

Développez
vos applications pour
iPhone, iPod Touch, iPad

Copyright © 2010 Micro Application
20-22, rue des Petits-Hôtels
75010 Paris

1ère Édition - Mai 2010

Auteur Jean-Pierre IMBERT

Toute représentation ou reproduction, intégrale ou partielle, faite sans le
consentement de MICRO APPLICATION est illicite (article L122-4 du code
de la propriété intellectuelle).
Cette représentation ou reproduction illicite, par quelque procédé que ce
soit, constituerait une contrefaçon sanctionnée par les articles L335-2 et
suivants du code de la propriété intellectuelle.
Le code de la propriété intellectuelle n’autorise aux termes de l’article
L122-5 que les reproductions strictement destinées à l’usage privé et
non destinées à l’utilisation collective d’une part, et d’autre part, que les
analyses et courtes citations dans un but d’exemple et d’illustration.

Avertissement Les informations contenues dans cet ouvrage sont données à titre indicatif
aux utilisateurs et n’ont aucun caractère exhaustif voire certain. A titre d’exemple non

limitatif, cet ouvrage peut vous proposer une ou plusieurs adresses de
sites Web qui ne seront plus d’actualité ou dont le contenu aura changé
au moment où vous en prendrez connaissance.
Aussi, ces informations ne sauraient engager la responsabilité de l’Edi-
teur. La société MICRO APPLICATION ne pourra être tenue responsable
de toute omission, erreur ou lacune qui aurait pu se glisser dans ce
produit ainsi que des conséquences, quelles qu’elles soient, qui résul-
teraient des informations et indications fournies ainsi que de leur utili-
sation.
Tous les produits cités dans cet ouvrage sont protégés, et les marques
déposées par leurs titulaires de droits respectifs. Cet ouvrage n’est ni
édité, ni produit par le(s) propriétaire(s) de(s) programme(s) sur le(s)
quel(s) il porte et les marques ne sont utilisées qu’à seule fin de dési-
gnation des produits en tant que noms de ces derniers.

ISBN : 978-2-300-028021

ISSN : 1950-0289

MICRO APPLICATION Support technique :
20-22, rue des Petits-Hôtels Également disponible sur
75010 PARIS www.microapp.com
Tél. : 01 53 34 20 20
Fax : 01 53 34 20 00
http://www.microapp.com

Retrouvez des informations sur cet ouvrage !

Rendez-vous sur le site Internet de Micro Application
www.microapp.com. Dans le module de recherche,
sur la page d’accueil du site, entrez la référence
à 4 chiffres indiquée sur le présent livre.
Vous accédez directement à sa fiche produit.

2802

Avant-propos

Destinée aussi bien aux débutants qu’aux utilisateurs initiés, la col-
lection Guide Complet repose sur une méthode essentiellement pra-
tique. Les explications, données dans un langage clair et précis,
s’appuient sur de courts exemples. En fin de chaque chapitre, décou-
vrez, en fonction du sujet, des exercices, une check-list ou une série
de FAQ pour répondre à vos questions.
Vous trouverez dans cette collection les principaux thèmes de l’uni-
vers informatique : matériel, bureautique, programmation, nouvel-
les technologies...

Conventions typographiques

Afin de faciliter la compréhension des techniques décrites, nous
avons adopté les conventions typographiques suivantes :

j gras : menu, commande, boîte de dialogue, bouton, onglet.
j italique : zone de texte, liste déroulante, case à cocher, bouton

radio.
j Police bâton : Instruction, listing, adresse internet, texte à saisir.
j ✂ : indique un retour à la ligne volontaire dû aux contraintes de la

mise en page.

Il s’agit d’informations supplémentaires relatives au sujet traité.

Met l’accent sur un point important, souvent d’ordre technique qu’il ne
faut négliger à aucun prix.

Propose conseils et trucs pratiques.

Donne en quelques lignes la définition d’un terme technique ou d’une
abréviation.

Chapitre 1 Premiers pas 17

1.1. Créer un projet avec XCode .. 19
Lancer XCode .. 19
Créer un projet . 20
Gérer le projet . 23

1.2. Composer l’interface utilisateur . 25
1.3. Tester l’application .. 28
1.4. Finaliser l’application .. 30

Ajouter un fichier au projet . 30
Déclarer le logo de l’application .. 32

1.5. Agrémenter l’application .. 34
Mettre notre image dans la vue .. 35

1.6. Challenge .. 36
1.7. Check-list . 38

Chapitre 2 Interactions simples 39

2.1. Programmation orientée objet . 41
Objets . 42
Classes .. 43
Messages .. 44

2.2. Mécanisme Cible-Action .. 44
Créer les outlets . 45
Préparer l’interface utilisateur . 47
Connecter les outlets . 50
Déclarer les actions .. 51
Définir les actions .. 52
Connecter les cibles .. 57
Construire et tester l’application Convertisseur1 59

2.3. Hiérarchie des classes de Convertisseur1 .. 60
Héritage .. 60
Hiérarchie des vues .. 62

2.4. Manipulation des objets en Objective-C .. 63
Déclaration .. 63
Définition .. 68
Messages .. 68
Propriétés .. 69
Création .. 70
Libération .. 72

2.5. Check-list . 73

Chapitre 3 Gestion de la mémoire 75

3.1. Diagnostiquer les fuites mémoire avec Leaks .. 77
Zombi . 77
Détecter les fuites mémoire .. 78
Diagnostiquer les fuites mémoire .. 82

3.2. Éviter les fuites mémoire .. 84
Compteur de références .. 84
Gestion des propriétés .. 84

4 Sommaire

Responsabilités des objets . 88
3.3. Améliorer Convertisseur1 .. 90

Instances manipulées .. 90
Mise en conformité avec la règle .. 91
Références obsolètes .. 94

3.4. Check-list . 98

Chapitre 4 Motifs fondamentaux 99

4.1. Mécanisme de délégation .. 101
Délégué .. 101
Déléguer le champ dollar . 102
Délégué pour un champ de texte .. 105
Déclarer un protocole .. 107
Lancement de l’application .. 108
Structurer une application .. 114

4.2. Améliorer Convertisseur1 .. 115
Retrouver la virgule .. 115
Localiser l’application .. 120
Utiliser le motif KVC .. 125
Autres améliorations .. 129

4.3. Motif MVC .. 133
4.4. Challenges .. 134

Améliorer encore Convertisseur1 .. 134
Explorer les contrôles simples .. 135

4.5. Check-list . 140

Chapitre 5 Applications multivues 143

5.1. Application de type utilitaire . 145
Comprendre le fonctionnement d’un utilitaire . 145
Activer une vue modale .. 153

5.2. Application Convertisseur2 .. 154
Composer la vue principale . 154
Paramétrer le taux de conversion .. 155
Factoriser le délégué de champ de texte .. 156
Finaliser les contrôleurs de vue .. 159
Communiquer entre les deux contrôleurs . 166

5.3. Messages d’alerte . 168
Afficher une alerte . 169
Feuilles d’action .. 172
Délégué de feuille d’action .. 174
Délégué d’alerte . 174

5.4. Barre d’onglets . 175
Créer une barre d’onglet . 175
Utiliser un contrôleur de barre d’onglets . 177
Modifier la navigation par onglets . 180

5.5. Barres de navigation .. 181
Créer une barre de navigation .. 182
Utiliser une barre de navigation .. 182

5.6. Checklist . 183

S
O

M
M

A
IR

E

Sommaire 5

Chapitre 6 Contrôles complexes 185

6.1. Utiliser un sélectionneur .. 187
Sélectionneur de date .. 187
Sélectionneur standard .. 196
Source de données .. 200
Adapter le sélectionneur au contexte .. 202

6.2. Utiliser les conteneurs Cocoa .. 205
Tableaux NSArray .. 205
Dictionnaires NSDictionary .. 207
Conteneurs mutables .. 208

6.3. Utiliser les Vues en table .. 208
Présentation générale . 208
Créer une vue en table .. 211
Afficher la table . 212
Réagir à une sélection .. 218
Ajouter un élément . 221
Pour aller plus loin .. 228

6.4. Checklist . 228

Chapitre 7 Persistance des données 231

7.1. Utiliser le framework Core Data .. 233
Décrire le modèle de données .. 234
Comprendre le fonctionnement de Core Data .. 239
Formuler des requêtes .. 247
Ajouter un objet . 251
Supprimer un objet . 254

7.2. Utiliser les listes de propriétés .. 258
Format des listes de propriétés .. 258
Utilisation des listes de propriétés .. 259
Mise en pratique .. 260

7.3. Checklist . 264

Chapitre 8 Dessins et animations 267

8.1. Animer les images .. 269
Images animées .. 269
Sonoriser une application .. 273
Déplacer une image .. 274

8.2. Dessiner avec Quartz2D .. 282
Principe de fonctionnement . 282
Mise en pratique .. 284
Primitives graphiques .. 289

8.3. Débuter la 3D avec OpenGL ES .. 290
Présentation d’OpenGLES .. 291
Intégration dans Cocoa Touch .. 291
Exemple d’application .. 295

8.4. Checklist . 299

6 Sommaire

Chapitre 9 Tapes, touches et gestes 301

9.1. Comprendre les événements .. 303
Classe UIResponder .. 303
Événements élémentaires .. 304
Écran Multi-Touch .. 306

9.2. Traiter les événements .. 307
Recevoir les événements .. 307
Notification d’événements .. 310
Tapes multiples . 312

9.3. Mettre en œuvre les gestes .. 313
Chiquenaude .. 313
Pincement . 317

9.4. Checklist . 320

Chapitre 10 Appareil photo 321

10.1. Sélectionner une photo .. 323
Codage de l’interface .. 323
Codage du contrôleur de vue .. 325
Classe UIImagePickerController . 328
Protocole UIImagePickerControllerDelegate .. 330

10.2. Prendre des photos .. 331
Adapter l’interface utilisateur . 331
Adapter le sélectionneur de photos .. 331

10.3. Enregistrer ses photos .. 332
Gérer une image sous Core Data .. 332
Enregistrer dans l’album ... 334

10.4. Éditer les photos .. 336
10.5. Envoyer ses photos .. 336

Classe MFMailComposeViewController . 337
Protocole MFMailComposeViewControllerDelegate 338
Challenge .. 339

10.6. Checklist . 339

Chapitre 11 Géo-localisation 341

11.1. Déterminer sa position .. 343
Technologies de géo-localisation .. 343
Classe CLLocationManager . 343
Protocole CLLocationManagerDelegate .. 347
Classe CLLocation .. 348
Challenge .. 349

11.2. Déterminer l’orientation géographique .. 349
Mise en œuvre du compas magnétique .. 350
Calibration magnétique .. 351
Classe CLHeading .. 351

11.3. Framework MapKit . 352
Afficher une carte . 352
Connaître la zone affichée .. 354
Contrôler la zone affichée .. 357
Appréhender la vue satellite . 358

7Sommaire

Annoter la carte . 359
11.4. Checklist . 360

Chapitre 12 Accéléromètres 363

12.1. Utiliser les accéléromètres .. 365
Visualiser l’accélération .. 366
Visualiser la verticale . 369
Filtrer les données .. 372

12.2. Déterminer les mouvements de l’appareil . 375
12.3. Connaître l’orientationde l’appareil . 375

Retour sur la classe UIDevice .. 377
S’abonner aux changements d’orientation .. 377
Orienter automatiquement les vues .. 378

12.4. Checklist . 381

Chapitre 13 Spécificités de l’iPad 383

13.1. Un SDK, deux cibles .. 385
Choisir sa cible de déploiement . 385
Créer une application universelle . 387

13.2. Nouveautés de l’interface visuelle . 387
Recommandations générales .. 387
Vues modales .. 389
Vues contextuelles . 390
Vues scindées .. 392

13.3. Reconnaissance des gestes .. 396
Gestes de base .. 396
Utiliser un analyseur de geste .. 399
Synchroniser les analyseurs .. 404

13.4. Checklist . 405

Chapitre 14 Annexe 407

14.1. Épilogue .. 409
14.2. Politique d’Apple .. 409

Les différents statuts de développeur .. 409
Diffusion des applications .. 410
Signature du code .. 411
Certificats . 412

14.3. Processus de diffusion .. 412
S’enregistrer comme développeur .. 413
S’inscrire au programme des développeurs .. 413
Certifier un développeur .. 417
Tester son application sur un appareil . 420
Diffusion limitée de son application .. 426
Diffuser son application sur l’AppStore .. 434

Chapitre 15 Index 439

8 Sommaire

IN
TR

O
D

U
C

TI
O

N

INTRODUCTION
Pour qui est ce livre ?

Ce livre est destiné à tous ceux qui souhaitent développer leur propre
application pour iPhone, iPod Touch ou pour iPad. Il vous accompa-
gnera dans l’étude de la programmation pour ces équipements, dans
la découverte des outils de développement d’Apple et du langage
Objective-C ; et jusqu’à la distribution de votre application sur
l’AppStore.

iPhone, iPod Touch, iPad
Nous employons le terme iPhone pour évoquer indistinctement l’iPhone

l’iPod Touch ou l’iPad. Lorsqu’une caractéristique est disponible uniquement
sur l’un ou l’autre de ces appareils, nous le précisons en indiquant par
exemple : "cette caractéristique n’est pas disponible sur iPod Touch".

Vous explorerez les techniques permettant d’utiliser les caractéristi-
ques les plus innovantes de l’iPhone (accélérateur, géo-localisation,
capacités graphiques, gestes, etc.) et serez certainement séduit par la

9

désarmante facilité avec laquelle vous mettrez en œuvre ces techni-
ques en utilisant les frameworks et le SDK d’Apple.

Cet ouvrage est destiné à ceux qui ont déjà une connaissance de la
programmation d’applications logicielles. Si ce n’est pas le cas, nous
vous recommandons la lecture de Débutez en Programmation (édi-
tions Micro Application).

Développer pour iPhone ou pour iPad ?

Les applications développées pour iPhone et iPod Touch peuvent
être exécutées sur iPad. L’utilisateur a alors la possibilité de visuali-
ser l’interface dans sa taille originale ou dans une taille double.
À l’inverse, une application développée pour iPad ne peut générale-
ment pas être exécutée sur iPhone ou iPod Touch, ne serait ce que
pour la taille de l’écran. Pour ces trois appareils, il faut utiliser le SDK
iPhone OS.

Il est donc a priori plus intéressant de développer pour iPhone plutôt
que seulement pour iPad. La plupart des chapitres de cet ouvrage
traitent donc de l’iPhone et de l’iPod Touch. Le dernier chapitre traite
des spécificités de l’iPad et de la réalisation d’applications qui
s’adaptent à l’appareil sur lequel elles s’exécutent.

De quoi avez-vous besoin ?
Comment l’obtenir ?

Le matériel

SDK Apple
Le SDK Apple ne fonctionne pas sur un PC sous Windows ou Linux.

L’environnement de développement utilisé dans cet ouvrage est le
SDK 3.2 qui permet de développer des applications pour iPhone,
iPod Touch et iPad. Il ne peut s’exécuter que sur un Macintosh à
processeur Intel doté du système d’exploitation Snow Leopard (Mac
OS X 10.6) ou ultérieur.

10 Introduction

Intel ou PowerPC
Durant de longues années, une particularité des Macintosh d’Apple était

de fonctionner sur un processeur de la famille PowerPC, développé en colla-
boration avec IBM et Motorola, et pas sur un processeur de la famille Pentium
ou équivalent comme les PC. À partir du début des années 2000, l’écart de
performances entre ces deux types de processeur s’est progressivement
accru en faveur d’Intel, si bien que Steve Jobs a annoncé en juin 2005 le
changement de processeur. Tous les Macintosh à partir de 2006 sont à
processeur Intel et conviennent pour le développement sur iPhone.

Si ce n’est déjà fait, il vous faudra donc impérativement vous procu-
rer un Mac si vous voulez développer des applications pour iPhone.

Le Refurb Store
Apple commercialise des produits reconditionnés sur son site marchand

http://store.apple.com/fr. Il est possible d’y faire de bonnes affaires. Si vous êtes
étudiant, pensez aussi aux offres spéciales "Éducation" d’Apple.

Plusieurs revendeurs commercialisent également des machines d’occasion,
soyez sûr de choisir un Mac à processeur Intel.

Le logiciel
L’environnement de développement est disponible gratuitement sur
le site des développeurs d’Apple http://developer.apple.com. Dans la suite

Figure 1 : Les produits reconditionnés sur l’Apple Store

11De quoi avez-vous besoin ? Comment l’obtenir ?

de cet ouvrage, nous emploierons le terme de SDK (Software Deve-
lopment Kit) pour désigner l’environnement de développement.

Inscription obligatoire
L’inscription sur le site des développeurs d’Apple est obligatoire pour

télécharger le SDK. Cette inscription est gratuite, elle vous permettra égale-
ment d’accéder aux ressources techniques du site des développeurs (vidéos
d’apprentissage, documentation technique, exemples de code source, forum
des développeurs).

À l’heure où nous rédigeons ces lignes, le
SDK est disponible en version 3.1.2 qui per-
met de développer des applications pour les
versions 2 et 3 d’iPhone OS. Il est fourni au
format .dmg (format d’image disque stan-
dard sur Mac OS X) et sa taille est environ de
2,7 Go ; il faut généralement plusieurs heu-
res pour le télécharger. Vous obtiendrez un
SDK complet et d’excellente qualité :

j outils de développement ;

j frameworks iPhone/iPod Touch/iPad et Mac OS X ;
j simulateur d’iPhone et d’iPad pour tester vos applications sur

votre Macintosh ;
j outils et instruments divers (mesure de performance, recherche de

bogues, ateliers de composition graphique, etc.).

1 Double-cliquez sur le fichier que vous venez de télécharger ; une
fenêtre du Finder s’ouvre qui vous permet de visualiser le contenu
de l’image disque.

2 Double-cliquez sur le fichier iPhone SDK ; le programme d’instal-
lation s’exécute et suit le processus standard sur Mac OS X :
approbation de la licence d’utilisation des outils de développe-
ment puis du kit iPhone, personnalisation de l’installation (laisser
les paramètres par défaut) et installation.

Installation et droits d’administration
L’installation du SDK nécessite les droits d’administration de l’ordinateur.

12 Introduction

Un appareil de test
Vous pourrez tester plusieurs applications de ce livre en utilisant le
simulateur fourni avec le SDK mais votre satisfaction sera décuplée
lorsque vous exécuterez votre application sur votre appareil.

Il n’est généralement pas nécessaire de disposer d’un appareil spé-
cifique pour effectuer vos tests ; l’iPhone, l’iPod Touch ou l’iPad que
vous utilisez quotidiennement fera l’affaire.

Si vous souhaitez améliorer les tests avant de diffuser votre applica-
tion, vous devrez disposer de plusieurs appareils, par exemple un
iPhone 3G, un iPhone 3GS, un iPod Touch et un iPad. Certaines
personnes de votre entourage disposent sûrement de ces appareils
et seront sans doute fiers de vous aider à tester vos applications.

Afin de viser une plus large diffusion, il faudra tester vos applications
non seulement sur plusieurs appareils mais aussi sous plusieurs
versions d’OS. Il vaudra mieux à ce moment-là que vous disposiez
d’appareils dont l’usage sera réservé aux tests ; vous risquez d’avoir
moins d’amis si les changements d’OS ont provoqué des pertes de
données sur les appareils qu’ils vous ont confiés.

L’inscription au programme des développeurs
iPhone

Cette inscription payante, moins de 100 5 par an, est indispensable
pour tester son application sur un appareil réel. Elle vous permettra de :

j tester ou diffuser en mode Privé vos applications sur des appareils
réels (jusqu’à 100) ;

Figure 2 : Contenu de l’image disque du SDK iPhone

13De quoi avez-vous besoin ? Comment l’obtenir ?

j diffuser vos applications sur l’AppStore (et gagner de l’argent) ;
j disposer des versions Bêta de l’iPhone OS ;
j accéder à certaines informations spécifiques.

L’inscription se fait sur le site web des développeurs
(http://developer.apple.com). Le processus d’inscription et de prépara-
tion aux tests réels est détaillé en annexe.

Une petite présentation

Les éléments de base
Pour développer une application logicielle, nous avons besoin des
éléments suivants :

j Un langage de programmation ; pour développer sur l’iPhone OS,
ce sera Objective-C.

j Des outils de développements (éditeur, compilateur, composition
de l’interface graphique, débogueur, etc.) : nous utiliserons princi-
palement XCode et Interface Builder.

j Une bibliothèque d’API (Application Programming Interface) per-
mettant au code écrit dans le langage de programmation d’accé-
der aux fonctions fournies par le système d’exploitation ; sur les
systèmes Mac OS X et iPhone OS, ces bibliothèques se nomment
des frameworks. Si vous êtes familier de la terminologie PC/Win-
dows, les DLL sont l’équivalent des frameworks.

Nous commencerons notre étude par la découverte des outils XCode
et Interface Builder et du langage Objective-C puis nous aborderons
progressivement les différents frameworks d’iPhoneOS.

Vous avez vraisemblablement déjà entendu parler de Cocoa Touch. Il
s’agit de la partie de l’iPhone OS que nous utiliserons le plus souvent
tout au long de notre parcours. Cocoa Touch est composé de 2 fra-
meworks :

j UIKit prend en charge la gestion de l’interface utilisateur (UI pour
User Interface) :

différents éléments de l’interface utilisateur (boutons, champs
de texte, etc.) ;

gestion des événements (tapes et gestes) ;

fonctionnement général des applications.

14 Introduction

j Foundation contient des classes utilitaires et des interfaces de haut
niveau vers les fonctions du système :

classes de collection (tableaux, ensembles et dictionnaires) ;

classes utilitaires (dates, chaînes de caractères, etc.) ;

accès vers le gestionnaire de fichiers, les fonctions graphiques,
l’accès au réseau, etc.

Spécificités du développement sur iPhone/
iPod touch/iPad

Le développement d’application pour iPhone OS
présente peu de difficultés ; il existe de nombreux
points communs avec le développement pour un
ordinateur. Il faudra cependant tenir compte des
limitations technologiques de ces objets épatants :
écran de petite taille, nécessité d’économiser l’éner-
gie, limitation de la mémoire. Quelques conséquen-
ces de ces limitations sont détaillées ci-après :

j Une seule application s’exécute à un instant donné (si l’on excepte
le système d’exploitation) ; la première conséquence est qu’il est
impossible de créer une application qui tourne en tâche de fond.

j Une seule fenêtre est affichée à l’écran.
j Chaque application possède un bac à sable (sandbox), un système

de fichiers privé qui contiendra toutes ses données (fichiers de pa-
ramètres et fichiers de données) ; il est impossible à deux applica-
tions d’accéder au même fichier et donc d’échanger leur virus.

j La taille d’écran est limitée à 480 x 320 pixels sur iPhone et iPod
Touch, et à 1024 x 768 pixels sur iPad.

j La taille de RAM d’un iPhone est de 128 Mo, approximativement la
moitié de cette mémoire est utilisée par l’OS ; l’application en
cours d’exécution doit se contenter d’environ 64 Mo, il faudra
économiser la mémoire.

Langage Objective C
Objective-C est le langage de programmation "naturel" sur iPhone
OS et aussi sur Mac OS X. Il est vrai que ce langage est rarement
utilisé sur d’autres plateformes mais présente de nombreuses simi-

15Une petite présentation

larités avec le langage Java plus largement employé. Objective-C est
une extension "objet" du langage C, au même titre que C++, mais
beaucoup plus simple que celui-ci et plus facile à apprendre.

Pour aller plus loin

Ce livre vous expliquera toutes les techniques fondamentales mises
en œuvre dans les frameworks de l’iPhone OS. Il vous donnera les
clés qui vous permettront de continuer votre exploration et de déve-
lopper des applications dont la seule limite sera votre imagination.

Do you speak English ?
Ou plutôt, Do you read english ?

Pour aller plus loin, il vous faudra exploiter la riche documentation
d’Apple celle intégrée à l’environnement de développement et celle
disponible sur le site des développeurs. Cette documentation est en
anglais. Ce sera donc un atout si vous êtes à l’aise avec la langue de
Shakespeare.

Tout n’est pas perdu
Si vous êtes allergique à l’anglais, tout n’est pas perdu. Pour aller
plus loin, il sera alors indispensable de vous inscrire sur un forum de
développeurs français où vous trouverez toujours une bonne âme
pour vous aider et vous transmettre son savoir, par exemple http:
//forum.macbidouille.com ou www.pommedev.com.

Les applications que nous détaillerons

Au fur et à mesure de notre parcours dans les frameworks de
l’iPhone, nous développerons quelques applications. Vous pourrez
les utiliser telles quelles sur votre iPhone et même les améliorer. En
voici la liste :

j HelloWorld graphique ;

j Convertisseur de monnaie ;
j Prêts aux amis ;
j Détecteur de verticale.

Bonne exploration !

16 Introduction

C
H

A
P

IT
R

E
1

PREMIERS PAS

Créer un projet avec XCode .. 19
Composer l’interface utilisateur ... 25
Tester l’application .. 28
Finaliser l’application ... 30
Agrémenter l’application ... 34
Challenge .. 36
Check-list ... 38

17

Dans ce chapitre, nous créerons notre première application. Comme
le veut la tradition, il s’agira d’un "Hello World". Rien de très specta-
culaire donc mais ce sera l’occasion de prendre en main les trois
outils fondamentaux du SDK : XCode, Interface Builder et iPhone

Simulator, le simulateur d’iPhone et d’iPad.

1.1. Créer un projet avec XCode

Lancer XCode
XCode est l’application qui va nous permettre de :

j gérer nos projets ;

j gérer et éditer les fichiers de code source ;
j construire et tester nos applications.

Un projet est l’ensemble des données nécessaires pour construire
une application :

j code source ;

j ressources (images, sons, etc.) ;
j liste des frameworks utilisés ;
j informations complémentaires (fichier d’information, paramé-

trage de la construction, etc.).

Pour créer un projet, il faut d’abord lancer l’application XCode. L’ins-
tallation standard du SDK place cette application dans le dossier
/Developer/Applications. Double-cliquez sur l’icône XCode.

Figure 1.1 : Localisation de
l’application XCode

191.1. Créer un projet avec XCode

Si c’est la première fois que vous lancez XCode, la fenêtre d’accueil
apparaît à l’écran. Vous pouvez fermer cette fenêtre.

Accéder plus facilement à XCode
Vous aurez à vous servir intensément de XCode. Il sera plus pratique

d’avoir l’application à disposition rapidement en la gardant dans le Dock.

Créer un projet
Procédez ainsi :

1 Sous XCode, activez la commande New Project… du menu File.
Vous pouvez également cliquer sur Create a new Xcode project

dans le panneau d’accueil.

Figure 1.2 : Fenêtre d’accueil de XCode

Figure 1.3 : Garder XCode dans le
Dock

20 1. Premiers pas

L’Assistant New Project s’affiche, vous permettant de choisir le type
de projet que vous souhaitez créer.

Figure 1.4 : Création d’un projet

Figure 1.5 : Assistant Nouveau Projet

211.1. Créer un projet avec XCode

XCode prend en charge plusieurs types de projet. Lorsqu’on crée un
projet, il faut choisir le bon modèle. Afin de vous faciliter le choix, la
partie gauche de l’Assistant présente les groupes de modèles. Dans
la suite de l’ouvrage, nous choisirons toujours le groupe Application
pour iPhone OS.

2 Sélectionnez View-based Application, vérifiez que le menu dérou-
lant Product est bien sélectionné sur iPhone et cliquez sur le bouton
Choose….

Les autres modèles d’application
Nous verrons les autres modèles d’applications dans la suite de cet

ouvrage.

3 Un panneau s’affiche qui vous permet de nommer le projet en
cours de création. Saisissez HelloWorld dans la zone de texte Save
As puis cliquez sur le bouton Save.

Figure 1.6 : Panneau de sauvegarde

22 1. Premiers pas

Le dossier de projet
XCode crée un dossier, du même nom que le projet, et y insère les fichiers

composant le projet. Ce dossier recevra vos propres fichiers (images, icones,
…). Il est créé par défaut dans votre dossier Documents. Vous pouvez choisir
un autre emplacement avant de cliquer sur le bouton Save.

À ce stade, nous avons créé le dossier de projet et la fenêtre de projet
de XCode s’affiche.

Gérer le projet
La fenêtre de projet permet de gérer tous les éléments d’un projet.

Cette fenêtre est composée des éléments suivants :

j une barre d’outils en haut ;

j la zone des Groupes et Fichiers (Groups and Files) sur la partie
gauche de la fenêtre, qui structure les différentes informations et
les fichiers composant le projet ;

j la Vue Détaillée au centre de la partie droite de la fenêtre, dans
laquelle on peut visualiser les attributs principaux de chacun des
composants du projet ;

Figure 1.7 : La fenêtre de projet

231.1. Créer un projet avec XCode

j une Zone d’Édition en bas de la partie droite de la fenêtre qui nous
permettra d’éditer les fichiers du projet (c’est dans cette zone que
nous saisirons le code source de l’application) ;

j une Barre d’État en bas de la fenêtre ; nous y lirons les messages
émis par XCode lors de la construction de l’application.

Structure mais pas sous-dossiers
Les fichiers sont répartis sous XCode en Classes, Autres Sources, Ressour-

ces, etc. Cette structuration est indépendante de la façon dont les fichiers sont
structurés en sous-dossiers dans le dossier du projet ; par défaut, seul un
sous-dossier Classes est créé ; tous les autres fichiers sont "à plat" dans le
dossier du projet.

Nous verrons l’utilisation de ces différentes parties dans la suite du
livre. Pour l’heure, et si ce n’est pas déjà le cas, sélectionnez Hel-
loWorld dans la zone des Groupes et Fichiers pour afficher la liste de
tous les fichiers du projet dans la Zone Détaillée.

XCode a créé pour nous les fichiers suivants :

j Les fichiers de type .framework sont des liens vers les frameworks

d’iPhone OS nécessaires pour notre application HelloWorld :

CoreGraphics.framework pour les fonctions de base de l’affi-
chage graphique ;

Foundation.framework pour les accès aux fonctions de base du
système (fichiers, réseau, etc.) ;

UIKit.framework qui contient toutes les classes d’objet de base
pour créer une application sous Cocoa Touch (boutons, champs
de texte, etc.).

j HelloWorld-Info.plist est le fichier des propriétés de l’application ;
nous utiliserons bientôt ce fichier.

j HelloWorld.app est notre application. Son nom apparaît en rouge
pour signaler que l’application n’est pas encore créée.

j Les fichiers de type .pch sont des fichiers intermédiaires dans le
processus de construction de l’application ; nous ne nous en oc-
cuperons pas.

j Les fichiers .m (fichier des définitions) et .h (fichiers des déclara-

tions) contiennent les codes source Objective-C de l’application :

24 1. Premiers pas

main.m à l’instar de main.c en langage C contient le code de la
fonction main exécutée au lancement de l’application ; nous
n’aurons généralement pas à modifier ce fichier.

HelloWorldAppDelegate.h et HelloWorldAppDelegate.m contien-
nent le code source du Délégué de l’application.

HelloWorldViewController.h et HelloWorldViewController.m
contiennent le code source du Contrôleur de la Vue principale de
l’application. Ces fichiers sont créés par XCode car nous avons
utilisé le modèle View-based Application à la création du projet.

j Les fichiers de type .xib sont des fichiers NIB.

Les Délégués et les Contrôleurs sont des motifs de conception (Design
Pattern) abondamment utilisés dans la programmation Cocoa Touch

et que nous expliquerons très bientôt.

Les fichiers NIB contiennent des objets prêts à l’emploi, endormis en
quelque sorte, qui sont réveillés lorsque le fichier est chargé dans
l’application. L’interface utilisateur en particulier est définie dans les
fichiers NIB, c’est pourquoi ces derniers sont édités avec l’outil
Interface Builder. Découvrons sans plus tarder cet outil.

1.2. Composer l’interface utilisateur
Sous XCode, vérifiez que dans le menu overview de la barre d’outils,
la valeur Active SDK est bien positionnée sur iPhone Simulator 3.1.3.

Vous modifierez la valeur du SDK actif pour tester votre application
dans différents environnements :

Figure 1.8 : Activation du SDK pour le simulateur d’iPhone

251.2. Composer l’interface utilisateur

j Simulator 3.1.3 pour tester sur le simulateur d’iPhone ;

j Simulator 3.2 pour tester sur le simulateur d’iPad ;
j Device 3.1.3 pour tester sur un iPhone ou iPod Touch réels ;
j Device 3.2 pour tester sur un iPad réel.

1 Sous XCode, double-cliquez sur le fichier HelloWorldViewControl-
ler.xib dans la Zone Détaillée de la fenêtre de projet ; Interface

Builder se lance.

2 Trois fenêtres apparaissent. De gauche à droite :

une fenêtre dont le titre est le nom du fichier NIB que l’on vient
d’ouvrir, c’est le contenu du fichier NIB ;

une fenêtre dans laquelle nous composerons la Vue (View) de
notre interface utilisateur ;

une fenêtre Library qui contient les objets que nous utiliserons
pour composer l’interface utilisateur.

