer. Une pile d’objets fonctionne comme une pile d’assiettes.

La pile est initialisée avec le controleur de vue racine. Pour changer
de vue, il faut empiler un contréleur de vue dans la pile de navigation,
en envoyant un message -pushViewController:animated: au contro-
leur de navigation. Nous verrons un exemple de mise en ceuvre au
chapitre suivant.

Lorsqu’un contréleur de vue est empilé, la vue associée est affichée
avec une barre de navigation et un bouton de retour. Lorsque I'utili-
sateur touche le bouton de retour, le contréleur de vue est dépilé et le
contréleur de vue suivant dans la pile est affiché.

5.6. Checklist

Nous avons vu dans ce chapitre les principaux types d’applications
multivues :

m utilitaire, avec une vue principale et une vue modale ;
m application a barre d'onglets, avec le contréleur de barre d’'onglets
UITabBarController ;

m application a barre de navigation et le controleur de navigation
UINavigationController.

Nous avons détaillé le fonctionnement des vues modales et du
contréleur de barre d'onglets et réalisé une version 2 de notre
convertisseur permettant a I'utilisateur de modifier le taux de conver-
sion.

Nous mettrons en application le principe de fonctionnement du
contréleur de navigation aux chapitres suivants : nous créerons une
application pour naviguer dans une structure de données.

Nous avons également examiné le fonctionnement des alertes
(uinalertview) et des feuilles d’action (UIActionSheet).

5.6. Checklist | 183

CONTROLES
COMPLEXES

Utiliser un sélectionneur 187
Utiliser les conteneurs Cocoa 205
Utiliser les Vues en table 208
Checklist e .. 228

185

Dans ce chapitre, nous allons examiner le fonctionnement des
controles visuels qui dépendent d'un ensemble de données :

m vues en table, qui permettent de présenter une liste de données ;
m sélectionneurs, qui permettent a l'utilisateur de sélectionner une valeur.

Nous en profiterons pour apprendre a manipuler des dates ainsi que
les conteneurs utilisés en Objective-C : tableaux et dictionnaires.
Nous utiliserons ces éléments pour débuter I'application Emprunts1,
un aide-mémoire pour nous souvenir des objets que nous avons
prétés a nos amis, ce qui nous permettra aussi de mettre en ceuvre
les barres de navigation.

6.1. Utiliser un sélectionneur

Un sélectionneur (picker) est un contrdle visuel en forme de tambour ;
I'utilisateur le fait tourner pour choisir une valeur.

dim. 13 déc. Sunnyvale

10aay Cuperiiino

mar. 15 déc. Santa Clara

Figure 6.1: Exemples de sélectionneurs

Sélectionneur de date

Nous allons commencer par une mise en pratique du cas le plus
simple : le sélectionneur de date (date picker).

-ull Opér... = 20:32 =

2008-12-07 13:00:00 +0100

| Lire |

| Aujourd'hui |

dim. 13 déc.

1oday

mar. 15 déc.

Figure 6.2 : Mise en ceuvre du sélectionneur de date

6.1. Utiliser un sélectionneur 187

188

Exemple de mise en ceuvre

Créez un nouveau projet de type View-based Application sous XCode.
Appelez-le Pickerl.

Création de l'interface

Ouvrez le fichier Picker1ViewController.xib et composez |'interface
utilisateur avec :

® un Label;

m deux boutons dont vous changez le titre : Lire et Aujourd’hui ;

m un sélectionneur de date.

800 - Miew -

=

Label

‘ Lire |

| Aujourd'hui |

dim. 13 déc.

1ouay

mar. 15 déc.

2 Figure 6.3 : Composition de I'interface

Création du contréleur de vue

1

Modifiez le fichier Picker1ViewController.h :

#import <UIKit/UIKit.h>

@interface PickerlViewController : UIViewController {
IBOutlet UILabel * label;
IBOutlet UIDatePicker * datePicker ;

}

@property (nonatomic,assign) UILabel * label;

@property (nonatomic,assign) UIDatePicker * datePicker;

- (IBAction) readPicker ;

- (IBAction) setPicker ;

@end

Etablissez les connexions sous Interface Builder. L’action readPic-
ker doit étre connectée a I'événement Touch Up Inside du bouton

6. Controles complexes

Lire. L'action setPicker doit étre connectée a lI'événement Touch Up
Inside du bouton Aujourd’hui.

3 Ouvrez le fichier Picker1ViewControllerm, modifiez la méthode
-viewDidUnload et ajoutez les méthodes -readPicker et —setPicker :

@synthesize label;
@synthesize datePicker;
- (IBAction) readPicker {
label.text = [[datePicker date] description];

(IBAction) setPicker {
[datePicker setDate: [NSDate date] animated:YES]

’

(void) viewDidUnload {

// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;

self.label = nil;

self datePicker = nil;

}

4 Construisez 'application et testez-la sur le simulateur.

Nous détaillerons bientot les classes UlDatePicker et NSDate utilisées
dans cette application. Nous avons employé par ailleurs une mé-
thode -description. Cette méthode est définie dans la classe
NSObject ; elle est donc disponible dans toutes les classes et retourne
une chaine de caractéeres qui décrit le récepteur.

\
7

Décrivez vos instances

Pensez a définir la méthode —description dans les classes que vous
définissez, vous pourrez ainsi utiliser le descripteur %@ pour inclure vos
instances dans une chaine de caractéres.

ASTUCE

La classe UlDatePicker

Testez I'application Picker1 en essayant plusieurs configurations de
parametres sous Interface Builder.

¥ Date Picker

Mode Date & Time 9‘
Locale francais (France) 9‘
Interval 15 minutes 9‘

Date 14/12/2009 15:29 f:j

Constraints || Minimum Date
01/01/1970 12:00
[] Maximum Date
31/12/2037 12:00

Timer [o

Duratien (sec)

Figure 6.4 : Parametres d'un sélectionneur de date

6.1. Utiliser un sélectionneur | 189

190

Le paramétre mode permet de modifier la présentation visuelle du
sélectionneur en fonction de l'usage que lI'on veut en faire. Un
sélectionneur de date est un objet de la classe UIDatePicker. Ses
différents parameétres peuvent étre définis sous Interface Builder ou
par programmation a l'aide des propriétés des instances de la classe.

Tableau 6.1 : Présentations visuelles du sélectionneur de date

Présentation Mode sous Interface | Propriété datePickerMode
Builder

i Date&Time UIDatePickerModeDate

sam. 12 dec. | 1515 AndTime
15415 Time UIDatePickerModeTime
) Date UIDatePickerModeDate

12 | aecenioie | zuus
. Timer UIDatePickerModeCount
1 hour 30 mins DownTimer

Tableau 6.2: Principales propriétés de la classe UlDatePicker

Theme

Propriéte

Objet de la propriété

Date et calendrier

@property (nonatomic,

Date affichée ou 0 si le sélectionneur est

retain) NSDate *date |enmode Timer.

Mode @property (nonatomic) | Mode d'affichage du sélectionneur.
UIDatePickerMode
datePickerMode

Attributs temporels | @property (nonatomic, |Date maximale affichée ounil s'iin'ya
retain) NSDate pas de maximum.
*maximumDate

@property (nonatomic,
retain) NSDate
*minimumDate

Date minimale affichée ounil s'iin'ya
pas de minimum.

@property (nonatomic)
NSInteger
minuteInterval

Intervalle minimum affiché, en minutes. Doit
étre un diviseur de 60. Valeur minimum
1 (par défaut) et valeur maximum 30.

@property (nonatomic)
NSTimeInterval
countDownDuration

Durée affichée comprise entre 0 et
23h59, ou 0 lorsque le sélectionneur
n‘est pas en mode Timer.

La classe UIDatepicker définit également une méthode -setDate:
animated: qui permet de changer la date affichée avec une animation.
Pour changer la valeur affichée, on peut aussi modifier la propriété
date. Dans ce cas, il n'y a pas d’animation. Essayez ces deux procé-
dés dans la méthode -setPicker de l'application Picker1.

6. Controles complexes

Vous pouvez également connecter I'action —datePicker du controleur
de vue Picker1ViewController a I'événement Value Changed du sélec-
tionneur de date ; le texte du label évoluera dés que l'utilisateur
changera la valeur affichée.

: éi NSTimelnterval

REMARQUE

La propriété countDownDuration de la classe UIDatePicker est de type
NSTimeInterval, équivalent au type double. |l représente un intervalle de
temps exprimé en secondes.

Gestion des dates

La gestion des dates est un réel défi sur un appareil destiné a étre
utilisé dans le monde entier, qui doit donc prendre en compte les
différentes facons de représenter les dates et les différents calen-
driers. Le systéeme mis en place par Apple permet de simplifier la
tadche des développeurs qui souhaitent la plus large diffusion de
leurs applications. Elle pourra vous paraitre un peu complexe si vos
ambitions sont plus limitées.

Le mot date désigne simplement un instant précis mesuré a partir
d'une référence absolue. Un calendrier est une structuration du
temps en jour-mois-année. Un instant donné est toujours représenté
par la méme date, indépendante de la localisation, alors que le
calendrier dépend de la culture et du lieu géographique. Outre le
calendrier grégorien utilisé en occident, iPhone OS propose les ca-
lendriers hébreu, islamique, chinois, bouddhiste et japonais.

Pour exprimer un instant en jour-mois-année, il faut la combinaison d'un
instant (la date) et d'un calendrier. On obtient alors les composants
d’une date (le jour, le mois et I'année) dans un calendrier donné.
Concentrons-nous sur les classes les plus utilisées :

B NSDate qui représente une date ;
B NSDateFormatter qui permet d’effectuer les conversions entre
chaine de caracteres et date.

@ NS etUI

REMARQUE

Le nom de chaque classe commence par deux caractéres majuscules qui
identifient le framework dans lequel la classe est définie. Par exemple Ul pour
UIKit et NS pour NextStep. Ce systéme est un ancétre de Mac OS X. Les
classes NS que nous utilisons sont communes aux environnements iPhone
OS et Mac OS X. Le framework UIKit est disponible uniquement dans I'envi-
ronnement iPhone OS.

6.1. Utiliser un sélectionneur 191

La classe NSDate

Les dates, ou instants particuliers, sont représentées par des instan-
ces de la classe NSDate dont les principales méthodes sont résumées
dans le tableau. Elles permettent de réaliser I'arithmétique de base
sur les dates :

m comparer deux dates ;
m calculer la durée espacant deux dates ;
m définir une nouvelle date en ajoutant une durée a une date.

Bien entendu, les durées peuvent étre positives ou négatives. Elles
sont du type NSTimeInterval qui n‘est rien d’autre qu’un double expri-
mant une durée en secondes.

Tableau 6.3: Principales méthodes de la classe NSDate

Theme Méthode Objet de la méthode

Création + (id)date Méthode de classe qui retourne une ins-

et initialisation tance initialisée a l'instant présent
- (id)init Initialise le récepteur a l'instant présent.
+ (id) dateWithTime Méthode de classe qui retourne une ins-
IntervalSinceNow: tance initialisée a un nombre donné de
(NSTimeInterval) seconds | secondes a partir de I'instant présent
— (id) initWithTime Initialise e récepteur @ un nombre donné
IntervalSinceNow: de secondes a partir de I'instant présent.
(NSTimeInterval) seconds

Comparaisons |- (NSDate *) earlier Retourne la date la plus précoce entre le
Date: (NSDate *) récepteur et la date donnée en paramétre.
anotherDate

— (NSDate *) laterDate:|Retourne la date la plus tardive entre le
(NSDhate *)anotherDate |récepteur etla date donnée en parametre.

— (NSComparisonResult) |Compare le récepteur ala date donnée en
compare: (NSDate *) parametre. Retourne NSOrderedSame
anotherDate lorsque les dates sont identiques,
NSOrderedDescending lorsque le
récepteur est plus tardif que la date don-
née en parameétre, et
NSOrderedAscending si elle est plus

précoce.
Obtenir des — (NSTimeInterval) Retourne la durée entre le récepteur et la
durées timeIntervalSinceDate: |date passée en paramétre.
(NSDate *)anotherDate
— (NSTimeInterval) Retourne la durée entre le récepteur et
timeIntervalSinceNow I'instant présent.
Ajouterune |- (id) addTimeInterval: |Crée une nouvelle date initialisée a un
durée (NSTimeInterval) seconds |nombre donné de secondes a partir du
récepteur.

192 | 6. Contréles complexes

La classe NSDateFormatter

La classe NSDateFormatter permet de convertir une chaine de caracte-
res en une date et vice-versa. Chaque instance de cette classe
contient un calendrier, un fuseau horaire et une localisation qui sont
par défaut ceux réglés dans I'appareil. Le format de conversion doit
étre spécifié par la méthode -setDateFormat:. On utilise ensuite I'une
des deux méthodes -dateFromString: et -stringFromDate: pour effec-
tuer les conversions.

1 Modifiez la méthode readpicker de la classe PickerlviewController

dans l'application Picker1 :

- (IBAction)

readPicker {

formatter = [[NSDateFormatter alloc] init];
[formatter setDateFormat:Q@"EEEE dd MMMM HH:mm"];
label. text=[formatter stringFromDate:[datePicker date]];

[formatter release];

}

2 Testez I'application sur le simulateur d'iPhone. Changez la locali-
sation (Réglages->Général->International->Format régional) et véri-
fiez que le texte affiché et le sélectionneur de date répercutent la
localisation par défaut de I'appareil.

il Opér...

E—J

14:39

=

il Opér... = 19:19 b

samedi 12 décembre 15:30

Lire |

Aujourd'hui

£MEH 4 128 15:30
Lire

| Aujourd’hui

ven. 11 déc.

sam. 12 dec.

[dim. 13 déc. |

Figure 6.5: Picker1 sous différentes localisations

12H3H #)
12R4H =)
12H5H (+)

6.1. Utiliser un sélectionneur

193

194

Tableau 6.4: Principales méthodes de la classe NSDateFormatter
Théme Méthode Objet de la méthode

Initialisation - (id) init Initialise le récepteur avec les parame-
tres par défaut de 'appareil (calendrier,
fuseau horaire, localisation).

Conversion — (NSDhate *) date Convertit une chaine de caracteres en
FromString: date.
(NSString *)string
— (NSString *) Convertit une date en chaine de carac-
stringFromDate: teres.
(NSDate *)date

Formats — (void) setDate Définit le format de conversion selon le
Format: (NSString *) |[standard technique n°35 de I'Unicode.
string

Gestion des symboles |- (void) setWeekday | Définitla représentation des jours de la
Symbols: (NSArray *) |semaine a utiliser. Le premier élément
array de tableau est le dimanche.
— (void) setMonth Définit la représentation des mois de
Symbols: (NSArray *) |l'année a utiliser.
array

Vous pouvez consulter le standard technique n°35 de |I'Unicode sur le
site de I'organisation (http://unicode.org/reports/tr35/tr35-6.html#Date_Format_
Patterns) pour connaitre toutes les possibilités de formatage des dates.
Un format de date est une chaine de caractéres contenant des codes
qui représentent les différentes composantes d'une date.

Tableau 6.5: Codes de formatage de date les plus courants

Code | Représente Exemple pour le 12/12/2010 a 15:30
vy Les 2 derniers chiffres de I'année 10

yyyy | L'année 2010

MM Le mois numérique 12

MMMM | Le mois littéral décembre

dd Le jour dans le mois 12

EEEE | Le jour dans la semaine littéral samedi

HH |L'heure (de 0a23) 15

mm Les minutes 30

En utilisant un sélectionneur UIDatePicker et un formateur
NSDateFormatter, le développeur a l'assurance que les dates seront
toujours affichées en employant le réglage régional décidé par I'uti-
lisateur de I'appareil.

6. Controles complexes

Challenge

Les utilisateurs pointilleux auront remarqué que les langues régio-
nales (provencal, breton, occitan...) ne sont pas disponibles sur
I'iPhone. Heureusement, la classe NsDateFormatter est pleine de res-
sources. Les méthodes -setlieekdaySymbols: et —setMonthSymbols: per-
mettent de définir la représentation des jours de la semaine et des
mois de lI'année.

Votre objectif est d’afficher la date en breton dans le label de I"appli-
cation Pickerl.

il Opér... = 21:46 b

Sadorn 12 Kerzu 15:30

Lire |

| Aujourd’hui |

ven. 11 déc.

sam. 12 dec.

dim. 13 déc.

Figure 6.6 : Affichage de la date en breton

Vous pourrez utiliser un formateur de date qui pourrait étre initialisé
dans la méthode -viewDidLoad du contréleur de vue :

- (void)viewDidLoad {

[super viewDidLoad];

formatter = [[NSDateFormatter alloc] init];

NSArray * mois = [NSArray arrayWithObjects:Q@"Genver",
@"C’ hwevrer",@"Meurzh" ,@"Ebrel",@"Mae",
@"Mezheven" ,@"Gouere" ,@"Eost",
@"Gwengolo" ,@"Here" ,@"Du",@"Kerzu" ,nil];

NSArray * jours = [NSArray arrayWithObjects:@"Sul",
@"Lun",@"Meurzh",@"Merc’ her",@"Yaou",
@"Gwener",@"Sadorn",nil];

[formatter setMonthSymbols:mois];

[formatter setWeekdaySymbols:jours];

6.1. Utiliser un sélectionneur 195

[formatter setDateFormat:Q@"EEEE d MMMM HH:mm"];
}

Sélectionneur standard

Un sélectionneur standard ressemble visuellement a un sélection-
neur de date mais il fonctionne différemment. Nous allons commen-
cer par un exemple simple pour découvrir la classe UIPickerView.

Application Picker2

L'application Picker2 va simplement présenter un sélectionneur a
I'utilisateur, pour lui permettre de choisir un pays. Le pays choisi sera
affiché dans un label.

il Opér... = 05:56 [

Italie

Allemagne

lialie

| Espagne

Figure 6.7 : Application Picker2

Créez un nouveau projet de type View-based Application sous XCode
et appelez-le picker2.
Création de I'interface

Ouvrez le fichier Picker2ViewController.xib et composez |'interface
utilisateur avec :

® un Label;
B un sélectionneur standard (Picker View).

196 | 6. Contrdles complexes

Interface du contréleur de vue
1 Modifiez le fichier Picker2ViewController.h :

#import <UIKit/UIKit.h>
@interface Picker2ViewController : UIViewController
<UIPickerViewDelegate,UIPickerViewDataSource>{
IBOutlet UILabel * 1label;
NSArray * valeurs;

}
@property (nonatomic,assign) UILabel * label;
@end

2 Remarquez les différences avec le contréleur de vue de Picker1 :

— Il n'y a pas d’outlet sur le sélectionneur.
— Nous avons besoin d'un tableau de valeurs.

— Le contrbéleur adopte les protocoles UIPickerViewDelegate et
UIPickerViewDataSource.

Le sélectionneur standard nécessite un délégué pour fonctionner.
Deux protocoles sont définis et donc on pourrait méme dire qu’il lui
faut deux délégués. En pratique, ces deux protocoles seront généra-
lement adoptés par un seul contréleur de Vue. C’est donc le sélec-
tionneur qui connait le contréleur de vue, son délégué, et ce dernier
n'a donc généralement pas besoin de connaitre le sélectionneur ; il
n'y a pas d'outlet sur le sélectionneur.

Nous avons besoin d’'un tableau de valeur dans le contréleur de vue
car c’est lui, en tant que délégué du sélectionneur, qui doit gérer les
valeurs a afficher ; nous allons expliquer cela.

Connexions

Etablissez les connexions sous Interface Builder :

m L'outlet /abel du contréleur de vue doit étre connecté au champ
Label de I'interface.

m Les outlets delegate et dataSource du sélectionneur doivent étre
connectés au contrbleur de vue (File’s owner).

O O O Picker2 View Controller C
= | 0o | ¢ | @

¥ Outlets

((tabel (% Label (Label) @®
searchDisglayContraller [e}

(Sew) View ®

¥ Referencing Outlets

(dataSource (% Picker @®

.

New Referencing Outlet (0]

Figure 6.8 : Connexions du contréleur de vue Picker2ViewController

6.1. Utiliser un sélectionneur

197

198

Code du contréleur

1 Ouvrez le fichier Picker2ViewController.m, modifiez la méthode
-viewDidUnload et -viewDidLoad puis ajoutez les méthodes définies
dans les protocoles :

@synthesize label;
- (NSInteger)numberOfComponentsInPickerView:

(UIPickerView *)pickerView{
return 1;

(NSInteger)pickerView: (UIPickerView *)pickerView
numberOfRowsInComponent: (NSInteger) component{
return [valeurs count];

(NSString *)pickerView: (UIPickerView *)pickerView
titleForRow: (NSInteger) row
forComponent: (NSInteger) component {
return [valeurs objectAtIndex:row];

(void)pickerView: (UIPickerView *)pickerView
didSelectRow: (NSInteger) row
inComponent: (NSInteger) component{
self.label.text = [valeurs objectAtIndex:row];
}
// Implement viewDidLoad to do additional setup after
loading the view, typically from a nib.
- (void)viewDidLoad {
[super viewDidLoad];
valeurs = [[NSArray alloc] initWithObjects:Q@"France",
@Q"Allemagne",@"Italie",Q@"Espagne",@"Portugal",h nil];
self.label.text = [valeurs objectAtIndex:0];
}
- (void)viewDidUnload {
// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;
self.label = nil;
[valeurs release];

}
2 Construisez l'application et testez-la sur le simulateur.

Nous avons construit un tableau valeurs initialisé avec une liste de
pays. Au moment ou il s'affiche, le sélectionneur demande un certain
nombre d'informations a son délégué ; elles seront puisées dans ce
tableau :

m Combien y a-t-il de lignes au total ?
m Que dois-je afficher sur telle ou telle ligne ?

Le sélectionneur va également envoyer un message a son délégué
chaque fois que I'utilisateur le manipulera.

6. Controles complexes

Nous détaillerons tout cela. Auparavant, étudions la classe
UIPickerView.

Classe UlPickerView

Un sélectionneur est un objet qui permet d’afficher un ou plusieurs
tambours. Chaque tambour contient une liste de valeurs ; I'utilisa-
teur choisit I'une de ces valeurs en le faisant tourner. Les tambours
sont les composants (components) du sélectionneur, chaque compo-
sant contient plusieurs lignes ou rangées (rows).

il Opér... = 07:27 [

Barcelone

Italie Madrid

Espagiie Barcelone

Portugal Séville

Figure 6.9 : Sélectionneur a deux composants

Les développeurs ont une tendance naturelle a écrire du code qui
décide ce qui doit étre affiché a I’écran. La programmation Cocoa est
différente, on parle de controle inversé :

m Les controleurs envoient des instructions simples aux vues :
— Ou doivent-elles s’afficher ?
— Quelles sont leurs propriétés ?

m Les vues prennent en charge toute la partie visuelle : affichage et
animation.

m Les vues sous-traitent les activités qui ne relévent pas strictement
du comportement visuel a leur délégué.

6.1. Utiliser un sélectionneur

199

@ Un contrdle qui n'en est pas un

REMARQUE

Les sélectionneurs UTpickerView savent s'afficher et faire tourner les
tambours sous lI'impulsion de l'utilisateur mais ils ne connaissent
pas leur contenu. Pour savoir ce qu’ils doivent afficher, ils consultent
leur délégué et leur source de données (voir section suivante).

Tableau 6.6 : Principales méthodes de la classe UlPickerView

Theme Méthode Objet de la méthode

Rechargerles |- (void) reloadComponent: Notifie au récepteur que les va-

données (NSInteger) component leurs du composant ont été modi-
fiees.

— (void) reloadAllComponents| Notifie au récepteur que les va-
leurs de tous les composants ont
été modifiées.

Sélection — (void) selectRow: Sélectionne une ligne pour un
(NSInteger)row inComponent: |composant, éventuellement avec
(NSInteger) component une animation visuelle.

animated: (BOOL)animated

— (NSInteger) selectedRowIn |Retourne laligne sélectionnée
Component: (NSInteger) pour un composant du
component sélectionneur.

Contrairement au sélectionneur de date, le sélectionneur standard n’est
pas un contrdle. La classe UIPickerView ne dérive pas de la classe
UIControl. On ne peut donc pas utiliser le mécanisme cible-action avec un
sélectionneur standard. C’est le délégué qui est notifié des changements
d’états.

Source de données

200

Un sélectionneur standard nécessite deux délégués :

B delegate qui joue le réle de délégué traditionnel : controle des
vues, positionnement, réponse aux actions, il doit répondre au
protocole <UIPickerViewDelegate> ;

m dataSource, source de données, qui fournit des informations relati-
ves aux valeurs a afficher et répond au protocole <UIPicker
ViewDataSource>.

Dans l'application Picker2, le controleur de vue est a la fois, comme
souvent, le délégué et la source de données du sélectionneur. Nous
y avons donc défini :

6. Controles complexes

m la méthode —numberOfComponentsInPickerView: qui retourne 1; nous
informons le sélectionneur qu’il doit afficher un seul composant
(un seul tambour) ;

m la méthode -pickerView:numberOfRowsInComponent: qui retourne
[valeurs count] pour informer le sélectionneur que le composant
doit comporter autant de lignes que d'éléments dans le tableau
valeurs ; tableau qui contient la liste des pays a afficher ;

m la méthode —pickerView:titleForRow:forComponent: qui retourne la
chaine de caractéres a afficher sur la rangée row:
objectAtIndex:row] ;

[valeurs

m |la méthode —pickerView:didSelectRow:inComponent: qui est appelée
lorsque l'utilisateur vient de manipuler I'un des tambours.

Ces méthodes admettent un parametre pickerView, ce qui permet a
un méme délégué et une méme source de données de gérer plu-
sieurs sélectionneurs.

Tableau 6.7 : Méthodes du protocole UlPickerViewDataSource

Méthode Objet de la méthode

— (NSInteger) numberOfComponents |Doitretournerle nombre de composants du
InPickerView: (UIPickerView *) sélectionneur passé en parametre.
pickerView

— (NSInteger) pickerView: Doit retourner le nombre de lignes pour le

composant et le sélectionneur passés en
parametres.

(UIPickerView *)pickerView
numberOfRowsInComponent:
(NSInteger)component

Tableau 6.8 : Méthodes du protocole UlPickerViewDelegate

Theme

Méthode

Objet de la méthode

Dimensions de la vue

— (CGFloat)
(UIPickerView *)picker
View rowHeightFor
Component: (NSInteger)
component

pickerView:

Doit retourner la hauteur en pixels
dans laquelle doit s"afficher une
ligne pour le composant et le sé-
lectionneur passés en parame-
tres.

— (CGFloat)
(UIPickerView *)picker

View widthForComponent:

(NSInteger) component

pickerView:

Doit retourner la largeur en pixels
dans laquelle doit safficher une
ligne pour le composant et le sé-
lectionneur passés en parame-
tres.

201

6.1. Utiliser un sélectionneur

Tableau 6.8 : Méthodes du protocole UlPickerViewDelegate

Théme

Méthode

Objet de la méthode

Contenu de la vue
Une de ces méthodes
est obligatoire

— (NSString *) picker
View: (UIPickerView *)
pickerView titleForRow:
(NSInteger)row for
Component: (NSInteger)
component

Retourne une chaine de caracte-
res a afficher sur la ligne du com-
posant du sélectionneur passés
en parametres.

— (UIView *) pickerView:
(UIPickerView *)picker
View viewForRow:
(NSInteger)row for
Component: (NSInteger)
component reusingView:
(UIView *)view

Retourne une Vue a afficher sur la
ligne du composant du sélection-
neur passé en parametres. La vue
passée en parametre peut étre
réutilisée.

Sélection d'une ligne

- (void) pickerView:
(UIPickerView *)picker
View didSelectRow:
(NSInteger)row
inComponent:
(NSInteger) component

L'utilisateur vient de sélectionner
la ligne du composant du sélec-
tionneur passé en parametres.

Adapter le sélectionneur au contexte

Les protocoles UIPickerViewDelegate et UIPickerViewDataSource per-
mettent une grande diversité d’utilisation des sélectionneurs.

202

-ull Opér... = 07:27

=]

Barcelone

Madrid

Barcelone

Séville

Figure 6.10 : Sélectionneur a deux composants

Dans le sélectionneur représenté ici, le composant gauche contient
une liste de pays et le composant droit une liste de villes. Il est
souhaitable que la liste des villes change lorsque I'utilisateur change

de pays.

6. Controles complexes

Structure de données

Les données que nous devons manipuler ont une structure plus
complexe que celles que nous avons manipulées jusqu’ici. Nous
avons besoin :

m d’'un tableau contenant la liste des pays ;

m pour chaque pays, d'un tableau contenant la liste des villes de ce pays.

En programmation Cocoa, lorsqu’on veut établir une mise en corres-
pondance de deux listes d'objets —ici une liste de pays et une liste de
listes de villes —, on utilise un dictionnaire de la classe NSDictionary.

Le bon endroit pour initialiser cette structure de données est la
méthode -viewDidLoad du contrbleur de vue :

- (void)viewDidLoad {
[super viewDidLoad];

pays = [[NSArray alloc] initWithObjects:@"France",
@"Allemagne",@"Italie",@"Espagne",@"Portugal”,nil];
villes = [[NSDictionary alloc] initWithObjects:

[NSArray arrayWithObjects:
[NSArray arrayWithObjects:@"Paris",
@"Marseille",@"Lyon",Q@"Toulouse",
@"Bordeaux",nil],
[NSArray arrayWithObjects:@"Berlin",
@"Hambourg", @"Munich",
@"Stuttgart",nil],
[NSArray arrayWithObjects:@"Rome",
@"Florence",@"Naples",@"Venise",
@"Milan",nil],
[NSArray arrayWithObjects:@"Madrid",
@"Barcelone",@"Séville",nil],
[NSArray arrayWithObjects:@"Lisbonne",
@Q"Porto",nil],nil]
forKeys:pays];
self.paysChoisi = @"France";
self.label.text =
[[villes objectForKey:self.paysChoisi] objectAtIndex:0];
}

Les classes et méthodes utilisées seront expliquées plus loin dans ce
chapitre.
Source de données

Nous devons écrire les 2 méthodes du protocole UIPickerView
DataSource qui retournent le nombre de composants et le nombre de
lignes pour chaque composant du sélectionneur.

Nous voulons afficher deux composants :

- (NSInteger)numberOfComponentsInPickerView:

(UIPickerView *)pickerView{
return 2;

6.1. Utiliser un sélectionneur | 203

204

Le nombre de lignes est fixe pour le premier composant, c’est le
nombre de pays. Il dépend du pays choisi pour le deuxieme compo-
sant, il faudra donc penser a ajouter une propriété paysChoisi dans
notre contréleur de vue :

- (NSInteger)pickerView: (UIPickerView *)pickerView
numberOfRowsInComponent: (NSInteger) component {

if (component == 0) {
return [pays count];
} else {
return [[villes objectForKey:self.paysChoisi] count];
}
}
Délégue

Dans le premier composant, le titre a afficher en fonction du numéro de
ligne est le nom du pays. Dans le second composant, il faut afficher le
nom de la ville et nous devons ici aussi prendre en compte le pays choisi.
- (NSString *)pickerView: (UIPickerView *)pickerView

titleForRow: (NSInteger) row
forComponent: (NSInteger) component {

if (component == 0) {
return [pays objectAtIndex:row];
} else {
return [[villes objectForKey:self.paysChoisi]

objectAtIndex:row];

}

Lorsque I'utilisateur change de pays (lorsqu’il touche le composant
numéro 0), il faut :

m modifier la propriété paysChoisi du contréleur de vue ;

m indiquer au sélectionneur que la liste des villes a afficher n’est plus la
méme.

- (void)pickerView: (UIPickerView *)pickerView
didSelectRow: (NSInteger) row
inComponent: (NSInteger) component {
if (component == 0) {
self.paysChoisi = [pays objectAtIndex:row];
self.label.text = self.paysChoisi;
[pickerView reloadComponent:1];
} else {
self.label.text = [[villes
objectForKey:self.paysChoisi] objectAtIndex:row];

6. Controles complexes

Remarquez l'instruction [pickerView reloadComponent:1]; qui indique
au sélectionneur qu’il doit modifier le contenu du composant nu-
méro 1 (la liste des villes).

Challenge
Vous avez maintenant tous les éléments pour réaliser |'application
Picker3 qui présente un sélectionneur a deux tambours, un pour les
pays et un pour les villes, et qui affiche dans le label la derniere
sélection de l'utilisateur. Bien sr, la liste des villes dépend du pays
sélectionné.

Si vous souhaitez comprendre plus précisément le fonctionnement
des tableaux et des dictionnaires, reportez-vous a la section suivante
avant de réaliser |I'application Picker3.

6.2. Utiliser les conteneurs Cocoa

Les conteneurs sont des structures de données de base, indispensa-
bles pour réaliser des applications au modele de données complexe.
Dans ce chapitre, nous décrivons :

m les tableaux, qui sont des instances de la classe NSArray ;
m les dictionnaires, qui sont des instances de la classe NSDictionary.

Ces structures de données sont particulierement intégrées au lan-
gage Objective-C ; on peut les parcourir avec l'instruction for in:
NSString * pays;
NSArray * toutLesPays=[NSArray arrayWithObjects:@"France",
@"Allemagne",@"Italie", @"Espagne",@"Portugal"”,nil];
for (pays in toutLesPays) {
// la boucle est exécutée avec les éléments du tableau

}

Tableaux NSArray

Un tableau est une liste ordonnée de pointeurs vers d'autres objets,
indexée par un entier compris entre 0 et n-1 si le tableau contient n
objets. Les différents objets peuvent étre de classes différentes mais
toutes les positions de 0 a n-7 doivent étre occupées ; il est interdit
d’avoir un pointeur nil au milieu du tableau.

@ Objet nul

REMARQUE

On ne peut pas insérer nil dans un conteneur mais on peut utiliser I'objet
nul [NSNull null]. L’objet nul ne répond a aucune méthode excepté celles
de NSObject dont il dérive.

6.2. Utiliser les conteneurs Cocoa | 205

Les méthodes principales de la classe NSArray sont résumées dans le
tableau. Les méthodes les plus utilisées sont -objectAtIndex: qui
retourne I'objet associé a lI'indice passé en parameétre, et —count qui
retourne le nombre d'éléments dans le tableau.

Tableau 6.9: Principales méthodes de la classe NSArray
Théme Méthode Objet de la méthode
Créerun + (id) arrayWithObjects: |Crée untableau constitué de la liste des
tableau (id) firstObj, objets passés en parametre. Les élé-
ments de la liste sont séparés par une
virgule. Le dernier élément de la liste doit
étrenil.
Initialiserun |- (id) initWithObjects: Initialise un tableau constitué de la liste
tableau (id) firstObj, des objets passés en paramétre. Les
éléments de la liste sont séparés par une
virgule. Le dernier élément de la liste doit
étrenil.
Interroger |- (BOOL) containsObject: |Retourne YES sianObject estdansle
un tableau (id) anObject tableau, NO sinon. Les éléments du
tableau sont comparés a anObject
par la méthode -isEqual: déclarée
dans NSObject.
— (NSUInteger)count Retourne le nombre d'éléments du ta-
bleau.
— (id) lastObject Retourne le dernier élément du tableau.
— (id) objectAtIndex: Retourne I'élément dont I'indice est
(NSUInteger) index passé en parametre. index doit étre
compris entre 0 et count-1.
Trouverun |- (NSUInteger) index Retourne l'indice de I'élément égal a
objet OfObject: (id)anObject anObject. Les éléments du tableau

sont comparés a anObject parla
méthode -isEqual:. Siplusieurs élé-
ments sont égaux @ anObject, l'indice
le plus petit est retourné. Si aucun élé-
ment n'est égal a anObject, la mé-
thode retourne NSNotFound.

— (NSUInteger) index
0fObject: (id)anObject
inRange: (NSRange) range

Retourne l'indice de I'élément égal a
anObject. Les éléments du tableau
sont comparés a anObJject parla
méthode -isEqual:. Si plusieurs élé-
ments sont égaux @ anObject, l'indice
le plus petit est retourné. Si aucun élé-
ment n'est égal @ anObJject, la mé-
thode retourne NSNotFound. La re-
cherche est limitée aux indices compris
dans l'intervalle range.

206

6. Controles complexes

Pour créer un intervalle de type NSRange, on peut employer la fonction
utilitaire NSMakeRange, par exemple :

NSRange range = NSMakeRange (4, 8);

Dictionnaires NSDictionary

Un tableau permet de retrouver un objet par son indice qui est
obligatoirement un entier. Il est parfois intéressant d'utiliser des
indices quelconques, une chaine de caractéres par exemple. C'est le
réle d'un dictionnaire.

Un dictionnaire est une liste d’entrées. Chaque entrée est constituée :
m d'une clé, un objet quelconque, souvent de la classe NSString ;
m d’'une valeur associée a la clé, également un objet quelconque.

Aucune entrée ne doit présenter de clé ou de valeur nil (I'objet nul
est autorisé). Une clé doit étre unique dans le dictionnaire.

Les méthodes principales de la classe NSDictionary sont résumées
dans le tableau. Les méthodes les plus utilisées sont —objectForKey:
qui retourne la valeur associée a la clé passée en paramétre et —-count
qui retourne le nombre d’éléments dans le dictionnaire.

Tableau 6.10 : Principales méthodes de la classe NSDictionary

Theme Méthode Objet de la méthode

Créer un diction- + (id) dictionaryWith Crée un dictionnaire constitué des

naire Objects: (NSArray *) objets contenus dans le tableau
objects forKeys: objects avec les clés contenus
(NSArray *)keys dans le tableau keys. Les deux

tableaux doivent contenir le méme
nombre d'éléments.

Initialiser un diction- [— (id) initWithObjects: |Initialise un dictionnaire constitué
naire (NSArray *)objects des objets contenus dans le tableau
forKeys: (NSArray *)keys|objects avec les clés contenus
dans le tableau keys. Les deux
tableaux doivent contenir le méme
nombre d'éléments.

Accéder aux cléset |— (NSUInteger)count Retourne le nombre de paires (clé,
aux valeurs objet) du dictionnaire.
— (id) objectForKey: Retourne I'objet associé a la clé
(id) aKey aKey,ounil sila clé n'est pas

dans le dictionnaire.

— (NSArray *)allKeys Retourne un tableau constitué de
I'ensemble des clés du dictionnaire,
ou un tableau vide si le dictionnaire
estvide.

6.2. Utiliser les conteneurs Cocoa | 207

Conteneurs mutables

Les objets des classes NSArray et NSDictionary sont immuables ; une
fois créés, on ne peut les modifier. Il existe des versions modifiables
(mutable) de ces classes qui, en pratique, sont peu utilisées.

La classe NSMutableArray dérive de NSArray. Elle définit en particulier

les méthodes supplémentaires suivantes :

B -addObject: qui permet d’ajouter un élément a la fin du tableau ;

B -insertObject:atIndex: qui permet d’insérer un élément dans le
tableau ;

B -removeObjectAtIndex: pour supprimer un élément connaissant son
indice ;

B -replaceObjectAtIndex:withObject: pour remplacer un des élé-
ments du tableau.

Les méthodes les plus utilisées de la classe NSMutableDictionary sont :

B —setObject:forKey: qui permet d'ajouter une entrée dans le diction-
naire ;

B -removeObjectForKey: pour supprimer une entrée connaissant sa
clé.

6.3. Utiliser les Vues en table

La vue en table (TableView) est le principal outil de navigation au sein
d’une structure de données arborescente. Vous avez maintenant les
connaissances suffisantes pour en comprendre le fonctionnement et
pour la mettre en ceuvre dans vos applications :

m pattern Modéle-Vue-Contréleur ;

m délégation ;

m source de données ;

m conteneurs.

Pour illustrer le fonctionnement d’ensemble des classes mises en
jeu, nous créerons l'application Empruntsi. Il s’agit d'un aide-
mémoire pour nous souvenir des objets que nous avons prétés a nos
amis. A qui les avons-nous prétés et a quelle date ?

Présentation générale

208

Avec les vues en table, "utilisateur visualise une liste de données
puis il choisit un élément de cette liste pour visualiser une autre liste
litge a cet élément, etc. Il parcourt ainsi la structure de données,
visualise les informations détaillées ou édite les données.

6. Controles complexes

L'exemple typique de ce mode de navigation est |'application
Contacts :

m L'application présente une liste de groupes.

m L'utilisateur choisit un groupe; il visualise alors la liste des
contacts appartenant a ce groupe.

m |l parcourt la liste des contacts du groupe. Lorsqu’il en choisit un,
il en visualise les informations détaillées qu’il peut éditer s'il le
souhaite.

il Opér... = 06:51 [
Contacts (tous) »
Friends >
Work >
Figure 6.11 : Liste des groupes de contacts
_aill Opér... = 06:53 e}
Groupes | Contacts (tous) +

Kate Bell ¥
T ———
Anna Haro e

P
Daniel Higgins Jr. e

David Taylor

Hank M. Zakroff H

Figure 6.12 : Liste des contacts

6.3. Utiliser les Vues en table | 209

[l Opér... = 06:52 =]

Friends Infos Modifier

Daniel Higgins Jr.

domicile 5554787672
mobile 4084395270

fax domicile 4085553514

sonnerie Par défaut >
domicile d-higgins @mac.com

domicile 332 Laguna Street
Corte Madera CA 94925

usa Figure 6.13 : Informations détaillées d'un contact

Chacune de ces vues est une vue en table de style différent :

® vue en table simple ;

m vue en table indexée (par les lettres de I'alphabet) ;

m vue en table par groupe (téléphones, adresses de courriel, adres-
ses postales, etc.).

Le fonctionnement de I'application Emprunts1est analogue a celui de

Contacts :

m Le sommet de la structure de données est la liste des catégories
d’objet (CD, DVD, Livre).

m Lorsqu’une catégorie et choisie, |'utilisateur accéde a la liste des
objets de cette catégorie.

m |l peut ajouter un objet ou éditer les informations pour un objet.

[l Opér... = 21:52 =]
Catégories
CcD >
DVvD >
Livres >
Divers >

Figure 6.14 : Application Emprunts1

Paradoxalement, nous utiliserons peu les objets de la classe
UITableView pour la programmation des vues en table. Nous manipu-
lerons surtout les protocoles et classes associés :

210 | 6. Contréles complexes

m la classe UITableView, bien s(r;

m laclasse UITableViewController, que nous dériverons et qui répond
aux protocoles:
— <UITableViewDelegate>;
— <UITableViewDataSource>.

m la classe UITableViewCell, qui est la vue devant étre affichée dans
une cellule ou ligne de la table ;

m la classe NSIndexPath dont les instances permettent de repérer une
cellule particuliere de la table.

La classe UITableViewCell méritera une attention particuliére car elle
permet toute la richesse d’affichage de la vue en table.

La programmation d’'une vue en table consiste principalement a
définir un contréleur de vue qui hérite de UITableViewController.
Cette classe prend en charge, en particulier, la présentation générale
de la table et le défilement vertical lorsque la liste ne tient pas
entierement sur I"écran.

Créer une vue en table

Pour créer une vue en table, il suffit de créer et d'initialiser un
controleur de vue qui hérite de la classe UITableViewController.

Par programmation, l'initialisation du contréleur de vue crée auto-
matiquement la vue en table :

B pour créer une vue en table simple :
— init;
— initWithStyle:UITableViewStylePlain.

B pour créer une vue en table par groupe :
— initWithStyle:UITableViewStyleGrouped.

Sous Interface Builder, il faut faire glisser un objet de type Table View
Controller dans la fenétre du document NIB. Le contréleur de vue
ainsi ajouté contient une instance de la classe UITableView.

Sous XCode, lorsqu’on crée une application de type Navigation-
based, une barre de navigation et un contréleur de vue en table sont
automatiquement créés.

La vue en table associée au contrbéleur est accessible par sa propriété
tableView définie dans la classe UITableViewController.

6.3. Utiliser les Vues en table | 211

1 Ouvrez XCode et créez une application de type Navigation-based.

2 Laissez la case Use Core Data for storage décochée et nommez
I"application Emprunts1.

Afficher la table

212

Préparer la structure de données

La classe RootViewController est le contréleur de vue racine, elle
dérive de UITablevViewController. C'est cette classe que nous allons
modifier pour apporter le comportement souhaité a notre applica-
tion.

Nous commencerons par créer le tableau des catégories a afficher
sur la premiere table.

1 Ajoutez une propriété categories dans l'interface de la classe
RootViewController :
@interface RootViewController : UITableViewController {

NSArray * categories;

}

@property (nonatomic,retain) NSArray * categories;
@end

2 Modifiez la méthode -viewDidLoad dans le fichier RootViewControl-
ler.m pour initialiser le tableau des catégories :
@synthesize categories;
- (void)viewDidLoad {
[super viewDidLoad];
self.categories = [NSArray arrayWithObjects: @"CD",
Q@"DVD" ,@"Livres" ,@"Divers" ,nil];

}

3 Enlevez les marques de commentaires autour de la méthode
-viewDidLoad.

Dimensionner la table

A l'instar du sélectionneur standard, la vue en table interroge sa
source de données pour dimensionner son affichage.

Si la table est de style groupé, la méthode -numberOfSections
InTableView: doit étre implémentée dans le contréleur de vue et
retourner le nombre de sections. La table des catégories de I'appli-
cation Emprunts1 n'étant pas décomposée en section, vérifiez que
cette méthode retourne 1.

6. Controles complexes

La méthode -tableView:numberOfRowsInSection: est obligatoire.
Modifiez-la pour retourner le nombre de lignes dans la table (le
nombre de catégories) :
- (NSInteger)tableView: (UITableView *)tableView
numberOfRowsInSection: (NSInteger)section {
return [self.categories count];

}
Afficher les titres

Le titre inscrit dans la barre de navigation est, par défaut, le titre du
contréleur de vue actif. Modifiez la méthode —-viewDidLoad pour indi-
quer le titre Catégories.
- (void)viewDidLoad {
[super viewDidLoad];
self.categories = [NSArray arrayWithObjects: @"CD",
@"DVD",@"Livres",@"Divers",nil];
self.title = Q@"Catégories";
}
Si la table est créée en mode Groupé et si I'on souhaite donner un
titre a chaque section, il faut que le contréleur de vue implémente la
méthode -tableView:titleForHeaderInSection: qui retourne une ins-
tance de NSString.

ﬁ Délégué et Source de données
Dans un but de simplification, nous écrivons qu’un contréleur de vue en
table doit implémenter telle ou telle méthode sans préciser si cette méthode
est définie dans le protocole de délégué ou dans celui de source de donnée de
la vue en table.

Décrire une ligne

La méthode retenue par Apple pour afficher une ligne de la table

répond a plusieurs problématiques :

m |l faut pouvoir repérer la ligne en question, lui donner une identi-
fication.

m |l ne faut pas brider le développeur dans sa créativité.

m |l faut que la programmation d’affichages simples reste simple.

m La mémoire est limitée et il faut tenir compte du fait que seules
quelques lignes sont réellement affichées a I’'écran a un instant
donné.

6.3. Utiliser les Vues en table | 213

o NSIndexPath

REMARQUE

214

Repérer la ligne

Une ligne dans une table est repérée par une instance de la classe
NSIndexPath. Cette classe fournit deux propriétés section et row qui
permettent d’identifier une ligne (row) dans une section de la table
(section).

Avec une table ne contenant qu’une section, seule la propriété row est
utilisée. La section et la ligne dans la section sont numérotées a partir
de 0. (La premiére section a le numéro 0.)

Les propriétés section et row sont définies dans une extension de la
classe NSIndexPath qui la rend plus facile a utiliser avec les vues en table.

Cellules de table

Chaque ligne de la table est affichée dans une vue de type
UlTableViewCell, appelée cellule (cell). Cette classe définit un compor-
tement par défaut qui facilite la programmation dans les cas simples.
Elle peut aussi étre dérivée ou peut inclure d’autres vues ou d’autres
contrbles afin d’obtenir un comportement enrichi.

C’est le contréleur de vue de la table qui est chargé de fabriquer les
cellules pour chaque ligne a la demande de la vue en table. Le
controleur doit implémenter la méthode -tableView:cellForRow
AtIndexPath: et retourner la cellule initialisée qui doit étre affichée sur
la ligne repérée par le parameétre indexPath.

Nous allons avancer dans la compréhension des cellules avant de
voir un exemple pratique de mise en ceuvre.

Recycler les cellules

A mesure que l'utilisateur parcourt la liste de la vue en table, de
nouvelles lignes sont affichées et d’autres disparaissent de I'écran.
Nous venons de voir que lorsqu’une ligne est sur le point d’apparai-
tre a I'écran, la vue en table demande a son contréleur de créer une
cellule et de l'initialiser. Mais que se passe-t-il lorsqu’une ligne dis-
parait de I'écran ?

La mémoire étant limitée, on ne peut se permettre de toutes les
conserver, mais ce serait dommage de toutes les détruire. Si une
ligne disparait, c'est qu'une autre apparait a I’écran et qu'il faudra
créer une cellule pour cette nouvelle ligne. Cela prend du temps de

6. Controles complexes

créer une cellule et il faut aussi économiser la batterie. L'idée est
donc de recycler les cellules qui disparaissent de I'écran.

Les instances de UITableView entretiennent a cet effet une liste de
cellules réutilisables. On peut obtenir une cellule en appelant la
méthode -dequeueReusableCellWithIdentifier:. Cette méthode re-
tourne nil s’il n'y a pas de cellule réutilisable. L'identifiant passé en
parametre est une chaine de caracteres. Si la vue en table contient
des cellules de différents types, il est important de repérer chaque
type par un identifiant spécifique.

L'identifiant d’une cellule est défini lors de sa création, a I'aide de la
méthode -initWithStyle:reuseldentifier: de la classe UITableView
Cell.

C’est une bonne pratique de toujours vérifier s'il n‘existe pas une
cellule réutilisable avant d’en créer une nouvelle du méme type.
Examinez la méthode -tablevView:cellForRowAtIndexPath: de la classe
RootViewController. Le recyclage des cellules y est déja prévu, le
développeur n’'a plus qu’a saisir le code pour configurer la cellule :
- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {
static NSString *Cellldentifier = @"Cell";
UlITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleDefault
reuseldentifier:CellIdentifier] autorelease];

}
// Configure the cell.
return cell;

}
Classe UlTableViewCell

La méthode d’initialisation de la classe UITableViewCell prend un
parameétre identifier qui permet de définir I'identifiant de la cellule
pour sa réutilisation, et un parameétre style qui définit son style de
présentation a I'écran. Les styles les plus utilisés sont :

B UlTableViewCellStyleDefault, style par défaut, une ligne de texte
avec une image optionnelle ;

B UlTableViewCellStyleSubtitle, style avec sous-titre, deux lignes de
texte et une image optionnelle.

6.3. Utiliser les Vues en table

215

216

France
Allemagne
Italie
Espagne

Portugal
Figure 6.15 : Style par défaut sans image

B § France

B Allemagne

B B ttalie
Espagne

=
EB Portugal
Figure 6.16 : Style par défaut avec image

I I France

ce pays contient 5 villes

m== Allemagne

ce pays contient 4 villes

11 ltalie

ce pays contient 5 villes
= Espagne
== ce pays contient 3 villes
& | Portugal

ce pays contient 2 villes

Figure 6.17 : Style avec sous-titre et image

Ces différents éléments de la cellule sont accessibles par les proprié-
tés de la classe UITableViewCell :

B textLabel, propriété de type UILabel * qui contient le texte princi-
pal de la cellule ;

B detailTextLabel, propriété de type UlLabel * qui contient le texte
secondaire de la cellule (seulement si la cellule est de style avec
sous-titre) ;

B imageView, propriété de type UlImageView * qui contient l'image
affichée a gauche de la cellule.