3 Cherchez l’objet Label dans la fenêtre Library et faites-le glisser sur
la Vue de notre projet (voir Figure 1.10).

4 Sélectionnez le Label nouvellement déposé sur la Vue afin de le
positionner où vous souhaitez (voir Figure 1.11).

Figure 1.9 : Interface Builder

26 1. Premiers pas

Figure 1.10 : Objet Label dans la fenêtre Library

Figure 1.11 : Label positionné sur la Vue principale
de l’application

271.2. Composer l’interface utilisateur

5 Double-cliquez sur le Label pour sélectionner le texte et
saisissez HelloWorld. Enregistrez le fichier (commande
Save du menu File), puis revenez dans XCode et cliquez

sur le bouton Build and Run de la barre d’outils pour construire et
lancer l’application.

6 Il est possible qu’une boîte de dialogue apparaisse pour signaler
que nous n’avons pas enregistré tous les fichiers que nous avons
modifiés. Cliquez alors sur le bouton Save All.

L’application HelloWorld est construite par XCode et lancée dans le
simulateur d’iPhone

1.3. Tester l’application
iPhone Simulator est l’outil qui nous permet de tester les applications
sur Mac. Il s’agit de la première étape de test. Bien sûr, il faudra tester
l’application sur des appareils réels avant de la diffuser au public. Le
test sur simulateur est intéressant ; il permet de déboguer plus
facilement l’application (voir Figure 1.13).

Explorez les menus du simulateur. On peut basculer et même se-
couer virtuellement l’appareil. Une caractéristique intéressante est la
possibilité de tester rapidement notre application sur des versions
différentes d’iPhone OS : menu Matériel, sous-menu Version.

Explorez également le simulateur, comme si vous utilisiez votre
iPhone (cliquez sur le gros bouton en bas de l’iPhone afin de revenir
à l’écran d’accueil). Les applications Photos, Contacts et Safari fonc-
tionnent normalement ; on pourra ainsi tester les applications utili-
sant les photos et les contacts de l’iPhone.

Figure 1.12 : Sauvegarder les
fichiers modifiés

28 1. Premiers pas

Gestes avec 2 doigts
Les gestes avec 2 doigts sont simulés en maniant la souris tout en pressant

la touche [Alt] du clavier. Essayez avec l’application Safari.

Vous pouvez aussi lancer votre application sur le simulateur d’iPad
en sélectionnant le SDK iPhone Simulator 3.2 sous XCode.

En explorant le simulateur, vous verrez que le logo permettant de
lancer notre application HelloWorld est un carré blanc. Nous amélio-
rerons cela immédiatement.

Figure 1.13 : Simulateur d’iPhone

Figure 1.14 : Simulateur d’iPad

291.3. Tester l’application

1.4. Finaliser l’application
Nous allons maintenant ajouter un logo à notre application Hel-
loWorld.

Revenez dans l’application XCode et choisissez sur votre ordinateur
l’image que vous souhaitez utiliser comme logo. Il est recommandé
de choisir une image carrée au format PNG.

Changer d’application
Sur Mac OS X, on peut changer rapidement d’application par la combinai-

son de touches X+[˜].

L’ajout du logo se fait en deux temps :

1 Ajoutez l’image au projet.

2 Déclarez cette image comme étant le logo de l’application.

Ajouter un fichier au projet
1 Dans XCode, sélectionnez Resources dans HelloWorld dans la zone

Groupes et Fichiers de la fenêtre du projet et activez la commande
Add to project … du menu Project. Le panneau standard de Mac OS
X permettant de choisir un fichier s’affiche.

2 Recherchez l’image désirée à l’aide de ce panneau et cliquez sur le
bouton Add.

Figure 1.15 : Application sans logo

30 1. Premiers pas

Un panneau s’affiche pour que vous puissiez préciser la façon dont
vous souhaitez ajouter le fichier au projet.

Lorsque la case Copy items into destination group’s folder de ce pan-
neau est cochée, le fichier sélectionné est copié dans le dossier du
projet et rangé dans le groupe sélectionné (en l’occurrence Resour-
ces).

Figure 1.16 : menu Project de XCode

Figure 1.17 : Ajout d’un fichier au
projet

311.4. Finaliser l’application

3 Cochez cette case.

Par défaut, la case HelloWorld est cochée dans la liste Add To Targets.
Cela signifie que le fichier que nous ajoutons sera copié dans le
dossier des ressources de l’application HelloWorld lors de la cons-
truction.

4 Laissez cette case cochée et cliquez sur le bouton Add.

5 L’image apparaît dans la liste des fichiers du projet. Sélectionnez
ce fichier dans la zone groupes et fichiers pour vérifier son contenu
dans la zone d’édition.

Vous savez maintenant ajouter un fichier à un projet. Vous procède-
rez exactement ainsi chaque fois que vous aurez besoin d’ajouter
une image, une vidéo, un son ou tout autre fichier à un projet.

Déclarer le logo de l’application
Il faut maintenant indiquer que l’image que nous venons d’ajouter
doit être utilisée comme logo de l’application HelloWorld.

1 Toujours sous XCode, sélectionnez le fichier HelloWorld-Info.plist
dans le groupe Resources. Ce fichier contient les propriétés de
l’application ; le logo est une de ces propriétés. Lorsque le fichier
est sélectionné, son contenu apparaît dans la zone d’édition.

Figure 1.18 : L’image est ajoutée au projet

32 1. Premiers pas

2 Sélectionnez la zone de texte à côté de la propriété Icon File et
saisissez-y le nom du fichier contenant le logo.

3 Cliquez sur le bouton Build and Go de la barre d’outils de XCode. Si
votre application est toujours en train de s’exécuter dans le simu-
lateur, une boîte de dialogue s’affiche pour vous prévenir et vous
demander si vous souhaitez arrêter l’exécution en cours. Cliquez
sur OK.

Figure 1.19 : Nom du fichier contenant le logo

Figure 1.20 : Arrêter l’exécution en cours

331.4. Finaliser l’application

4 Le cas échéant, acceptez d’enregistrer les fichiers modifiés (vous
venez de modifier HelloWorld-Info.plist). L’application s’exécute
sur le simulateur d’iPhone. Cliquez sur le gros bouton du simula-
teur pour vérifier votre logo.

1.5. Agrémenter l’application
Nous n’allons pas nous arrêter en si bon chemin. Nous agrémente-
rons notre application par une illustration car pour l’instant, elle est
un peu triste.

Choisissez une autre image et ajoutez-la au projet HelloWorld sous
XCode.

Figure 1.21 : HelloWorld avec logo

34 1. Premiers pas

Reportez-vous à la section précédente si vous ne vous souvenez
plus comment on ajoute un fichier au projet.

Mettre notre image dans la vue
Pour rendre visible cette image lors de l’exécution de l’application, il
faut retourner sous Interface Builder afin de modifier l’interface uti-
lisateur.

1 Dans la fenêtre Library d’Interface Builder, cliquez sur le bouton
Media pour obtenir la liste de tous les fichiers de type media
(Image, Vidéo ou Son) de votre projet.

Figure 1.22 : Une nouvelle image est ajoutée au projet

Figure 1.23 : Media du projet disponible sous Interface
Builder

351.5. Agrémenter l’application

2 Faites glisser l’image souhaitée sous l’objet Label à l’aide de la
souris. Si vous faites attention pendant ce positionnement, vous
verrez apparaître des lignes pointillées de couleur bleue. Ces li-
gnes de positionnement vous aide à aligner l’objet que vous êtes
en train de déplacer.

Image au lancement de l’application
Si votre projet contient une image dont le nom est Default.png, cette

image sera automatiquement pendant le lancement de l’application. Nous
nous en souviendrons lorsque nous bâtirons des applications un peu longues
au démarrage.

1.6. Challenge
Avant de passer au chapitre suivant, nous vous invitons à modifier
les attributs graphiques des objets Label et Image de notre interface
utilisateur afin de découvrir les différentes possibilités.

Pour modifier les attributs d’un objet :

1 Activez l’inspecteur à l’aide du menu Tools sous Interface Builder et
sélectionner le premier onglet de la fenêtre Inspecteur.

Figure 1.24 : Application avec un Label et une Image

36 1. Premiers pas

2 Sélectionnez l’objet sur lequel vous souhaitez travailler pour en
visualiser les attributs dans l’inspecteur et les éditer.

Figure 1.25 : Menu Tools d’Interface
Buider

Figure 1.26 : Inspection des attributs de l’objet Label

371.6. Challenge

1.7. Check-list
Nous venons de terminer notre première application pour iPhone.
Pour cela, nous avons utilisé :

j XCode afin de :

créer un projet ;

ajouter des fichiers au projet ;

modifier les propriétés de l’application ;

construire l’application ;

lancer son exécution dans le simulateur.

j Interface Builder afin de :

composer l’interface utilisateur ;

ajouter un media à l’interface utilisateur.

j Et le simulateur d’iPhone pour tester notre application.

Au passage, nous remarquons que cette réalisation a été obtenue
sans saisir une seule ligne de code Objective-C. C’est le résultat
d’une caractéristique intéressante du framework Cocoa Touch et des
modèles d’applications de XCode ; chaque modèle permet de cons-
truire une application qui fonctionne sans modification, le déve-
loppeur se concentre sur l’écriture du code pour le comportement
qu’il veut ajouter.

Notre application HelloWorld est imparfaite car nous ne pouvons pas
interagir avec elle. Notre prochaine production sera plus satisfai-
sante et nous permettra d’écrire nos premières lignes de code.

38 1. Premiers pas

C
H

A
P

IT
R

E
2

INTERACTIONS
SIMPLES

Programmation orientée objet .. 41
Mécanisme Cible-Action .. 44
Hiérarchie des classes de Convertisseur1 .. 60
Manipulation des objets en Objective-C ... 63
Check-list ... 73

39

Notre objectif dans ce chapitre sera de réaliser une application pour
notre prochain voyage aux États-Unis. Nous voulons connaître
l’équivalent en euros des prix exprimés en dollars.

La première version de notre application se présentera ainsi. Nous la
perfectionnerons ensuite.

Vous devrez d’abord patienter car il faut que vous compreniez ce
qu’est la programmation orientée objet.

2.1. Programmation orientée objet
La programmation orientée objet est un style de programmation qui
permet d’améliorer la testabilité, de faciliter la maintenance et donc
de produire des logiciels de meilleure qualité aux fonctionnalités
sont plus complexes. Nous n’exposerons pas ici la théorie de la POO
(Programmation orientée objet). Notre ambition se limitera à com-
prendre comment nous utiliserons cette théorie dans le langage
Objective-C, langage à objets, et avec les frameworks de Cocoa
Touch, qui contiennent les objets prédéfinis dont nous aurons be-
soin. La terminologie POO employée sera celle du développement
pour iPhone OS.

Figure 2.1 : Application Convertisseur1

412.1. Programmation orientée objet

Nous traiterons ici les notions élémentaires ; d’autres notions plus
avancées seront évoquées plus loin.

Objets
Un objet Objective-C permet de représenter un objet du monde
"réel" ou manipulable par l’utilisateur. Par exemple, un label ou une
image sur une interface sont des objets, l’application que nous
développons est un objet, et nous aurons besoin plus loin de créer
nos propres objets : un livre prêté, une monnaie à convertir, etc.

Les objets d’un langage de programmation comprennent :

j un état, c’est-à-dire la situation de l’objet à un moment donné de
sa vie. Par exemple l’état d’un objet bouton pourrait contenir ;

sa position sur la fenêtre ;

l’image actuellement affichée ;

l’image à afficher si l’on clique sur le bouton, etc.

j un comportement, c’est-à-dire toutes les actions dont l’objet est
capable :

cliquer sur un bouton (ou toucher le bouton pour se conformer
à la terminologie iPhone OS).

Objets du langage Objective-C
Un objet comprend des variables d’instance et des méthodes. Les varia-

bles d’instance permettent de représenter l’état de l’objet, et les méthodes
permettent de représenter son comportement.

Figure 2.2 : Représentation d’un objet

42 2. Interactions simples

Ne vous inquiétez pas si vous ne comprenez pas tout de suite les
subtilités induites par cette définition ; cela viendra avec la pratique.

Les variables d’instance sont des variables du langage Objective-C.
On peut également utiliser des variables du langage C puisque
Objective-C en est une extension. Pourquoi parle-t-on d’instance ?
Simplement pour préciser la portée de la variable ; elle est accessible
uniquement depuis l’une des méthodes de l’objet (l’instance) et
inaccessible depuis "l’extérieur" de l’objet.

Si vous avez besoin de vous rafraîchir la mémoire ou d’apprendre
les bases du langage C, reportez-vous à l’annexe B.

Classes
Les informaticiens emploient rarement le terme Objet car il est am-
bigu (et les informaticiens n’aiment pas l’ambiguïté), ils emploient
les termes Classe ou Instance.

Une classe est un modèle qui permet de reproduire des instances. La
classe est un type d’objet, l’instance est un objet particulier de ce type.

Classe
Une classe est un modèle (type) d’objet qui permet de définir les variables

d’instances et les méthodes qui devront exister pour toutes les instances de
cette classe.

Figure 2.3 : Une classe et 2 instances du même type

432.1. Programmation orientée objet

Chose1 et Chose2 sont deux instances de la classe Chose. Chaque
instance possède ses propres variables d’instance, même si elles ont
le même nom défini par la classe.

Messages
Lorsqu’une méthode est exécutée, elle doit pouvoir accéder aux
variables d’instance de l’objet. Il faut donc que le programmeur
précise, lorsqu’il écrit son programme, sur quelle instance il veut
exécuter cette méthode. On dit que le programmeur envoie un mes-
sage à l’objet.

Message
Un message est la demande transmise à une instance pour exécuter une

méthode particulière dans le contexte de l’instance (en utilisant les variables
d’instances lui appartenant).

Récepteur
Le récepteur d’un message est l’objet qui reçoit le message.

Après cet intermède d’explications théoriques, voyons comment on
utilise ces concepts pour programmer sous Cocoa Touch, en com-
mençant par le mécanisme cible-action.

2.2. Mécanisme Cible-Action
Nous allons mettre en pratique immédiatement le mécanisme cible-
action en développant notre application Convertisseur1. La copie
d’écran en début de chapitre montre le résultat auquel nous voulons
arriver :

j un champ de texte dans lequel l’utilisateur saisit le montant en
dollars ;

j un champ de texte dans lequel l’utilisateur peut lire le résultat de la
conversion du montant en euros.

Nous souhaitons que la conversion soit réalisée pendant que nous
inscrivons le montant en dollars ; la valeur en euros doit à tout
instant être le résultat de la conversion de la valeur en dollars.

Nous avons donc besoin de trois objets :

44 2. Interactions simples

j 2 instances de la classe UITextField pour les champs de texte ;

j 1 objet chargé de faire la conversion.

L’objet chargé d’effectuer les conversions sera une instance de la
classe Convertisseur1ViewController ; nous verrons pourquoi dans un
instant.

Créer les outlets
Notre Convertisseur1ViewController a besoin de connaître les deux
champs de texte puisqu’il faudra qu’il "lise" la valeur en dollars et
qu’il "écrive" la valeur en euros. Il a donc besoin de 2 variables
d’instance de type "instance de classe UITextField".

1 Ouvrez XCode et créez un projet de type View-based Application-

comme au chapitre précédent.

2 Intitulez ce projet Convertisseur1 ; ce sera notre première version
du Convertisseur de monnaies.

3 Sélectionnez le fichier Convertisseur1ViewController.h dans la fenê-
tre de projet et modifiez son contenu, dans la zone d’édition, pour
obtenir le texte suivant :

#import <UIKit/UIKit.h>

@interface Convertisseur1ViewController :
UIViewController {

IBOutlet UITextField *labelDollar;
IBOutlet UITextField *labelEuro;

}
@property (retain,nonatomic) UITextField *labelDollar;
@property (retain,nonatomic) UITextField *labelEuro;

@end

Figure 2.4 : Structure des objets pour l’application Convertisseur1

452.2. Mécanisme Cible-Action

Nous venons de définir deux variables d’instance, labelDollar et
labelEuro de type UITextField pour les instances de la classe
Convertisseur1ViewController. La ligne de code IBOutlet UIText
Field *labelDollar; signifie que labelDollar est une variable de type
UITextField * (les adeptes du C liront "est un pointeur sur une structure
de type UITextField") et que de plus, cette variable est un outlet (dé-
claré par IBOutlet).

Qu’est-ce qu’un outlet ? C’est simplement le moyen de dire à Inter-
face Builder que l’on souhaite connecter cette variable d’instance ;
nous allons expliquer cela. Au passage, notons que le "IB" de IBOutlet
signifie Interface Builder.

Outlet
Un outlet est une sorte de variable d’instance, c’est un pointeur vers un

autre objet. Un outlet est configurable à l’aide d’Interface Builder.

Après avoir saisi les quelques lignes de code précédentes dans le
fichier Convertisseur1ViewController.h, l’icône de ce dernier est grisée
dans la fenêtre de projet de XCode. Les icônes grisées signalent les
fichiers qui ont été modifiés.

4 Sauvegardez le fichier que l’on vient de modifier soit par la com-
binaison de touches X+[S], soit en choisissant la commande Save

du menu File sous XCode.

Figure 2.5 : Fichier Convertisseur1ViewController.h modifié

46 2. Interactions simples

Cliquez dans la zone d’édition
Pour sauvegarder un fichier sous XCode, il faut qu’il soit sélectionné et il

faut cliquer dans la zone d’édition de la fenêtre de projet.

Préparer l’interface utilisateur
1 Double-cliquez sur le fichier Convertisseur1ViewController.xib dans

la fenêtre de projet sous XCode ; Interface Builder se lance.

2 Préparez l’interface utilisateur de l’application Convertisseur1 à
l’aide de 3 labels et de 2 champs de texte (Text Field).

Figure 2.6 : Interface utilisateur de Convertisseur1

Figure 2.7 : Champ de texte

472.2. Mécanisme Cible-Action

3 Si vous souhaitez que votre interface ait exactement le même
aspect, utilisez l’inspecteur pour modifier les attributs graphiques
des objets conformément au tableau.

Tableau 2.1 : Configuration des objets de l’interface

Champ Type Police Couleur

Convertisseur de Monnaies Label Helvetica Bold Oblique 24 Grape

Montant en dollars Label Helvetica 17 Couleur par défaut

Montant en euros Label Helvetica 17 Couleur par défaut

- Text Field Helvetica 17 Couleur par défaut

Rappelez-vous ; pour modifier les attributs d’un objet, on utilise
l’inspecteur après avoir sélectionné l’objet que l’on veut modifier.

4 Cliquez sur la description de l’attribut Font pour afficher la fenêtre
flottante Fonts. Il faut cliquer sur la case de couleur Color-Text pour
afficher la fenêtre flottante Colors (voir Figure 2.9).

Sélection multiple
Vous pouvez sélectionner simultanément plusieurs objets graphiques du

même type (label ou text field) afin d’en modifier les attributs graphiques
en une fois avec l’inspecteur. Cliquez sur le premier objet puis cliquez sur les
suivants en maintenant la touche [Maj] enfoncée pour étendre la sélection.

Figure 2.8 : Attributs du label de titre

48 2. Interactions simples

Pour finaliser notre interface, nous allons indiquer que nous souhai-
tons que le clavier numérique s’affiche lorsque l’utilisateur touchera
le champ de texte pour saisir le montant en dollars à convertir.

5 sélectionnez ce champ de texte sur la vue et choisissez Numbers &
Punctuation dans la liste déroulante pour l’option Keyboard dans
l’inspecteur .

Maintenant que notre interface utilisateur est terminée, nous pou-
vons connecter les outlets de notre application aux objets que nous
venons d’agencer.

Figure 2.9 : Fenêtres flottantes d’attributs graphiques

Figure 2.10 : Choix du clavier pour un champ de texte

492.2. Mécanisme Cible-Action

Connecter les outlets
1 Toujours sous Interface Builder, sélectionnez File’s Owner dans la

fenêtre du contenu du fichier NIB puis sélectionnez l’onglet
Connections de l’inspecteur (le deuxième onglet en partant de la
gauche).

Nous découvrons dans l’inspecteur les deux outlets que nous avons
ajoutés dans le fichier Convertisseur1ViewController.h.

2 Pour connecter un outlet à un objet de l’interface utilisateur, effec-
tuez un cliquer-glisser-relâcher allant du petit cercle à droite de
l’outlet dans l’inspecteur jusqu’à l’objet que vous souhaitez ratta-
cher.

3 Connectez l’outlet labelDollar au champ de texte à côté du label
Montant en dollars puis connectez l’outlet labelEuro au champ de
texte à côté du label Montant en euros.

Figure 2.11 : Sélection de File’s Owner

Figure 2.12 : Connexion d’un outlet à un objet

Figure 2.13 : Les outlets connectés

50 2. Interactions simples

Tester l’interface
La combinaison de touches X+[R] sous Interface Builder provoque le

lancement du simulateur d’iPhone pour visualiser l’interface que nous ve-
nons de construire. L’application ne fonctionne pas mais nous pouvons
activer tous les objets de l’interface pour vérifier leur comportement graphi-
que.

Notre objet comprend 4 outlets alors que nous n’en avons défini que
2. Les outlets supplémentaires sont obtenus par héritage. Nous étu-
dierons ce concept important dans quelques pages.

Pour le moment, nous terminons l’application Convertisseur1.

Déclarer les actions
Nous avons construit l’interface utilisateur de notre application
Convertisseur1, nous lui avons indiqué comment communiquer avec
le cœur de l’application en définissant des outlets et en établissant
les connexions. Il nous faut maintenant définir précisément le com-
portement de l’application.

Revenez dans XCode et complétez le fichier Convertisseur1
ViewController.h de la façon suivante :
#import <UIKit/UIKit.h>

@interface Convertisseur1ViewController : UIViewController {
IBOutlet UITextField *labelDollar;
IBOutlet UITextField *labelEuro;

}
@property (retain,nonatomic) UITextField *labelDollar;
@property (retain,nonatomic) UITextField *labelEuro;

- (IBAction) changeValue;

@end

Nous venons de déclarer une action dont le nom est changeValue.

Action
Une action est une méthode d’instance dont la vocation est d’être exécu-

tée lorsqu’un événement survient. Elle est configurable à l’aide d’Interface
Builder.

512.2. Mécanisme Cible-Action

Nous souhaitons que cette action soit appelée chaque fois que l’uti-
lisateur change le montant en dollar, et qu’elle calcule le montant en
euros puis l’affiche dans le champ adéquat. La connexion entre
l’action et l’événement sera réalisée à l’aide d’Interface Builder. Le
comportement de l’action est décrit en Objective-C dans la définition
de l’action.

Définir les actions
Sauvegardez le fichier Convertisseur1ViewController.h que nous ve-
nons de modifier et, toujours sous XCode, ouvrez le fichier
Convertisseur1ViewController.m.

Déclaration et Définition

À l’instar des langages C et C++, les déclarations et les définitions-
sont séparées en Objective-C. Par convention, une classe d’objets
NomDeLaClasse est décrite dans 2 fichiers sources NomDeLaClasse.h et
NomDeLaClasse.m.

Règle de nommage des classes
Afin de faciliter la lecture du code source, il est d’usage d’adopter des

règles de nommage. En particulier, on essaiera de trouver un nom explicite ;
il faut éviter les noms abrégés (par exemple NdlC au lieu de NomDeLaClasse) ;
ils nuiront à la lisibilité et donc à notre capacité à modifier le code dans
l’avenir.

En Objective-C, le nom d’une classe est une série de mots accolés et chaque
mot commence par une majuscule y compris le premier mot, par exemple :
NomDeLaClasse.

Le fichier avec l’extension .h contient la déclaration de la classe,
interface en anglais, c’est-à-dire tout ce qui est nécessaire pour utili-
ser une instance de cette classe ; le type et le nom de chaque variable
d’instance et de chaque méthode.

Le fichier avec l’extension .m contient la définition de la classe,
implementation en anglais, c’est-à-dire le détail du comportement de
l’objet.

Encapsulation
L’encapsulation est le principe selon lequel on doit pouvoir utiliser un

objet sans connaître le détail de la façon dont cet objet travaille.

52 2. Interactions simples

Pour illustrer le principe d’encapsulation, prenons un exemple : lors-
que je veux démarrer ma voiture je tourne la clé de contact et le
moteur se met en marche ; j’utilise l’interface, c’est simple. Imagi-
nons tout ce que je devrais faire si je n’avais pas cette interface ;
mettre en marche la pompe à essence, régler la richesse du mélange
en fonction de la température du moteur, mettre le pignon du démar-
reur en contact avec l’arbre du moteur, faire tourner le démarreur
pour lancer le moteur, activer les soupapes de façon synchronisée
avec la position des pistons et dans le même temps injecter le
mélange dans le moteur, déclencher les explosions dans les cylin-
dres au bon moment (toujours en fonction de la température du
moteur et enfin expulser les gaz brûlés. Tous les objets, y compris les
objets Objective-C, devraient être aussi simples à utiliser que ma
voiture.

L’encapsulation est importante pour faciliter la maintenance des
applications. Lorsque nous sommes amenés à modifier un objet,
nous n’avons pas nécessairement besoin de modifier tous les objets
qui l’utilisent ; nous pouvons changer de voiture, nous n’avons pas
besoin de changer notre façon de la démarrer.

Inclusion des déclarations

Vous n’avez peut-être pas fait attention mais nous avons déjà
utilisé le principe d’encapsulation. Dans notre fichier
Convertisseur1ViewController.h, nous employons les noms prédéfinis
IBOutlet, IBAction, UIViewController et UITextField. Où sont définis
tous ces noms ? Dans le framework UIKit d’iPhone OS. Comment
indique-t-on qu’il faut utiliser ce framework ? La première instruction
du fichier indique qu’il faut employer les déclarations du framework
UIKit : #import <UIKit/UIKit.h>.

#import

#import demande au compilateur d’inclure un fichier dans le fichier
courant. Cette instruction est utilisée principalement afin de récupé-
rer les déclarations nécessaires pour employer un framework ou des
objets définis ailleurs.

Syntaxe : #import FichierAInclure

Fichier global Le chemin d’accès au fichier à inclure doit être
mis entre crochets lorsqu’il se situe dans la bi-
bliothèque des frameworks d’iPhone OS. Par
exemple, #import <UIKit/UIKit.h>.

532.2. Mécanisme Cible-Action

Fichier local Le nom du fichier à inclure doit être mis entre
guillemets lorsqu’il se situe dans le même dos-
sier que le fichier dans lequel il est inclus, par
exemple :
#import. "Convertisseur1ViewController.h"

Lorsque nous avons créé notre projet Convertisseur1 de type
View-based Application, XCode a créé pour nous une classe
Convertisseur1ViewController et ses 2 fichiers .h et .m. C’est d’abord
dans cette classe que nous devons introduire le comportement de
notre application et c’est pourquoi nous modifions les fichiers
Convertisseur1ViewController.h et Convertisseur1ViewController.m. Le
fichier .h sera inclus partout où nécessaire. Vous devinez où il faut
l’inclure en tout premier lieu ? Dans le fichier .m, bien sûr ; cela
permettra au compilateur de vérifier que la déclaration et la défini-
tion de notre classe sont cohérentes.

#import et #include
Les développeurs C utilisent la clause #include. #import joue exactement

le même rôle mais en évitant d’inclure plusieurs fois le même fichier. UIKit.h,
par exemple, est inclus dans presque tous les .h. Dès que l’on inclut deux
fichiers .h dans le même fichier .m, on y inclut plusieurs fois le fichier UIKit.h
(les inclus de mes inclus sont mes inclus) ; le compilateur signalerait alors des
erreurs car il n’aime pas que les mêmes noms soient déclarés plusieurs fois.
La clause #import évite ce genre d’inconvénient.

Regardez le contenu du fichier Convertisseur1ViewController.m,
XCode l’a préparé pour nous et il commence par l’instruction
#import "Convertisseur1ViewController.h".

Basculer entre déclaration et définition
Sous XCode, la combinaison de touches X+z+[ÿ] permet de basculer du

fichier .h vers le fichier .m et réciproquement. Cette astuce est très utile ; vous
aurez souvent à passer de l’un à l’autre pendant la saisie du code source.

Il nous reste à terminer notre classe Convertisseur1ViewController.

Définition de l’action changeValue

Si ce n’est pas déjà fait, sélectionnez le fichier Convertisseur1View
Controller.m pour en visualiser le contenu dans la zone d’édition de
XCode. Modifiez-le afin d’obtenir le code suivant :

54 2. Interactions simples

#import "Convertisseur1ViewController.h"

@implementation Convertisseur1ViewController

@synthesize labelDollar;
@synthesize labelEuro;

- (IBAction) changeValue {
NSString *textDollar = labelDollar.text;
float dollar = [textDollar floatValue];
float euro = dollar / 1.4908;
NSString *textEuro = [[NSString alloc]

initWithFormat: @"%.2f",euro];
labelEuro.text = textEuro;
[textEuro release];

}

Lorsque vous saisissez ce code source (veillez à le saisir très préci-
sément tel que nous vous l’indiquons) vous constatez que XCode
vous propose de compléter les mots au fur et à mesure de la frappe.
Cette fonctionnalité de XCode est la Terminaison de Code (Code Com-
pletion) et permet de gagner beaucoup de temps lors de la saisie de
code source.

Saisie des crochets droits et des accolades
Les accolades { et } sont obtenues par les combinaisons de touches z+[(]

et z+[)]. Les crochets droits [et] sont obtenus par les combinaisons de
touches [Maj]+z+[(] et [Maj]+z+[)].

Utilisation de la Terminaison de Code
Lors de la saisie, si le mot proposé par XCode vous convient, pressez la

touche [˜]. S’il ne vous convient pas, continuez la saisie ou pressez la touche
[Échap] afin d’obtenir une liste de suggestions. Vous pouvez alors sélectionner
le mot approprié.

Nous comprendrons bientôt de façon détaillée ces quelques lignes
de code et leur syntaxe particulière, et vous serez même capable
d’écrire la fonction changeValue en seulement une ou deux lignes.

Figure 2.14 : Suggestions de la terminaison
de code

552.2. Mécanisme Cible-Action

Nous avons préféré décomposer les instructions pour vous aider à
en suivre la logique :

j Les instructions @synthesize servent à générer les accesseurs pour
les propriétés labelDollar et labelEuro.

j L’action changeValue est ensuite définie par les instructions entre
les accolades { et }, soit dans l’ordre :

Un objet de type NSString est déclaré et initialisé avec la valeur
écrite par l’utilisateur dans le champ de texte labelDollar.

Un nombre de type float est déclaré et initialisé avec le montant
en dollars. (Nous avons besoin d’un nombre de type float pour
faire notre calcul de conversion en euros car on ne peut pas
effectuer de calculs sur un objet de type NSString.)

Un nombre de type float est déclaré et initialisé avec le montant
converti en euros, avec un taux de conversion de 1,4908 $ pour
1 5 (c’est le taux officiel à la date de rédaction de ces lignes).

Un objet de type NSString est créé et initialisé avec une chaîne
de caractères représentant le montant en euros, avec une pré-
cision de 2 chiffres après la virgule.

Le montant en euros est affiché dans le champ de texte labe-
lEuro, l’utilisateur peut le lire.

L’objet NSString textEuro est détruit car à chaque appel de
changeValue, un nouvel objet est créé ; il faut éviter les fuites de
mémoire.

Nous voyons ici l’intérêt d’avoir défini des outlets ; notre action
changeValue peut "lire" et "écrire" les contenus des champs de texte
connectés aux outlets.

Comme c’est notre premier bout de code, il n’est pas certain que
nous l’ayons saisi correctement. Sous XCode, enregistrez le fichier
modifié et construisez l’application sans lancer l’exécution.

Vérifier le code source
On peut vérifier le code source de l’application en la construisant sans

l’exécuter. Sous XCode, sélectionnez la commande Build du menu Build ou
tapez la combinaison de touches X+[B].

Par exemple, si nous avons saisi LabelEuro à la place de labelEuro, l’erreur
nous est signalée dans la barre d’état de la fenêtre de projet et dans le code
source.

56 2. Interactions simples

Vérifiez que votre code source ne contient pas d’erreurs et corrigez
ces dernières éventuellement avant de passer à l’étape suivante.

Connecter les cibles
1 Retournez vers l’application Interface Builder pour modifier le

fichier Convertisseur1ViewController.xib. Sélectionnez le champ de
texte dans lequel nous aurons le montant en dollars et visualisez
l’onglet Connections de l’inspecteur.

Nous allons indiquer à Interface Builder que nous souhaitons
que l’action changeValue du propriétaire du fichier Convertisseur1View
Controller.xib (c’est-à-direune instancede laclasseConvertisseur1View
Controller) soit déclenchée à chaque modification, par l’utilisateur, du
contenu du champ de texte contenant le montant en dollar. Nous
allons pour cela utiliser le mécanisme Cible-Action (Target-Action) de
Cocoa-Touch. Pour mettre en œuvre ce mécanisme nous avons be-
soin :

j d’un objet dont les événements sont observés ; le champ de texte
contenant le montant en dollars ;

j d’un événement qui va déclencher l’action ; ici ce sera l’événe-
ment Editing Changed ;

Figure 2.15 : Erreur signalée à la construction

572.2. Mécanisme Cible-Action

j d’un objet qui va recevoir l’action – la cible ; notre instance de la
classe Convertisseur1ViewController ;

j d’une méthode à activer sur la cible – l’action ; la méthode chan-
geValue.

2 Effectuez un cliquer-glisser-relâcher allant du petit cercle à droite
de l’événement Editing Changed dans l’inspecteur jusqu’à l’objet
File’s Owner dans la fenêtre du contenu du fichier NIB.

Une liste sur fond gris s’affiche en surimpression sur la cible que
nous avons sélectionnée.

3 Cliquez sur changeValue, l’unique ligne de cette liste. Cette liste
nous permet de choisir une action parmi celles définies pour la
cible. Comme nous avons déclaré une seule action sur notre cible,
la liste comprend une seule ligne.

4 Sélectionnez à nouveau File’s Owner pour visualiser ses
connexions dans l’inspecteur.

Figure 2.16 : Connexion d’une cible

Figure 2.17 : Liste des actions définies sur la cible

Figure 2.18 : Connexions de File’s Owner

58 2. Interactions simples

Construire et tester l’application Convertisseur1
1 Sauvegardez le fichier NIB sous Interface Builder et revenez sous

XCode pour construire et lancer l’application (X+[R]).

2 Si la construction ne fonctionne pas correctement, vérifiez que le
SDK actif est le simulateur et vérifiez votre code source.

3 Testez votre application sur le simulateur d’iPhone. N’hésitez pas à
tout essayer : saisir des chiffres et des lettres, dans le champ des
montants en dollars et dans celui des montants en euros, etc.

Nous nous rendons compte de tous les petits défauts de notre
application. Il faudra l’améliorer avant de réellement l’utiliser :

j empêcher que l’utilisateur tape des lettres ;

Figure 2.19 : Vérifiez que le SDK
actif est le simulateur

Figure 2.20 : Test de l’application Convertisseur1

592.2. Mécanisme Cible-Action

j pouvoir faire disparaître le clavier ;
j pouvoir effectuer les conversions dans les deux sens, des dollars

en euros et vice-versa ;
j lorsqu’on revient dans l’application, retrouver les montants tels

qu’ils étaient lorsqu’on l’a quittée ;
j pouvoir modifier facilement le taux de conversion.

Nous aborderons ces améliorations après avoir approfondi ce que
nous venons de voir.

2.3. Hiérarchie des classes
de Convertisseur1

Vous êtes sans doute un peu frustré car nous venons de créer une
application mais vous n’avez sans doute pas compris tous les détails
du code que nous avons écrit. Nous allons approfondir tout cela et
vous comprendrez mieux le code de Convertisseur1 à la fin de ce
chapitre.

Héritage
Notre classe Convertisseur1ViewController offre deux outlets supplé-
mentaires que nous n’avons pas déclarés. Ils appartiennent à notre
classe par héritage. Nous avons représenté l’arbre d’héritage des
objets que nous avons manipulés pour notre application Convertis-
seur1 (voir Figure 2.21).

Convertisseur1ViewController hérite de ou "est une sorte de" UIView-
Controller. En plus des variables d’instances et des méthodes que
nous avons définies pour Convertiseur1ViewController, ce dernier
possède également les attributs et le comportement de UIViewCon-
troller ; en particulier les deux outlets supplémentaires que nous
avons vus précédemment.

Notre classe Convertisseur1ViewController contient, par héritage, tout
le code des classes UIViewController, UIResponder et NSObject.

Examinons plus attentivement la classe UITextField :

j NSObject est la classe de base ; tous les objets doivent dériver
(doivent hériter) de NSObject.

j UIResponder ; un Répondeur est un objet possédant la capacité de
recevoir des événements et de les traiter ou de les transmettre soit

60 2. Interactions simples

par le mécanisme Cible-Action, soit au répondeur suivant dans la
chaîne des répondeurs. Nous expliquerons plus loin la chaîne de
répondeurs.

j UIView ; une Vue est un objet qui apparaît à l’écran et appartient à
la hiérarchie des vues (voir ci-après). Une vue est également un
répondeur puisqu’elle reçoit et réparti les événements créés par le
système lorsque l’utilisateur touche cette vue sur l’écran.

Figure 2.21 : Graphe d’héritage de Convertisseur1

612.3. Hiérarchie des classes de Convertisseur1

j UIControl ; un Contrôle est une vue particulière qui présente une
liste d’événements spécifiques et peut activer une action sur une
cible pour chacun de ces événements.

j UITextField ; un champ de texte est un contrôle particulier (et donc
aussi une Vue et un Répondeur) qui permet à l’utilisateur de
visualiser et modifier une ligne de texte.

Et UILabel ? Vous devinez de quoi il hérite ? Réfléchissons… C’est un
objet, cela s’affiche sur l’écran, c’est donc vraisemblablement une
vue. Est-ce un contrôle ? Peut-on configurer le mécanisme Cible-
Action à partir d’un UILabel ? Vous pouvez consulter l’onglet
Connections de l’inspecteur sous Interface Builder, après avoir sélec-
tionné l’un des deux labels de l’application Convertisseur1, vous
constaterez qu’aucun événement n’est défini pour un UILabel ; on ne
peut pas définir des Cibles-Actions pour un label. Donc UILabel hérite
de UIView mais pas de UIControl.

Hiérarchie des vues
Chaque application d’un iPhone affiche une fenêtre unique qui oc-
cupe tout l’écran. Une fenêtre est un objet de type UIWindow qui hérite
de UIView (une fenêtre est un type particulier de vue). Cette fenêtre
contient généralement une vue qui elle-même contient une ou plu-
sieurs vues et qui, à leur tour, peuvent contenir des vues, etc. La
fenêtre et toutes les vues incluses constituent la hiérarchie des vues.
La hiérarchie des vues peut évoluer pendant l’exécution de l’appli-
cation. Par exemple dans l’application Contacts, lorsque l’utilisateur
passe de la liste des contacts à la visualisation d’une fiche des
contacts, l’apparence visuelle de l’interface évolue ; la hiérarchie des
vues a changé.

Vous pouvez visualiser la hiérarchie de vues de l’application Conver-
tisseur1 sous Interface Builder, dans la fenêtre du contenu du fichier
NIB. Cliquez sur le bouton du milieu de la rubrique View Mode.
Cliquez sur le triangle à côté de l’objet View pour visualiser son
contenu (voir Figure 2.22).

Il n’y a pas de fenêtre de type UIWindow dans le fichier
Convertisseur1ViewController.h. La racine de la hiérarchie est une vue
dont le nom est View, elle contient les 5 labels et les 2 champs de
texte que nous y avons ajoutés. La fenêtre se trouve en fait dans le
fichier MainWindow.xib, vous pouvez ouvrir ce fichier pour vous en
convaincre.

62 2. Interactions simples

Toutes les applications pour iPhone sont structurées de la même
façon :

j une fenêtre unique (UIWindow) qui restera affichée pendant toute
l’exécution de l’application (elle est décrite dans le fichier
MainWindow.xib) ;

j une ou plusieurs vues principales qui occupent chacune toute la
fenêtre (chacune de ces vues est décrite dans un fichier NIB spé-
cifique).

Nous avons créé un projet de type View-based Application sous
XCode pour construire notre application Convertisseur1. Ce type
d’application ne comprend qu’une vue principale, nous aurons l’oc-
casion de créer d’autres types d’application avec plusieurs vues
principales.

2.4. Manipulation des objets en
Objective-C

Après ces quelques éléments théoriques, voyons comment on ma-
nipule les objets dans le langage Objective-C.

Déclaration
La déclaration d’une classe s’effectue dans un fichier source qui porte
le nom de la classe et dont l’extension est .h. Par exemple MaClasse.h
pour la classe MaClasse. Une déclaration suit toujours le même
schéma :

Figure 2.22 : Hiérarchie des vues de
Convertisseur1

632.4. Manipulation des objets en Objective-C

j Une instruction @interface précisant le nom de classe déclarée et
le nom de la classe dont elle hérite ; cette dernière est appelée la
superclasse de la classe en cours de création. Toutes les classes
doivent dériver d’une superclasse.

j Un bloc, délimité par des accolades, contenant les déclarations de
chaque variable d’instance de la classe.

j Les déclarations de chaque méthode de la classe.
j L’instruction @end pour indiquer la fin du bloc @interface :

@interface MaClasse : SuperClasse
{

// déclaration des variables d’instance
}
// déclaration des méthodes
@end

Commentaires
Sur chaque ligne de code source, le texte à partir de la double barre

oblique "//", jusqu’à la fin de la ligne, est considéré comme un commentai-
re par le compilateur.

Déclaration des variables d’instance

Chaque variable d’instance a un nom et un type. Vous choisissez le
nom de chaque variable ; c’est ce nom que vous utiliserez pour
employer cette variable. Bien sûr, deux variables d’instances ne
peuvent porter le même nom.
type nom1, nom2, …, nomN ;

On peut déclarer une ou plusieurs variables dans la même instruc-
tion ; on utilise la virgule pour séparer les variables. L’instruction de
déclaration se termine par un point-virgule.

Ne pas oublier le point-virgule
L’oubli du point-virgule en fin d’instruction est une erreur courante que

même les programmeurs confirmés peuvent faire. Le point-virgule est le
marqueur de fin d’instruction du langage C et du langage Objective-C.

Vous pouvez utiliser :

j N’importe quel type défini dans le langage C (int, long, float,
double, pointeur, etc.) ou un type élaboré à l’aide des règles du
langage C (typedef).

64 2. Interactions simples

j Un pointeur sur une classe d’objets, par exemple labelDollar de
type UITextField * ; un pointeur sur une classe d’objet permet de
manipuler les instances de cette classe ;

j Le type id, qui est un type prédéfini dans Objective-C, pointeur
vers une classe non précisée ; on utilise le type id pour manipuler
des instances dont on ne connaît pas la classe.

Règle de nommage des variables
Comme les classes, les variables doivent porter un nom explicite et il faut

éviter les noms abrégés (par exemple lD au lieu de labelDollar).

En Objective-C, le nom d’une variable est une série de mots accolés et chaque
mot commence par une majuscule sauf la première lettre qui reste minus-
cule, par exemple : labelDollar.

Déclaration des méthodes

Nous arrivons aux caractéristiques d’Objective-C les plus déroutan-
tes pour les programmeurs C ou C++ : la déclaration et l’appel des
méthodes.

Commençons par le plus facile, la déclaration d’une méthode qui n’a
pas de paramètres :
// déclaration d’une méthode d’instance
- (type-de-la-valeur-de-retour) nomDeLaMethode ;
// déclaration d’une méthode de classe
+ (type-de-la-valeur-de-retour) nomDeLaMethode ;

Comme en C, le type est void si la méthode ne retourne pas de valeur.
IBAction est équivalent à void ; une action ne retourne pas de valeur.

Méthode d’instance / de classe
Une méthode d’instance s’exécute dans le contexte d’une instance de

classe, elle accède aux variables propres à cette instance.

Lors de son exécution, une méthode de classe n’est pas attachée à une
instance particulière ; elle ne peut accéder aux variables d’instance.

Variables de classe ?
Contrairement à d’autres langages objet, il n’y a pas de variables de classe

en Objective-C, seulement des variables d’instance. Nous verrons comment
nous en passer dans la suite de l’ouvrage.

652.4. Manipulation des objets en Objective-C

Pour comprendre la déclaration des méthodes ayant des paramè-
tres, nous allons détailler un exemple :
- (void)getCharacters:(unichar *)buffer

range:(NSRange)aRange ;

Cet exemple déclare une méthode d’instance :

j dont le nom est getCharacters:range: ;

j qui ne retourne pas de valeur ; type de retour (void) ;
j dont le premier paramètre est de type pointeur sur un unichar –

unichar * (un unichar est un caractère Unicode) ;
j dont le second paramètre est de type NSRange (intervalle).

La méthode −getCharacters:range: est une méthode d’instance de
NSString qui permet d’obtenir au format Unicode les caractères situés
dans un intervalle donné dans la chaîne de caractère.

Une méthode prend des paramètres lorsque son nom comprend des
caractères deux-points, autant de paramètres que de caractères
deux-points. Ceci est un peu déroutant pour les programmeurs C ou
C++ qui ont l’habitude de bien séparer le nom de la fonction de la
liste des paramètres qui est mise entre parenthèses. En Objective-C,
on mélange. Vous verrez à l’usage que ce procédé améliore la lisibi-
lité du code ; le rôle de chaque paramètre est identifié.

Règle de nommage des méthodes
En Objective-C, la règle de nommage est identique pour les méthodes et

les variables : une série de mots accolés et chaque mot commence par une
majuscule sauf la première lettre qui reste minuscule, par exemple :
changeValue.

Accesseurs et Manipulateurs

En respect du principe d’encapsulation, les variables d’instance ap-
partiennent en propre à chaque instance, elles sont accessibles uni-
quement par une méthode d’instance de la même classe. Comment
faire si l’on a besoin de modifier l’état d’un objet ? (voir Figure 2.23)

Le seul moyen pour accéder depuis un objet A à une variable d’ins-
tance appartenant à un objet B, est de définir des méthodes d’ins-
tance dans la classe de l’objet B pour cet usage. La méthode qui
permet d’obtenir la valeur d’une variable d’instance est appelées
accesseur (getter). La méthode qui permet de définir la valeur d’une
variable d’instance est appelée manipulateur (setter).

66 2. Interactions simples

Accesseur
La méthode permettant d’obtenir la valeur d’une variable d’instance est

appelée accesseur. L’accesseur porte le même nom que la variable d’ins-
tance, son type de retour est le type de la variable d’instance et il ne prend pas
de paramètre.

@interface MaClasse : SuperClasse
{

// déclaration d’une variable d’instance
typeVar varInstance

}
// déclaration de l’accesseur de varInstance
- (typeVar) varInstance ;

@end

Manipulateur
La méthode permettant de définir la valeur d’une variable d’instance est

appelée manipulateur. Le nom du manipulateur est construit en mettant une
majuscule au nom de la variable puis en le préfixant par set. Le manipulateur
ne retourne pas de valeur (void) et prend un unique paramètre du même type
que la variable d’instance.

@interface MaClasse : SuperClasse
{

// déclaration d’une variable d’instance
typeVar varInstance ;

}
// déclaration du manipulateur de varInstance
- (void) setVarInstance: (typeVar) nouvelleValeur ;

@end

Figure 2.23 : Les variables d’instances sont privées

672.4. Manipulation des objets en Objective-C

Nous verrons que les propriétés permettent de déclarer et définir
plus facilement les accesseurs et les manipulateurs.

Définition
La définition d’une classe s’effectue dans un fichier source qui porte
le nom de la classe et dont l’extension est .m, par exemple MaClas-
se.m pour la classe MaClasse :

j l’importation du fichier .h de la classe (clause #import) ;

j une instruction @implementation précisant le nom de classe définie ;
j les définitions de chaque méthode de la classe ;
j l’instruction @end pour indiquer la fin du bloc @implementation :

#import "MaClasse.h"
@implementation MaClasse
// définition des méthodes
@end

La définition d’une méthode :

j commence par une ligne de code qui reprend la déclaration de la
méthode sans le point-virgule à la fin ;

j se poursuit par un bloc d’instructions entre accolades.

Par exemple :
#import "Convertisseur1ViewController.h"
@implementation Convertisseur1ViewController
- (IBAction) changeValue {

NSString *textDollar = labelDollar.text;
float dollar = [textDollar floatValue];
float euro = dollar / 1.4908;
NSString *textEuro = [[NSString alloc]

initWithFormat: @"%.2f",euro];
labelEuro.text = textEuro;
[textEuro release];

}
@end

Messages
Nous savons maintenant déclarer et définir une classe d’objets ; il
s’agit d’un modèle pour créer des instances d’objet. La programma-
tion orientée objet consiste à créer des objets, leur envoyer des
messages puis à les libérer lorsque nous n’en avons plus besoin (sur
un iPhone, il faut économiser la mémoire). Lorsqu’un objet reçoit un
message, il peut à son tour créer des objets, leur envoyer des mes-
sages ou les libérer, etc.

68 2. Interactions simples

La syntaxe pour envoyer un message à un objet est la suivante :
[objet appel−de−méthode]. objet est une variable désignant l’instance
(pointeur sur l’instance) si la méthode est une méthode d’instance ou
le nom de la classe si c’est une méthode de classe. appel−de−methode
est le nom de la méthode avec les paramètres à utiliser.

Par exemple, dans l’instruction dollar = [textDollar floatValue];, la
variable dollar prend pour valeur le retour de l’appel de la méthode
d’instance −floatValue (qui ne prend pas de paramètre) sur l’instance
désignée par textDollar.

Ou encore, dans l’instruction [window addSubview:myView];, la fenêtre
désignée par window reçoit le message −addSubview: avec le paramètre
myView. Ce message ne retourne pas de valeur.

Propriétés
Une propriété (property) est un attribut de l’objet auquel on peut
accéder par un accesseur et par un manipulateur. Généralement, cet
attribut est concrétisé par une variable d’instance mais ce n’est pas
une obligation.

Le langage Objective-C (plus précisément à partir de sa version 2.0)
propose des mécanismes pour faciliter l’emploi des propriétés.

@property

La directive @property permet de déclarer l’accesseur et le manipula-
teur d’une propriété. Elle s’utilise à l’endroit où l’on aurait déclaré ces
méthodes. Il faut préciser le type et le nom de la propriété.
@property UITextField *labelDollar;

Dans cet exemple, nous déclarons une propriété labelDollar de type
UITextField * (pointeur sur une instance de la classe UITextField).
Cette déclaration est totalement équivalente aux deux déclarations :
- (UITextField *) labelDollar ;
- (void) setLabelDollar: (UITextField *) newLabelDollar ;

@synthesize

La directive @synthesize s’utilise dans la définition d’une classe (fi-
chier .m) pour générer le code de l’accesseur et du manipulateur
d’une propriété.
@synthesize labelDollar;

Cette instruction génère le code permettant d’accéder à la propriété
labelDollar.

692.4. Manipulation des objets en Objective-C

Notation pointée

La notation pointée permet d’alléger la lecture du code source.

[objet propriete] et [objet setPropriete:newValue] sont remplacés
par objet.propriété.
NSString *textDollar = labelDollar.text;
labelEuro.text = textEuro;

équivaut à
NSString *textDollar = [labelDollar text];
[labelEuro setText:textEuro];

Création
La création d’une instance s’effectue en deux étapes :

j allocation de la mémoire ;

j initialisation des variables d’instance.

L’allocation de mémoire est effectuée par l’envoi du message
+alloc (définie dans la classe NSObject, mère de toutes les classes) à
la classe de l’instance à créer. Ce message renvoie un pointeur sur
l’instance qui vient d’être allouée. Par exemple, pour allouer une
nouvelle chaîne de caractères :
// déclaration d’un pointeur sur UITextField
UITextField *monTextField;
monTextField = [UITextField alloc];

Échec lors de l’allocation
Si la création de l’objet échoue (par exemple s’il n’y a plus de mémoire

disponible), le message retourne la constante nil.

nil
nil est la constante de type id qui signifie pointeur nul. nil est équivalent

à NULL à la seule différence qu’il est de type pointeur sur un objet alors que
NULL est un pointeur générique.

On doit toujours initialiser une instance avant de l’utiliser, c’est-à-dire
définir les valeurs de ses variables d’instance. Les méthodes d’ins-
tance dont le nom commence par init servent à initialiser les varia-
bles d’instance.

70 2. Interactions simples

Initialiseur
Un initialiseur est une méthode d’instance destinée à initialiser les varia-

bles de l’instance sur laquelle elle est appelée. Une classe peut comporter
plusieurs initialiseurs, leur nom commence toujours par init. L’initialiseur
renvoie un pointeur sur l’instance initialisée.

Chaque classe doit avoir un initialiseur désigné unique, généralement celui
qui offre le plus de paramètres. Tous les autres initialiseurs appellent l’initia-
liseur désigné qui est le seul à effectuer réellement le travail.

Tout initialiseur désigné doit commencer par appeler l’initialiseur désigné de
sa superclasse.

Retour de −init
Si l’initialisation ne se déroule pas correctement, par exemple dans le cas

où les paramètres passés ne sont pas corrects, l’initialiseur désigné doit
libérer la mémoire allouée et retourner nil.

Le message +alloc renvoie un pointeur sur une instance, et le mes-
sage −init est susceptible de modifier ce pointeur, c’est pourquoi il
est d’usage de grouper l’allocation et l’initialisation dans une seule
instruction.
UITextField *monTextField;
monTextField = [[UITextField alloc] initWithFrame:rect];

On peut même combiner la déclaration, l’allocation et l’initialisation
en une seule instruction.
UITextField *monTextField = [[UITextField alloc]

initWithFrame:rect];

message à nil
Que se passe-t-il si l’allocation renvoie nil puis que l’on envoie un mes-

sage d’initialisation au pointeur nul ? Rien. Le langage Objective-C autorise
l’envoi de messages à nil.

Un initialiseur doit appeler l’initialiseur désigné de sa superclasse. Le
schéma habituel pour définir un initialiseur est le suivant :
- (id)init {

if (self = [super init]) {
// initialisation des variables d’instances

}
return self;

712.4. Manipulation des objets en Objective-C

}

C’est l’occasion de faire la connaissance de deux mots-clés impor-
tants en Objective-C : super et self.

super
super est un mot-clé Objective-C qui désigne la superclasse de l’instance

courante. On l’utilise dans une méthode d’instance pour appeler une mé-
thode de sa superclasse.

Par exemple, le message [super init] dans un initialiseur appelle l’initiali-
seur de la superclasse ; avant d’initialiser les variables d’instance définies
dans une classe, on initialise les variables définies dans la superclasse.

self
self est un mot-clé Objective-C qui désigne l’instance courante. On l’uti-

lise par exemple dans une méthode d’instance pour envoyer un autre mes-
sage à cette même instance.

Libération
Lorsqu’un objet doit être détruit, il reçoit un message dealloc. La
méthode d’instance −dealloc ne retourne pas de valeur.

Avant d’être détruit, une instance doit penser à détruire, ou du moins
libérer (nous verrons bientôt la subtile différence) les instances
qu’elle possède. En d’autres termes, les variables d’instances qui
occupent de la mémoire doivent être libérées dans la méthode d’ins-
tance −dealloc ; il s’agit des variables de type pointeur, en particulier
les pointeurs sur des objets. Pour libérer un objet, il suffit de lui
envoyer le message release.
[textDollar release];

Le langage Objective-C 2.0 sous MacOSX dispose d’un ramasse-
miettes (garbage collector), comme le langage Java, qui rend inutiles
les instructions de libération (release). Cette caractéristique n’est
actuellement pas disponible sous iPhone OS en raison du manque
de mémoire (il faut la libérer dès que possible) et du manque de
performance du processeur (le ramasse-miettes est gourmand en
processeur).

Les initialiseurs commencent par initialiser les variables d’instances
de la superclasse ; à l’inverse, la méthode −dealloc doit se terminer

72 2. Interactions simples

par un appel à la même méthode sur la superclasse. La structure
classique d’une méthode −dealloc est la suivante :
- (void)dealloc {

// libération des variables d’instances
[super dealloc];
}

Release et pas dealloc
Pour libérer une instance, on lui transmet le message release. On ne doit

jamais transmettre directement un message dealloc à un objet.

Le message release informe l’instance que l’un des objets qui l’utilisent n’en
a plus besoin. Le message dealloc sera transmis automatiquement à cette
instance lorsqu’elle ne sera plus employée par aucun objet.

2.5. Check-list
Ce chapitre a commencé par une introduction à la Programmation
Orientée Objet, ce qui nous a permis de découvrir :
j les objets, classes et instances ;

j l’état des objets, leur comportement et la transmission de messages ;
j le principe d’encapsulation ;
j l’héritage.

Nous avons réalisé notre première application interactive Convertis-
seur1 pour notre prochain voyage aux États-Unis. Nous avons fait
connaissance avec :

j les outlets, les actions et le mécanisme cible-action ;

j le champ de texte UITextField ;
j l’arbre d’héritage de UITextField ;
j la hiérarchie des vues ;
j la saisie de code source sous XCode et la terminaison de code.

Nous avons terminé par un approfondissement de la syntaxe du
langage Objective-C :

j clause #import ;

j déclaration d’une classe :

@interface ;

déclaration des variables d’instance ;

@property pour déclarer les propriétés ;

732.5. Check-list

déclaration des méthodes de classe et d’instance.

j définition d’une classe :

@implementation ;

@synthesize pour générer l’accesseur et le manipulateur d’une
propriété.

j envoi de message ;
j mots-clés super et self et nil ;
j méthodes impliquées dans le cycle de vie des objets :

+alloc ;

initialiseurs −init et initialiseur désigné ;

−release ;

−dealloc.

L’application Convertisseur1 est bourrée de défauts. Nous allons cor-
riger cela dès le prochain chapitre. Ce sera l’occasion de découvrir de
nouveaux mécanismes de Cocoa Touch.

74 2. Interactions simples

C
H

A
P

IT
R

E
3

GESTION
DE LA MÉMOIRE

Diagnostiquer les fuites mémoire avec Leaks .. 77
Éviter les fuites mémoire ... 84
Améliorer Convertisseur1 .. 90
Check-list ... 98

75

Alors qu’un ordinateur dispose fréquemment de 1 Go de RAM ou
plus, la mémoire est limitée à 128 Mo sur un iPhone. Cet espace est
partagé entre le système iPhone OS, l’affichage graphique et l’appli-
cation en cours d’exécution ; cette dernière ne dispose que d’environ
64 Mo. La mémoire est donc une ressource précieuse qu’il faudra
économiser.

Nous allons comprendre dans ce chapitre comment est gérée la
mémoire sous Cocoa Touch et Objective-C. Nous mettrons en œuvre
les Instruments du SDK pour chasser les erreurs courantes relatives à
la gestion de la mémoire et nous améliorerons le comportement de
notre application Convertisseur1 vis-à-vis de la mémoire.

3.1. Diagnostiquer les fuites mémoire
avec Leaks

Zombi
Vous connaissez certainement les morts-vivants de cinéma et autres
zombis de même nature. Un zombi Objective-C est aussi un objet
mort-vivant.

À la création d’une instance, il faut conserver son adresse dans une
variable de type pointeur sur un objet. Cette variable est appelée
référence sur l’instance. Pour pouvoir émettre un message vers un
objet, vous devez disposer d’une référence sur cet objet. Dans
l’exemple, les messages sont transmis à l’instance référencée par la
variable textEuro.
// création d’une instance
NSString *textEuro = [NSString alloc];
// émission d’un message
textEuro = [textEuro initWithFormat: @"%.2f",euro];
// émission d’un autre message
valeur = [texteuro floatValue];

Si nous perdons la référence à un objet, nous ne pouvons plus lui
envoyer de message. Dans le deuxième exemple, nous créons une
instance (appelons-la Objet1) référencée par le pointeur textEuro puis
une seconde instance (Objet2) référencée par le même pointeur ; la
valeur précédente de textEuro est alors perdue.
// création d’une instance Objet1
NSString *textEuro = [NSString alloc];
// émission d’un message vers Objet1 référencé par textEuro
textEuro = [textEuro initWithFormat: @"%.2f",euro];
// création d’une instance Objet2

773.1. Diagnostiquer les fuites mémoire avec Leaks

textEuro = [NSString alloc];
// émission d’un message vers Objet2,
// Objet1 n’est plus accessible
textEuro = [textEuro initWithFormat: @"%.2f",euro];

Nous n’avons plus de référence vers Objet1. Cette instance n’est pas
détruite (elle est toujours vivante) mais n’est plus accessible (comme
si elle était morte) ; Objet1 est un zombi.

Zombi
Un zombi est un objet qui n’est pas accessible car il n’est référencé par

aucun pointeur dans l’application. Cet objet est inutilisable ; il occupe donc
inutilement de la mémoire.

Si vous avez déjà vu des zombis au cinéma, vous savez qu’ils ne sont
pas très sympathiques. Et les zombis Objective-C, gentils ou mé-
chants ? Vous l’avez déjà deviné ; ils ne sont pas très sympathiques
non plus, pas vraiment dangereux, mais nuisibles car ils occupent un
espace mémoire qui est irrémédiablement perdu ; cet espace sera
récupéré par le système uniquement lorsque l’utilisateur quittera
l’application.

Détecter les fuites mémoire

Définition d’une fuite mémoire

Un zombi apparaît à cause d’une erreur de programmation (perte de
la dernière référence d’un objet non libéré). Lorsque ces erreurs sont
trop nombreuses ou lorsqu’elles sont rencontrées plusieurs fois au
cours de l’exécution, le nombre de zombis s’accroît au fur et à
mesure ; c’est ce que l’on nomme une fuite mémoire. Cette erreur
très courante peut dégrader les performances de l’application, voire
provoquer un plantage.

Fuite mémoire
Erreur courante en programmation orientée objet. Une fuite mémoire est

l’accroissement progressif, tout au long de l’exécution d’une application, de
la mémoire allouée inutilement. Ce phénomène peut aboutir à une diminu-
tion des performances ou un plantage de l’application.

Nous allons provoquer une fuite mémoire dans notre application Conver-
tisseur1. Modifiez le code source de Convertisseur1ViewController.m ;
mettez en commentaire l’instruction qui libère texteEuro.

78 3. Gestion de la mémoire

- (IBAction) changeValue {
NSString *textDollar = labelDollar.text;
float dollar = [textDollar floatValue];
float euro = dollar / 1.4908;
NSString *textEuro = [[NSString alloc]

initWithFormat: @"%.2f",euro];
labelEuro.text = textEuro;

// [textEuro release];
}

À chaque exécution de la méthode −changeValue, c’est-à-dire à cha-
que modification du champ de texte contenant la valeur en dollars,
une nouvelle instance de NSString est référencée par textEuro ; l’ins-
tance précédente devient un zombi.

Instruments Leaks

Il est indispensable d’instrumenter l’application en cours d’exécution
pour détecter les fuites mémoire (leaks). Nous allons mettre en œu-
vre les instruments fournis avec le SDK d’Apple sur notre application
Convertisseur1 modifiée.

1 Reconstruisez l’application mais ne lancez pas son exécution im-
médiatement ; commande Build du menu Build sous XCode ou
X+[B].

2 Lancez l’exécution sous instrumentation des fuites mémoire. Pour
cela, sélectionnez la commande Leaks du sous-menu Start with

Performance Tools du menu Run sous XCode.

Figure 3.1 : Création d’une fuite mémoire

793.1. Diagnostiquer les fuites mémoire avec Leaks

L’application Convertisseur1 se lance dans le simulateur iPhone en
même temps que l’application Instruments ; l’enregistrement des
événements mémoire débute automatiquement.

3 Manipulez l’application avec le simulateur ; saisissez des chiffres
dans le champ de texte contenant le montant en dollars, effacez
des caractères puis recommencez pendant une trentaine de secon-
des.

4 Quittez l’application Convertisseur1 en pressant le bouton Ho-

me du simulateur ou à l’aide de la sélection de touches z+X+[H].
L’enregistrement des données sous Instruments s’arrête automa-
tiquement.

Dans la fenêtre principale de l’application Instruments, réalisez les
opérations suivantes :

1 Sélectionnez l’outil Leaks dans la liste des instruments sur la partie
gauche, en haut de la fenêtre.

2 Cliquez sur l’icône Extended Detailed View (Vue détaillée éten-
due) sur la barre d’état en bas de la fenêtre.

3 Dans la partie centrale de la fenêtre, chaque ligne est un zombi.
Sélectionnez une de ces lignes ; l’état de la pile (stack trace) au

Figure 3.2 : Lancement du détecteur de fuites mémoire

80 3. Gestion de la mémoire

moment de la dernière opération mémoire sur cet objet apparaît
dans la partie droite de la fenêtre (vue détaillée étendue).

Il n’est pas inhabituel que la pile contienne une cinquantaine d’élé-
ments. Chaque élément est décrit sur deux lignes :

j le nom de la fonction appelée ;

j le nom du framework ou du projet XCode et du fichier source
auquel appartient cette fonction.

Pile
La Pile (Stack) est l’espace mémoire utilisé par le processeur pour conser-

ver le contexte (paramètres et variables locales) d’une fonction ou d’une
méthode.

L’état de la pile permet de connaître l’enchaînement des appels de fonction à
un instant donné ainsi que les valeurs des paramètres et des variables locales
de chaque fonction lors de l’appel à la suivante.

La pile informatique fonctionne comme une pile d’assiettes. Lors de l’appel à
une fonction, une assiette est ajoutée en haut de la pile pour contenir le
contexte de la fonction appelée. Lorsqu’une fonction se termine (instruction
return), l’assiette en haut de la pile est enlevée ; le contexte de la fonction qui
se termine est détruit et l’on revient au contexte de la fonction appelante.

Figure 3.3 : Instrument détecteur de zombis (leaks)

813.1. Diagnostiquer les fuites mémoire avec Leaks

S’il y a des erreurs de programmation, elles sont probablement
davantage dans le code que nous avons écrit que dans les fra-
meworks du SDK.

Recherchons dans la vue détaillée étendue (partie droite de la fenêtre
d’Instruments) les fonctions appartenant au projet Convertisseur1.
Nous en trouvons trois :

j Tout en haut de la liste ; les fonctions start et main. Ce n’est pas
étonnant, toutes les applications commencent par l’exécution de
ces deux fonctions.

j Vers le bas de la liste, nous trouvons le message −[Convertisseur1
ViewController changeValue].