6. Controles complexes

Il est également possible d’agrémenter chaque cellule d'un
accessoire qui s'affiche sur la droite. Il s'agit d’'une icone qui indique
a l'utilisateur les opérations qu’il peut réaliser. Le type d’accessoire a
afficher est indiqué avec la propriété accessoryType de la classe
UITableViewCell. Les valeurs autorisées pour cette propriété sont
précisées dans le tableau.

Tableau 6.11: Valeurs autorisées pour la propriété accessoryType

Icone | Valeur de la propriété Utilisation

UlTableViewCellAccessory |Indique qu'une touche sur la ligne permet d'ac-
DisclosurelIndicator céder a des informations plus détaillées.

UITableViewCellAccessory |Indique qu'une touche sur'accessoire permet
- DetailDisclosureButton d'accéder a des informations plus détaillées.

UITableViewCellAccessory |Indique que la ligne est sélectionnée.
Checkmark

UITableViewCellAccessory |Indique que laligne n'est pas sélectionnée et ne
None contient pas d'accessoire spécifique.

Nous voulons afficher les catégories d'objets et que l'utilisateur
accede a la liste des objets de cette catégorie lorsqu’il touche la ligne
correspondante.

1 Modifiez la méthode -tableview:cellForRowAtIndexPath: du fi-
chier RootViewController.m.

- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {
static NSString *Cellldentifier = @"Cell";
UITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleDefault
reuseldentifier:CellIdentifier] autorelease];
}
cell. textLabel.text = [categories
objectAtIndex:indexPath.row];
cell.accessoryType =
UITableViewCellAccessoryDisclosurelIndicator;
return cell;

}

2 Construisez I'application et testez-la. L'affichage est correct mais il
faut maintenant que I'application réagisse lorsque I'utilisateur tou-
che une catégorie.

6.3. Utiliser les Vues en table

217

Réagir a une sélection

218

Préparer la structure de données

Comme nous |'avons fait lors de notre étude des sélectionneurs,
avec les pays et les villes, nous allons représenter les listes d’objets
prétés dans un dictionnaire indexé par la catégorie d’objet. Au dé-
part, les listes d’objets sont vides.

1 Ajoutez une propriété lendobjects dans l'interface de la classe
RootViewController :

@interface RootViewController : UITableViewController {
NSArray * categories;
NSDictionary * lendObjects;
}
@property (nonatomic, retain) NSArray * categories;
@property (nonatomic,retain) NSDictionary * lendObjects;
@end

2 Modifiez la méthode —viewDidLoad dans le fichier RootViewControl-
ler.m pour initialiser le dictionnaire des objets prétés. Nous em-
ployons ici des tableaux modifiables de la classe NSMutableArray
car l'utilisateur doit pouvoir modifier les listes d’objets :

@synthesize categories,lendObjects;
- (void)viewDidLoad {
[super viewDidLoad];
self.title = @"Catégories";
self.categories = [NSArray
arrayWithObjects:@"CD",Q@"DVD",@"Livres",@"Divers",nil];
self.lendObjects = [NSDictionary dictionaryWithObjects:
[NSArray arrayWithObjects:[NSMutableArray array],
[NSMutableArray array], [NSMutableArray array],
[NSMutableArray array],nil]
forKeys:self.categories];

}
Afficher la liste détaillée

Lorsque l'utilisateur touche une cellule de la vue en table, le contré6-
leur de vue recoit un message -tableView:didSelectRowAtIndexPath:.
Modifiez cette méthode pour y créer un nouveau contréleur de vue et
I'afficher a I'écran. Ce contréleur de vue doit connaitre la liste d'ob-
jets a afficher, il aura donc aussi une propriété lendobjects :

- (void)tableView: (UITableView *)tableView
didSelectRowAtIndexPath: (NSIndexPath *)indexPath {
ObjectListViewController * objectListViewController =
[[ObjectListViewController alloc]

6. Controles complexes

initWithStyle:UITableViewStylePlain];
NSString * category =
[self.categories objectAtIndex:indexPath.row];
objectListViewController.title = category;
objectListViewController.lendObjects =
[self.lendObjects objectForKey:categoryl];
[self.navigationController pushViewController:
objectListViewController animated:YES];
[objectListViewController release];

}

Si l'accessoire ajouté dans les cellules avait été du type
UITableViewCellAccessoryDetailDisclosureButton, ce code aurait du
étre placé dans la méthode -tableView:accessoryButtonTappedForRow
WithIndexPath:. Cette méthode est appelée lorsque 'accessoire est
un bouton et qu’il est touché par I'utilisateur.

Il faut maintenant créer la classe ObjectListViewController. Créez une
nouvelle classe sous XCode (#+N), choisissez un contréleur de vue
qui dérive de UITableViewController.

ann New File

Choose a template for your new file:

u‘ iPhone 05 N K Y

TR m h m

Obj-C Proto Test

User Interface - L.

Resource Objective-C Objective-C Objective-C test UlViewController
Code Signing class protocol case class subclass

"__; Mac 05 X

Cocoa Class
Cand C++
User Interface

Resource
Interface Builder Kit
Other

Options | Targeted for iPad
Ej UlTableViewController subclass
] With XIB for user interface

m UlViewController subclass
LIVC

An Objective-C class which is a subclass of UITableViewController, with an b
- A————— 5
[Cancel) Previous Next
| b

Figure 6.18: Création d'un contréleur dérivant de UlTableViewController

6.3. Utiliser les Vues en table

219

220

1 Ajoutez la propriété lendobjects dans l'interface de la classe :

@interface ObjectListViewController : UlITableViewController{
NSMutableArray * lendObjects;

}

@property (nonatomic,retain) NSMutableArray * lendObjects;

@end

Modifiez le fichier ObjectListViewController.m afin de prendre en
compte cette propriété pour I'affichage de la table. Laissez inchan-
gées les autres méthodes du fichier.

@synthesize lendObjects;
- (void)viewDidUnload {
self.lendObjects = nil;

- (NSInteger)numberOfSectionsInTableView:
(UITableView *)tableView {
return 1;

- (NSInteger)tableView: (UITableView *)tableView
numberOfRowsInSection: (NSInteger)section {
return [lendObjects count];

- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {
static NSString *CelllIdentifier = @"Cell";

UlITableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[UITableViewCell alloc] initWithStyle:

UITableViewCellStyleDefault reuseldentifier:
CellIdentifier] autorelease];
}
cell.textLabel. text = [[lendObjects
objectAtIndex:indexPath.row] description];
return cell;

}

Ajoutez l'importation de l'interface de la classe ObjectList
ViewController dans le fichier RootViewController.m :

#import " ObjectListViewController.h"

4 Reconstruisez I'application et testez-la (voir Figure 6.19).

Les listes sont vides, ce qui était prévu, et un bouton de retour est
automatiquement ajouté par le controleur de navigation. Vous pou-
vez déja naviguer dans la structure de données.

Il ne nous reste plus qu’a doter notre application d’une fonction pour
ajouter des objets dans les listes.

6. Controles complexes

[-atl Opér... = 08:54 =

Catégories BATAD

Figure 6.19 : La liste des objets prétés est vide

Ajouter un élément

Classe LendObject

Nous avons besoin d’une classe pour représenter un objet prété et
ses propriétés :

m le nom de I'objet ;
m le nom de I'emprunteur ;
m la date du prét.

Cette classe est seulement un réceptacle de données, elle ne contient
pas d’autre méthode que les accesseurs de ses propriétés.

1 Sous XCode, créez une nouvelle classe LendObject qui dérive de
NSObject. Déclarez les propriétés dans le fichier LendObject.h :

@interface LendObject : NSObject ({

NSString * objectName;

NSString * borrowerName;

NSDate * lendDate;
}
@property (nonatomic,retain) NSString * objectName;
@property (nonatomic,retain) NSString * borrowerName;
@property (nonatomic,retain) NSDate * lendDate;
@end

6.3. Utiliser les Vues en table | 221

2 Modifiez le fichier LendObject.m pour y définir les accesseurs de
propriétés et la méthode -dealloc.

@implementation LendObject
@synthesize objectName, borrowerName, lendDate;
- (void)dealloc {

self.objectName = nil;

self.borrowerName = nil;

self.lendDate = nil;

[super dealloc];

}
@end

Controleur de vue LendObjecViewController

Il nous faut maintenant une Vue et un contréleur de vue pour éditer
les propriétés d'une instance de la classe LendObject. Sous XCode,
créez une nouvelle classe qui dérive de UIViewController, décochez la
case UlTableViewController subclass et cochez la case With XIB for
user interface. Nous aurons besoin en effet d'un fichier NIB pour
décrire l'interface utilisateur.

806 New File

Choose a template for your new file:

M iPhone OS5 L X L.

m h m

- - Obj-C Proto Test
User Interface

Resource Objective-C Ohjective-C Objective-C test UlViewController
Code Signing class protocol case class subclass

&i Mac O5 X

Cocoa Class
Cand C++
User Interface

Options] Targeted for iPad

Resource
Interface Builder Kit] UITableViewController subclass
Other B With XIB for user interface
m UlViewController subclass
Ve
An Objective-C class which is a subclass of UlviewController, with an optional
header file which includes the <UIKit/UIKit.h> header. A XIB file containing a view
configured for this View Controller is also included.
[Cancel) Previous m

Figure 6.20: Création de la classe LendObjectViewController

222 | 6.Contrdles complexes

Déclaration de l'interface

1 Intitulez le fichier LendObjectViewController.m puis ouvrez le fichier
LendObjectViewController.h pour déclarer les outlets et les proprié-
tés.

2 Déclarez une action -doneEditing: qui nous servira pour effacer le
clavier.

#import <UIKit/UIKit.h>
#import "LendObject.h"
@interface LendObjectViewController : UIViewController {
LendObject * lendObject;
IBOutlet UITextField * objectNameField;
IBOutlet UITextField * borrowerNameField;
IBOutlet UIDatePicker * datePicker;
}
@property (nonatomic,retain) LendObject * lendObject;
@property (nonatomic,retain) UITextField * objectNameField;
@property (nonatomic,retain) UITextField *borrowerNameField;
@property (nonatomic,retain) UIDatePicker * datePicker;
- (IBAction) doneEditing: (id)sender;
@end

Définition des méthodes

1 Ouvrez le fichier LendObjectViewController.m pour définir les ac-
cesseurs des outlets et propriétés. Modifiez la méthode -view
DidUnload pour libérer les outlets et les propriétés.

2 Créez l'action -donekditing: pour effacer le clavier comme nous
I'avons fait précédemment et créez la méthode -viewiill
Disappear:. Cette derniére méthode est définie dans la classe
UIViewController, elle est appelée lorsque la vue va disparaitre de
I"écran ; c’est le bon endroit pour prendre en compte la saisie
effectuée par |'utilisateur.

@synthesize lendObject, objectNameField, borrowerNameField,
datePicker;
- (void)viewDidUnload {
self.lendObject = nil;
self.objectNameField = nil;
self .borrowerNameField = nil;
self.datePicker = nil;

(void) viewWillDisappear: (BOOL) animated{
self.lendObject.objectName = self.objectNameField.text;
self.lendObject.borrowerName=self.borrowerNameField. text;
self.lendObject.lendDate = self.datePicker.date;
[super viewWillDisappear:animated];

6.3. Utiliser les Vues en table

223

224

- (IBAction) doneEditing: (id)sender ({
[sender resignFirstResponder];

}

Le retour vers I'écran précédent sera pris en charge par le contréleur
de navigation ; nous n‘avons pas besoin de nous en occuper ici.

Création du fichier NIB

Ouvrez le fichier LendObjectViewController.xib. Disposez les contrbles
pour batir I'interface utilisateur de saisie d’un prét.

O O O Lend Object View Controller Connections
* e & | O

¥ Qutlets
(borrowerNameField) ® Round Style Text Field @
(wpder @

searchDisplayController

(view (% View
¥ Received Actions
donekEditing: ¥ Multiple

‘% Round Style Text Field
Did End On Exit

® Round Style Text Field
Did End On Exit

¥ Referencing Outlets
New Referencing Outlet

ol |\ ® @O

22 | novembre | 2008

Figure 6.21: Interface de saisie pour le prét d'un objet

Etablissez les connexions avec les outlets et I’action du contréleur de
vue. Vous pouvez en profiter pour retoucher quelques paramétres
des contréles pour la saisie :

m augmenter la taille de caractere des champs de texte ;

m donner la valeur Done a la clé Return des champs de texte ;

m régler le sélectionneur de date en mode Date.

Nous avons terminé l'interface utilisateur pour la saisie des nou-
veaux préts. Il nous reste a programmer la fonction pour accéder a

cette saisie depuis la liste des objets prétés (toujours vide, pour
I'instant).

6. Contrdles complexes

Activer la fonction d’ajout
L'activation de la fonction d’ajout nécessite deux éléments :
® un bouton pour permettre a I'utilisateur de 'actionner ;

® une action connectée sur ce bouton pour activer l'interface utilisa-
teur de saisie.

Ajoutez une action dans le fichier ObjectListViewController.h :
- (IBAction) addItem;

La barre de navigation de l'interface utilisateur est actuellement
occupée :

m a gauche par le bouton de retour ;
® au centre par le titre de I'écran.

Il nous reste une place a droite pour le bouton d’ajout. Les boutons
de la barre de navigation sont de la classe UIBarButtonIten, ils peu-
vent comporter une image et un titre. Une vingtaine de boutons sont
prédéfinis dans Cocoa Touch que vous pouvez visualiser sous Inter-
face Builder. Nous utiliserons le bouton d’ajout standard représenté
par le signe plus.

Bouton d’ajout

Ajoutez une méthode -viewDidAppear: dans le fichier ObjectListView-
Controller.m pour y créer un bouton de barre de navigation et I'ajou-
ter a droite. Le bouton est connecté a l'action additem lors de sa
création. La méthode -viewDidAppear: est définie dans la classe
UIViewController, elle est appelée lorsque la vue vient de s’afficher a
I’écran.
- (void)viewDidAppear: (BOOL) animated {
[super viewDidAppear:animated];
UIBarButtonItem * addButton = [[UIBarButtonItem alloc]
initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
target:self action:@selector (addItem)];
self.navigationItem.rightBarButtonItem = addButton;
[addButton release];

}
Action addltem

Nous allons maintenant définir I'action additem toujours dans le fi-
chier ObjectListViewController.m. Il nous faut :

m créer un contréleur de vue de la classe LendObjectViewController,
celle que nous venons de coder pour s’occuper de la saisie ;

m charger le fichier NIB correspondant a cette classe ;

6.3. Utiliser les Vues en table

225

m créer un nouvel objet de la classe LendObjet ;
m ajouter ce nouvel objet a la liste des objets prétés ;

m transmettre ce nouvel objet au contréleur de vue pour qu’il en
effectue la saisie ;

m afficher la vue pour la saisie.

1 Déclarez la classe que nous allons utiliser en téte du fichier :

#import "LendObjectViewController.h"
2 Créez la méthode -addIten:

- (void)addItem{
LendObjectViewController * itemViewController =
[[LendObjectViewController alloc] initWithNibName:
@"LendObjectViewController" bundle:nil];
LendObject * newLendObject = [[LendObject alloc] init];
itemViewController.lendObject = newlLendObject;
[self.lendObjects addObject:newLendObject];
[self.navigationController pushViewController:
itemViewController animated:YES];
[itemViewController release];

}

3 Construisez l'application et testez-la. Tout semble fonctionner et
pourtant, I'objet créé n’apparait pas dans la liste lorsque |'utilisa-
teur revient de |I'écran de saisie ; il faut mettre la liste a jour a ce
moment-la.

Mise a jour de la liste

Il faut transmettre un message reloadbata a la vue en table pour lui
indiquer que la liste a évolué.

1 Ajoutez une méthode -viewliillAppear: dans le fichier ObjectLis-
tViewControllerm :

- (void)viewWillAppear: (BOOL)animated {
[self.tableView reloadData];
[super viewWillAppear:animated];

}

2 Construisez l'application et testez-la. La liste est mise a jour, en
tout cas il se passe quelque chose, mais le résultat n‘est pas trés
esthétique. Nous allons améliorer cela.

Améliorer I’affichage

Nous emploierons le style de cellule avec un sous-titre pour que
I'utilisateur puisse voir :

m le nom de I'objet prété en titre de cellule ;

226 | 6.Contréles complexes

m le nom de I'emprunteur et la date d’emprunt en sous-titre.

1 Modifiez la méthode -tableView:cellForRowAtIndexPath: dans le fi-

chier

}

ObjectListViewController.m :

(UITableViewCell *)tableView: (UITableView *)tableView

cellForRowAtIndexPath: (NSIndexPath *)indexPath {

static NSString *Cellldentifier = @"Cell";

UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:CellIdentifier];

if (cell == nil) {
cell = [[[UITableViewCell alloc] initWithStyle:
UITableViewCellStyleSubtitle

reuseldentifier:CelllIdentifier] autoreleasel];

}
LendObject * lendObject = [lendObjects
objectAtIndex:indexPath.row];

NSDateFormatter * formatter
[[NSDateFormatter alloc] init];

[formatter setDateFormat:Q@"dd MMMM yyyy"];
NSString * subTitle = [NSString stringWithFormat:
@"prété a %Q le %@",lendObject.borrowerName,

[formatter stringFromDate:lendObject.lendDate]];
[formatter release];
= [lendObject objectName] ;

cell. textLabel. text =
cell.detailTextLabel.text = subTitle;

return cell;

2 Construisez I'application et testez-la. Cette fois, c’est parfait.

[..-ll Opér...

= 08:58 =]

‘Catégories

La quéte d'Ewilan

prété & Jacques le 20 octobre 2009
Introduction au CMMI

prété a Yves le 14 mars 2008

Le Seigneur des Anneaux
prété & Ma Fille le 11 mai 2009

Tivre—

Figure 6.22 : Liste des objets prétés

Subsiste un petit probléme... Il ne faut pas quitter I"application.
Autrement, nous perdons tout ce que nous avons saisi. Nous allons

régler cela dés le chapitre suivant.

6.3. Utiliser les Vues en table

227

Pour aller plus loin

Nous n’avons malheureusement qu’effleuré le vaste sujet des vues
en table, de leur cellules et de la navigation entre les vues. Pour
approfondir ces sujets, nous vous invitons a consulter la documen-
tation d'Apple soit sur le site des développeurs, soit directement
sous XCode : sélectionnez la commande Class Browser du menu
Project ((Majl+d5+(C)) puis sélectionnez |'option Flat, all classes.

Méme si vous ne lisez pas I'anglais, vous pouvez consulter la liste
des propriétés et des méthodes disponibles dans chaque classe et
procéder a vos propres expérimentations.

Nous vous proposons quelques challenges par difficulté croissante.
Challenges
Challenge 1

Positionner le sélectionneur de date a la date du jour lors de I'affi-
chage de I'écran de saisie d'un nouvel objet.

Challenge 2

Autoriser la modification des préts déja saisis. Le méme écran peut
étre utilisé pour la saisie d’'un nouveau prét ou une modification.

Challenge 3

Ne pas autoriser la sortie de I'édition tant que le nom de |'objet et
celui de I'emprunteur ne sont pas saisis. Prévoir un bouton d’annu-
lation qui permette de revenir a la liste sans créer d’objet supplémen-
taire.

Challenge 4

Autoriser la suppression d’'un élément d'une liste.

6.4. Checklist

228

Nous avons mis en ceuvre dans ce chapitre des contrbles textuels
plus complexes, les sélectionneurs et les vues en table, ainsi que la
navigation entre les vues.

Nous avons détaillé le fonctionnement des sélectionneurs de date de
la classe UIDatePicker et les classes d'objets qui permettent le traite-
ment des dates et leur localisation :

6. Controles complexes

B NSDate;

B NSDateFormatter ,;

B NSTimeInterval.

Nous avons vu comment programmer un sélectionneur standard et
les protocoles qui accompagnent la classe UlpickerView :

B UIPickerViewDelegate ;

B UIPickerViewDataSource.

Nous avons exploré les principaux conteneurs utilisés en

Objective-C : les tableaux NsArray et les dictionnaires NSDictionary
ainsi que leur version modifiable.

Notre parcours nous a menés enfin vers les vues en table qui per-
mettent la navigation dans des structures de données complexes :

m la classe UlTableView ;

m les protocoles associés UlITableViewDelegate et UITableViewData
Source ,

m le controleur de vue de la classe UITableViewController qui prend
en charge ces protocoles ;

m les possibilités d’affichage des lignes avec la classe UlITable
ViewCell.

Nous avons mis en ceuvre ces techniques pour construire I'applica-
tion Emprunts1 qui est presque fonctionnelle. Il ne lui manque plus
que la mémoire ; une application qui oublie tout dés qu’on la quitte
n’est pas tres utile. Nous la doterons de souvenance des le prochain
chapitre.

6.4. Checklist

229

PERSISTANCE
DES DONNEES

Utiliser le framework Core Data ... essssssessssssesssssesenes 233
Utiliser les listes de propriétés
[Y=Y o1 1= ST

231

[
w
o
=
o
<
T
o

Sur un ordinateur, les opérations de sauvegarde des données d’'une
application sont souvent explicitement demandées par I'utilisateur,
qui peut préciser un nom de fichier. Sur un iPhone, I'utilisateur
recherche I'immédiateté. Les données doivent s’enregistrer des que
I'application se termine, a I'occasion de la prise d’un appel entrant
par exemple, et I'utilisateur souhaite retrouver I'application telle qu’il
I’a laissée.

Ce chapitre est consacré a quelques techniques d’enregistrement et
de récupération des données utilisées sur iPhone OS :

m Core Data est une technologie destinée a gérer des ensembles de
données élaborés ; elle prend en charge leur persistance.

m Les Listes de Propriétés sont une technique tres élégante pour
conserver de petits ensembles de données.

A l'issue de ce chapitre, nous aurons doté nos applications Convert-
Pro et Emprunts de la persistance des données. Ce sera également
I'opportunité de découvrir le motif Notification qui est une technique
importante de la programmation Cocoa.

7.1. Utiliser le framework Core Data

Core Data comprend un outil de description d’'un modele de don-
nées, équivalent a ce que l'on trouve sous Access ou 4D, et un
ensemble de classes permettant de manipuler les données modéli-
sées. On peut voir Core Data comme I'encapsulation d'une base de
données SQLite dans des objets Objective-C. Le framework masque
au programmeur la complexité de gestion d’une base de données ; il
n'a besoin de connaitre ni le langage SQL, ni I'administration des
bases de données, ni le format d’enregistrement des données, ni
I’entretien d’'un cache mémoire. Core Data prend tout cela en charge.

3

DEFINITION

SQLite
SQLite est un gestionnaire de base de données léger du domaine public,
écrit en C ANSI ; le code est donc portable sur différentes plateformes et
systémes d’exploitation. Une base de données SQLite tient dans un fichier
unique, lui-méme portable. Outre Cocoa, ce gestionnaire est utilisé en Py-
thon, PHP, dans Firefox et il est disponible dans de nombreuses distributions

Gnu/Linux.

7.1. Utiliser le framework Core Data | 233

Décrire le modele de données

234

Entités, attributs et relations

Dans la programmation sans Core Data, la partie Modéle (au sens du
motif MVC) de I'application est constituée d’'un ensemble de classes
d’objets définies par le développeur. Avec Core Data, le développeur
décrit le modele de données dans un fichier spécifique au format
xcdatamodel, ce fichier sera ensuite exploité par le framework pour
gérer les données, les enregistrer et les retrouver; le travail du
développeur est grandement facilité.

Dans le modele de données, le développeur définit des entités (en-
tity), I’équivalent des classes d'objet, puis les propriétés de chaque
entité. Suivant leur nature, les propriétés sont des attributs (attribute)
ou des relations (relationship) :

m Les attributs sont de type scalaire :

— booléen;

— numérique (entier, décimal ou flottant) ;
— date;

— chaine de caracteéres.

m Les relations sont des références vers d’autres entités.

Lorsqu’une relation est définie dans une entité 2, il faut préciser vers
quelle entité B doit étre établie la relation, ainsi que sa cardinalité,
c’est-a-dire les nombres minimum et maximum d’objets de type B
avec lesquels chaque objet de type 2 peut étre en relation.

Dans |'application, les instances d'une entité sont généralement de la
classe NsManagedObject. Le développeur peut dériver cette classe s'il
souhaite donner un comportement spécifique a certaines entités.

Mise en pratique sous XCode

Nous allons créer une nouvelle application sous XCode, Emprunts2,
dans laquelle la classe LendObject sera remplacée par une entité Core
Data du méme nom ; ainsi nous bénéficierons de la persistance des
données sans rédiger une ligne de code. Il nous faudra néanmoins
adapter le code que nous avions écrit dans I'application Emprunts1a
I'utilisation du framework Core Data.

Créez un nouveau projet sous XCode, de type Navigation-based Ap-
plication. Cochez la case Use Core Data for storage cette fois, et
intitulez le projet Emprunts2.

7. Persistance des données

800

New Project

Choose a template for your new project:

I iPhone OS

Library

' User Templates

MacFUSE

",J Mac 05 X

Application
Framework & Library
Application Plug-in
System Plug-in
Other

M
- -
bt
™
Navigation- OpenGL ES Split View- Tab Bar
based Application based Application
Application Application
U
Utillity View-based Window-based X
Application Application Application 3
Product iPhon
E Use Core Data for storage
Navigation-based Application
This template provides a starting point for a Core Data-based application that "
uses a navigation controller. It provides a user interface cenfigured with a "
navigation controller to display a list of items managed by a fetched results v

(" Cancel) (Choose.,.)

Figure 7.1: Utilisation de Core Data dans un nouveau projet

Vous constaterez l'existence d'un fichier Emprunts2.xcdatamodel
dans le groupe Resources du projet. Il contient le modéle de données

au format Core Data.

Nous allons mettre Core Data en ceuvre avec un modeéle simple

comprenant une relation.

Création des entités

1

Ouvrez ce fichier. Il contient un exemple d’entité, Event, avec un
attribut timeStamp. Vous pouvez soit détruire cette entité, soit la
modifier pour créer une entité LendObject. Pour détruire |'entité,
sélectionnez-la et pressez la touche (j«).

Créez une entité LendObject et ses attributs selon le tableau :

Tableau 7.1: Attributs de I'entité LendObject

Nom Type Optional Transient Indexed
objectName String Non Non Non
lendDate Date Non Non Non
borrowerName String Non Non Non

7.1. Utiliser le framework Core Data

235

N0

[si - 3.1.3 | Debug
Overview

| Emprunts2.xcdatamode|

(=]

Breakpoints _ Build and Run

=
E

Tasks Ungrouped _Project

< | » B Emprunts2.xcdatamodel ¢
Entity 4| Abs|Class
LendObject O NSMana

3 LendObject +

Property
lendDate

& kind
Attribute

o=

Add Fetched Property
Add Relationship

Add Fetch Request

[k[alo

Type or Destination
Date

Le;
¥ Attributes
lendDate

¥ Relationships

a

2, = |C. #.| &

ENL AC)

Attribute

Name: |endDate

[optional [Transient [Indexed

Type: | Date

Min Value:

Max Value

Default Value:

100%

Figure 7.2 ajout d'attributs dans le modéle de données

3 Pour chaque attribut, décochez toutes les cases Optional, Transien-

tet Indexed :

— Optional signifie que |'attribut peut étre absent. Au moment de
I'enregistrement des données, Core Data vérifie que tous les
attributs non optionnels sont présents. Si ce n’est pas le cas,

I’enregistrement est refusé

_ Transient signifie qu’il n'y a pas de donnée sauvegardée pour cet
attribut. Une entité qui posséde un attribut éphémere (Transient)
devrait étre d'une classe dérivée de NSManagedObject afin d'y
définir le comportement relatif a cet attribut.

— Indexed est employé sur les attributs que I'on veut utiliser

comme critére de recherch

e.

4 Créez une entité Category avec un attribut selon le tableau :

Tableau 7.2: Attributs de I'entité Category

Nom Type

Optional

Transient Indexed

categoryName String

Non

Non Oui

5 Cochez la case Indexed pour |'attribut categoryName. Nous aurons
besoin de retrouver tous les objets appartenant a une catégorie ;
c’est donc un critére de recherche.

236

7. Persistance des données

Création des relations
1 Sélectionnez I'entité LendObject et ajoutez une relation (rela-
tionShip). Paramétrez cette relation de la fagon suivante :
— Name ; category ;
— Optional ; non;
— Transient ; non;
— Destination ; Category ;
— Inverse ; No Inverse Relationship ;
— To-Many RelationShip ; Non ;
— Delete Rule : Nullify.

Relationship EHYL %S

Name: |category

["] Optional [] Transient

Destination: | Category I-G-]

Inverse: [No Inverse Relationship I-G-]

"] To-Many Relationship

Min Count: L Max Count: L

Delete Rule: [Nullify I-G-]
® Figure 7.3 : Parametres de la relation
category de I'entité LendObject

Nous venons d’'indiquer dans le modele de données que chaque
instance de l'entité LendObject doit étre liée a une instance (la case
Optional est décochée donc la relation est obligatoire), et une seule,
de l'entité Category (la case To-Many Relationship est décochée, un
objet prété ne peut avoir qu'une catégorie).

C’est une bonne pratique de définir une relation inverse pour cha-
cune des relations du modele de données. Cela facilite les vérifica-
tions d’intégrité réalisées par Core Data. Nous allons donc créer la
relation inverse de category.

2 Sélectionnez I'entité Category et ajoutez une relation paramétrée
de la fagon suivante :
— Name ; lendObjects ;
— Optional ; non ;
— Transient ; non;
— Destination ; LendObject ;
— Inverse ; category ;

7.1. Utiliser le framework Core Data | 237

238

— To-Many RelationShip ; Oui ;
— Delete Rule : Deny.

Relationship [f=EF SENE+]

Name: |lendObjects

[C] Optional [] Transient

Destination: | LendObject '-%-]
Inverse: | category F—H
E To-Many Relationship
Min Count: | none Max Count: none
Delete Rule: | Deny '—%-]

(@) | Figure 7.4 :Parametres de la relation
lendObjects de I'entité Category

Cette fois, la case To-Many RelationShip est cochée car une catégorie
peut contenir plusieurs objets. Nous définissons également la rela-
tion inverse. La relation inverse de category dans LendObject est
automatiquement définie a lendObjects ; les deux relations sont I'in-
verse l'une de l'autre.

Le parameétre Delete Rule définit le comportement de Core Data
lorsqu’un objet est détruit. C'est une caractéristique fonctionnelle
importante qui permet de garantir I'intégrité des données :

m No action ; I'objet est détruit sans autre action.

m Nullify ; la destruction de I'objet est prise en compte dans la rela-
tion inverse (c’est la valeur par défaut).

m Cascade ; les objets liés a I'objet détruit sont également détruits.

m Deny; I'objet ne peut étre détruit tant qu’il est en relation avec
d’autres objets.

Nous avons fixé le parameétre Delete Rule de la relation lendObjets a
Deny car nous souhaitons que l'application nous empéche de dé-
truire une catégorie tant qu’elle contient au moins un objet. Nous
allons illustrer ce comportement dans notre application Emprunts2.

LendObject
¥ Attributes
borrowerName
lendDate

Category
¥ Attributes
categoryName
- ¥ Relationships
objectName lendObjects
¥ Relationships I

|category

Figure 7.5 : Modgle de données de Emprunts2

3 Enregistrez le fichier Emprunts2.xcdatamodel une fois le modéle de
données complété.

7. Persistance des données

Programmation du modele de données

Au lancement de I'application, le fichier Emprunts2.xcdatamodel sera
lu et son contenu utilisé pour créer une instance de la classe
NSManagedObjectModel. Cette derniére contiendra I'ensemble des des-
criptions d’entité du modele, chacune étant une instance de la classe
NSEntityDescription.

En pratique, vous n’'aurez pas a utiliser directement l'instance du
modele dans vos programmes, XCode a fait le nécessaire lors de la
création du projet. Examinez les fichiers de la classe Emprunts2App
Delegate, une propriété privée managedObjectModel y est définie en
lecture seule ; deux autres propriétés relatives a Core Data y sont
également définies, nous les examinerons plus loin. L'accesseur de
cette propriété est défini explicitement dans le fichier Emprunts2App
Delegate.m :

- (NSManagedObjectModel *)managedObjectModel {

if (managedObjectModel != nil) {
return managedObjectModel;

}

managedObjectModel = [[NSManagedObjectModel
mergedModelFromBundles:nil] retain];

return managedObjectModel;

}

La méthode +mergedModelFromBundles: crée un modele de données en
regroupant tous les fichiers au format .xcdatamodel contenus dans
les paquetages passés en paramétre, ou dans le paquetage de I'ap-
plication si le parameétre passé est nil.

C’est un motif courant pour écrire un accesseur sur une propriété en

lecture seule :

m Si la propriété est différente de nil, c’est qu’elle a déja été initiali-
sée. |l suffit de la retourner.

m Si la propriété vaut nil, il faut l'initialiser et la retenir, avant de la
retourner a I'appelant.

Comprendre le fonctionnement de Core Data

La pile Core Data

Le fonctionnement de Core Data nécessite la collaboration de plu-
sieurs objets qui constituent la pile Core Data :

m Le modéle de données de la classe NSManagedObjectModel contient la
description des entités manipulées.

7.1. Utiliser le framework Core Data

239

240

Les unités de stockage de la classe NspersistentStore gerent les
acces aux différents fichiers dans lesquels les données sont
conserveées.

Le coordonnateur des unités de stockage de la classe NSpPersistent
StoreCoordinator a la responsabilité d'unifier les différentes unités
de stockage.

Les contextes Core Data, instances de la classe NSManaged
ObjectContext, sont la principale interface du développeur avec les
données Core Data.

La plupart du temps, on utilise une pile Core Data offrant une seule
unité de stockage (donc un seul fichier de données) et un seul contexte
Core Data.

[NSManagedObjectContext]

Ensemble d'objets gérés

(NSPersistentStoreCoordinator]

(NSManagedObjectModel

>

Ensemble de stockages - Descriptions des entités J

NSPersistentStore

L Stockage des donnéej

=

Figure 7.6 : Pile Core Data dans le cas d'une unité de stockage et d'un contexte uniques

Le contexte Core Data est I'objet manipulé par le développeur pour
créer, détruire ou rechercher des instances d’entités Core Data. Tous
nos controleurs de vue auront donc une propriété managedObject
Context.

7. Persistance des données

Initialisation d’une pile Core Data

Avant de pouvoir manipuler le contexte Core Data, il faut initialiser les
différents éléments de la pile. Encore une fois, XCode a réalisé tout le
travail lors de la création du projet ; la pile Core Data est construite
par le délégué de l'application et nous n‘aurons pas a ajouter une
ligne de code.

1 Ouvrez le fichier Emprunts2AppDelegate.m pour voir ce qui se
passe au lancement de I'application.

ﬁ Options de lancement
Les méthodes —applicationDidFinishLaunching: et —application:
didFinishLaunchingWithOptions: sont équivalentes. La seconde permet
de récupérer les parametres de lancement transmis a l'application, par le
systeme des notifications a distance par exemple.

2 Commencez par l'examen de la méthode -applicationDid
FinishLaunching:. Aprés avoir créé le contréleur de vue principal
rootViewController, la propriété managedObjectContext de ce dernier
est initialisée avec celle du délégué de I'application :

rootViewController.managedObjectContext =
self.managedObjectContext;

Cette instruction fait beaucoup plus que donner une valeur a une
propriété. Le délégué d’'application offre trois propriétés définies en
lecture seule :
@property (nonatomic, retain, readonly)
NSManagedObjectModel *managedObjectModel;
@property (nonatomic, retain, readonly)
NSManagedObjectContext *managedObjectContext;

@property (nonatomic, retain, readonly)
NSPersistentStoreCoordinator *persistentStoreCoordinator;

Nous avons déja examiné |'‘accesseur de la propriété managed
ObjectModel. Les deux autres accesseurs sont réalisés selon le méme
motif: si la propriété vaut nil, elle est initialisée par I'accesseur.
Regardez le code de I'accesseur -managedObjectContext, SON premier
appel déclenche en cascade 'appel des autres accesseurs et donc
I'initialisation de la pile Core Data. Considérons les instructions d’ini-
tialisation dans |I'ordre selon lequel elles sont exécutées, en suppri-
mant les contrdles d’erreur et les appels successifs, et en ajoutant
des étapes intermédiaires, pour nous concentrer sur l'essentiel, la
création de chacun des éléments de la pile Core Data :

7.1. Utiliser le framework Core Data 241

m ldentification du fichier de données a utiliser :

_ utilisation d'une fonction du framework Foundation pour obtenir
le chemin du dossier des documents par défaut :

NSString *directory = [NSSearchPathForDirectoriesInDomains
(NSDocumentDirectory, NSUserDomainMask, YES) lastObject];

— construction du chemin d’acces vers le fichier en ajoutant son
nom Emprunts2.sqlite au chemin du dossier des documents par
défaut :

NSString *storeFile = [directory
stringByAppendingPathComponent: @"Emprunts2.sqglite"];

— construction d’'un URL permettant d’accéder au fichier de don-
nees.
NSURL *storeUrl = [NSURL fileURLWithPath: storeFile];

m Création et initialisation du modéle de données :

managedObjectModel = [[NSManagedObjectModel
mergedModelFromBundles:nil] retain];

m Création et initialisation du coordonnateur des unités de stockage et
initialisation avec le modéle de données :

— création puis initialisation avec le modeéle de données :

persistentStoreCoordinator =
[[NSPersistentStoreCoordinator alloc]
initWithManagedObjectModel: [self managedObjectModel]];

— ajout d'une unité de stockage de type SQLite pointant sur le
fichier Emprunts2.sqlite :
NSError *error = nil;
[persistentStoreCoordinator
addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil
URL:storeUrl
options:nil
error: &error];

m Création et initialisation du contexte Core Data :

— création :

managedObjectContext =
[[NSManagedObjectContext alloc] init];

— initialisation avec le coordonnateur des unités de stockage :

[managedObjectContext
setPersistentStoreCoordinator: persistentStoreCoordinator];

242 | 7. Persistance des données

Nous n’aurons pas a modifier ces lignes de code mais c’est toujours
intéressant de comprendre comment cela fonctionne. Il y a vraisem-
blablement des aspects de ce code que vous ne maitrisez pas. Ce
n'est pas grave, vous n’en aurez pas besoin pour utiliser Core Data.
N’'hésitez pas a consulter la documentation afin d’approfondir ces
sujets.

Au final, nous disposons d’une propriété managedobjectContext qui est
un contexte Core Data utilisant le modele de données Emprunts2.
xcdatamodel de notre application et le fichier de données
Emprunts2.sqlite dans le dossier des documents de |'application sur
I'iPhone.

Utilisation dans une Vue en Table

Le contréleur de résultats de recherche

Le framework Core Data propose une classe NSFetchedResults
Controller, un contréleur de résultats de recherche, qui facilite I'écri-
ture du délégué et de la source de données d’une vue en table.
Vérifiez que le contréleur de vue principal du projet Emprunts2 (Roo-
tViewController) offre une propriété fetchedResultsController, ins-
tance de cette classe.

Chaque instance de NSFetchedResultsController est associée a un
contexte Core Data (propriété managedObjectContext) et a une requéte
Core Data (propriété fetchrequest). Une requéte est une instance de
la classe NSFetchRequest, elle permet de trouver les instances d'une
entité qui répondent a un critere donné ; ces instances sont celles
que |I'on souhaite afficher dans la vue en table.

Nos vues en table n’offrent qu'une section mais nous pourrions
souhaiter que les éléments de la vue en table soient regroupés en
fonction d’un critére de tri. Si nous activons cette fonction (nous
verrons comment un peu plus loin), la propriété sections du controé-
leur de résultats de recherche est un tableau dont chaque élément
décrit une section. Ce sont des objets qui répondent au protocole
<NSFetchedResultsSectionInfo>, offrant les propriétés suivantes :

B numberOfObjects ; nombre de lignes dans la section ;
m objects ; tableau contenant les objets de la section ;

®m name ; nom de la section, généralement affiché comme titre de la
section ;

B indexTitle ; titre de I'index, généralement utilisé lorsqu’un index
est affiché sur la droite de la vue en table.

7.1. Utiliser le framework Core Data

243

=

DEFINITION

244

EE

Les principales méthodes de la classe NSFetchedResultsController
sont :

B —performFetch: qui exécute la requéte associée au controleur et
retourne YES si I'exécution s’est bien déroulée, N0 autrement. Cette
méthode prend en parameétre un pointeur sur une référence d'ins-
tance de la classe NSError qui nous fournit des informations dans le
cas ou la requéte ne s’est pas bien déroulée.

B -objectAtIndexPath: qui retourne l'instance d’entité (sous forme
d’instance de NSManagedObject) qui doit étre affichée sur la ligne
identifiée par I'instance de NSIndexPath passée en parametre.

Cette classe contient également un délégué répondant au protocole
<NSFetchedResultsControllerDelegate> qui est informé de toute modi-
fication de la liste des objets. Le contréleur de vue en table qui
contient le contréleur de résultats de recherche est généralement
défini comme son délégué pour informer la vue en table que les
données ont été modifiées.

Vérifiez que la classe RootViewController du projet Emprunts2 répond
a ce protocole et en implémente notamment les méthodes
—controllerWilChangeContent: et —controllerDidChangeContent:.

Gestion des erreurs

Voici la pratique recommandée par Apple concernant la détection et
le traitement des erreurs :

m Les fonctions ou méthodes susceptibles de ne pas s’exécuter
correctement retournent NO ou nil en cas d’erreur.

m La valeur de retour est systématiquement testée dans le code
appelant.

m Une référence a un objet NSError est passée par référence et initia-
lisée en cas d’erreur.

passage par référence

n langage C, donc aussi en Objective-C, les fonctions et méthodes ne
peuvent pas modifier les parameétres qui leur sont transmis. On dit que les
parametres sont passés par valeur. Le seul moyen de modifier un parametre
est donc de passer son adresse, c’est ce que I'on appelle le passage de
parametre par référence ou par adresse.

Dans cet exemple, le parametre de la méthode —performFetch: est de type
(NSError **). On lui passe l'adresse d'une error de type NSError * en
utilisant I'opérateur de référence du langage C "serror".

7. Persistance des données

Les potentialités d’erreur sont nombreuses quand on utilise Core
Data : incompatibilité entre un modéle de données et une unité de
stockage, entité inexistante dans un modele de données, erreur de
cardinalité dans une relation, etc. Plusieurs méthodes du framework
adoptent donc la méthode de détection d’erreur préconisée. Par
exemple, la méthode —performFetch: de la classe NSFetchedResults
Controller s'utilise de la fagon suivante :
NSError *error = nil;
if (![fetchedResultsController performFetch:&error]) ({

// Traitement de 1’erreur

}

Une instance de la classe NSError est un conteneur permettant de
transmettre des informations plus riches qu’un simple code d’erreur,
facilitant ainsi le diagnostic et le traitement de I'erreur. Les principa-
les méthodes de la classe NSError sont résumées dans le tableau.

Tableau 7.3: Principales méthodes de la classe NSError

Theme Signature Objet

Création |+ (id) errorWithDomain: Crée une instance de la classe avec
(NSString *)domain code: les parametres domain, code et
(NSInteger)code userInfo: dict.
(NSDictionary *)dict

Propriétés | — (NSString *)domain Chaine de caractéres identifiant le

domaine de I'erreur

— (NSInteger)code Code d’erreur
— (NSDictionary *) userInfo Dictionnaire contenant des informa-

tions complémentaires sur le
contexte de I'erreur

Les erreurs produites par le framework Core Data sont généralement
du domaine NSCocoaErrorDomain. Une erreur est identifiée par son
domaine et son code. Nous verrons un exemple de traitement d’er-
reur dans l'application Emprunts2.

Enregistrement des données Core Data

La création de la pile Core Data, au lancement de I'application, per-
met de mettre en place la lecture du fichier de données. La structure
de données contenue dans le fichier est reproduite au besoin dans le
contexte Core Data. Toutes les modifications effectuées par I'applica-
tion (modification des propriétés, création ou suppression d'objets)
sont enregistrées dans le contexte. Elles sont enregistrées dans le
fichier de données lorsque le contexte recoit un message -save:.

7.1. Utiliser le framework Core Data

245

246

La méthode -save: applique la méthode standard pour la détection
d’erreur. Elle retourne un booléen et prend en parameétre une varia-
ble NSError passée par référence.

Cette méthode doit étre appelée notamment chaque fois qu’un objet
est créé ou détruit car ces opérations sont des sources potentielles
d’erreur ; il faut que I'utilisateur soit informé dés que possible s'il
réalise une action interdite.

Il faut également enregistrer les modifications effectuées dans le
contexte lorsque l'application est sur le point de quitter. XCode
génere le code nécessaire dans le délégué d’application, la méthode
-applicationWillTerminate est appelée juste avant que l'application
ne quitte :
- (void)applicationWillTerminate:
(UIApplication *)application {
NSError *error = nil;
if (managedObjectContext != nil) {
if ([managedObjectContext hasChanges] &&
! [managedObjectContext save:é&error]) {
NSLog (@"Unresolved error %@, %@",
error, [error userInfol]);
abort () ;

}

Dans le code proposé par défaut, un message est affiché dans la
console avec la fonction NsLog. Ce fonctionnement est suffisant pen-
dant le développement, mais pour une version distribuée, I'affichage
d’une alerte serait plus approprié.

Acces aux propriétés des objets Core Data

Les instances d’entités Core Data sont manipulées dans le code
comme des instances de la classe NSManagedObject, quel que soit le
type de l'entité. Les attributs et relations sont accessibles en utilisant
les méthodes du motif KVC sur cette instance :

B - (id)valueForKey: (NSString *)key pour obtenir une propriété ;
B - (void)setValue: (id)value forKey: (NSString *)key pour modifier
une propriété.

Dans les deux cas, la chaine de caracteres key est le nom de la
propriété tel qu’il a été défini dans le modéle de données pour
I’entité. La classe NSManagedObject vérifie que la clé employée est un
attribut ou une relation de I'entité considérée.

7. Persistance des données

Formuler des requétes

L'application Emprunts2, comme |"application Emprunts1 du chapitre
précédent, présente a l'utilisateur une liste de catégories, puis dans
la vue suivante la liste des objets prétés qui appartiennent a cette
catégorie. Chacune de ces listes est le résultat d'une requéte Core
Data affichée dans une vue en table avec son propre contrdleur de
vue :

m La premiére liste utilise une requéte qui porte sur I'entité category
et dont le résultat est I'ensemble de toutes les instances de I'entité.

m La seconde liste porte sur I'entité LendObject. Nous souhaitons
conserver dans cette liste uniquement les objets liés par la relation
category a la catégorie dont I'attribut categoryName est le nom sé-
lectionné par I'utilisateur dans la liste précédente.

Réalisation d’'une requéte

Examinez la classe RootViewController du projet Emprunts2, en parti-
culier I'accesseur de la propriété fetchResultsController. Cette mé-
thode initialise le contréleur de résultat de requéte, en particulier la
requéte qui y est associée.

Une requéte est représentée par une instance de la classe NSFetched
Request :

m Sa propriété entity représente I'entité concernée par la requéte.

m La propriété fetchBatchSize prend la valeur 20, pour limiter le nom-
bre d’objets lus en une fois dans le fichier de données. Cela permet
d’économiser la mémoire. Seules quelques lignes sont affichées a
un instant donné dans une vue en table. Il est donc inutile de lire
plus de 20 valeurs a la fois.

m La propriété sortDescriptors est un tableau de descripteurs de tri,
instances de NSSortDescriptor. Un descripteur de tri peut étre ré-
sumé comme |'association du nom d’une propriété de |'entité et
d'un ordre de tri, ascendant ou descendant.

Création de la requéte pour les catégories

Modifiez la méthode fetchrResultsController dans le fichier RootView-
Controller.m pour y définir I'entité et le critére de tri souhaités.

NSFetchRequest *fetchRequest =
[[NSFetchRequest alloc] init];
NSEntityDescription *entity =
[NSEntityDescription entityForName:(@"Category"
inManagedObjectContext:managedObjectContext];
[fetchRequest setEntity:entity];

7.1. Utiliser le framework Core Data 247

DEFINITION

248

[fetchRequest setFetchBatchSize:20];
NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
initWithKey:Q@"categoryName" ascending:YES];
NSArray *sortDescriptors = [[NSArray alloc]
initWithObjects:sortDescriptor, nil];
[fetchRequest setSortDescriptors:sortDescriptors];

Création de la requéte pour les objets

Nous avons besoin d’un contréleur de vue en table pour la liste des
objets. Ce controleur sera analogue a celui des catégories ; aussi,
nous allons en faire un clone.

Création du contréleur de vue

1 Dupliquez les fichiers RootViewController.h et RootViewController.m
sous Finder, dans le dossier du projet. Renommez-les respective-
ment ObjectListViewController.h et ObjectListViewController.m.
Ajoutez ces 2 nouveaux fichiers au projet Emprunts2 sous XCode.

2 Dans ces deux fichiers, modifiez toutes les occurrences de texte
RootViewController en ObjectListViewController. VOus pouvez pour
cela utiliser la fonction de recherche dans un fichier de XCode (36+(F)).

3 Modifiez la méthode fetchResultsController poury adapter I'entité
et le critére de tri souhaités, respectivement LendObject et lendDate.

Définition d’un critére de recherche

Le critére de recherche est donné par la propriété predicate de la
requéte NSFetchRequest. C'est une instance de la classe NSPredicate
qui doit étre initialisée avec une chaine de caracteéres.

Ajoutez une propriété category de classe NSManagedObject a la classe
ObjectListViewController que nous venons de créer. Ajoutez les li-
gnes suivantes dans la méthode fetchResultsController du fichier
ObjectListViewController.m pour sélectionner seulement les objets de
la catégorie choisie :

NSPredicate *predicate = [NSPredicate
predicateWithFormat:@"category.categoryName like %@",
[self.category valueForKey:@"categoryName"]];

[fetchRequest setPredicate:predicate];

Prédicat
Un prédicat est une proposition dont la valeur Vrai ou Faux dépend d'une
ou plusieurs variables. Le prédicat est évalué pour chaque instance d’entité.
Seuls sont retenus les objets pour lesquels le prédicat est vrai.

7. Persistance des données

Le prédicat le plus simple est une expression de comparaison d'un
attribut a une valeur. Un attribut est désigné par son nom. Ici, nous
avons utilisé la notation pointée category.categoryName ; cela signifie
que nous nous intéressons a l'attribut categoryName de I'objet lié par
la relation category a I'entité sur laquelle nous effectuons la recher-
che (LendObject).

On peut employer les opérateurs standard pour effectuer les compa-
raisons telles que =, < et >. Les chaines de caractéres sont comparées
avec |'opérateur like qui admet les caracteres joker * et 2. Il est
également possible de combiner plusieurs expressions avec les opé-
rateurs AND, OR et NOT.

L'écriture des prédicats fait I'objet d'un guide complet dans la docu-
mentation Apple (Predicate Programming Guide).

Connecter les deux controleurs de vue

Le controleur de la vue des objets vient d’étre ébauché par clonage
du contréleur de vue des catégories. Il faut maintenant établir les
connexions entre ces deux contrdleurs.

Classe ObjectListViewController

1 Modifiez la méthode viewDidLoad pour définir le titre de la vue. Il
faut également supprimer le bouton Edit a gauche de la barre de
navigation. Il sera remplacé par le bouton de retour.

self.title = [self.category valueForKey:(@'"categoryName"];
//self.navigationItem.leftBarButtonItem=self.editButton
=< Ttem;

2 Modifiez les méthodes -tableView:cellForRowAtIndexPath: et
—configureCell:atIndexPath: pour créer les cellules de la vue en
table.

- (UITableViewCell *)tableView: (UITableView *)tableView
cellForRowAtIndexPath: (NSIndexPath *)indexPath {
static NSString *CellIdentifier = @"ObjectCell";
UlTableViewCell *cell = [tableView
dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {
cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
reuseldentifier:CelllIdentifier] autorelease];
[self configureCell:cell atIndexPath:indexPath];
return cell;
}
- (void)configureCell: (UITableViewCell *)cell
atIndexPath: (NSIndexPath *)indexPath {
cell.accessoryType =

7.1. Utiliser le framework Core Data

249

250

UITableViewCellAccessoryDisclosurelIndicator;
NSManagedObject *managedObject =
[fetchedResultsController objectAtIndexPath:indexPath];
cell.textLabel.text =
[managedObject valueForKey:(@"objectName"];
NSDateFormatter * formatter =
[[NSDateFormatter alloc] init];
[formatter setDateFormat:Q@"dd MMMM yyyy"]:;
NSString * subTitle = [NSString stringWithFormat:
Q"prété a %@ le %Q",
[managedObject valueForKey:(@"borrowerName"],
[formatter stringFromDate:
[managedObject valueForKey:@"lendDate"]]];
[formatter release];
cell.detailTextLabel.text = subTitle;
}

Cette suite d’instructions ressemble a celle que nous avons écrite
pour I"application Emprunts1. Notez toutefois ces différences :

m Nous avons un identifiant de cellule objectcell, pour le distinguer
de celui que nous utiliserons pour la vue en table des catégories.

m Nous utilisons le contréleur de résultats de requéte afin d’obtenir
I'objet a afficher dans la cellule.

m Nous employons le motif KVC pour accéder aux attributs de I'objet
Core Data.

Fichier RootViewControllerm

C’est dans le fichier RootViewController.m que nous écrirons le code
afin d’utiliser le contréleur de la vue en table pour les objets.
Procédez ainsi :

1 Ajoutez une clause d'importation de la déclaration de ce contré-
leur :

#import "ObjectListViewController.h"
2 Définissez un titre de la vue en table dans la méthode didLoadview.

Autrement, vous ne distinguerez pas le bouton de retour dans la
vue suivante.

self.title = @"Catégories";
3 Définissez les cellules dans la méthode -configureCell:atIndex
Path: :

- (void)configureCell: (UITableViewCell *)cell
atIndexPath: (NSIndexPath *)indexPath {
NSManagedObject *managedObject =
[fetchedResultsController objectAtIndexPath:indexPath];

7. Persistance des données

cell.textLabel.text =

[managedObject valueForKey:(@"categoryName"];
cell.accessoryType =

UITableViewCellAccessoryDisclosurelIndicator;

4 Programmez |'affichage de la liste des cellules lorsqu’une catégo-
rie est sélectionnée. Veillez a initialiser les propriétés managed
ObjectContext et category avant d’activer le contréleur de vue.

- (void) tableView: (UITableView *)tableView
didSelectRowAtIndexPath: (NSIndexPath *)indexPath {
NSManagedObject *selectedCategory =
[fetchedResultsController objectAtIndexPath:indexPath];
ObjectListViewController * objectListViewController =
[[ObjectListViewController alloc]
initWithStyle:UITableViewStylePlain];
objectListViewController.managedObjectContext =
[fetchedResultsController managedObjectContext];
objectListViewController.category = selectedCategory;
[self.navigationController
pushViewController:objectListViewController
animated:YES];
[objectListViewController release];

}

5 Construisez I'application pour vérifier qu’il n’y a pas d’erreur dans
votre code. Vous pouvez également I'essayer sur le simulateur
mais ce premier test sera trés frustrant car la liste des catégories
est vide. Nous allons maintenant écrire le code pour créer des
catégories.

Ajouter un objet

Créer une instance d’entité

La création d'une instance d’entité nécessite le nom de I'entité et un
contexte Core Data. Elle se déroule en deux étapes :

m créer une description de /'entité ;

m créer une instance de NSManagedObject et l'initialiser pour qu’elle
devienne une instance de I'entité souhaitée, tout en I'insérant dans
le contexte.

Par exemple, si nous souhaitons créer une instance de l'entité Len-

dObject :

NSEntityDescription *entity = [NSEntityDescription
entityForName:(@"LendObject"

inManagedObjectContext: managedObjectContext];
NSManagedObject *newLendObject = [[NSManagedObject alloc]

7.1. Utiliser le framework Core Data 251

initWithEntity: entity
insertIntoManagedObjectContext: managedObjectContext];

Classes dérivées de NSManagedObject
Méme s’il est déclaré de type NSManagedObject *, I'objet retourné par la
méthode —-initWithEntity:insertIntoManagedObjectContext: est une
instance de la classe définie pour cette entité dans le modeéle de données.

REMARQUE

Créer une vue détaillée pour les catégories

Lors de sa création, il faut que l'utilisateur puisse saisir le nom de la
catégorie. Vous devez donc créer une vue spécifique et son contro-
leur:

1 Sous XCode, créez un nouveau fichier pour une classe qui dérive
de UIViewController. Cochez l'option With XIB for user interface.
Intitulez cette classe CategoryViewController.

2 Ouvrez le fichier CategoryViewController.xib pour y tracer l'inter-
face utilisateur. Vous avez besoin uniquement d’'un champ de texte
pour saisir le nom de la catégorie.

8,00 - View -
=
Nom de la catégorie a créer :
r 1

Figure 7.7 : interface utilisateur pour la saisie
d’une catégorie

3 Sous XCode, modifiez la classe CategoryViewController :

— Ajoutez une propriété NSManagedObject * category.
— Ajoutez un outlet UITextField * categoryNameField.
— Modifiez la méthode -viewDidLoad.

— Créez une méthode —viewliillDisappear: :

- (void)viewDidLoad {
self.categoryNameField. text =
[self.category valueForKey:(@"categoryName"];
self.title = @"Catégorie";
[super viewDidLoad];
}
- (void)viewWillDisappear: (BOOL)animated{
[self.category setValue:self.categoryNameField.text
forKey:(@"categoryName"] ;

252 | 7. Persistance des données

[super viewWillDisappear:animated];

}

4 Connectez I'outlet au champ de texte sous Interface Builder.

Modifier le controleur de vue principal

Il faut maintenant prévoir I'activation de la vue que nous venons de
réaliser. Le modeéle d’application que nous avons indiqué lors de la
création du projet dispose un bouton d‘ajout dans la barre de navi-
gation. L’action connectée a ce bouton est la méthode -insert
NewObject préparée par XCode.

1 Modifiez cette méthode dans le fichier RootViewController.m :

- (void) insertNewObject {
NSManagedObjectContext *context =
[fetchedResultsController managedObjectContext];
NSEntityDescription *entity =
[[fetchedResultsController fetchRequest] entity];
NSManagedObject *newManagedObject = [NSEntityDescription
insertNewObjectForEntityForName: [entity name]
inManagedObjectContext:context];

[newManagedObject
setValue:@"saisissez le nom" forKey:@"categoryName"];
NSError *error = nil;
if (! [context save:&error]) {
NSLog (@"Unresolved error %@, %Q@", error,
[error userInfol]);
abort () ;

}
CategoryViewController * itemViewController =
[[CategoryViewController alloc]

initWithNibName:Q@"CategoryViewController" bundle:nil];
itemViewController.category = newManagedObject;
[self.navigationController

pushViewController:itemViewController animated:YES];
[itemViewController release];

}

2 Ajoutez une clause #import "CategoryViewController.h" en téte du
fichier.

Vous reconnaissez dans le code proposé par XCode les instructions
pour créer un objet Core Data. La particularité ici est que le contexte
et la description de I'entité sont extraits du contréleur de résultats de
requéte. Ainsi le nom de l'entité est inscrit a un seul endroit dans le
fichier RootViewController.m ; il est plus facile d’assurer la mainte-
nance du code.

7.1. Utiliser le framework Core Data

253

Nous initialisons I'objet nouvellement créé puisque la présence de
I"attribut est obligatoire, puis nous enregistrons le contexte.

Les autres instructions sont classiques : création du contréleur de
vue pour la saisie du nom de la catégorie, initialisation de ses
propriétés et activation.

Challenge

Vous savez maintenant comment ajouter une instance d’entité a un
contexte Core Data. Nous vous proposons donc de mettre en ceuvre
la méme méthode pour la fonction d’ajout d’un objet prété.

Ce challenge est assez facile. Vous pouvez adapter le contréleur de
vue LendObjectViewController et son fichier NIB que nous avions réa-
lisés pour l"application Emprunts1.

Nous rencontrerons des challenges plus complexes dans la suite de
ce chapitre.

Supprimer un objet

254

Si vous avez testé votre application Emprunts2, vous avez constaté
que la vue principale comprenait un bouton Edit a gauche de la barre
de navigation. Si vous avez eu la curiosité de toucher ce bouton,
vous avez pu voir une vue en table en mode Edition.

[ul Opér... = 21:39 = [.ulOpér.. = 21:19 =]
Edit Catégories + Done Catégories +

DVDs >| | © DVDs

Livres > | | @ Livres

Figure 7.8 : Mode Edition d'une vue en table

Programmation du mode édition

Le bouton Edit est activé dans la méthode —viewDidLoad du contrbleur
de vue principal.

self.navigationItem.leftBarButtonItem = self.editButtonlItem;

7. Persistance des données

Par défaut, en mode Edition, un bouton permettant la suppression
est affiché dans chaque cellule. Ce comportement peut étre modifié
en implémentant la méthode -tableView:editingStyleForRowAt
IndexPath: dans le délégué de la vue en table (généralement son
contrbleur). Cette méthode doit retourner une valeur du type énu-
Mmeéré UlTableViewCellEditingStyle pour définir le style de bouton a
afficher dans la cellule.

Tableau 7.4 : Valeurs du type énuméré UlTableViewCellEditingStyle

Bouton Valeur

UITableViewCellEditingStyleNone
C07-10.png UITableViewCellEditingStyleDelete
C07-11.png UITableViewCellEditingStylelInsert

Lorsque la vue en table est en mode Edition et que I'utilisateur
touche le bouton d’édition d'une cellule, la source de données (gé-
néralement le contréleur de la vue en table) recoit le message
—tableView:commitEditingStyle:forRowAtIndexPath:. Nous allons modi-
fier cette méthode proposée par XCode.

Vérification a la suppression d’'une catégorie

La suppression d'un objet s’effectue par I'envoi du message
-deleteObject: au contexte Core Data, avec |I'objet a supprimer passé
en parametre.

Dans le modele de données, nous avons donné la valeur Deny au
parametre Delete Rule de la relation lendObjects de I'entité Category.
Nous souhaitons en effet interdire la suppression d’une catégorie
tant qu’elle contient au moins un objet. Cette régle concernant la
suppression fait partie d'un ensemble plus global nommé regles
d’intégrité.

Regles d'intégrité
Ce sont les regles que doivent respecter les données enregistrées dans
une base de données afin que cet ensemble de données conserve un sens.

DEFINITION

Les regles d'intégrité sont vérifiées par Core Data au moment de
I'enregistrement du contexte. Nous allons donc tester les valeurs
retournées par la méthode -save:, en particulier I'instance de NSError,
pour savoir si nous sommes dans le cas de la regle de suppression :

7.1. Utiliser le framework Core Data 255

m Le domaine de I'erreur est NSCocoaErrorDomain.

m Le code d'erreur est NSValidationRelationshipDeniedDeleteError.
Le traitement de cette erreur est alors :

m afficher un message d’alerte pour informer |'utilisateur ;

m réinsérer |'objet détruit dans le contexte :

- (void)tableView: (UITableView *)tableView
commitEditingStyle: (UITableViewCellEditingStyle)editingStyle
forRowAtIndexPath: (NSIndexPath *)indexPath ({
if (editingStyle == UlTableViewCellEditingStyleDelete) ({
NSManagedObjectContext *context =
[fetchedResultsController managedObjectContext];
NSManagedObject *objectToDelete =
[fetchedResultsController objectAtIndexPath:indexPath];
[context deleteObject:objectToDelete];
NSError *error = nil;
if (! [context save:&error]) {
if (([error.domain
isEqualToString:NSCocoaErrorDomain]) &&
(error.code == NSValidationRelationshipDeniedDeleteError)) {
UIAlertView * alertView = [[UIAlertView alloc]
initWithTitle:Q"Suppression d’une catégorie"
message:Q"I1 n’est pas autorisé de supprimer
une catégorie pour laquelle il existe des objets prétés"
delegate:nil
cancelButtonTitle:@"OK"
otherButtonTitles:nil];
[alertView show];
[alertView release];
}

[context insertObject:objectToDelete];

g éi Liste des codes d’erreur

REMARQUE : .
La liste des codes d’erreur de Core Data est dans la documentation Core
Data Constants Reference.

Construisez et testez I'application. Son comportement devrait étre
satisfaisant maintenant.

256 7. Persistance des données

Suppression d'une catégorie

Il n'est pas autorisé de supprimer

Figure 7.9 : Détection d’erreur lors de la
suppression

Challenges
Challenge 1

Finalisez I'application Emprunts2 pour permettre a l'utilisateur de
supprimer un objet prété.

Challenge 2

Ajoutez une fonctionnalité permettant a |'utilisateur de voir la liste de
tous les objets prétés. Pour que cette fonction soit utilisable, il faut
penser a permettre a l'utilisateur de préciser la catégorie d'un objet
lors de sa création.

Challenge 3

Un challenge purement technique, les classes RootViewController et
ObjectListViewController se ressemblent beaucoup. Il y a de nom-
breuses lignes de code dupliquées, ce qui ne favorise pas la mainte-
nance.

Ecrivez une classe qui puisse étre utilisée pour remplacer ces deux
contréleurs de vue.

7.1. Utiliser le framework Core Data

257

7.2. Utiliser les listes de propriétés

Core Data est un trés bon framework mais sans doute lourd dans les
situations ou seules quelques données sont concernées. Les Listes
de propriétés (property list) sont plus faciles a employer.

Format des listes de propriétés

Vous avez déja utilisé une liste de propriété : le fichier au format .plist
que I'on trouve dans tous les projets et dans lequel vous avez défini
I'icbne de l'application.

Key Value
w Information Property List (12 items)

Localization native development region English
Bundle display name ${PRODUCT_NAME}
Executable file S{EXECUTABLE_MAME}
Icon file
Bundle identifier com.yourcempany.5{PRODUCT_NAME:rfc1034identifier}
InfoDictionary version 6.0
Bundle name 3{PRODUCT_NAME}
Bundle OS5 Type code APPL
Bundle creator OS Type code e
Bundle version 1.0
Application requires iPhone envirenmen E
Main nib file base name MainWindow

Figure 7.10: Exemple de liste de propriétés

Ce fichier est au format XML. Il contient un dictionnaire composé
d’'un ensemble de couples (clé, valeur) :

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundleDisplayName</key>
<string>${PRODUCT NAME}</string>
<key>CFBundleExecutable</key>
<string>${EXECUTABLE_NAME}</string>
<key>CFBundleIconFile</key>
<string></string>
<key>CFBundleIdentifier</key>
<string>com.yourcompany.
${PRODUCT NAME:rfcl034identifier}</string>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundleName</key>
<string>${PRODUCT NAME}</string>
<key>CFBundlePackageType</key>

258 | 7. Persistance des données

<string>APPL</string>
<key>CFBundleSignature</key>
<string>????</string>
<key>CFBundleVersion</key>
<string>1.0</string>
<key>LSRequiresIPhone0S</key>
<true/>
<key>NSMainNibFile</key>
<string>MainWindow</string>

</dict>

</plist>

Utilisation des listes de propriétés

Acces a une liste de propriétés

Une liste de propriétés est un dictionnaire, la classe NSDictionary
dispose donc des méthodes pour y accéder :

B + (id)dictionaryWithContentsOfFile: (NSString *)path permet de
créer un dictionnaire a partir de la liste de propriétés dont le
chemin d’acces est passé en parametre.

B - (BOOL)writeToFile: (NSString *)path atomically: (BOOL)flag per-
met d’enregistrer le récepteur dans un fichier dont le chemin
d’accés est passé en paramétre. Le parameétre atomically permet
de garantir I'intégrité du fichier. En cas d’erreur lors de I'écriture, le
fichier n’est pas modifié si ce parameétre vaut YES.

Types de données

Une liste de propriétés est donc un dictionnaire soumis a quelques
limitations :

m Les clés sont obligatoirement des chaines de caractéres.
m Les valeurs doivent étre de I'un des types prédéfinis ci-apreés.

Le tableau indique, pour chaque type autorisé, I'étiquette utilisée
dans le fichier XML et la classe d’objet correspondante.

Tableau 7.5: Types de données autorisés dans une liste de propriétes

Type Elément XML Classe Objective-C
Tableau <array> NSArray
Dictionnaire <dict> NSDictionary
Chaine de caracteres <string> NSString

Data <data> NSData

Date <date> NSDate

7.2. Utiliser les listes de propriétés

259

Tableau 7.5: Types de données autorisés dans une liste de propriétés

Type Elément XML Classe Objective-C

Nombre entier <integer> NSNumber (intValue)
Nombre réel <real> NSNumber (floatValue)
Booléen <true/>ou<false/> NSNumber (boolValue)

Mise en pratique

Nous allons reprendre notre application Convertisseur2 pour la doter
de la persistance des données. Le principe sera le suivant :

m Des méthodes pour lire et écrire un fichier sont ajoutées a la classe
Convertisseur. C'est elle qui détient les données que nous souhai-
tons persistantes.

m Le fichier de données est lu au démarrage de I'application puis
écrit lorsque l'application va quitter.

Modifier la classe Convertisseur

1 Ajoutez la déclaration des méthodes dans le fichier Convertis-
seur.h:

- (BOOL) readFromFile: (NSString *)path;
- (BOOL)writeToFile: (NSString *)path atomically: (BOOL)flag;

Ces méthodes prennent les mémes parameétres que les méthodes de
NSDictionary pour la lecture et I'écriture d’une liste de propriétés.
Leur travail consistera essentiellement a constituer un dictionnaire
intermédiaire.

2 Ajoutez-les dans le fichier Convertisseur.m.

- (BOOL) readFromFile: (NSString *)path{
if ([self init]) {
NSDictionary * dict = [NSDictionary
dictionaryWithContentsOfFile:path];
if (dict) |
dollar =
[[dict objectForKey:@"dollar"] floatValue];
euro = [[dict objectForKey:Q@"euro"] floatValue];
dollarsPourUnEuro =
[[dict objectForKey:@"dollarsPourUnEuro"] floatValue];
}
}
return self;

}
- (BOOL)writeToFile: (NSString *)path atomically: (BOOL)flag{

260 | 7. Persistance des données

NSDictionary *dict = [NSDictionary dictionaryWithObjects:
[NSArray arrayWithObjects:

[NSNumber numberWithFloat:self.dollar],
[NSNumber numberWithFloat:self.euro],

[NSNumber numberWithFloat:self.dollarsPourUnEuro],nil]

forKeys: [NSArray arrayWithObjects:
@"dollar",@"euro",@"dollarsPourUnEuro",nil]];
return [dict writeToFile:path atomically:flag];
}

Classe NSNumber

La classe NSNumber utilisée précédemment sert a empaqueter un
nombre, entier ou flottant, dans un objet. On ne peut pas insérer
directement une valeur de type int ou float dans un conteneur
NSArray OU NSDictionary. On utilise donc la classe NSNumber. On em-
ploie également cette classe avec le motif KVC.

Tableau 7.6 : Principales méthodes de la classe NSNumber

Theme Signature de la méthode Remarque

Créer un nombre + (NSNumber *) number <Type> doit étre remplacé par
Wih<Type>: (type) value |l'undestypes scalaires ci-apres.

Obtenir la valeur d'un |- (type) <type>Value

nombre

Les types scalaires utilisables sont: Bool, Char, Double, Float, Int,
Integer, Long, LongLong, Short, UnsignedChar, UnsignedInt, Unsigned
Integer, UnsignedLong, UnsignedLongLong €t UnsignedShort.

Le nom du type utilisé prend une majuscule dans les méthodes
+number, et une minuscule dans les méthodes value. Par exemple :

+ (NSNumber *) numberWihLongLong: (long long) value

- (long long) longLongValue

Lecture au démarrage de l'application

Jusqu’a présent, nous avons réalisé les initialisations dans le délé-
gué d'application. Dans l"application Convertisseur2, ce délégué n'a
pas de propriété convertisseur contrairement au contréleur de la vue
principale. Nous aurons donc moins de code a modifier si I'initiali-
sation est réalisée dans ce dernier.

Identification du fichier

Nous allons nous inspirer de la technique utilisée pour identifier et
gérer I'unité de stockage Core Data.

7.2. Utiliser les listes de propriétés | 261

262

1 Déclarez une propriété NSstring * storeFile dans l'interface de la
classe MainvViewController puis ajoutez le synthétiseur des acces-
seurs pour cette propriété dans le fichier MainViewController.m

2 Ajoutez la définition de I'accesseur :

- (NSString *)storeFile {
if (!storeFile){
NSString *directory =
[NSSearchPathForDirectoriesInDomains (NSDocumentDirectory,
NSUserDomainMask, YES) lastObject];
storeFile = [directory stringByAppendingPathComponent:
@"Convertisseur.plist"];
[storeFile retainl];

}

return storeFile;

}

Nous utiliserons un fichier nommé Convertisseur.plist situé dans le
dossier des documents.

Initialisation

Les initialisations de I'interface utilisateur doivent étre réalisées dans
la méthode —viewDidLoad du contrdleur de vue, c’est le bon endroit
pour lire la liste de propriétés et initialiser les champs de texte :
- (void)viewDidLoad {

[super viewDidLoad];

[self.convertisseur readFromFile:self.storeFile];

euroField. text =

stringWithCurrency (self.convertisseur.euro) ;

dollarField.text =
stringWithCurrency (self.convertisseur.dollar) ;

}

La propriété storerFile est obtenue en passant par son accesseur ;
cela garantit qu’elle contiendra le chemin du fichier a utiliser.

Ecriture lorsque I'application quitte

Lorsque l'application se termine, nous savons que le message
-applicationWillTerminate est transmis au délégué d’application. Ce
serait I'endroit idéal pour sauvegarder I'objet convertisseur dans la
liste de propriétés Convertisseur.plist. Mais la lecture du fichier est
réalisée dans le contréleur de vue. C'est ce dernier qui posséde les
propriétés convertisseur et storeFile. Il est donc logique que I'écri-
ture du fichier soit également réalisée dans le contréleur de vue.

Il faut que le contréleur de vue soit prévenu lorsque I'application va
se terminer, de la méme facon que le délégué d’application.

7. Persistance des données

Notifications

Le framework Cocoa Touch propose le mécanisme des notifications.
Chaque fois qu'un événement important se produit, le Centre de
notification est informé. Les objets qui souhaitent étre informés de
ces événements doivent s’abonner au centre de notification.

Comment connaitre la liste des événements disponibles ? Dites-vous
que toutes les classes possédant un délégué sont susceptibles
d’émettre des notifications. A titre d’exemple, le tableau ci-aprés
indique quelques notifications émises par les classes que nous
connaissons déja.

Tableau 7.7 : Exemples de notifications émises

Classe Notification
UlTextField UITextFieldTextDidBeginEditingNotification
UITextFieldTextDidChangeNotification

UlTextFieldTextDidEndEditingNotification
UlTableView UlITableViewSelectionDidChangeNotification

UIApplication|UIApplicationDidBecomeActiveNotification

UIApplicationDidFinishLaunchingNotification

UIApplicationDidReceiveMemoryWarningNotification

UIApplicationSignificantTimeChangeNotification

UIApplicationWillResignActiveNotification

UIApplicationWillTerminateNotification

Le délégué est informé des événements importants mais on voit
également que le mécanisme des notifications le permet aussi a tout
objet d'étre informé de ces événements.

Nous allons abonner le contréleur de vue principal de Convertisseur2
a la notification UIapplicationWillTerminateNotification.

Programmer 'labonnement

Modifiez la méthode —initwithNibName: dans le fichier MainViewCon-
troller.m.

- (id) initWithNibName: (NSString *)nibNameOrNil
bundle: (NSBundle *)nibBundleOrNil {
if (self = [super initWithNibName:nibNameOrNil
bundle:nibBundleOrNil]) {
[[NSNotificationCenter defaultCenter]
addObserver:self
selector:@selector (applicationWillTerminate:)

7.2. Utiliser les listes de propriétés

263

name:UIApplicationWillTerminateNotification
object:nil];
}

return self;

}

Nous indiquons au centre de notification par défaut que nous sou-
haitons que le message applicationWillTerminate: SOit transmis au
contrbéleur de vue principal (addobserver:self), lorsque I'application
est sur le point de se terminer, quel que soit I'objet émettant cette
notification (object:nil).

Le controleur de vue principal devient un observateur. |l ne faut pas
oublier de supprimer I'observateur lorsqu’il est appelé a disparaitre.
- (void)dealloc {
[self viewDidUnload];
[[NSNotificationCenter defaultCenter]
removeObserver:self];
[super dealloc];

}

Réception de la notification

Il suffit maintenant d’ajouter la déclaration de la méthode
applicationWillTerminate: dans le fichier MainViewController.h :

- (void)applicationWillTerminate:
(NSNotification *)notification;

Définissez ensuite cette méthode dans le fichier MainViewControl-
ler.m.

- (void)applicationWillTerminate:
(NSNotification *)notification{
[self.convertisseur writeToFile:self.storeFile
atomically:YES];
}

L’'instance de la classe NSNotification qui est regue par cette méthode
est un conteneur dont les propriétés décrivent la notification :

B name est un NSString contenant le nom de la notification.

B object est I'objet qui a émis la notification.

m userInfo est un dictionnaire contenant des informations complé-
mentaires optionnelles.

7.3. Checklist

Nous avons exploré deux techniques importantes mises en ceuvre
pour la persistance des données :

264 ‘ 7. Persistance des données

m Core Data qui permet de réaliser de petites bases de données :
— les entités, attributs et relations ;
— les regles d’intégrité ;
— la pile Core Data, composée des unités de stockage, du coor-
donnateur, du modeéle de données et du contexte.

m les listes de propriétés qui permettent la persistance de dictionnai-
res de données :

— le format XML utilisé pour représenter un dictionnaire ;
— les types de données autorisés.

Nous avons également avancé dans notre compréhension des vues
en table et de la navigation par barre de navigation :

m le mode Edition ;

m la classe NSFetchedResultsController qui facilite I'utilisation de Core
Data et son délégué.

Nous avons vu les classes NSError, NSNumber et NSNotification et le
motif notification/observation.

7.3. Checklist

265

DESSINS
ET ANIMATIONS

ANIMET [€S IMAJES oot sssse s 269
Dessiner avet QUATIZ2D .. sssss s ssssssssssssssssssssseens 282
Débuter la 3D avec OPeNGL ES ...t ssssssssesees 290
Checklist

267

Nous en avons terminé avec les interfaces utilisateur un peu tristes
contenant des champs de texte et des boutons. Nous allons mainte-
nant tirer parti des possibilités graphiques de I'iPhone, en particulier
de ses capacités a gérer les animations. Nous apprendrons égale-
ment a agrémenter nos applications avec des effets sonores.

8.1. Animer les images

Il existe deux techniques pour agrémenter son interface utilisateur
avec des éléments graphiques :

m disposer d'images préparées, positionnées voire animées par le
programme ;

m coder les instructions pour que le programme dessine.

Le plus simple et le plus efficace est de disposer d'images déja
prétes, au format PNG ou JPEG. Nous avons déja appris a position-
ner une image statique avec Interface Builder dans le chapitre consa-
cré a la prise en main du SDK. Nous nous attacherons ici aux deux
techniques d’animation utilisées avec les images :

m animation du contenu de I'image : les images animées ;
m déplacement d’'une image sur |'écran.

Images animées

La technique d'animation d’une image est celle utilisée dans les des-
sins animés : nous affichons une succession d’images a un rythme
rapide, par exemple 30 images par seconde, pour produire la sensa-
tion d’animation. Nous supposerons donc que nous disposons d'un
ensemble d’'images. Il nous reste a voir comment utiliser cet ensem-
ble dans une application iPhone.

Application Terre

L'objet de I'application Terre est de voir tourner le globe terrestre. La
rotation compleéete du globe est décomposée en 44 images au format
PNG disponibles dans les exemples complémentaires a cet ouvrage.
Vous pouvez aussi choisir votre propre séquence d'images pour
réaliser cette application (voir Figure 8.1).

L'interface utilisateur doit contenir une vue de type UIImagevView dans
laguelle sera effectuée I'animation.

8.1. Animer les images | 269

270

.l Opér... = 23:11 [

Figure 8.1 : Application Terre

Contréleur de vue
1

Sous XCode, créez une application de type View Based Application
et nommez-la Terre. Ajoutez au projet les fichiers d'images pour
composer l'animation.

Modifiez lI'interface de la classe TerrevViewController pour y décla-
rer I'outlet terre de type UIImageView*.

@interface TerreViewController : UIViewController {
IBOutlet UIImageView *terre;

}

@property (nonatomic,retain) UIImageView *terre;

@end

Nous allons maintenant écrire le code pour charger les 44 images
dans la vue terre puis déclencher I'animation.

3

Modifiez la méthode -viewbidLoad dans le fichier TerreViewControl-
ler.m. N'oubliez pas d’enlever la mise en commentaire de cette
méthode :

- (void)viewDidLoad {
[super viewDidLoad];
NSMutableArray *images = [[NSMutableArray alloc] init];
for (int i=1;i<=44;i++) {
UIImage *oneImage=[UIImage imageNamed: [NSString
stringWithFormat:@"%d.png" ,i]];
[images addObject:onelImage] ;

8. Dessins et animations

terre.animationImages = [NSArray arrayWithArray:images];
[images release];
[terre startAnimating];

}

Les fichiers images sont nommeés 1.png, 2.png, etc. jusqu’a 44.png. La
meéthode contient donc une boucle pour composer le nom de chaque
fichier et I'ajouter dans le tableau modifiable images. Ce tableau est
ensuite converti en tableau immuable, pour améliorer les perfor-
mances, avant d'étre utilisé pour initialiser la propriété
animationImages de la vue terre. Enfin, I'animation de cette vue est
déclenchée par I’émission du message startAnimating.

Interface utilisateur

1 Ouvrez le fichier TerreViewController.xib pour composer l'interface
utilisateur. Ajoutez une Vue Image (/Image View) et liez-la avec
I'outlet terre du contréleur de vue.

2 Utilisez I'inspecteur d'attributs pour définir le mode de dessin de
I'image comme souhaité. Vous pouvez faire glisser I'une des ima-
ges a partir de la bibliothéque media dans la vue image pour
réaliser des essais.

8.0.0 i ibutes
¥ Image View
Image | j
¥ View
_—-‘l-.__
Mode [Scale To Fill 4
Alpha . ool
Tag o
Drawing "] Opaque [C] Hidden
["] Clear Context Befare Drawing
[Clip Subviews
W Autoresize Subviews Figure 8.2 : Mode de dessin

Les modes les plus appropriés sont généralement les suivants :

m Scale To Fill redimensionne I'image qui sera insérée pour qu’elle
remplisse toute la vue.

m Aspect Fit redimensionne lI'image pour qu’elle prenne la place
maximale sans que son aspect soit modifié. Les zones éventuelle-
ment non occupées sont transparentes.

8.1. Animer les images

271

272

m Aspect Fill redimensionne I'image pour qu’elle occupe toute la vue
sans que son aspect soit modifié. Certaines parties de I'image
peuvent étre coupées.

m Center centre I'image dans la vue sans la redimensionner.

Vous pouvez tester votre application.

Classe Ullmage

Dans la méthode -viewDidLoad, nous utilisons la méthode
-imageNamed: de la classe UlImage pour créer une image. Le parameétre
de cette méthode est le nom d’un fichier, y compris I'extension mais
sans chemin d’acceés. Le fichier est recherché dans les ressources de
I"application.

Cette classe dispose aussi de la méthode -imageWithContentsOfFile:
qui joue le méme réle mais prend en parameétre le chemin d’acces
complet a un fichier. Ces deux méthodes retournent nil si le fichier
n'a pu étre trouvé.

Challenge

Le code que nous avons écrit fonctionne pour charger 44 images. |l
serait plus facile d’en assurer la maintenance s’il ne contenait pas
cette information, s’il fonctionnait quel que soit le nombre d'images
insérées dans les ressources de |'application.

Modifiez la méthode -viewDidLoad du contréleur de vue pour qu’elle
ne dépende plus du nombre d’images a lire.

Classe UllmageView

La création d'une animation était trés simple : tout le travail est
réalisé par la classe UlImageview. Elle mérite qu’on la regarde plus
attentivement ; les méthodes et propriétés les plus utilisées sont
documentées dans le tableau.

Tableau 8.1: Principales méthodes et propriétés de la classe UllmageView

Theme Signature Objet

Initialisation |- (id) initWithImage: Initialise le récepteur avec une image.
(UIImage *)image

Image @property (nonatomic, Image contenue dans le récepteur.
retain) UIImage *image

8. Dessins et animations

Tableau 8.1: Principales méthodes et propriétés de la classe UllmageView
Théme Signature Objet
Animation |@property (nonatomic, Tableau d'images pour I'animation. Si cette

copy)
*animationImages

NSArray

propriété est initialisée, la propriété image
n'est pas utilisée.

@property (nonatomic)
NSTimeInterval
animationDuration

Durée d'un cycle en secondes. Par défaut, le
cycle est calculé pour une vitesse d’affi-
chage de 30 images pas seconde.

@property (nonatomic)
NSInteger animation
RepeatCount

Nombre de cycles a dérouler avant I'arrét de
I'animation. Par défaut 0; I'animation ne s'ar-
réte pas seule.

(void) startAnimating

Démarre I'animation.

(void) stopAnimating

Stoppe I'animation.

(BOOL) isAnimating

Retourne YES si I'animation est en cours.

Sonoriser une application

Pour donner encore plus de vie a une application, on peut lui adjoin-
dre des effets sonores. Nous allons ajouter un bruit d’ambiance sur la
rotation du globe terrestre.

1 Ajoutez un fichier au format MP3 ou au format WAV au projet Terre,
par exemple ambiance.mp3. Ajoutez les lignes de code suivantes
dans la méthode -viewDidLoad du contrbleur de vue :

NSError *error;
player = [[AVAudioPlayer alloc] initWithContentsOfURL:
[NSURL fileURLWithPath:[[NSBundle mainBundle]
pathForResource:@"ambiance"
ofType:Q@"mp3"
inDirectory:@"/"]]
-1;

error: &error];
player.numberOfLoops =
[player prepareToPlay];
[player playl;

2 Ajoutez une propriété AvAudioPlayer *player a la classe

TerreViewController.

Nous avons créé un lecteur audio, une instance de la classe
AvAaudioPlayer. Nous I'avons initialisé avec le fichier ambiance.mp3.
Nous avons ensuite demandé a ce lecteur de préparer la restitution
puis de lire le fichier sonore.

Les méthodes principales de cette classe sont :

W -initWithContentOfURL:error: pour initialiser le lecteur avec le
contenu d’'une URL ;

8.1. Animer les images

273

g éi Format des sons

REMARQUE

w

-prepareToPlay pour préparer la restitution ;
-play pour commencer la lecture ;

-pause pour suspendre la lecture ;

-stop pour arréter la lecture.

Testez I'application afin de vérifier que la terre tourne maintenant
dans une belle ambiance sonore.

L’'iPhone sait lire plusieurs formats sonores mais les meilleures perfor-
mances sont atteintes avec le format natif du processeur : PCM 16 bits signé,
little endian, 44 100 Hz, encapsulé dans un fichier WAV ou AIF.

Déplacer une image

Intéressons-nous maintenant a la technique de base permettant de
déplacer sur I'écran un objet représenté par une image. Cette der-
niere pourra ensuite étre enrichie pour animer plusieurs objets. Nous
aborderons plus tard les techniques permettant de créer des images
par programmation : Quartz2D puis OpenGL-ES.

274

Nous illustrerons cette technique avec le déplacement d’'une boule
sur une table de billard.

Débuter I'application

1

Créez une application Billard de type View Based Application.
Ajoutez un outlet ball de type UIImageview* a la classe
BillardViewController :

@interface BillardViewController : UIViewController {

IBOutlet UIImageView *ball;
}

@property (nonatomic,retain) UIImageView *ball;
@end

Ajoutez aux ressources du projet un fichier au format PNG ou JPEG
contenant une image représentant la boule de billard. L'effet gra-
phique sera optimal si le pourtour de la bille est transparent,
I'image doit contenir une couche Alpha (voir Figure 8.3).

8. Dessins et animations

DEFINITION

Couche Alpha
Sur iPhone PS, les couleurs sont définies par quatre composantes dont la
valeur est comprise entre 0. et 1.0. Les trois premiéres définissent I'intensité
des couleurs primaires, Rouge, Vert et Bleu, la quatrieme est la valeur Alpha
de la couleur qui en définit le niveau de transparence ; 1.0 pour une couleur
opaque et 0. pour une couleur totalement transparente.

Figure 8.3: Effet de la transparence sur le pourtour de la bille

3 Ouvrez le fichier BillardViewController.xib pour préparer l'interface
utilisateur :

— Modifiez la couleur de fond de la vue principale pour obtenir un
vert proche du feutre d’une table de billard.

— Faites glisser I'image de la boule de billard depuis la bibliothe-
gue media d’Interface Builder sur la vue principale.

— Si vous souhaitez modifier la taille de I'image, choisissez le
mode approprié, par exemple Aspect Fit.

— Connectez I'outlet ball du propriétaire du fichier (File’s owner) a
I'image de la bille, en fait a la vue image (/Image View) contenant
I'image.

Se repérer dans une vue

Jusqu’a présent, nous avons utilisé Interface Builder pour disposer
les différents éléments de l'interface utilisateur. Nous allons mainte-
nant procéder par programmation ; il faut donc comprendre com-
ment est définie la position d’une vue sur I'écran.

Un systeme de coordonnées par vue

Dans la hiérarchie des vues dont est composée l'interface utilisateur,
chaque vue dispose de son propre systeme de coordonnées. Sur
iPhone OS, I'origine par défaut se situe en haut a gauche de la vue,
I'axe des abscisses défile de gauche a droite et I'axe des ordon-
nées de haut en bas.

8.1. Animer les images

275

(0,0) X

vue

vue incluse

Y

Figure 8.4 : Systeme de coordonnées d'une vue

A Mac 0S X etiPhone 0S

ATTENTION o . .
Pour les habitués de la programmation sur Mac OS X, sur lequel I'origine
des coordonnées se situe en bas a gauche de la vue sous Cocoa, I'axe des
ordonnées est inversé par rapport a Cocoa Touch.

Frame et Bounds

La position d’'une vue incluse dans sa super-vue s'appelle le cadre-
(frame) de la vue. C’est le rectangle, exprimé dans le systeme de
coordonnées de la super-vue, dans lequel la vue est inscrite.

Un rectangle est défini par:
®m un point ; I'origine du rectangle ;
m une taille, c’est-a-dire une largeur et une hauteur.

@ Taille "négative"

REMARQUE

La largeur ou la hauteur d'un rectangle peuvent étre négatives. Leur signe
permet de déterminer la position de l'origine : par exemple, si elles sont

276 ‘ 8. Dessins et animations

REMARQUE

. éi positives, I'origine du rectangle est son angle en haut a gauche. Si elles
sont toutes deux négatives, I'origine est son angle en bas a droite.

Une vue incluse peut elle-méme contenir d’autres vues, il faut donc
définir son systéme de coordonnées. Cela est fait indirectement en
exprimant le cadre dans les coordonnées de la vue: les limites-
(bounds) de la vue. Par défaut, le rectangle défini par les limites
présente la méme taille que le cadre et (0.,0.) pour origine.

Le cadre et les limites sont un seul et méme rectangle, mais le cadre
est exprimé dans les coordonnées de la super-vue alors que les
limites le sont dans les coordonnées de la vue incluse.

Trois propriétés de la classe UIView sont interdépendantes, frame (le
cadre), bounds (les limites) et center (les coordonnées du centre de la
vue incluse, exprimées dans les coordonnées de la super-vue) :

m Lorsque frame est modifiée, center est recalculée et la taille de
bounds prend la valeur de la taille de frame.

m Lorsque la taille de bounds est modifiée, elle est utilisée ainsi que
center pour recalculer frame.

m Lorsque center est modifiée, I'origine de frame est recalculée.
Types C pour les éléments graphiques

Les propriétés frame et bounds sont de type CGrect, La propriété center
est de type CcGproint, deux structures C.

Tableau 8.2: Principales structures C utilisées pour les opérations graphiques

Structure Composition Utilisation
CGRect CGPoint origin Origine du rectangle
CGSize size Taille du rectangle
CGPoint CGFloat x Abscisse du point
CGFloat y Ordonnée du point
CGSize CGFloat width Largeur
CGFloat height Hauteur

S’agissant de structures C, leurs éléments sont donc accessibles par
la notation pointée, par exemple ball.center.x pour |'abscisse du
centre de la boule et ball.center.y pour son ordonnée.

8.1. Animer les images

277

u@ CGFloat

REMARQUE _
Le type CGFloat est un synonyme de float défini dans le framework

CoreGraphics. Nous avons déja rencontré des types spécifiques a un fra-
mework, par exemple NSInteger. C'est une pratique qui permet d’améliorer
la portabilité du code.

m@mu Les structures ne sont pas des classes
Les variables et propriétés graphiques sont généralement des structures,
pas des références, contrairement aux objets qui sont toujours des référen-
ces. En pratique, la déclaration des variables ne contient pas le caractére *. Ce
sont des structures :

UIView * myView ; // référence sur un objet
CGRect rect ; // variable de type structure

Le framework CoreGraphics fournit plus de 30 fonctions pratiques
pour manipuler ces structures géométriques, par exemple :

m des constructeurs :

— CGPoint CGPointMake (CGFloat x,CGFloat vy) ;

— CGSize CGSizeMake (CGFloat width,CGFloat height) ;

— CGRect CGRectMake (CGFloat x,CGFloat y,CGFloat width,CGFloat height).
m des comparateurs .

— bool CGRectContainsPoint (CGRect rect,CGPoint point) ;

— CGRect CGRectIntersection (CGRect rl,CGRect r2).
m des calculs d'informations :

— CGFloat CGRectGetMinX (CGRect rect) ;
— CGFloat CGRectGetMaxY (CGRect rect).

Vous trouverez la liste exhaustive de ces fonctions dans la documen-
tation CGGeometry Reference.

Animer la boule de billard

Aprés cette introduction sur les concepts des coordonnées graphi-
ques, revenons a notre application Billard.

Nous avons besoin de plusieurs éléments pour animer la boule de
billard :

278 | 8. Dessins et animations

la valeur d’un déplacement élémentaire ;

une méthode qui réalise un déplacement élémentaire ;

la fréquence des déplacements élémentaires ;

un moyen de séquencer les déplacements élémentaires a la bonne
fréquence.

1 Modifiez le fichier BillardViewController.h pour y ajouter la mé-
thode -moveBall qui réalisera un déplacement élémentaire et les
variables d’instances qui contiendront la valeur d’un déplacement
élémentaire.

@interface BillardViewController : UIViewController {
IBOutlet UIImageView *ball;
CGFloat moveX;
CGFloat moveY;

}

@property (nonatomic, retain) UIImageView *ball;
- (void)moveBall;
@end

2 Dans le fichier BillardViewController.m, définissez une constante
timerInterval a la valeur souhaitée pour la fréquence de rafraichis-
sement, 1/30° de seconde :

#import "BillardViewController.h"

const float timerInterval = 1./30.;
@implementation BillardViewController

3 Modifiez la méthode -viewDidLoad pour initialiser la valeur du dé-
placement élémentaire et lancer le premier déplacement :

- (void)viewDidLoad {
[super viewDidLoad];
moveX 3.;
moveY = -5.;

[self moveBall];

}
4 Ecrivez la méthode -moveRall :

- (void) moveBall {
CGPoint center = ball.center;
center.x += moveX;
center.y += moveY;
ball.center = center;
[self performSelector:@selector (moveBall)
withObject:nil afterDelay:timerIntervall];

}

Aprés avoir déplacé la boule en modifiant sa propriété center, nous
armons un temporisateur qui va réémettre le message -moveBall
aprés une attente de timerInterval secondes. La méthode -perform

8.1. Animer les images

279

280

Selector:withObject:afterDelay: est disponible pour tous les objets,
quelle que soit leur classe. Son parameétre withObject: est utilisé
comme parametre du message armé si le sélecteur attend un para-
meétre.

5 Construisez I'application et testez-la sur le simulateur. La boule se
déplace correctement mais malheureusement, elle disparait rapi-
dement. Nous allons maintenant implémenter les rebonds sur les
bandes de la table de billard.

Détecter les bandes

Dans les nombreux jeux que vous programmerez, il vous faudra
surveiller les interactions entre différents objets. Le framework Core-
Graphics propose la fonction CGRectIntersectsRect qui prend deux
rectangles en parameétres et retourne YES si ces rectangles se recou-
vrent au moins en partie, et N0 s’ils sont disjoints. Cette fonction est
intéressante pour détecter si deux objets sont en contacts mais ne
convient pas pour détecter si la boule de billard est sur le point de
"sortir" de la table.

1 Modifiez la méthode -moveBall pour détecter si la boule sort de la
table et éventuellement changer le déplacement élémentaire :

}

(void) moveBall {

// tableRect doit contenir les limites de 1’écran
CGRect tableRect = self.view.bounds;
// ballRect doit contenir le cadre de la boule
CGRect ballRect = self.ball.frame;
if (CGRectGetMinX (ballRect)<CGRectGetMinX (tableRect) ||
CGRectGetMaxX (ballRect) >CGRectGetMaxX (tableRect)) {
moveX = -moveX;
}
if (CGRectGetMinY (ballRect)<CGRectGetMinY (tableRect) ||
CGRectGetMaxY (ballRect) >CGRectGetMaxY (tableRect)) {
moveY = -moveY;
}
CGPoint center = ball.center;
center.x += moveX;
center.y += moveY;
ball.center = center;
[self performSelector:@selector (moveBall)
withObject:nil afterDelay:timerIntervall];

Nous n’avons pas utilisé la fonction CGRectContainsRect qui teste sile
second rectangle passé en parametre est contenu en totalité dans le

8. Dessins et animations

premier car nous avons besoin de savoir si le débordement est dans
le sens horizontal ou vertical pour modifier le déplacement élémen-
taire.

2 Reconstruisez et testez I'application ; la boule rebondit maintenant
sur les bandes. Essayez d’augmenter le déplacement élémentaire
pour accélérer le mouvement :
moveX = 15.;
moveY = -12.;

L'animation reste fluide. Le framework CoreGraphics est optimisé

pour que le déplacement d’une vue ne nécessite pas de redessiner

cette vue ou celle située en dessous: chaque vue possede son
propre calque (layer).

Challenges
Challenge 1

Pour améliorer simplement le rendu du mouvement de la boule de
billard, il faut modéliser le frottement sur la table et la perte d’énergie
due aux chocs. Apportez cette amélioration dans la méthode
-moveBall. Vous pouvez adopter une perte de vitesse de 10 % a
chaque choc et de 0,5 % a chaque déplacement élémentaire.

Challenge 2

Pour atteindre un rendu tres réaliste, ajoutez I'émission d'un son a
chaque rebond de la boule sur une bande, comme nous l'avons fait
précédemment dans ce chapitre.

Seul le premier son est émis lorsque deux rebonds sont trop rappro-
chés. Une solution pour corriger ce probleme consiste a utiliser
alternativement 2 lecteurs.

\

7

Ou trouver des sons
Outre les ressources, sons et images, qui vous sont proposées avec le
code source accompagnant cet ouvrage, vous trouverez de nombreux effets
sonores de bonne qualité sur le site http://www.soundsnap.com.

ASTUCE

Challenge 3

Plus difficile, restructurez I'application pour pouvoir positionner plu-
sieurs boules sur la table. Il faut bien sir détecter et traiter les
collisions entre les boules.

8.1. Animer les images | 281

Pour calculer les vitesses des deux boules aprés l'impact, vous
inspirez-vous du code C que vous trouverez sur le site hitp://fr.wikipedia
.org/wiki/Choc_élastique.

8.2. Dessiner avec Quartz2D

Cette section est consacrée aux moyens de composer et d’optimiser
le tracé d'un dessin pour conserver une bonne fluidité des anima-
tions.

Afin d’illustrer ces techniques, nous visualiserons la trajectoire de la
boule, pendant son déplacement, dans notre application Billard.

il Opér... 12:23 =P

Figure 8.5 : Tracé de la trajectoire

Principe de fonctionnement

Précisions sur la classe UlView

Tous les objets qui s’affichent a I'écran, les vues, dérivent directe-
ment ou indirectement de la classe UIview. Elle a la responsabilité de
gérer :

282 | 8. Dessins et animations

m la hiérarchie des vues ;
m |'affichage ;
m |'animation des vues.

La méthode -drawRect: de la classe UIView dessine le contenu de la
vue. Cette méthode est appelée par le framework lorsque la vue est
affichée la premiere fois, puis lorsque son contenu évolue. Si vous
voulez personnaliser I'aspect graphique de vos applications, il vous
faudra donc définir votre propre classe dérivée de UIView, et coder le
comportement graphique souhaité dans la méthode -drawRect:.

Le parameétre passé a cette méthode est le rectangle dans lequel le
dessin doit étre exécuté. Par défaut, le contenu de ce rectangle est
effacé avant I'appel de -drawRect:, son contenu doit alors étre com-
pletement redessiné par la méthode.

La vue que vous définissez devra vraisemblablement avoir un affi-
chage variable, par exemple en fonction des valeurs des propriétés.
Lorsque I'affichage doit évoluer, il faut appeler I'une des deux mé-
thodes :

B -setNeedsDisplay pour redessiner toute la vue.

B -setNeedsDisplayInRect:. La partie a redessiner est l'intérieur du
rectangle passé en parameétre qui sera retransmis a —-drawRect:.

ATQION Ne pas appeler drawRect
Vous ne devez pas appeler la méthode —drawRect: directement. Vous
devez appeler lI'une des méthodes -setNeedsDisplay ou -setNeeds
DisplayInRect: pour informer le framework qu’il doit appeler —-drawRect:.

Contexte graphique

Les fonctions permettant de dessiner sont regroupées dans le fra-
mework CoreGraphics. Elles prennent pratiguement toutes pour pre-
mier parametre un pointeur sur le contexte graphique, leur permet-
tant de savoir "ou" dessiner. Lorsque la méthode -drawRect: est
appelée, un contexte graphique adéquat est initialisé par défaut, avec
le systéeme de coordonnées défini par les limites de la vue.

Généralement, le code de la méthode -drawRect: commence par
I'obtention du contexte graphique courant.

CGContextRef context = UIGraphicsGetCurrentContext();

8.2. Dessiner avec Quartz2D | 283

DN Contexte graphique

Le contexte graphique permet de faire le lien entre les fonctions graphi-
ques et la destination de I'image. Que le dessin soit tracé sur I'écran ou dans
un fichier PDF, le développeur utilise les mémes fonctions graphiques. Il n’a
pas a se préoccuper de la destination de I'image qu’il compose, c’est le
contexte graphique qui prend en charge les opérations détaillées.

ﬁ Les fonctions graphiques sont des fonctions C
Pour des raisons de performances, les fonctions graphiques n’ont pas été
développées sous forme de classes Objective-C mais regroupées dans une
bibliotheque de fonctions C.

Mise en pratique

Avant d’aller plus loin, mettons en pratique ce que nous venons
d’apprendre : -drawRect: et le contexte graphique.