L’application Instruments détecte les fuites mémoire que nous avons
créées.

Diagnostiquer les fuites mémoire
Une fois identifiées la fonction ou la méthode en cause, il faut
déterminer quel est précisément l’objet qui se transforme en zombi.

1 Double-cliquez sur le message −[Convertisseur1ViewController
changeValue] dans la vue détaillée étendue sous Instruments. Ce
double-clic vous renvoie vers le code source de la méthode en
cause, sous XCode ; une ligne de code est surlignée.

L’instruction de notre application qui provoque une fuite mémoire
est celle qui crée une instance de NSString référencée par la variable
textEuro. C’est cette instance qu’il faut libérer pour éviter les zombis.

Figure 3.4 :
Identification
du zombi

82 3. Gestion de la mémoire

2 Enlevez la mise en commentaire de l’instruction [textEuro
release];, reconstruisez l’application et testez-la à nouveau en
utilisant l’instrument Leaks. Il y a beaucoup moins de fuites mé-
moire.

Selon la version du SDK que vous utilisez, il est même possible qu’il
n’y ait plus du tout de fuites mémoire. Il est aussi possible qu’il reste
quelques lignes, vérifiez que le code que vous avez écrit n’est pas
impliqué dans ces lignes résiduelles.

Nous venons d’illustrer la recherche des fuites mémoire en utilisant
une application dans laquelle nous avons introduit une erreur de
programmation. Bien sûr, la recherche de ce type d’erreur est un peu
moins facile dans la réalité mais le principe est toujours le même :
mettre en œuvre l’instrument Leaks.

La première chose à faire est tout de même d’éviter d’introduire ce
genre d’erreur dans notre code source. C’est pourquoi nous allons
étudier les règles qui régissent la gestion de la mémoire.

Chassez les fuites mémoire
Malgré tout le soin que nous mettrons à respecter les règles de gestion de

la mémoire, il est indispensable de vérifier que notre programmation est
correcte en testant notre application à l’aide de l’instrument Leaks.

Figure 3.5 : Vérification de la diminution des fuites mémoires

833.1. Diagnostiquer les fuites mémoire avec Leaks

3.2. Éviter les fuites mémoire

Compteur de références
Chaque instance dispose d’un compteur de références qui lui est
propre, quelle que soit sa classe d’appartenance. Lorsqu’une ins-
tance est créée, son compteur de références (retain count) prend la
valeur 1.

Lorsqu’une instance reçoit le message retain, son compteur de réfé-
rences est incrémenté, tandis que lorsqu’elle reçoit le message
release, il est décrémenté. Le message retainCount permet de connaî-
tre la valeur du compteur de références.

Lorsque son compteur de références atteint la valeur nulle, le mes-
sage dealloc est transmis à l’instance :
// création le compteur vaut 1
MaClasse *monInstance = [[MaClasse alloc] init];
// le compteur est incrémenté, il vaut 2
[monInstance retain];
// compteur vaut 2
int compteur = [monInstance retainCount];
// le compteur est décrémenté, il vaut 1
[monInstance release];
// le compteur est décrémenté à 0, l’instance est détruite
[monInstance release];

Compteur de références
Chaque objet dispose d’un compteur de références (retain count) qui

vaut 1 à la création de l’instance. Ce compteur est incrémenté par le message
retain, il est décrémenté par le message release. L’objet est détruit lorsque
son compteur de référence est égal à 0.

Rappelez-vous, pour chacune des classes que vous écrivez, il est
important de définir une méthode −dealloc dans laquelle vous trans-
mettez un message release à chaque instance retenue par la l’objet
de la classe (en particulier les propriétés). Il faut invoquer dealloc sur
la superclasse.

Gestion des propriétés
Logiquement, s’il faut libérer les propriétés d’une instance
lorsqu’elle est détruite, c’est qu’elles ont été retenues auparavant.

84 3. Gestion de la mémoire

Attributs des propriétés

Souvenez-vous du fichier Convertisseur1ViewController.h :
#import <UIKit/UIKit.h>
@interface Convertisseur1ViewController : UIViewController {

IBOutlet UITextField *labelDollar;
IBOutlet UITextField *labelEuro;

}
@property (retain,nonatomic) UITextField *labelDollar;
@property (retain,nonatomic) UITextField *labelEuro;
- (IBAction) changeValue;
@end

Nous avons ajouté deux attributs à la clause @property : retain et
nonatomic. L’attribut retain indique que le manipulateur de la pro-
priété doit la retenir et qu’il doit libérer la valeur précédente. Le
principe du code du manipulateur généré par la clause
@synthesize est alors le suivant :
- (void) setLabelDollar: (UITextField *) textField {

[textField retain];
[labelDollar release];
labelDollar = textField;

}

Le tableau résume les attributs utilisables avec la clause @property.

Tableau 3.1 : Principaux attributs de la clause @property
Thème Attribut Rôle
Nom des méthodes générées getter=

nom-de-l-accesseur
Permet de définir un nom pour l’ac-
cesseur autre que celui par défaut.

setter=
nom-du-manipulateur

Permet de définir un nom pour le
manipulateur autre que celui par
défaut.

Propriété modifiable readwrite
(attribut par défaut)

@synthesize générera l’acces-
seur et le manipulateur.

readonly @synthesize générera seule-
ment l’accesseur.

Gestion de la mémoire Le com-
pilateur émet un avertissement
si l’un de ces attributs n’est pas
utilisé

assign Dans le manipulateur généré par
@synthesize, la nouvelle valeur
remplace simplement l’ancienne
valeur.

retain Dans le manipulateur généré par
@synthesize, la nouvelle valeur
est retenue et l’ancienne valeur
est libérée.

copy Dans le manipulateur généré par
@synthesize, la nouvelle valeur
est dupliquée et l’ancienne valeur
est libérée.

853.2. Éviter les fuites mémoire

Tableau 3.1 : Principaux attributs de la clause @property
Thème Attribut Rôle
Atomicité nonatomic Permet d’améliorer les performan-

ces dans une application n’utilisant
pas le parallélisme d’exécution
(multi-threading).

Recommandations d’emploi

nonatomic

Sur iPhone OS, il est recommandé d’employer l’attribut nonatomic,
sauf dans les cas rares où les instances de la classe sont susceptibles
d’être utilisées dans un contexte d’exécution concourante. Nous
n’étudierons pas ces situations dans le cadre de cet ouvrage.

retain

L’attribut retain est recommandé pour les propriétés qui sont des
instances de classe Objective-C. Il n’est pas utilisable pour les pro-
priétés de type scalaire.

Dans cet exemple, l’objet A possède l’objet B. La propriété B doit être
retenue (déclarée avec l’attribut retain). Les propriétés retenues doi-
vent être libérées dans la méthode −dealloc.

Un objet B peut appartenir simultanément à plusieurs autres objets.
Si chacun des propriétaires retient cet objet B, son compteur de
références sera égal au nombre de propriétaires. Cela garantit que
l’objet B sera détruit seulement lorsqu’il n’aura plus de propriétaires.

Figure 3.6 : Relation d’appartenance

86 3. Gestion de la mémoire

assign

L’attribut assign est employé avec des propriétés de type scalaire
(par opposition à Objet), c’est-à-dire les types fondamentaux du
langage C (int, float, double, char, struct, etc.) ou leur équivalent
Cocoa Touch (NSInteger, CGRect, etc.).

On l’utilise également avec des propriétés de type Objet lorsque l’on
souhaite qu’un objet connaisse un autre objet sans pour autant le
posséder. Dans l’exemple, l’objet A possède l’objet B, et donc la
propriété B de l’objet A est déclarée avec l’attribut retain. Il est alors
incorrect que l’objet B possède l’objet A. Par analogie, vous possédez
votre iPhone mais lui ne vous possède pas. Il vous connaît néan-
moins car vous avez saisi votre nom lorsque vous l’avez initialisé ; la
propriété A de l’objet B est déclarée avec l’attribut assign.

copy

L’attribut copy indique que le paramètre passé au manipulateur doit
être dupliqué avant d’être affecté à la propriété.
-(void)setString:(NSString *)newString {

if (string != newString) {
[string release];
string = [newString copy];

}
}

La méthode −copy est déclarée dans NSObject. Elle doit être définie
dans toutes les classes où l’on souhaite en disposer. Elle duplique
l’instance (et toutes ses propriétés) et renvoie un pointeur sur le
duplicata.

Figure 3.7 : Connaissance (Assign) n’est pas possession (retain)

873.2. Éviter les fuites mémoire

Responsabilités des objets

Règle de gestion de la mémoire

La règle qui permet d’éviter les zombis est simple.

Règle de gestion de la mémoire
Une classe d’objet qui obtient une instance par +alloc, par −copy (ou ses

dérivés) ou qui retient une instance (retain) est responsable de sa libération.
Les instances obtenues par un autre moyen ne doivent pas être libérées.

Dire qu’une classe est responsable de la libération des instances
obtenues, cela signifie que le programmeur doit veiller à envoyer le
message release aux variables référençant un objet avant de les
modifier ; c’est ce que nous avons fait dans la méthode −changeValue
de la classe Convertisseur1ViewController.

Quels sont les autres moyens d’obtenir une instance ? Il s’agit de
façon générale de la valeur de retour d’une méthode autre que +alloc
ou −copy. Vous voyez un exemple ? Un accesseur bien sûr, renvoie
une référence sur un objet sans l’intention d’en transférer la pro-
priété ; il appartient à celui qui le reçoit de le retenir s’il le souhaite.

Cycle de vie des objets

La durée de vie des objets pendant l’exécution d’une application est
très variable. Certains objets sont créés au lancement de l’applica-
tion et vont perdurer jusqu’à sa terminaison, par exemple les
champs de texte de notre Application Convertisseur1. D’autres ont
une vie extrêmement brève : l’instance textEuro de la méthode
−changeValue.

Dans le contexte de l’iPhone OS où la mémoire est une denrée
précieuse, il est recommandé de détruire les objets dès que possible.
Mais que se passe-t-il dans le cas où nous voulons écrire une mé-
thode qui crée un objet pour le retourner. Par exemple, nous voulons
ajouter à la classe Convertisseur1ViewController une méthode qui
retourne une chaîne de caractères contenant la valeur convertie en
euros.
- (NSString *) euroAsString {

NSString *textDollar = labelDollar.text;
float dollar = [textDollar floatValue];
float euro = dollar / 1.4908;
NSString *textEuro = [[NSString alloc]

initWithFormat: @"%.2f",euro];

88 3. Gestion de la mémoire

return textEuro;
}

Le problème ici est que nous violons la règle de gestion de la
mémoire : la méthode obtient une instance par +alloc mais ne se
préoccupe pas de sa libération ; si la méthode libérait cette instance,
elle ne pourrait pas la retourner à l’appelant.

Heureusement, il existe une autre façon de libérer les objets qui va
nous permettre de continuer à respecter la règle.

Pool d’autolibération

Il faut ajouter une toute petite instruction importante, avant de re-
tourner l’instance nouvellement créée :
- (NSString *) euroAsString {

NSString *textDollar = labelDollar.text;
float dollar = [textDollar floatValue];
float euro = dollar / 1.4908;
NSString *textEuro = [[NSString alloc]

initWithFormat: @"%.2f",euro];
[textEuro autorelease];
return textEuro;

}

Le message autorelease programme la libération pour plus tard.
Ainsi la méthode −euroAsString s’occupe de libérer l’instance créée ;
elle respecte donc la règle mais le fait de façon à se laisser le temps
de renvoyer la valeur attendue.

Et quand la libération sera-t-elle opérée ? En fait, les objets auxquels
ont transmet le message autorelease sont ajouté au pool d’autolibé-
ration (autorelease pool) courant. Lorsque le pool est détruit, tous les
objets qui y sont rattachés sont libérés.

Sous Cocoa Touch, un pool d’autolibération est créé au début de
chaque boucle d’événement et détruit à la fin de la boucle.

Boucle d’événement

Une application sur iPhone passe son temps à attendre des événe-
ments et à y répondre.

Lorsque l’utilisateur saisit des caractères sur le clavier ou lorsqu’il
touche un bouton, lorsque un appel est reçu, que l’appareil est
secoué, etc. Tous ces événements sont représentés par des instances
de la classe UIEvent par le système iPhone OS puis transmis à l’ap-
plication.

893.2. Éviter les fuites mémoire

Lorsque l’application reçoit un événement, elle débute une boucle
d’événement :

j création d’un pool d’autolibération ;

j détermination du contrôle (instance de la classe UIControl) dans
l’application qui peut traiter l’événement (par exemple un champ
de texte dans le cas de saisie de caractères) ;

j traitement par le contrôle d’une partie de l’événement (affichage
du caractère) et génération de l’action éventuellement attachée
suivie d’une transmission à la cible ;

j traitement par la cible de l’action (−changeValue dans notre applica-
tion) ;

j fin de traitement de l’événement par l’application (mise à jour de
l’affichage des autres vues) ;

j destruction du pool d’autolibération ;
j attente de l’événement suivant.

3.3. Améliorer Convertisseur1
Nous allons vérifier que notre application respecte la règle de ges-
tion de la mémoire.

La seule classe que nous avons modifiée est Convertisseur1
ViewController ; nous allons donc y concentrer nos efforts.

Instances manipulées
Commençons par identifier la liste des instances obtenues. Nous
allons dresser un tableau pour préciser comment nous obtenons
chaque instance et comment nous la libérons.

Tableau 3.2 : Liste des instances manipulées dans Convertisseur1ViewControlleur

Portée Instance Obtention Libération

Propriété labelDollar −retain dans le
manipulateur

labelEuro −retain dans le
manipulateur

−changeValue textDollar accesseur de text
sur labelDollar

Inutile car obtenu autrement que
par +alloc, −retain ou
−copy

textEuro +alloc −release

90 3. Gestion de la mémoire

Nous nous apercevons que nous ne gérons pas correctement les
propriétés. Il faut y remédier.

Mise en conformité avec la règle

Méthode -dealloc

Nous avons oublié de libérer les propriétés dans la méthode
−dealloc de la classe.

Sélectionnez le fichier Convertisseur1ViewController.m sous XCode.
La méthode −dealloc a déjà été préparée par XCode ; modifiez cette
méthode pour libérer les propriétés.
- (void)dealloc {

self.labelDollar = nil;
self.labelEuro = nil;
[super dealloc];

}

Libération des propriétés
Notez la façon dont nous libérons les propriétés, au lieu d’écrire

[labelDollar release];, nous utilisons la notation pointée qui est équiva-
lente à [self setLabelDollar:nil];. La propriété étant déclarée avec
l’attribut retain, le manipulateur commence par libérer la propriété
Actuelle ; c’est ce que nous souhaitons.

L’intérêt d’employer self.labelDollar = nil est double :

1 la propriété vaut nil au lieu de contenir une référence obsolète, ce qui va
éviter beaucoup de plantage ;

2 cette instruction fonctionne aussi bien quel que soit l’attribut (assign,
retain, copy) de la propriété, ce qui n’est pas le cas du message release
qui est une erreur de programmation si l’attribut est assign.

Ainsi le code de notre méthode −dealloc est insensible aux modifications
d’attribut que nous pourrions faire par la suite. Notre code est plus robuste ;
il est plus facile d’en assurer la maintenance.

Méthode -viewDidUnload

XCode a préparé d’autres méthodes dans la classe Convertisseur1
ViewController.

913.3. Améliorer Convertisseur1

Nous pouvons voir juste au-dessus de la méthode −dealloc une
méthode −viewDidUnload dans laquelle nous pouvons lire un com-
mentaire nous incitant à y libérer les outlets ; c’est exactement ce
que nous venons de faire dans la méthode −dealloc.

La méthode −viewDidUnLoad est appelée lorsque la Vue contrôlée par
l’instance du contrôleur de Vue vient d’être libérée. Cela se produit
quand la mémoire sature et que la Vue n’est pas affichée à l’écran ;
elle occupe inutilement de l’espace mémoire et pourra être rechar-
gée à partir du fichier NIB si l’utilisateur y revient. Cette caractéristi-
que est utile uniquement dans les applications multivues, où l’utili-
sateur peut passer d’une vue à l’autre ; les vues qui sortent de
l’affichage à un moment donné restent dans la mémoire afin de
pouvoir être réaffichées plus rapidement.

Notre application Convertisseur1 n’est pas multivue, pour l’instant,
mais prenons tout de suite de bonnes habitudes. Modifiez le code de
la méthode –viewDidUnload :
- (void)viewDidUnload {

// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;
self.labelDollar = nil;
self.labelEuro = nil;

}

Factorisation du code

Les méthodes −dealloc et −viewDidUnload se ressemblent beaucoup.

Figure 3.8 : XCode a préparé des méthodes

92 3. Gestion de la mémoire

C’est une bonne pratique de la programmation que d’éviter de telles
ressemblances ; elles rendent le code plus difficile à maintenir. L’éli-
mination de ces ressemblances s’appelle la factorisation du code.

Factorisation du code
La factorisation de code est l’élimination des séquences de code qui se

ressemblent. De telles ressemblances rendent le code difficile à maintenir et
sont sources d’erreurs.

Dans le cas présent, le code est facile à factoriser. Le rôle de
−viewDidUnload est de libérer les outlets, et nous voulons que les
outlets soient libérés lors de l’appel de −dealloc : il suffit d’appeler
−viewDidUnload depuis −dealloc. Modifiez le code de la classe
Convertisseur1ViewController.
- (void)viewDidUnload {

// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;
self.labelDollar = nil;
self.labelEuro = nil;

}

- (void)dealloc {
[self viewDidUnload]; // libère les outlets
[super dealloc];

}

Nous avons fait un excellent travail. Reconstruisez l’application et
testez-la. Jetez un coup d’œil avec l’instrument Leaks pour vérifier
que tout fonctionne, sans fuite mémoire provoquée par votre code.

Résumé

Résumons les recommandations importantes qui vous serviront
pour tous les développements :

j Souvenez-vous de la règle de gestion de la mémoire : une classe
propriétaire d’un objet est responsable de sa libération.

j Élaborez un tableau des instances manipulées pour chaque classe
que vous développez, cela vous aidera à vérifier que la règle est
respectée.

j Factorisez votre code, il y aura moins d’erreurs.
j Utilisez l’instrument Leaks pour vérifier qu’il n’y a pas de fuites

mémoire.

933.3. Améliorer Convertisseur1

Références obsolètes
Ce chapitre a traité jusqu’ici des zombis, des fuites mémoire, donc
des risques liés au manque de libération. Nous ne pouvons le clore
sans dire ce qui se passe si on libère trop. Que se passe-t-il si une
instance reçoit trop de message release ? Autrement dit, que se
passe-t-il si l’on envoie un message à un objet qui a été détruit (on
parle de référence obsolète) ? Essayons.

Référence obsolète
Une référence obsolète est une variable qui pointe sur une instance qui

n’existe plus.

Provoquer une référence obsolète

Modifiez la méthode −changeValue ; libérez l’instance textEuro avant
de l’affecter au champ de texte contenant le montant en euros.
- (IBAction) changeValue {

NSString *textDollar = labelDollar.text;
float dollar = [textDollar floatValue];
float euro = dollar / 1.4908;
NSString *textEuro = [[NSString alloc]

initWithFormat: @"%.2f",euro];
[textEuro release];
labelEuro.text = textEuro;

// [textEuro release];
}

Construisez l’application et testez-la. Inutile ici d’employer les instru-
ments.

L’application plante et on revient à XCode dès que l’on essaie de
saisir un caractère dans le champ de texte contenant le montant en
dollars. Ce plantage peut se manifester de différentes façons : l’affi-
chage peut simplement se figer ou un message d’erreur peut être
émis ou l’application quitte brutalement sans message, ou encore il
ne se passe plus rien (voir Figure 3.9).

Si un message est affiché dans une boîte de dialogue, vous pouvez
cliquer sur le bouton Rapport… pour avoir plus de détails sur l’erreur
(inutile d’envoyer le rapport à Apple) (voir Figure 3.10).

94 3. Gestion de la mémoire

Ce rapport indique qu’un accès mémoire illégal a été effectué :
EXC_BAD_ACCESS.

Figure 3.9 : Différentes façons de planter

Figure 3.10 : Rapport détaillé d’une référence obsolète

953.3. Améliorer Convertisseur1

Diagnostiquer l’erreur

Dans tous les cas, que le message s’affiche ou pas, nous pouvons
diagnostiquer l’erreur en utilisant le Debogueur de XCode (debug-
ger).

Sélectionnez la commande Debug - Breakpoints On du menu Run de
XCode ou utilisez la combinaison de touches z+X+[Y].

Testez votre application jusqu’au plantage. Si la fenêtre du débo-
gueur ne s’affiche pas sous XCode, sélectionnez la commande
Debugger du menu Run (z+X+[Y]). Une fois affichée, elle nous per-
met de visualiser l’état détaillé du programme au moment du plan-
tage. Sélectionnez la ligne numéro 2 dans la partie gauche de la
fenêtre pour voir ce qui s’est passé dans notre méthode −changeValue.

Le programme s’est arrêté alors qu’il essayait d’affecter l’instance
textEuro au champ de texte devant afficher la valeur en euros (partie
basse de la fenêtre). Nous voyons aussi et surtout, sur la partie droite
de la fenêtre, que la variable textEuro présente une valeur invalide

(out of scope). Cette variable pointe sur une instance qui n’existe pas
puisqu’elle vient d’être détruite dans la ligne de code précédente.

Figure 3.11 : État du programme lors du plantage

96 3. Gestion de la mémoire

Si la barre d’état ne contient pas de message d’erreur, cliquez
sur le bouton Continue de la barre d’outils. Vous pouvez alors

lire le message "GDB: Program received signal: EXC_BAD_ACCESS"
dans la ligne d’état en bas de la fenêtre.

Nous venons de montrer que l’utilisation d’une référence obsolète
provoquait généralement le plantage de l’application associé à
l’émission d’un signal EXC_BAD_ACCESS. Nous avons vu également
comment utiliser le débogueur pour localiser l’instruction ayant pro-
voqué ce plantage et visualiser l’état des variables à ce moment-là.

La fenêtre du débogueur

Nous allons terminer par quelques explications concernant la fenêtre
du débogueur qui est composée de quatre parties :

j une barre d’outils en haut, que nous apprendrons bientôt à utili-
ser ;

j l’état de la pile dans la partie gauche : les fonctions de notre
application y apparaissent en couleur foncée, signe que nous
pouvons en visualiser le code source ;

j le code source dans la partie basse ; lorsque nous sélectionnons
une fonction de notre application dans l’état de la pile, ou le code
machine lorsque nous sélectionnons une fonction de l’un des
frameworks de Cocoa Touch ;

j l’état des variables de la fonction sélectionnée dans la partie
droite. Là aussi, cet état est facile à interpréter uniquement si nous
sélectionnons une fonction écrite dans notre application ;

j une barre d’état en bas de la fenêtre.

Le code source et l’état des variables sont lisibles dans le débogueur
uniquement pour les fonctions qui sont compilées en mode Debug.
Ce mode de compilation indique que le code exécutable doit être
enrichi pour permettre au débogueur d’afficher ces informations.
Lorsque vous livrerez votre application sur l’AppStore, vous pourrez
les supprimer et compiler pour cela en mode Release.

Pour changer le mode de compilation, utilisez le sous-menu Set

Active Build Configuration du menu Project sous XCode (voir Fi-
gure 3.12).

Vous pouvez aussi utiliser le menu Overview de la barre d’outils de
XCode.

973.3. Améliorer Convertisseur1

3.4. Check-list
Nous avons vu dans ce chapitre comment gérer la mémoire, res-
source précieuse dans le contexte de l’iPhone : la règle de gestion de
la mémoire ainsi qu’une méthode pour s’assurer que la règle est
appliquée dans chacune de nos classes.

Nous avons également examiné les 2 erreurs les plus courantes et la
façon de les éliminer :

j les fuites mémoire et la chasse aux zombis avec l’instrument
Leaks ;

j les références obsolètes et leur localisation avec le Débogueur.

Ce parcours a été l’occasion d’approfondir quelques éléments de la
programmation sur iPhone :

j le compteur de références et les messages –retain et –release ;

j les attributs de la clause @property ;
j le pool d’autolibération et le message –autorelease ;
j le traitement des demandes de libération mémoire dans les

contrôleurs de vues dans la méthode –viewDidUnload ;
j le fonctionnement de la boucle d’événement ;
j le principe de factorisation du code.

Figure 3.12 : Changement du mode de
compilation sous XCode

98 3. Gestion de la mémoire

C
H

A
P

IT
R

E
4

MOTIFS
FONDAMENTAUX

Mécanisme de délégation ... 101
Améliorer Convertisseur1 ... 115
Motif MVC ... 133
Challenges .. 134
Check-list ... 140

99

Nous allons faire connaissance avec quelques motifs de conception-
(design patterns) fondamentaux de la programmation sur iPhone :
la délégation, le motif Modèle-Vue-Contrôleur (MVC, Model-View-
Controller), le codage par valeur de clé (KVC et Key Value Coding). Ces
mécanismes permettront d’améliorer notre convertisseur de mon-
naies et d’aboutir à une application de niveau professionnel. Prenons
en compte les éléments suivants :

j Nous voulons interdire la frappe de lettres.

j Nous souhaitons pouvoir faire disparaître le clavier.
j Nous allons vraisemblablement trouver d’autres améliorations.

4.1. Mécanisme de délégation

Délégué
Commençons par interdire à l’utilisateur de frapper des lettres.

Nous voulons modifier le comportement de l’objet UITextField vis-à-
vis de l’utilisateur. La manière la plus directe d’y parvenir serait de
modifier l’objet lui-même, ou de créer un autre objet nommé
UINumericField par exemple – qui hérite de UITextField. Il faudrait
ensuite réécrire quelques méthodes dérivées de celles de UITextField
pour donner à UINumericField le comportement souhaité. Tout cela
paraît compliqué. La dérivation de classe est en effet une opération
délicate qui nécessite une très bonne compréhension du fonctionne-
ment de la classe mère.

La délégation permet de modifier le comportement d’un objet sans
avoir à le modifier ni le dériver. Les objets UITextField disposent d’un
outlet delegate (objet délégué) configurable sous Interface Builder
(voir Figure 4.1).

L’objet délégué reçoit un message avant ou après chaque opération
effectuée par son propriétaire :

j pour demander l’autorisation au délégué d’effectuer cette opéra-
tion ;

j pour l’informer et lui permettre de compléter l’opération.

De façon générale, une information est transmise par un message
dont la méthode est fonction de l’opération, qui ne retourne pas de
valeur et prend comme unique paramètre une référence à l’objet
effectuant l’opération. Par exemple −(void) textFieldDidBegin

1014.1. Mécanisme de délégation

Editing: (UITextField *)textField pour notifier au délégué que le
champ de texte vient d’entrer en mode Édition.

Une demande d’autorisation est très souvent un message qui ren-
voie une valeur de type BOOL. Si le délégué autorise l’opération, il
renvoie YES ; autrement, il renvoie NO. Par exemple − (BOOL)
textFieldShouldBeginEditing: (UITextField *)textField pour deman-
der au délégué si le champ de texte peut entrer en mode Édition.

Type BOOL
BOOL est un type prédéfini dans Objective-C qui représente une valeur

logique ou booléenne. Les deux seules valeurs que peut prendre une variable
de type BOOL sont YES et NO.

Déléguer le champ dollar
Nous allons apporter une première amélioration dans Convertisseur1
que nous perfectionnerons par la suite. Notre objectif sera de limiter
la frappe aux caractères numériques dans le champ de texte conte-
nant la valeur en dollars.

Figure 4.1 : Outlet delegate d’un objet UITextField

102 4. Motifs fondamentaux

Création du délégué

1 Ouvrez le fichier Convertisseur1ViewController.xib sous Interface
Builder et connectez l’outlet delegate du champ de texte à l’objet
File’s Owner.

Le contrôleur de vue comme délégué
Il est courant de définir le contrôleur de vue comme délégué des objets

contenus dans cette vue principale, surtout dans les applications simples.

2 Sous XCode, modifiez le fichier Convertisseur1ViewController.h
pour indiquer que cette classe est aussi un délégué de champ de
texte :

#import <UIKit/UIKit.h>
@interface Convertisseur1ViewController :

UIViewController <UITextFieldDelegate> {
IBOutlet UITextField *labelDollar;
IBOutlet UITextField *labelEuro;

}
@property (retain,nonatomic) UITextField *labelDollar;
@property (retain,nonatomic) UITextField *labelEuro;
- (IBAction) changeValue;
@end

3 Ajoutez la définition de la méthode suivante dans le fichier
Convertisseur1ViewController.m :

- (BOOL)textField:(UITextField *)textField

Figure 4.2 : Définir Convertisseur1ViewController comme délégué du champ dollar

1034.1. Mécanisme de délégation

shouldChangeCharactersInRange:(NSRange)range
replacementString:(NSString *)string {

return [[NSCharacterSet decimalDigitCharacterSet]
isSupersetOfSet:[NSCharacterSet

characterSetWithCharactersInString:string]];
}

La méthode −textField:shouldChangeCharactersInRange:replacement
String est invoquée sur le délégué chaque fois que l’utilisateur mo-
difie le contenu du champ de texte. Le paramètre range (intervalle)
indique à quel endroit dans le texte existant la modification sera
effectuée et éventuellement quels sont les caractères qui seront
supprimés. Le paramètre string contient la chaîne de caractères que
l’utilisateur souhaite insérer ou ajouter au champ de texte.

Classe NSCharacterSet

Nous en profitons pour faire connaissance avec la classe permettant
de manipuler des ensembles de caractères, NSCharacterSet, et trois
de ses méthodes :

j +decimalDigitCharacterSet construit l’ensemble de caractères
formé des chiffres de 0 à 9.

j +characterSetWithCharactersInString: construit l’ensemble des ca-
ractères inclus dans la chaîne de caractères passée en paramètre.

j −isSuperSetOf: retourne YES si l’ensemble passé en paramètre est
inclus dans l’ensemble récepteur.

La démarche pour vérifier que l’utilisateur saisit uniquement des
chiffres est la suivante :

1 Constituez un ensemble de caractères composé des caractères
saisis.

2 Constituez l’ensemble des caractères numériques (chiffres).

3 Vérifiez que le premier ensemble est inclus dans le second.

Taille de la saisie de caractères
On pourrait simplifier l’écriture de cette méthode de délégué en supposant

que l’utilisateur ne peut saisir qu’un caractère à la fois ; il suffirait de tester si
ce caractère est compris entre 0 et 9. Malheureusement, cette simplification
serait erronée car l’utilisateur peut coller un texte préalablement copié et
donc "saisir" plusieurs caractères en une fois dans un champ de texte.

104 4. Motifs fondamentaux

4 Reconstruisez l’application et testez-la sur le simulateur. Vérifiez
que vous ne pouvez plus saisir de lettres ni de signes de ponctua-
tion. Notre délégué fonctionne.

Délégué pour un champ de texte
Dans la section précédente, nous avons défini l’objet Convertisseur1
ViewController comme délégué du champ de texte contenant le mon-
tant en dollars, puis nous y avons ajouté une méthode. Nous allons
détailler ici toutes les méthodes que l’on pourrait écrire au besoin.

Méthodes du délégué

Son délégué est interrogé par un champ de texte lors des situations
suivantes pour savoir si :

j l’édition peut commencer ;

j l’édition peut se terminer, c’est l’occasion de vérifier la validité du
texte saisi par l’utilisateur et d’alerter ce dernier si le champ n’est
pas correctement saisi ;

j le texte peut être modifié lors de chaque opération de saisie, c’est
cette situation que nous venons d’utiliser ;

j le texte peut être effacé en début de saisie ;

Figure 4.3 : Saisie de plusieurs caractères

1054.1. Mécanisme de délégation

j l’action consécutive à la frappe de la touche [Ä] est autorisée.

Le délégué est également informé dans les situations suivantes ; cela
lui permet ainsi d’effectuer des actions complémentaires que ne
saurait pas faire le champ de texte :

j L’édition vient de commencer.

j L’édition vient de se terminer.

Le tableau ci-après résume les messages émis vers le délégué par le
champ de texte dans chacune de ces situations. Pour chaque mes-
sage, la déclaration précise de la méthode est indiquée.

Tableau 4.1 : Méthodes du protocole UITextFieldDelegate

Signature de la méthode Objet de la méthode

− (BOOL)textFieldShouldBegin
Editing:(UITextField *)textField

Demande au délégué si l’édition du champ de
texte peut commencer.

− (void)textFieldDidBegin
Editing:(UITextField *)textField

Informe le délégué que l’édition du champ de
texte vient de commencer.

− (BOOL)textFieldShouldEnd
Editing:(UITextField *)textField

Demande au délégué si l’édition du champ de
texte peut se terminer.

− (void)textFieldDidEnd
Editing:(UITextField *)textField

Informe le délégué que l’édition du champ de
texte vient de se terminer.

− (BOOL)textField:(UITextField *)
textField shouldChangeCharacter-
sInRange:(NSRange)range replace-
mentString:(NSString *)string

Demande au délégué si le texte peut être
modifié.

− (BOOL)textFieldShouldClear:
(UITextField *)textField

Demande au délégué si le contenu du champ
de texte peut être effacé.

− (BOOL)textFieldShouldReturn:
(UITextField *)textField

Demande au délégué s’il faut utiliser le com-
portement par défaut de la touche [Ä] qui
vient d’être frappée.

Toutes les méthodes prennent un paramètre textField. Le champ de
texte communique systématiquement une référence sur lui-même à
son délégué. Cela permet à un objet d’être le délégué de plusieurs
autres objets ; il sait qui lui transmet un message.

Méthodes optionnelles

Dans notre classe Convertisseur1ViewController, nous avons écrit
seulement l’une des 7 méthodes définies pour un délégué de champ
de texte. Voici une caractéristique intéressante du langage
Objective-C : dans de nombreux autres langages, nous aurions été
obligés d’écrire les 7 méthodes dont 6 qui ne faisaient rien.

106 4. Motifs fondamentaux

Comment fait le champ de texte pour savoir s’il peut ou non émettre
un message vers son délégué ?

Appel de méthode inexistante
L’appel d’une méthode inexistante sur un objet provoque généralement le

plantage de l’application et la levée de l’exception EXC_BAD_INSTRUCTION.

respondsToSelector

La classe NSObject, de laquelle dérive directement ou indirectement
toutes les autres classes, définit une méthode respondsToSelector:
disponible pour tous les objets.
- (BOOL) respondsToSelector:(SEL)aSelector

Le type SEL est un sélecteur, c’est-à-dire un pointeur sur une mé-
thode. La primitive @selector d’Objective-C permet d’obtenir un sé-
lecteur à partir du nom complet d’une méthode (sans les types ni les
noms de paramètres). Ainsi le champ de texte peut interroger le
délégué pour savoir s’il répond à une méthode avant de lui trans-
mettre un message.
SEL aSelector = @selector(
textField:shouldChangeCharactersInRange:replacementString:);
if ([delegate respondsToSelector:aSelector]) …

Déclarer un protocole
Adopter un protocole

Souvenez-vous de la petite modification que nous avons effectuée
dans le fichier Convertisseur1ViewController.h :
@interface Convertisseur1ViewController :

UIViewController <UITextFieldDelegate> {

L’ajout de <UITextFieldDelegate> permet de préciser que la classe que
nous déclarons adopte le protocole UITextFieldDelegate. Nous pou-
vons spécifier une liste de protocoles entre les crochets, en les
séparant par une virgule.

Protocole
Un protocole est une liste de déclarations de méthodes, certaines requises

d’autres optionnelles. Cette liste n’est pas attachée a priori à une classe
particulière. Il appartient à la classe qui adopte un protocole de définir toutes
les méthodes requises et les méthodes optionnelles nécessaires.

Les protocoles Objective-C sont équivalents aux interfaces Java.

1074.1. Mécanisme de délégation

Les frameworks de Cocoa Touch définissent un protocole pour cha-
que type de délégué. Par exemple, la classe UITextField a besoin d’un
objet délégué qui adopte le protocole UITextFieldDelegate.

Lorsque vous définissez un objet qui doit être un délégué, n’oubliez
pas d’indiquer le protocole qu’il adopte.

Définir un protocole

Vous pouvez définir vos propres protocoles à l’aide des mots-clés
@protocol, @optional et @end :
@protocol nom-du-protocole
// Déclarations des méthodes requises
@optional
// Déclarations des méthodes optionnelles
@end

Par exemple, le protocole UITextFieldDelegate pourrait être déclaré
comme suit :
@protocol UITextFieldDelegate
@optional
- (BOOL)textFieldShouldBeginEditing:(UITextField*)textField;
- (void)textFieldDidBeginEditing:(UITextField *)textField;
- (BOOL)textFieldShouldEndEditing:(UITextField *)textField;
- (void)textFieldDidEndEditing:(UITextField *)textField;
- (BOOL)textField:(UITextField *)textField

shouldChangeCharactersInRange:(NSRange)range
replacementString:(NSString *)string;

- (BOOL)textFieldShouldClear:(UITextField *)textField;
- (BOOL)textFieldShouldReturn:(UITextField *)textField;
@end

Lancement de l’application

Les autres délégués

Nous avons détaillé le protocole du délégué pour un champ de texte.
Les frameworks de Cocoa Touch proposent une quarantaine de pro-
tocoles de délégué ; tous portent un nom qui se termine par Delegate.

Il est important de bien comprendre le mécanisme de délégation. En
effet, ce sont des objets délégués que le programmeur Cocoa Touch
créera pour modifier le comportement des objets standard fournis
par Apple : vues, contrôleurs, etc.

108 4. Motifs fondamentaux

Vous êtes-vous aperçu que nous avons utilisé un autre délégué ?
Celui de la classe UIApplication. Nous allons examiner dans cette
section ce qui se passe lorsqu’on lance l’application. Pour cela, nous
ferons connaissance avec le protocole UIApplicationDelegate.

UIApplication

Regardez sous XCode le contenu du fichier main.m :
#import <UIKit/UIKit.h>
int main(int argc, char *argv[]) {

NSAutoreleasePool * pool =
[[NSAutoreleasePool alloc] init];

int retVal = UIApplicationMain(argc, argv, nil, nil);
[pool release];
return retVal;

}

Vous n’aurez généralement pas à modifier ce code mais il est inté-
ressant de comprendre le rôle de cette fonction. Sous un système de
la famille UNIX, tel que Linux, iPhone OS ou MacOSX, toute appli-
cation doit contenir une fonction main appelée lors de son lancement.
Cette fonction réalise les opérations suivantes :

j création d’un pool d’autolibération principal pour l’application
l’application (rappelez-vous qu’il sert à libérer les instances dont la
durée de vie est limitée à une boucle d’événements) ;

j appel de la fonction UIApplicationMain qui va effectuer tout le tra-
vail :

création d’un objet de la classe UIApplication ;

chargement du fichier MainWindow.xib dont l’objet UIApplication
sera propriétaire ;

création de la boucle d’événement ;

lancement de la boucle d’événement tant que l’application n’a
pas été quittée ;

fonction terminée lorsque l’application est quittée.

j libération du pool d’autolibération puisque l’application se ter-
mine ;

j Fin de l’application.

MainWindow.nib

Le fichier MainWindow.xib est donc chargé au lancement de l’appli-
cation. Jetons un coup d’œil dans ce fichier à l’aide d’Interface
Builder.

1094.1. Mécanisme de délégation

Nom du fichier NIB principal
Le nom du fichier NIB principal est la valeur de la propriété Main nib file

base name du fichier Info.plist de l’application. XCode le définit par défaut à
MainWindow, il est possible de le changer.

Le fichier NIB principal contient 5 objets :

j Le propriétaire (File’s Owner) comme dans tout fichier NIB. Il est ici
de type UIApplication puisque il doit être chargé par l’application.

j Le premier répondeur (First Responder) également comme dans
tout fichier NIB. Cet objet représente la vue de l’interface en cours
d’édition par l’utilisateur. On utilise cet objet comme cible pour
des actions que l’on veut transmettre à cette vue.

j Un objet Window de type UIWindow. Cet objet est la fenêtre de
l’application dans laquelle toutes les vues seront affichées.

j Convertisseur1 App Delegate, de type Convertisseur1AppDelegate,
que nous allons examiner.

j Convertisseur1 View Controller de type Convertisseur1View
Controller que nous connaissons déjà car nous avons modifié cette
classe.

Toujours sous Interface Builder, examinez les connexions entre ces
différents objets (voir Figure 4.5).

Au chargement du fichier MainWindow.xib, les objets du fichier sont
créés et reliés entre eux en utilisant les outlets (voir Figure 4.6).

Figure 4.4 : Contenu de
MainWindow.nib

110 4. Motifs fondamentaux

Le délégué de l’application est créé et lié à l’application à ce moment-
là.

Délégué d’application

Nous connaissons le contrôleur de vue Convertisseur1ViewController.
Faisons connaissance au délégué d’application que XCode a créé
pour nous.

Regardez le contenu du fichier Convertisseur1AppDelegate.h :
#import <UIKit/UIKit.h>
@class Convertisseur1ViewController;
@interface Convertisseur1AppDelegate : NSObject

<UIApplicationDelegate> {
UIWindow *window;
Convertisseur1ViewController *viewController;

Figure 4.5 : Connexions dans MainWindow.xib

Figure 4.6 : Structure d’objets créée au chargement de MainWindow.xib

1114.1. Mécanisme de délégation

}
@property (nonatomic, retain) IBOutlet UIWindow *window;
@property (nonatomic, retain) IBOutlet

Convertisseur1ViewController *viewController;
@end

Seule l’instruction @class est nouvelle. Nous savons déjà interpréter
les autres lignes de code :

j Une classe Convertisseur1AppDelegate est déclarée, qui hérite de
NSObject et adopte le protocole UIApplicationDelegate ; il s’agit d’un
délégué d’application.

j Les outlets window et viewController sont déclarés ; ce sont ceux
utilisés dans le fichier MainWindow.xib pour relier cette classe aux
autres objets du fichier NIB.

@class
La clause @class permet d’identifier un nom comme étant celui d’une

classe. Ce nom pourra ensuite être utilisé pour déclarer des objets de cette
classe.

On utilise @class nom−de−la−classe; lorsqu’on veut simplement déclarer
des objets de cette classe, sans les utiliser. On emploie #import
"nom−de−la−classe.h" lorsqu’on veut utiliser des objets de cette classe, leur
transmettre des messages.

Où en sommes-nous dans le processus de lancement de l’applica-
tion ?

j Un pool d’autolibération a été créé.

j Un objet UIApplication a été créé et il est activé.
j Le fichier MainWindow.nib a été chargé et une structure d’objets a

été créée qui comprend :

une fenêtre (window) pour l’application ;

un délégué (Convertisseur1AppDelegate) ;

un contrôleur de vue (Convertisseur1ViewController).

L’application est sur le point de lancer la boucle d’événement. Aupa-
ravant, elle va informer son délégué que le lancement vient de se
terminer en émettant le message applicationDidFinishLaunching.

Examinons le code source du délégué d’application, fichier
Convertisseur1AppDelegate.m :

112 4. Motifs fondamentaux

#import "Convertisseur1AppDelegate.h"
#import "Convertisseur1ViewController.h"
@implementation Convertisseur1AppDelegate
@synthesize window;
@synthesize viewController;
- (void)applicationDidFinishLaunching:(UIApplication *)

application {
// Override point for customization after app launch
[window addSubview:viewController.view];
[window makeKeyAndVisible];

}
- (void)dealloc {

[viewController release];
[window release];
[super dealloc];

}
@end

Le délégué affiche la vue contrôlée par notre instance de
Convertisseur1ViewController puis la fenêtre est affichée et activée sur
l’écran de l’appareil. Qu’est-ce qui est affiché à l’écran précisément ?
Examinez le contrôleur de vue dans le fichier MainWindow.xib sous
Interface Builder.

Figure 4.7 : Convertisseur1ViewController dans MainWindow.xib

1134.1. Mécanisme de délégation

Le chargement du fichier NIB MainWindow.xib crée un objet
Convertisseur1ViewController associé au fichier NIB Convertisseur1
ViewController.xib. C’est l’utilisation de la propriété view du contrô-
leur de vue qui provoque le chargement du fichier NIB associé.

Structurer une application
Ce principe peut être étendu à la plupart des applications sur iPhone
OS :

j L’application charge un fichier NIB qui contient :

une fenêtre et éventuellement des vues ;

généralement un délégué pour le propriétaire du fichier NIB ;

un ou plusieurs contrôleurs de vue.

j Chaque contrôleur de vue possède lui-même un fichier NIB qui
contient :

une hiérarchie de vue à l’intérieur de sa vue principale ;

à son tour, un ou plusieurs contrôleurs de vue ;

éventuellement d’autres objets.

j Chaque contrôleur peut également posséder un fichier NIB, etc.

Figure 4.8 : Structuration classique d’une application

114 4. Motifs fondamentaux

4.2. Améliorer Convertisseur1

Nous avons réussi à mettre en œuvre le délégué pour limiter la
frappe aux seuls chiffres mais le résultat n’est pas très satisfaisant,
en tout cas loin d’une application professionnelle :

j Il n’y a plus moyen de saisir des chiffres après la virgule.

j Ce n’est même pas une virgule, c’est un point qui s’affiche pour
séparer les centimes.

j Toujours pas moyen de se débarrasser du clavier qui reste bête-
ment affiché tout le temps.

j Le nom de l’application ne s’affiche pas en entier sous le logo.

j La moindre des choses serait de pouvoir faire les conversions
dans les deux sens.

Nous avons du pain sur la planche ; ne traînons pas.

Retrouver la virgule
Si nous voulons pouvoir saisir un point décimal ou une virgule, il faut
autoriser la frappe de l’un de ces caractères dans le délégué du
champ de texte. Ce n’est pas si simple ; on pourrait alors saisir
plusieurs virgules, ce qui n’est pas autorisé pour représenter un
nombre.

Il serait plus simple de vérifier au fur et à mesure de la saisie que la
chaîne de caractères obtenue est la représentation d’un nombre. Et
pour le vérifier, le plus simple est de convertir cette chaîne en nom-
bre. Puisqu’il faut économiser les ressources précieuses de l’iPhone,
évitez d’effectuer cette conversion une fois dans la méthode du
délégué et juste après dans la méthode changeValue.

Nous allons créer un objet dont le rôle sera d’effectuer cette vérifica-
tion, la conversion en nombre et la conversion en dollars.

Objet Convertisseur

1 Créez un nouveau fichier de type classe Objective-C sous XCode,
en sélectionnant la commande New File… du menu File (X+[N]).
Nommez-le Convertisseur.m et cochez la case Also create "Conver-
tisseur.h" (voir Figure 4.9).

1154.2. Améliorer Convertisseur1

2 Modifiez le fichier Convertisseur.h comme suit :

#import <Foundation/Foundation.h>
@interface Convertisseur : NSObject {

float euro;
float dollar;
float dollarsPourUnEuro;

}
@property (nonatomic,assign) float euro;
@property (nonatomic,assign) float dollar;
@property (nonatomic,assign) float dollarsPourUnEuro;
- (BOOL) setDollarWithString: (NSString *) string;
@end

Notre intention est que la méthode −setDollarWithString: retourne
YES si la chaîne string représente un montant en dollars. Dans ce cas,
il est aussi converti en euros. Si ce n’est pas le cas, la méthode doit
retourner NO et les valeurs euro et dollar ne sont pas modifiées.

Il faudra aussi initialiser la propriété dollarsPourUnEuro quelque part ;
dans la méthode −init de la classe, c’est le plus simple.

3 Modifiez le fichier Convertisseur.m :

#import "Convertisseur.h"
@implementation Convertisseur

@synthesize euro;
@synthesize dollar;
@synthesize dollarsPourUnEuro;

Figure 4.9 : Créer une classe Objective-C

116 4. Motifs fondamentaux

-(id) init {
if (self = [super init]) {

self.dollarsPourUnEuro = 1.4908;
}
return self;

}

-(BOOL) setDollarWithString:(NSString *)string {
float valeur;
BOOL result;
NSScanner *scan = [NSScanner

localizedScannerWithString:string];
[scan scanFloat:&valeur];
result = [scan isAtEnd];
if (result) self.dollar = valeur;
return result;

}

-(void) setDollar:(float)newValue {
dollar = newValue;
euro = newValue / dollarsPourUnEuro;

}

@end

Classe NSScanner

Nous rencontrons la classe NSScanner pour la première fois. C’est une
chaîne de caractères à laquelle on a ajouté un curseur (propriété
scanLocation) initialisé à 0 à la création d’une instance. Chaque fois
qu’une instance de NSScanner reçoit un message de conversion (par
exemple −scanFloat:), le curseur progresse jusqu’au prochain carac-
tère qui ne peut participer à la conversion. Une conversion est
effectuée à partir de la position du curseur. Ainsi, la chaîne passée en
paramètre à la méthode −setDollarWithString: est un nombre si le
curseur est à la fin de la chaîne après la conversion.

Nous avons ici une petite particularité : les méthodes de conversion
telle que −scanFloat: retourne 2 valeurs :

j La valeur de retour est un BOOL qui indique si la conversion est
réussie (que nous n’utilisons pas ici).

j Une valeur convertie au format souhaité (float pour −scanFloat:).

Le paramètre passé à −scanFloat: est &valeur et pas simplement
valeur. Comme nous souhaitons récupérer une valeur dans la varia-
ble valeur, ce n’est pas sa valeur qu’il faut passer mais l’adresse de la
variable. Nous utilisons donc &, l’opérateur de référencement du
langage C.

1174.2. Améliorer Convertisseur1

Opérateur de référencement
L’adresse d’une variable s’obtient en utilisant l’opérateur & juste avant le

nom de la variable.

Déclarer une propriété Convertisseur

Nous avons créé une classe Convertisseur. Pour l’utiliser, il faut en
déclarer une instance dans un des objets de notre application. Le
plus logique est de la créer dans la classe Convertisseur1
ViewController, c’est là que nous en aurons besoin. Nous allons donc
ajouter une propriété dans notre contrôleur de vue.

1 Modifiez le fichier Convertisseur1ViewController.h :

#import <UIKit/UIKit.h>
@class Convertisseur;

@interface Convertisseur1ViewController : UIViewController
<UITextFieldDelegate> {

IBOutlet UITextField *labelDollar;
IBOutlet UITextField *labelEuro;
Convertisseur *convertisseur;

}
@property (retain,nonatomic) UITextField *labelDollar;
@property (retain,nonatomic) UITextField *labelEuro;
@property (retain,nonatomic) Convertisseur *convertisseur;

- (IBAction) changeValue;

@end

2 Dans le fichier Convertisseur1ViewController.m, modifiez les mé-
thodes −viewDidLoad (enlevez les commentaires /* et */) et
–viewDidUnload :

// Implement viewDidLoad to do additional setup after
// loading the view, typically from a nib.
- (void)viewDidLoad {

[super viewDidLoad];
convertisseur = [[Convertisseur alloc] init];

}
- (void)viewDidUnload {

// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;
self.labelDollar = nil;
self.labelEuro = nil;
self.convertisseur = nil;

}

118 4. Motifs fondamentaux

3 N’oubliez pas d’ajouter #import "Convertisseur.h" en tête du fichier
et @synthesize convertisseur; avec les autres synthétiseurs de
propriété.

La méthode −viewDidLoad est invoquée à la fin du chargement du
fichier NIB du contrôleur de vue. C’est le bon endroit pour effectuer
les initialisations du contrôleur ; on est certain que toutes les vues
sont créées et que les outlets sont utilisables si besoin.

Modifier le délégué

Modifiez la méthode de délégué dans le fichier Convertisseur1
ViewController.m :
- (BOOL)textField:(UITextField *)textField

shouldChangeCharactersInRange:(NSRange)range
replacementString:(NSString *)string {

NSString *resultingString = [textField.text
stringByReplacingCharactersInRange:range

withString:string];
return [self.convertisseur

setDollarWithString:resultingString];
}

Nous constituons une chaîne de caractères resultingString dont la
valeur est celle qu’aura le champ de texte après lui avoir appliqué la
modification demandée par l’utilisateur. Ensuite, nous utilisons notre
instance de Convertisseur pour vérifier que l’on peut effectuer la
conversion.

Modifier l’action

1 Modifiez la méthode changeValue dans le fichier Convertisseur1
ViewController.m. Cette méthode devient beaucoup plus simple
car le travail de conversion est maintenant effectué par la classe
Convertisseur :

- (IBAction) changeValue {
NSString *textEuro = [NSString localizedStringWithFormat:

@"%.2f",self.convertisseur.euro];
labelEuro.text = textEuro;

}

textEuro n’est plus libéré
L’instance textEuro n’étant plus créée par la méthode +alloc, nous sa-

vons qu’elle est dans le pool d’autolibération. Il ne faut donc pas la libérer
explicitement, sauf si nous la retenions, ce qui n’est pas le cas ici.

2 Reconstruisez et testez l’application.

1194.2. Améliorer Convertisseur1

Localiser l’application

Localiser les montants

Vous avez remarqué deux des nouvelles méthodes que nous avons
utilisées :

j +localizedScannerWithString: de la classe NSScanner ;

j +localizedStringWithFormat: de la classe NSString.

Chaîne localisée
Une chaîne de caractères localisée est un texte dont le format précis

dépend des réglages régionaux de l’appareil. Les textes localisés concernent
les dates, les heures, les numéros de téléphone et les nombres à virgule. Le
séparateur décimal est une virgule en France et un point dans les pays
anglo-saxons.

Pour vérifier si la localisation des montants en euros et en dollars
fonctionne, nous allons modifier les réglages du simulateur d’iPhone.

1 Lancez l’application Settings (ou Réglages si le simulateur est réglé
en français).

Figure 4.10 : Application Settings sur le simulateur

120 4. Motifs fondamentaux

2 Choisissez Général puis International. L’option Format

régional (Region Format) vous permet de changer le paramètre
régional du simulateur. Vous pouvez en profiter aussi pour chan-
ger la langue de l’iPhone OS.

3 Testez l’application dans les formats régionaux France et
États-Unis pour vérifier que le séparateur des nombres décimaux
est une virgule ou un point suivant le cas.

Figure 4.11 : Localisation du simulateur

Figure 4.12 : Test pour les régions États-Unis et France

1214.2. Améliorer Convertisseur1

Localiser l’interface utilisateur

Nous venons de voir comment prendre en compte les paramètres régio-
naux pour mettre en forme les nombres ; pensez aux méthodes conte-
nant le terme localized dans leur nom. Pour localiser vraiment l’ap-
plication, il faut aussi que l’interface utilisateur soit présentée dans
sa langue. Nous localiserons donc le fichier NIB de la vue principale.

1 Sous XCode, sélectionnez le fichier Convertisseur1View
Controller.xib et cliquez du bouton droit pour afficher le menu
contextuel. Sélectionnez la commande Get Info.

2 Dans la fenêtre d’informations qui s’affiche, cliquez sur le bouton
Make File Localizable.

Figure 4.13 : Afficher les informations relatives au fichier NIB

Figure 4.14 : Créer une version localisée du
fichier NIB

122 4. Motifs fondamentaux

La fenêtre change de titre car nous venons de créer un groupe
localisé.

3 Dans l’onglet General, cliquez sur le bouton Add Localization pour
créer une version française (French) en plus de la version anglaise
(English) existante.

Comme notre version actuelle est en français, la version française du
fichier NIB est correcte et il faut modifier la version anglaise.

4 Fermez la fenêtre d’information et sous XCode, double-cliquez sur
la version anglaise du fichier Convertisseur1ViewController.xib (En-
glish) pour l’ouvrir sous Interface Builder.

Interface Builder est muni d’un outil très pratique pour réaliser les
traductions.

5 Activez la commande Strings du menu Tools. Une fenêtre s’affiche
qui présente toutes les chaînes de caractères contenues dans le
fichier NIB.

6 Saisissez les traductions dans la colonne Value pour chacune des
chaînes de caractères : Currency Converter, US $ amount et Euros
amount.

Figure 4.15 : Le groupe localisé
contient une version française et une
version anglaise

1234.2. Améliorer Convertisseur1

7 Enregistrez le fichier NIB et revenez sous XCode. Avant de recons-
truire l’application, il faut nettoyer les constructions précédentes.
Autrement, la version non localisée du fichier NIB continuera à
être installée et utilisée.

8 Sélectionnez la commande Clean All Targets du menu Build.

9 Dans la boîte de dialogue qui s’affiche, cochez toutes les cases et
cliquez sur Clean.

Figure 4.16 : Menu Tools d’Interface Builder

Figure 4.17 : Traduction des chaînes de caractères du fichier NIB

Figure 4.18 : Nettoyage des constructions précédentes

124 4. Motifs fondamentaux

10 Reconstruisez l’application et testez-la avec le simulateur
d’iPhone. Essayez-la avec les paramètres régionaux US, UK et
France et dans les langues anglaise et française.

Nettoyage (Clean)
Lorsque nous modifions la liste des ressources de l’application, il est

prudent de faire un nettoyage des constructions afin que les ressources
devenues inutiles ne perturbent pas le fonctionnement de l’application.

Utiliser le motif KVC
Il est regrettable que notre convertisseur ne fonctionne que dans un
sens, des dollars vers les euros. Remédions à cela. Nous aurons ainsi
l’opportunité d’aborder le puissant codage par valeur de clé (KVC, Key
Value Coding).

Adapter la classe Convertisseur

1 Ajoutez une méthode −setEuro: dans le fichier Convertisseur.m
pour effectuer la conversion en dollars. Cette méthode est analo-
gue à −setDollar: :

Figure 4.19 : Application localisée

1254.2. Améliorer Convertisseur1

-(void) setEuro:(float)newValue {
euro = newValue;
dollar = newValue * dollarsPourUnEuro;

}

setEuro est déjà déclaré par @property
Il n’est pas utile de déclarer −setEuro: dans l’interface de la classe car

euro est déjà déclaré comme une propriété. Nous écrivons en fait un mani-
pulateur qui remplace celui créé par défaut par la clause @synthesize.

Il faudrait également ajouter une méthode −setEuroWithString: qui
serait analogue à −setDollarWithString:. Nous allons plutôt modifier
la méthode existante pour qu’elle fonctionne dans les deux cas.
Souvenez-vous ; il faut essayer de factoriser le code pour qu’il soit
plus facile à maintenir.

2 Modifiez le fichier Convertisseur.h. Remplacez la déclaration de la
méthode −setDollarWithString: par la méthode suivante.

- (BOOL) setValueForKey:(NSString *)key WithString:
(NSString *) string;

Notre intention est d’utiliser le paramètre key pour transmettre le
nom de la propriété à modifier, euro ou dollar.

3 Modifiez la méthode −setDollarWithString: dans le fichier Conver-
tisseur.m.

-(BOOL) setValueForKey:(NSString *)key
WithString:(NSString *)string {

float valeur;
BOOL result;
NSScanner *scan = [NSScanner

localizedScannerWithString:string];
[scan scanFloat:&valeur];
result = [scan isAtEnd];
if (result) [self setValue:[NSNumber

numberWithFloat:valeur] forKey:key];
return result;

}

Key Value Coding

Objective-C et NSObject nous proposent d’accéder aux propriétés
d’un objet en donnant le nom de la propriété dans une chaîne de
caractères.

126 4. Motifs fondamentaux

Accès par méthodes Accès par clé

− (id) property − (id) valueForKey: @"property"

− (void) setProperty:(id)
value

− (void) setValue:(id)value forKey:
@"property"

Les méthodes −valueForKey: et −setValue:forKey: appellent respecti-
vement l’accesseur et le manipulateur par défaut de la propriété dont
le nom est passé dans le paramètre key. Il est donc indispensable
d’utiliser la règle standard de dénomination pour que le KVC fonc-
tionne.

Les méthodes du KVC manipulent des valeurs de type id, c’est-à-dire
une référence à une instance d’objet. Lorsque les propriétés sont de
type scalaire (int, float, etc.), il faut les encapsuler dans un objet
NSNumber. Les méthodes du KVC réalisent les conversions appro-
priées entre les instances de NSNumber et les valeurs scalaires.

Modifier le délégué

Nous avons modifié la classe Convertisseur, il faut donc prendre en
compte ce changement dans la méthode de délégué de champ de
texte que nous avons écrite dans la classe Convertisseur1
ViewController. De plus, nous voulons maintenant réagir aux actions
de l’utilisateur dans le champ de texte contenant le montant en
euros.

Modifiez la méthode de délégué dans le fichier Convertisseur1
ViewController.m :
- (BOOL)textField:(UITextField *)textField

shouldChangeCharactersInRange:(NSRange)range
replacementString:(NSString *)string {

NSString *resultingString = [textField.text
stringByReplacingCharactersInRange:range

withString:string];
if (textField==labelDollar)

return [self.convertisseur setValueForKey:@"dollar"
withString:resultingString];

else
return [self.convertisseur setValueForKey:@"euro"

withString:resultingString];
}

Nous utilisons ici le paramètre textField de la méthode délégué pour
identifier quel champ de texte a transmis le message.

1274.2. Améliorer Convertisseur1

Constante NSString
Nous utilisons ici la notation @".." qui permet de définir une constante

de type NSString, par exemple @"dollar". En Objective-C, on utilise beau-
coup plus souvent les constantes NSString que les chaînes de caractères C et
la notation "..".

Modifier l’action

La méthode −changeValue doit également être modifiée car les deux
champs de texte sont susceptibles de l’invoquer. Nous emploierons
une autre variante du prototype d’action −(IBAction) action:
(id)sender. Le paramètre sender est l’objet qui a déclenché l’action.

1 Modifiez le fichier Convertisseur1ViewController.h pour utiliser ce
nouveau prototype d’action :

@interface Convertisseur1ViewController : UIViewController
<UITextFieldDelegate> {

IBOutlet UITextField *labelDollar;
IBOutlet UITextField *labelEuro;
Convertisseur *convertisseur;

}
@property (retain,nonatomic) UITextField *labelDollar;
@property (retain,nonatomic) UITextField *labelEuro;
@property (retain,nonatomic) Convertisseur *convertisseur;
- (IBAction) changeValue:(id)sender;
@end

2 Modifiez le code de la méthode changeValue dans le fichier
Convertisseur1ViewController.m :

- (IBAction) changeValue:sender {
NSString *textEuro;
if (sender==labelDollar) {

textEuro = [NSString localizedStringWithFormat:
@"%.2f",self.convertisseur.euro];

labelEuro.text = textEuro;
} else {

textEuro = [NSString localizedStringWithFormat:
@"%.2f",self.convertisseur.dollar];

labelDollar.text = textEuro;
}

}

3 Enregistrez les fichiers modifiés sous XCode. Vous pouvez égale-
ment reconstruire l’application pour vérifier que le code saisi est
correct.

128 4. Motifs fondamentaux

Établir les connexions

Il faut maintenant établir les connexions dans le fichier NIB de la vue
principale.

Fichiers NIB localisés
Il faut effectuer les mêmes modifications dans toutes les versions locali-

sées d’un fichier NIB. Il est parfois plus facile de commencer par supprimer
les localisations puis effectuer les modifications dans une version unique
pour enfin recréer les versions localisées à partir du fichier NIB unique.

Citons aussi l’outil ibtool dont la description sort de cadre de cet ouvrage. Il
permet d’automatiser en partie la localisation des différentes modifications
d’un fichier NIB.

1 Ouvrez successivement chacune des versions localisées du fichier
Convertisseur1ViewController.xib sous Interface Builder pour éta-
blir les connexions des actions et des délégués. Par prudence,
puisque nous venons de modifier la classe Convertisseur1
ViewController, nous pouvons recharger les déclarations des clas-
ses utilisées sous Interface Builder.

2 Sélectionnez la commande Reload All Class Files du menu File.

3 Dans chacune des versions du fichier NIB, sélectionnez successi-
vement les deux champs de texte pour établir les connexions avec
le propriétaire du fichier :

l’outlet delegate ;

l’événement Editing Changed sur l’action changeValue:.

4 Reconstruisez l’application et testez-la. La conversion fonctionne
dans les deux sens.

Autres améliorations
Nous terminerons cette nouvelle version de l’application Convertis-
seur1 par quelques améliorations simples.

Voir le nom entier

Le nom de l’application Convertisseur1 est trop long ; il ne
s’affiche pas entier sous son logo sur l’iPhone.

1294.2. Améliorer Convertisseur1

Nous allons en changer pour un nom plus court, par exemple
ConvertPro.

1 Dans la zone Groups & Files, sous XCode, sélectionnez la cible
Convertisseur1 dans le groupe Targets, cliquez du bouton droit et
activez la commande Get info pour afficher les informations rela-
tives à l’application Convertisseur1.

2 Sélectionnez l’onglet Build de la fenêtre d’information qui est
apparue. Saisissez name dans le champ de recherche pour limiter la
liste des paramètres affichés et recherchez le paramètre Product

Name.

3 Double-cliquez sur ce paramètre et saisissez le nom souhaité, par
exemple ConvertPro.

Figure 4.20 : Afficher les informations de l’application

Figure 4.21 : Modifier le nom de l’application

130 4. Motifs fondamentaux

4 Reconstruisez l’application pour vérifier que le nom s’affiche sous
le logo.

Effacer le clavier

Nous souhaitons que le clavier disparaisse lorsque l’utilisateur
presse la touche Terminé (Done en anglais) sur le clavier.

La frappe de cette touche provoque l’émission de l’événement Did

End On Exit par le champ de texte. Il nous faut donc créer une
nouvelle action, appelons-la doneEditing, dans Convertisseur1
ViewController.

1 Modifiez la classe Convertisseur1ViewController pour déclarer cette
nouvelle action puis liez l’événement Did End On Exit des deux
champs de texte à cette action. N’oubliez pas d’enregistrer le
fichier modifié sous XCode et de recharger les fichiers de classe
sous Interface Builder.

- (IBAction) changeValue:(id)sender;
- (IBAction) doneEditing:(id)sender;
@end

2 Saisissez le code de l’action. Reconstruisez l’application et testez-
la.

- (IBAction) doneEditing:(id)sender {
[sender resignFirstResponder];

}

Nous arrivons maintenant à effacer le clavier.