Nous allons réaliser une classe dérivée de UIview pour effectuer le
tracé de la trajectoire de la boule de billard. Cette classe SnookerView
comportera deux propriétés qui permettront au contréleur de vue de
lui transmettre les mouvements de la boule :

B lastPoint, position finale de la boule, mise a jour a chaque mou-
vement élémentaire ;

B drawing, booléen indiquant si le tracé doit étre réalisé, indispensa-
ble pour commencer le dessin uniquement aprés avoir indiqué la
position initiale de la boule.

Un trait doit étre dessiné a chaque mouvement élémentaire entre la
derniere position de la boule et sa nouvelle position.
Créer la classe SnookerView

1 Sous XCode, créez les fichiers sources .m et .h pour la classe
SnookerView, en indiquant que cette classe hérite de UIView (voir
Figure 8.6).

2 Modifiez le fichier SnookerView.h pour y déclarer les propriétés de
la nouvelle classe :

284 | 8. Dessins et animations

800 New File

Choose a template for your new file:

l iPhone OS5

Proto Test uIve
User Interface
Resource ‘Objective-C Objective-C Objective-C test UlviewController
Code Signing class protocol case class subclass
",’I Mac 05 X
Cocoa Class
Cand C++ e —————

User Interface Suhclass(UlView & >
Resource

Interface Builder Kit
Other

m Objective-C class

O

An Objective-C class which is a subclass of UlView, with an optional header file
which includes the <UIKit/UIKit.h> header.

Cancel Eev'rous_- @

Figure 8.6 : Création d'une classe dérivée de UlView

@interface SnookerView : UlIView {
BOOL drawing;
CGPoint precedingLastPoint;
CGPoint lastPoint;

}

@property (nonatomic,getter=isDrawing) BOOL drawing;
@property (nonatomic) CGPoint lastPoint;
@end

Nous déclarons :

m une variable d’instance precedingLastPoint qui n’est pas définie
comme une propriété ; nous aurons besoin de retenir la position
précédente de la boule pour effectuer le tracé mais les utilisateurs
de la classe SnookerView n‘ont pas besoin d'y accéder ;

® un accesseur dénommeé isDrawing plutdt que drawing; c’est une
pratique courante pour les propriétés de type BOOL.

3 Ajoutez la définition de la méthode -setlLastPoint: dans le fichier
SnookerView.m :
- (void) setLastPoint: (CGPoint)aPoint{
precedinglLastPoint = lastPoint;

lastPoint = aPoint;
if (drawing) {

8.2. Dessiner avec Quartz2D | 285

286

[self setNeedsDisplayInRect:
CGRectMake (precedinglastPoint.x, precedingLastPoint.y,
lastPoint.x-precedinglLastPoint.x,
lastPoint.y-precedinglastPoint.y)];

}

Nous modifions le manipulateur par défaut de la propriété lastpoint
car nous avons deux choses importantes a faire lors de chaque
modification de cette propriété :

m enregistrer la position précédente de la boule ;

m informer le framework que cette vue doit étre redessinée dans le
rectangle dont une diagonale est définie par le dernier point et le
point précédent.

Dessiner le tracé

Ecrivez le code de la méthode —drawrect: :

- (void)drawRect: (CGRect) rect {
CGContextRef context = UIGraphicsGetCurrentContext () ;
CGContextSetRGBStrokeColor (context, 1., 0.5, 0., 1.0);
CGContextSetLineWidth (context, 3.);
CGContextSetLineCap (context, kCGLineCapSquare);
CGPoint segment[2] = {precedinglLastPoint,self.lastPoint};
CGContextStrokelLineSegments (context, segment, 2);

}
Nous reconnaissons la premiéere instruction qui permet d’obtenir

une référence au contexte graphique courant, vers lequel toutes les
commandes graphiques seront transmises.

Nous voulons que l'appel de cette méthode provoque le tracé d'un
trait entre le dernier point (propriété lastPoint) et le point précédent
(variable d'instance precedinglastPoint). Cela est accompli par I'ap-
pel de la fonction CGContextStrokeLineSegments qui prend en parame-
tres un tableau de points et le nombre de points contenus dans le
tableau. Cette fonction est utilisable pour tracer une succession de
segments.

Trois autres fonctions sont employées pour définir les attributs gra-
phiques du trait a tracer :

B CGContextSetRGBStrokeColor permet de définir les composants
Rouge, Vert, Bleu et Alpha de la couleur du trait.

B CGContextSetLineWidth permet de définir la largeur du trait.

B CGContextSetLineCap permet de définir le tracé de I'extrémité des
segments. Le parameétre de cette fonction est une constante.

8. Dessins et animations

Tableau 8.3: Parameétres de la fonction CGContextSetLineCap

Forme de terminaison | Parameétre a utiliser

Commentaire

i kCGLineCapButt

Le trait est arrété a I'extrémité du segment.

Y n) kCGLineCapRound | Le trait est arrondi autour de I'extrémité du
v segment.
T kCGLineCapSquare | Le trait est carré autour de I'extrémité du

segment.

Il existe d'autres fonctions graphiques mais nous vous demandons
un peu de patience. Il nous reste a utiliser notre nouvelle classe dans
le controleur de vue pour terminer I'application.

Utiliser la nouvelle classe

Modifier le fichier NIB

Afin d’utiliser les propriétés et les méthodes que nous venons de
définir, il faut modifier la classe de la vue dans le fichier NIB.

1 Ouvrez le fichier BillardViewController.xib dans Interface Builder.

2 Sélectionnez la vue principale et indiquez qu’elle doit étre de la
classe snookerview dans I'inspecteur d'identité (36+4)).

ZrnokerView

| UlActionSheet
| UActivitylndicatorView .l
UlAlert
UlAlertView
UlButton
UlContraol
UlDatePicker
i UllmageView

UlLabel

¥ Class Qutlets

Outlet | UINavigationBar

Waini

UlModalView -t

Figure 8.7 : La vue principale doit appartenir a la classe

SnookerView

8.2. Dessiner avec Quartz2D

287

g cast (SnookerView *)

288

Modifier le contréleur de vue

1 Modifiez la méthode -viewDidLoad dans le fichier BillardViewCon-
troller.m pour initialiser le tracé du déplacement :

- (void)viewDidLoad {
[super viewDidLoad];
moveX = 15.;
moveY = -12.;
[(SnookerView *)self.view setLastPoint: ball.center];
[(SnookerView *)self.view setDrawing:YES];
[self moveBalll];

REMARQUE e . . .
La propriété view est déclarée comme une UIView dans la classe

UIViewController, et ne dispose pas des propriétés lastPoint et drawing.
Nous employons donc linstruction de changement de type (cast)
(SnookerView *) pour éviter un message d’avertissement a la compilation.

2 Modifiez la méthode -moveBall pour réaliser le tracé de la trajec-
toire a chaque déplacement élémentaire :

- (void) moveBall {
CGRect tableRect = self.view.bounds;
CGRect ballRect = self.ball.frame;
if (CGRectGetMinX (ballRect)<CGRectGetMinX (tableRect) ||
CGRectGetMaxX (ballRect)>CGRectGetMaxX (tableRect)) {
moveX = -moveX;
}
if (CGRectGetMinY (ballRect)<CGRectGetMinY (tableRect) ||
CGRectGetMaxY (ballRect)>CGRectGetMaxY (tableRect)) {
moveY = -moveY;
}
CGPoint center = ball.center;
center.x += moveX;
center.y += moveY;
ball.center = center;
[(SnookerView*)self.view setLastPoint: center];
[self performSelector:@selector (moveBall)

withObject:nil afterDelay:timerIntervall];
}

3 Reconstruisez I'application et vérifiez que la trajectoire est dessi-
née correctement.

Cette application démontre deux caractéristiques importantes du

framework CoreGraphics pour |I'optimisation du dessin et des anima-
tions:

8. Dessins et animations

m Seul le contenu du rectangle passé en parametre a la méthode

—-drawRect: doit étre redessiné.

m Chaque vue étant dessinée dans son propre calque, la boule se
superpose au tracé de la trajectoire. Elle apparait bien au-dessus
de la table et il n"est pas nécessaire de redessiner ce qui était sous

la boule lorsque celle-ci se déplace.

Primitives graphiques

Les principales primitives graphiques sont résumées dans le tableau

ci-apres.

Tableau 8.4 : Principales primitives graphiques

Theme Signature Objet

Contexte Graphique | CGContextRef Retourne le contexte graphique par dé-
UIGraphicsGet faut.
CurrentContext
(void)

Attributs graphiques | void CGContextSet

LineCap (
CGContextRef c,
CGLineCap cap)

Définit le type de terminaison du tracé
des segments de droite.

void CGContextSet

LineWidth (
CGContextRef c,
CGFloat width)

Définit la largeur du tracé des segments
de droite.

void CGContextSet

RGBFillColor (
CGContextRef c,
CGFloat red,
CGFloat green,
CGFloat blue,
CGFloat alpha)

Définit les composantes de la couleur
de remplissage pour les formes géomé-
triques.

void CGContextSet

RGBStrokeColor (
CGContextRef c,
CGFloat red,
CGFloat green,
CGFloat blue,
CGFloat alpha)

Définit les composantes de la couleur
de tracé.

8.2. Dessiner avec Quartz2D | 289

Tableau 8.4: Principales primitives graphiques

Theme Signature Objet
Fonctions de dessin | void CGContext Peint le contenu du rectangle passé en
FillRect (parametre avec la couleur de remplis-
CGContextRef ¢, sage préalablement définie.

CGRect rect)

void CGContext Peint le contenu de I'ellipse définie par
FillEllipseInRect ([lerectangle passé en parametre avec la
CGContextRefcontext, |couleur de remplissage préalablement

CGRect rect) définie.
void CGContext Trace le contour du rectangle passé en
StrokeRect (paramétre avec la couleur de tracé
CGContextRef ¢, préalablement définie.
CGRect rect)
void CGContext Trace le contour de I'ellipse définie par
StrokeEllipseInRect ([le rectangle passé en parametre avec la

CGContextRefcontext, couleur de tracé préalablement définie.
CGRect rect)

void CGContext Trace la suite de segments dont les
StrokeLineSegments (|points sontdans le tableau passé en
CGContextRef ¢, paramétres.

const CGPointpoints[],
size t count)

N’hésitez pas a consulter la documentation Apple et a essayer les
nombreuses fonctions graphiques. Le framework Core Graphics est
trés riche et permet notamment de :

m tracer des arcs, des courbes de Bézier, des motifs et des lignes
discontinues ;

m définir des dégradés de couleurs, des ombres ;

m réaliser des rotations ou d’autres transformations ;

m dessiner du texte, etc.

8.3. Débuter la 3D avec OpenGLES

290

Le graphisme en trois dimensions permet de représenter des scénes
trés réalistes: ombres portées, textures, sources de lumiére,
brillance, etc. Malheureusement, ce résultat est obtenu au prix d'une
grande complexité ; le livre OpenGL superbible édité par Addison
Wesley compte 1 200 pages. Nous allons limiter notre ambition dans
cette section qui est destinée a ceux d’entre vous qui connaissent
déja OpenGL ES et souhaitent savoir comment le mettre en ceuvre
sur iPhone OS:

8. Dessins et animations

m présenter OpenGL ES utilisé sur iPhone OS pour le graphisme en
trois dimensions ;

m expliquer comment cette bibliotheque standard est exploitée dans
une application Cocoa Touch.

Figure 8.8 : Exemple de graphisme
3D

Présentation d'OpenGLES

OpenGL est une bibliotheque graphique (Graphics Library) standard
accessible en langage C, donc en Objective-C. Elle est largement
utilisée dans nombre d’applications professionnelles ou ludiques.
OpenGL ES est une version allégée d'OpenGL congue pour les appa-
reils mobiles (Embedded Systems).

OpenGL ES existe en deux versions, prises en charge sur iPhone OS.

Le développeur choisira celle qu’il souhaite utiliser :

m la version 1.1 est une bibliotheque classique de primitives graphi-
ques.

m la version 2.0 permet de programmer des fonctions qui s’exécu-
tent directement sur le processeur graphique.

La documentation de référence officielle, en anglais, se trouve sur les

sites suivants :

m hitp://www.khronos.org/opengles/sdk/1.1/docs/man/ pour la version 1.1 ;

m hitp://www.khronos.org/opengles/sdk/docs/man/ pour la version 2.0.

Intégration dans Cocoa Touch

L'utilisation d'OpenGL ES nécessite de la part du développeur un
effort supplémentaire. Non seulement il faut connaitre la bibliothe-
que et les principes du graphisme 3D, mais il faut aussi comprendre
comment OpenGL ES et Core Animation travaillent ensemble.

8.3. Débuter la 3D avec OpenGL ES | 291

P Modéle OpenGLES

REMARQUE

292

Il "y a pas dans Cocoa Touch, contrairement a Cocoa sur Mac OS X,
d’objet de type Vue prét a I'emploi pour utiliser OpenGL ES. Il nous
faudra dériver une classe d'UIview, appelons-la EAGLView, pour nous
conformer au modele d'application proposé par XCode.

Frameworks

Pour utiliser OpenGLES dans un projet sous XCode, il faut y ajouter
les frameworks QuartzCore et OpenGLES. Sélectionnez la cible (tar-
get) du projet puis activez la commande Existing Framework ... du
sous-menu Add du menu contextuel.

Les frameworks nécessaires sont inclus dans le modeéle de projet OpenGL
ES Application sous XCode.

Les déclarations a importer sont les suivantes :

#import <QuartzCore/QuartzCore.h>

#import <OpenGLES/ES1/gl.h> // pour OpenGL ES 1.1
#import <OpenGLES/ES1/glext.h> // pour OpenGL ES 1.1
#import <OpenGLES/ES2/gl.h> // pour OpenGL ES 2.0
#import <OpenGLES/ES2/glext.h> // pour OpenGL ES 2.0

#import <OpenGLES/EAGL.h>
#import <OpenGLES/EAGLDrawable.h>

Calque OpenGLES

Nous savons déja que chaque instance de la classe UIView, ou d'une
classe dérivée, possede son propre calque. |l est accessible via la
propriété layer de type Cilayer*. La vue et le calque associé étant
intimement liés, la classe UIview définit une méthode +1layerClass qui
retourne la classe a utiliser comme calque. Cette classe doit dériver
de cALayer qui est le défaut.

Pour utiliser la bibliothéque OpenGL ES, il faut utiliser un calque de
la classe CAEAGLLayer. Notre classe EAGLView devra donc modifier la
méthode +1layerClass de la classe UIView :

+ (Class) layerClass {
return [CAEAGLLayer class];
}

Contexte graphique

Les primitives graphiques d'OpenGL ES, comme celles de Core Gra-
phics, sont dirigées vers un contexte graphique. Dans le cas

8. Dessins et animations

d’'OpenGL ES, le contexte graphique doit étre une instance de la
classe EAGLContext créée a l'initialisation de la vue :

context = [[EAGLContext alloc]
initWithAPI:kEAGLRenderingAPIOpenGLES1];

Le contexte est créé soit avec la constante kEAGLRendering
APIOpenGLES1, soit avec la constante kEAGLRenderingAPIOpenGLES2 SUi-
vant que I'on veut travailler en version 1.1 ou en version 2.0.

Le contexte auquel toutes les commandes graphiques doivent étre
transmises est ensuite spécifié par I'instruction :

[EAGLContext setCurrentContext:context];

Zones tampons

Lorsque I'application compose une image, elle ne travaille pas direc-
tement sur I'écran. Elle utilise des zones tampons (buffers) spécifi-
ques, suivant le type d’informations (couleur, profondeur, pochoir)
qui servent a composer l'image, liées entre elles dans un cadre
tampon (framebuffer). Une fois I'image composée, elle est transmise
en une fois sur I'écran.

Chaque tampon est repéré par un identificateur qui est un nombre
entier. Les tampons sont généralement créés a l'initialisation de la
vue.

Créer le cadre tampon
Sous OpenGL ES v1.1, le cadre tampon est créé puis lié au contexte
graphique par la suite d’instructions :

GLuint framebuffer;
glGenFramebuffersOES (1, &framebuffer);
glBindFramebufferOES (GL FRAMEBUFFER OES, framebuffer);

La fonction glGenFrameBuffersOES est employée ici pour créer un seul
cadre tampon. Elle prend deux parametres :

m le nombre de cadres tampons a créer ;

m un tableau d’entiers dans lequel les identifiants des cadres créés
seront rangés.

La fonction glBindFramebufferOES est utilisée pour lier le cadre tam-
pon nouvellement créé au contexte courant, afin d’en faire la desti-
nation des commandes graphiques a venir.

@ Extension OES

REMARQUE

Les fonctions de gestion des zones tampons et du cadre tampon sont
définies dans la version 2.0 d'OpenGL ES. Sous iPhone OS, on utilise le méme

8.3. Débuter la 3D avec OpenGL ES | 293

Ensémuius systéme de fonctions avec la version 1.1. Les noms de ces fonctions se
terminent dans ce cas par OES, nom de I’'extension Apple a OpenGL ES 1.1.

A partir de cette section, les exemples seront donnés en version 1.1. Il sera
facile d’en déduire |'utilisation en version 2.0 en enlevant les caractéres OES a
la fin des fonctions et constantes.

Le cadre tampon est susceptible de regrouper :

m Une zone tampon pour les couleurs (color buffer) dans laquelle
seront calculées les couleurs de I'image a dessiner. Cette zone
tampon est obligatoire.

m Une zone tampon pour la profondeur (depth buffer) permettant de
déterminer les parties cachées de l'image. Cette zone tampon
n’est pas utilisée pour les images en deux dimensions.

m Optionnellement, une zone tampon pour les pochoirs (stencil buf-
fer) ou une zone tampon pour les textures (texture buffer).

Créer la zone tampon des couleurs

Sous OpenGL ES v1.1, la zone tampon des couleurs est créée puis liée

au contexte graphique par la suite d’instructions :

GLuint colorRenderbuffer;

glGenRenderbuffersOES (1, &colorRenderbuffer);

glBindRenderbufferOES (GL RENDERBUFFER OES,
colorRenderbuffer);

glFramebufferRenderbufferOES (GL FRAMEBUFFER OES,

GL_COLOR ATTACHMENT O_OES, GL RENDERBUFFER OES,

colorRenderbuffer);

La fonction glFramebufferRenderbufferOES permet d'attacher une zone
tampon a un cadre tampon. Le deuxieme parametre permet de
spécifier le type d'attachement :

m GL COLOR ATTACHMENTO OES pour la zone tampon des couleurs ;

m GL DEPTH ATTACHMENT OES pour la zone tampon de profondeur ;
B GL STENCIL ATTACHMENT OES pour la zone tampon des pochoirs.

Les autres zones tampons éventuellement nécessaires sont créées et
attachées de la méme facon.

Définir le port OpenGL

Le port OpenGL (view port) est la zone sur I'écran dans laquelle
doivent étre effectués les tracés graphiques. Il doit donc étre lié a la
vue EAGLView et plus précisément a son calque. Mais auparavant, il

294 | 8. Dessins et animations

faut le dimensionner, ce qui ne peut étre fait qu’aprées que la vue soit
concrétement disposée sur I'écran. C'est pourquoi les instructions
suivantes sont généralement placées dans la méthode
-layoutSubviews de la classe EAGLView :
GLint viewWidth, viewHeight;
[context renderbufferStorage:GL RENDERBUFFER OES
fromDrawable:self.layer];
glGetRenderbufferParameterivOES (GL RENDERBUFFER OES,
GL_RENDERBUFFER WIDTH OES, &viewWidth);
glGetRenderbufferParameterivOES (GL RENDERBUFFER OES,
GL_RENDERBUFFER HEIGHT OES, &viewHeight);
glViewport (0, 0, viewWidth, viewHeight);
Le contexte graphique est d’abord attaché au calque de la vue ; il en
prend donc les dimensions. Puis ces dimensions sont récupérées
pour définir le systeme de coordonnées du port OpenGL.

Utiliser le contexte graphique

Lorsque toutes les zones tampons ont été créées et attachées au
cadre tampon, on peut tester la bonne configuration de ce dernier,
par exemple de la facon suivante :
if (glCheckFramebufferStatusOES (GL FRAMEBUFFER OES) !=
GL_FRAMEBUFFER COMPLETE OES) ({
NSLog (@"Echec lors de la création du cadre tampon %x",
glCheckFramebufferStatusOES (GL FRAMEBUFFER OES)) ;
return;

}

Le contexte graphique est enfin prét pour recevoir les instructions de
dessin. Lorsque I'image est préte, elle peut étre affichée a I'écran :

[context presentRenderbuffer:GL RENDERBUFFER OES];

Lorsque I'image a été transmise a |I'écran, le tampon des couleurs est
réinitialisé. Dans le cas d’'une animation, il faut recomposer comple-
tement I'image aprés |'affichage de chaque trame.

Exemple d'application

Afin d'illustrer les concepts que nous venons de voir, nous allons
analyser un exemple d’application : le modeéle OpenGL ES Application
proposé par XCode.

Sous XCode, créez un projet de type OpenGL ES Application. Cons-
truisez I'application et testez-la sur le simulateur ; un carré rempli par
un dégradé de couleurs se balance doucement. Vous pouvez créer
une application pour iPhone ou pour iPad ; elles fonctionnent de la
méme facgon.

8.3. Débuter la 3D avec OpenGL ES | 295

296

Structure des classes

Examinez les fichiers du groupe Classes, le modele proposé par
XCode contient :

m une classe pour le délégué d’application ;

B une classe EAGLView, qui dérive de UIView ;

m deux classes ES1Renderer et ES2Renderer ;

m un protocole ESRenderer.

Ce modeéle ne contient pas de contréleur de vue spécifique, c’est le
délégué d’application qui gére la vue directement : il a une propriété
glview et contréle le fonctionnement de I'animation. Les applications
OpenGL ES ne respectent pas le modele MVC.

L'aspect graphique est réparti en trois classes :

B ESIRenderer contient les instructions spécifiques a OpenGL ES 1.1.

B ES2Renderer contient les instructions spécifiques a OpenGL ES 2.0.

B EAGLView contient le code indépendant de la version utilisée et le
mécanisme d’'aiguillage entre les deux versions d'OpenGL ES.

Le protocole ESRenderer permet au code d'EaGLView de fonctionner
indifféremment avec I'une des classes ES1Renderer OU ES2Renderer.

C’est dans I'une des classes ES1Renderer OU ES2Renderer, suivant que
vous adoptez la version 1.1 ou la version 2.0, que vous devez mettre
votre code OpenGL ES, plus particulierement dans la méthode
-render. Quvrez le fichier ESTRenderer.m et vérifiez que vous localisez
les instructions de paramétrage du contexte graphique et des zones
tampons vus dans les sections précédentes.

Nous allons nous concentrer sur la classe EAGLView qui offre quelques
particularités que nous n’avons pas encore vues.

Classe EAGLView
La classe EAGLView prend en charge :

m La configuration du calque (layer). En particulier, elle implémente
la méthode +layerClass pour indiquer qu’il faut utiliser un calque
OpenGL ES.

m Le pilotage de I'animation.

m Le choix de la version d’OpenGL ES, en l'occurrence 1.1 unique-
ment si la version 2.0 ne fonctionne pas sur I'appareil.

8. Dessins et animations

m L'interface avec les deux méthodes du protocole ESRenderer.

_ -resizeFromLayer: pour finaliser I'initialisation du contexte gra-
phique lorsque la dimension définitive de la vue est connue ;

— -render pour dessiner I'image.

Pilotage de I'animation

Ouvrez le fichier EAGLView.m pour étudier la méthode employée
pour rythmer I'animation.

- (void) startAnimation {

if ('animating) {
if (displayLinkSupported) {
displayLink = [NSClassFromString (Q@"CADisplayLink")
displayLinkWithTarget:self

selector:@selector (drawView:)];

[displayLink
setFrameInterval:animationFrameInterval];

[displayLink

addToRunLoop: [NSRunLoop currentRunLoop]
forMode:NSDefaultRunLoopMode] ;

}
else
animationTimer =
[NSTimer scheduledTimerWithTimeInterval:
(NSTimeInterval) ((1.0 / 60.0) * animationFrameInterval)
target:self
selector:@selector (drawView:)
userInfo:nil
repeats:TRUE];
animating = TRUE;

}
Nous voyons que I'une des deux classes suivantes est utilisée :

B CADisplayLink;
B Ou NSTimer, le temporisateur universel.

L'avantage de CADisplayLink sur NSTimer est que le temps nécessaire
pour calculer une nouvelle image est pris en compte afin de fixer le
rythme de rafraichissement ; ¢’est la classe a favoriser pour synchro-
niser une animation. Elle n’est malheureusement disponible qu’a
partir de la version 3.1 de I'iPhone OS, c’est pourquoi la classe
EAGLView possede une propriété displayLinkSupported qui est évaluée
dans la méthode -initWithCoder: :

displayLinkSupported = FALSE;

NSString *reqgSysVer = @"3.1";

NSString *currSysVer =

8.3. Débuter la 3D avec OpenGL ES

297

[[UIDevice currentDevice] systemVersion];
if ([currSysVer compare:reqgSysVer
options:NSNumericSearch] != NSOrderedAscending)
displayLinkSupported = TRUE;

;E?Rﬂi NSClassFromString
Dans le code de la méthode —startAnimation, Il faut utiliser I'appel de
fonction NSClassFromString (@"CADisplayLink") plutét que simplement la
classe CADisplayLink pour éviter les erreurs a la construction de I'applica-
tion si I'on emploie un SDK qui ne contient pas cette classe.

Classe UlDevice

Nous avons vu précédemment un exemple de quelques instructions
permettant de connaitre les caractéristiques de I'appareil sur lequel
I'application s’exécute. Le tableau ci-aprés résume quelques-unes
des propriétés des instances de la classe UIDevice.

Tableau 8.5: Principales propriétés de la classe UlDevice

Theme Signature Objet
Obtenir l'instance + (UIDevice *)current Retourne l'instance représentant
courante Device I'appareil sur lequel I'application
s'exécute.

Identifier I'appareil et | @property (nonatomic, Identifiant unique de I'appareil
le systéme d'exploita- | readonly, retain) (UDID)
tion NSString

*uniqueldentifier

@property (nonatomic, Nom de I'appareil

readonly, retain)
NSString *name

@property (nonatomic, Version du systeme d'exploitation
readonly, retain)

NSString

*systemVersion

@property (nonatomic, Modele d"appareil, actuellement
readonly, retain) retourne @"iPhone",
NSString *model @"iPod touch", @"iPad",

@"iPhone Simulator" ou
@"iPad Simulator".

Etat de la batterie @property (nonatomic, Niveau de charge de la batterie.
readonly) float Retourne une valeur comprise en-
batteryLevel tre 0 (0 %) et 1 (100 % de charge).

298 | 8. Dessins et animations

8.4. Checklist

Ce chapitre nous a permis d’'explorer quelques-unes des possibilités
graphiques et d’animation d’'iPhone OS :

m animation d'une image, avec les classes UllmageView et UIImage ;
m déplacement d'une image sur I'écran ;
m primitives graphiques de Quartz2D:
— le cadre (frame), les limites (bounds) et les différents systémes
de coordonnées ;
— les types de données CGRect, CGPoint et CGSize ;
— la méthode —-drawRrect:.

intégration de la bibliotheque OpenGL ES pour le graphisme en
trois dimensions :

— l'existence des deux versions 1.1 et 2.0 ;

— le paramétrage du contexte graphique ;

— les zones tampons et le cadre tampon.
Nous avons agrémenté nos applications avec des effets sonores a
I'aide de la classe AvAudioPlayer et vu comment les animer avec la

méthode -performSelector:withObject:afterDelay: ou la classe
CADisplayLink.

Nous avons également exposé la classe UIDevice qui permet de
connaitre les caractéristiques de I'appareil courant.

8.4. Checklist | 299

TAPES, TOUCHES
ET GESTES

Comprendre les événements .. 303
Traiter les événements 307
Mettre en ceuvre les gestes 313

Checklist e ... 320

301

o~
w
o
=
o
<
T
o

Nous avons découvert le mécanisme cible-action au chapitre 2. |l
nous a permis de réaliser des applications qui réagissent aux actions
de l'utilisateur :

m édition d'un champ de texte ;
E appui sur un bouton ;
m changement de valeur d’un sélectionneur.

L'iPhone OS nous permet aussi de proposer a |'utilisateur une inter-
face élaborée avec des gestes complexes, a un ou plusieurs doigts.
Leur mise en ceuvre dans une application nécessite d’avancer dans
notre compréhension des événements (events) gérés par Cocoa
Touch.

Nous commencerons par explorer les classes et techniques de base
mises en jeu puis développerons quelques applications mettant en
oceuvre les gestes courants sur iPhone OS.

ﬁ Gestes sous iPhone 0S 3.2

La version 3.2 d'iPhone OS, disponible sur iPad, permet une mise en
ceuvre simplifiée des gestes standard (pincement, déplacement, glissement,
etc.) par le mécanisme cible-action. Cette mise en ceuvre sera détaillée dans
le chapitre consacré aux spécificités de I'iPad.

Ce chapitre concerne donc principalement le développement sur iPhone et
iPod Touch. Il est destiné également a ceux qui souhaitent développer leur
propre analyseur de geste pour iPad.

9.1. Comprendre les événements

Classe UIResponder

Le mécanisme cible-actionest mis en ceuvre par les objets
de la classe UIControl qui dérive indirectement de la classe
UTResponder avec laquelle nous avons fait connaissance au chapitre 4.
(voir Figure 9.1)

Lorsqu’un événement survient, I'application — plus précisément |'ins-
tance unique de la classe UIApplication — recherche le répondeur
(une instance de la classe UIResponder) approprié et lui transmet
I'événement :

m Sil'événement est une action sur I'écran, le répondeur est la vue
située sous le doigt de l'utilisateur.

9.1. Comprendre les événements | 303

T Hérite de

Figure 9.1: Classes gestionnaires des événements

m Dans le cas contraire, I'événement est transmis au premier répon-
deur (First responder) puis remonte la chaine des répondeurs
jusqu’a ce que I'un d’eux accepte de le traiter.

Si le répondeur est un contréle (une instance de la classe UIControl),
I'’événement est susceptible d'étre utilisé pour déclencher le méca-
nisme cible-action. Nous allons nous intéresser ici a la facon dont les
événements sont recus par un répondeur pour définir nos propres
comportements dans des vues ou des contrbleurs spécifiques.

Evénements élémentaires

304

Les événements recus par un répondeur peuvent étre de deux sortes
représentées par le type énuméré UIEventType :

B UIEventTypeTouches pour les touches sur I'écran ;
B UIEventTypeMotion pour les mouvements de |'appareil.

Le type énuméré UlEventSubtype est également défini. Dans la version
actuelle, les sous-types concernent uniqguement les mouvements de
I"'appareil :

B UIEventSubtypeNone, pas de sous-type particulier ;

B UIEventSubtypeMotionShake, mouvement de secousse de |'appareil
(shake).

Les événements concernant les touches sont plus complexes ; cha-
que touche élémentaire peut étre :

m la pose du doigt sur |'écran ;

9. Tapes, touches et gestes

m le déplacement du doigt sur I'écran ;
m le retrait du doigt de I'écran.

Touche
Une touche est un événement élémentaire concernant seulement un
doigt : pose du doigt sur I'écran, déplacement du doigt sur |I'écran ou retrait
du doigt de I"écran.

=
DEFINITION

En outre, pour décrire la touche élémentaire, il faut également préciser :

m La position de la touche. Cocoa Touch fournit un point dans les
coordonnées de la vue concernée, bien que la taille d’'un doigt
normal recouvre plusieurs points lorsqu’il touche I'écran.

m Le moment précis auquel I'événement est intervenu. Il est donné par
le nombre de secondes écoulées depuis le démarrage de I'appareil.

b

REMARQUE Un petit point pour un gros doigt

a zone touchée par un doigt sur I'écran est généralement de forme
ellipsoidale, de taille variable en fonction du doigt et de la pression exercée.
Le systeme Multi-Touch analyse cette information pour calculer un point
unique associé a la touche.

Toutes ces informations sont présentées dans une instance de la
classe UITouch décrite dans le tableau ci-apres.

Tableau 9.1: Méthodes et propriétés de la classe UlTouch

Objet

Retourne I'emplacement de la touche dans
le systeme de coordonnées de la vue pas-
sée en parametre, ou dans le systéme de
coordonnées de la fenétre sinil est
passé en parametre.

Theme Signature

(CGPoint) location
InView: (UIView *)view

Emplacement |-
des touches

— (CGPoint)previous
LocationInView:
(UIView *)view

Retourne I'emplacement précédent de la
touche dans le systeme de coordonnées de
la vue passée en parametre, ou dans le
systeme de coordonnées de la fenétre si
nil est passé en parameétre.

@property(nonatomic,
readonly, retain)
UlView *view

La vue dans laquelle la touche a débuté.

@property(nonatomic,
readonly, retain)
UIWindow *window

La fenétre dans laquelle la touche a dé-
buté.

9.1. Comprendre les événements

305

Tableau 9.1: Méthodes et propriétés de la classe UlTouch

Theme Signature Objet
Attributs @property (nonatomic, |Lenombre de tapes effectuées par I'utilisa-
de la touche readonly) NSUInteger |teur.

tapCount

@property (nonatomic,
readonly) NSTime
Interval timestamp

L'horodate de la derniére modification de la
touche.

@property (nonatomic,
readonly) UITouch
Phase phase

La phase dans laquelle se trouve la tou-
che:
UITouchPhaseBegan lorsque le doigt

vient de toucher I'écran;
UITouchPhaseMoved lorsque le doigt
vient de se déplacer;
UITouchPhaseStationary lorsque le
doigt n'a pas bougé depuis le dernier
événement;

UITouchPhaseEnded lorsque le doigt
vient de se retirer de I'écran;
UITouchPhaseCancelled sil'événe-
ment a été interrompu.

Remarquez la propriété phase qui permet de déterminer la touche
élémentaire représentée : pose, déplacement ou retrait du doigt.
Cette propriété peut également indiquer :

m si le doigt est immobile sur |'écran ;

m sil’événement a été interrompu (cancelled) ; c’est le cas par exemple
si I'iPhone recoit un appel pendant I'utilisation d’une application.

Ecran Multi-Touch

306

La technologie Multi-Touch permet au systeme de suivre les mouve-
ments simultanés de plusieurs doigts sur I'écran. Chague mouve-
ment est décomposé en une série de touches élémentaires. Les
touches élémentaires simultanées sont regroupées au sein d’'un
méme événement, une instance de la classe UIEvent.

Il appartient au répondeur d’interpréter ces suites d'événements
pour déterminer les gestes effectués par I'utilisateur. Par exemple, un
pincement (pinch) est décomposé de la fagcon suivante :

m Deux doigts sont posés simultanément sur I’écran.

m La distance entre les deux doigts diminue.

m Les deux doigts sont retirés de I'écran.

Chacun de ces trois événements est composé de deux touches
élémentaires : deux posés, deux déplacements et deux retraits.

9. Tapes, touches et gestes

Les classes dérivées de UIview ou de UIControl doivent implémenter
le code nécessaire pour interpréter les gestes qui leur sont propres :
glissement (swipe), pichenette (flick), pincement (pinch), etc. Nous
allons examiner les méthodes a utiliser pour implémenter vos pro-
pres gestes dans vos classes dérivées.

9.2. Traiter les événements

Recevoir les événements

Classe UIEvent

Une instance de la classe UlEvent représente un événement ; c’est
sous cette forme qu’il est transmis au répondeur. Elle peut contenir
une ou plusieurs touches, sous la forme d’instances de UITouch, ou
représenter une secousse de |'appareil. Les méthodes et propriétés
de la classe UIEvent sont décrites dans le tableau ci-apreés.

Tableau 9.2: Méthodes et propriétés de la classe UlEvent
Objet

Retourne toutes les touches de I'événe-
ment.

Theme Signature

(NSSet *)allTouches

Obtenir les touches | —

— (NSSet *)touches
ForView: (UIView
*)view

Retourne les touches appartenant a
une vue.

— (NSSet *)touches
ForWindow: (UIWindow
*)window

Retourne les touches appartenant a
une fenétre.

Obtenir les attributs
de I'événement

property (nonatomic,
readonly) NSTime
Interval timestamp

L'horodate de I'événement en secon-
des depuis le démarrage du systéme.

Type d'événement

@property (readonly)
UIEventType type

Le type est soit
UIEventTypeTouches pour un
ensemble de touches, soit
UIEventTypeMotion pour un mou-
vement de I'appareil.

@property (readonly)
UIEventSubtype
subtype

Le sous-type est
UIEventSubtypeNone silévéne-
ment n'a pas de sous-type particulier
ou
UIEventSubtypeMotionShake
pour une secousse de l'appareil.

Les touches de I'événement sont retournées dans une instance de la
classe Nsset. Il s’agit d'un conteneur, au méme titre que NSArray et

9.2. Traiter les événements

307

308

NSDictionary que nous connaissons déja, qui représente un ensem-
ble. Les éléments d'un ensemble ne sont pas rangés de fagon parti-
culiere et son contenu est exploré avec l'instruction for :
NSSet * aSet = [NSSet setWithObjects:@"Jean",@"Marc",
@"Paul",nil];
for (NSString * name in aSet) {
// name contiendra successivement Jean, Marc et Paul

}

Deux autres méthodes de la classe Nsset sont utiles pour traiter les
événements :

B -(id)anyObject quiretourne un élément quelconque du conteneur ;

B - (NSArray*)allObjects qui retourne un tableau contenant tous les
objets du conteneur.

Conditions de réception

Evénements de touches

Pour des raisons de performance, les événements de touches ne
sont transmis par l'application qu’aux vues qui satisfont certains
criteres :

m La vue doit étre affichée a I’écran.

8.80.6 Pinch View Attributes

Simulated Interface Elements

Status Bar [Cray l-ﬂ

Top Bar [MNone l-ﬂ

Eottom Bar [None l-ﬂ
¥ View

Mode [Scale To Fill 3]

Alpha — 'ﬁ‘ Q

Tag 0

Drawing ™ opagque [Hidden
[7] Clear Context Before Drawing
] Clip Subviews
E Autoresize Subviews

€10

Stretching 0.00] 3] 0.00

=)
€103

E User Interaction Enabled
Multiple Touch

Interacti

'y
'v| Figure 9.2: Cases a cocher pour recevoir les
2] événements de touches

9. Tapes, touches et gestes

m La vue doit contenir le point touché par l'utilisateur, sauf si sa
propriété exclusiveTouch vaut YES, auquel cas la vue recevra tous
les événements de la fenétre.

m La propriété userInteractionEnabled de la vue doit valoir YES ou la
case User Interaction Enabled doit étre cochée dans l'inspecteur
des attributs de la vue sous Interface Builder.

m Une vue ne peut recevoir qu'une touche a la fois, sauf si sa
propriété multipleTouchEnabled vaut YES ou si la case Multiple Touch
est cochée.

Evénements de mouvements

Les événements de mouvements sont transmis par l'application au
premier répondeur (First Responder).

Un répondeur devient le premier répondeur lorsque :

m |l recoit le message -becomeFirstResponder
m Uniquement si sa méthode -canBecomeFirstResponder retourne YES.

Par défaut, la méthode -canBecomeFirstResponder retourne No. Il faut
donc redéfinir cette méthode si I'on veut que nos propres classes
dérivées de UIResponder puissent devenir des premiers répondeurs :
- (BOOL) canBecomeFirstResponder {

return YES;

}

Pour qu’une vue puisse devenir premier répondeur, il faut également
qgu’elle soit affichée a I’écran. De la méme fagon, pour qu’un contré-
leur de vue puisse devenir premier répondeur, sa vue doit étre
affichée a l'écran. Il ne faut donc pas appeler la méthode
-becomeFirstResponder tant que cette condition n’est pas remplie ; la
méthode -viewDidAppear de UIViewController constitue une bonne
opportunité pour définir le premier répondeur :

- (void)viewDidAppear: (BOOL)animated {

[self becomeFirstResponder];

}

A signaler aussi la possibilité de bloquer temporairement le traite-
ment des événements par |'application :

UIApplication * appli = [UIApplication sharedApplication];
[appli beginIgnoringInteractionEvents];

// plus aucun événement n’est traité par 1’application
[appli endIgnoringInteractionEvents];

// les événements sont de nouveau traités par 1’application

9.2. Traiter les événements

309

Notification d'événements

310

\

ASTUCE

Nous avons compris ce qu’est un événement, une touche, et quelles
sont les conditions pour que les événements arrivent au répondeur.
Intéressons-nous maintenant a la fagon dont un répondeur recoit les
événements et a la facon dont il doit les traiter.

Mouvements

La secousse de |'appareil est le seul mouvement qui provoque un
événement dans la version actuelle d'iPhone OS.

7

Secouer le Simulateur

Vous pouvez simuler une secousse sur le Simulateur d'iPhone avec la
commande Secousse du menu Matériel ((Cul}+d£+(Z))

Lorsqu’un tel événement se produit, le premier répondeur recoit les
messages suivants :

B —(void)motionBegan: (UIEventSubtype)motion withEvent: (UIEvent *)event
lorsqu’un mouvement débute ;

B - (void)motionEnded: (UIEventSubtype)motion withEvent: (UIEvent *)event
lorsque le mouvement se termine ;

B - (void)motionCancelled: (UIEventSubtype)motion withEvent: (UIEvent *)
event lorsque le mouvement est interrompu.

En pratique, les parameétres motion et event ne sont pas utilisés,
puisqu’un seul type d'événement peut survenir, et le code qui permet
a l'application de réagir a I'action de l'utilisateur est placé dans la
méthode -motionEnded:withEvent: :

- (void)motionBegan: (UIEventSubtype)motion
withEvent: (UIEvent *)event {

(void)motionEnded: (UIEventSubtype)motion
withEvent: (UIEvent *)event {
// Insérer ici le code pour traiter 1’événement

- (void)motionCancelled: (UIEventSubtype)motion
withEvent: (UIEvent *)event {

9. Tapes, touches et gestes

ATTENTION

ATTENTION

A Définir toutes les méthodes

Si votre répondeur dérive de UIView ou UIViewController, ce qui est le
cas le plus courant, les trois méthodes précédemment décrites doivent étre
redéfinies méme si certaines d’entre elles ne contiennent pas de code.

Challenge

Complétez I'application Billard du chapitre précédent : la vitesse de la
boule doit étre réinitialisée lorsque I'utilisateur secoue l'appareil.

Indications :

m Implémentez les méthodes de traitement des événements dans le
contréleur de vue BillardviewController.

m N'oubliez pas de définir ce contréleur de vue comme premier
répondeur.

Touches

Les événements de touches élémentaires sont transmis aux répon-
deurs par les messages suivants :

B —(void)touchesBegan: (NSSet *)touches withEvent: (UIEvent *)event
pour les touches qui débutent (qui correspondent a une pose de
doigt) ;

B —(void)touchesMoved: (NSSet *)touches withEvent: (UIEvent *)event
pour les touches qui correspondent a un déplacement ;

B —(void)touchesEnded: (NSSet *)touches withEvent: (UIEvent *)event
pour les touches qui se terminent (retrait du doigt) ;

B —(void)touchesCancelled: (NSSet *) toucheswithEvent: (UIEvent *)event
pour les touches interrompues.

Le parameétre touches de chacune de ces méthodes contient les
touches élémentaires, instances de la classe UITouch, qui sont
respectivement dans les états UITouchPhaseBegan, UITouchPhaseMoved,
UITouchPhaseEnded et UITouchPhaseCancelled. Le paramétre event re-
groupe toutes les touches élémentaires de I'événement, quel que
soit leur état.

Nous mettrons en ceuvre ces méthodes dans la section suivante.

A Libérer les ressources
Les ressources éventuellement allouées pour gérer un geste doivent étre
| libérées lorsque le geste se termine, c'est-a-dire dans la méthode

9.2. Traiter les événements

311

Arr@mu —touchesEnded:withEvent: s'il s'agit de I'événement qui clot le geste,
et dans la méthode —touchesCancelled:withEvent: lorsque le geste est
| interompu.

m@mu Définir toutes les méthodes
Comme dans le cas des événements de mouvement, si votre répondeur
dérive de UIView ou UIViewController, les quatre méthodes précédemment
décrites doivent étre redéfinies méme si certaines d’entre elles ne contien-
nent pas de code.

Tapes multiples

La classe UITouch définit une propriété tapCount ; un entier contenant
le nombre de tapes effectuées au méme endroit. Pour savoir si une
touche est une tape multiple, il suffit de tester cette propriété dans la
méthode -touchesEnded:withEvent:.

Il'y a un petit détail auquel il faut faire attention si nous souhaitons
obtenir un comportement différent pour chaque tape. Notre répon-
deur va recevoir une premiere série d'événements a la premiere
tape, une autre série a la deuxiéme, etc. Lorsque la premiére tape est
recue, nous devons attendre une fraction de secondes avant de
déclencher I'action attendue afin de déterminer s'il s’agit d'une tape

simple, double, etc.

Le plus simple pour arriver a ce résultat est de lancer I'action déclen-
chée par une tape simple avec la méthode -performSelector:
withObject:afterDelay: :

- (void) touchesEnded: (NSSet *)touches
withEvent: (UIEvent *)event ({

UITouch *theTouch = [touches anyObject];

if (theTouch.tapCount == 1) {

[self performSelector:@selector (handleSingleTap)
withObject:nil
afterDelay:0.3];

} else if (theTouch.tapCount == 2) {

// Instructions pour traiter une tape double

}

- (void) handleSingleTap {
// Instructions pour traiter une tape unique

312 | 9. Tapes, touches et gestes

Ceci nous laissera I'opportunité d’annuler cette action s’il s’avére
que la premiere tape était le début d’une tape double :

- (void) touchesBegan: (NSSet *)touches
withEvent: (UIEvent *)event ({

UITouch *aTouch = [touches anyObject];
if (aTouch.tapCount == 2) {
[NSObject

cancelPreviousPerformRequestsWithTarget:self];

}

On peut utiliser le méme mécanisme pour discriminer les tapes
triples, quadruples, etc. La multiplicité des tapes n’est pas limitée par
Cocoa Touch.

9.3. Mettre en ceuvre les gestes

Il est temps de mettre en ceuvre les éléments que nous venons de
voir en réalisant des vues qui réagissent aux gestes de |'utilisateur.

Nous allons enrichir notre application Billard en donnant la possibi-
lité a l'utilisateur de propulser la boule par une chiquenaude. Nous
illustrerons ensuite les touches multiples par la mise en ceuvre du
pincement.

Chiquenaude
Comportement souhaité

Physique de la chiquenaude
La chiquenaude est un déplacement d'un doigt sur I'écran qui doit :
m étre rapide ; s'il est trop lent, il ne doit pas étre pris en compte ;

m percuterla boule ; le mouvement doit passer a proximité du centre
de la boule, il faut prendre en compte I'imprécision due a la taille
du doigt.

Nous allons émettre des hypothéses simplificatrices quant a I'effet
de la chiguenaude sur la boule :

m La boule est propulsée a la vitesse de la chiquenaude ; la vitesse
de déplacement du doigt sur I'écran.

m La boule est propulsée dans la direction de la chiquenaude ; il n"y
a pas d’effet de rotation de la boule due a une percussion qui ne
serait pas radiale.

9.3. Mettre en ceuvre les gestes | 313

314

Mathématique de la chiquenaude

Une chiquenaude se traduira par une série d’événements de dépla-
cement d’'une touche élémentaire. Chaque déplacement peut étre
considéré séparément, nous n‘avons besoin de conserver que I'ho-
rodate (timestamp) de la derniére touche élémentaire pour calculer la
vitesse de déplacement lors de I'événement suivant.

Nous utiliserons les méthodes —previousLocationInView: et —location
Inview: de UITouch pour déterminer les caractéristiques de la chique-
naude :

m Le déplacement rencontre-t-il la boule ?

m Quel est le vecteur vitesse a donner a la boule ?

Répondre a la premiére question requiert un niveau de mathémati-
que élémentaire. Si ce n'est pas votre cas, nous vous demandons de
nous faire confiance. Si le dernier déplacement élémentaire va du
point 1 au point 2, nous considérons les deux vecteurs :

m celui qui va du point 1 au point 2 ;

m celui qui va du point 1 a la position de la boule.

o
boule o point 2

O
point 1

Figure 9.3: Le déplacement rencontre-t-il la boule ?

On considérera que la boule est percutée si :

m le premier vecteur est plus long que le second, au diamétre de la
boule prés ;

m |'angle entre les deux vecteurs est suffisamment petit. Cet angle
sera indirectement évalué a l'aide du déterminant des deux vec-
teurs.

9. Tapes, touches et gestes

Classe SnookerView

Le travail de cette classe est de détecter la chiquenaude et d’en
transmettre les parametres au contréleur de vue :

m un rectangle défini par les deux points du déplacement ;
m |la durée du déplacement du doigt entre ces deux points.

Pour transmettre ces informations, nous allons définir un protocole
de délégué spécifique auquel le contréleur de vue devra se confor-
mer.

1 Ouvrez le projet Billard sous XCode et modifiez le fichier Snooker-
View.h, nous en profitons pour définir une variable d’instance
lastTime qui nous servira a calculer la durée du déplacement :

@protocol SnookerViewDelegate;
@interface SnookerView : UlIView {

BOOL drawing;

CGPoint precedinglastPoint;

CGPoint lastPoint;

NSTimeInterval lastTime;

IBOutlet id <SnookerViewDelegate> delegate;
}
@property (nonatomic,getter=isDrawing) BOOL drawing;
@property (nonatomic) CGPoint lastPoint;
@property (nonatomic,assign)

id <SnookerViewDelegate> delegate;

@end

@protocol SnookerViewDelegate <NSObject>
@optional
- (void) swipeMove: (CGRect)move
withDuration: (NSTimeInterval) swipeDuration;
@end

2 Modifiez le début du fichier SnookerView.m pour synthétiser les
accesseurs de la propriété delegate et la vitesse minimale d'une
chiquenaude :

const float minSpeed = 300.;
@implementation SnookerView
@synthesize drawing, lastPoint,delegate;

3 Ajoutez les méthodes permettant de traiter les événements de
touches :

- (void) touchesBegan: (NSSet*) touches
withEvent: (UIEvent*)event{
lastTime = [[touches anyObject] timestamp];
}

- (void) touchesMoved: (NSSet*) touches

9.3. Mettre en ceuvre les gestes

316

withEvent: (UIEvent*)event{
UITouch * touch = [touches anyObject];
NSTimeInterval currentTime = [touch timestamp];
NSTimeInterval swipeDuration = currentTime-lastTime;
lastTime = currentTime;
CGPoint pointl = [touch previousLocationInView:self];
CGPoint point2 = [touch locationInView:self];
CGRect move = CGRectMake (pointl.x, pointl.y,
point2.x-pointl.x, point2.y-pointl.y);
CGFloat speed = sqgrt(move.size.width*move.size.width +
move.size.height*move.size.height) /swipeDuration;
if (speed > minSpeed) {
if ([self.delegate respondsToSelector:
@selector (swipeMove:withDuration:)]) {
[self.delegate swipeMove:move
withDuration:swipeDuration];

}

- (void) touchesEnded: (NSSet*) touches

withEvent: (UIEvent*)event{
}
- (void) touchesCancelled: (NSSet*) touches

withEvent: (UIEvent*)event{
}

Classe BillardViewController

Le travail du contréleur est de vérifier si la chiqguenaude doit avoir un
effet sur la boule, et le cas échéant de réaliser cet effet. Tout cela sera
effectué dans la méthode -swipeMove:withDuration: définie dans le
protocole SnookerViewDelegate

1 Ajoutez cette méthode dans le fichier BillardViewController.m :

- (void) swipeMove: (CGRect)move
withDuration: (NSTimeInterval) swipeDuration {
// Détermination de la proximité de la boule
// longueur de la chiquenaude
CGFloat moveLength =
sgrt (move.size.width*move.size.width+
move.size.height*move.size.height);
// Vecteur Origine-Boule et longueur
CGSize ballVector =
CGSizeMake (ball.center.x-move.origin.x,
ball.center.y-move.origin.y);
CGFloat ballLength =
sgrt (ballVector.width*ballVector.width+
ballVector.height*ballVector.height);
// calcul du déterminant
CGFloat det = (move.size.width*ballVector.height-
move.size.height*ballVector.width)/ (movelLength*balllength) ;
// Modification de la vitesse de la boule

9. Tapes, touches et gestes

if ((ballLength<movelLength+distancePrecision) &&

(fabs (det)<anglePrecision)) {
moveX = move.size.width*timerInterval/swipeDuration;
moveY = move.size.height*timerInterval/swipeDuration;

// effacement de la table
[(SnookerView*)self.view setDrawing:NO]J;
[self.view setNeedsDisplay];
// premier déplacement
[(SnookerView*)self.view setLastPoint: ball.center];
[(SnookerView*)self.view setDrawing:YES];
[self moveBalll];

}

2 Déclarez les constantes nécessaires en téte du fichier :

const float distancePrecision = 15.;
const float anglePrecision = 0.1;

3 N’'oubliez pas de déclarer que la classe BillardvViewController
adopte le protocole SnookerViewDelegate dans son fichier d’inter-
face puis ouvrez le fichier BillardViewController.xib sous Interface
Builder pour attacher le délégué de la vue SnookerView au proprié-
taire du fichier.

4 Cochez la case Clear Context Before Drawing dans l'inspecteur des
attributs pour la vue snookervView dans le fichier NIB.

Vous pouvez construire I"application et la tester.

Challenge

Vous aurez certainement remarqué que I'on peut devenir trés violent
avec la boule, et lui donner une vitesse faramineuse au point qu’elle
peut sortir de I'écran. Limitez la vitesse de la boule ou améliorez le
code pour que la boule ne sorte jamais de I'écran.

Pincement

Le deuxieme exemple de geste que nous allons développer est le
pincement tel qu'il est utilisé dans Safari pour iPhone et qui a parti-
cipé a la popularité de I'iPhone.

Un pincement est un geste dans lequel deux doigts sont posés sur
I’écran et s"écartent ou se rapprochent. Nous allons créer une vue qui
détecte ce geste en vérifiant, lors d'un déplacement d'une touche
élémentaire, que deux touches sont en cours d’utilisation.

9.3. Mettre en ceuvre les gestes | 317

Si c’est le cas, le ratio (distance actuelle entre les deux touches)/
(distance précédente entre les deux touches) sera transmis au délégué
de la vue.

Classe PinchView

1 Créez un nouveau projet sous XCode de type View Based Applica-
tion. Intitulez-le Pinch. Créez une nouvelle classe pPinchview qui
dérive de utview. Ajoutez la définition du protocole de délégué de
cette classe dans son fichier d’interface :

#import <UIKit/UIKit.h>
@protocol PinchViewDelegate;

@interface PinchView : UIView {
id <PinchViewDelegate> delegate;
}
@property (nonatomic,retain) id delegate;
@end

@protocol PinchViewDelegate

@required

- (void) pinchPerformed: (float) ratio;
@end

2 Ajoutez les méthodes de traitement des événements de touche
dans le fichier PinchView.m :

- (void) touchesBegan: (NSSet *)touches
withEvent: (UIEvent *)event ({
}
- (void) touchesMoved: (NSSet *)touches
withEvent: (UIEvent *)event {
if ([[event touchesForView:self] count]==2) {
// 2 doigts sont posés sur 1’écran
NSArray *t=[[event touchesForView:self] allObjects];
// tl et t2 sont les deux touches sur 1’écran

UITouch *tl = [t objectAtIndex:0];

UITouch *t2 = [t objectAtIndex:1];

// calcul de la distance précédente

CGPoint pl = [tl previousLocationInView:self];
CGPoint p2 = [t2 previousLocationInView:self];

CGFloat previousDistance =
sqrt ((pl.x-p2.x)* (pl.x-p2.x)+(pl.y-p2.y) *(pl.y-p2.y));
// calcul de la distance actuelle
pl = [tl locationInView:self];
p2 = [t2 locationInView:self];
CGFloat currentDistance =
sqrt ((pl.x-p2.x)* (pl.x-p2.x)+(pl.y-p2.y) * (pl.y-p2.vy));
// transmission du ratio au délégué
[delegate pinchPerformed:
currentDistance/previousDistance];

318 | 9. Tapes, touches et gestes

}

- (void) touchesEnded: (NSSet *)touches

withEvent: (UIEvent *)event ({
}
- (void) touchesCancelled: (NSSet *)touches

withEvent: (UIEvent *)event {
}

On dénombre toutes les touches présentes sur I'écran
([event touchesForView:self]) et pas seulement celles qui viennent de
se déplacer (touches).

Classe PinchViewController

1 Modifiez l'interface du contréleur de vue pour qu’il adopte le
protocole de délégué de PinchView. Nous y ajoutons un champ de
texte qui nous permettra de visualiser |'effet des pincements :
#import <UIKit/UIKit.h>
#import "PinchView.h"

@interface PinchViewController : UIViewController
<PinchViewDelegate>{
IBOutlet UILabel *label;

}
@property (nonatomic,retain) UILabel *label;
@end

2 Dans le fichier PinchViewController.m, synthétisez les accesseurs
pour la propriété label et ajoutez la méthode —pinchperformed: :

- (void)pinchPerformed: (float)ratiof
float previousValue = [label.text floatValue];
label.text = [NSString stringWithFormat:Q@"Sf",
previousValue*ratio];

}

Finaliser I'application

Pour finaliser I'application :

1 Ouvrez le fichier PinchViewController.xib sous Interface Builder.
2 Définissez la classe de la vue principale ; Pinchview.

3 Autorisez les touches multiples dans la vue principale.

4

Définissez le propriétaire du fichier NIB comme délégué de la vue
principale.

5 Ajoutez un /abel sur la vue principale. Initialisez-le a 100.
6 Liez ce label a I'outlet 1abel du propriétaire du fichier.

Vous pouvez maintenant construire et tester I'application.

9.3. Mettre en ceuvre les gestes | 319

ASTUCE

\

7

Pincement sur le simulateur
Le pincement est le seul geste a plusieurs doigts réalisable sur le simula-
teur d’'iPhone. Pressez la touche ~\= sur le clavier en manipulant la souris.

9.4. Checklist

320

Ce chapitre nous a permis de connaitre les différents types d'événe-
ments élémentaires de Cocoa Touch :

m secousse de 'appareil ;

m fouches élémentaires et leurs différents stades permettant d’inter-
préter les gestes effectués par I'utilisateur :
— Un doigt se pose sur I'écran.
— Un doigt se déplace.

— Un doigt est retiré de I'écran.
Nous avons ensuite compris comment sont représentés ces événe-
ments par des instances des classes UIEvent et UITouch, puis com-

ment ils sont recus et traités par les répondeurs de la classe
UIResponder.

Ces principes ont été illustrés par I'implémentation de deux gestes
courant, la chiquenaude et le pincement.

9. Tapes, touches et gestes

APPAREILPHOTO

Sélectionner une photo
Prendre des photos
Enregistrer ses photos
Editer les photosccveenenne

Envoyer ses photos
{0 1T 14T PO

321

Nous allons améliorer notre application Emprunts2 qui deviendra
Emprunts3. Notre objectif maintenant est de conserver une preuve
du prét; nous allons créer une fonctionnalité permettant d'ajouter
une photo a chaque enregistrement.

Certains exemples fournis dans ce chapitre fonctionnent unique-
ment sur iPhone. Il n'y a actuellement pas d’appareil photo sur iPod
Touch ni sur iPad.

10.1. Sélectionner une photo

Nous allons commencer par découvrir la classe UITImagePicker
Controller et son utilisation dans notre application Emprunts pour
sélectionner une photo parmi les alboums de "application Photos.

[-atl Opér... = 05:57 =

cD Objet prété

Musiques ZEN

- Choisi hot
oisir une photo

25| décembre | 2009

Figure 10.1 : Interface pour choisir une photo
Codage de l'interface
Sous XCode, créez un projet Emprunts3 a partir du projet Emprunts2.

Interface de la classe

1 Sous XCode modifiez le fichier LendObjectViewController.h pour y
ajouter :

10.1. Sélectionner une photo | 323

— un outlet imageview de classe UlTmageView afin de visualiser une
miniature de la photo choisie ;

— une variable d’'instance picture de classe UIImage qui contiendra
la photo choisie ;

— un outlet pictureButton de classe UIButton pour régler le com-
portement du bouton ;

— une action -takePicture qui sera activée lorsque l'utilisateur
souhaitera choisir une image :

@interface LendObjectViewController : UIViewController
<UINavigationControllerDelegate,
UIImagePickerControllerDelegate>{

NSManagedObject * lendObject;

IBOutlet UITextField * objectNameField;
IBOutlet UITextField * borrowerNameField;
IBOutlet UIImageView * imageView;
IBOutlet UIButton * pictureButton;
IBOutlet UIDatePicker * datePicker;
UIImage * picture;

}

@property(nonatomic, retain) NSManagedObject * lendObject;

@property (nonatomic, retain) UITextField * objectNameField;

@property(nonatomic, retain) UITextField * borrowerNameField;

@property (nonatomic,retain) UIImageView * imageView;

@property (nonatomic,retain) UIButton * pictureButton;

@property (nonatomic, retain) UIDatePicker * datePicker;

@property (nonatomic,retain) UIImage * picture;

- (IBAction) doneEditing: (id) sender;

- (IBAction) deleteObject;

- (IBAction) takePicture;

@end

Nous déclarons aussi que notre classe LendObjectViewController
adopte les protocoles UINavigationControllerDelegate et UIImage
PickerControllerDelegate.

2 Enregistrez le fichier LendObjectViewController.h.

Interface utilisateur

1 Ouvrez le fichier LendObjectViewController.xib sous Interface Buil-
der pour y ajouter une vue image et un bouton.

2 Liez la vue image a l‘outlet imageview, le bouton a I'outlet
pictureButton et I'événement Touch Up Inside du bouton a I'action
takePicture du propriétaire du fichier.

324 | 10. Appareil photo

Codage du controleur de vue
Le contréleur de vue LendObjectViewController doit réaliser plusieurs
taches:
m vérifier que des albums photos sont disponibles sur I'appareil ;

m lancer le sélectionneur de photo lorsque l'utilisateur a touché le
bouton adéquat ;

prendre en compte la photo choisie ;
m afficher une miniature de la photo choisie.

Vérifier que les albums photos sont disponibles

Sous XCode, ouvrez le fichier LendObjectViewController.m et modifiez
la méthode —viewDidLoad :
- (void)viewDidLoad {
[super viewDidLoad];
UIBarButtonItem *cancelButton = [[UIBarButtonItem alloc]
initWithTitle:@"Delete"
style:UIBarButtonItemStyleDone
target:self
action:@selector (deleteObject)];
self.navigationItem.rightBarButtonItem = cancelButton;
[cancelButton release];
if ([UIImagePickerController isSourceTypeAvailable:
UIImagePickerControllerSourceTypePhotoLibrary]) {
[pictureButton setTitle:@"Choisir une photo"
forState:UIControlStateNormal] ;

} else {
pictureButton.enabled = NO;

}
}

Le chargement de la vue est le bon endroit pour définir le titre du
bouton ou le désactiver si I'aloum photo n’est pas disponible sur
I"appareil.

Nous utilisons la classe UlImagePickerController qui permet de gérer
toutes les sources de photos de [|‘appareil. Sa méthode
+isSourceTypelvailable: renvoie YES si la source dont I'identifiant est
passé en parametre est disponible sur I'appareil. Les types de source
existants sont :

B UITmagePickerControllerSourceTypePhotoLibrary pour accéder aux
albums de la bibliothéque de I'application Photos ;

B UIImagePickerControllerSourceTypeCamera pour accéder a la caméra
vidéo ou a l'appareil photo ;

10.1. Sélectionner une photo | 325

326

B UIlmagePickerControllerSourceTypeSavedPhotosAlbum pour accéder
aux vidéos ou photos enregistrées depuis la caméra ou |'appareil
photo, ou par défaut aux albums de la bibliothéque de I'applica-
tion Photos.

Lancer le sélectionneur de photos
Ajoutez le code de l'action -takePicture :

- (void) takePicture {
UIImagePickerController *picker =
[[UIImagePickerController alloc] init];
picker.sourceType =
UITlmagePickerControllerSourceTypePhotolLibrary;
picker.delegate = self;
[self presentModalViewController:picker animated:YES];
[picker release];

}

Nous créons un contréleur spécifique pour la sélection d'une photo,
une instance de la classe UIImagePickerController puis nous lui indi-
quons gue nous souhaitons explorer les alboums photo. Enfin, nous
activons le contréleur.

Prendre en compte le choix d‘image

Nous allons maintenant coder les deux méthodes du protocole

UIImagePickerControllerDelegate, I'une qui est appelée lorsque I'utili-

sateur a sélectionné une image, et I'autre lorsqu’il annule I'opéra-

tion :

- (void) imagePickerController: (UlImagePickerController *)

picker didFinishPickingMediaWithInfo: (NSDictionary *)info{
self.picture = [info

objectForKey:UIImagePickerControllerOriginalImage];

[self dismissModalViewControllerAnimated:YES];

- (void) imagePickerControllerDidCancel:
(UIImagePickerController *)picker {
[self dismissModalViewControllerAnimated:YES];
}

Le parameétre info de la méthode -imagePickerController:didFinish
PickingMedialliithInfo: est un dictionnaire qui contient les informa-
tions relatives au média sélectionné (photo ou vidéo). La clé
UlTlmagePickerControllerOriginalImage permet de récupérer la photo
sélectionnée.

Comme pour les vues modales standard, il est de la responsabilité
du délégué de désactiver la vue modale en appelant la méthode
—dismissModalViewControllerAnimated:.

10. Appareil photo

Afficher la photo

Pour afficher la photo sélectionnée, il suffit de compléter la méthode
-viewWillAppear: qui est appelée juste avant que la vue soit affichée :

- (void)viewWillAppear: (BOOL)animated({
if ([self.lendObject valueForKey: @"lendDate"]) {
self.objectNameField.text =
[self.lendObject valueForKey: @"objectName"]
self.borrowerNameField.text =
[self.lendObject valueForKey: @"borrowerName"]
self.datePicker.date =
[self.lendObject valueForKey: @"lendDate"]
}
self.imageView.image = self.picture;
[super viewWillAppear:animated];

}

Finaliser I'application

1 Synthétisez les accesseurs pour les trois propriétés que nous
venons de déclarer : imageView, pictureButton et picture :

@synthesize imageView, pictureButton, picture;

2 Libérez les propriétés retenues :

- (void)viewDidUnload {
self.objectNameField = nil;
self.borrowerNameField = nil;
self.datePicker = nil;
self.imageView = nil;
self.pictureButton = nil;

- (void)dealloc {
[self viewDidUnload];
self.lendObject = nil;
self.picture = nil;
[super dealloc];

;E?Rui Libération des propriétés
Nous libérons les propriétés. Celles qui sont définies dans le fichier NIB,
les outlets, et celles qui sont allouées dans la méthode —viewDidLoad doivent
étre libérées dans la méthode —viewDidUnload. Les autres sont libérées dans
la méthode —dealloc.

Le sélectionneur d'image étant susceptible d’utiliser beaucoup de
ressources, il n'est pas impossible que la méthode -viewDidUnload
soit appelée sur I'instance de LendObjectViewController pendant que

10.1. Sélectionner une photo | 327

I'utilisateur choisit une photo. Il est donc important de libérer tous les
outlets car ils seront tous recréés lorsque ce contréleur reprendra la
main sur l'interface utilisateur. Il est important aussi de ne pas libérer
les références vers le modele, en I‘occurrence les propriétés
lendObject et picture, car le contréleur ne saura pas les recréer seul.

3 Construisez I'application et testez-la. A ce stade, le test peut étre
effectué sur le simulateur.

C’est bien de pouvoir choisir une photo. Ce serait encore mieux si ce
choix pouvait étre conservé avec la liste des objets prétés. Avant de
nous occuper de cela, nous allons faire plus ample connaissance
avec la classe UlImagePickerController et son protocole de délégué.

Classe UllmagePickerController

328

Le tableau résume les méthodes et propriétés de la classe

UIlmagePickerController.

Tableau 10.1: Méthodes et propriétés de la classe UllmagePickerController
Objet
Retourne un tableau contenant la

Theme Signature

Sources des images |+ (NSArray *) available

MediaTypesForSourceType:
(UIImagePickerController
SourceType) sourceType

liste des types de médias disponi-
ble dans le type de source passé
en parametre. En particulier
kUTTypeMovie sil'appareil est
capable d'enregistrer de la vidéo.

+ (BOOL) isSourceType
Available: (UIImage
PickerController
SourceType) sourceType

Retourne YES si la source est
disponible sur I'appareil.

@property (nonatomic)
UIImagePickerController
SourceType sourceType

Source utilisée pour la sélection
d'images. Doit &tre initialisé avant
d'activer le contrdleur.

Configurer le sélec-
tionneur

@property (nonatomic)
BOOL allowsEditing

Doit étre initialisé a YES pour
autoriser I'édition par I'utilisateur
de I'image ou de la vidéo sélec-
tionnée. Vaut NO par défaut.

@property (nonatomic,
assign) id <UINavigation
ControllerDelegate,
UIImagePickerController
Delegate> delegate

Délegue.

@property (nonatomic, copy)
NSArray *mediaTypes

Tableau contenant les médias dont
I'acces est autorisé.
kUTTypeImage par défaut

10. Appareil photo

Tableau 10.1: Méthodes et propriétés de la classe UlimagePickerController

Théme

Signature

Objet

Configuration de la
prise de vidéo

@property (nonatomic)
UIImagePickerController
QualityType videoQuality

Niveau de qualité sélectionnée.
Médium par défaut.

@property (nonatomic)
NSTimeInterval
videoMaximumDuration

Durée maximale de la capture vi-
déo. La valeur par défaut est de
10 minutes, ce qui est la va-
leur maximale admissible.

Commandes de la
prise de vue

@property (nonatomic)BOOL
showsCameraControls

YES pour que les commandes
par défaut soient affichées.

@property (nonatomic,
retain) UIView
*cameraOverlayView

Vue contenant des commandes
personnalisées.
nil par défaut.

@property (nonatomic)
CGAffineTransform
cameraViewTransform

Transformation a appliquer sur
I'image pendant la prise de vue.

— (void) takePicture

Utilisé dans un contréle personna-
lisé pour prendre une photo.

On voit que cette classe peut étre utilisée aussi bien pour mettre en
ceuvre la caméra de |'appareil, prendre une photo ou capturer une
vidéo. Nous ajouterons cette fonctionnalité a l'application Em-

prunts3.

Cette classe permet également au développeur d’ajouter ses propres
controles pendant la prise de vue et d'activer le module élémentaire
d’édition d'image.

La propriété videoQuality est du type énuméré UlImagePicker
ControllerQualityType qui peut prendre |'une des trois valeurs suivan-

tes:

B UIlmagePickerControllerQualityTypeHigh pour une qualité haute ;

B UIImagePickerControllerQualityTypeMedium

moyenne ;

pour une qualité

B OU UIlmagePickerControllerQualityTypeLow pour une qualité médio-

cre.

b

REMARQUE

Type de média
Seule la caméra de I'iPhone 3GS peut capturer de la vidéo, I'iPod Touch ne
dispose pas de caméra et a la date ou nous écrivons ces lignes, I'iPad n’en

dispose pas non plus.

329

10.1. Sélectionner une photo

wh)

REMARQUE

lequel votre application s’exécute.

Utilisez les méthodes —isSourceTypeAvailable: et —availableMedia
TypesForSourceType: pour connaitre les caractéristiques de I'appareil sur

Protocole UllmagePickerControllerDelegate

330

Le tableau résume les deux méthodes définies dans le protocole
UIImagePickerControllerDelegate, Nous les avons déja utilisé toutes

les deux.

Tableau 10.2 : Méthodes du protocole UlimagePickerControllerDelegate

Méthode

Objet

— (void) imagePickerController:
(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:
(NSDictionary *)info

Le sélectionneur passé en parameétre vient de
sélectionner une image. Les informations sont
dans le dictionnaire passé en second parame-
tre.

— (void) imagePickerController
DidCancel: (UIImagePicker
Controller *)picker

Le sélectionneur passé en parametre vient
d'étre annulé par I'utilisateur.

Le dictionnaire info recu par la

méthode -imagePickerController:

didFinishPickingMediaWithInfo: est susceptible de contenir les infor-

mations suivantes :

m le type de média capturé, sous la clé UIImagePickerController

MediaType ; kUTTypeImage pour une image et kUTTypeMovie pour une
vidéo ;

I'image originale, sous la clé UTImagePickerControllerOriginalImage,
de type UIImage ;

I'image éventuellement modifiée par I'utilisateur lors de la prise
de vue, sous la clé UIImagePickerControllerEditedImage ; de type
UIlmage,

le rectangle délimitant la partie de I'image sélectionnée par I'utili-
sateur, sous la clé UIImagePickerControllerCropRect; de type
CGRect ;

m |'adresse URL de la vidéo capturée, sous la clé UIImagePicker

ControllerMediaURL ; de type NSURL.

10. Appareil photo

10.2. Prendre des photos

Ce serait sans doute plus pratique pour l'utilisateur, s’il pouvait
prendre une photo directement depuis I'application Emprunts3. La
classe UIImagePickerController le permet, mais comme certains ap-
pareils (iPod Touch et iPad) ne sont pas dotés d’un appareil photo, il
faut que l'interface utilisateur s’adapte a la situation.

Adapter lI'interface utilisateur

Modifiez la méthode -viewDidLoad de la classe LendObjectViewController
pour y adapter le titre du bouton en fonction des capacités de
I'appareil :
- (void)viewDidLoad {
[super viewDidLoad];
UIBarButtonItem *cancelButton = [[UIBarButtonItem alloc]
initWithTitle:@"Delete"
style:UIBarButtonItemStyleDone
target:self
action:@selector (deleteObject)];
self.navigationItem.rightBarButtonItem = cancelButton;
[cancelButton release];
if ([UIImagePickerController isSourceTypeAvailable:
UIImagePickerControllerSourceTypeCamera]) {
[pictureButton setTitle:@"Prendre une photo"
forState:UIControlStateNormal] ;
} else if ([UIImagePickerController
isSourceTypeAvailable:
UIImagePickerControllerSourceTypePhotoLibrary]) {
[pictureButton setTitle:@"Choisir une photo"
forState:UIControlStateNormal];
} else {
pictureButton.enabled = NO;
}

Adapter le sélectionneur de photos

1 Modifiez la méthode -takepPicture de la classe LendObjectView
Controller pour indiquer au sélectionneur de photo quelle source
utiliser en fonction des capacités de I'appareil :

- (void) takePicture {
UIImagePickerController *picker =
[[UIImagePickerController alloc] init];
if ([UIImagePickerController isSourceTypeAvailable:
UIImagePickerControllerSourceTypeCamera]l) {
picker.sourceType =
UIImagePickerControllerSourceTypeCamera;

10.2. Prendre des photos | 331

} else {
picker.sourceType =
UIImagePickerControllerSourceTypePhotoLibrary;
}
picker.delegate = self;
[self presentModalViewController:picker animated:YES];
[picker release];

}

2 Reconstruisez et testez l'application. Testez-la successivement
avec le simulateur et sur un iPhone ou sur un iPod Touch pour
vérifier qu’elle s’adapte aux capacités de 'appareil.

10.3. Enregistrer ses photos

Pour que l'application Emprunts3 soit utile, il faut que la photo prise
par l'utilisateur soit rangée avec les données de |'objet prété, dans la
structure Core Data. Nous allons réaliser cette fonction.

Gérer une image sous Core Data

332

Déclarer une image dans le modele de données

Editez le fichier Emprunts3.xcdatamodel sous XCode. Ajoutez une
propriété image, de type Binary data, dans I'entité LendObject.

¥ | Abs| Property | Kind | Type or
Category O borrowerName Attribute String
LendObject O category Relationship Categor
lendDate Attribute Date
objectName Attribute String . . .
Figure 10.2 : Propriété image
de LendObject

Outre les types d’attribut prédéfinis que nous connaissons déja
(nombre, chaine de caractéres, booléen, et date), le type Binary Data
permet de stocker tout autre type de données dans une structure
Core Data, en particulier une image de type UIImage comme nous le
verrons bient6t.

Le type d’attribut Binary Data est équivalent a la classe Objective-C
NSData qui encapsule un tableau d'octets. Et comme toute donnée
informatique n’est au final qu’un tableau d’octets, on peut utiliser
cette classe et ce type d’attribut pour stocker n‘importe quel type de
données.

10. Appareil photo

Classe NSData

Le tableau ci-apres résume les principales méthodes de la classe
NSData.

Tableau 10.3 : Principales méthodes de la classe NSData

Theme Signature Objet
Création + (id) dataWithBytes: Crée une instance NSData a partir
d'instances (const void *)bytes d'un tableau d'octets.

length: (NSUInteger)length

+ (id) dataWithContents |Crée une instance NSData a partir
OfFile: (NSString *)path |du contenu d'un fichier.

+ (id) dataWithContents |Crée une instance NSData a partir

OfURL: (NSURL *)aURL du contenu d'une URL.
Accéder — (const void *) bytes [Renvoie un pointeur sur le tableau
aux données d'octets encapsulé dans le NSData.

— (NSUInteger) length Renvoie la longueur en octets du
tableau encapsulé dans le NSData.

Enregistrer — (BOOL) writeToFile: Crée un fichier avec le contenu de
les données (NSString *)path I'instance NSData. Si flag vaut
atomically: (BOOL) flag YES, le fichier est créé unique-
ment si son intégrité peut étre ga-

rantie.
— (BOOL) writeToURL: Crée une URL avec le contenu de
(NSURL *) aURL I'instance NSData. Si flag vaut
atomically: (BOOL) YES, 'URL est créée uniquement si
atomically son intégrité peut étre garantie.

Ces méthodes permettent la conversion d’une instance NSData de et
vers :

m un tableau d’octets en mémoire ;

m le contenu d'un fichier ;

® un contenu adressé par une URL.

Le framework Cocoa Touch contient également plusieurs fonctions
utilitaires qui permettent de convertir des données particuliéres en

instance NsData. Notamment les images, ce que nous allons voir a la
section suivante.

Transformer I'image en data

La fonction UIImagePNGRepresentation prend une instance UIImage en
parameétre et retourne une instance NsData contenant l'image au
format PNG. La méthode +imageWithData: de la classe UIImage réalise
I'opération inverse.

10.3. Enregistrer ses photos

333

1 Modifiez les méthodes —viewWillAppear: et —imagePickerController:
didFinishPickingMediaWithInfo: de la classe LendObjectView
Controller pour enregistrer la photo sélectionnée dans la structure
Core Data et la récupérer :

- (void)viewWillAppear: (BOOL)animated(
if ([self.lendObject valueForKey: @"lendDate"]) {
self.objectNameField.text =
[self.lendObject valueForKey: @"objectName"]
self.borrowerNameField.text =
[self.lendObject valueForKey: @"borrowerName"]
self.datePicker.date =
[self.lendObject valueForKey: @"lendDate"]
self.imageView.image = [UIImage
imageWithData: [self.lendObject valueForKey: Q@"image"]] ;
}

[super viewWillAppear:animated];

}

- (void) imagePickerController: (UlImagePickerController *)
picker didFinishPickingMediaWithInfo: (NSDictionary *)info{
UIImage *picture = [info
objectForKey:UIImagePickerControllerOriginalImage] ;
[self.lendObject setValue:
UIImagePNGRepresentation (picture) forKey: @"image"]
[self dismissModalViewControllerAnimated:YES];

}
Dans cette classe, vous pouvez également supprimer la propriété
picture qui est désormais inutile.

2 Reconstruisez et testez I'application pour vérifier que les images
sont conservées avec les données des objets prétés.

Arr@mu Le modele Core Data a été modifié
Pour tester cette nouvelle version de I'application, il faudra d’abord sup-
primer la version précédente sur le simulateur ou sur I'appareil. Par défaut,
Core Data nécessite que le fichier de stockage utilisé soit lu et produit avec le
méme modeéle

Challenge
Si vous disposez d'un iPhone 3GS, vous pouvez modifier "applica-
tion pour conserver une capture vidéo plutét qu’une photo.

Enregistrer dans I'album

Le framework Cocoa Touch propose des fonctions permettant d’en-
registrer des images, photos ou des vidéos dans les albums par
défaut de I'appareil.

334 | 10. Appareil photo

Enregistrement d'une image

Pour enregistrer une image ou une photo dans I'album, utilisez la
fonction qui prend pour paramétres :

m une référence a I'image a enregistrer, de type UIImage * ;

m une référence a I'objet, de type id, devant recevoir la notification
de I'enregistrement, ou nil si vous ne souhaitez pas que |'applica-
tion soit informée de la fin de I'enregistrement ;

m le sélecteur de la méthode a appeler pour la notification de I'enre-
gistrement, ou nil ;

m une référence de type void * sur des informations, qui sera passée
a la méthode de notification, ou nil s’il n'y a pas d’informations
complémentaires a transmettre.

Le sélecteur de la méthode de notification doit prendre trois parame-
tres :

m la référence a lI'image qui vient d'étre enregistrée, de type
UIlmage *,

m une référence vers une instance NSError contenant la description
de lI'erreur éventuelle ;

m la référence vers les informations complémentaires.

Enregistrement d'une vidéo

Pour enregistrer une capture vidéo dans |I'aloum, utilisez la fonction

UISaveVideoAtPathToSavedPhotosAlbum qui prend pour parametres :

m une chaine de caractéres contenant le chemin d’accés vers la
vidéo, de type NSString *;

m une référence a I'objet, de type id, devant recevoir la notification
de I'enregistrement, ou nil si vous ne souhaitez pas que |'applica-
tion soit informée de la fin de I'enregistrement ;

m le sélecteur de la méthode a appeler pour la notification de I'enre-
gistrement, ou nil ;

m une référence de type void * sur des informations, qui sera passée
a la méthode de notification, ou nil s'il n'y a pas d’informations
complémentaires a transmettre.

Le sélecteur de la méthode de notification doit prendre trois paramétres :

m le chemin d’acces a la vidéo qui vient d’'étre enregistrée, de type
NSString *;

m une référence vers une instance NSError contenant la description
de l'erreur éventuelle ;

m la référence vers les informations complémentaires.

10.3. Enregistrer ses photos

335

10.4. Editer les photos

Le sélectionneur de photos est doté d'un éditeur élémentaire qui
permet a l'utilisateur de recadrer et de zoomer|'image avant de la
sélectionner. Pour utiliser cet éditeur, il faut :

m |'activer avant d’afficher le sélectionneur, ce qui est réalisé avec la
propriété booléenne allowsEditing ;

m choisir I'image éditée plutét que I'image originale.

Pour utiliser I'éditeur de photos dans I"application Emprunts3, modi-
fiez les méthodes -takePicture et -imagePickerController:didFinish
PickingMediaWithInfo: :

- (void) takePicture {
UIImagePickerController *picker =
[[UIImagePickerController alloc] init];
if ([UIImagePickerController isSourceTypeAvailable:
UIImagePickerControllerSourceTypeCameral]) {
picker.sourceType =
UIImagePickerControllerSourceTypeCamera;
} else {
picker.sourceType =
UIImagePickerControllerSourceTypePhotoLibrary;
}
picker.allowsEditing = YES;
picker.delegate = self;
[self presentModalViewController:picker animated:YES];
[picker release];
}
- (void) imagePickerController:
(UIImagePickerController *)picker
didFinishPickingMediaWithInfo: (NSDictionary *)infof{
UIlmage *picture =
[info objectForKey:UIImagePickerControllerEditedImage];
[self.lendObject setValue:
UIImagePNGRepresentation (picture) forKey: @"image"]
[self dismissModalViewControllerAnimated:YES];

}
Vous pouvez reconstruire I'application pour la tester.

10.5. Envoyer ses photos

336

Le framework MessageUI permet d’envoyer des courriels depuis une
application. La classe MFMailComposeViewController qui y est définie
est un contréleur de composition de courriel. Il présente une inter-
face standard a l'utilisateur, lui permettant de composer un message

10. Appareil photo

et de le transmettre. Les différents champs du courriel peuvent étre

préremplis par I'application : destinataire, objet, pieces jointes, etc.

Classe MFMailComposeViewController

La classe MFMailComposeViewController s'utilise comme la plupart des
contrbleurs de vue utilitaires, UIImagePickerController par exemple :

m création d'une instance du controleur de vue ;

m initialisation des propriétés de cette instance, en particulier son

délégué ;

m activation du contréleur par —-presentModalViewController:animated:.

Le délégué du contréleur est informé lorsque I'utilisateur souhaite
fermer l'interface de composition, soit pour envoyer le courriel, soit
pour I'enregistrer dans les brouillons, soit pour annuler.

Les méthodes et propriétés de la classe MFMailComposeViewController
sont répertoriées dans le tableau.

Tableau 10.4: Méthodes et propriétés de la classe MFMailComposeViewController

Theme

Signature

Objet

Capacité d'envoyer
des courriels

+ (BOOL)canSendMail

Retourne YES si I'appareil est
configuré pour envoyer des
courriels.

Préremplissage

— (void) setSubject:

Préremplit le champ Objet.

des champs (NSString*) subject
— (void) setToRecipients: Préremplit le champ Destina-
(NSArray*) toRecipients taires.
— (void) setCcRecipients: Préremplit le champ Copies.
(NSArray*)ccRecipients
— (void) setBccRecipients: |Préremplitle champ Copies
(NSArray*)bccRecipients cachées.
— (void) setMessageBody: Préremplit le champ Texte.
(NSString*)body
isHTML: (BOOL) i sSHTML
— (void) addAttachmentData: |Attache un documenten pré-
(NSDhata*)attachment cisant son contenu, son type
mimeType: (NSString*)mimeType| MIME et son nom.
fileName: (NSString*) filename

Délégué @property (nonatomic, assign) | Délégué du contrdleur de

id<MFMailComposeView
ControllerDelegate>
mailComposeDelegate

composition de courriel

337

10.5. Envoyer ses photos

B@ types MIME

REMARQUE . . . o
Le type MIME permet au destinataire du message d’exploiter le fichier
attaché en précisant son format. Par exemple, un fichier de texte pur est de
type text/plain, une image au format PNG de type image/png, etc.

La liste des types existants est disponible a |'adresse http://www.iana.org
/assignments/media-types/.

Protocole
MFMailComposeViewControllerDelegate

Le délégué du contréleur de composition de courriel est informé
lorsque l'utilisateur souhaite fermer la vue de composition. Le pro-
tocole MFMailComposeViewControllerDelegate ne déclare qu'une mé-
thode.

Tableau 10.5: Méthodes du protocole MFMailComposeViewControllerDelegate

Méthode Objet

— (void) mailComposeController: Méthode appelée lorsque l'utilisateur veut
(MFMailComposeViewController*) refermer la fenétre de composition de
controller didFinishWith courriel.

Result: (MFMailComposeResult)
result error: (NSError*)error

C’est dans cette méthode que le développeur doit appeler
—-dismissModalViewControllerAnimated: pour désactiver le contréleur
de composition de courriel.

Les valeurs de retours définies dans le type énuméré
MFMailComposeResult sont :

B MFMailComposeResultCancelled si l'utilisateur a annulé la composi-
tion ;

B MFMailComposeResultSaved si l'utilisateur a enregistré le courriel
dans les brouillons ;

B MFMailComposeResultSent si l'utilisateur a envoyé le courriel ;

B MFMailComposeResultFailed en cas d’erreur.

o) I'envoi est différé

REMARQUE , , - .
Un résultat MFMailComposeResultSent ne signifie pas que le courriel est
effectivement parti. Il a été placé dans la boite d’envoi et sera envoyé a la

338 ‘ 10. Appareil photo

. éi premiére occasion, par exemple lorsque |'appareil accrochera un réseau
REMARDUE -

Challenge

Complétez I'application Emprunts3 en ajoutant la capacité d’envoyer
la photo prise lors du prét. Cela vous permettra de vous rappeler au
bon souvenir des amis indélicats...

10.6. Checklist

Nous avons appris dans ce chapitre a utiliser I'album photo de
I'appareil, et I'appareil de prise de vues ou de capture vidéo pour
ceux qui en sont doté. Pour cela, nous avons détaillé le fonctionne-
ment :

m de la classe UIImagePickerController ;
m du protocole UIImagePickerControllerDelegate.

Nous avons vu comment utiliser la classe NSData pour enregistrer et
récupérer des images dans une structure Core Data, grace aux attri-
buts de type binaire.

Nous savons maintenant doter nos applications de la capacité de
préparer et envoyer des courriels avec le framework MessageUl :

m classe MFMailComposeViewController ;
m protocole MFMailComposeViewControllerDelegate.

10.6. Checklist 339

GEO-LOCALISATION

Déterminer sa positioncovevcrerecenene .. 343
Déterminer I'orientation géographique .. 349
Framework MapKit 352
Checklist e .. 360

341

—
-
w
o
=
o
<
T
o

Deux frameworks sont au programme de ce chapitre :

m Corelocation, qui permet d'utiliser les capacités de géo-
localisation de I'iPhone ;

m MapKit, qui permet d'insérer des cartes géographiques dans une
application et qui s’utilise en conjonction avec CorelLocation, par
exemple, pour y visualiser des marqueurs.

11.1. Déterminer sa position

Technologies de géo-localisation

L'iPhone met en ceuvre simultanément plusieurs technologies pour

localiser sa position géographique :

m la localisation des réseaux Wi-Fi publics, qui est une technologie
relativement précise (quelques dizaines de meétres), mais n’est pas
disponible partout ;

m la triangulation des antennes relais de téléphonie mobile, partout
disponible mais avec une précision trés variable (en montagne,
par exemple, le nombre d’antennes relais accessibles est souvent
insuffisant pour obtenir une bonne précision) ;

m le positionnement par satellites GPS, trés précis en plein air et
généralement indisponible a l'intérieur des batiments.

La précision de la géo-localisation va de plusieurs kilométres a quel-
ques metres. Il faut étre conscient qu’une bonne précision nécessite
des calculs, donc du temps (souvent plusieurs secondes), et
consomme également de |'énergie. Il est recommandé de limiter la
précision demandée au strict nécessaire en fonction de I'application.
La mise en ceuvre des différentes technologies de géo-localisation
est transparente pour le développeur. Le gestionnaire de géo-
localisation en masque la complexité pour se concentrer sur I'essen-
tiel : fournir une localisation avec le niveau de précision requis.

Classe CLLocationManager

Mise en ceuvre du gestionnaire de géo-localisation

La mise en ceuvre de la géo-localisation utilise un motif analogue a
celui du sélectionneur d'images vu au chapitre précédent et a celui
des accéléromeétres que nous verrons au chapitre suivant :

m Création d'une instance de la classe CLLocationManager (le gestion-
naire de géo-localisation) qui est programmée pour définir les crite-
res de notifications relatifs a la position géographique de I'appareil.

11.1. Déterminer sa position | 343

m Activation du gestionnaire ; il commence a délivrer des notifications.

m Les notifications sont délivrées au délégué du gestionnaire qui doit
répondre au protocole CLLocationManagerDelegate

m Le gestionnaire est désactivé lorsque les notifications ne sont plus
nécessaires.

Les deux premiéres étapes sont réalisées typiquement par les ins-

tructions suivantes :

locationManager = |[[CLLocationManager alloc] init];

locationManager.delegate = self;

locationManager.desiredAccuracy =
kCLLocationAccuracyKilometer;

locationManager.distanceFilter = 500.;

[locationManager startUpdatingLocation];

Dans ce cas, le gestionnaire est programmeé pour délivrer des notifi-

cations précise au kilomeétre prés et a chaque fois que I'appareil s'est

déplacé de 500 meétres ou plus.

Les notifications sont recues par le délégué sur sa méthode

-locationManager:didUpdateToLocation: fromLocation: détaillée dans la

section relative au protocole CLLocationManagerDelegate.

La derniére étape est réalisée par lI'instruction suivante :

[locationManager stopUpdatingLocation];

Détails de la classe CLLocationManager

La classe CLLocationManager permet de gérer les notifications relatives
a la position géographique de l'appareil et celles relatives a son
orientation par rapport au Nord, dont il sera question plus loin dans
ce chapitre. Les méthodes et propriétés de la classe sont détaillées
dans le tableau ci-apres.

Tableau 11.1: Méthodes et propriétés de la classe CLLocationManager

Theme Signature Objet
Configuration des | @property (assign, Délégué du gestionnaire de géo-
mises a jourdela |NS_ NONATOMIC_ IPHONEONLY) |localisation
position id<CLLocationManager
Delegate> delegate
@property (assign, Distance de déplacement mini-
NS NONATOMIC IPHONEONLY) |male entre deux événements de
CLLocation mise a jour de la position
Distance distanceFilter
@property (assign, Précision demandée (non garan-
NS NONATOMIC IPHONEONLY) tie)
CLLocation

Accuracy desiredAccuracy

344 | 11. Géo-localisation

Tableau 11.1: Méthodes et propriétés de la classe CLLocationManager

Théme

Signature

Objet

Configuration des
mises a jour des
directions

@property (assign,
nonatomic) CLLocation
Degrees headingFilter

Distance de déplacement mini-
male entre deux événements de
mise a jour de la direction du Nord

@property (readonly,

Retourne YES si I'appareil dis-

nonatomic) BOOL pose de la capacité de détermi-
headingAvailable ner la direction du Nord (compas
magnétique).
Démarreretarré- |- (void) startUpdating Démarre les mises a jour de géo-
ter les mises a Location localisation.
jour — (void) stopUpdating Stoppe les mises a jour de géo-
Location localisation.
— (void) startUpdating Démarre les mises a jour de la
Heading direction du Nord.
— (void) stopUpdating Stoppe les mises a jour de la di-
Heading rection du Nord.
— (void) dismissHeading Referme le panneau de calibration
CalibrationDisplay magnétique.

Disponibilité des
services de géo-
localisation

@property (readonly,

NS NONATOMIC I PHONEONLY)
BOOL locationServices
Enabled

YES si l'utilisateur de I'appareil a
autorisé la géo-localisation dans
les préférences systeme

@property (copy,
nonatomic) NSString
*purpose

Chaine de caracteres a afficher en
méme temps que le message de-
mandant a ['utilisateur I'autorisa-
tion d'utiliser la géo-localisation

Obtenir la position
de l'appareil

@property (readonly,
NS_ NONATOMI C_I PHONEONLY)
CLLocation *location

Derniére position mise a jour

La plupart des propriétés de la classe CLLocationManager sont décla-
rées avec une clause NS_NONATOMIC IPHONEONLY. En effet, le framework
CorelLocation étant commun a Cocoa sur Mac OS X et a Cocoa Touch
sur iPhone OS, cette déclaration permet de définir des propriétés
atomiques sur Mac OS X et non-atomiques sur iPhone OS. Rappe-
lons qu’une propriété est dite atomique si ses accesseurs permettent
d’en garantir la validité, méme dans un environnement multithrea-
ding ou le méme objet peut étre manipulé simultanément par plu-
sieurs threads. La priorité est mise sur l'intégrité des données sur
Mac OS X (on peut utiliser le méme gestionnaire simultanément
dans plusieurs threads), alors qu’elle est mise sur les performances
sur iPhone OS.

11.1. Déterminer sa position

345

346

A Propriété purpose

ATTENTION

La propriété purpose est disponible uniquement a partir de la version 3.2.

Types scalaires

Outre la classe CLLocationManager, le framework Core Location définit

é

galement la classe CLLocation et le protocole CLLocation

ManagerDelegate, que nous détaillerons plus loin, ainsi que les types
scalaires décrits ci-apres.

Tableau 11.2 : Types scalaires CLLocation

Type CLLocation Type C Utilisation

CLLocation double Précision de distance en metres

Accuracy

CLLocation struct Le champ /atitude prend une valeur comprise

Coordinate2D { CLLocation entre -90 et +90 (une valeur positive indique
Degrees une latitude dans I'hémisphére Nord et néga-
latitude; tive dans I'hémisphére Sud) Le champ longi-
CLLocation tude prend une valeur comprise entre -180 et
Degrees +180 (une valeur positive indique une longi-
longitude; } tude a I'Est du méridien de Greenwich, et

négative a I'Ouest)

CLLocation double Angle en degrés

Degrees

CLLocation double Direction du Nord en degrés

Direction

CLLocation double Distance en métres

Distance

CLLocation double Vitesse en métres par seconde

Speed

Quelques constantes sont définies dans le framework Core Location
pour en faciliter 'usage :

kCLDistanceFilterNone, de type CLLocationDistance, est utilisé avec
la propriété distanceFilter du gestionnaire de géo-localisation
pour lui indiquer de ne pas filtrer les notifications de position.

Plusieurs constantes sont définies pour le type CLLocationAccuracy
et la propriété desiredaccuracy du gestionnaire de géo-
localisation :

— kCLLocationAccuracyBest pour obtenir la meilleure précision pos-
sible ;

11. Géo-localisation

— kCLLocationAccuracyNearestTenMeters pour obtenir une position a
10 metres pres ;

— kCLLocationAccuracyHundredMeters pour obtenir une position a
100 métres pres ;

— kCLLocationAccuracyKilometer pour obtenir une position a 1 kilo-

meétre pres ;

— kCLLocationAccuracyThreeKilometers pour obtenir une position a
3 kilometres pres.

Protocole CLLocationManagerDelegate

Le tableau résume les méthodes déclarées dans le protocole
CLLocationManagerDelegate. Toutes ces méthodes sont optionnelles.

Tableau 11.3: Méthodes du protocole CLLocationManagerDelegate

Theme

Signature

Objet

Evénements de mise
ajour de la géo-
localisation

- (void)
(CLLocationManager *)
manager didUpdateTo
Location: (CLLocation
*)newLocation from
Location: (CLLocation
*)oldLocation

locationManager:

Mise a jour de la géo-
localisation. La méthode recoit la
nouvelle position et I'ancienne.

- (void)
(CLLocationManager *)
manager didFailWith
Error: (NSError *)error

locationManager:

Une erreur s’est produite pen-
dant la géo-localisation.

Evénements de mise
a jour de la direction
du Nord

- (void)
(CLLocationManager *)
manager didUpdate
Heading: (CLHeading ¥*)
newHeading

locationManager:

Mise a jour de la direction du
Nord. La méthode recoit la nou-
velle direction

— (BOOL) locationManager
ShouldDisplayHeading
Calibration:
(CLLocationManager *)
manager

Doit retourner YES si le délégué
autorise I'affichage du panneau
de calibration magnétique

Le délégué du gestionnaire de géo-localisation recgoit les notifications :

m des mises ajour de la géo-localisation de I'appareil, pour savoir ou

se situe I'appareil sur le globe terrestre ;

m des mises a jour de la direction du Nord, pour savoir commet est
orienté I"appareil par rapport au Nord.

Le protocole CLLocationManagerDelegate permet également au délé-
gué d’'étre informé d’une erreur de géo-localisation ou de la néces-

347

11.1. Déterminer sa position

sité d'une calibration magnétique (voir plus loin la section Déterminer
I'orientation géographique).

Classe CLLocation

Les notifications de géo-localisation délivrent la position de |'appa-
reil sous forme d’instances de la classe ClLlLocation décrite dans le

tableau ci-apres.

Tableau 11.4: Méthodes et propriétés de la classe CLLocation

Theme Signature Objet

Initialisation |- (id) initWithLatitude: Crée une instance avec les coordon-
(CLLocationDegrees) nées passées en parametre. La pré-
latitude longitude: cision horizontale prend une valeur
(CLLocationDegrees) nulle, la précision verticale prend la
longitude valeur —1. L'horodate est celle de

I'initialisation de I'objet.

— (id) initWith Crée une instance avec les données
Coordinate: (CLLocation passées en parametre.
Coordinate2D)coordinate
altitude: (CLLocation
Distance)altitude
horizontalAccuracy:
(CLLocationAccuracy)
hAccuracyvertical
Accuracy: (CLLocation
Accuracy)VvAccuracy
timestamp: (NSDate *)
timestamp

Attributs de | @property (readonly, Coordonnées de la position

géo- NSiNONATOMlcilPHONEONLY)

localisation |CLLocationCoordinate2D

coordinate

@property (readonly,
NS NONATOMIC IPHONEONLY)
CLLocationDistance altitude

Altitude

@property (readonly,
NS NONATOMIC IPHONEONLY)
CLLocationAccuracy
horizontalAccuracy

Précision horizontale

@property (readonly,

NS NONATOMIC IPHONEONLY)
CLLocationAccuracy
verticalAccuracy

Précision verticale

@property (readonly,
NS NONATOMIC IPHONEONLY)
NSDate *timestamp

Horodate a laquelle la position a été
déterminée

— (NSString *)description

Retourne une chaine de caractéres
contenant la description de la position.

348

11. Géo-localisation

Tableau 11.4: Méthodes et propriétés de la classe CLLocation

Theme Signature Objet

Mesurede |- (CLLocationDistance) Retourne la distance entre la position

distance getDistanceFrom: (const du récepteur et celle de I'instance
CLLocation *)location passée en parametre.

Détermina- | @property (readonly, Vitesse instantanée de I'appareil.

tion du mou- | NS NONATOMIC IPHONEONLY) Une valeur négative indique que

vement CLLocationSpeed speed cette propriété est indisponible.
@property (readonly, Direction de déplacement de |'appa-
NS _NONATOMIC IPHONEONLY) reil Une valeur négative indique que
CLLocationDirection course |cette propriété estindisponible.

La classe CLLocation permet non seulement de retrouver la position
de I'appareil, sous forme de latitude et de longitude, mais aussi :

m |'altitude de 'appareil ;

m la précision horizontale et verticale ;

m |'horodate précise de la mesure ;

m s’il y a lieu, la vitesse et la direction de déplacement de "appareil.

Challenge

Réalisez une application qui affiche la position de I'appareil.

Vous pourrez agrémenter cette application de fonctions permettant a
I'utilisateur de jouer sur la précision recherchée et sur le filtre en
distance pour les notifications de géo-localisation.

11.2. Déterminer I'orientation
géographique

L'iPhone 3GS est doté d'un compas magnétique permettant soit de
mesurer un champ magnétique, soit de déterminer l'inclinaison de
I"appareil par rapport a la direction du Nord ; les applications Bous-
sole et Plans (sur iPhone 3GS) utilisent le compas magnétique.

Le compas magnétique est mis en ceuvre dans une application a l'aide
du gestionnaire de géo-localisation dont nous venons de traiter. Il peut
étre étonnant au premier abord de mélanger la géo-localisation et la
détection magnétique dans un méme framework. L'explication est sim-
ple, la détermination de la direction du Nord géographique nécessite la
connaissance de la position de I'appareil sur le globe terrestre afin de
calculer la déclinaison magnétique ; I'écart entre les directions du Nord
géographique et du Nord magnétique.

11.2. Déterminer l'orientation géographique | 349

Mise en ceuvre du compas magnétique

350

A un seul délégué

ATTENTION

La mise en ceuvre du compas magnétique utilise le gestionnaire de géo-
localisation et son motif standard. Les méthodes et propriétés traitant de
la géo-localisation et du compas magnétique y sont bien séparées :

m Une instance de la classe CLLocationManager (le gestionnaire de
géo-localisation) est créée.

m On vérifie que le compas magnétique est disponible sur I'appareil
avec la propriété headingAvailable.

m Le gestionnaire de géo-localisation est programmé pour définir les
critéres de notification relatifs a la I'inclinaison de I'appareil par
rapport a la direction du Nord.

m Le gestionnaire est activé ; il commence a délivrer des notifications.

m Les notifications sont délivrées au délégué du gestionnaire qui doit
répondre au protocole CLLocationManagerDelegate.

m Le gestionnaire est désactivé lorsque les notifications ne sont plus
nécessaires.