Figure 4.22 : Champs de texte connectés à la nouvelle
action

1314.2. Améliorer Convertisseur1

La méthode −resignFirstResponder est définie dans la classe
UIResponder. Cette classe gère la chaîne des répondeurs.

La chaîne des répondeurs est constituée par les vues, les contrôleurs
de vue, la fenêtre d’application et l’application. Le premier répondeur-

Figure 4.23 : Le clavier est escamotable

Figure 4.24 : Chaîne des répondeurs

132 4. Motifs fondamentaux

(First responder) est généralement la vue, ou le contrôle puisque
UIControl hérite de UIView, actif à un moment donné.

Lorsque l’utilisateur touche le champ de texte dollar, ce dernier
devient le premier répondeur. L’application transmet les actions au
premier répondeur. C’est l’objet actif à un moment donné qui est le
mieux placé pour répondre à une action. Si le premier répondeur,
généralement une vue, ne sait pas traiter l’action, cette dernière est
transmise au répondeur suivant dans la chaîne, etc.

La chaîne de répondeurs remonte la hiérarchie des vues à partir du
premier répondeur. Une vue transmet une action à son contrôleur (si
elle en possède un) avant de la transmettre à sa supervue.

Si un champ de texte reçoit le message −resignFirstResponder, il
devient inactif et le clavier disparaît alors.

4.3. Motif MVC
Regardons la structure générale de l’application que nous avons
produite.

Nous pouvons identifier trois parties distinctes :

j Le Modèle ; c’est l’ensemble des classes qui gèrent les données de
l’application, on les appelle les objets métiers. Pour l’application
Convertisseur1, il est constitué de la seule classe Convertisseur.

j La Vue ; composée de la hiérarchie des vues et de la fenêtre de
l’application.

j Les Contrôleurs ; qui comportent les contrôleurs de vue et l’appli-
cation.

Figure 4.25 : Structure MVC de l’application Convertisseur1

1334.3. Motif MVC

Les contrôleurs connaissent les parties Vue et Modèle ; la classe
Convertisseur1ViewController connaît les outlets labelDollar et labe-
lEuro (Vue), et la propriété Convertisseur (Modèle). Il n’y a en revanche
aucune communication directe entre les vues et le modèle.

Ce motif de conception est nommé Modèle-Vue-Contrôleur (MVC,
Model-View-Controller). Il consiste à identifier le rôle de chaque classe
avec l’objectif de faciliter la réutilisation des objets (Vue et Modèle)
ainsi que les tests.

Les objets composant la Vue sont des briques utilisables telles quel-
les dans toutes les applications. Ces briques sont indépendantes des
objets métiers.

Veillez à ce que les classes métiers (celles du Modèle) n’aient à
connaître ni les vues, ni les contrôleurs. C’est la garantie de pouvoir
les réutiliser dans d’autres applications.

4.4. Challenges
Nous avons suffisamment avancé maintenant pour que vous puis-
siez créer de petites applications simples.

Améliorer encore Convertisseur1
Notre application est déjà d’un bon niveau mais il reste encore un
comportement qui peut être désagréable pour l’utilisateur.
Lorsqu’on entre en mode Édition dans un champ de texte, son
contenu est effacé, le contenu des deux champs n’est plus le résultat
d’une conversion de l’un vers l’autre (voir Figure 4.26).

Il existe deux possibilités pour éviter ce petit problème :

j éviter que les champs soient effacés en début de saisie ;

j effacer les deux champs lorsque la saisie débute dans l’un des
deux.

Votre premier challenge consiste à implémenter l’une de ces deux
solutions :

j La première solution nécessite seulement la modification du fi-
chier NIB sous Interface Builder.

j Pour la seconde solution, on utilise :

soit la méthode de délégué − (void)textFieldDidBeginEditing:
(UITextField *)textField ;

134 4. Motifs fondamentaux

soit le mécanisme cible-action avec l’événement Editing Did

Begin.

Risque de plantage
Il ne faut pas modifier un champ de texte par programmation pendant son

édition par l’utilisateur.

Explorer les contrôles simples
Nous connaissons les contrôles de classe UILabel et UITextField.
Nous avons exploré les techniques fondamentales de programma-
tion Cocoa Touch : cible-action, délégation, gestion de la mémoire,
KVC et MVC. Vous en savez maintenant suffisamment pour utiliser
d’autres contrôles simples et développer votre propre application.

Autres contrôles simples

Les contrôles les plus simples sont regroupés dans la rubrique Inputs

& Values de la bibliothèque d’objets d’Interface Builder.

Figure 4.26 : Effacement du champ en début de
saisie

1354.4. Challenges

On utilise ces contrôles de la façon suivante :

j Label (Label) ; ce contrôle statique affiche un texte. Le programme
peut modifier le texte affiché par la propriété text.

j Barre de progression (Progress View) ; ce contrôle statique est une
barre de progression. Le programme doit modifier la propriété
progress (un nombre compris entre 0 et 1) pour visualiser la pro-
gression.

j Indicateur d’activité (Activity Indicator) ; ce contrôle statique affiche
une roue qui tourne indiquant à l’utilisateur qu’une tâche est en
cours. Le programme émet les messages startAnimating et
stopAnimating pour démarrer et arrêter le mouvement tournant. La
propriété hidesWhenStopped doit prendre pour valeur YES si l’on
souhaite que l’indicateur soit masqué lorsqu’il n’est pas actif.

j Sélecteur (Segmented Control) ; ce contrôle est un bouton à plu-
sieurs valeurs possibles, l’utilisateur sélectionne l’une de ces va-
leurs. Le programme utilise la propriété numberOfSegments pour
connaître le nombre de choix possibles, et la propriété
selectedSegmentIndex pour connaître le choix actuellement sélec-
tionné (nombre entier à partir de 0). Les cibles-actions doivent être
connectées sur l’événement Value Changed.

j Bouton (Round Rect Button) ; ce contrôle est un bouton simple. Les
cibles-actions doivent être connectées sur l’événement Touch Up

Inside.
j Bascule (Switch) ; ce contrôle est un bouton à deux états. Le pro-

gramme utilise la propriété on pour connaître l’état YES ou NO de la
bascule. Les cibles-actions doivent être connectées sur l’événe-
ment Value Changed.

Figure 4.27 : Contrôles simples de Inputs & Values

136 4. Motifs fondamentaux

j Ascenseur (Slider) ; ce contrôle est un ascenseur horizontal ou
vertical. Les valeurs min et max sont précisées sous Interface
Builder. Le programme utilise la propriété value pour connaître la
position de l’ascenseur. Les cibles-actions doivent être connectées
sur l’événement Value Changed.

j Champ de Texte (TextField) ; ce contrôle est un champ de texte.
Nous l’avons abondamment expliqué. C’est le contrôle le moins
facile à utiliser de cette liste ; il émet plusieurs événements et il est
le seul à posséder un délégué.

j Contrôle de pages (Page Control) : ce contrôle permet à l’utilisateur
de visualiser le nombre de pages et le numéro de la page en cours.
Le programme indique le nombre de pages par la propriété
numberOfPages, il utilise la propriété currentPage pour connaître le
numéro (à partir de 0) de la page visualisée. La propriété
hidesForSinglePage permet de masquer le contrôle s’il n’y a qu’une
page. Les cibles-actions doivent être connectées sur l’événement
Value Changed.

Tous les contrôles dynamiques héritent successivement de NSObject,
NSResponder, UIView et UIControl. Les contrôles statiques n’héritent
pas de UIControl ; un "contrôle statique" est une vue.

Le tableau résume les classes, les propriétés, les méthodes et les
événements actifs pour chaque contrôle simple.

Tableau 4.2 : Utilisation des contrôles simples

Nom du
contrôle

Classe d’objet Propriétés Méthodes Événements

Label UILabel text - -

Progress View UIProgress
View

progress - -

Activity
Indicator

UIActivity
Indicator
View

hidesWhen
Stopped

start
Animating
Stop
Animating

-

Segmented
Control

UISegmented
Control

numberOf
Segments
selectedSegment
Index

- Value Changed

Round Rect
Button

UIButton - - Touch Up Inside

Switch UISwitch on - Value Changed

Slider UISlider value - Value Changed

1374.4. Challenges

Tableau 4.2 : Utilisation des contrôles simples

Nom du
contrôle

Classe d’objet Propriétés Méthodes Événements

TextField UITextField text Possède un
délégué.

Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End

Page Control UIPage
Control

numberOfPages
currentPage
hidesForSingle
Page

- Value Changed

Créez votre propre application

Limitez-vous à des applications sur une seule vue, nous verrons les
techniques qui permettent de développer des applications multivues
au chapitre suivant.

Si vous n’avez pas d’idée, vous pouvez essayer d’ajouter des ascen-
seurs à Convertisseur1. L’utilisateur pourra ainsi effectuer des conver-
sions très rapidement, sans avoir besoin de saisir un nombre dans
un champ de texte. Pour que l’application soit pratique, il faut que les
trois autres contrôles changent de valeur, quel que soit le moyen
utilisé pour indiquer un montant.

Trouver plus d’informations

Les frameworks Cocoa Touch sont très riches. Nous n’avons pré-
senté que l’utilisation la plus courante des contrôles simples. Nous

Figure 4.28 : Convertisseur1 avec des ascenseurs

138 4. Motifs fondamentaux

verrons d’autres techniques par la suite mais vous pouvez d’ores et
déjà accéder à des informations plus détaillées dans l’abondante
documentation fournie par Apple sur le site des développeurs (http:
//developer.apple.com/).

Sélectionnez iPhone Dev Center. Saisissez votre identifiant et votre
mot de passe pour accéder aux ressources de développement
iPhone ; documentation, exemples, vidéos, etc.

Figure 4.29 : Site des développeurs d’Apple

Figure 4.30 : Centre de développement iPhone

1394.4. Challenges

Identifiant Apple
Il est indispensable d’être inscrit comme développeur Apple pour accéder

aux ressources du centre des développeurs. Vous avez déjà un identifiant si
vous avez téléchargé le SDK iPhone, utilisez le même.

L’obtention d’un identifiant, le téléchargement du SDK iPhone et l’accès aux
ressources du centre des développeurs sont gratuits.

4.5. Check-list
Nous connaissions déjà le mécanisme Cible-Action. Dans ce chapi-
tre, nous avons continué notre découverte des motifs de conception
fondamentaux : Délégation, MVC et KVC. Nous savons créer nos
propres classes d’objets. Nous avons maintenant des bases solides
pour aborder les techniques plus complexes.

Nous avons vu comment structurer les fichiers NIB et les contrôleurs

de vue d’une application. Nous avons appris dans quelle partie du
code il faut introduire le comportement spécifique désiré : délégué

d’application, délégués et contrôleurs de vue.

Plus précisément, nous avons avancé dans notre connaissance des
frameworks Cocoa Touch :

j Nous connaissons les protocoles de délégué d’application et de
champ de texte.

j Nous avons utilisé les classes NSCharacterSet et NSScanner.
j Nous savons localiser les formats de nombre et les fichiers NIB.
j Nous connaissons la chaîne de répondeurs et la classe

UIResponder.
j Nous savons utiliser tous les contrôles simples de la bibliothèque

Inputs & Values.

Concernant le langage Objective C, nous savons maintenant :

j définir un protocole, avec les clauses @protocol et @optional ;

j utiliser la clause @class ;
j utiliser la méthode −respondsToSelector et la fonction SEL ;
j utiliser le type BOOL et les constantes NSString.

Nous avons découvert quelques commandes supplémentaires dans
les outils du SDK :

140 4. Motifs fondamentaux

j nettoyer les cibles sous XCode après avoir supprimé ou restruc-
turé des ressources ;

j changer le nom de l’application sous XCode ;
j recharger les fichiers de classe sous Interface Builder pour prendre

en compte les modifications effectuées sous XCode ;
j changer la langue et les paramètres régionaux du simulateur

d’iPhone pour tester nos applications internationales.

1414.5. Check-list

C
H

A
P

IT
R

E
5

APPLICATIONS
MULTIVUES

Application de type utilitaire .. 145
Application Convertisseur2 .. 154
Messages d’alerte ... 168
Barre d’onglets ... 175
Barres de navigation .. 181
Checklist .. 183

143

Dans ce chapitre, nous créerons une version 2 de notre convertis-
seur, avant de délaisser momentanément les dollars et les euros
dans les chapitres suivants qui nous porteront vers d’autres types
d’applications.

Notre objectif est de comprendre le fonctionnement général des
applications multivues : celles dans lesquelles l’utilisateur peut chan-
ger de vue principale.

5.1. Application de type utilitaire
Le taux de change des devises varie tous les jours à midi (le fixing).
Si notre utilisateur est pointilleux sur les centimes ou s’il est très
riche et veut convertir de grosses sommes, il voudra pouvoir modi-
fier le taux de conversion utilisé par notre convertisseur. Nous allons
donc lui proposer cette fonctionnalité.

Comprendre le fonctionnement d’un utilitaire

Créer le projet Convertisseur2

1 Ouvrez XCode et créez un nouveau projet. Nous choisirons le
modèle Utility Application (Utilitaire). Laissez la case Use Core Data
for storage décochée. Nommez ce projet Convertisseur2.

Figure 5.1 : Application Convertisseur2

1455.1. Application de type utilitaire

2 Ajoutez un logo et nommez l’application ConvertPro. Vous savez
comment faire maintenant. N’oubliez pas d’activer la case à co-
cher Copy items into destination group’s folder (if needed) pour que
le logo soit copié dans le dossier du projet.

3 Construisez et lancez l’application (X+[R]) pour voir ce que cela
donne.

Figure 5.2 : Créer un projet de type Utility Application

Figure 5.3 : Un utilitaire à l’œuvre

146 5. Applications multivues

Notre application se comporte comme si la Vue était à double face :
j Au recto, un petit bouton est affiché en bas à droite. Si on le

touche, la vue semble se retourner.
j Au verso, une barre de titre est affichée en haut, avec un bouton

Done qui nous permet de revenir au recto.

Examinons le détail du fonctionnement de ce squelette d’application.

Structure de base d’un utilitaire

Regardons la liste des fichiers créés par XCode. Nous avons d’abord
des classes Objective-C :
j MainViewController ;
j FlipsideViewController ;
j Convertisseur2AppDelegate.

Puis les fichiers NIB (les autres fichiers sont les mêmes que pour
Convertisseur1) :

j MainWindow.xib ;

j MainView.xib ;
j FlipsideView.xib.

Le navigateur de Classes
Sous XCode, la commande Class Browser du menu Project ([Maj]+X+[C])

affiche une fenêtre qui vous permet de visualiser la hiérarchie des classes, la
liste des méthodes de chaque classe et leur code source. Vous pouvez filtrer
les classes définies dans le projet ou voir l’ensemble des classes. On obtient
la documentation des classes des frameworks en cliquant sur l’icône en
forme de livre à côté du nom de la classe.

Figure 5.4 : Navigateur de classes

1475.1. Application de type utilitaire

Fonctionnement de base d’un utilitaire

Examinez le code source des classes créées par XCode et les fichiers
NIB sous Interface Builder pour identifier les liens. Représentons la
structure de l’application obtenue.

Nous reconnaissons une structure d’application classique : l’applica-
tion a un délégué Convertisseur2AppDelegate qui possède une fenêtre
et un contrôleur de vue principal MainViewController. Ce dernier pos-
sède à son tour un fichier NIB MainView.xib.

La nouveauté avec ce type d’application, c’est un contrôleur
FlipsideViewController qui possède un fichier NIB FlipsideView.xib.
Nous verrons comment cela fonctionne mais auparavant, nous al-
lons nous pencher sur une autre petite différence.

Attacher un contrôleur à un fichier NIB

Souvenez-vous comment étaient liés le contrôleur de vue principal et
son fichier NIB ; dans le ficher NIB MainWindow.xib du délégué de
l’application (voir Figure 5.6).

Dans notre application Convertisseur2, une autre méthode est utili-
sée. Regardez la méthode −applicationDidFinishLaunching: du délé-
gué d’application, en particulier les lignes qui ne se trouvent pas
dans le code du délégué de l’application Convertisseur1 :

Figure 5.5 : Structure d’une application de type Utilitaire

148 5. Applications multivues

- (void)applicationDidFinishLaunching:
(UIApplication *)application {

MainViewController *aController =
[[MainViewController alloc]
initWithNibName:@"MainView" bundle:nil];

self.mainViewController = aController;
[aController release];
mainViewController.view.frame =

[UIScreen mainScreen].applicationFrame;
[window addSubview:[mainViewController view]];
[window makeKeyAndVisible];

}

La méthode −initWithNibName:bundle: permet d’initialiser un contrô-
leur de vue en donnant le nom d’un fichier NIB (sans l’extension .xib
ou .nib) et un paquet (Bundle) dans lequel se trouve ce fichier NIB.
Par défaut (nil), le fichier NIB est recherché dans le paquet de
l’application courante.

Paquet (Bundle)
Un paquet est un dossier contenant du code exécutable, des fichiers NIB et

des ressources diverses.

Figure 5.6 : Contrôleur de vue dans le fichier NIB du délégué d’application

1495.1. Application de type utilitaire

Le cadre (frame) de la vue principale (mainViewController.view.frame)
est ensuite défini comme étant le cadre dédié à l’application sur
l’écran ([UIScreen mainScreen].applicationFrame). Par défaut, une
barre d’état est affichée en haut de l’écran, la zone restante est dédiée
à l’application.

Cadre (frame)
Le cadre d’une vue est le rectangle dans lequel cette vue est affichée dans

la vue ou la fenêtre qui la contient. L’origine et la taille du rectangle sont
exprimées en pixels relativement au cadre de la vue qui contient.

Cadre dédié à l’application
L’écran a une taille de 480 x 320 pixels sur un iPhone et un iPod Touch, et

de 1 024 x 768 pixels sur un iPad. La hauteur de la barre d’état est de
20 pixels. La zone dédiée à l’application est la totalité de l’écran excepté la
barre d’état.

Il est recommandé d’utiliser la classe UIScreen plutôt que d’écrire la taille de
la vue principale "en dur" dans son code. Cela facilitera l’adaptation de votre
application sur différents appareils, voire de futurs appareils dont la taille de
l’écran serait différente.

Nous venons de voir que l’on peut définir et initialiser un contrôleur
de vue :

j soit dans un fichier NIB comme dans Convertisseur1 ;

j soit par programmation comme dans Convertisseur2.

Cette alternative est toujours vraie : il n’y a rien que l’on puisse faire
dans un fichier NIB et que l’on ne puisse obtenir par programmation.

Les deux méthodes donnent le même résultat. Le fichier NIB est sans
doute plus facile à réaliser pour le développeur ; quelques clics au
lieu de plusieurs lignes de code. La programmation est beaucoup
plus souple et plus puissante car elle permet d’adapter la vue et son
contrôleur au contexte en cours, alors que la définition dans un
fichier NIB est faite a priori, avant l’exécution de l’application, elle est
donc figée.

Animer le changement de vue

Intéressons-nous maintenant à la façon dont le changement de
vue s’effectue. Lorsque l’utilisateur touche le bouton de la vue prin-
cipale, le message showInfo est transmis au contrôleur de vue.

150 5. Applications multivues

- (IBAction)showInfo {
FlipsideViewController *controller =

[[FlipsideViewController alloc]
initWithNibName:@"FlipsideView" bundle:nil];

controller.delegate = self;
controller.modalTransitionStyle =

UIModalTransitionStyleFlipHorizontal;
[self presentModalViewController:controller

animated:YES];
[controller release];

}

Nous connaissons déjà la méthode −initWithNibName:bundle: qui
nous permet ici de créer une instance de FlipsideViewController et de
l’attacher au fichier NIB FlipsideView.xib.

Ensuite, l’instance de contrôleur de la vue principale est définie
comme déléguée du contrôleur nouvellement créé. Cela servira pour
revenir à la vue principale, nous en examinerons le mécanisme plus
loin.

Le changement de vue est déclenché par le message −presentModal
ViewController:animated:. La propriété modalTransitionStyle d’un
contrôleur de vue permet de spécifier le type d’animation souhaitée.
Testez l’application en utilisant successivement les 4 styles proposés
par Apple.

Tableau 5.1 : Type énuméré UIModalTransitionStyle

Constante Signification

UIModalTransition
StyleCoverVertical

Style par défaut, la vue modale recouvre la vue courante en
glissant vers le haut.

UIModalTransition
StyleFlipHorizontal

La vue modale s’affiche comme si elle était au verso de la
vue courante.

UIModalTransition
StyleCrossDissolve

La vue courante se dissout lors de l’affichage de la vue mo-
dale.

UIModalTransition
StylePartialCurl

La vue courante est "relevée" et reste apparente sur un angle
de la vue modale. Disponible uniquement à partir de la ver-
sion 3.2.

Testez également les différents types de boutons proposés dans
l’inspecteur des attributs (X+1) sous Interface Builder.

Figure 5.7 : Différents types de bouton sous
Interface Builder

1515.1. Application de type utilitaire

Vue modale
Une vue est dite modale lorsqu’elle remplace temporairement une autre

vue. Cette autre vue sera à nouveau présentée à l’utilisateur lorsque la vue
modale disparaîtra.

Une vue modale peut à son tour passer le contrôle à une autre vue modale.

L’instruction [controller release]; mérite une petite explication
complémentaire. Il faut respecter la règle de gestion de la mémoire.
L’instance controller de la classe FlipsideViewController vient d’être
créée avec +alloc, il faut donc s’occuper de sa libération. Mais si on la
libère tout de suite à la fin de la méthode showInfo, ne va-t-elle pas
être détruite ? La vue Flipside va-t-elle s’afficher correctement ? En
fait, tout va fonctionner correctement car le message −presentModal
ViewController:animated: retient le paramètre controller dans la pro-
priété modalViewController du contrôleur de la vue principale. La
libération de l’instance controller ne va donc pas provoquer sa
destruction immédiate.

Revenir à la vue principale

Examinons maintenant comment le contrôleur de la vue modale
revient à la vue principale. Lorsque l’utilisateur touche le bouton
Done le message −done est envoyé au propriétaire du fichier NIB ;
vérifiez la cible-ation du bouton en ouvrant FlipsideView.xib sous
InterfaceBuilder.

Le contrôleur de vue propriétaire de ce fichier NIB (Flipside
ViewController) définit la méthode −done.
- (IBAction)done {

[self.delegate flipsideViewControllerDidFinish:self];
}

Souvenez-vous, le délégué de FlipsideViewController est le contrô-
leur de la vue principale ; il est affecté dans sa méthode −showInfo.
Regardez le code de la méthode −flipsideViewControllerDidFinish:
dans le fichier MainViewController.m :
- (void)flipsideViewControllerDidFinish:

(FlipsideViewController *)controller {
[self dismissModalViewControllerAnimated:YES];

}

Lorsque l’utilisateur touche le bouton Done pour refermer la vue
modale, le contrôleur de la vue modale informe le contrôleur de la
vue principale. Ce dernier doit désactiver la vue modale puisque
c’est lui qui l’a activée.

152 5. Applications multivues

Activer une vue modale
Résumons le principe de gestion des vues modales :

j La vue modale est définie dans un fichier NIB et attachée à un
contrôleur de vue spécifique.

j L’activation de la vue modale est déclenchée par l’émission du
message −presentModalViewController:animated: sur le contrôleur
de la vue principale.

j Le retour à la vue principale est déclenché par l’émission du
message −dismissModalViewControllerAnimated: sur le contrôleur de
la vue principale.

Utilisation de la délégation

Vous avez sans doute remarqué le mécanisme de délégation mis en
œuvre :

j Un protocole FlipsideViewControllerDelegate est défini dans la
classe FlipsideViewController.

j Ce protocole déclare la méthode −flipsideViewControllerDid
Finish: (vérifiez dans le fichier FlipSideViewController.h).

j Le contrôleur de la vue principale MainViewController adopte le
protocole FlipsideViewControllerDelegate.

j Le contrôleur de la vue principale se définit comme délégué du
contrôleur de la vue modale à la création de ce dernier.

j Lorsqu’il souhaite que la vue modale soit fermée, son contrôleur
de vue émet le message défini dans le protocole vers son délégué.

j Lorsque le contrôleur de la vue principale reçoit ce message, il
désactive la vue modale.

Ce fonctionnement relativement complexe pourrait être remplacé
par le code suivant de la méthode −done de la classe Flipside
ViewController :
- (IBAction)done {

[self.parentViewController
dismissModalViewControllerAnimated:YES];

}

Le code sans utiliser la délégation serait donc plus simple. La délé-
gation est tout de même une bonne pratique de programmation ; le
contrôleur de vue principale déclenche la vue modale puis reprend le
contrôle lorsque l’utilisateur souhaite revenir à la vue principale.
Celui qui déclenche une action en récupère le résultat.

1535.1. Application de type utilitaire

5.2. Application Convertisseur2

Composer la vue principale
Nous souhaitons que la vue principale de l’application Convertis-
seur2 soit analogue à celle de Convertisseur1. Nous allons donc
récupérer les éléments dans le fichier NIB.

1 Ouvrez simultanément les deux fichiers NIB sous Interface Buil-
der :

fichier Convertisseur1ViewController.xib du projet Converisseur1 ;

fichier MainView.xib du projet Convertisseur2.

2 Dans le premier fichier, sélectionnez les éléments à récupérer
(utilisez la touche [Maj] pour étendre la sélection) :

le titre "Convertisseur de Monnaie" ;

les labels "Montant en dollars" et "Montant en euros" ;

les deux champs de texte.

3 Copiez la sélection du premier fichier pour la coller dans le second
fichier. Modifiez les couleurs des labels pour améliorer la visibilité.
Vous pouvez également changer la couleur de fond de la vue
principale si vous préférez.

4 Enregistrez le fichier MainView.xib et fermez le fichier
Convertisseur1ViewController.xib.

Figure 5.8 : Composition de la vue principale

154 5. Applications multivues

Paramétrer le taux de conversion

Composition de la vue modale

1 Ouvrez le fichier FlipsideView.xib du projet Convertisseur2 sous
Interface Builder pour y ajouter un label et un champ de texte.

2 Modifiez le titre de la barre de navigation (en haut de la vue).

Adapter la classe Convertisseur

Ajoutez les fichiers Convertisseur.h et Convertisseur.m du projet
Convertisseur1 au projet Convertisseur2. N’oubliez pas de copier ces
fichiers dans le dossier du projet ; nous allons les modifier.

La classe Convertisseur doit prendre en compte le fait que l’utilisateur
peut changer le taux de conversion à tout moment. La propriété
dollarsPourUnEuro est donc modifiable durant l’exécution de l’appli-
cation mais les propriétés dollar et euro ne seront plus le résultat
d’une conversion de l’une vers l’autre. Il faudrait recalculer l’une des
deux valeurs, ou plus simplement les annuler lorsque la propriété
dollarsPourUnEuro est modifiée.

Figure 5.9 : Composition de la vue modale

1555.2. Application Convertisseur2

Ajoutez la méthode −setDollarsPourUnEuro: dans le fichier Convertis-
seur.m :
-(void) setDollarsPourUnEuro:(float)newValue {

if (dollarsPourUnEuro != newValue) {
dollarsPourUnEuro = newValue;
self.euro = 0.;

}
}

Remarquez l’emploi de l’instruction self.euro=0.;. Elle provoque
l’émission du message −setEuro: qui modifie simultanément les pro-
priétés euro et dollar.

On remet à zéro les propriétés euro et dollar uniquement si le nou-
veau taux de conversion est différent de l’ancien.

Factoriser le délégué de champ de texte
Dans l’application Convertisseur1, le contrôleur de la vue principale
est aussi le délégué des champs de texte ; il est chargé de vérifier que
l’utilisateur ne saisit que des nombres.

Nous avons besoin du même mécanisme pour vérifier que le taux de
conversion saisi par l’utilisateur est un nombre. Nous allons donc
créer un objet spécifique pour cette délégation, plutôt que de confier
cette mission aux deux contrôleurs de vue.

Objet délégué réutilisable

Il nous faut un objet qui implémente le protocole UITextFieldDelegate
et définisse la méthode −textField:shouldChangeCharactersInRange:
replacementString:. Dans la classe Convertisseur1ViewController, cette
méthode était utilisée pour définir les valeurs en euros ou en dollars
suivant le cas. Notre nouvel objet délégué devant être réutilisable
dans d’autres contextes, il n’est pas de sa responsabilité de modifier
des propriétés d’autres objets.

Appelons cette classe NumericFieldDelegate. Sa responsabilité sera de
vérifier que le champ de texte contient uniquement des nombres et
de retenir ce nombre pour éviter que la conversion soit réalisée
plusieurs fois.

1 Créez les fichiers NumericFieldDelegate.h et NumericFieldDelega-
te.m dans le projet Convertisseur2.

156 5. Applications multivues

2 Déclarez l’utilisation du protocole UITextFieldDelegate et la pro-
priété value dans l’interface de la classe :

#import <Foundation/Foundation.h>
@interface NumericFieldDelegate : NSObject

<UITextFieldDelegate> {
float value;

}
@property (nonatomic,assign) float value;
@end

3 Modifiez le fichier NumericFieldDelegate.m :

#import "NumericFieldDelegate.h"
@implementation NumericFieldDelegate
@synthesize value;
- (BOOL)textField:(UITextField *)textField

shouldChangeCharactersInRange:(NSRange)range
replacementString:(NSString *)string {

NSString *resultingString = [textField.text
stringByReplacingCharactersInRange:range

withString:string];
NSScanner *scan = [NSScanner

localizedScannerWithString:resultingString];
[scan scanFloat:&value];
return [scan isAtEnd];

}
@end

Le travail de conversion d’une chaîne de caractères en valeur numé-
rique effectué dans la méthode −setValueForKey:WithString: de la
classe Convertisseur est maintenant réalisé par la classe Numeric
FieldDelegate. Vous pouvez supprimer cette méthode de la classe
Convertisseur, elle ne nous servira plus.

Connecter le délégué dans le fichier NIB

Nous allons effectuer chaque connexion entre un champ de texte et
son délégué dans les fichiers NIB. Nous créerons même les objets
délégués dans les fichiers NIB.

1 Ouvrez le fichier MainView.xib et faites glisser un objet de type
NSObject dans la fenêtre du fichier NIB (attention : pas dans la
fenêtre de la vue principale) (voir Figure 5.10).

2 Sélectionnez l’objet nouvellement créé et affichez l’inspecteur
d’identité (X+[4]) pour définir sa classe (NumericFieldDelegate) et
son nom (Dollar Field Delegate) (voir Figure 5.11).

1575.2. Application Convertisseur2

3 Connectez l’outlet delegate du champ de texte destiné à contenir la
valeur en dollars à l’objet Dollar Field Delegate. Utilisez l’inspecteur
de connexions (X+[2]) (voir Figure 5.12).

4 Procédez de même avec les deux autres champs de texte de
l’application :

Euro Field Delegate dans MainView.xib ;

Rate Field Delegate dans FlipsideView.xib.

5 Enregistrez les deux fichiers NIB.

Figure 5.10 : Créer un objet dans MainWindow.xib

Figure 5.11 : Définition du type d’objet

158 5. Applications multivues

Finaliser les contrôleurs de vue

Contrôleur de la vue principale

Déclaration

Déclarez les outlets et les actions dans le fichier MainViewControl-
ler.h :
#import "FlipsideViewController.h"
#import "Convertisseur.h"
#import "NumericFieldDelegate.h"
@interface MainViewController : UIViewController

<FlipsideViewControllerDelegate> {
IBOutlet UITextField * dollarField;
IBOutlet NumericFieldDelegate * dollarFieldDelegate;
IBOutlet UITextField * euroField;
IBOutlet NumericFieldDelegate * euroFieldDelegate;
IBOutlet Convertisseur * convertisseur;

}
@property (nonatomic,retain) UITextField *dollarField;
@property (nonatomic,retain)

NumericFieldDelegate *dollarFieldDelegate;
@property (nonatomic,retain) UITextField *euroField;
@property (nonatomic,retain)

NumericFieldDelegate *euroFieldDelegate;

Figure 5.12 : Connexion du champ de texte à son
délégué

1595.2. Application Convertisseur2

@property (nonatomic,retain) Convertisseur *convertisseur;
- (IBAction) changeValue:(id)sender;
- (IBAction) beginEditing:(id)sender;
- (IBAction) doneEditing:(id)sender;
- (IBAction)showInfo;
@end

Nous déclarons la propriété convertisseur comme un outlet. Cela
nous permettra d’établir la connexion sous Interface Builder plutôt
qu’en modifiant le code de la classe MainViewController.

Propriété pour les délégués
Les délégués dollarFieldDelegate et euroFieldDelegate sont déjà

connectés aux champs de texte correspondants par leur propriété delegate
mais cette propriété est définie avec l’attribut assign au lieu de retain. Pour
éviter les problèmes de gestion de mémoire, il faut que ces délégués soient
définis comme des propriétés avec l’attribut retain dans un autre objet ;
c’est la raison pour laquelle nous les définissons dans le contrôleur de la vue
principale.