Les quatre premiéres étapes sont réalisées typiqguement par les
instructions suivantes :

locationManager = |[[CLLocationManager alloc] init];

if (locationManager.headingAvailable) then {
locationManager.delegate = self;
locationManager.headingFilter = 5.;

[locationManager startUpdatingHeading];
}
Dans ce cas, le gestionnaire est programmeé pour délivrer des notifi-
cations chaque fois que l'inclinaison de I'appareil change de 5 de-
grés ou plus.

Les notifications sont recues par le délégué sur sa méthode
-locationManager:didUpdateHeading: détaillée dans la section relative
au protocole CLLocationManagerDelegate.

La derniere étape est réalisée par lI'instruction suivante :
[locationManager stopUpdatingHeading];

Bien que les méthodes et propriétés relatives a la géo-localisation et au
compas magnétique soient séparées dans la classe CLLocationManager et
dans le protocole associé, le délégué du gestionnaire de géo-localisation est
unique pour ces deux fonctionnalités.

11. Géo-localisation

Calibration magnétique

Un compas magnétique étant trés sensible aux perturbations, fré-
quentes dans notre univers domestique et ses nombreux appareils
électroniques, le gestionnaire de géo-localisation peut avoir a affi-
cher un panneau de calibration. Ce dernier invite |'utilisateur a faire
des 8 avec l'appareil ou a s’éloigner d'une source magnétique trop
forte.

Dans ce cas, le délégué du gestionnaire recoit le message
-locationManagerShouldDisplayHeadingCalibration:. Il doit répondre
YES s'il autorise I'affichage du panneau et NO dans le cas contraire. Par
défaut, s’il nimplémente pas cette méthode, le panneau n’est pas
affiché.

Classe CLHeading

L'information d’inclinaison par rapport au Nord est transmise au
délégué sous la forme d'une instance de la classe CLHeading.

Tableau 11.5: Méthodes et propriétés de la classe CLHeading

Theme

Signature

Objet

Attributs de Direction

@property (readonly,

nonatomic) CLLocation
Direction
magneticHeading

Direction vers laquelle pointe le
sommet de |'appareil, par rapport au
Nord magnétique (0 pour le Nord,
90 pour I'Est, etc.) Une valeur
négative indique que cette pro-
priété ne peut étre calculée.

@property (readonly,
nonatomic) CLLocation
Direction trueHeading

Direction vers laquelle pointe le
sommet de |'appareil, par rapport au
Nord géographique (0 pour le
Nord, 90 pour I'Est, etc.) Une va-
leur négative indique que cette
propriété ne peut étre calculée. Le
calcul de cette propriété néces-
site que I'appareil puisse étre
géo-localisé.

@property (readonly,

nonatomic) CLLocation
Direction
headingAccuracy

Estimation de I'erreur sur la direc-
tion du Nord magnétique Une valeur
négative indique que cette propriété
ne peut étre calculée.

@property (readonly,

Horodate de la mesure du compas

nonatomic) NSDate magnétique

*timestamp

— (NSString *) Description de la mesure du com-
description pas magnétique sous forme de

chaine de caractéres

11.2. Déterminer l'orientation géographique

351

Tableau 11.5: Méthodes et propriétés de la classe CLHeading

Theme Signature Objet

Mesures brutes @property (readonly, Mesure du champ magnétique en
nonatomic) CLHeading microTesla selon I'axe des abscis-
ComponentValue x ses
@property (readonly, Mesure du champ magnétique en
nonatomic) CLHeading microTesla selon I'axe des ordon-
ComponentValue y nées
@property (readonly, Mesure du champ magnétique en
nonatomic) CLHeading microTesla selon I'axe des
ComponentValue z profondeurs

La propriété magneticHeading contient l'inclinaison de I'axe de I'appa-
reil par rapport a la direction du Nord magnétique. La propriété
trueHeading contient I'inclinaison par rapport au Nord géographique.

EREQMAREUE le Nord géographique nécessite la géo-localisation
La propriété trueHeading est mise a jour uniquement si la notification de
la géo-localisation est activée sur le gestionnaire de géo-localisation.

11.3. Framework MapKit

Lorsque I'on traite de géo-localisation, le besoin de visualiser une
carte vient naturellement. Nous allons voir dans cette section com-
ment afficher une carte et permettre a I'utilisateur d’interagir avec
elle ; nous mettrons en ceuvre le framework MapKit.

Afficher une carte

Créez un nouveau projet sous XCode, de type View Based Applica-
tion. Nommez-le Carte.

Ajouter le framework MapKit

Le framework MapKit n'est pas intégré par défaut aux projets XCode ;
rappelons la démarche a suivre pour ajouter un framework a un
projet :

1 Dans la zone Groups&Files de la fenétre principale, ouvrez le
groupe Targets, sélectionnez la cible Carte et cliquez du bouton
droit pour afficher le menu contextuel.

352 | 11. Géo-localisation

2 Sélectionnez la commande Get Info. Dans le panneau d’informa-
tion qui s’affiche, choisissez I'onglet General et cliquez sur le bou-
ton + de la partie Linked Libraries.

3 Choisissez le fichier MapKit.framework pour ajouter le framework
MapKit au projet Carte.

Ajouter une vue Carte

1 Sous XCode, double-cliquez sur le fichier CarteViewController.xib
pour l'ouvrir. Ajoutez une vue cartographique (Map View) sur
I'interface utilisateur (voir Figure 11.1).

2 Utilisez I'inspecteur de taille (#+(3)) pour définir une vue carrée,
par exemple une hauteur et une largeur de 280 pixels.

La vue cartographique que nous venons d’insérer est de la classe
MKMapView. Dans la suite de ce chapitre, nous examinerons les carac-
téristiques les plus courantes de la classe MkMapView qui est au centre
du framework MapKit.

800 Library

[—ijeeasﬁ Classes Media |
[[Data Views s -]

Web View - Displays embedded web
content and enables content
navigation.

Map View - Displays maps and
provides an embeddable interface to
navigate map content. i

Text View - Displays multiple lines of
editable text and sends an action
message to a target object when. ..

Secroll View - Provides a mechanism to
display content that is larger than the
size of the application’s window.

Picker View - Displays a spinning-
wheel or slot-machine motif of values.

Map View
MKEMapView

An MEMapView object provides an embeddable

map interface, similar to the one provided by the
Maps application. You use this class as-is to

display map information and to manipulate the

map contents from your application. ¥ou can

center the map on a given coordinate, specify the ¥

(%) (Q Filter) Figure 11.1 : Vue cartographique sous
Interface Builder

11.3. Framework MapKit

353

Tester I'application

Construisez I'application sous XCode et testez-la (35+R)).

il Opér... = 22:09 =]
g Famb
4 o
BEreman Garlis
retand] Nederland o o
Birmingham | andan, N‘ermi-.li'.\ds Hannover
o o
B Belgie! - Deutschland
Bristol qié/
s 'Belgique, " Germany
Lelavre. M“f\"}_‘j efatof i\f‘veﬁ

Figure 11.2 : Carte affichée par défaut

Par défaut, la carte affichée est celle du pays défini dans les préfé-
rences de localisation de I'appareil ou le planisphére complet. Vous
pouvez la déplacer ou zoomer. Nous allons voir comment connaitre
et controler le positionnement de la carte par programmation.

Connaitre la zone affichée

354

La zone affichée sur la carte est accessible par la propriété region de
la classe MKMapView. Nous allons en illustrer le fonctionnement en
modifiant I'application Carte pour que I'utilisateur puisse en visuali-
ser les caractéristiques.

Définir les outlets

Sous Interface Builder, ajoutez quatre labels de texte sur la vue
principale afin d'y afficher les coordonnées du centre de la carte
(latitude et longitude) et la taille de la zone affichée (hauteur et
largeur).

1 Sous XCode, ouvrez le fichier CarteViewController.h pour y ajouter
les outlets permettant d’accéder aux éléments de la vue principale.

11. Géo-localisation

REMARQUE

Nous y définissons également le contréleur comme répondant au
protocole MKMapViewDelegate pour qu'il soit notifié des change-
ments sur la carte :

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>
@interface CarteViewController : UIViewController
<MKMapViewDelegate> {
IBOutlet MKMapView * carte;
IBOutlet UILabel * latitudelLabel;
IBOutlet UILabel * longitudeLabel;
IBOutlet UILabel * hauteurLabel;
IBOutlet UILabel * largeurLabel;
}
@property (retain,nonatomic) MKMapView * carte;
@property (retain,nonatomic) UILabel * latitudelabel;
@property (retain,nonatomic) UILabel * longitudeLabel;
@property (retain,nonatomic) UILabel * hauteurlLabel;
@property (retain,nonatomic) UILabel * largeurLabel;
@end

@ inclure MapKit.h

Le framework MapKit n’étant pas inclus par défaut dans le projet, il faut
ajouter une clause #import <MapKit/MapKit.h> dans les fichiers sources qui
doivent I'utiliser.

2 Revenez sous Interface Builder pour attacher les outlets du contro-
leur aux éléments de la vue et définissez le délégué de la vue
MKMapView comme étant le propriétaire du fichier.

¥ Outlets

(delegate (% File's Owner ®
¥ Referencing Qutlets

(carte (% File's Owner ®

New Referancing Outlet O

Figure 11.3 : Liens de la vue MKMapView

Code source du controleur de vue

1 Sous XCode, ajoutez les accesseurs des propriétés de la classe
CarteViewController dans son fichier source :

@implementation CarteViewController
@synthesize carte, latitudelabel, longitudelabel,
hauteurLabel, largeurLabel;

11.3. Framework MapKit

355

356

2 Ajoutez la définition de la méthode -mapView:regionDidChange
Animated: du protocole MKMapViewDelegate. Cette méthode est appe-

lée

}

chaque fois que la propriété region est modifiée :

(void)mapView: (MKMapView *)mapView
regionDidChangeAnimated: (BOOL) animated{
MKCoordinateRegion region = carte.region;
latitudelabel.text = [NSString stringWithFormat:@"%g",
region.center.latitude];
longitudelLabel.text = [NSString stringWithFormat:@"%g",
region.center.longitude];
[NSString stringWithFormat:@"%g",
region.span.latitudeDeltal;
[NSString stringWithFormat:@"%g",
region.span.longitudeDelta];

hauteurLabel. text

largeurLabel.text

3 Construisez l'application pour la tester.

il Opér... = 06:13 [~
Sannois Garges-les-Gonesse m
i Stains |l
s Argentewil Epinay-sur-seine i
provile 1 - Aulnay-st
o TR Saint-Denis = I
Houilles Colombes | Saint Dant Drancy L
e . clichy=li Bopigny.
Nanterre ~ Coubevoie - ___E_,?r.'rfw
Imaican Neullly-;ur—&elne Rnsﬁj’:sous-Bois
4 / Mantreuil
oud # Csaint-Cloud Faris :
lagne-Billancourt = Mincerres
1y Issy-les-Moulineaux -Montrouge ~ c
‘sailles \ Clamart [E1 Villejuif, Alfortvilie
| teil
S Mitry-sur-Seine. | 7

ChEilenay-Mélabry ==

Qlé_r(»f{gsii[-@u-sson

Lat : 48.8503 Lon : 2.31125

Haut :

[T crosy-le-Roi &S
Antory JIREY 0, T
Massy Villeneuve-Saint-Geol

0.253026 Larg : 0.384521

Figure 11.4 : Visualisation des caractéristiques de
larégion affichée

Propriété region

La propriété region de la classe MKMapView est une structure de type

MKCoordinateRegion composée de :

B center qui est une structure de type CLLocationCoordinate2D elle-

méme composée de :

— latitude de type CLLocationDegrees ;

— longitude de type CLLocationDegrees.

11. Géo-localisation

B span qui est une structure de type MKCoordinateSpan composée de :

— latitudeDelta de type CLLocationDegrees ;
— longitudeDelta de type CLLocationDegrees.

Ainsi une région sur la carte est définie par son centre (latitude et
longitude) et par sa taille, elle-méme exprimée en écarts de latitude
et de longitude. Un écart de latitude de un degré représente une
hauteur de 111 km. Un écart de longitude de un degré représente
une largeur qui dépend de la latitude : 111 km a I'équateur et 0 aux
pbles.

Controler la zone affichée

Maintenant que nous savons extraire la zone affichée dans une
instance de la classe MkMapView, nous allons compléter notre applica-
tion Carte afin qu’elle nous permette de mémoriser une région pour
y revenir plus tard.

Définir I'interface

1 Ajoutez deux boutons sur l'interface utilisateur, Définir Zone et
Retrouver Zone. Ajoutez une action pour chacun de ces boutons
dans l'interface du controleur de vue de "application, respective-
ment defineZone et retrieveZone. Liez les boutons et les actions
sous Interface Builder.

2 Toujours dans l'interface du contréleur de vue, déclarez une nou-
velle propriété zone de type MKCoordinateRegion. Cette propriété
n’étant pas une référence, elle doit étre déclarée avec la clause
assign au lieu de retain.

Code du controleur

1 Dans le fichier CarteViewController.m, synthétisez les accesseurs
de la nouvelle propriété zone, puis définissez les méthodes pour
les actions :

- (IBAction) defineZone{
self.zone = carte.region;
}
- (IBAction) retrieveZone({
[carte setRegion:self.zone animated:YES];

}

Nous utilisons ici la méthode -setRegion:animated: de la classe
MKMapView pour définir la région a visualiser sur la carte.

2 Construisez 'application pour la tester.

11.3. Framework MapKit | 357

Appréhender la vue satellite

358

La classe MkMapView dispose des propriétés suivantes pour modifier
son comportement :

B mapType de type MKMapType ;

B scrollEnabled de type Booléen ;

B zoomEnabled de type Booléen.

scrollEnabled et zoomEnabled permettent d'autoriser respectivement

le déplacement de la carte et le zoom par l'utilisateur. Ces propriétés
ont la valeur YES par défaut.

MKMapType est un type énuméré qui permet de définir le type de
visualisation de la carte :

B MKMapTypeStandard, pour visualiser le plan ;

B MKMapTypeSatellite, pour visualiser la vue satellite ;

B MKMapTypeHybrid, pour visualiser la vue satellite augmentée d’'infor-
mation.

Challenge

Modifiez I'application Carte pour que I'utilisateur puisse choisir entre
les différents types de visualisation.

il Opér... = 08:11 [

Lat : 48.8581 Lon : 2.29445
Haut : 0.00395292 Larg : 0.00600815

|_ Définir Zone | | Retrouver zone |

| Carte Eamu Les deux |

Figure 11.5: Différents types de visualisation

11. Géo-localisation

Annoter la carte

Nous allons terminer ce parcours du framework MapKit par la mise
en ceuvre du protocole MKAnnotation et de la méthode -addAnnotation:
qui permettent d’ajouter sur la carte des marqueurs en forme d’épin-
gle a téte.

Créer une annotation

Il n'y a pas de classe spécifique pour contenir une annotation. N'im-
porte quel objet fait I'affaire pourvu qu'il respecte le protocole
MKAnnotation qui définit trois propriétés :

B coordinate, propriété obligatoire de type CLLocationCoordinate2D,
pour définir I'emplacement du marqueur sur la carte ;

B title et subTitle, propriétés optionnelles de type NSString * ; ces
chaines de caractéres sont affichées lorsque I'utilisateur touche le
marqueur.

Procédez ainsi :

1 Sous XCode, créez une nouvelle classe Annotation dérivant de
Nsoject. Complétez l'interface de la classe pour y déclarer qu’elle
adopte le protocole MKAnnotation et ses propriétés :

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>
@interface Annotation : NSObject <MKAnnotation> {
CLLocationCoordinate2D coordinate;
NSString * title;
NSString * subTitle;
}
@property (assign,nonatomic)
CLLocationCoordinate2D coordinate;
@property (retain,nonatomic) NSString * title;
@property (retain,nonatomic) NSString * subTitle;
@end

2 Complétez la définition de la classe en définissant les accesseurs
pour les propriétés dans le fichier Annotation.m. Cette classe est un
réceptacle de données, elle ne contient pas d'autres méthodes :
#import "Annotation.h"

@implementation Annotation

@synthesize coordinate, title, subTitle;
@end

Afficher un marqueur

1 Sous XCode, ouvrez le fichier CarteViewController.m pour y décla-
rer la classe Annotation:

11.3. Framework MapKit | 359

#import "Annotation.h"

2 Modifiez la méthode -defineZzone pour ajouter un marqueur au
centre de la carte :

- (IBAction) defineZone{
self.zone = carte.region;
Annotation * annotation = [[Annotation alloc] init];
annotation.coordinate = self.zone.center;
annotation.title = @"Centre de la zone";
[carte addAnnotation:annotation];
[annotation release];

}

3 Construisez lI'application pour la tester. Si vous touchez le mar-
queur défini en méme temps que la zone, le texte s'affiche.

il Opér... = 09:18 [
o
%,
%,
%
7
@“S\ s
\@ J@éb. efw-
_% & N\eelnam‘-@& G
% & %, %
NS ARV
7 o e T,
"b‘, L 5, Dy
N B, ‘B, £
% BN b ’e,rﬂ
Gobgle / ik S
» 5)6“1 0

Lat : 48.8583 Lon : 2.29432
Haut : 0.0039529 Larg : 0.00600815

|. Définir Zone .| | Retrouver zone |
m Satellite | Les deux |

Nous vous laissons explorer le framework MapKit et les fonctions
permettant d’adapter les vues associées aux annotations.

Figure 11.6 : Carte avec un marqueur

11.4. Checklist

Nous connaissons maintenant les différentes technologies mises en
ceuvre pour la géo-localisation de I'appareil, et nous savons mettre
en ceuvre le framework Core Location: le gestionnaire de géo-

360 | 11. Géo-localisation

localisation, instance de la classe CLLocationManager, et son protocole
de délégué CLLocationManagerDelegate.

Nous avons détaillé les classes décrivant la position de I'appareil :

B CLLocation pour la position sur le globe terrestre ;

B CLHeading pour l'inclinaison de |'appareil par rapport au Nord,
géographique ou magnétique.

Enfin, nous avons appris a utiliser le framework MapKit, la vue
MKMapView et son délégué MKMapViewDelegate pour :

m visualiser et manipuler une carte ;

m connaitre la zone géographique visualisée ;

m modifier le mode de visualisation de la carte ;
m insérer des annotations sur la carte.

11.4. Checklist 361

ACCELEROMETRES

Utiliser 1S aCCEIErOMELIreS ... esessens 365
Déterminer les mouvements de I'appareil . 375
Connaitre I'orientation de I'appareil . 375

381

(6 =T o1 1= ST

363

Tous les appareils, iPhone et iPod Touch, sont dotés de trois accélé-
rométres. Grace a ces derniers, on peut connaitre I'orientation de
I'appareil par rapport a la verticale ainsi que ses mouvements ; ce
chapitre est consacré a I'étude de leur utilisation.

Nous commencerons par quelques expérimentations avec les clas-
ses UIAccelerometer et UIAcceleration, puis nous nous intéresserons a
la détection des mouvements et a la détermination de la position de
I"appareil.

A Testez sur un appareil

ATTENTION ' , . .
Les exemples développés dans ce chapitre ne fonctionnent pas sur le

simulateur qui ne dispose pas d’accéléromeétres.

é" L'annexe décrit le mode opératoire a suivre pour tester vos appli-

RENVOI cations sur un appare|l réel.

12.1. Utiliser les accélérometres

Nous allons commencer par écrire une application nous permettant
de visualiser les données fournies par les accéléromeétres. Elle sera
notre support d’expérimentation qui nous permettra de mieux com-
prendre le fonctionnement de ces "petites bétes", et donc de mieux
les utiliser par la suite.

.all OrangeF 5 07:26 ==
Accélérations
X1 -0.054337
Y : -0.633926
Z: -0.796936

Figure 12.1: Visualiser les accélérations

12.1. Utiliser les accélérometres | 365

Visualiser |'accélération

366

1 Créez un projet de type View Based Application sous XCode et
intitulez-le Accelero.

Notre premiére expérimentation contient trois /abels, qui contien-
dront les composantes données par les trois accélérometres. Nous
devons définir les outlets pour ces labels dans notre controleur de
vue et il faut également qu’'il se conforme au protocole
UIAccelerometerDelegate.

2 Modifiez le fichier AcceleroViewController.h :

#import <UIKit/UIKit.h>
@interface AcceleroViewController : UIViewController
<UIAccelerometerDelegate>
IBOutlet UILabel * xLabel;
IBOutlet UILabel * yLabel;
IBOutlet UILabel * zLabel;

}

@property (nonatomic,retain) UILabel * xLabel;
@property (nonatomic,retain) UILabel * yLabel;
@property (nonatomic,retain) UILabel * zLabel;
@end

Le protocole UIAcceleromerDelegate définit une seule méthode,
—(void)accelerometer: (UIAccelerometer *)didAccelerate:
(UTAcceleration *) qui fournit:

®m une instance de UIAcceleromer représentant les trois accélérome-
tres ;

® une instance de UIAcceleration, conteneur d’'une mesure d’accélé-
rations.

Tableau 12.1: Propriétés de la classe UlAcceleration

Propriétés Objet

@property (nonatomic, readonly) |Accélération en g surl'axe des abscisses
UIAccelerationValue x

@property (nonatomic, readonly) |Accélération en g surl'axe des ordonnées
UIAccelerationValue y

@property (nonatomic, readonly) |Accélérationen g surl'axe des profondeurs
UIAccelerationValue z

@property (nonatomic, readonly) |Lhorodate de la mesure d'accélération, en se-
NSTimeInterval timestamp condes, depuis le démarrage de I'appareil

12. Accélérométres

B

Type UlAccelerationValue
REMARQUE

Le type UIAccelerationValue est équivalent au type double.

o)

vl Orientation des axes

Les axes utilisés par les accéléromeétres sont les mémes que ceux
d’'OpenGL ES ; lorsque l'appareil est en mode Portrait, le bouton principal
vers le bas, les abscisses sont disposées de gauche a droite, les ordonnées du

bas vers le haut et les profondeurs du dos vers I'avant de I'appareil

Y Y

Figure 12.2: Orientation des composantes d'accélération

12.1. Utiliser les accélérometres | 367

368

3

4

Ecrivez le code de cette méthode de délégué dans le fichier Acce-
leroViewController.m. Nous voulons simplement afficher les va-
leurs des composantes de I'accélération mesurée :

- (void)accelerometer: (UIAccelerometer *)accelerometer
didAccelerate: (UIAcceleration *)acc

xLabel.text = [NSString stringWithFormat:@"$£f", acc.x];
yLabel.text = [NSString stringWithFormat:@"$£f", acc.y];
zLabel.text = [NSString stringWithFormat:@"%f", acc.z];

}

Activez les mesures et modifiez la méthode viewbidLoad dans le
fichier AcceleroViewController.m :

- (void)viewDidLoad {
[super viewDidLoad];
UIAccelerometer *accelerometer =
[UIAccelerometer sharedAccelerometer];
accelerometer.updateInterval = 0.1;
accelerometer.delegate = self;

}

La variable accelerometer y est définie comme l'instance partagée
(unique) de la classe UIAccelerometer, puis nous définissons la pério-
dicité des mesures (1/10° de seconde, nous n‘arriverons pas a lire
plus vite). Enfin, nous définissons le délégué qui recevra les mesu-
res.

5

Synthétisez les accesseurs des propriétés avec Gsynthesize
xLabel, vyLabel, =zLabel; et libérez-les dans la méthode
viewDidUnload :

- (void)viewDidUnload {
self.xLabel = nil;
self.yLabel nil;
self.zLabel nil;

}

Ouvrez le fichier AcceleroViewController.xib pour placer trois labels
dans la vue principale et les lier aux outlets du contréleur de vue.

Testez I'application sur votre appareil réel ; le simulateur ne per-
met pas d’émuler les accélérometres. Au besoin, consultez I'an-
nexe A qui détaille le mode opératoire a suivre pour charger et
tester une application sur un appareil réel.

Des valeurs non nulles s’affichent, méme lorsque I'appareil est im-
mobile. C'est satisfaisant de voir que notre application affiche des
éléments mais il faut expliquer pourquoi notre appareil accélére
quand il ne bouge pas.

12. Accélérométres

Un accéléromeétre est en fait un capteur de force, et tous les objets
sur la Terre sont soumis a la force de la gravitation. Nous voila dans
la méme position qu’lsaac Newton qui eut l'intuition de la loi de la
gravitation universelle en observant la chute d'une pomme ; nous
découvrons la méme chose avec un iPhone, de marque Apple, évi-
demment.

Lorsque l'appareil est au repos, nous mesurons |'attraction terrestre.

Visualiser la verticale

Améliorons notre application Accelero pour visualiser la verticale par
un segment de droite représentant la projection de la force d’attrac-
tion sur I'écran. Nous aurons besoin de définir une vue spécifique
Verticalview dont la largeur sera de préférence le double de la hau-
teur.

origin

Figure 12.3 : Vue VerticalView

Modifier le controleur de vue

1 Modifiez le fichier AcceleroViewController.h pour y définir un nou-
vel outlet de type Verticalview :

#import <UIKit/UIKit.h>
@Qclass VerticalView;
@interface AcceleroViewController : UIViewController
<UIAccelerometerDelegate> {
IBOutlet UILabel * xLabel;
IBOutlet UILabel * yLabel;
IBOutlet UILabel * zLabel;
IBOutlet VerticalView * vert;
}
@property (nonatomic, retain) UILabel * xLabel;
@property (nonatomic, retain) UILabel * yLabel;
@property (nonatomic, retain) UILabel * zLabel;
@property (nonatomic,retain) VerticalView * vert;
@end

Nous doterons notre vue verticalView d'une propriété vertLine de
type GCsize qui contiendra les abscisses et ordonnées de I'accéléra-
tion.

12.1. Utiliser les accélérometres | 369

2 Modifiez le fichier AcceleroViewController.m pour utiliser cette pro-
priété :
- (void)accelerometer: (UIAccelerometer *)accelerometer
didAccelerate: (UIAcceleration *)acc

xLabel.text =
yLabel.text =
zLabel.text =
vert.vertLine

NSString stringWithFormat:@"$f", acc.x];
NSString stringWithFormat:@"%f", acc.yl;
NSString stringWithFormat:@"$f", acc.zl];
CGSizeMake (acc.x,acc.y) ;

}

3 Dans ce méme fichier, importez le fichier VerticalView.h, synthéti-
sez les accesseurs de la propriété vert et libérez cette propriété.

é" Le type GCSize et la fonction GCSizeMake sont détaillés au chapi-

RENVOI tre Dessins et animations.

Créer la vue VerticalView

Cette classe met en ceuvre les techniques vues au chapitre Dessins et
animations. Elle doit assurer que :

m L'origine du segment se situe au milieu du bord supérieur de la
vue. Nous avons besoin d'une variable d’instance origin de type
CGPoint pour conserver ce point.

m La longueur maximale du segment est la hauteur, ou la demi-
largeur, de la vue. Nous définirons une variable d'instance scale de
type CGFloat pour conserver cette longueur maximale.

m Le segment est toujours visible, quelle que soit I'orientation de
I"appareil. Une variable d’instance endpoint de type CGPoint sera
évaluée a chaque modification de la propriété vertLine.

Procédez ainsi :

1 Sous XCode, créez une nouvelle classe verticalview dérivée de
uIview. Déclarez son interface :

#import <UIKit/UIKit.h>
@interface VerticalView : UIView {
CGFloat scale;
CGPoint origin;
CGSize vertLine;
CGPoint endPoint;
}
@property (nonatomic,assign) CGSize vertLine;
@end

370 12. Accélérométres

Les variables d’'instance scale et origin doivent étre évaluées lorsque la
vue est insérée dans la hiérarchie des vues et que sa taille est définie.

2 Ajoutez la méthode layoutSubviews dans le fichier VerticalView.m :
- (void) layoutSubviews

{
CGFloat height = self.bounds.size.height;
CGFloat width = self.bounds.size.width;
if (height<2.*width)
scale = height;
else
scale = width/2.;
origin = CGPointMake (width/2.,0.);
}
Lorsque la propriété vertLine est modifiée, la variable d’instance

endPoint doit étre évaluée et la vue redessinée.

3 Définissez la méthode setvertLine: dans le fichier VerticalView.m :
- (void)setVertLine: (CGSize) line{

vertLine = line;
if (line.height<0) {
endPoint.x = line.width*scale+origin.x;
endPoint.y = -line.height*scaletorigin.y;
} else {
endPoint.x = -line.width*scaletorigin.x;
endPoint.y = line.height*scale+origin.y;

}
[self setNeedsDisplay];

}

4 Ecrivez la méthode drawrect: qui ne présente pas de difficulté

particuliere :

- (void)drawRect: (CGRect) rect {
CGContextRef context = UIGraphicsGetCurrentContext();
CGContextSetRGBStrokeColor (context, 1., 0.5, 0., 1.0);
CGContextSetLineWidth (context, 15.);
CGContextSetLineCap (context, kCGLineCapRound) ;
CGPoint segment[2] = {origin,endPoint};
CGContextStrokeLineSegments (context, segment, 2);

}

Finaliser et tester I'application
N’oubliez pas de synthétiser les accesseurs de la propriété vertLine.

1 Ouvrez le fichier AcceleroViewController.xib pour ajouter une vue
sur l'interface utilisateur. Définissez sa classe : VerticalvView. Liez
cette vue a l'outlet vert du propriétaire du fichier.

2 Construisez I'application pour la tester sur un appareil réel. Nous
visualisons maintenant la verticale.

12.1. Utiliser les accéléromeétres

371

Figure 12.4 : Visualisation de la verticale

Méme l'appareil au repos, la verticale gigote sans arrét. Les accélé-
rometres sont sensibles et percoivent les vibrations de quelques
milli-g. Si I'on souhaite une verticale plus stable, ou connaitre la
position de I'appareil en faisant abstraction des vibrations, il faut
filtrer les données mesurées.

Filtrer les données

Nous allons ajouter un filtre paramétrable a notre application pour expé-
rimenter un filtre numérique et en illustrer les effets.

Figure 12.5 : Application avec un filtre numérique

372 | 12. Accélérométres

1 Ouvrez le fichier AcceleroViewController.m et modifiez la méthode
—accelerometer:didAccelerate: :

}

(void) accelerometer: (UIAccelerometer *)accelerometer
didAccelerate: (UIAcceleration *)acc

static UIAccelerationValue accelX=0.,accelY=0.,accelz=0.;
accelX = self.coef*acc.x + (l.-self.coef) *accelX;
accelY = self.coef*acc.y + (l.-self.coef) *accelY;
accelZ = self.coef*acc.z + (l.-self.coef) *accel?Z;
xLabel.text = [NSString stringWithFormat:@"%f",accelX];
yLabel.text = [NSString stringWithFormat:@"%f",accelY];
zLabel.text = [NSString stringWithFormat:@"%f",accelZ];
vert.vertLine = CGSizeMake (accelX,accelY);

La méthode utilise une propriété coef et trois variables statiques qui
contiennent le résultat du calcul des composantes de |'accélération.
Si par exemple la propriété coef vaut 10 %, le résultat du calcul est la
somme de 10 % de la nouvelle mesure et 90 % du calcul précédent.
Ainsi les tremblements seront atténués.

Nous utiliserons un ascenseur pour modifier la valeur du coefficient,
ceci facilitera I'expérimentation du filtre et nous aidera a comprendre
son effet.

2 Ajoutez une méthode -changeCoef: dans le fichier AcceleroView-
Controller.m. Elle sera I’action déclenchée par |'événement Change
Value de I'ascenseur.

}

(void) changeCoef: (id) sender{
self.coef = [[sender valueForKey:@"value"] floatValue];
self.coeflLabel.text =

[NSString stringWithFormat:@"%$f",self.coef];

3 Synthétisez les accesseurs pour les nouvelles propriétés et
initialisez-les dans la méthode viewDidLoad :

@synthesize xLabel, yLabel, zLabel, coef, coeflabel, vert;

(void) viewDidLoad {
[super viewDidLoad];
UIAccelerometer *accelerometer =
[UIAccelerometer sharedAccelerometer];
accelerometer.updateInterval = 0.1;
accelerometer.delegate = self;
self.coef = 0.5;
self.coeflabel.text = @"0.5";

12.1. Utiliser les accéléromeétres

373

374

4 Modifiez le fichier AcceleroViewController.h pour y déclarer les
nouvelles propriétés et la nouvelle méthode de la classe :

#import <UIKit/UIKit.h>
@class VerticalView;
@interface AcceleroViewController : UIViewController
<UIAccelerometerDelegate> {
IBOutlet UILabel * xLabel;
IBOutlet UILabel * yLabel;
IBOutlet UILabel * zLabel;
IBOutlet UILabel * coeflabel;
float coef;
IBOutlet VerticalView * vert;
}

@property (nonatomic, retain) UILabel * xLabel;
@property (nonatomic, retain) UILabel * yLabel;
@property (nonatomic, retain) UILabel * zLabel;

@property (nonatomic,retain) UILabel * coeflabel;
@property (nonatomic,assign) float coef;
@property (nonatomic, retain) VerticalView * vert;
- (IBAction)changeCoef: (id) sender;

@end

5 Modifiez l'interface utilisateur en ouvrant le fichier AcceleroView-
Controller.xib. Ajoutez un ascenseur et un label. Vérifiez que les
valeurs de |'ascenseur sont comprises entre 0 et 1. Liez ces élé-
ments aux nouveaux outlets du propriétaire du fichier et liez I'évé-
nement Change Value de l'ascenseur a l|'action changeCoef: du
propriétaire du fichier.

Vous pouvez maintenant construire I'application et la tester sur votre
appareil. Une faible valeur du coefficient, environ 0,1, diminue forte-
ment les perturbations ; le repére graphique de la verticale ne trem-
ble plus, et les deux premiéres décimales des composantes de |'ac-
célération sont stables. Mais cette amélioration présente un
inconvénient : lors d'un changement d’orientation de l'appareil, il
faut plusieurs secondes pour que le segment représentant la verti-
cale rallie sa nouvelle position.

Apple recommande d’utiliser un coefficient de 0, 1. Si vous trouvez
qu’avec cette valeur, I'accélération calculée n’est pas assez réactive,
vous pouvez augmenter la fréquence de mesure en modifiant la
valeur de la propriété updatelInterval de I'accélérométre. Les valeurs
recommandées par Apple sont :

m entre 0,05 et 0,1 pour connaitre I'orientation de l'appareil ;

12. Accélérométres

m entre 0,015 et 0,03 pour utiliser les mouvements de I'appareil dans
des jeux ;

m entre 0,01 et 0,015 pour mesurer des mouvements trés rapides,
0,01 est la valeur la plus faible admissible.

12.2. Déterminer les mouvements
de l'appareil

Le filtre passe-bas que nous venons d’expérimenter permet de
connaitre I'orientation de I'appareil. Dans certains cas, on peut sou-
haiter que notre application réagisse aux changements d’orientation.
Physiquement, I'application doit rechercher les modifications d’ac-
célération, via un filtre passe-haut :

accelX = acc.x - ((acc.x * self.coef) +

(accelX* (1.0 - self.coef)));
accelY = acc.y - ((acc.y * self.coef) +

(accelY* (1.0 - self.coef)));
accelZ = acc.z - ((acc.z * self.coef) +

(accelY* (1.0 - self.coef)));

Essayez ce filtre dans I'application Accelero.

. Souvenez-vous, vous avez également la possibilité de détecter les
é secousses en utilisant les événements gérés par |'application.
RENVOI - Reportez-vous pour cela au chapitre Tapes, touches et gestes.

12.3. Connaitre l'orientation
de I'appareil

Nous savons maintenant utiliser les accélérometres afin de connaitre
la position relative de I'appareil par rapport a la verticale, ou pour en
déterminer précisément les mouvements. Dans la plupart des cas
cependant, I'application n’a pas besoin de ce niveau de détail, elle a
simplement besoin de connaitre I'orientation de I'écran afin d’affi-
cher les vues dans le "bon" sens.

12.3. Connaitre l'orientationde l'appareil | 375

il Opér... = 13:49

Phototheque 10 sur 30

Figure 12.6 : Orientation Portrait de
I'appareil

il Opér... =

Photothéque

Figure 12.7 : Orientation Paysage de |'appareil

376 | 12.Accéléromeétres

Retour sur la classe UlDevice

La classe UlDevice dispose d'une propriété orientation a lecture seule
de type UIDeviceOrientation. La valeur de cette propriété donne
I’orientation de l'appareil :

B UlDeviceOrientationUnknown, I'Orientation ne peut étre déterminée.

B UIDeviceOrientationPortrait, orientation Portrait bouton principal
en bas.

W UlDeviceOrientationPortraitUpsideDown, orientation Portrait bouton
principal en haut.

B UIDeviceOrientationLandscapeLeft, orientation Paysage bouton
principal a droite.

B UlDeviceOrientationLandscapeRight, orientation Paysage bouton
principal a gauche.

B UIDeviceOrientationFaceUp, |'appareil est paralléle au sol, I'écran
vers le haut.

B UIDeviceOrientationFaceDown, |"appareil est paralléle au sol, I'écran
vers le bas.

é" Nous avons déja rencontré la classe UlDevice au chapitre Dessins
— et animations.
L'obtention de l'orientation est trés simple. Il faut privilégier I'ins-
tance unique de la classe UIDevice, puis activer |'entretien de sa
propriété orientation avant d’obtenir sa valeur :
UlDevice *device = [UIDevice currentDevice];
[device beginGeneratingDeviceOrientationNotifications];
UIDeviceOrientation *orientation = device.orientation;
Afin d’économiser la batterie, il est recommandé de désactiver les
accélérometres lorsque l'application n’a pas besoin de connaitre
I'orientation de l'appareil :

[device endGeneratingDeviceOrientationNotifications];

S’abonner aux changements d’orientation

Interroger l'instance unique de la classe UlDevice est un moyen de
connaitre I'orientation de I'appareil. Il est parfois plus pratique d’étre
informé lors d’'un changement d’orientation. Il faut pour cela s’abon-
ner aux notifications UIDeviceOrientationDidChangeNotification émi-
ses par cette instance.

12.3. Connaitre l'orientationde l'appareil | 377

Dans ce cas aussi, il faut activer I'émission des notifications par le
message beginGeneratingDeviceOrientationNotifications sur l'ins-
tance unique de la classe UIDevice.

é" Reportez-vous au chapitre Persistance des données si vous avez

e oublié comment vous abonner a une notification.

Orienter automatiquement les vues

Une fonctionnalité trés attrayante des logiciels sur iPhone est de voir
I'interface utilisateur suivre |I'orientation de I'appareil. Cette fonction-
nalité est facile a obtenir ; nous allons la réaliser avec notre applica-
tion Accelero.

il OrangeF = 17:29 (==
Accélérations
Coefficient du filtre : 0.5
X : -0.710908 e—
Y : 0.045339
Z: -0.796985

Figure 12.8: Accelero en mode paysage

EREQMAREUE Obligatoire sur I'iPad
Sauf cas exceptionnel, vos applications pour iPad devront prendre en
charge I'orientation automatique des vues.

La prise en charge de I'orientation automatique nécessite deux éta-
pes :

m Le contrbéleur indique les orientations prises en charge.

m La taille et la position de chaque vue doivent étre définies pour les
orientations Portrait et Paysage.

378 | 12. Accéléromeétres

Autorotations prises en charge

Modifiez la méthode -shouldAutorotateToInterfaceOrientation: dans
le fichier AcceleroViewController.m :
- (BOOL) shouldAutorotateToInterfaceOrientation:
(UIInterfaceOrientation) interfaceOrientation {
return YES;

}

Cette méthode est appelée a chaque changement d’orientation de
I'interface. Elle doit retourner YES si I'autorotation est prise en charge
pour l'orientation passée en parametre.

Par défaut, la méthode définie dans la classe UIViewController répond
YES pour I'orientation Portrait UIDeviceOrientationPortrait, et NO pour
les trois autres orientations de l'interface. Nous redéfinissons cette
méthode dans la classe AcceleroViewController pour qu’elle réponde
YES pour toutes les orientations ; I'interface utilisateur sera toujours
orientée correctement quelle que soit la position de I'appareil.

ﬁ Orientation de I'appareil et de I'interface
Seules les quatre valeurs UlIDeviceOrientationPortrait, UlIDevice
OrientationPortraitUpsideDown, UIDeviceOrientationLandscapeleft et
UIDeviceOrientationLandscapeRight peuvent étre utilisées pour I'orienta-
tion de l'interface utilisateur.

Disposition des vues

1 Ouvrez le fichier AcceleroViewController.xib sous Interface Builder.
Le bouton en haut a droite de la fenétre de la vue principale permet
de basculer la représentation de l'interface entre le mode Portrait
et le mode Paysage.

Accélérations
X : Label
Y - | ahel ‘ Figure 12.9 : Basculer la vue en mode Paysage

2 Cliquez sur le bouton de basculement pour voir ce que donnerait
I'interface en mode Paysage : le résultat n'est pas trés concluant.
Les vues restent a gauche de |'écran, la partie droite n’est pas
utilisée, et les vues du bas sortent de I'écran. Nous aimerions

12.3. Connaitre l'orientationde l'appareil | 379

qu’en mode Paysage, les champs de texte indiquant les valeurs
des composantes de I'accélération restent a gauche de I'écran, et
que la vue graphique ainsi que le réglage du filtre passent a droite.
3 Revenez en mode Portrait et sélectionnez les vues que vous sou-

haitez faire glisser sur la droite lorsque la vue principale basculera
en mode Paysage.

Figure 12.10 : Sélection suite au glisser a droite en
2l mode Paysage

4 Affichez l'inspecteur de taille, commande Size Inspector du menu
Tools (#+(3)), et réglez les paramétres Autosizing de sorte que ces
vues soient attachées par leurs bords droit et bas plutét que par
leurs bords haut et gauche, ce qui est le défaut.

Autosizing

Figure 12.11 : Attache des vues par leurs bords droit et bas

5 Basculez la vue principale en mode Paysage ; les vues du bas
glissent vers la droite de I'écran. Au besoin, ajustez la position et la
taille de chacune des vues pour que leur disposition soit correcte
aussi bien en mode Paysage qu’en mode Portrait.

380 | 12. Accélérométres

Les parametres Autosizing fonctionnent de la facon suivante :

m |l existe un attachement pour chacun des quatre bords de la vue,
représenté par un trait plein ou pointillé :

— Un trait plein signifie que la distance est fixe entre le bord de la
vue sélectionné et le bord correspondant de sa super-vue.

— Un trait pointillé signifie qu’il n'y a pas de contrainte de distance
entre le bord de la vue sélectionné et le bord correspondant de
sa super-vue.

m |l existe deux indicateurs de dimension, pour la hauteur et la
largeur de la vue, représentés par un trait plein ou pointillé :
— Un trait pointillé signifie que la dimension est fixe.

— Un trait plein signifie que la dimension est variable en fonction
de la dimension correspondante de sa super-vue.

m En principe, si les attachements de bords opposés sont tous les
deux en traits pleins, il faut que la dimension entre ces bords soit
variable, donc également en trait plein.

Pour que ces parameétres soient pris en compte, la case Autoresize
Subviews doit étre cochée dans I'inspecteur des attributs de la super-
vue, en l'occurrence la vue principale, ce qui est le défaut.

6 Reconstruisez I'application sous XCode et vérifiez que l'interface
utilisateur suit I'orientation de I"appareil.

Challenge

En testant I'application Accelero, vous remarquez que l'indicateur
graphique de verticale fonctionne uniquement en mode Portrait.
Votre challenge sera de modifier I'application Accelero, et principale-
ment la classe verticalview pour qu’elle fonctionne pour les quatre
orientations de l'interface.

12.4. Checklist

Nous avons appris a mettre en ceuvre les accélérometres pour dé-
terminer la position de l'appareil ou pour en détecter les mouve-
ments, et les classes et types concernés :

B UIAccelerometer;
B UIAccelerometerDelegate;

B UIAcceleration;

12.4. Checklist 381

B UIAccelerationValue.

Nous avons vu comment utiliser la classe UlDevice, et son instance
unique, pour connaitre |'orientation de I'appareil et programmer les
notifications des changements d’orientation.

Nous savons doter nos applications de la fonctionnalité d'autorota-
tion de l'interface utilisateur.

382 | 12. Accéléromeétres

™
-
w
o
=
o
<
T
o

SPECIFICITES
DE L'IPAD

TS B (6 =10) o110 (==
Nouveautés de l'interface visuelle
Reconnaissance des gestes
(6 =T o1 1= ST

383

Vous disposez maintenant de connaissances suffisantes pour déve-
lopper vos propres applications, qui peuvent s’exécuter de fagon
identique sur iPhone, iPod Touch et iPad.

Certains ne voient dans I'iPad qu’un gros iPhone simplement moins
pratique a glisser dans la poche de son veston. Il est vrai que ces
appareils mettent en ceuvre exactement les mémes technologies,
avec pour I'iPad un écran plus large et une puissance et une autono-
mie accrues. L'iPad ouvre un univers d'applications qui reste a défri-
cher ; il lance une révolution de I'informatique mobile comparable a
ce que la musique a connu avec le baladeur MP3.

A la fin de ce chapitre, vous connaitrez les techniques spécifiques a
I'iPad qui vous permettront de créer vos applications, et pourquoi
pas d’étre un acteur de la révolution en marche.

13.1. Un SDK, deux cibles

La version 3.2 du SDK de I'iPhone OS permet de développer des
applications pour des versions trés anciennes ; par exemple la ver-
sion 2.0 distribuée au printemps 2008. En principe, une application
est produite pour la derniére version d'OS disponible, mais il peut
étre intéressant d’accroitre le nombre de ses clients en étendant la
compatibilité de I'application avec des versions d’OS antérieures.

La particularité introduite par I'iPad est la coexistence de deux "der-
nieres" versions :

m La version 3.1.3 est la derniére version pour iPhone (et iPod Touch).

m La version 3.2 est la derniere version pour iPad (c’est aussi la
premiere).

Tous les chapitres précédents portent sur I'utilisation du SDK 3.2
pour la production d’applications destinées a la version 3.1.3: les
applications iPhone capables de tourner sur iPad. Le présent chapitre
porte sur les spécificités de la version 3.2 : sur les applications spé-
cifiguement dédiées a I'iPad.

Choisir sa cible de déploiement

Le plus simple pour choisir la cible de déploiement de |"application
(iPhone ou iPad) est de le préciser a la création du projet.

13.1. Un SDK, deux cibles

385

386

“I)

Tab Bar Utility Application
Application

i

View-based
Application

. View-based Application

- 0

.« | Figure 13.1: Définition de lacible
v | dedéploiement du projet

Si I'on veut redéfinir la cible de déploiement sur un projet préexis-
tant, on peut le faire dans la fenétre d'information de la cible du
projet. Le tableau ci-aprés résume les valeurs des paramétres de
build en fonction de la cible de déploiement.

" General | Build | Rules

Properties Comments -

Configuration: | Debug Fi'] '.Qv target

Show: | All Settings r-H

Build Products Path
Intermediate Build Files Path
¥ Build Options
Scan All Source Files for Includes
¥ Deployment
Installation Build Products Location
Mac OS5 X Deployment Target
Strip Debug Symbols During Copy
Strip Shgle

argeted Device Family
iPhone OS Deployment Target
¥ Linkifng

OpenMP Linker Flags

Path to Link Map File

Perform Single-Object Prelink
¥Packaging

Value

iPhone Device 3.1.3
armve armv?

build
build

=

ftmp/Test.dst
Mac OS5 X 10.5
=

All Symbols
iPhaone
iPhone 05 3.1.3

3

-fopenmp
build/Test.build/Debug-iphoneos/Test....
=

uJ .

A

Figure 13.2: Parametres de la cible de déploiement

Tableau 13.1: Valeurs des parametres de build pour fixer la cible de déploiement

Parameétre Valeur pour iPhone | Valeur pour iPad | Valeur universelle
iPhone OS deployment target | iPhone 0S 3.1.3 iPhone 0S 3.2 iPhone 0S 3.1.3
Targeted Device Family iPhone iPad iPhone/iPad

Base SDK iPhone Device 3.1.3 | iPhone Device 3.2 | iPhone Device 3.2

13. Spécificités de l'iPad

La derniere colonne du tableau est intitulée Valeur universelle. Une
application iPhone OS est dite universelle lorsqu’elle s'adapte a |I'ap-
pareil sur lequel elle s’exécute : iPhone ou iPad.

Créer une application universelle

Le plus simple pour créer une application universelle est de partir
d’un projet iPhone.

1 Ouvrez votre projet iPhone sous XCode et ouvrez le groupe Targets
dans la partie gauche de la fenétre, Groups & Files.

2 Cliquez du bouton droit sur la cible désirée pour ouvrir le menu
contextuel et sélectionnez la commande Upgrade Current Target for
iPad.... Une boite de dialogue s’ouvre pour vous permettre d’indi-
quer si vous souhaitez créer une application universelle unique
(One Universal application) ou deux applications spécifiques (Two
device-specific applications).

Dans les deux cas, XCode va générer des fichiers NIB pour iPad en
dupliquant les fichiers NIB du projet dans un dossier et dans un
groupe Resources-iPad. Ainsi vous pouvez modifier ces fichiers pour
particulariser l'interface utilisateur a chaque type d'appareil.

Dans le cas d'une application universelle, il vous faudra écrire du code
qui sache s’adapter a I'appareil. Dans le second cas, vous écrirez
deux applications dans le méme projet.

13.2. Nouveautés de l'interface visuelle

La surface de I'écran plus de quatre fois plus grande sur I'iPad ouvre
des possibilités supplémentaires que nous allons examiner dans
cette section. Il y sera question notamment des vues contextuelles
(popover) et des vues scindées (splitview), deux des principales nou-
veautés de la version 3.2.

Recommandations générales

Autorotation de l'interface

Commencgons par une nouveauté qui n’en est pas une. Nous avons
vu au chapitre précédent comment inclure |I'autorotation de l'inter-
face dans une application iPhone.

13.2. Nouveautés de linterface visuelle | 387

g“ Reportez-vous au chapitre Accéléromeétres si vous avez oublié

RENVOI

388

comment gérer I'autorotation.

La "nouveauté" est que cette fonctionnalité doit étre systématique-
ment incluse dans les applications pour iPad afin de respecter les
directives d'Apple concernant l'interface utilisateur. Vous pouvez
consulter ces directives dans le document iPad Human Interface Gui-
delines d’'Apple.

Hiérarchisation des données

La petite taille de I’écran de I'iPhone nécessite un design particulier
de l'interface utilisateur, qui impose généralement de structurer les
données hiérarchiquement. Cette hiérarchisation est a éviter sur iPad
dont I'écran est plus grand que celui d'un iPhone.

Il faudra donc éviter a I'utilisateur d’avoir a naviguer entre plusieurs
écrans, lui donner le maximum d’informations et de possibilité sur
un écran. L'application de type navigation, trés courante sur iPhone,
est remplacée par |'application de type Vues Scindées (splitview) spé-
cifique a I'iPad.

Objets prétés

Figure 13.3: Application de type vues scindées

On peut également atteindre ce résultat en regroupant le contenu de
plusieurs écrans d'une application iPhone sur un seul écran dans
I'application équivalente sur iPad. Pensez aussi, lors du design de

13. Spécificités de l'iPad

I'interface utilisateur, a présenter les informations détaillées ou les
formulaires de saisie dans une vue contextuelle (popover).