Définition

1 Définissez les accesseurs de propriétés et les méthodes spécifi-
ques dans le fichier MainViewController.m :

@implementation MainViewController
@synthesize dollarField;
@synthesize dollarFieldDelegate;
@synthesize euroField;
@synthesize euroFieldDelegate;
@synthesize convertisseur;
- (IBAction) changeValue:sender {

if (sender==dollarField) {
self.convertisseur.dollar = dollarFieldDelegate.value;
euroField.text = [NSString localizedStringWithFormat:

@"%.2f",self.convertisseur.euro];
} else {

self.convertisseur.euro = euroFieldDelegate.value;
dollarField.text = [NSString

localizedStringWithFormat:
@"%.2f",self.convertisseur.dollar];

}
}
- (IBAction) beginEditing:(id)sender {

if (sender==dollarField) {
euroField.text = @"";

} else {
dollarField.text = @"";

}

160 5. Applications multivues

}
- (IBAction) doneEditing:(id)sender {

[sender resignFirstResponder];
}

2 Libérez les outlets du contrôleur de vue :

- (void)viewDidUnload {
// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;
self.dollarField = nil;
self.dollarFieldDelegate = nil;
self.euroField = nil;
self.euroFieldDelegate = nil;
self.convertisseur = nil;

}
- (void)dealloc {

[self viewDidUnload];
[super dealloc];

}

Connexions

1 Ouvrez le fichier MainView.xib sous Interface Builder. Ajoutez-y un
objet que vous définissez de type Convertisseur.

2 Établissez les connexions du contrôleur de la vue principale : champs
de texte, délégués de champ de texte, convertisseur et actions.

3 Construisez l’application et testez la vue principale. Vous devez
retrouver le comportement de Convertisseur1.

Il nous reste à faire fonctionner la modification du taux de conversion
dans la vue modale.

Figure 5.13 : Connexions du contrôleur de la vue
principale

1615.2. Application Convertisseur2

Contrôleur de la vue modale

Nous allons définir le contrôleur de la vue modale FlipsideViewCon-
troller selon le même principe que le contrôleur de la vue principale :

j un outlet pour le champ de texte ;

j un outlet pour le délégué du champ de texte ;
j une propriété rate pour communiquer avec le contrôleur de la vue

principale ;
j l’action −doneEditing:.

L’action −changeValue: ne sera pas utile pour ce contrôleur ; nous
n’avons pas de mise à jour à faire sur la vue pendant l’édition.
L’action −beginEditing: sera inutile également.

Déclaration

Effectuez les déclarations dans le fichier FlipsideViewController.h :
@protocol FlipsideViewControllerDelegate;
#import "NumericFieldDelegate.h"
@interface FlipsideViewController : UIViewController {

id <FlipsideViewControllerDelegate> delegate;
IBOutlet UITextField * rateField;
IBOutlet NumericFieldDelegate * rateFieldDelegate;
float rate;

}
@property (nonatomic, assign)

id <FlipsideViewControllerDelegate> delegate;
@property (nonatomic, retain) UITextField *rateField;
@property (nonatomic, retain)

NumericFieldDelegate *rateFieldDelegate;
@property (nonatomic, assign) float rate;
- (IBAction)doneEditing:(id)sender;
- (IBAction)done;
@end

@protocol FlipsideViewControllerDelegate
- (void)flipsideViewControllerDidFinish:

(FlipsideViewController *)controller;
@end

Définition

1 Modifiez le fichier FlipsideViewController.m pour définir les acces-
seurs et l’action :

@synthesize delegate;
@synthesize rateField;
@synthesize rateFieldDelegate;

162 5. Applications multivues

@synthesize rate;

- (IBAction) doneEditing:(id)sender {
[sender resignFirstResponder];

}

Nous souhaitons que le champ de texte rateField soit initialisé avec
la valeur de la propriété rate lorsque la vue s’affiche.

2 Modifiez la méthode −viewDidLoad :

- (void)viewDidLoad {
[super viewDidLoad];
rateField.text = [NSString localizedStringWithFormat:

@"%.5f",self.rate];
self.view.backgroundColor =

[UIColor viewFlipsideBackgroundColor];
}

Inversement, la propriété rate doit prendre la valeur du champ de
texte lorsque la vue est refermée par l’utilisateur.

3 Modifiez la méthode −done :

- (IBAction)done {
if (self.rateFieldDelegate.isModified) self.rate =

self.rateFieldDelegate.value;
[self.delegate flipsideViewControllerDidFinish:self];

}

Nous avons besoin de savoir si le contenu du champ de texte a été
modifié par l’utilisateur ; si ce n’est pas le cas, la propriété value du
délégué du champ de texte est nulle. Il faudra penser à définir une
propriété isModified dans notre classe NumericFieldDelegate.

4 Libérez les outlets du contrôleur de la vue modale :

- (void)viewDidUnload {
// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;
self.rateField = nil;
self.rateFieldDelegate = nil;

}
- (void)dealloc {

[self viewDidLoad];
[super dealloc];

}

1635.2. Application Convertisseur2

Propriété isModified

1 Ajoutez la propriété modified dans le fichier NumericFieldDelega-
te.h, en spécifiant qu’elle est en lecture seule et que son accesseur
est isModified :

@interface NumericFieldDelegate : NSObject
<UITextFieldDelegate> {

float value;
BOOL modified;

}
@property (nonatomic,assign) float value;
@property (nonatomic,readonly,getter=isModified)

BOOL modified;
@end

La propriété doit prendre la valeur NO à la création de chaque instance
et la valeur YES à chaque modification.

2 Ajoutez une méthode −init dans le fichier NumericFieldDelega-
te.m :

- (id) init {
if (self == [super init]) {

modified = NO ;
}
return self;

}

3 Modifiez la méthode −textField:shouldChangeCharactersInRange:
replacementString: dans le même fichier :

NSString *resultingString = [textField.text
stringByReplacingCharactersInRange:range

withString:string];
NSScanner *scan = [NSScanner

localizedScannerWithString:resultingString];
[scan scanFloat:&value];
modified = YES;
return [scan isAtEnd];

Connexions

1 Ouvrez le fichier FlipsideView.xib sous Interface Builder.

2 Établissez les connexions du contrôleur de la vue modale : champ
de texte, délégués de champ de texte et actions (voir Figure 5.14).

3 Décochez la case Clear When Editing Begin dans les attributs du
champ de texte (X+[1]) afin d’empêcher que le champ de texte ne
soit remis à zéro au début de l’édition (voir Figure 5.15).

164 5. Applications multivues

4 Construisez l’application et testez la vue modale. Elle semble fonc-
tionner mais le taux de conversion saisi par l’utilisateur n’est pas
pris en compte dans la vue principale.

Figure 5.14 : Connexions du contrôleur de la vue
modale

Figure 5.15 : Décochez la case Clear When Editing
Begin

1655.2. Application Convertisseur2

Communiquer entre les deux contrôleurs
Le contrôleur de la vue modale étant piloté par le contrôleur de la vue
principale, il revient logiquement à ce dernier d’établir la communi-
cation :
j La propriété rate doit être initialisée à la création du contrôleur de

la vue modale.
j La valeur de cette propriété doit être récupérée à la fermeture de la

vue modale.

Communiquer le taux de conversion

1 Modifiez la méthode −showInfo dans le fichier MainViewController.m
pour y initialiser la propriété rate :

- (IBAction)showInfo {
FlipsideViewController *controller =

[[FlipsideViewController alloc]
initWithNibName:@"FlipsideView" bundle:nil];

controller.delegate = self;
controller.rate = self.convertisseur.dollarsPourUnEuro;
controller.modalTransitionStyle =

UIModalTransitionStyleFlipHorizontal;
[self presentModalViewController:controller

animated:YES];
[controller release];

}

2 Modifiez également la méthode −flipsideViewControllerDid
Finish: :

- (void)flipsideViewControllerDidFinish:
(FlipsideViewController *)controller {

self.convertisseur.dollarsPourUnEuro = controller.rate;
[self dismissModalViewControllerAnimated:YES];

}

3 Construisez et testez l’application Convertisseur2. Son fonctionne-
ment devrait être satisfaisant.

Éviter le blocage du clavier

Peut-être vous êtes-vous aperçu que parfois, le clavier ne disparaît
pas lorsque l’utilisateur touche le bouton Terminé (Done). Ce défaut
se manifeste lorsque le curseur de saisie n’apparaît pas après le
dernier caractère dans le champ de texte actif.

166 5. Applications multivues

On peut demander au champ de texte d’adopter le même comporte-
ment quelle que soit la position du curseur. Vous savez déjà com-
ment on peut modifier le comportement d’un champ de texte ; il faut
agir sur son délégué. Ajoutez la méthode −textFieldShould
Return: dans le fichier NumericFieldDelegate.m :
- (BOOL)textFieldShouldReturn:(UITextField *)textField{

return YES;
}

Lorsque cette méthode retourne la valeur YES, une pression sur la
touche Terminé et interprétée comme si le curseur était après le
dernier caractère.

Reconstruisez l’application et vérifiez que le défaut est corrigé.

Garder des montants cohérents

Lorsque le taux de conversion est modifié, il faudrait effacer le
contenu des champs de texte de la vue principale. Actuellement,
l’utilisateur voit deux montants qui sont le résultat de la conversion
en utilisant l’ancien taux. Le plus simple est d’afficher le contenu de
l’objet Convertisseur au retour de la fenêtre modale ; nous savons
que ses propriétés sont toujours cohérentes.

Figure 5.16 : blocage du clavier

1675.2. Application Convertisseur2

Modifier le code

Modifiez la méthode −flipsideViewControllerDidFinish: dans le fi-
chier MainViewController.m :
- (void)flipsideViewControllerDidFinish:

(FlipsideViewController *)controller {
self.convertisseur.dollarsPourUnEuro = controller.rate;
euroField.text = [NSString localizedStringWithFormat:

@"%.2f",self.convertisseur.euro];
dollarField.text = [NSString localizedStringWithFormat:

@"%.2f",self.convertisseur.dollar];
[self dismissModalViewControllerAnimated:YES];

}

Factoriser

C’est la quatrième fois que nous écrivons une instruction contenant
[NSString localizedStringWithFormat: @"%.2f",xxx]. Il est temps de
mettre en œuvre la factorisation ; cela nous permettrait de modifier
seulement une ligne de code si nous souhaitons modifier le format
d’affichage par exemple.

Pour cette factorisation nous avons le choix, soit écrire une nouvelle
méthode, soit simplement une fonction Objective-C ou encore une
macro-instruction. Utilisons cette dernière possibilité. Définissez une
macro stringWithCurrency() au début du fichier MainViewControl-
ler.m :
#import "MainViewController.h"
#define stringWithCurrency(currency)

[NSString localizedStringWithFormat: @"%.2f",currency]
@implementation MainViewController

Vous pouvez utiliser cette macro dans les méthodes −changeValue: et
−flipsideViewControllerDidFinish:, par exemple : euroField.text =
stringWithCurrency(self.convertisseur.euro);.

Tester

Reconstruisez et testez l’application pour vérifier son comportement.
Effectivement les champs dollars et euros prennent la valeur 0.00
lorsque l’utilisateur modifie le taux de conversion, et uniquement
dans ce cas ; leur valeur est inchangée si l’utilisateur n’a pas édité le
taux de conversion.

5.3. Messages d’alerte
Rien n’interdit à l’utilisateur de Convertisseur2 de saisir un taux de
conversion négatif ou totalement anormal ; 123456,54 par exemple.

168 5. Applications multivues

Pour corriger ce léger défaut, nous pourrions enrichir la classe
NumericFieldDelegate de façon à pouvoir en paramétrer le comporte-
ment, en fixant des bornes min et max, par exemple.

Une autre possibilité, celle que nous allons adopter, consiste à signa-
ler à l’utilisateur que le taux de conversion saisi est erroné.

Afficher une alerte
Nous souhaitons afficher une alerte si le taux de conversion est
erroné. Il faut donc définir une fonction qui en vérifie la validité.

Définir la validité du taux de conversion

Ajoutez une fonction verifyRate dans le fichier FlipsideViewControl-
ler.m ; nous utilisons une fonction C cette fois, pour changer et
explorer une autre possibilité :
#import "FlipsideViewController.h"

BOOL verifyRate (float rate) {
return (rate >= 0.5) && (rate <= 2.);

}

@implementation FlipsideViewController

Un taux de conversion compris entre 0,5 et 2 est correct.

Nous avons créé cette fonction à l’extérieur de la définition de la
classe FlipsideViewController (avant la clause @implementation). Ainsi
nous n’avons pas besoin de la déclarer dans l’interface de la classe.
De ce fait, elle est inaccessible pour les autres objets ; nous avons
défini une fonction privée à la classe FlipsideViewController.

Tester la validité du taux saisi

Nous allons tester la validité du taux saisi par l’utilisateur :

j Lorsque l’utilisateur veut revenir à la vue principale, il doit rester
dans la fenêtre modale tant que le taux est incorrect.

j Lorsque l’utilisateur touche le bouton Terminé pour effacer le cla-
vier ; si le taux est incorrect un message d’alerte est affiché et le
champ de texte doit rester en édition.

Modifiez la méthode −done dans le fichier FlipsideViewController.m :
- (IBAction)done {

if (!(self.rateFieldDelegate.isModified &&
!verifyRate(self.rateFieldDelegate.value))) {

if (self.rateFieldDelegate.isModified) self.rate =
self.rateFieldDelegate.value;

1695.3. Messages d’alerte

[self.delegate flipsideViewControllerDidFinish:self];
}

}

Afficher une fenêtre d’alerte

Modifiez la méthode −doneEditing: dans le fichier FlipsideViewCon-
troller.m :
- (IBAction) doneEditing:(id)sender {

if (self.rateFieldDelegate.isModified &&
!verifyRate(self.rateFieldDelegate.value)) {

UIAlertView *alert = [[UIAlertView alloc]
initWithTitle:@"Taux incorrect" message:

@"Le taux de conversion doit être compris entre 0,5 et 2"
delegate:nil

cancelButtonTitle:@"OK"
otherButtonTitles:nil];

[alert show];
[alert release];
[sender becomeFirstResponder];

} else {
[sender resignFirstResponder];

}
}

Remarquez l’émission du message −becomeFirstResponder sur le
champ de texte afin qu’il reste en mode Edition.

Nous faisons connaissance ici avec la classe UIAlertView et ses deux
méthodes principales :

j −initWithTitle:message:delegate:cancelButtonTitle:otherButton
Titles: :

Le titre est une chaîne de caractères qui sera affichée en haut de
la fenêtre d’alerte.

Le message est une chaîne de caractères contenant des infor-
mations plus détaillées également affichées.

La possibilité est donnée d’affecter un délégué ; ici, c’est inutile
donc on met la valeur nil.

Une chaîne de caractères contenant le titre du bouton principal.

Il est possible aussi d’ajouter d’autres boutons, si besoin on
indique ici une liste de chaînes séparées par une virgule et
terminée par nil.

j −show qui affiche la fenêtre au milieu de l’alerte. Ensuite, l’instance
peut être libérée et la fenêtre sera détruite dès que l’utilisateur
aura touché un bouton.

170 5. Applications multivues

Les principales méthodes et propriétés de la classe UIAlertView sont
résumées dans le tableau ci-après.

Tableau 5.2 : Méthodes et propriétés principales de la classe UIAlertView

Type Titre Objet

Méthodes −(id) initWithTitle:
(NSString *)title message:
(NSString *)message
delegate:(id)delegate
cancelButtonTitle:(NSString
*)cancelButtonTitle
otherButtonTitles:
(NSString *)otherButton
Titles, ...

Crée une fenêtre d’alerte avec un titre et
en fixant le délégué. La liste des autres
boutons doit se terminer par nil.

− (NSString *) buttonTitle
AtIndex:(NSInteger)button
Index

Retourne le titre du bouton dont le nu-
méro d’indice est passé en paramètre.
Les indices sont numérotés à partir de 0.

− (void)show Affiche le récepteur avec une animation.

Propriétés @property(nonatomic,
readonly) NSInteger
numberOfButtons

Retourne le nombre de boutons du ré-
cepteur.

@property(nonatomic)
NSInteger cancelButtonIndex

Indice du bouton principal. Ou −1 si
aucun bouton n’est défini.

Construisez l’application et testez-la. Un message d’alerte s’affiche
lorsque vous essayez de sortir du mode d’édition du taux de conver-
sion avec une valeur erronée.

Figure 5.17 : Message d’alerte

1715.3. Messages d’alerte

Feuilles d’action
Le fonctionnement que nous avons adopté pour l’application Conver-
tisseur2 interdit à l’utilisateur d’employer un taux de conversion jugé
erroné. Nous pourrions préférer un comportement plus souple :
signaler que le taux de conversion paraît incorrect et laisser l’utilisa-
teur choisir de l’éditer à nouveau ou de l’utiliser tel quel.

Les feuilles d’action gérées par la classe UIActionSheet permettent
d’implémenter ce mécanisme ; une alerte est affichée à l’écran avec
deux boutons ou plus :

j un bouton d’annulation (Cancel Button) permettant à l’utilisateur
d’annuler l’opération en cours ;

j un bouton d’action (Destructive Button) permettant à l’utilisateur
d’effectuer l’action.

Remarquez le nom anglais du bouton d’action (Destructive). Il évo-
que l’utilité des feuilles d’actions. L’utilisateur est prévenu que l’ac-
tion peut être dangereuse. D’ailleurs, le bouton d’action est rouge
par défaut.

Les feuilles d’action s’utilisent de la même façon que les fenêtres
d’alerte. Leur comportement diffère sur les points suivants :

j Une feuille d’action s’affiche par-dessus une vue particulière au
lieu de s’afficher au milieu de l’écran.

Figure 5.18 : Feuille d’action

172 5. Applications multivues

j Elle est généralement activée par un contrôleur de vue, par l’émis-
sion du message showInView:self.view.

j Une feuille d’action offre un titre mais pas de message détaillé.
j Par défaut, une feuille d’action propose une alternative à l’utilisa-

teur, c’est-à-dire deux boutons au lieu d’un.

Le tableau ci-après résume les principales méthodes et propriétés de
la classe UIActionSheet.

Tableau 5.3 : Méthodes et propriétés principales de la classe UIActionSheet

Type Titre Objet

Méthodes − (id) initWithTitle:
(NSString *)title delegate:
(id < UIActionSheet
Delegate >)delegate cancel
ButtonTitle:(NSString *)
cancelButtonTitle
destructiveButtonTitle:
(NSString *)destructive
ButtonTitle otherButton
Titles:(NSString *)other
ButtonTitles, ...

Crée une feuille d’action avec un titre en
précisant le délégué. La feuille présente
un bouton d’annulation et un bouton
d’action. La liste des autres boutons doit
se terminer par nil.

− (NSString *) buttonTitle
AtIndex:(NSInteger)button
Index

Retourne le titre du bouton dont le nu-
méro d’indice est passé en paramètre.
Les indices sont numérotés à partir de
0.

− (void)showInView:
(UIView *)view

Affiche le récepteur avec une animation
à partir de la vue passée en paramètre.
Il est recommandé d’utiliser une vue
racine (vue principale dans une fenêtre).

Propriétés @property(nonatomic,
readonly) NSInteger
numberOfButtons

Nombre de boutons du récepteur

@property(nonatomic)
NSInteger cancelButtonIndex

Indice du bouton d’annulation ou −1 s’il
n’est pas défini

@property(nonatomic)
NSInteger destructive
ButtonIndex

Indice du bouton d’action ou −1 s’il
n’est pas défini

L’utilisateur pouvant toucher l’un ou l’autre bouton pour sortir de la
feuille d’action, il faut que l’application puisse déterminer quel bou-
ton a été touché. Vous avez certainement déjà deviné le mécanisme
mis en œuvre : c’est encore la délégation.

1735.3. Messages d’alerte

Délégué de feuille d’action
Le protocole de délégué pour la classe UIActionSheet est
UIActionSheetDelegate. Dans l’utilisation la plus courante, le contrô-
leur de vue qui active une feuille d’action se définit comme son
délégué en passant self comme paramètre delegate: lors de l’initia-
lisation de la feuille d’action.

Le délégué implémente généralement la méthode −actionSheet:
clickedButtonAtIndex: de la façon suivante :
- (void)actionSheet:(UIActionSheet *) actionSheet

clickedButtonAtIndex:(NSInteger)buttonIndex {
if (buttonIndex == [actionSheet cancelButtonIndex]) {

// le bouton d’annulation a été touché
}
else if (buttonIndex ==

[actionSheet destructiveButtonIndex]) {
// le bouton d’action a été touché

}
}

Challenge

Modifiez l’application Convertisseur2 en utilisant une feuille d’action
à la place d’une fenêtre d’alerte. Ainsi, l’utilisateur pourra forcer un
taux de conversion qui nous paraît anormal.

Délégué d’alerte
De la même façon que la feuille d’action, le protocole
UIAlertViewDelegate permet de définir des délégués pour les fenêtres
d’alerte de la classe UIAlertView.

La principale méthode de ce délégué est −alertView:clicked
ButtonAtIndex: qui se programme de la même façon que la méthode
équivalente du protocole UIActionSheetDelegate.

Dans son comportement par défaut, une fenêtre d’alerte n’a pas
besoin de délégué puisqu’elle ne comporte qu’un bouton. Mais nous
pouvons créer une fenêtre d’alerte avec plusieurs boutons et donc
un délégué. Inversement, il est possible de définir une feuille d’ac-
tion sans délégué avec un seul bouton.

En fait, les classes UIAlertView et UIActionSheet se programment
exactement de la même façon, seule leur apparence visuelle diffère.

174 5. Applications multivues

5.4. Barre d’onglets
Nous avons vu comment créer une application de type utilitaire qui
présente une vue principale et une vue secondaire (vue modale) à
l’utilisateur, et les mécanismes pour passer de l’une à l’autre.

Si nous voulons produire une application offrant trois vues ou plus,
la navigation par vue modale peut ne pas se révéler satisfaisante
pour l’utilisateur. La navigation par barre d’onglets est plus adaptée ;
l’utilisateur a toujours la possibilité d’accéder à n’importe quelle vue
en touchant l’onglet correspondant. Les copies d’écran montrent
notre application Convertisseur2 si elle avait été développée avec
une barre d’onglets.

Créer une barre d’onglet
La barre d’onglets se situe en bas de l’écran, c’est un objet de la
classe UITabBar qui hérite de la classe UIView.

Figure 5.19 : Convertisseur2 avec une barre d’onglets

Figure 5.20 : Barre d’onglets comprenant
2 éléments

1755.4. Barre d’onglets

On peut placer de 2 à 6 éléments sur une barre d’onglets ; il n’est pas
interdit d’en mettre plus, mais au-delà ils risquent de se chevaucher.
Chaque élément est un objet de la classe UITabBarItem affiché avec un
logo et un titre. Vous pouvez utiliser un des 12 éléments pour les-
quels le logo et le titre sont prédéfinis ou créer votre propre logo. Il
est également possible d’ajouter un badge contenant généralement
une valeur numérique sur un élément de barre d’onglets, mais on
peut y inscrire une chaîne de caractère quelconque ; il est conseillé
d’en limiter la taille à deux ou trois caractères.

Pour afficher un badge, il suffit d’affecter une chaîne de caractères à
la propriété badgeValue (de type NSString) de l’élément de barre d’on-
glets.

Les autres éléments sont définis dans l’un des fichiers NIB de l’ap-
plication ; nous allons détailler cela bientôt.

Pour créer une barre d’onglets, il suffit sous Interface Builder de faire
glisser un contrôleur de barre d’onglets (Tab Bar Controller) dans la
fenêtre du fichier NIB.

Une autre possibilité consiste à créer une application à barre d’on-

glets (Tab Bar Application) sous XCode. Dans ce cas, vous pouvez

Figure 5.21 : Éléments prédéfinis de barre
d’onglets, dont l’un avec un badge

Figure 5.22 : Contrôleur de barre d’onglets dans
la bibliothèque d’Interface Builder

176 5. Applications multivues

choisir le produit pour lequel l’application est développé : iPhone
(utilisable aussi sur iPod Touch et iPad) ou iPad.

Utiliser un contrôleur de barre d’onglets
Le contrôleur de barre d’onglets, instance de la classe
UITabBarController), prend en charge la navigation entre les onglets.
Son utilisation nécessite peu d’effort de la part du programmeur.

Dès que l’on ajoute un contrôleur de barre d’onglets à un fichier NIB,
il est associé à :

j une barre d’onglets ; nous n’aurons généralement pas à nous en
occuper ;

j une liste de contrôleurs de vue (UIViewController) qui contiennent
chacun :

un élément de barre d’onglets ;

éventuellement une vue, sauf si le contrôleur de vue est associé
à un fichier NIB spécifique.

Figure 5.23 : Création d’une application à barre d’onglets

1775.4. Barre d’onglets

Les opérations le plus courantes pour définir une application par
onglets sont décrites ci-après.

Ajouter un onglet

Pour ajouter un onglet sous Interface Builder, il suffit d’ajouter un
contrôleur de vue dans le contrôleur de barre d’onglets. Un élément
de barre d’onglets sera automatiquement ajouté au nouveau contrô-
leur de vue.

Adapter l’élément de barre d’onglet

L’inspecteur de l’élément de barre d’onglets, sous Interface Builder,
permet de définir son icône et son titre.

Vous pouvez également définir vos propres éléments de barre d’on-
glets en saisissant son titre et le nom du fichier à utiliser comme
icône. Ce fichier doit être au format PNG et d’une taille de

Figure 5.24 : Ajout d’un
contrôleur de barre
d’onglets dans un fichier
NIB

Figure 5.25 : Liste des éléments de barre
d’onglets prédéfinis

178 5. Applications multivues

30 x 30 pixels. Seule la couche alpha (transparence) de l’image sera
utilisée lors de l’affichage.

Définir la vue de chaque onglet

Chaque onglet dispose de son propre contrôleur de vue. Vous savez
déjà comment utiliser un contrôleur de vue :

j Il faut créer une nouvelle classe qui dérive de la classe
UIViewController pour y définir ses propres outlets et actions.

j Il faut associer une vue (UIView) à ce contrôleur pour y ajouter les
contrôles de l’interface utilisateur ; boutons, champs de texte, etc.
Cette vue peut être associée.

soit en faisant glisser un objet View dans le contrôleur de vue ;

soit en donnant le nom du fichier NIB qui décrit la Vue, dans
l’inspecteur du contrôleur de vue sous Interface Builder.

j Pour finir, il faut établir les connexions entre les contrôles définis
dans la vue et les outlets et actions du contrôleur de vue.

Les contrôleurs de vue associés à un contrôleur de barre d’onglets ne
dérogent pas à ce mode opératoire. Qu’un contrôleur de vue appar-
tienne à un contrôleur de barre d’onglets est presque transparent
pour l’utilisateur.

La propriété tabBarItem (de type UITabBarItem) contient l’élément de
barre d’onglets associé au contrôleur de vue. Elle est définie dans la
classe UIViewController et donc disponible dans toutes les classes
dérivées, par exemple pour y afficher un badge.

Figure 5.26 : Exemple de
fichier NIB contenant les
vues pour tous les onglets

1795.4. Barre d’onglets

Modifier la navigation par onglets
Insérer un contrôleur de vue dans un contrôleur de barre d’onglets
suffit pour le fonctionnement de la navigation entre les différents
onglets. Il n’est pas nécessaire de dériver la classe UITabBar
Controller, elle est utilisée telle quelle.

Si besoin, on peut en modifier le comportement en utilisant le délé-
gué de la classe UITabBarController. Il doit adopter le protocole
UITabBarControllerDelegate dont les méthodes principales sont don-
nées dans le tableau.

Tableau 5.4 : Principales méthodes du protocole UITabBarControllerDelegate
Signature de la méthode Objet de la méthode
− (BOOL) tabBarController:
(UITabBarController *)
tabBarController should
SelectViewController:(UIView
Controller *)viewController

Demande au délégué si le contrôleur de vue
peut être activé.

− (void) tabBarController:
(UITabBarController *)tabBar
Controller didSelectView
Controller:(UIViewController *)
viewController

Informe le délégué qu’un contrôleur vient
d’être sélectionné. Ce peut être le même que
celui qui est déjà sélectionné.

Par exemple, dans une application Convertisseur2 basée sur une
barre d’onglets, nous pourrions utiliser la méthode −tabBar
Controller:shouldSelectViewController: afin de mettre à jour l’affi-
chage des champs de texte de la vue principale, lorsque l’utilisateur
a modifié le taux de conversion.
- (void) tabBarController:(UITabBarController *)

tabBarController didSelectViewController:
(UIViewController *)viewController {

if (viewController==self) {
dollarField.text =

stringWithCurrency(self.convertisseur.dollar);
euroField.text =

stringWithCurrency(self.convertisseur.euro);
}

}

Challenge

Inspirez-vous des éléments contenus dans cette section pour réécrire
l’application Convertisseur2 avec une barre d’onglets plutôt qu’avec
une fenêtre modale.

Le code de cette nouvelle version est plus simple ; les méthodes per-
mettant d’activer et d’effacer la vue modale ne sont plus nécessaires.

180 5. Applications multivues

5.5. Barres de navigation
Les barres de navigation (Navigation Bar) sont principalement utili-
sées pour parcourir une structure hiérarchique de données. L’appli-
cation Contacts en est un exemple :
j La vue racine (Root View) contient la liste des groupes.
j Lorsqu’on sélectionne un groupe, on accède à une vue contenant

la liste des contacts de ce groupe.
j Lorsqu’on sélectionne un contact, on affiche une vue contenant les

informations détaillées de ce contact.
j Chacune de ces vues contient une barre de navigation, en haut de

l’écran, contenant le titre de la vue.
j La barre de navigation de toutes les vues, sauf celle de la vue

racine, offre un bouton de retour (Back Button) qui permet de reve-
nir à la vue précédente ; la vue précédente et le bouton de retour
ont le même titre.

j La barre de navigation peut offrir un bouton supplémentaire à
droite.

Spécificité iPhone/iPod Touch
L’application avec barre de navigation est spécifique à l’iPhone et à l’iPod

Touch du fait de leur écran de taille réduite. L’équivalent sur iPad est l’appli-
cation à vue fractionnée (Split View) détaillée dans le chapitre qui décrit les
spécificités de cet appareil.

Figure 5.27 : Navigation dans l’application Contacts

1815.5. Barres de navigation

Créer une barre de navigation
À l’instar de la barre d’onglets, pour créer une barre de navigation
sous Interface Buider, il faut faire glisser un contrôleur de navigation-
(Navigation Controller) dans la fenêtre du fichier NIB.

Le contrôleur de navigation, instance de la classe UINavigation
Controller), prend en charge la navigation entre les vues. Son utili-
sation nécessite peu d’effort de la part du programmeur.

Dès que l’on ajoute un contrôleur de navigation à un fichier NIB, il est
associé à :

j une barre de navigation ; nous n’aurons généralement pas à nous
en occuper ;

j une contrôleur de vue racine (UIViewController) qui contient un
élément de navigation.

À la différence d’un contrôleur de barre d’onglets, qui contient tous
les contrôleurs de vue accessibles à l’utilisateur, le contrôleur de
navigation contient seulement le contrôleur de la vue racine. Les
autres vues devront être ajoutées par programmation.

Utiliser une barre de navigation
La navigation par barre de navigation est adaptée pour présenter des
vues contenant des informations de plus en plus détaillées. À partir
d’une vue, on peut soit ajouter une vue contenant une information
plus détaillée, soit revenir à la vue précédente qui contient des
informations moins détaillées.

Figure 5.28 : Contrôleur de navigation dans un fichier NIB

182 5. Applications multivues

On parle de pile de navigation pour désigner tous les contrôleurs de
vues gérés par le contrôleur de navigation, ceux qui doivent être
conservés car l’utilisateur doit pouvoir y revenir.

Pile
Une pile est une collection dans laquelle seul le dernier objet ajouté est

accessible. On empile un objet pour l’ajouter à la collection, on le dépile pour
l’en retirer. Une pile d’objets fonctionne comme une pile d’assiettes.

La pile est initialisée avec le contrôleur de vue racine. Pour changer
de vue, il faut empiler un contrôleur de vue dans la pile de navigation,
en envoyant un message −pushViewController:animated: au contrô-
leur de navigation. Nous verrons un exemple de mise en œuvre au
chapitre suivant.

Lorsqu’un contrôleur de vue est empilé, la vue associée est affichée
avec une barre de navigation et un bouton de retour. Lorsque l’utili-
sateur touche le bouton de retour, le contrôleur de vue est dépilé et le
contrôleur de vue suivant dans la pile est affiché.

5.6. Checklist
Nous avons vu dans ce chapitre les principaux types d’applications
multivues :

j utilitaire, avec une vue principale et une vue modale ;

j application à barre d’onglets, avec le contrôleur de barre d’onglets
UITabBarController ;

j application à barre de navigation et le contrôleur de navigation
UINavigationController.

Nous avons détaillé le fonctionnement des vues modales et du
contrôleur de barre d’onglets et réalisé une version 2 de notre
convertisseur permettant à l’utilisateur de modifier le taux de conver-
sion.

Nous mettrons en application le principe de fonctionnement du
contrôleur de navigation aux chapitres suivants : nous créerons une
application pour naviguer dans une structure de données.

Nous avons également examiné le fonctionnement des alertes
(UIAlertView) et des feuilles d’action (UIActionSheet).