Catégories

Nom de la catégorie 4 créer :

saisissed 8 nom

salsissez le nom

Figure 13.4 : Utilisation d'une vue contextuelle

Vues modales

Il y a deux différences dans la fagon dont sont utilisées les vues
modales entre I'iPhone et I'iPad :

m Sur iPhone, une vue modale occupe tout I'écran, ce n’est pas
forcément le cas sur iPad.

m |l n’y a pas de limitation a I'emploi des vues modales sur iPhone ;
les directives d’Apple en limitent I'usage sur iPad.

Présentation a I’écran

La propriété modalPresentationStyle de la classe UIViewController
(dans la version 3.2 du SDK) permet de spécifier la facon dont la vue
modale doit étre présentée. Elle peut prendre les valeurs suivantes :

B UIModalPresentationFullScreen, valeur par défaut, présentation de
la vue modale en plein écran (comme sur I'iPhone) ;

B UIModalPresentationPageSheet, la vue modale occupe toute la hau-
teur de I'écran, mais sa largeur est celle de la plus petite dimen-
sion de |'écran (768 pixels sur iPad) ;

B UIModalPresentationFormSheet, la vue modale est plus petite que
I’écran et centrée sur celui-ci ;

B UIModalPresentationCurrentContext, la vue modale utilise le méme
style que sa vue parente.

Lors de l'affichage d’'une vue modale, les parties de I'écran non
recouvertes par la vue sont grisées et inaccessibles.
Usage des vues modales

Sur iPad, les vues modales doivent étre utilisées exclusivement lors-
que la tache en cours requiert l'intervention de I'utilisateur.

13.2. Nouveautés de linterface visuelle | 389

Pour tous les autres usages, il est préférable d’utiliser les vues
contextuelles (popover), nouveauté de la version 3.2 :

m présenter une liste de sélections ou d’actions ;
m présenter des informations détaillées ;
m présenter une boite a outils ou des options de configuration.

La différence essentielle entre une vue modale et une vue contextuelle
porte sur le comportement lorsque |'utilisateur touche I'extérieur de
la vue :

m La premiére interdit toute action a I'extérieur de la vue, qui est
grisée.
m La seconde est refermée.

Vues contextuelles

390

Une vue contextuelle (popover) est présentée a I'écran avec une fle-
che pointant vers un bouton ou une autre vue.

Nom de la catégorie 4 créer :

saisissed 8 nom

salsissez le nom

Figure 13.5: Exemple de
vue contextuelle

Préparer une vue contextuelle
Deux controleurs de vue sont mis en jeu :

m le controleur de vue contextuel, instance de la classe
UIPopoverController, chargé de gérer le contenant de la vue contex-
tuelle ;

m un contréleur de vue quelconque, dont la classe dérive de
UIViewController, chargé de gérer le contenu de la vue contex-
tuelle.

Le contréleur du contenu est préparé de la méme facon, quelle que
soit la maniére dont il sera affiché : dans une vue contextuelle, une
vue modale, une pile de navigation, etc. Une spécificité toutefois, la
taille du contenu de la vue contextuelle doit étre spécifiée dans la
propriété contentSizeForViewInPopover de son contrdleur, par exem-
ple :

13. Spécificités de l'iPad

contentViewController.contentSizeForViewInPopover =
CGSizeMake (320.0, 110.0);

Limitation de la taille
La largeur du contenu d’une vue contextuelle doit étre comprise entre 320
et 600 pixels. Sa hauteur est libre.

REMARQUE

Afficher une vue contextuelle

Le controleur du contenu est associé au contréleur du contenant a la
création de ce dernier:
UIPopoverController* aPopover =

[[UIPopoverController alloc]
initWithContentViewController:contentViewController];

Lors de sa présentation a |I'écran, il faut préciser I'objet sur lequel doit
pointer la fleche de la vue contextuelle ainsi que les directions
autorisées. On utilise deux méthodes différentes suivant que la vue
est associée a un bouton de barre d’outils (U1BarButtonItem) ou plus
généralement a un rectangle dans une vue :

B -presentPopoverFromBarButtonItem:permittedArrowDirections:animated:
pour associer la vue a un bouton ;
B -presentPopoverFromRect:inView:permittedArrowDirections:animated:

dans le cas général.

Le parameétre permittedArrowDirections permet de préciser quelles
directions sont autorisées pour la fleche de la vue contextuelle :

B UIPopoverArrowDirectionUp autorise une fleche vers le haut.

B UIPopoverArrowDirectionDown autorise une fleche vers le bas.

B UIPopoverArrowDirectionLeft autorise une fleche vers la gauche.

B UIPopoverArrowDirectionRight autorise une fléche vers la droite.
Ces valeurs peuvent étre combinées par I'opérateur | afin d’autoriser
plusieurs directions. La valeur UIPopoverArrowDirectionAny peut éga-

lement étre utilisée pour autoriser la fleche dans toutes les direc-
tions.

Refermer une vue contextuelle

Lorsque I'utilisateur touche I'extérieur d’'une vue contextuelle, cette
derniere est automatiquement refermée. Le délégué du contréleur
de la vue contextuelle en est informé ; il peut bloquer la fermeture au
besoin.

13.2. Nouveautés de Uinterface visuelle | 391

On peut également refermer la vue contextuelle en transmettant le
message -dismissPopoverAnimated: a son contréleur.

Délégué de vue contextuelle

Le délégué du contréleur de vue contextuelle, non obligatoire, ré-
pond au protocole UIPopoverControllerDelegate. Il recoit le message
-popoverControllerShouldDismissPopover: lorsque l'utilisateur touche
I'extérieur de la vue. Il doit retourner YES pour autoriser sa fermeture
(valeur par défaut).

Lorsque la vue contextuelle est effectivement refermée, son délégué
recoit le message

-popoverControllerDidDismissPopover:.

Vues scindées

392

Les vues scindées (splitview) concernent un mode d’utilisation de
I’écran de I'iPad :

m En mode Paysage, |'écran est scindé en deux, une vue est affichée
dans la partie gauche, d'une largeur de 320 pixels, et une seconde
vue occupe l'autre partie de I'écran.

m En mode Portrait, seule la partie droite est affichée, la partie
gauche peut étre visualisée dans une vue contextuelle.

Les chevaliers dEmeraude

Figure 13.6 : Vue scindée en mode Paysage

13. Spécificités de l'iPad

Figure 13.7: Vue scindée en mode Portrait

Controleur de vue scindée

Le contréleur de vue scindée, instance de la classe
UISplitViewController, doit étre le controéleur racine de la fenétre. Il ne
peut étre inclus dans un autre contréleur de vue. Il prend en charge
le comportement de la vue lors des changements d’orientation de
I'interface utilisateur.

Cette classe présente seulement deux propriétés :

m viewControllers, tableau contenant les deux controleurs de vue
associés a la vue scindée, dans I'ordre la vue de gauche puis la vue
de droite ;

B delegate, le délégué de vue scindée qui est informé des change-
ments d’orientation de I'interface utilisateur.

Délégué du controleur de vue scindée

Le délégué du contréleur de vue scindée répond au protocole
UISplitViewControllerDelegate. |l reg¢oit un message -splitView
Controller:willHideViewController:withBarButtonItem:forPopover
Controller: lorsque l'appareil passe en mode Portrait et que la vue de
gauche va étre masquée. Ce message contient notamment un bou-
ton de barre d'outils préparé par le contréleur de vue scindée. Il
appartient au délégué d'afficher ce bouton qui permettra a I'utilisa-
teur de voir le contenu de la vue de gauche dans une vue contex-
tuelle. Par exemple, pour afficher ce bouton a gauche d'une barre
d’outils tout en lui donnant un titre :

13.2. Nouveautés de Uinterface visuelle

393

394

- (void)splitViewController: (UISplitViewController*)svc
willHideViewController: (UIViewController *)aViewController
withBarButtonItem: (UIBarButtonItem*)barButtonItem
forPopoverController: (UIPopoverController*)pc {
barButtonItem.title = @"Objets prétés";
NSMutableArray *items = [[toolbar items] mutableCopy];
[items insertObject:barButtonItem atIndex:0];
[toolbar setlItems:items animated:YES];
[items release];

}

Al'inverse, le message -splitViewController:willShowViewController:
invalidatingBarButtonItem: est recu par le délégué du contrdleur de
vue scindée lorsque l'appareil passe en mode Paysage. Il faut alors
retirer le bouton précédent :
- (void)splitViewController: (UISplitViewController*)svc
willShowViewController: (UIViewController *)aViewController
invalidatingBarButtonItem: (UIBarButtonItem *)barButtonItem {
NSMutableArray *items = [[toolbar items] mutableCopyl];
[items removeObjectAtIndex:0];
[toolbar setlItems:items animated:YES];
[items release];

}

Le dernier message susceptible d'étre recu par le délégué du contré6-
leur de vue scindée est -splitViewController:popoverController:
willPresentViewController:, en mode Portrait lorsque la vue contex-
tuelle contenant la vue de gauche est sur le point d’'étre affichée.

Application de type Vue scindée

Le plus simple pour utiliser les vues scindées est de créer sous
XCode une application de type Vue scindée.

f.0.60, New Project
Choose a template for your new project:
| iPhone 0s
| K = E |
Library
Navigation- OpenGL ES Split View-based Tab Bar
x User Templates based Application Application Application
Application

MacFUSE

B vcosx y) - a J
Application = 1

Framework & Library Utility View-based window-based v
Application Plug-in
System Plug-in Product iPad M
Other

(] Use Core Data for storage

" split View-based Application

This template provides a starting point for an applicatien that uses a split view -
controller. It provides a user interface configured with a split view controller and 3
two view controllers to manage a master-detail-style display. v

Figure 13.8 : Créationd’une

om Gancelosd) application de type Vue
scindée

13. Spécificités de l'iPad

Nous disposons alors d'un fichier MainWindow.xib appartenant a
I"application et qui contient :

m le délégué d'application, classique ;
m un controleur de vue scindé dont :

— la vue de gauche est un controleur de navigation dont la vue
principale est un contréleur de vue en table RootViewController ;

— la vue de droite est décrite dans le fichier DetailView.xib et son
contrbleur est DetailViewController.

La vue détaillée préparée dans le fichier DetailView.xib offre une barre
d’outils qui contiendra le bouton permettant de voir la vue de gauche
en mode Portrait. Le contréleur de la vue détaillée DetailView
Controller est le délégué de la vue scindée ; c’est lui qui gere le
bouton de visualisation de la vue gauche en mode Portrait.

ano 4 MainWindow.xib —
Name Type
File's Owner UlApplication
@ First Responder UlResponder
| Window Ulwindow
f& Emprunts4 App Delegate Emprunts4AppDelegate
¥ () split View Controller UisplitviewController
v Q Mavigation Controller UlNavigationController
< Navigation Bar UlNavigationBar
@ Navigation Item (Root View Controller) UlNavigationltermn
Q Detail View Controller DetailViewController

Figure 13.9: Contenu du fichier MainWindow.xib

ano 4 MainWindow.xib —
Type
File's Owner UlApplication
@ First Responder UlResponder
| Window Ulwindow
f& Emprunts4 App Delegate Emprunts4AppDelegate
¥ () split View Controller UisplitviewController
v Q Mavigation Controller UlNavigationController
< Navigation Bar UlNavigationBar
@ Navigation Item (Root View Controller) UlNavigationltermn
Q Detail View Controller DetailViewController

Figure 13.10: Contenu du fichier DetailView.xib

13.2. Nouveautés de linterface visuelle | 395

Challenge

Réécrivez I'application Emprunts sous forme de vue scindée pour
iPad. Souvenez-vous qu'il n’est pas utile de hiérarchiser les données
pour les manipuler sur iPad.

13.3. Reconnaissance des gestes

Vous savez déja comment interpréter les événements recus par une
vue pour reconnaitre les gestes effectués par I'utilisateur.

é" Reportez-vous au chapitre Tapes, touches et gestes si vous avez

besoin de vous rafraichir la mémoire au sujet de la gestion des

RENVOL - @vénements et la reconnaissance des gestes sur iPhone.

La version 3.2 permet heureusement de simplifier grandement la
reconnaissance des gestes. Il suffit maintenant de programmer une
cible-action sur un ou plusieurs analyseurs de geste, puis d'attacher
ces dernier a la vue. C’'est une bonne nouvelle, vous n’avez plus
besoin de dériver la classe UIview ni d'écrire le code pour la recon-
naissance des gestes, sauf bien s(r si vous voulez développer vos
propres analyseurs.

Gestes de base

396

Un analyseur de geste est une instance d'une classe dérivée de
UlGestureRecognizer. En effet, cette classe est une classe abstraite qui
implémente les mécanismes fondamentaux pour la reconnaissance
des gestes. Chaque geste particulier est reconnu par une classe
concrete qui dérive de UIGestureRecognizer.

Un analyseur est programmé pour reconnaitre un geste particulier.
Lorsque ce geste est reconnu, I'analyseur délivre une notification par
le mécanisme cible-action ; plusieurs cibles-actions peuvent étre pro-
grammeées sur chaque analyseur.

Modes de fonctionnement

Certains analyseurs fonctionnent de fagon discréte ; une notification
vers chaque cible est émise lorsque le geste est reconnu, puis I'ana-
lyseur est remis a zéro pour attendre le geste suivant. D'autres
fonctionnent de facon continue ; ils délivrent une série de notifica-
tions qui débute quand le geste est reconnu et dure tant qu'il est
maintenu.

13. Spécificités de l'iPad

Analyseurs discrets

m Un analyseur de la classe UlTapGestureRecognizer reconnait les
tapes, simples ou multiples avec un ou plusieurs doigts. L'analy-
seur est programmeé pour un nombre de tapes et un nombre de
doigts définis.

m Un analyseur de la classe UISwipeGestureRecognizer reconnaft les
glissements. Il est programmeé pour reconnaitre un geste dans une
ou plusieurs des quatre directions et avec un nombre de doigts
prédéterminés.

Analyseurs continus

m Un analyseur de la classe UIPinchGestureRecognizer reconnait les
pincements ; rapprochement ou éloignement de deux doigts sur
I’écran. L'analyseur peut étre interrogé sur le taux et la vitesse
d’éloignement des deux doigts.

m Un analyseur de la classe UIPanGestureRecognizer reconnait les
déplacements libres sur |I'écran d'un ou plusieurs doigts. L'analy-
seur est programmé pour un minimum et un maximum de tou-
ches simultanées. Il délivre le vecteur et la vitesse de déplacement.

m Un analyseur de la classe UIRotationGestureRecognizer reconnait
les rotations avec deux doigts. L'analyseur peut étre interrogé sur
la valeur et la vitesse de rotation.

m Un analyseur de la classe UILongPressGestureRecognizer reconnait
les appuis prolongés. L'analyseur est programmé pour un nombre
de tapes (une par défaut), un nombre de doigts (un par défaut),
une durée minimale (0,4 secondes par défaut) et un déplacement
maximal (10 pixels).

Classe UlGestureRecognizer

La méthode -initWithTarget:action: est définie dans la classe abs-
traite UlGestureRecognizer. Elle doit étre appliquée a la création d'une
instance de classe concréte pour associer I'analyseur a un couple
cible-action. Le sélecteur passé en parametre doit répondre a la
signature standard d’une action ; il peut recevoir un parameétre qui
est I’émetteur de l'action (sender). Des exemples de code seront
donnés plus loin.

L’émetteur de I'action peut étre utilisé par la cible pour connattre les
caractéristiques du geste qui vient d’étre reconnu ; en particulier,
I'emplacement du geste dans la vue qui est rendu par I'une des deux
méthodes :

13.3. Reconnaissance des gestes

397

398

B -locationInView: ;

B -locationOfTouch:inView: pour connaitre 'emplacement d’une tou-
che particuliere.

La propriété numberOfTouches permet de connaitre le nombre de tou-
ches du geste, et la propriété enabled, de type BOOL et dont I'accesseur
est isEnabled, permet d’autoriser ou pas le fonctionnement de I'ana-
lyseur (il est autorisé par défaut).

Propriétés particulieres a chaque geste

Pour chaque classe concréete dérivée de UlGestureRecognizer, les pro-
priétés et méthodes permettant de programmer I'analyseur (P) ou
d’obtenir les caractéristiques du geste reconnu (C) sont résumées
dans le tableau ci-aprés

Tableau 13.2: Propriétés et méthodes des analyseurs de geste

Analyseur concret | Propriété ou méthode P/C | Usage
UITapGesture |NSUInteger number P [Nombre de tapes requis pour recon-
Recognizer OfTaps Required naitre le geste (1 par défaut)
NSUInteger number P [Nombre de doigts requis pour recon-
OfTouches Required naitre le geste (1 par défaut)
UIPinch CGFloat scale Facteur de pincement
GeStur? CGFloat velocity Vélocité en facteur d'échelle par se-
Recognizer
conde
UIPanGesture |NSUInteger maximum [P | Nombre maximum de doigts requis
Recognizer Number OfTouches pour reconnaitre le geste
NSUInteger minimum |P | Nombre minimum de doigts requis
Number OfTouches pour reconnaitre le geste (1 par dé-
faut)
—(CGPoint) C |Déplacement du doigt dans les coor-
translationInView: données de la vue passée en parame-
(UIView *)view tre
—(CGPoint)velocity |C |Vitesse de déplacement du doigt dans
InView: les coordonnées de la vue passée en
(UIView *)view parametre
UISwipe UISwipeGesture P | Direction du déplacement pour recon-
Gesture RecognizerDirection naitre le geste
Recognizer direction
NSUInteger number P | Nombre de doigts requis pour recon-
OfTouches naitre le geste (1 par défaut)
Required

13. Spécificités de l'iPad

Tableau 13.2: Propriétés et méthodes des analyseurs de geste

Analyseur concret | Propriété ou méthode P/C | Usage

UIRotation CGFloat rotation C | Rotation en radians depuis le dernier

Gesture message

Recognizer CGFloat velocity C | Vitesse de rotation en radians/se-

conde

UILongPress CFTimeInterval P | Durée minimale de la touche (défaut

Gesture minimumPress 04s)

Recognizer Duration
NSInteger number P [Nombre de doigts requis pour recon-
OfTouches naitre le geste (1 par défaut)
Required
NSUInteger number P | Nombre de tapes requis pour recon-
OfTaps naitre le geste (1 par défaut)
Required
CGFloat allowable P | Déplacement maximum pour recon-
Movement naitre le geste (défaut 10 pixels)

UISwipeGestureRecognizerDirection est un type énuméré qui admet les
constantes suivantes :

B UISwipeGestureRecognizerDirectionRight, glissement vers la droite ;
B UISwipeGestureRecognizerDirectionlLeft, glissement vers la gauche ;
B UISwipeGestureRecognizerDirectionUp, glissement vers le haut;

B UISwipeGestureRecognizerDirectionDown, glissement vers le bas.

Ces valeurs peuvent étre combinées par I'opérateur | pour autoriser
la reconnaissance du geste selon plusieurs directions.

Utiliser un analyseur de geste

Nous allons illustrer le fonctionnement des analyseurs de geste par
la mise en ceuvre d'un analyseur de pincement (continu) et d'un
analyseur de tapes (discret).

Créer l'interface utilisateur

1 Créez une application pour iPad basée sur une vue (View-based
application) intitulée AnalyseurDeGeste. Ouvrez le fichier Analyseur-
DeGesteViewController.xib et placez trois labels et trois champs de
texte.

399

13.3. Reconnaissance des gestes

Echelle : !)

—

Nombre de tapes simples :

NoeredetapesdouMes:{

Figure 13.11: Interface de I'analyseur de geste

2 Créez les outlets pour les champs de texte dans l'interface du
controleur de vue dans le fichier AnalyseurDeGesteViewControl-
ler.h. Profitez-en pour ajouter une variable d’instance afin de
compter les tapes simples et doubles et pour rendre compte du
pincement :

@interface AnalyseurDeGesteViewController
UIViewController {

IBOutlet UITextField *scaleField;

IBOutlet UITextField *simpleTaps;

IBOutlet UITextField *doubleTaps;

CGFloat scale;

NSUInteger simpleTapCounter;

NSUInteger doubleTapCounter;
}
@property (retain,nonatomic) UITextField *scaleField;
@property (retain,nonatomic) UITextField *simpleTaps;
@property (retain,nonatomic) UITextField *doubleTaps;
@end

3 Effectuez les liens entre les outlets et les champs de texte sous
Interface Builder.

Mettre en ceuvre les analyseurs

Les analyseurs de geste communiquent par le mécanisme cible-
action lorsqu’ils reconnaissent un geste. Ajoutez une action dans le
contréleur de vue pour chaque geste que nous souhaitons détecter
(simple tape, double tape et pincement) :

@interface AnalyseurDeGesteViewController
UIViewController {
IBOutlet UITextField *scaleField;
IBOutlet UITextField *simpleTaps;
IBOutlet UITextField *doubleTaps;
CGFloat scale;
NSUInteger simpleTapCounter;
NSUInteger doubleTapCounter;
}
@property(retain,nonatomic) UITextField *scaleField;
@property(retain,nonatomic) UITextField *simpleTaps;

400 | 13. Spécificités de l'iPad

@property(retain,nonatomic) UITextField *doubleTaps;

- (IBAction) scaleChange: (UIGestureRecognizer ¥*)sender;
- (IBAction) simpleTap;

- (IBAction) doubleTap;

@end

Nous allons maintenant écrire le code pour mettre en ceuvre les
analyseurs.

Analyseur de tapes

La méthode -initWithTarget:action: définie dans la classe meére de
tous les analyseurs de geste (UIGestureRecognizer) permet d’identifier
le couple cible-action a actionner a la reconnaissance du geste. Par
exemple, pour I'analyseur de tape simple :
UITapGestureRecognizer *simpleTapRecognizer ;

simpleTapRecognizer = [[UITapGestureRecognizer alloc]
initWithTarget:self action:@selector (simpleTap)];

Ensuite, il faut programmer I'analyseur en utilisant ses propriétés.
Pour un analyseur de tapes, les propriétés sont :

B numberOfTapsRequired, nombre de tapes requises ;
B numberOfTouchesRequired, nombre de doigts requis.

Enfin, la méthode -addGestureRecognizer: définie dans UIview permet
d’attacher des analyseurs de geste a une vue. On peut ensuite libérer
la référence a I'analyseur car elle est retenue par la vue :

[self.view addGestureRecognizer:simpleTapRecognizer];
[simpleTapRecognizer release];

Dans notre application, la réception des tape simples et doubles va
simplement incrémenter leur compteur respectif. Saisissez le code
des actions dans le fichier AnalyseurDeGesteViewController.m :
- (IBAction) simpleTap{

simpleTapCounter++;

simpleTaps.text =

[NSString stringWithFormat:@"%d", simpleTapCounter];
}
- (IBAction) doubleTap({
doubleTapCounter++;
doubleTaps.text =
[NSString stringWithFormat:@"%d",doubleTapCounter];
}

Analyseur de pincement

L'analyseur de pincement est encore plus simple a créer car il ne se
programme pas :

13.3. Reconnaissance des gestes | 401

402

UIPinchGestureRecognizer *pinchRecognizer ;
pinchRecognizer = [[UIPinchGestureRecognizer alloc]

initWithTarget:self action:@selector (scaleChange:)];
[self.view addGestureRecognizer:pinchRecognizer];
[pinchRecognizer release];

Nous utilisons ici un sélecteur dont le nom finit par deux points pour
indiquer qu'il faut lui passer I'émetteur de I'action (sender) en para-
metre lors de la notification. Ainsi nous pourrons interroger I'analy-
seur sur les caractéristiques du geste, ce qui était inutile avec les
tapes qui n‘ont pas de caractéristique particuliére.

L'action connectée au pincement affiche le facteur d’échelle a I’écran.
Saisissez le code de |'action dans le fichier AnalyseurDeGesteView-
Controllerm :

- (IBAction) scaleChange: (UIGestureRecognizer *)sender(
scale = 100.*[(UIPinchGestureRecognizer *)sender scale];
scaleField.text=[NSString stringWithFormat:@"%$f",scale];

}

Initialiser I'application

Le code pour initialiser les analyseurs de geste doit étre inséré dans
la méthode -viewbDidlLoad du controleur de vue. Cette méthode
contient aussi le code pour initialiser les champs de texte et les
variables d’instances. Saisissez ce code dans le fichier Analyseur-
DeGesteViewController.m :

- (void)viewDidLoad {
[super viewDidLoad];
// Create and configure the Pinch recognizer
UIPinchGestureRecognizer *pinchRecognizer ;
pinchRecognizer = [[UIPinchGestureRecognizer alloc]
initWithTarget:self action:@selector (scaleChange:)];
[self.view addGestureRecognizer:pinchRecognizer];
// Create and configure the Double Tap recognizer
UITapGestureRecognizer *doubleTapRecognizer ;
doubleTapRecognizer = [[UITapGestureRecognizer alloc]
initWithTarget:self action:@selector (doubleTap)];
doubleTapRecognizer.numberOfTapsRequired = 2;
doubleTapRecognizer.numberOfTouchesRequired = 1;
[self.view addGestureRecognizer:doubleTapRecognizer];
// Create and configure the Simple Tap recognizer
UITapGestureRecognizer *simpleTapRecognizer ;
simpleTapRecognizer = [[UITapGestureRecognizer alloc]
initWithTarget:self action:@selector (simpleTap)];
simpleTapRecognizer.numberOfTapsRequired = 1;
simpleTapRecognizer.numberOfTouchesRequired = 1;
[self.view addGestureRecognizer:simpleTapRecognizer];
// Release the Gesture Recognizers
[pinchRecognizer release];

13. Spécificités de l'iPad

[doubleTapRecognizer release];
[simpleTapRecognizer release];
// Counters initialization
scale = 100.;
simpleTapCounter = 0;
doubleTapCounter = 0;
// Text Field initialization
scaleField.text =
[NSString stringWithFormat:@"%£f",scale];

simpleTaps.text =

[NSString stringWithFormat:@"%d", simpleTapCounter];
doubleTaps.text =

[NSString stringWithFormat:@"%d",doubleTapCounter];

}

Complétez le code du contréleur de vue avec la synthése des acces-
seurs des propriétés, construisez I'application et testez-la.

Ameéliorer le comportement

Lorsque vous testez l'application, vous constatez que deux tapes
rapprochées sont comptabilisées deux fois :

m La premiére tape est comptée comme une tape simple.

m La seconde est comptée comme la deuxieme tape d’'une tape
double ; elle n’est pas comptée comme une tape simple.

L'analyseur de tape double ayant reconnu un geste, une notification
est émise par le mécanisme cible-action, et I'analyse des gestes est
interrompue ; c’est le comportement par défaut.

Dans certains cas, il est souhaitable de retarder la reconnaissance de
la tape simple ; attendre I’éventualité d'une deuxieme tape pour
déterminer s’il s’agit d'une tape simple ou double. La méthode
-requireGestureRecognizerToFail: permet de demander au récepteur
du message de notifier la reconnaissance du geste uniquement si
I'analyseur passé en parametre déclare qu’il n"a pas reconnu son
geste.

Pour éviter que la premiere tape d'une tape double ne soit interpré-
tée comme une tape simple, ajoutez la ligne de code suivante dans la
méthode -viewDidLoad :

[simpleTapRecognizer
requireGestureRecognizerToFail:doubleTapRecognizer];

Challenge

Complétez I'application AnalyseurDeGeste pour tester tous les gestes
proposés par la version 3.2 du SDK.

13.3. Reconnaissance des gestes

403

Synchroniser les analyseurs

404

Dans la version 3.2, les événements de touches sont transmis simul-
tanément a la vue et aux éventuels analyseurs de geste qui lui sont
attachés.

Les analyseurs de geste sont tres faciles a utiliser, le seul point
délicat est leur synchronisation lorsque plusieurs sont attachés a la
méme vue. Un seul geste est reconnu lorsqu’un événement est recu
par la vue, le premier analyseur qui déclenche une action bloque
tous les autres, le probléme est que I'on ne sait pas lequel est "le
premier".

Par exemple si I'on programme simultanément un analyseur de tape
pour une tape simple et un second pour une tape double, une tape
double peut déclencher, en fonction de I'analyseur qui est "le pre-
mier" :

m soit la notification d'une tape simple puis d’'une tape double ;

m soit la notification de deux tapes simples.

Le développeur dispose de plusieurs moyens pour synchroniser le
fonctionnement des analyseurs de geste :

m La propriété enabled permet de bloquer ou d’activer le fonctionne-
ment d'un analyseur.

m La méthode -requireGestureRecognizerToFail:, que NOUS venons
d’utiliser, permet de définir la priorité entre deux analyseurs.

m L'un des délégués de deux analyseurs peut permettre qu’ils émet-
tent une notification simultanée, au lieu que I'un bloque l'autre
comme dans le fonctionnement par défaut.

m Le délégué d'un analyseur peut bloquer temporairement sont
fonctionnement.

Délégué d'analyseur

Chaque analyseur dispose d'une propriété delegate qui référence son
éventuel délégué. Ce dernier doit répondre au protocole UIGesture
RecognizerDelegate qui déclare les trois méthodes suivantes :

B —gestureRecognizerShouldBegin: est appelée lorsque I'analyseur est
sur le point de commencer I'analyse d'un geste. Elle doit retourner
YES (valeur par défaut) si I'analyseur est autorisé a débuter I'ana-
lyse. Si elle répond o, I'analyse est interrompue.

B —gestureRecognizer:shouldReceiveTouch: est appelée avant qu’un
événement de touche ne soit transmis a l'analyseur. Elle doit

13. Spécificités de l'iPad

retourner YES (valeur par défaut) pour autoriser la transmission et
NO pour l'interdire.

—gestureRecognizer:shouldRecognizeSimultaneouslyWithGesture
Recognizer: est appelée lorsque deux analyseurs sont sur le point
de reconnaitre simultanément un geste. La simultanéité est auto-
risée si I'un des délégués répond YES. NO est la valeur par défaut.

13.4. Checklist

Nous avons exploré dans ce chapitre les spécificités du développe-
ment d’applications pour iPad concernant l'interface utilisateur.

Nous avons commencé par les réglages des parametres de XCode
pour sélectionner la cible des applications : iPhone ou iPad.

Concernant I'aspect visuel, nous savons maintenant :

que l'utilisation des vues modales est limitée a des cas tres parti-
culiers et que I'on peut modifier leur aspect visuel avec la pro-
priété modalPresentationStyle ;

que pour les autres usages, il faut préférer les Vues contextuelles
(popover) avec la mise en ceuvre du contréleur UIPopoverController
et de son délégué UIPopoverControllerDelegate ;

que les applications de type Vue scindée (splitview) sont a préférer
a la navigation hiérarchique, avec la mise en ceuvre du contréleur
UISplitViewController et de son délégué UIsplit ViewController
Delegate.

Concernant la gestion des événements de touche, nous avons exa-
miné le fonctionnement et I'utilisation des analyseurs de geste (ges-
ture recognizer).

13.4. Checklist

405

~
=
L
o
=
o
<
T
O

ANNEXE

Epilogue . 409
Politique d'Apple 409
Processus de diffusion 412

407

14.1. Epilogue

Nous avons exploré dans cet ouvrage les principaux frameworks
permettant de mettre en ceuvre les possibilités de I'iPhone, de I'iPod
Touch et de l'iPad, en nous concentrant sur celles qui rendent ces
appareils si attrayants : écran multi Touch, accélérométres, capteur
magnétique.

Nous vous laissons explorer par vous-méme, en fonction de vos
besoins, les technologies plus classiques, par exemple celles liées a
la connectivité, puis celles plus avancées (sécurité, debugger, tests
automatiques, etc.). Certaines de ces technologies sont disponibles
sur iPhone et iPad, d'autres sont spécifiques a ce dernier:

m production de documents PDF ;
m gestion améliorée des polices de caractéeres ;
m possibilité d’adapter la saisie de texte, etc.

La documentation d’Apple est trés bien faite et les forums de déve-
loppeurs francophones vous seront d'une aide précieuse : par exem-
ple hitp://forum.macbidouille.com ou http://www.pommedev.com.

Nous vous souhaitons un parcours rempli de découvertes et de
succes.

14.2. Politique d’Apple

La suite de cette annexe est consacrée a la description de la politique
d’Apple concernant les développeurs pour iPhone et aux processus
de diffusion des applications.

Apple pouvant a tout moment modifier ces conditions, les informa-
tions contenues dans cette annexe sont fournies a titre purement
indicatif.

Les différents statuts de développeur

Apple a défini trois niveaux de développeur :

m développeur enregistré (Registered iPhone Developer) qui permet :
— de télécharger le SDK;
— d’accéder a la documentation Apple ;
— de tester ses applications avec le simulateur d'iPhone.

14.2. Politique d’Apple | 409

b

REMARQUE

b

REMARQUE

m équipe de développement inscrite au programme iPhone (iPhone
Developer Program) qui permet :

— de tester ses application sur des appareils réels ;

— de diffuser ses applications de facon limitée ;

_ d’accéder aux versions Béta d'iPhone OS et du SDK.

m équipe de développement inscrite au programme iTunes (iTunes
Connect) qui permet :

— de diffuser ses applications sur |'’AppStore ;

— de percevoir des revenus.
Le tableau ci-aprés résume les conditions associées a ces différents statuts.

Tableau 14.1: Conditions associées aux différents statuts

Niveau Coiit Objectif Condition

Enregistré 0 Développer sur simulateur | -

Programme | 998 paran | Tester ou diffuser sur Etre enregistré

Standard (79€) 100 appareils

Programme |299$ par an | Diffuser en interne dans Etre enregistré et étre une société
Entreprise (239€) I'entreprise de plus de 500 personnes
Programme |0 Diffuser sur I'’App Store Avoir adhéré au programme
iTunes standard

Programme Entreprise
Ce programme ne permet pas de diffuser sur I’AppStore. Il est utile uni-
quement pour les grandes organisations souhaitant développer des applica-
tions spécifiques a usage interne.

Programme Standard
Ce programme est ouvert aux personnes physiques et aux personnes
morales (entreprises). Une équipe de plusieurs personnes peut adhérer a ce
programme.

Diffusion des applications

Il existe trois facons de diffuser son application :

410

m diffusion privée sur un maximum de 100 appareils référencés, qui
nécessite |'adhésion au programme Standard ;

14. Annexe

m diffusion privée sur plus de 500 appareils, qui nécessite I'adhésion
au programme Entreprise ;

m diffusion au grand public sur I’AppStore, qui nécessite I'adhésion
au programme Standard et a I'iTunes Connect.

REgMARuUE Diffusion des applications
La politique d’Apple interdit tout autre mode de diffusion.

Une application peut étre mise en diffusion gratuite ou payante sur
I’AppStore, au choix du responsable de I'équipe de développement :

m Le prix de I'application est défini par le responsable de I'équipe.
m 70 % du prix des ventes est reversé mensuellement a I'équipe de
développement par Apple.

m Cette marge de 30 % prise par Apple intégre tous les services
fournis par I’AppStore :

_ frais de paiement par carte de crédit ;
— hébergement sur le site d’Apple ;
— marketing.

m Les applications gratuites sont diffusées gratuitement sur I’App-
Store.

Signature du code

Le code qui s’exécute sur un appareil réel doit obligatoirement étre
signé par I'adhérent au programme iTunes Connect. Cette signature-
permet a Apple de contréler la diffusion des applications, puisqu’il
faut passer par le programme Standard pour obtenir les certificats
permettant de signer le code. Elle permet surtout aux utilisateurs
d’étre certains de I'origine des applications qu’ils utilisent ; elle est
garantie par Apple. Sans cette précaution, un appareil éminemment
communiquant tel que I'iPhone, et dans une moindre mesure I'iPod
Touch, deviendraient tres sensibles aux attaques malveillantes.

Apple a prévu trois types de signature en fonction de la destination
du code :

m le test des applications sur des appareils réels ; le développeur
doit les installer lui-méme a partir de XCode ;

14.2. Politique d’Apple | 411

m |a diffusion limitée (diffusion ad hoc) ; les applications peuvent étre
transmises aux possesseurs des appareils référencés ;

m la diffusion publique, sur I’AppStore.

La signature est réalisée sous XCode par le développeur (pour le test)
ou par le responsable de I'équipe de développement (pour la diffu-
sion). Elle nécessite :

m la possession d'un certificat qui identifie le développeur ou le
responsable de I'équipe ; ce certificat est fourni par Apple et per-
met d'assurer aux utilisateurs que l'application a été réalisée par
I’équipe identifiée ;

m l'identification de 'application ;

m pour les tests et les diffusions limitées, l'identification des appa-
reils autorisés.

Certificats

La personne qui s’inscrit a un programme de développeur, Standard
ou Entreprise, est considérée par Apple comme le représentant et
responsable de I'équipe de développement. Chaque membre de
I’équipe doit étre un développeur enregistré sur le site des déve-
loppeurs d’Apple afin de pouvoir télécharger le SDK et accéder a la
documentation sur le site.

Le responsable de I'équipe est nommé Agent. Une équipe de déve-
loppement ne peut avoir qu’un seul agent ; il déclare les identifiants
d’'application et a le droit de les diffuser. Il cumule également les
privileges attachés aux administrateurs.

Un administrateur gére les développeurs (il autorise leur certifica-
tion) et le parc d'appareils. Il peut y avoir plusieurs administrateurs
dans une équipe de développement. lls sont nommés par |'agent.

Un simple membre peut demander un certificat personnel. Une fois
qu’il I'a obtenu, il peut signer les applications qu’il produit pour les
tester sur des appareils réels.

14.3. Processus de diffusion

412

Apple pouvant a tout moment modifier le site des développeurs, les
copies d’écrans et le processus décrits dans cette section sont four-
nis a titre purement indicatif.

14. Annexe

S’enregistrer comme développeur

Chaque personne physique qui souhaite parcourir le site des déve-
loppeurs doit y étre enregistrée : http://developer.apple.com/iphone.

8 00 iPhone Dev Center - Apple Developer Connection

(Q- Google

@& Developer Connection

iPhone Dev Center

Log in to get the most out of the iPhone Dev Center.

The iPhone Dev Center provides access to technical resources and information to assist you in developing with the latest technologies in iPhone 0S. Log in
with your Registered iPhone Developer Apple ID and password, or sign-up as a free Registered iPhone Developer today.

Developing for iPhone 05 3.1 Y Y iPhone Developer Program

Technical Documentation Featured Content App Store Resource Center
Find details on everything HGHN
Getting Started Documents W iPhone Application Programming Guide from how to prepare for &2
| Developers new to iPhone O can read about the
tools, frameworks, development best-practices, W iPhone Development Guide an app once it's been posted. Log in »
and design methods for creating innovative
‘warld-class iPhone applications. W iPhone Human Interface Guidelines
News and Announcements)
ii iPhone Reference Library W Your First iPhone Application Check out this regularly
Explore a collection of in-depth technical Updated section for a range of
dacumentation, sample code, guides, and Learning Objective-C: A Primer information including tips on
articles for iPhone development categorized by submitting apps , turnaround time for
1opic and frameworks, app review, and more. Log in

o access iPhone SDK 3.1.2 and additional technical resources and information, log in with your Registered iPhone Join the iPhone Developer Program

Figure 14.1: Enregistrement sur le site des développeurs sur iPhone

L'identifiant et le mot de passe sont personnels et ne doivent pas étre
communiqués, sauf aux mineurs de 13 a 17 ans qui peuvent utiliser
ceux d'un de leurs représentants légaux.

Un développeur enregistré n’a pas le droit de divulguer les informa-
tions confidentielles auxquelles il a acces sur le site des déve-
loppeurs : les informations relatives aux versions Béta et les infor-
mations payantes sont confidentielles.

Si vous étes personnellement déja enregistré sur I'un des sites d’Ap-
ple, par exemple sur I'iTunes Store ou sur le service Mobile Me, vous
pouvez utiliser le méme identifiant pour vous enregistrer comme
développeur. Il est généralement conseillé d’avoir des identifiants
séparés pour l'usage privé (acheter de la musique sur I'iTunes Store,
par exemple) et pour I'usage professionnel ou semi professionnel ;
vendre des applications sur I’AppStore.

S’inscrire au programme des développeurs

Création d'un compte

Vous pouvez adhérer au programme des développeurs soit a titre
individuel, soit comme représentant d’'une personne morale et d'une

14.3. Processus de diffusion 413

414

équipe de développement. Dans ce dernier cas, la personne physi-
que qui s’inscrit au programme des développeurs doit avoir la capa-
cité d’engager son organisation. Elle sera considérée comme res-
ponsable de I’équipe de développement par Apple, appelée Agent du
programme pour |'organisation.

La personne qui adhére au programme des développeurs doit préa-
lablement étre enregistrée sur le site des développeurs. Apple pro-
pose le programme Standard et le programme Entreprise. Le pro-
gramme Standard correspond a la majorité des usages; il donne
ensuite acces a la diffusion sur I’AppStore.

800

iPhone Dev Center - Apple Developer Connection

+ [4 huep:/ /developer.apple com/iphone/index action & | (Qr google maps

iPhone Dev Center

Hi, Guest Register LogIn

Log in to get the most out of the iPhone Dev Center.

The iPhane Dev Center provides access to technical resources and information 1o assist you in developing with the latest technologies in iPhone 0S. Log in
with your Registered iPhone Developer Apple ID and password, or sign-up as a free Registered iPhone Developer today.

Developing for iPhone 0S 3.1 Q iPhone Developer Program
App Store Resource Center
Find details on everything
from how to prepare for

submitting an app to managing

an app once it's been posted. Log in »

Technical Documentation Featured Content

W iPhone Application Programming Guide

Getting Started Documents
L Developers new to iPhene O can read about the
tools, frameworks, development best-practices, W iPhone Development Guide
and design methods for creating innovative
world-class iPhone applications.) iPhone Human Interface Guidelines
News and Announcements ‘

W Your First iPhone Application Check out this reqularly

iPhone Reference Library

ii Explore a collection of in-depth technical
documentation, sample code, guides, and
articles for iPhone development categorized by
topic and frameworks.

W Learning Objective-C: A Primer

To access iPhone SDK 3.1.2 and additional technical resources and information, log in with your Registered iPhone
Developer Apple ID and password, or sign up as a free Registered iPhone Developer today.

iPhone SDK 3.12
Registered IPhone Developers can download

iPhone SDK 3.1.2, which includes the Xcode IDE, iPhone
simulator, and a suite of additienal tools for developing
applications for iPhone and iPod touch

E Getting Started Videos
HEME watch Apple experts discuss everything from

getting started with iPhone SDK, to the tools and
technologies used to create iPhone applications.

updated section for a range of
information including tips on
submitting apps , turnaround time for
app review, and more. Log in

467N the iPhone Developer Prograi
The IPhone Developer Program offers a
complete process for developing and
distributing IPhone o Pod touch
applications. Learn More »

(_Leam more)

Figure 14.2: Inscription au programme des développeurs

Administration du compte

Une fois l'inscription au programme Standard réalisée, I'agent et les
éventuels administrateurs gérent le compte a I'aide des portails web
prévus a cet effet :

m le centre des membres (Member Center) pour gérer la composition
de I'équipe ;

m le portail des autorisations (iPhone Provisioning Portal) pour gérer
les certificats.

14. Annexe

800
[4 [» | [+ [@nttp:/ fdeveloper.apple.com/iphone/index.action

iPhone Dev Center - Apple Developer

& Q- Google

Member Center (@ search beveloper

Hi, Jean-Pierre IMBERT

Technologies Resources Programs Support

iPhone Dev Center

My profile | Log out

RUCTEN iPhone SDK 3. iPhone SDK 3.2 beta Q search iPhone Re iPhone Developer Program

nce Library

Resources for iPhone 05 3.1 Featured Content IPhane Provisioning Portal ©
Downloads W What's New in iPhone 0S [Tunes Connect ©

W Dounload the latest bulds of iPhane 05, iPhone
SO and [Tunes B iPhone SDK 3.0 Getting started videos Apple Developer Forums © J
Getting Started Videos) Apple Push Notification Service Programming Developer Support Center ©

B
]
il

Watch Apple experts discuss a range of
introductory concepts for iPhone development.

Guide

W In App Purchase Programming Guide App Store Resource Center
Getting Started Documents
Learn the fundamental concepts and best- il Getting Started with In App Purchase

€]
practices for IPhone development . Prepare for Agp Submission
W Game Kit Programming Guide L
iPhone Reference Library

Select from a range of technical documentation W Cut, Copy and Paste o App Stare Approval Process
on iPhone development.
W External Accessory Framework Reference
F. Coding How-To's N i
@ Learn how to incorporate features of iPhone in W Map Kit Framework Reference "_5 Managing Apps on the App

Store
your application

W Media Player Framework Reference
Sample Code Marketing Resources
Use these samples to inspire development of W Core Data Tutorial for iPhone OS
your own great applications.

-l
&8

News &

Figure 14.3: Acces aux portails du programme des développeurs

Centre des membres

La page People du centre des membres permet aux administrateurs
de gérer les membres de I'équipe.

Member Center - Apple Develaper

nu + (@ hup: p

¢ J

.apple.c action

enter/

Developer
—
People Programs & Add-ons Your Account
Organization: JPi-Consel Hi, Jean-Pierre IMBERT | Log out
"
Developer Program Resources Developer Program Overview
. Read about accessing the resources
Technical Resources & Tools g
m and benefits of your iPhone Developer
200~ % Dev Centers iPhone Provisioning Portal Program
Quickly access a range of Provision & testyour apps on
technical resources. your iPhone & iPod touch
ROV
iPhone | Mac | Safari =
News & Announcements for
iPhone Developers
App Store Distribution
Get app submission tips, learn about
— App Store Resource Center p iTunes Connect new features in Tunes Connect and
@ Learn about how to prepare for Ny submitand manage your apps on receive guidance on developing and marketing
App Store Submission. the App Store. your apps. Learn more ¥
ADC Premier & Select Members
Community & Support Learn about accessing your ADC membership
benefits and resources.
le Developer Forums Developer Sul rt
App P P pRo! Learn more b
Discuss technical topics with Request technical or developer
other developers and Apple - program support.
engineers. Technical | Program
o

Figure 14.4: Acces a la gestion des membres de

"équipe

14.3. Processus de diffusion ‘ 415

416

I
II
|
]
|
|

s ont la possibilité d'inviter une ou plusieurs personnes a rejoindre
équipe en fournissant pour chacune :

son prénom ;

son nom ;

son adresse de courriel ;

son rOle, administrateur (Admin) ou membre (Member).

Si vous souhaitez inviter un développeur dans votre équipe, saisis-
sez les renseignements demandés et cliquez sur le bouton Send
Invitation pour envoyer l'invitation.

8no Member Center - Apple Developer
[+ | huup:/ sdeveloper.apple.com/membercenter/ index.action#allpeople ¢ | (@~ Google)
[## Standard- ffmpeg audi..anipulation wazmac || O...5etup Notes Learning Tree Daring Fireb..iger Details Apple France Mac Amazon France eBay France >
% Developer Member Center
~ People Programs & Add-ons Your Account
Organization: JPI-Conseil Hi, Jean-Pierre IMBERT | Log out
4| All People)
Invite People to Your Team
A2 iPhone Developers
R ——

Invite a Person to Your Team

'ﬁ send an invitation to a colleague requesting they join your development team. ¢ Invite Person
| S ke it —_

Invite Multiple People to Your Team

".‘ Send invitations to a list of colleagues requesting they join your development team. Bulk Invite
———

Figure 14.5: Invitation d'un nouveau membre

C
9

haque personne invitée recoit un courriel lui proposant de s’enre-
istrer comme développeur et de rejoindre I'équipe. Lorsqu’il aura

accepté l'invitation, il pourra accéder au portail du programme avec
son propre identifiant.

Portail des autorisations

Le bandeau gauche de la page principale du portail permet d’accéder

a

ses différentes fonctions :
Certificates ; gestion des certificats des membres de I'équipe de
développement et des certificats de distribution pour I'agent du
compte ;
Devices ; gestion des appareils de test ou pour la diffusion limitée
des applications. Le nombre d’appareils est limité a 100 par an au
total (test et diffusion, tout type d’appareil confondu) ;
App IDs ; gestion des identifiants pour les applications ;
14. Annexe

m Provisioning ; gestion des fichiers de Provisioning, ces fichiers
permettent la signature et I'exécution du code ;

m Distribution ; informations pour la distribution et accés au portail
de I'iTunes Connect.

800 Overview - iPhone Provisioning Portal - Apple Developer

(<]) (@ rupdevlo (@ coose

[0 §f Standard- ffmpeg audi..anipulation wazmac | O...Setup Notes Learning Tree ~Daring Fireb...iger Details Apple France .Mac Amazon France eBay France »
& Developer Technologies Resources Programs Support Member Center (@
iPhone Developer Program Welcome, Jean-Plere IMBERT | &t Prfie | Log out

Provisioning Portal: JP1-Conseil o to Phane Dev Center
U — Portal Resources
Welcome to the iPhone Provisioning Portal

The iPhone 1 Portal is designed to take you through the necessar ry
steps i s on Phone and iPod touch and prepare them for

tep:
distrib

| Visit the Member Center for Team, Account, and Program info

Figure 14.6 : Page principale
du portail du programme des
développeurs

Certifier un développeur

Afin de pouvoir signer une application pour la tester sur un ou
plusieurs appareils, un développeur doit au préalable obtenir un
certificat approuvé par un administrateur du programme des déve-
loppeurs. Ces certificats doivent étre renouvelés tous les ans.

Créer une demande de certificat
Le développeur commence par créer une demande de certificat.

1 Ouvrez l'application Trousseau d’Acceés ; elle est située dans le
dossier Utilitaires des Applications. |l faut vérifier que le paramé-
trage des certificats est adéquat. Sélectionnez la commande
Préférences du menu Trousseau d’acces et vérifiez le paramétrage
des certificats ; les protocoles OCSP et CRL doivent étre désacti-
vés.

Préférences

| Général 5.05. | Certificats }

Protocole d'état des cert. en ligne (OCSP) : ["désactivé
Liste des certificats révoqués (CRL) : | désactivée

Priorité : | OCSP

Figure 14.7 : Vérification du
paramétrage des certificats

14.3. Processus de diffusion

417

418

2 Fermez la fenétre des préférences puis sélectionnez la commande

Demander un certificat a une autorité de certification

... du sous-

menu Assistant de certification du menu Trousseau d’acces.

3 Saisissez votre nom et votre adresse de courriel de la méme fagon
que lors de votre enregistrement sur le site des développeurs.
Sélectionnez les options Enregistrée sur le disque et Me laisser
indiquer les données sur la bi-clé puis cliquez sur le bouton Conti-

nuer.

Xale

Assistant de certification

Informations sur le certificat

Saisissez les informations relatives au certificat que vous
demandez. Cliquez sur Continuer pour demander un
certificat de I'AC.

Adresse électronique de I'utilisateur : | jean-pierre.imbernt@jpi-coi ™
Nom commun : Jean-Pierre IMBERT
Adresse électronique de I'AC

La requéte est : () Envoyée & autorité de certif. par courriel
@ Enregistrée sur disque

¥ Me laisser indiguer les informations sur la bi-clé

| —
(_ Continuer

Figure 14.8 : Créationd'une
demande de certificat

4 Indiquez I'emplacement et le nom du fichier que vous souhaitez
créer. Vous pouvez laisser le nom par défaut CertificateSigningRe-
quest.certSigningRequest. Indiquez les parameétres de la bi-clé :

2048 bits et RSA.

Assistant de certification

Informations de bi-clé

Indiquez la taille de clé et I"algorithme utilisé pour la
création de votre bi-clé.

privée est la partie secréte du bi-clé ; elle doit rester

du certificat numérique.

Dimension de clé : | 2 048 bits 2]
Algorithme : | RSA 3]

En savoir plus...

La bi-clé est composée de vos clés privée et publigque. La clé

confidentielle. La clé publique est rendue publique au sein

[Continuer)

Figure 14.9 : Paramétrage de
labi-clé

Un couple de clé privée-publique est alors créé dans votre trousseau
de session et le fichier de demande de certificat est créé. Il faut

14. Annexe

maintenant envoyer cette demande sur le portail du programme des
développeurs.

\
7

Conserver cette demande de certificat
Conservez cette demande de certificat, vous pourrez la réutiliser pour
générer un certificat de diffusion.

ASTUCE

Obtenir le certificat

1 Sélectionnez la fonction Certificates sur le portail du programme
des développeurs. L'onglet Development vous permet de transfé-
rer le fichier contenant la demande de certificat (CertificateSignin-
gRequest.certSigningRequest).

Un administrateur doit approuver la demande de certificat. Une fois
cette validation effectuée, vous pouvez télécharger le certificat de-
puis le méme onglet du portail.

@ Auto-approbation

REMARQUE . P . < ’
Méme lorsque I'équipe de développement est composée d'une seule
personne, cette derniére doit approuver sa propre demande de certificat.

Your Certificate

Name + Provisioning Profiles Expiration Date Status. Action

[E] Jean-Pierre IMBERT + (2) View profile list 07 juin 2010 Issued Download) Revoke

*If you do not have the WWDR intermediate certificate installed, click here to download now.

Figure 14.10: Téléchargement des certificats

2 Téléchargez également le certificat intermédiaire WWDR.

Installer les certificats

Vous avez ainsi récupéré :

m votre certificat personnel, dans un fichier developer_identity.cer ;
m un certificat intermédiaire AppleWWDRCA.cer.

Double-cliquez sur chacun de ces fichiers pour les installer dans le
Trousseau d’acces de votre session.

Les certificats sont maintenant installés et préts a étre utilisés sous
XCode.

14.3. Processus de diffusion 419

Tester son application sur un appareil

420

Identifier les appareils

L'identifiant d'un appareil peut étre obtenu, lorsque l'appareil est
connecté a un Mac, sous XCode ou sous iTunes. Sous iTunes, il suffit
de cliquer sur le numéro de série de I'appareil, dans la page Résumé,
pour faire apparaitre son identifiant (UDID) ; c’est une suite de 40 ca-
racteres alphanumeériques. Lorsqu’il est affiché sous iTunes, on peut
copier l'identifiant dans le Presse-papiers (#+(C)).

La gestion des appareils de test sous XCode est réalisée dans la
fenétre Organizer.

1 Sélectionnez la commande Organizer du menu Windows ou tapez
le raccourci clavier (Ctri}+d£+(0).

2 Sélectionnez l'appareil dans le bandeau gauche et l'onglet
Summary pour en afficher les paramétres, dont I'identifiant (iden-
tifier).

800 Organizer 5

v PROJECTS & SOURCES
v DEVICES
1 Phone de cpeiian ot iPhone

Name: iPhone de Jean-Pierre IMBERT
Capacity: 14,64 GB

e
Figure 14.11 : dentifiant de
Eeollcion b I'appareil sous XCode

v IPHONE DEVELOPMENT
Crash Logs.

] Provis

[5) sereen:

Software Images

Enregistrer les appareils

Les administrateurs du compte du programme peuvent enregistrer
des appareils de test sur le portail.

Enregistrez votre appareil sur le portail du programme des déve-
loppeurs, dans la fonction Devices. Procédez de la méme fagon pour
enregistrer tous les appareils sur lesquels vous souhaitez tester vos
applications en cours de développement.

Manage History How To

. Current Registered Devices i

You can register 97 additional devices.

You can register up to 100 devices per year for development purposes. Any devices added, then later removed, still count

towards your maximum number of registered devices per year. Learn more

[Device Name ~ Device ID Profiles Actions

O @ iPhone de Christian He... [G- 0 (Details) Edit

o

~ |l iPhone de Jean Pierre ... -] 2 (Details) Edit . .
Figure 14.12: Appareils
enregistrés sur le portail

14. Annexe

Vous pouvez enregistrer jusqu’a 100 appareils par an. Apple vous
propose une fois par an d’apurer cette liste des appareils que vous
n’'utilisez plus.

Identifier les applications

Un identifiant d’application est composé d’'un préfixe de 10 caracte-
res fournis par Apple (Bundle Seed ID) et d'un identifiant de paque-
tage (Bundle ID) transmis par un administrateur. Il est recommandé
d’utiliser une notation de domaine inversée pour identifier un paque-
tage, par exemple com.jpiconseil.convertpro.

Pour créer un identifiant d’application, connectez-vous sur le portail
du programme et sélectionnez la fonction App ID. Cliquez sur le
bouton Create Add ID et saisissez :

B un nom qui vous permettra de repérer I'identifiant pour en faciliter
la gestion ;

m un identifiant de paquetage ; c’est cet identifiant qu’il faudra insé-
rer dans les informations de I'application sous XCode.

Cliquez sur le bouton Submit. L'identifiant d’application est généré.

Description ~ Apple Push Notification service In App Purchase Action

2BCTRSF9AR.com.jpiconseil.”
General JP1 Conseil

Details

ZXHY)5U2EL.com.jpi-conseil.convertp... @ Configurable for Development

o 3 Confi bl Confi
Application Convert Pro @ Configurable for Praduction onfigurable onfigure

Figure 14.13: Identifiants d'applications sur le portail

@ Identifiant du paquetage

REMARQUE

\

ASTUCE

L’identifiant du paquetage devra étre saisi dans le fichier Info.plist de
I"application sous XCode.

7

Partage de I'identifiant d’application
Les applications qui doivent partager les mémes mots de passe, pour
accéder a des sites web par exemple, doivent avoir le méme identifiant
d’application. Pour ce faire, il faut saisir un identifiant de paquetage avec un
caractere joker "*", par exemple com.jpiconseil. *.

14.3. Processus de diffusion

421

422

Geéneérer un profil d’autorisation

Un profil d'autorisation (provisioning profile) est un fichier qui doit
étre installé sur un appareil afin de pouvoir y exécuter des applica-
tions. Il contient :

m un identifiant d’application ;

m un ou plusieurs certificats de développement ;

m un ou plusieurs identifiants d'appareil.

Les profils d’autorisation pour le test sont générés par un adminis-
trateur. lls seront ensuite téléchargés par les développeurs pour étre
utilisés.

Pour créer un profil d’autorisation, connectez-vous sur le portail du

programme des développeurs, sélectionnez la fonction Provisioning
dans le bandeau gauche puis I'onglet Development.

Cliquez sur le bouton New Profile, saisissez les informations deman-
dées puis cliquez sur Submit.

Development Distribution History How To

Create iPhone Development Provisioning Profile

Generate provisioning profiles here. To learn more, visit the How To section.

Profile Name Enter a profile name
Certificates [] Jean-Pierre IMBERT
App ID [Select an App ID +
Devices Select All

[iPhone de Christi [iPhone de Jean Pierre IMBERT

Cancel ubmi

Figure 14.14 : Création d'un nouveau profil d'autorisation

Ces profils sont valables 3 mois. lls peuvent étre édités et renouvelés
par un administrateur.

Installer un profil d’autorisation

Pour pouvoir tester une application sur un appareil, ce dernier doit
étre connecté sur le poste du développeur qui doit comporter :

14. Annexe

m le certificat du développeur dans le Trousseau d’Acces ;
m le profil d’autorisation adéquat dans XCode.
Procédez ainsi :

1 Pour télécharger un profil d’autorisation, connectez-vous sur le
portail du programme des développeurs, sélectionnez la fonction
Provisioning dans le bandeau gauche puis I'onglet Development.

Development Distribution History How To
¢ Development Provisioning Profiles New Profile
[0 Provisioning Profile 4 ApplD Status Actions
O & General par JpI (Details) PRCTRSFERR.com. jpiconseil.* Expired [Renew |
& & General par JPI sept 09 (Details) ERETRERSAQ. com. jpiconseil.* Active Dewnload) Edit

Figure 14.15: Liste des profils disponibles

2 Cliquez sur le bouton Download du profil que vous souhaitez
obtenir. Une fois le téléchargement terminé, connectez |'appareil
sur lequel vous souhaitez transférer le profil, ouvrez la fenétre
Organizer sous XCode ((Ctil+3#£+0)) puis faites glisser le fichier
téléchargé (un fichier d’extension .mobileprovision) dans la zone
Provisioning correspondant a I"appareil.

800 Organizer =

A B ASH

Build Clean Run Action
¥ PROJECTS & SOURCES

LBl Crashlogs Console Screenshots
¥ DEVICES

W iPhone de christian herve iPhone

Name: iPhone de Jean-Pierre IMBERT
Capacity: 14,64 GB
Serial Number: 86831C6W1R4
L] provisioning Profiles Identifier: eBafef46c356a561bd18f0bSef2e0fd48c162544
%) Sereenshots Software Version: [3.1.2 (7D11) 4 [_Restore iPhone]

¥ IPHONE DEVELOPMENT
Crash Logs

24 Software Images Xcode cannot find the software image to install this version

Provisioning

General par JPI sept 09

Applications

» 4 ConvertPro

» 4 HelloPoly

» A HelloWorld
4 Brain Tuner

Figure 14.16 : Installation d'un profil d"autorisation sous XCode

14.3. Processus de diffusion | 423

wh)

REMARQUE

424

Utilisation des profils téléchargés
Bien que tous les membres d'une équipe puissent télécharger un profil
d’autorisation, seuls les développeurs dont le certificat est inclus dans le
profil pourront utiliser celui-ci.

Construire I'application pour I'appareil

Une fois que vous disposez d'un certificat et d'un profil installé sous
XCode, vous pouvez construire votre application pour I'appareil, I'y

installer et la tester.

Compiler pour un appareil réel

Ouvrez le projet de votre application sous XCode et dans la barre
d’outils de la fenétre principale, sélectionnez un iPhone Device dans

le menu déroulant Active SDK.

Active SDK

iPhone Device 3.1.2 (Base SDK)
iPhone Device 3.2
iPhone Simulator 3.1.2
iPhone Simulator 3.1.3
iPhone Simulator 3.2

Active Configuration
¥ Debug
Release

Active Target

¥ o8 Accelero
Active Executable
¥ Accelero - <no device available>

Active Architecture
¥ armvé

Signer I'application

1 Dans la liste gauche de la fenétre principale, ouvrez le groupe
Targets et sélectionnez la cible correspondant a votre application.
Cliquez du bouton droit et sélectionnez la commande Get Info du

Figure 14.17 : Sélection du SDK pour un appareil réel

menu contextuel (voir Figure 14.18).

2 Dans la fenétre d’'informations qui s’ouvre, saisissez sign dans le
champ de recherche afin de limiter la liste des informations affi-
chées. Ouvrez la rubrique Code Signing Identity pour définir la
valeur du parametre Any iPhone OS Device : iPhone Developer (voir

Figure 14.19).

14. Annexe

Upgrade Current Target for iPad...

E
nnées dans le repére de la vue

Build “Accelero”

Clean "Accelero”

Preferences

F W

Build “Accelero” and Start
Build “Accelero” and Debug

ion) {
ntationLandscapeleft:
y+origin.x;
Ex+origin.y;

ntationlLandscapeRight:
Fy+origin.x;
B x+torigin.y;

case UIDeviceOrientationPortraitUpsideDown:

anom |m| VerticalView.m - Accelero
Device - 3.1.3 | Debug - E] '& 'd 6 Q- stri 1g Matching
Action Breakpoints Build and Run Tasks Info Search
Groups & Files Il File Name & (Role “ Code L] A
[Accelero B | [u AcceleroAppDelegate.m v
_| Classes @ AcceleroViewController.m v
| Other Sources [AcceleroViewController.xib
| Resources §® CoreGraphics.framework Required ;
_| Frameworks gf-.' Foundation.framework Required 3
_| Products. [main.m v
(@) Targets [MainWindow.xib
T 5 Recuired
<4 Executables v
(2}, Find Results Get Info
. - =
LIt Bookmarks Rename —setvertline: * =]l e
SCM
=i Touch
W Project Symbols Untouch bejtline{
[&] implementation Files B
elete
(BN Files Duplicate lonnées dans le repére de 1'appareil

Figure 14.18 : Quverture de la fenétre des informations de I'application

8O0

Target "Convertisseur2” Info

[General Build Rules

Properties

Comments |

Configuration: [Active {Debug) j
Show: [All Settings .i

[Setting

¥ Code Signing

Code Signing Entitlements
¥ Code Signing ldentity
Any iPhone OS Device

Code Signing Rescurce Rules Path
Other Code Signing Flags

Y GCC 4.2 - Code Generation
Objective-C Garbage Collection
Optimization Level

¥GCC 4.2 - Language
‘char’ Type Is Unsigned
Check Return Value of ‘operator new'
Enable C++ Exceptions

YGCC 4.2 - Warnings
Effective C++ Violations
Missing Braces and Parentheses
Pointer Sign Comparison
Prototype Conversion
Sign Comparisan

Based On:

Q- sign

Unsupported
None [-00]

OD0EO0 ®mOO

Nothing

14.3. Processus de diffusion

Figure 14.19: Signature du code
pour le test en développement

Identifier I'application

Sous XCode, sélectionnez le groupe Ressources puis le fichier ...In-
fo.plist de I"application. Modifiez le parameétre Bundle Identifier pour
lui donner la valeur de l'identifiant de paquetage que vous avez
défini lors de l'identification de l'application sur le portail du pro-
gramme des développeurs.

[NaNe] | | Accelero-Info.plist - Accelero =
[De\rlr_e 3.1.3 | Debug 'I - [E] & ' o Q- String Martching
Overview Action Breakpoints Build and Run Tasks Info. Search
Groups & Files I+ File Name 4| < [Code =) A ©
v I Accelero B [5] Accelero-Info.plist o
> [|Classes [AcceleroviewController.xib L]
» (] Other Sources [mainWindow.xib 4
» | Resources
b [| Frameworks
¥ |Products
¥ (@) Targers
¥ ol Accelero
< Executables
v O Find Results

> L Bookmarks < » _ Accelero-Info.plist # - I, (= [C.[#,] ® [a]
> sem z
W Project Symbols R Key — |Value -~

:E INr?:I:‘r::n[anon Files Localization native development re ;Englwsh

Bundle display name | ${PRODUCT_NAME}

Executable file | ${EXECUTABLE_NAME}

Icon file |

Bundle identifier = ;cum‘jpiconseiI.S{PRODUCF_NAME:rfclOB#idemiﬁell +]

InfoDictionary version :6‘0

Bundle name | siPRODUCT_NAME}

Bundle OS Type code |appL

Bundle creator OS Type code 7?"7

Bundle version 1o

Application requires iPhone enviror E h‘b

Main nib file base name | MainWindow v

N

Figure 14.20 : Identification du paquetage sous XCode

Tester I'application sur I'appareil

Vous pouvez maintenant connecter votre appareil et lancer |'exécu-
tion depuis XCode (#+R)). L'application est chargée sur I'appareil et
exécutée sur celui-ci.

Diffusion limitée de son application

Une diffusion limitée permet un usage privé de votre application ou
un béta-test avant une diffusion publique.

Créer un certificat de diffusion

Seul I'agent du compte du programme des développeurs peut diffu-
ser une application. Il doit pour cela commencer par créer son certi-
ficat de diffusion. Le processus est identique a celui utilisé pour créer
un certificat de développeur.

426 | 14. Annexe

Ce certificat doit étre renouvelé tous les ans.

La demande de certificat est créée exactement de la méme facon que

Créer une demande de certificat

pour un développeur.

\

ASTUCE

7

Utiliser la méme demande de certificat

La demande de certificat que vous avez générée pour le certificat de
développeur est utilisable pour obtenir un certificat de diffusion.

Obtenir le certificat

1

Sélectionnez la fonction Certificates sur le portail du programme
des développeurs. L'onglet Distribution vous permet de transférer
le fichier contenant la demande de certificat (CertificateSigningRe-

quest.certSigningRequest). Cliquez sur le bouton Request Certifi-
cate.

Development Distribution History How To

Current Distribution Certificate

Name Expiration Date Provisioning Profiles Status Actions
1) You currently do not have a valid distribution certificate Request Certificate

*If you do not have the WWDR intermediate certificate installed, click here to download now.

Figure 14.21: Acces a la demande de certificat

2

Envoyez votre demande de certificat sur le site puis approuvez-la ;
votre certificat de diffusion est prét a étre téléchargé.

Development Distribution History How To
Current Distribution Certificate

Name Expiration Date Provisioning Profiles Status Actions

[E] v JPI-Conseil 12/09/2010 05:33 AM Issued Download) Revoke

*If you do not have the WWDR intermediate certificate installed, click here to download now.

Figure 14.22 : Téléchargement du certificat

14.3. Processus de diffusion

427

428

Installer le certificat

De la méme fagon que pour le certificat de développeur, double-
cliquez sur le fichier distribution_identity.cer que vous venez de télé-
charger pour l'installer dans le Trousseau d'accés de votre session.

Votre certificat de diffusion est installé et prét a étre utilisé sous
XCode.

Créer et installer un profil de diffusion limitée

Vous avez déja généré un profil d'autorisation pour le développe-
ment. De la méme facon, nous allons créer un profil d’autorisation
pour la diffusion limitée (ad hoc distribution provisioning profile). Seul
I'agent du compte peut créer et utiliser un profil de diffusion limitée.

1 Connectez-vous sur le portail du programme des développeurs,
sélectionnez la fonction Provisioning dans le bandeau gauche puis
I'onglet Distribution. Cliquez sur le bouton New Profile, saisissez
les informations demandées — en particulier choisissez ad hoc pour
une diffusion limitée —, puis cliquez sur Submit.

Development Distribution History How To

Create iPhone Distribution Provisioning Profile

Generate provisioning profiles here. To learn more, visit the How To section.

Distribution Method O App Store @ Ad Hoe

Profile Name Cenvert Pro Ad Hoc

Distribution Certificate JPI-Conseil (expiring on 12/09/2010 05:33 AM)

App ID | Application Convert Pro B‘

Devices (optional) Select up to 100 devices for distributing the final application; the final application will run only on
these selected devices.
Select All
E iPhone de ChristissiS#.ie E iPhone de Jean Pierre IMBERT

Figure 14.23: Création d'un profil de diffusion limitée

Ces profils sont valables 1 an. lls peuvent étre édités et renouvelés
par I'agent du compte.

2 Revenez a la liste des profils de diffusion et cliquez sur le bouton
Download du profil que vous souhaitez obtenir.

14. Annexe

3 Ouvrez la fenétre Organizer sous XCode ((Ctrl}+36+0) puis faites
glisser le fichier téléchargé (Convert_Pro_Ad_Hoc.mobileprovision)
dans la zone Provisioning correspondant a I'appareil connecté.

800 Organizer

“N. £, 2, 05

Build Clean Run Action

¥ PROJECTS & SOURCES Q- Profile Name

¥ DEVICES

. | Expiration Date

|W iPhone de christian herve Convert Pro Ad Hoc 08/12/10 22:21
—Pi L. General par Pl sept :

[l iPhone de Jean-Pierre IM... @ |4 General par JPl sept 09 15/12/09 11:06

¥ IPHONE DEVELOPMENT

Crash Logs

Seess Provisioning Profile
[¥] Screenshots
2§ Software Images Name: Convert Pro Ad Hoc
Creation Date: 12 déc. 09 22:21
Expiration Date: 8 déc. 10 22:21
Profile Identifier: EFCB4B64-200F-4BDC-9950-D1F5006777C6

App Identifier: ZXHYJSUZEL.com.jpi-conseil.convertpro

PROV

Included Devices
* | Device Name Installed
@ iPhone de Jean-Pierre IMBERT Installed
iPhone de christian herve

Figure 14.24 : Installation d'un profil d"autorisation sous XCode

4 Conservez le fichier contenant le profil de diffusion ; les utilisa-
teurs en auront besoin pour installer votre application sur leurs
appareils.

Construire I'application pour la diffusion

Interdire le contréle externe

Les applications en développement peuvent étre lancées et exami-
nées depuis I'ordinateur de développement sur lequel I'appareil est
connecté en USB. Cette possibilité est interdite pour les applications
diffusées, il faut donc configurer I'application a cet effet.

1 Sous XCod, créez un nouveau fichier (#&+N)). Dans la rubrique
Code Signing de I'iPhone OS, choisissez le type Entitlements puis
cliquez sur le bouton Next (voir Figure 14.25).

2 Donnez un nom a ce fichier, par exemple Entitlement.plist, puis
cliguez sur le bouton Finish.

14.3. Processus de diffusion

429

806 MNew File

Choose a template for your new file:

I iPhone OS5

Cocoa Touch Class

User Interface . ~d

Resource Entitlements Resource Rules

Code Signing

"_J Mac 05 X

Cocoa Class
Cand C++
User Interface Entitlements

Resource
Interface Builder Kit Default code-signing entitlements file.
Other

Cancel) Previous

Figure 14.25: Création d'un fichier Entitlements

@ Le fichier doit &étre a la racine

REMARQUE e . . PN . . By o -
Vérifiez que le fichier est bien créé a la racine du projet, qu’il n‘appartient

a aucun groupe.

3 Sélectionnez ce fichier sous XCode et décochez la case get-task-
allow.

P[] Resources
»[_] Frameworks
> Products a4 Entitlement.plist 5 2 (= [Cc.|#. | B i
E| Entitlement.plist
Y Targets Key Type Value
» ,,zb Convertisseur2 ¥ Root Dictionary (1 item)
b < Executables get-task-allow Boolean 5] +]
b /B Errors and Warnings i |
v O Find Results
» L%l Bookmarks

Figure 14.26 : Interdiction du controle externe

Construire I'application

La construction pour la diffusion nécessite un paramétrage spécifi-
que. Nous allons donc créer une configuration sous XCode.

1 Cliquez du bouton droit sur la cible de I'application et sélectionnez
la commande Get Info du menu contextuel qui s’affiche.

430 | 14. Annexe

E| Entitlement.plist
¥ (@) Targets [ey

Add >
b <& Executables _

» B Errors and Wa
¥ O Find Results

Rename
:Pﬂ__.l:z:‘kmarks Touch
i Project Symbaol| Untouch
¥ (@ Implementatia Delet_e
b (3] NIB Files Duplicate

Build "Convertisseur2”

Build "Convertisseur2” and Start
Build “Convertisseur2" and Debug
Clean “Convertisseur2"”

Convertisseur2 hasq Preferences > E_

Figure 14.27 : Afficher les informations de
lacible

2 Sélectionnez I'onglet Build dans la fenétre d’'information et ouvrez
le menu Configuration. Sélectionnez la commande

Configurations

| General | Build = Rules Properties Comments |

-
All Configurations
Configuration v Active (Release) Q.r Search in Build Settings 1
shi Debug
'Sening { Release | Value |
it Configuratons___ [U
Additi
Architectures Standard {armvB) 7
Base SDK iPhone Device 3.1.2 7
Build Active Architecture Only (=]
Valid Architectures armvé armv?
¥ Build Locations
Build Products Path build
Intermediate Build Files Path build
Per-configuration Build Products Path build/Release-ipho...
Per-configuration Intermediate Build Files Path build/Convertisseu. ..
Precompiled Headers Cache Path Jvar/folders/(PR/PR..
¥ Build Options
Build Variants normal
Debug Information Format DWARF with dSY... 3

Enable OpenMP Support
Generate Profiling Code
Precompiled Header Uses Files From Build Di...
Scan All Source Files for Includes
¥ Code Signing
Code Signing Entitlements dlist.plist
¥ Code Signing ldentity
Any iPhone OS Device
Code Signing Resource Rules Path
Other Code Signing Flags
¥ Compiler Version v

omOoOo

iPhone

vl

Based On: | Nothing v

A

Figure 14.28 : Editer les
configurations

Edit

3 Sélectionnez la configuration Release dans la liste puis cliquez sur
le bouton Duplicate. Changez le nom de la configuration créée :

Distribution.

14.3. Processus de diffusion

8,00

[General Build

Project "Convertisseur2” Info

Configurations Comments

Edit configuration list:

oo bug
Release

Duplicate Rename Delete

Command-line builds use: | Release

Figure 14.29 : Création d'une
configuration Distribution

4 Refermez la fenétre pour revenir aux informations de la cible.
Sélectionnez la configuration Distribution puis saisissez sign dans
le champ de recherche. Nous allons configurer la signature de
I"application pour la distribution.

5 Modifiez le parameétre Code Signing Entitlements, saisissez le nom
du fichier que vous avez créé : Entitlement.plist.

6 Modifiez le sous-parametre Any iPhone OS Device du paramétre
Code Signing Identity pour lui donner la valeur iPhone Distribution.

Configuration: | Distribution '3] (Q sign
Show: | All Settings | :]
Setting Value
Code Signing
Code Signing Entitlements Entitlement.plist
¥ Code Signing Identity -

Any iPhone OS Device + iPhone Distribution 3

Code Signing Resource Rules Path

Other Code Signing Flags
CCC 42 - Code Ceneration

432 | 14. Annexe

Figure 14.30 : Paramétrage de
la configuration Distribution

7 Fermezlafenétre d'information de la cible. Sous XCode, sélection-
nez la configuration Distribution a I'aide de la commande Set
Active Build Configuration du menu Project.

8 Effacez les constructions précédentes avec la commande Clean

(Maj}+#£+(K)) et construisez I'application (3+(B)).

L'application est préte a étre distribuée.

Distribuer son application

L'application terminée se trouve dans le dossier du projet sous
XCode, dans le sous-dossier build.

800 [] Convertisseur2

(<[] (B mm] (-] (=]

¥ APPAREILS e—
__._§ Macintosh HD v [:l build
» [Convertisseur2.build
¥ PARTAGES » [Debug-iphoneos
£ AirPort Extrem... » @ Debug-iphonesimulator
== Atlas v [Distribution-iphoneos
a |:| ConvertPro.app.dSYM
¥ EMPLACEMEN... » [Release-iphoneos
E Bureau > [:I Release-iphonesimulator
Y jpimbert » [l Classes
% Administration . Convertisseur2_Prefix.pch
[:|Aﬁaires Convertisseur2-Info.plist

DCandidatures] Cor_wernsseur.z.xcodeproj
Entitlement.plist

-;éq Applications . .
v Q
S Coucon

1 sur 18 sélectionné, 141,45 Go disponibles

Figure 14.31: Localisation de I'application terminée

Transmettez I'application ainsi que le profil de diffusion aux utilisa-
teurs. lls devront faire glisser ces deux fichiers dans I'application
iTunes puis synchroniser leur appareil.

u@ Compressez I'application

REMARQUE , L
Il faut compresser I'application (format ZIP) pour la transmettre par cour-
riel. Le type de fichier .app étant un dossier (Bundle), il est déconseillé de le
placer directement en piéce jointe.

L'application est alors préte a étre utilisée.

14.3. Processus de diffusion | 433

Diffuser son application sur I’AppStore

434

Apple met a la disposition des développeurs le site iTunes
Connect (https://itunesconnect.apple.com) pour gérer la diffusion des appli-
cations sur I’App Store.

L'ouverture d'un compte sur le programme standard des déve-
loppeurs provoque automatiquement la création d'un compte sur
I'iTunes Connect avec le méme mot de passe. Ce compte est immé-
diatement disponible pour la diffusion d’applications gratuites, la
diffusion d'applications payantes sera possible aprés avoir saisi les
informations bancaires et fiscales.

iTunes Connect

https: /itunesconnect.apple.com /WebObjects/iTunesConnect woa

iPod + iTunes

iTunes Connect Jean-Pierre IMBERT, JPI-Conseil

=5 Welcome, JPI-Conseil
a iTunes Connect provides tools to help manage your content in the iTunes Store.

Keywords must now be entered for your applications on iTunes Connect. Customers will be able to
search the App Store by your designated keywords. You must separate your keywords by commas when
entering them on the application information page and are limited to 100 characters. It is important to
enter keywords for all applications as soon as possible se your application can continue to be
successfully located on the App Store. Keywords can be updated with the submission of a new binary,
or if the application status is Rejected or Developer Rejected.

Sales/Trend Reports | Manage Your Applications
Preview or download your daily and weekly /| Add, view, and manage your applications in
reports here. " | the iTunes Store.

, Contracts, Tax, & Banking Information Request Promotional Codes
= Request Contracts and manage your contact, BB Get codes that will give you free downloads of
banking and tax informatien. your applications.

k Financial Reports 4 Contact Us
| View and download your monthly financial R Having a problem uploading your application?

reports. o Can't find a Finance Report? Use our Contact
Us system to find an answer to your question
or o generate a question to an iTunes Rep

Manage Users

Set access permissions and email settings for

users of your Tunes Connect account.

. Download the Developer Guide, (7) FAQs Review our answers to comman inguiries.

Home | FAQs | ContactUs | Sign Out
Copyright & 2009 Apple Inc. Al rights reserved. Terms of Service | Privacy Policy

Figure 14.32: Site web iTunes Connect

Engagement iTunes Connect

Lors de votre premiére connexion sur le site de I'iTunes Store, il vous
est demandé d'approuver les conditions d’utilisation. En acceptant
ces conditions, vous vous engagez a :

m fournir des informations juridiques, bancaires et fiscales exactes
et précises concernant votre organisation, ou votre situation per-
sonnelle, et mettre a jour ces informations ;

14. Annexe

m ne pas divulguer votre identifiant et votre mot de passe (vous avez
la possibilité d’ajouter des utilisateurs sur le méme compte, avec
leur propre identifiant) ;

m accepter les conditions de vente sur I’App Store.

En outre, Apple ne garantit pas le bon fonctionnement de I'iTunes
Connect.

Profil de diffusion

Le processus pour créer un profil de diffusion sur I"’App Store est
exactement le méme que pour un profil de diffusion limitée. La seule
différence est qu'il faut sélectionner App Store a la place de Ad Hoc
pour le parameétre Distribution Method du profil.

La construction de I'application est réalisée de la méme fagon quel
que soit le type de diffusion.

Soumission d'une application

Considérations légales

Vous devez donner un nom a votre application afin de la diffuser ;
veillez a ne pas utiliser le nom d'une marque dont vous ne détien-
driez pas les droits.

Concernant I'utilisation des logos et des marques déposées par Ap-
ple, vous pouvez consulter la page http://www.apple.com/legal/trademark
/guidelinesfor3rdparties.html. En résumé, vous n’avez le droit dutiliser
aucun nom de marque déposé par Apple ni aucun dérivé, a I'excep-
tion notable du terme Mac qui peut étre utilisé lorsqu’il est combiné
(MacWorld, MacProject, etc.) mais pas seul.

La liste des marques déposées par Apple peut étre consultée sur la
page http://www.apple.com/legal/trademark/appletmlist.html.

Préparer la soumission

La soumission d'une application sur I'iTunes Connect n'est pas com-
plexe mais assez longue. Il est conseillé de préparer tous les élé-
ments :

m le nom de l'application ;

m une description de I'application (4 000 caracteres au maximum) ;

m le type d’appareil sur lequel I'application fonctionne : iPhone, iPod
touch, iPad ou iPhone/iPad (pour les applications universelles) ;

m un numéro de référence (SKU) devant identifier sans ambiguité
chaque version majeure de chacune de vos applications ;

14.3. Processus de diffusion

435

436

la catégorie principale de I'application (voir le tableau) et éventuel-
lement une catégorie secondaire ;

m le numéro de version ;
m le copyright, par exemple 2010 JPI-Conseil ;
m |'adresse du site web ou |'utilisateur peut trouver des informations

complémentaires ;

une adresse de courriel ; cette adresse sera utilisée par Apple, elle
ne sera pas diffusée ;

éventuellement le texte de la licence d’utilisation de I'application,
par défaut la licence standard de I’App Store s’applique ;

la liste des pays ou zones géographiques sur lesquels on souhaite
diffuser I'application ;

m la date de disponibilité de I'application ;
m le prix de l'application ;
m éventuellement, les localisations pour le texte descriptif et la li-

cence d'utilisation. Les localisations admises sont l'anglais, le
frangais, I'allemand, le hollandais, l'italien, I'espagnol et le japo-
nais ;

I'icobne de votre application en grand format ; 512 x 512, 72 dpi, au
format JPEG ou TIFF;

la copie de I’écran principal de votre application, au format JPEG
ou TIFF;

— pour iPhone ou iPod Touch, 320 x 460 (sans la barre d’état), ou
320 x 480 (pour les applications plein écran), 480 x 300 ou
480 x 320 ;

— pour iPad 1024 x 748, 1 024 x 768, 768 x 1 004 ou 768 x 1 024.

éventuellement des copies d’écrans additionnelles :

Tableau 14.2 : Catégories d'applications sur I'App Store

Anglais Francais Anglais Francais

Book Livres numériques Navigation Navigation
Business Economie et entreprise | News Actualités
Education Enseignement Photography Ptotographie
Entertainment Divertissement Productivity Productivité
Finance Finance Reference Références
Games Jeux Social Networking | Réseaux sociaux
Healthcare & Fitness Forme et santé Sports Sports

14. Annexe

Tableau 14.2 : Catégories d'applications sur I'App Store

Anglais Francais Anglais Francais
Lifestyle Style de vie Travel Voyages
Medical Médecine Utilities Utilitaires
Music Musique Weather Météo

Apres avoir saisi ces informations, il vous faudra attendre la valida-
tion d’Apple, de quelques jours a quelques semaines, avant de voir
votre application sur I’App Store.

Autres services

Pour améliorer votre marketing, Apple vous autorise a utiliser gra-
tuitement un logo afin de signaler la présence de votre application
sur I’App Store, ainsi que les photos officielles d’un iPhone et d'un
iPod touch pour y insérer vos copies d'écran.

Pour cela, renvoyez I'accord de licence signé. Consultez les informa-
tions sur le site http://developer.apple.com/iphone/appstore/.

Vous pouvez encore renforcer vos liens avec I'iTunes Store et vous
affilier a I'iTunes : http://www.apple.com/uk/itunes/affiliates.

14.3. Processus de diffusion

437

-
Fi0 1= 11 T TS 168
21101 o0 o AR 53
FINCIUAR et 54
ADSCISSES ...ttt 275
Accélérometres....oeceeeeeeeeeecrnne, 365
ACCESSBUN ..o 56, 66
ACHiON e 57
Déclarationcccoooevveeveeeeeeeeee 51
Activity Indicator......cccooeevervcrrernen, 137
Administrateuroeeeeeeeeeeeeerenne 412
AQENT oo 412
AlDUMS ..o 323
AlIGNET e 36
AllOC....iieeeee e 70
AIPha e 275
Analyseur de geste.....coovveerrenen. 396
Animation.......ccceeeeeeeeeeeeeeeee e 269
Annotationccccceveeveeseeseens 359
ApP StOre . 434
Application a barre d'onglets......... 176
ApplicationDidFinishLaunching..... 112
ApPPSLOre e 410
ASCENSBU ...t 137
ASSIGN..oucrecece e 85, 87
JAN o] 4110 [V 345
ALIDUL .o 234-235
ARFDULE v 234
Autorelease......oeeeeereeveeeecceerennnes 89
Autorelease poolcccoeeveeericeinnann 89
Autorotationccccoeevveennnenee. 379, 387
AULOSIZING covvreeeeeereeee s 380
AVAUdioPlayer....ccccovveereereeeereeeeeens 273
Back Button.......cccceeeeeecveverrececcree, 181

Badge oo 176, 179

BadgeValue.......ccccccoovevevcieccece, 176
Barre

d'ONGIEtS ..o

de navigation........

de progression
Bascule ...
Binary data.......cocoveveeneneencneeineenns
Boucle d'événement.........cccccueneeee. 109
Bounds ..o 271
BOUtON ..ot 136

AB TELOUN ..o 181
BUfersS ..o 293
BUild e 28, 56, 59
Bundle ..o 149

Bundle ID ..o 421

Bundle Seed ID ..o a1
CADisplayLinkcccoeeeeerrerrerreerenns 297
Cadre e 150, 276
Calendrier ... 191
Calibrationccceeveeeveccveccrneeerernnens 351
Cardinalitéc.oeoveeveeeeeeeereeeeae, 234
(8] (=T 352
Cellomeeeeeeeee e 214
Cellul@.nrreeeeeeceee e 214
Centre des membrescccoevvevuenee. 414
Certificat .o 417
CGPOINt e 277
(161 2=y T 277
CGSIZE e 2717
Champ de Texteccceeververreeecnnes 137
Chiquenaudecccooeeerverrerreeeennes 313
O] 1< T 57

Cible-actionccovvvvieieceee, 303
ClaSSE ettt 43

NOMMAYE ..o 52
ClEaAN.ccceietceeeeeee et 124
CLHeading ...cccvvvevveerreerreceeeereenes 351
(0 0 To3: 1 (1o 348
CLLocationManager 343, 350

440

CLLocationManagerDelegate........ 344,
347, 350
Codage par valeur de clé 101
Code
COMPIELION ..
factorisation
terminaison........
COlOrS vt
CommeNtaireccoeeeeveeeerreereerseneennns
Compas magnétiquecoceeeerrenees
COmMPONENtS ..o
Composants.....cccoenrereeenn.
Compteur de références
Connectionsccccververrererreeeennnns
Construction pour la diffusion........ 430
CONSLIUITE ..ot 59
Conteneurscooeeeeeeeeveeveereeeeeeenns 205
Contexte
Core Data
graphique
(00T 011 {0 =TS 62
A PAYES ..o 137
INVETSE oo 199
Contréleur de navigation 182
Coordonnées......cceveeverververeeersennes 275
COPY e 85, 87
Core Data.....coeeeecvveeeeerererenee 233, 332
CONEEXTE .o 240
CoreGraphics....
CoUrTielS . 336

D

Index

Deéfinition.....ccocecveeeccvecieceeee,
Délégationcocveevecveccrrercreenne,
DEIEGUA ...
Déplacement......ccccocvevevcrercenennnnn,
Déploiement..............

Descripteur de tri
Design patterns........
Dictionnaire.......coceceeeveervecrnnnas
Diffusion

application
limitée............
publigue
DrawRect.......

DUMEES ...

EIBMENTS ..oooooeeeeeeeeeeeeeeeeeeeee e 176
Encapsulationccccoevenerenceneineenee 52
@end

EXC_BAD_ACCESS........coovereerne. 95
EXC_BAD_INSTRUCTION............... 107
Factorisation du code........ccceeuuueeee 93
Fichier

AJOULBT v

chargement NIB
File's Owner

Format

de date. ..o 194
FEGIONAl ..o 121
Frame.....ccccooeeveveceececceee, 150, 276
Framebuffer......oovevvccncceeerenne, 293
Géo-localisationc.ccceeerevrirernnen. 343
GESTES v 306
analyseur de geste ..o 396
Gestionnaire de géo-localisation.. 343
(] (=Y ST 66, 85
Graphique ... 269
HEritageccovvevereevereeveeeveeerenas 51,60
Hiérarchie de vues......cccoeevvveeennnee. 62
HOME o 80
IBACHION ..o 51, 65, 128
IBOULIBL ..o 46
1o T 65
Identifiant.......cccococveecrerecrcrinnen, 413,420
d'applicationcccoooverveeiiieeec 421
IMage. ..o 30, 35
Immuables ..., 208
Implementation........ccccceeeevecvnnen. 52, 68
INdeXed ..o 236
Indicateur d'activité.........coevevuneee. 136
INIE e 70-71
Initialiseur désigné........ccooceeveverrenne Al
InitWithNibName
Inspecteur.....cceeevennnne. 36, 48, 50, 57
INSLANCE v 43
INStrUMENtS ...oveeececeveeeecee e 79
Interface ..ccooceeveeececeeceeee 52, 64
Interface Builderccoccveecveecrennee 26

INVItAtion ..c.cecveceececcee e 416
[Phone Simulator........ccceceeceecuennee. 28
[Tunes ConNNECt......cccvereeneereereeeeenns 434
JPEG ... 269
Key Value Codingccccoververreercnnen. 101
Keyboard......ccocveececcveneececcsninns 49
KVC oo, 101, 127, 246
Label..eeerereecise e, 26, 136-137
Lancement.......ooovveneneneenencencineine 36
Latitude oo 349
1Y 281
LEAKS w.ecveecteeceeeceee e 79
Library .o, 26, 35
LIgNeSs cecveeeeeececeeree e 199
LIMItES .ot 271
Listes de propriétés.......covevereenee. 258
Localisationcccececvevcrveccrneccrennnen, 120
0T o TR 32
LoNGItude ..o 349
Macro-instructioncccooveereeeeenes 168
MainWindow.Xib.......cccccoeeecrrreerernee. 109
Manipulateur.........oooeeeeereneeneneeneeneenes 66
MapKit....cooeeeeeeeesee e 352
Marques déposées......cccovvvrenenn. 435
Media ... 35
MEMOIre.....oceeeeeeeeeee e 92

FUIE oo 78

FEQIE .o 88, 90
MeSSage ..cooverveerecesee s 44, 69

442

MEthode......ccoveeeeeeeceeeeeee e
d'instance
de classe........
déclaration
NOMMAGE ...

MFMailComposeViewController.... 337

MFMailComposeViewController

Delegate.....ocvvcevecvecrecercerenes 338
MIME................. . 338
MKAnnotation............... 359
ModalTransitionStyle.........cccveueeeeee 151
Mode édition.......cceeeeevereeerreeeeeree, 254
Model-View-Controller............ 101, 134
Modéle de données......cccceeevuruenee. 234
Modeéle-Vue-Controleur.......... 101, 134
Motifs de conception ... 101
Multi-threading.....ccccvevereveenenerenenne 86
Mutable.....coeeveeeeeeeeeceeeeeeee 208
MVC .ot 101,134
Navigateur de Classes 147

méthode.....

Variableoooveeeeeeeeeee 65
NoNatomiC....c.cevveeeerereereree e 85-86
1V T o 349
Notation pointée.......c.coevveereereerenenee 70
Notification.... 263, 377
NSAITAY oo 205
NSCharacterSet......cccoveereverernnnen, 104
NSClassFromString.......cocveeeeeeereenns 298
1S D | - F 333

Index

NSEntityDescription........ccocveeveeenee. 239
[NV 1 ¢ (] 244
NSFetchedRequest......cccccveeruneee. 247
NSFetchedResultsController.......... 243
NSFetchedResultsController
Delegate.....cceveevecveereceecene, 244
NSFetchedResultsSectionInfo....... 243
NSFetchRequest.......cccocveverreeecnnee, 243
NSIndexPath......cccocevvrereeennnee. 211, 214
NSManagedObjectContext............. 240
NSManagedQbjectModel............... 239
NSMutableArray
NSMutableDictionary
NSNUI .o
NSNUmMbEr...coeeecreeereereaee
NSObJECt. ..o
NSPersistentStorec.ccovvevvevee. 240
NSPersistentStoreCoordinator-...... 240
NSScanner......ceveceeeeeeeenens 117
NSSortDescriptor.....cccvreereneeenns 247
NSSEING .o 56
NSTimelntervalcccoocveeverreennen, 192
Objective-C
Objet

comportement....

état

libération

message

nul

programmation
Observateur...........

Orientation
Outlet.............

connexion.......
OULIELS v

P

Page Control.......oeeeeeveneereeereereenns 138
Pagquet ..o 149
PaySage ..ot 371
PhOtOS ..o, 323, 329
PIiCKer ot 187
Picker VIeWccveeeeeceeeecere, 196
] 183

de navigationccccooeeveeveeveveeecee 183

BHAL. . 80
Pincement........cccoevveeeeeccneceeerennn, 313
PNG....oootierceeeee e 269
Pool d"autolibération...........ccceeernueee. 89
POPOVEN .. 389-390
Portail des autorisations................. 414
POIEe .. 43
Portraitcoceeeeeeeerceeeceeeceeeenes 371
Positionnement..........cccoeecveecrreecrennnnes 36
Premier répondeur.......cccc...... 133, 304
PresentModalViewController......... 151

Propriété
libération

notation pointée
Protocolecooveevicveccccceccee
Provisioning profilecccoeeeevernennes 422
Readonly ... 85
Readwriteccoveeveevererceeccree e 85
Recadrer....ccvvcescesccsene, 336

REfErence ..., 77

ODSOIBLE ... 94
Refurb Storecveveecveecreeeereierenans 1
Regle d'intégritéccooevvveverveennnen, 255
Relations......ccooeeveveeveveernecrnnns 234, 231
Relationship.....cocovvvereeerneneerenenenes 234
Release ... 72, 84,97
REPONAEUr ... 60
REQUBLE .o 247
ResignFirstResponder ..o 132
RespondsToSelector.........ccccouuuee.e. 107
Retain ..o, 84 a 86
Retain count.......cococeeeeeveeeeecccecree. 84
Root VieW.....cceveeeceereeceeee, 181
Round Rect Button.........ccccoeveueneee. 137
ROWS ..ot 199
SANADOX oot 15
SDK e 12, 59, 409
SECOUSSE ..ottt 304
Segmented Controlcccoccuvenene. 137
1) 1 T 107
SElECTRUN .o 136
Sélection multiple......coveveeerereirennnes 43
Sélectionneur de date........ccee.... 187
(@Y (=Yo7 (o] SRR 107
Self s 72
R Y=] £ (=] 66, 85
ShaKe .o 304
Signature du code.......ccccoeervieennnee. an
Simulateur ... 28
I 1o 1= OO 137
Yo T 273
Source de données.........cooeeenee.. 200
SPItVIEW e 388, 392
SOLITE vttt 233
StaCK. e 80
Y U] o1 72
SUPErCIasSe e 64

Index

TAAA

T

Tab Bar Applicationc.ccccveeunes 176
Tab Bar Controller........cccoceveveunneee. 176
TabBarltem......ccccoeeeeecreereeeeernee, 179
Tableau

Tester (Interface).....ooveeecvrreerrenne. 51
Text Field...................

Texte (champ)
Transient...........

UlAcceleromerceeceveecrnnnen,
UlAccelerometerDelegate
UlActionSheet........cccocuvernenee
UlActionSheetDelegate
UlActivitylndicatorView...................
UlAlertView.......ccocveeunnes
UlAlertViewDelegate.......c.ccoovuenee.
UlApplicationcccccveeerveeernnnes
UlApplicationDelegate.....
UlApplicationMain.......
UlButton.......ccccuueeee.
UICONEIOlc.eececeeeceeeeeeeeae
UIDatePicker....coccvvcevererrirernnne,
UIDEVICE .cvrrrecrerrererrieisesieenas
UlDeviceOrientationcceeueenee.
UIEVENT ..o

Index

UlGestureRecognizercocoveenenee. 396
U111 F Yo - 272
UllmagePickerController 323, 328
UllmagePickerController

Delegate....ccooneneereneeereereereneeenes 330
UllmageView.......ccoevevevecrnnnas 270, 272
UKt oo 53
UILabel ... 137
UlLongPressGestureRecognizer ... 397
UINavigationController.................... 182
UIPageControl.......cccoeeerrereereeeeenns 138
UIPanGestureRecognizer 397
UIPickerViewccocneeneenenn. 196, 199
UlPickerViewDataSource............... 197
UlPickerViewDelegate........c.couun.e.. 197
UIPinchGestureRecognizer-............ 397
UlPopoverControllercccovueeenee. 390
UlPopoverControllerDelegate........ 392
UIProgressView......cocovevevereenennenn, 137
UIResponder.......cccccvuue... 60, 132, 303
UlRotationGestureRecognizer 397
UlSegmentedControlcccoceeuenee. 137
UISHAET oo 137
UlISplitViewControllerc.ceou..... 393
UlISplitViewControllerDelegate...... 393
UlSwipeGestureRecognizer........... 397
UISWILCh e 137
UlTabBar ..., 175
UlTabBarController.................. 177,180
UlTabBarControllerDelegate........... 180
UlTabBarltem......cccovenereereeneenens 176
UITableViewcocvreeveereereneeenes 210
UlTableViewCell 211,214
UlTableViewController.............c...... 21
UlTableViewDataSource................. 21
UlTableViewDelegate.........c.couue.c. 21
UlTapGestureRecognizer................ 397
UlTextField 45-46, 60, 62, 138
UlTextFieldDelegate......... 103, 107, 156
UITOUCH ..o 305
UIVIEW ...t 61, 282

UlViewControllercoeeeveveveerennee. 60
UIWINdOoW......ccvveeeecrceeeeeee e 62
Unicode...eeeeeecee e, 194
Universelle.....ceeeeieeeeecerene, 387
Variable

NOMMAGE vt 65

d'INSANCE .o 42,64
Versions Béta.......cccooeveeeevevecncnnne, 410
Vid€0...ocrrecteeeecee e 329, 335
View-based Application........ 45, 54, 63
ViewControllerccevevecvveeerenennes 45
ViewDidLoadccccceuevreenneee. 118, 163
VOId ..o 65

contextuelle
en table
modale
racine
SCINABE ...,

) (O s =T 19
XML 258
40 1110 | 77
W40 1011111 P 336

Index | 445

Faites une pause détente !

1 HEURE
DE JEU GRATUIT
sur 365 jeux/an

et

VOTRE 1¢' JEU
COMPLET OFFERT

lors de votre inscription !

. ZSENIGMES ET.
OBJETS CACHES °

AVENTURE__

AET GESTION -

www.1jeuparjour.com

STRATEGIE |~ % |

D309

Composé en France par Jouve
11, bd de Sébastopol - 75001 Paris

LE GUIDE
COMPLET

Le Guide Complet : la meilleure facon de faire le tour du sujet !

LE TOUR COMPLET
DU SUJET TRAITE

Programmation orieniée objel
Langage Objective-C
XCode 1 Interface Builder
Mecanisme Cible-Action
Matifs MVC et KVC
Delegalion et nofifications
Cocoa Touch SDK
Geo-localisation
Accélérometres

30 avee OpenGL
Graphisme avec Quartz2D
Spécificitéas de I'iPad

Diffusion sur I'AppSiore

LA PRATIQUE
PAR LEXEMPLE

Manipulez des objets
en Objective-C

Détectez les fuites de
mémaoire aves Instruments

Localisez une application
Explorez las contréles

Exploitez Core Data pour
la persistence des donnees

Ajoulez des effels sonores

WMilisez un analyseur

de gestes

Testez puis deployez pour
iPad, iPod Touch ou iPhone

LAPPROFONDISSEMENT A
TRAVERS DES EXERCICES

Gréez et ulilisez une barre
de navigation ou d onglets

Prenez, enregistrez, aditez
el envoyez des photos
Determinez le positionnement
géographigue

Orientez automatiquement
les wues

Traitez les evenements
gestuels

Animez des images
Créez un convertisseur
Réalisez un mind billard

Jean-Pierre IMBERT Fassionné du développement logiciel et supporeur des
technologies Apple depuis le premier Macintosh, Jean-Pieme Imbert est actif sur
plusieurs forums de développeurs Mac et iPhone, en francais et en anglais. Il a enseigné

succassivernsnt plusieurs disciplines de l'ingéniere du logiciel en écoles dingénieurs.
HAvec sa societe jpi-consell.com, il conseills les entreprses et anime des formations dans
les techniguas et méthodes les plus avancées en matiére de développement.

www.microapp.com

= MO0E

9 L ll..I;Eﬁ

[0
Fro: Besigeaues © 22€

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /FRA <FEFF005b00500061007200200072006100700070006f00720074002000e0002000270043006f007500760065007200740075007200650027005d0020005b00500061007200200072006100700070006f00720074002000e0002000270043006f00750076006500720074007500720065002d00720065006c006900e90027005d0020005b00500061007200200072006100700070006f00720074002000e000200027005100750061006c0069007400e900200046006f007200730069007500730027005d0020005b00500061007200200072006100700070006f00720074002000e000200027005100750061006c0069007400e900200046006f007200730069007500730027005d0020005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 14.173230
 14.173230
 14.173230
 14.173230
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.173230
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