1835.6. Checklist

C
H

A
P

IT
R

E
6

CONTRÔLES
COMPLEXES

Utiliser un sélectionneur .. 187
Utiliser les conteneurs Cocoa .. 205
Utiliser les Vues en table .. 208
Checklist .. 228

185

Dans ce chapitre, nous allons examiner le fonctionnement des
contrôles visuels qui dépendent d’un ensemble de données :

j vues en table, qui permettent de présenter une liste de données ;

j sélectionneurs, qui permettent à l’utilisateur de sélectionner une valeur.

Nous en profiterons pour apprendre à manipuler des dates ainsi que
les conteneurs utilisés en Objective-C : tableaux et dictionnaires.
Nous utiliserons ces éléments pour débuter l’application Emprunts1,
un aide-mémoire pour nous souvenir des objets que nous avons
prêtés à nos amis, ce qui nous permettra aussi de mettre en œuvre
les barres de navigation.

6.1. Utiliser un sélectionneur
Un sélectionneur (picker) est un contrôle visuel en forme de tambour ;
l’utilisateur le fait tourner pour choisir une valeur.

Sélectionneur de date
Nous allons commencer par une mise en pratique du cas le plus
simple : le sélectionneur de date (date picker).

Figure 6.1 : Exemples de sélectionneurs

Figure 6.2 : Mise en œuvre du sélectionneur de date

1876.1. Utiliser un sélectionneur

Exemple de mise en œuvre

Créez un nouveau projet de type View-based Application sous XCode.
Appelez-le Picker1.

Création de l’interface

Ouvrez le fichier Picker1ViewController.xib et composez l’interface
utilisateur avec :

j un Label ;

j deux boutons dont vous changez le titre : Lire et Aujourd’hui ;
j un sélectionneur de date.

Création du contrôleur de vue

1 Modifiez le fichier Picker1ViewController.h :

#import <UIKit/UIKit.h>
@interface Picker1ViewController : UIViewController {

IBOutlet UILabel * label;
IBOutlet UIDatePicker * datePicker ;

}
@property (nonatomic,assign) UILabel * label;
@property (nonatomic,assign) UIDatePicker * datePicker;
-(IBAction) readPicker ;
-(IBAction) setPicker ;
@end

2 Établissez les connexions sous Interface Builder. L’action readPic-
ker doit être connectée à l’événement Touch Up Inside du bouton

Figure 6.3 : Composition de l’interface

188 6. Contrôles complexes

Lire. L’action setPicker doit être connectée à l’événement Touch Up
Inside du bouton Aujourd’hui.

3 Ouvrez le fichier Picker1ViewController.m, modifiez la méthode
−viewDidUnload et ajoutez les méthodes −readPicker et −setPicker :

@synthesize label;
@synthesize datePicker;
- (IBAction) readPicker {

label.text = [[datePicker date] description];
}
- (IBAction) setPicker {

[datePicker setDate:[NSDate date] animated:YES] ;
}
- (void)viewDidUnload {

// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;
self.label = nil;
self datePicker = nil;

}

4 Construisez l’application et testez-la sur le simulateur.

Nous détaillerons bientôt les classes UIDatePicker et NSDate utilisées
dans cette application. Nous avons employé par ailleurs une mé-
thode −description. Cette méthode est définie dans la classe
NSObject ; elle est donc disponible dans toutes les classes et retourne
une chaîne de caractères qui décrit le récepteur.

Décrivez vos instances
Pensez à définir la méthode −description dans les classes que vous

définissez, vous pourrez ainsi utiliser le descripteur %@ pour inclure vos
instances dans une chaîne de caractères.

La classe UIDatePicker

Testez l’application Picker1 en essayant plusieurs configurations de
paramètres sous Interface Builder.

Figure 6.4 : Paramètres d’un sélectionneur de date

1896.1. Utiliser un sélectionneur

Le paramètre mode permet de modifier la présentation visuelle du
sélectionneur en fonction de l’usage que l’on veut en faire. Un
sélectionneur de date est un objet de la classe UIDatePicker. Ses
différents paramètres peuvent être définis sous Interface Builder ou
par programmation à l’aide des propriétés des instances de la classe.

Tableau 6.1 : Présentations visuelles du sélectionneur de date

Présentation Mode sous Interface
Builder

Propriété datePickerMode

Date&Time UIDatePickerModeDate
AndTime

Time UIDatePickerModeTime

Date UIDatePickerModeDate

Timer UIDatePickerModeCount
DownTimer

Tableau 6.2 : Principales propriétés de la classe UIDatePicker
Thème Propriété Objet de la propriété
Date et calendrier @property(nonatomic,

retain) NSDate *date
Date affichée ou 0 si le sélectionneur est
en mode Timer.

Mode @property(nonatomic)
UIDatePickerMode
datePickerMode

Mode d’affichage du sélectionneur.

Attributs temporels @property(nonatomic,
retain) NSDate
*maximumDate

Date maximale affichée ou nil s’il n’y a
pas de maximum.

@property(nonatomic,
retain) NSDate
*minimumDate

Date minimale affichée ou nil s’il n’y a
pas de minimum.

@property(nonatomic)
NSInteger
minuteInterval

Intervalle minimum affiché, en minutes. Doit
être un diviseur de 60. Valeur minimum
1 (par défaut) et valeur maximum 30.

@property(nonatomic)
NSTimeInterval
countDownDuration

Durée affichée comprise entre 0 et
23h59, ou 0 lorsque le sélectionneur
n’est pas en mode Timer.

La classe UIDatePicker définit également une méthode −setDate:
animated: qui permet de changer la date affichée avec une animation.
Pour changer la valeur affichée, on peut aussi modifier la propriété
date. Dans ce cas, il n’y a pas d’animation. Essayez ces deux procé-
dés dans la méthode −setPicker de l’application Picker1.

190 6. Contrôles complexes

Vous pouvez également connecter l’action −datePicker du contrôleur
de vue Picker1ViewController à l’événement Value Changed du sélec-
tionneur de date ; le texte du label évoluera dès que l’utilisateur
changera la valeur affichée.

NSTimeInterval
La propriété countDownDuration de la classe UIDatePicker est de type

NSTimeInterval, équivalent au type double. Il représente un intervalle de
temps exprimé en secondes.

Gestion des dates

La gestion des dates est un réel défi sur un appareil destiné à être
utilisé dans le monde entier, qui doit donc prendre en compte les
différentes façons de représenter les dates et les différents calen-
driers. Le système mis en place par Apple permet de simplifier la
tâche des développeurs qui souhaitent la plus large diffusion de
leurs applications. Elle pourra vous paraître un peu complexe si vos
ambitions sont plus limitées.

Le mot date désigne simplement un instant précis mesuré à partir
d’une référence absolue. Un calendrier est une structuration du
temps en jour-mois-année. Un instant donné est toujours représenté
par la même date, indépendante de la localisation, alors que le
calendrier dépend de la culture et du lieu géographique. Outre le
calendrier grégorien utilisé en occident, iPhone OS propose les ca-
lendriers hébreu, islamique, chinois, bouddhiste et japonais.

Pour exprimer un instant en jour-mois-année, il faut la combinaison d’un
instant (la date) et d’un calendrier. On obtient alors les composants
d’une date (le jour, le mois et l’année) dans un calendrier donné.

Concentrons-nous sur les classes les plus utilisées :
j NSDate qui représente une date ;
j NSDateFormatter qui permet d’effectuer les conversions entre

chaîne de caractères et date.

NS et UI
Le nom de chaque classe commence par deux caractères majuscules qui

identifient le framework dans lequel la classe est définie. Par exemple UI pour
UIKit et NS pour NextStep. Ce système est un ancêtre de Mac OS X. Les
classes NS que nous utilisons sont communes aux environnements iPhone
OS et Mac OS X. Le framework UIKit est disponible uniquement dans l’envi-
ronnement iPhone OS.

1916.1. Utiliser un sélectionneur

La classe NSDate

Les dates, ou instants particuliers, sont représentées par des instan-
ces de la classe NSDate dont les principales méthodes sont résumées
dans le tableau. Elles permettent de réaliser l’arithmétique de base
sur les dates :

j comparer deux dates ;

j calculer la durée espaçant deux dates ;
j définir une nouvelle date en ajoutant une durée à une date.

Bien entendu, les durées peuvent être positives ou négatives. Elles
sont du type NSTimeInterval qui n’est rien d’autre qu’un double expri-
mant une durée en secondes.

Tableau 6.3 : Principales méthodes de la classe NSDate
Thème Méthode Objet de la méthode
Création
et initialisation

+ (id)date Méthode de classe qui retourne une ins-
tance initialisée à l’instant présent

− (id)init Initialise le récepteur à l’instant présent.
+ (id) dateWithTime
IntervalSinceNow:
(NSTimeInterval)seconds

Méthode de classe qui retourne une ins-
tance initialisée à un nombre donné de
secondes à partir de l’instant présent

− (id) initWithTime
IntervalSinceNow:
(NSTimeInterval)seconds

Initialise le récepteur à un nombre donné
de secondes à partir de l’instant présent.

Comparaisons − (NSDate *) earlier
Date:(NSDate *)
anotherDate

Retourne la date la plus précoce entre le
récepteur et la date donnée en paramètre.

− (NSDate *) laterDate:
(NSDate *)anotherDate

Retourne la date la plus tardive entre le
récepteur et la date donnée en paramètre.

− (NSComparisonResult)
compare:(NSDate *)
anotherDate

Compare le récepteur à la date donnée en
paramètre. Retourne NSOrderedSame
lorsque les dates sont identiques,
NSOrderedDescending lorsque le
récepteur est plus tardif que la date don-
née en paramètre, et
NSOrderedAscending si elle est plus
précoce.

Obtenir des
durées

− (NSTimeInterval)
timeIntervalSinceDate:
(NSDate *)anotherDate

Retourne la durée entre le récepteur et la
date passée en paramètre.

− (NSTimeInterval)
timeIntervalSinceNow

Retourne la durée entre le récepteur et
l’instant présent.

Ajouter une
durée

− (id) addTimeInterval:
(NSTimeInterval)seconds

Crée une nouvelle date initialisée à un
nombre donné de secondes à partir du
récepteur.

192 6. Contrôles complexes

La classe NSDateFormatter

La classe NSDateFormatter permet de convertir une chaîne de caractè-
res en une date et vice-versa. Chaque instance de cette classe
contient un calendrier, un fuseau horaire et une localisation qui sont
par défaut ceux réglés dans l’appareil. Le format de conversion doit
être spécifié par la méthode −setDateFormat:. On utilise ensuite l’une
des deux méthodes −dateFromString: et −stringFromDate: pour effec-
tuer les conversions.

1 Modifiez la méthode readPicker de la classe Picker1ViewController
dans l’application Picker1 :

- (IBAction) readPicker {
formatter = [[NSDateFormatter alloc] init];
[formatter setDateFormat:@"EEEE dd MMMM HH:mm"];
label.text=[formatter stringFromDate:[datePicker date]];
[formatter release];

}

2 Testez l’application sur le simulateur d’iPhone. Changez la locali-
sation (Réglages->Général->International->Format régional) et véri-
fiez que le texte affiché et le sélectionneur de date répercutent la
localisation par défaut de l’appareil.

Figure 6.5 : Picker1 sous différentes localisations

1936.1. Utiliser un sélectionneur

Tableau 6.4 : Principales méthodes de la classe NSDateFormatter

Thème Méthode Objet de la méthode

Initialisation − (id) init Initialise le récepteur avec les paramè-
tres par défaut de l’appareil (calendrier,
fuseau horaire, localisation).

Conversion − (NSDate *) date
FromString:
(NSString *)string

Convertit une chaîne de caractères en
date.

− (NSString *)
stringFromDate:
(NSDate *)date

Convertit une date en chaîne de carac-
tères.

Formats − (void) setDate
Format:(NSString *)
string

Définit le format de conversion selon le
standard technique n°35 de l’Unicode.

Gestion des symboles − (void) setWeekday
Symbols:(NSArray *)
array

Définit la représentation des jours de la
semaine à utiliser. Le premier élément
de tableau est le dimanche.

− (void) setMonth
Symbols:(NSArray *)
array

Définit la représentation des mois de
l’année à utiliser.

Vous pouvez consulter le standard technique n°35 de l’Unicode sur le
site de l’organisation (http://unicode.org/reports/tr35/tr35-6.html#Date_Format_
Patterns) pour connaître toutes les possibilités de formatage des dates.
Un format de date est une chaîne de caractères contenant des codes
qui représentent les différentes composantes d’une date.

Tableau 6.5 : Codes de formatage de date les plus courants

Code Représente Exemple pour le 12/12/2010 à 15:30

yy Les 2 derniers chiffres de l’année 10

yyyy L’année 2010

MM Le mois numérique 12

MMMM Le mois littéral décembre

dd Le jour dans le mois 12

EEEE Le jour dans la semaine littéral samedi

HH L’heure (de 0 à 23) 15

mm Les minutes 30

En utilisant un sélectionneur UIDatePicker et un formateur
NSDateFormatter, le développeur a l’assurance que les dates seront
toujours affichées en employant le réglage régional décidé par l’uti-
lisateur de l’appareil.

194 6. Contrôles complexes

Challenge

Les utilisateurs pointilleux auront remarqué que les langues régio-
nales (provençal, breton, occitan…) ne sont pas disponibles sur
l’iPhone. Heureusement, la classe NSDateFormatter est pleine de res-
sources. Les méthodes −setWeekdaySymbols: et −setMonthSymbols: per-
mettent de définir la représentation des jours de la semaine et des
mois de l’année.

Votre objectif est d’afficher la date en breton dans le label de l’appli-
cation Picker1.

Vous pourrez utiliser un formateur de date qui pourrait être initialisé
dans la méthode −viewDidLoad du contrôleur de vue :
- (void)viewDidLoad {

[super viewDidLoad];
formatter = [[NSDateFormatter alloc] init];
NSArray * mois = [NSArray arrayWithObjects:@"Genver",

@"C’hwevrer",@"Meurzh",@"Ebrel",@"Mae",
@"Mezheven",@"Gouere",@"Eost",
@"Gwengolo",@"Here",@"Du",@"Kerzu",nil];

NSArray * jours = [NSArray arrayWithObjects:@"Sul",
@"Lun",@"Meurzh",@"Merc’her",@"Yaou",
@"Gwener",@"Sadorn",nil];

[formatter setMonthSymbols:mois];
[formatter setWeekdaySymbols:jours];

Figure 6.6 : Affichage de la date en breton

1956.1. Utiliser un sélectionneur

[formatter setDateFormat:@"EEEE d MMMM HH:mm"];
}

Sélectionneur standard
Un sélectionneur standard ressemble visuellement à un sélection-
neur de date mais il fonctionne différemment. Nous allons commen-
cer par un exemple simple pour découvrir la classe UIPickerView.

Application Picker2

L’application Picker2 va simplement présenter un sélectionneur à
l’utilisateur, pour lui permettre de choisir un pays. Le pays choisi sera
affiché dans un label.

Créez un nouveau projet de type View-based Application sous XCode
et appelez-le Picker2.

Création de l’interface

Ouvrez le fichier Picker2ViewController.xib et composez l’interface
utilisateur avec :

j un Label ;

j un sélectionneur standard (Picker View).

Figure 6.7 : Application Picker2

196 6. Contrôles complexes

Interface du contrôleur de vue

1 Modifiez le fichier Picker2ViewController.h :

#import <UIKit/UIKit.h>
@interface Picker2ViewController : UIViewController
<UIPickerViewDelegate,UIPickerViewDataSource>{

IBOutlet UILabel * label;
NSArray * valeurs;

}
@property (nonatomic,assign) UILabel * label;
@end

2 Remarquez les différences avec le contrôleur de vue de Picker1 :

Il n’y a pas d’outlet sur le sélectionneur.

Nous avons besoin d’un tableau de valeurs.

Le contrôleur adopte les protocoles UIPickerViewDelegate et
UIPickerViewDataSource.

Le sélectionneur standard nécessite un délégué pour fonctionner.
Deux protocoles sont définis et donc on pourrait même dire qu’il lui
faut deux délégués. En pratique, ces deux protocoles seront généra-
lement adoptés par un seul contrôleur de Vue. C’est donc le sélec-
tionneur qui connaît le contrôleur de vue, son délégué, et ce dernier
n’a donc généralement pas besoin de connaître le sélectionneur ; il
n’y a pas d’outlet sur le sélectionneur.

Nous avons besoin d’un tableau de valeur dans le contrôleur de vue
car c’est lui, en tant que délégué du sélectionneur, qui doit gérer les
valeurs à afficher ; nous allons expliquer cela.

Connexions

Établissez les connexions sous Interface Builder :

j L’outlet label du contrôleur de vue doit être connecté au champ
Label de l’interface.

j Les outlets delegate et dataSource du sélectionneur doivent être
connectés au contrôleur de vue (File’s owner).

Figure 6.8 : Connexions du contrôleur de vue Picker2ViewController

1976.1. Utiliser un sélectionneur

Code du contrôleur

1 Ouvrez le fichier Picker2ViewController.m, modifiez la méthode
−viewDidUnload et −viewDidLoad puis ajoutez les méthodes définies
dans les protocoles :

@synthesize label;
- (NSInteger)numberOfComponentsInPickerView:

(UIPickerView *)pickerView{
return 1;

}
- (NSInteger)pickerView:(UIPickerView *)pickerView

numberOfRowsInComponent:(NSInteger)component{
return [valeurs count];

}
- (NSString *)pickerView:(UIPickerView *)pickerView

titleForRow:(NSInteger)row
forComponent:(NSInteger)component{

return [valeurs objectAtIndex:row];
}
- (void)pickerView:(UIPickerView *)pickerView

didSelectRow:(NSInteger)row
inComponent:(NSInteger)component{

self.label.text = [valeurs objectAtIndex:row];
}
// Implement viewDidLoad to do additional setup after
loading the view, typically from a nib.
- (void)viewDidLoad {

[super viewDidLoad];
valeurs = [[NSArray alloc] initWithObjects:@"France",

@"Allemagne",@"Italie",@"Espagne",@"Portugal",nil];
self.label.text = [valeurs objectAtIndex:0];

}
- (void)viewDidUnload {

// Release any retained subviews of the main view.
// e.g. self.myOutlet = nil;
self.label = nil;
[valeurs release];

}

2 Construisez l’application et testez-la sur le simulateur.

Nous avons construit un tableau valeurs initialisé avec une liste de
pays. Au moment où il s’affiche, le sélectionneur demande un certain
nombre d’informations à son délégué ; elles seront puisées dans ce
tableau :

j Combien y a-t-il de lignes au total ?

j Que dois-je afficher sur telle ou telle ligne ?

Le sélectionneur va également envoyer un message à son délégué
chaque fois que l’utilisateur le manipulera.

198 6. Contrôles complexes

Nous détaillerons tout cela. Auparavant, étudions la classe
UIPickerView.

Classe UIPickerView

Un sélectionneur est un objet qui permet d’afficher un ou plusieurs
tambours. Chaque tambour contient une liste de valeurs ; l’utilisa-
teur choisit l’une de ces valeurs en le faisant tourner. Les tambours
sont les composants (components) du sélectionneur, chaque compo-
sant contient plusieurs lignes ou rangées (rows).

Les développeurs ont une tendance naturelle à écrire du code qui
décide ce qui doit être affiché à l’écran. La programmation Cocoa est
différente, on parle de contrôle inversé :

j Les contrôleurs envoient des instructions simples aux vues :

Où doivent-elles s’afficher ?

Quelles sont leurs propriétés ?

j Les vues prennent en charge toute la partie visuelle : affichage et
animation.

j Les vues sous-traitent les activités qui ne relèvent pas strictement
du comportement visuel à leur délégué.

Figure 6.9 : Sélectionneur à deux composants

1996.1. Utiliser un sélectionneur

Les sélectionneurs UIPickerView savent s’afficher et faire tourner les
tambours sous l’impulsion de l’utilisateur mais ils ne connaissent
pas leur contenu. Pour savoir ce qu’ils doivent afficher, ils consultent
leur délégué et leur source de données (voir section suivante).

Tableau 6.6 : Principales méthodes de la classe UIPickerView

Thème Méthode Objet de la méthode

Recharger les
données

− (void) reloadComponent:
(NSInteger)component

Notifie au récepteur que les va-
leurs du composant ont été modi-
fiées.

− (void) reloadAllComponents Notifie au récepteur que les va-
leurs de tous les composants ont
été modifiées.

Sélection − (void) selectRow:
(NSInteger)row inComponent:
(NSInteger)component
animated:(BOOL)animated

Sélectionne une ligne pour un
composant, éventuellement avec
une animation visuelle.

− (NSInteger) selectedRowIn
Component:(NSInteger)
component

Retourne la ligne sélectionnée
pour un composant du
sélectionneur.

Un contrôle qui n’en est pas un
Contrairement au sélectionneur de date, le sélectionneur standard n’est

pas un contrôle. La classe UIPickerView ne dérive pas de la classe
UIControl. On ne peut donc pas utiliser le mécanisme cible-action avec un
sélectionneur standard. C’est le délégué qui est notifié des changements
d’états.

Source de données
Un sélectionneur standard nécessite deux délégués :

j delegate qui joue le rôle de délégué traditionnel : contrôle des
vues, positionnement, réponse aux actions, il doit répondre au
protocole <UIPickerViewDelegate> ;

j dataSource, source de données, qui fournit des informations relati-
ves aux valeurs à afficher et répond au protocole <UIPicker
ViewDataSource>.

Dans l’application Picker2, le contrôleur de vue est à la fois, comme
souvent, le délégué et la source de données du sélectionneur. Nous
y avons donc défini :

200 6. Contrôles complexes

j la méthode −numberOfComponentsInPickerView: qui retourne 1 ; nous
informons le sélectionneur qu’il doit afficher un seul composant
(un seul tambour) ;

j la méthode −pickerView:numberOfRowsInComponent: qui retourne
[valeurs count] pour informer le sélectionneur que le composant
doit comporter autant de lignes que d’éléments dans le tableau
valeurs ; tableau qui contient la liste des pays à afficher ;

j la méthode −pickerView:titleForRow:forComponent: qui retourne la
chaîne de caractères à afficher sur la rangée row : [valeurs
objectAtIndex:row] ;

j la méthode −pickerView:didSelectRow:inComponent: qui est appelée
lorsque l’utilisateur vient de manipuler l’un des tambours.

Ces méthodes admettent un paramètre pickerView, ce qui permet à
un même délégué et une même source de données de gérer plu-
sieurs sélectionneurs.

Tableau 6.7 : Méthodes du protocole UIPickerViewDataSource

Méthode Objet de la méthode

− (NSInteger) numberOfComponents
InPickerView:(UIPickerView *)
pickerView

Doit retourner le nombre de composants du
sélectionneur passé en paramètre.

− (NSInteger) pickerView:
(UIPickerView *)pickerView
numberOfRowsInComponent:
(NSInteger)component

Doit retourner le nombre de lignes pour le
composant et le sélectionneur passés en
paramètres.

Tableau 6.8 : Méthodes du protocole UIPickerViewDelegate

Thème Méthode Objet de la méthode

Dimensions de la vue − (CGFloat) pickerView:
(UIPickerView *)picker
View rowHeightFor
Component:(NSInteger)
component

Doit retourner la hauteur en pixels
dans laquelle doit s’afficher une
ligne pour le composant et le sé-
lectionneur passés en paramè-
tres.

− (CGFloat) pickerView:
(UIPickerView *)picker
View widthForComponent:
(NSInteger)component

Doit retourner la largeur en pixels
dans laquelle doit s’afficher une
ligne pour le composant et le sé-
lectionneur passés en paramè-
tres.

2016.1. Utiliser un sélectionneur

Tableau 6.8 : Méthodes du protocole UIPickerViewDelegate

Thème Méthode Objet de la méthode

Contenu de la vue
Une de ces méthodes
est obligatoire

− (NSString *) picker
View:(UIPickerView *)
pickerView titleForRow:
(NSInteger)row for
Component:(NSInteger)
component

Retourne une chaîne de caractè-
res à afficher sur la ligne du com-
posant du sélectionneur passés
en paramètres.

− (UIView *) pickerView:
(UIPickerView *)picker
View viewForRow:
(NSInteger)row for
Component:(NSInteger)
component reusingView:
(UIView *)view

Retourne une Vue à afficher sur la
ligne du composant du sélection-
neur passé en paramètres. La vue
passée en paramètre peut être
réutilisée.

Sélection d’une ligne − (void) pickerView:
(UIPickerView *)picker
View didSelectRow:
(NSInteger)row
inComponent:
(NSInteger)component

L’utilisateur vient de sélectionner
la ligne du composant du sélec-
tionneur passé en paramètres.

Adapter le sélectionneur au contexte
Les protocoles UIPickerViewDelegate et UIPickerViewDataSource per-
mettent une grande diversité d’utilisation des sélectionneurs.

Dans le sélectionneur représenté ici, le composant gauche contient
une liste de pays et le composant droit une liste de villes. Il est
souhaitable que la liste des villes change lorsque l’utilisateur change
de pays.

Figure 6.10 : Sélectionneur à deux composants

202 6. Contrôles complexes

Structure de données

Les données que nous devons manipuler ont une structure plus
complexe que celles que nous avons manipulées jusqu’ici. Nous
avons besoin :
j d’un tableau contenant la liste des pays ;
j pour chaque pays, d’un tableau contenant la liste des villes de ce pays.

En programmation Cocoa, lorsqu’on veut établir une mise en corres-
pondance de deux listes d’objets – ici une liste de pays et une liste de
listes de villes –, on utilise un dictionnaire de la classe NSDictionary.
Le bon endroit pour initialiser cette structure de données est la
méthode −viewDidLoad du contrôleur de vue :
- (void)viewDidLoad {

[super viewDidLoad];
pays = [[NSArray alloc] initWithObjects:@"France",

@"Allemagne",@"Italie",@"Espagne",@"Portugal",nil];
villes = [[NSDictionary alloc] initWithObjects:

[NSArray arrayWithObjects:
[NSArray arrayWithObjects:@"Paris",

@"Marseille",@"Lyon",@"Toulouse",
@"Bordeaux",nil],

[NSArray arrayWithObjects:@"Berlin",
@"Hambourg",@"Munich",
@"Stuttgart",nil],

[NSArray arrayWithObjects:@"Rome",
@"Florence",@"Naples",@"Venise",
@"Milan",nil],

[NSArray arrayWithObjects:@"Madrid",
@"Barcelone",@"Séville",nil],

[NSArray arrayWithObjects:@"Lisbonne",
@"Porto",nil],nil]

forKeys:pays];
self.paysChoisi = @"France";
self.label.text =
[[villes objectForKey:self.paysChoisi] objectAtIndex:0];

}

Les classes et méthodes utilisées seront expliquées plus loin dans ce
chapitre.

Source de données

Nous devons écrire les 2 méthodes du protocole UIPickerView
DataSource qui retournent le nombre de composants et le nombre de
lignes pour chaque composant du sélectionneur.

Nous voulons afficher deux composants :
- (NSInteger)numberOfComponentsInPickerView:

(UIPickerView *)pickerView{
return 2;

}

2036.1. Utiliser un sélectionneur

Le nombre de lignes est fixe pour le premier composant, c’est le
nombre de pays. Il dépend du pays choisi pour le deuxième compo-
sant, il faudra donc penser à ajouter une propriété paysChoisi dans
notre contrôleur de vue :
- (NSInteger)pickerView:(UIPickerView *)pickerView

numberOfRowsInComponent:(NSInteger)component{
if (component == 0) {

return [pays count];
} else {

return [[villes objectForKey:self.paysChoisi] count];
}

}

Délégué

Dans le premier composant, le titre à afficher en fonction du numéro de
ligne est le nom du pays. Dans le second composant, il faut afficher le
nom de la ville et nous devons ici aussi prendre en compte le pays choisi.
- (NSString *)pickerView:(UIPickerView *)pickerView

titleForRow:(NSInteger)row
forComponent:(NSInteger)component{

if (component == 0) {
return [pays objectAtIndex:row];

} else {
return [[villes objectForKey:self.paysChoisi]

objectAtIndex:row];
}

}

Lorsque l’utilisateur change de pays (lorsqu’il touche le composant
numéro 0), il faut :

j modifier la propriété paysChoisi du contrôleur de vue ;

j indiquer au sélectionneur que la liste des villes à afficher n’est plus la
même.

- (void)pickerView:(UIPickerView *)pickerView
didSelectRow:(NSInteger)row
inComponent:(NSInteger)component{

if (component == 0) {
self.paysChoisi = [pays objectAtIndex:row];
self.label.text = self.paysChoisi;
[pickerView reloadComponent:1];

} else {
self.label.text = [[villes
objectForKey:self.paysChoisi] objectAtIndex:row];

}
}

204 6. Contrôles complexes

Remarquez l’instruction [pickerView reloadComponent:1]; qui indique
au sélectionneur qu’il doit modifier le contenu du composant nu-
méro 1 (la liste des villes).

Challenge

Vous avez maintenant tous les éléments pour réaliser l’application
Picker3 qui présente un sélectionneur à deux tambours, un pour les
pays et un pour les villes, et qui affiche dans le label la dernière
sélection de l’utilisateur. Bien sûr, la liste des villes dépend du pays
sélectionné.

Si vous souhaitez comprendre plus précisément le fonctionnement
des tableaux et des dictionnaires, reportez-vous à la section suivante
avant de réaliser l’application Picker3.

6.2. Utiliser les conteneurs Cocoa
Les conteneurs sont des structures de données de base, indispensa-
bles pour réaliser des applications au modèle de données complexe.
Dans ce chapitre, nous décrivons :
j les tableaux, qui sont des instances de la classe NSArray ;
j les dictionnaires, qui sont des instances de la classe NSDictionary.

Ces structures de données sont particulièrement intégrées au lan-
gage Objective-C ; on peut les parcourir avec l’instruction for in :
NSString * pays;
NSArray * toutLesPays=[NSArray arrayWithObjects:@"France",

@"Allemagne",@"Italie",@"Espagne",@"Portugal",nil];
for (pays in toutLesPays) {

// la boucle est exécutée avec les éléments du tableau
}

Tableaux NSArray
Un tableau est une liste ordonnée de pointeurs vers d’autres objets,
indexée par un entier compris entre 0 et n-1 si le tableau contient n
objets. Les différents objets peuvent être de classes différentes mais
toutes les positions de 0 à n-1 doivent être occupées ; il est interdit
d’avoir un pointeur nil au milieu du tableau.

Objet nul
On ne peut pas insérer nil dans un conteneur mais on peut utiliser l’objet

nul [NSNull null]. L’objet nul ne répond à aucune méthode excepté celles
de NSObject dont il dérive.

2056.2. Utiliser les conteneurs Cocoa

Les méthodes principales de la classe NSArray sont résumées dans le
tableau. Les méthodes les plus utilisées sont −objectAtIndex: qui
retourne l’objet associé à l’indice passé en paramètre, et −count qui
retourne le nombre d’éléments dans le tableau.

Tableau 6.9 : Principales méthodes de la classe NSArray

Thème Méthode Objet de la méthode

Créer un
tableau

+ (id) arrayWithObjects:
(id)firstObj, ...

Crée un tableau constitué de la liste des
objets passés en paramètre. Les élé-
ments de la liste sont séparés par une
virgule. Le dernier élément de la liste doit
être nil.

Initialiser un
tableau

− (id) initWithObjects:
(id)firstObj, ...

Initialise un tableau constitué de la liste
des objets passés en paramètre. Les
éléments de la liste sont séparés par une
virgule. Le dernier élément de la liste doit
être nil.

Interroger
un tableau

− (BOOL) containsObject:
(id)anObject

Retourne YES si anObject est dans le
tableau, NO sinon. Les éléments du
tableau sont comparés à anObject
par la méthode -isEqual: déclarée
dans NSObject.

− (NSUInteger)count Retourne le nombre d’éléments du ta-
bleau.

− (id)lastObject Retourne le dernier élément du tableau.

− (id) objectAtIndex:
(NSUInteger)index

Retourne l’élément dont l’indice est
passé en paramètre. index doit être
compris entre 0 et count−1.

Trouver un
objet

− (NSUInteger) index
OfObject:(id)anObject

Retourne l’indice de l’élément égal à
anObject. Les éléments du tableau
sont comparés à anObject par la
méthode -isEqual:. Si plusieurs élé-
ments sont égaux à anObject, l’indice
le plus petit est retourné. Si aucun élé-
ment n’est égal à anObject, la mé-
thode retourne NSNotFound.

− (NSUInteger) index
OfObject:(id)anObject
inRange:(NSRange)range

Retourne l’indice de l’élément égal à
anObject. Les éléments du tableau
sont comparés à anObject par la
méthode -isEqual:. Si plusieurs élé-
ments sont égaux à anObject, l’indice
le plus petit est retourné. Si aucun élé-
ment n’est égal à anObject, la mé-
thode retourne NSNotFound. La re-
cherche est limitée aux indices compris
dans l’intervalle range.

206 6. Contrôles complexes

Pour créer un intervalle de type NSRange, on peut employer la fonction
utilitaire NSMakeRange, par exemple :
NSRange range = NSMakeRange(4, 8);

Dictionnaires NSDictionary
Un tableau permet de retrouver un objet par son indice qui est
obligatoirement un entier. Il est parfois intéressant d’utiliser des
indices quelconques, une chaîne de caractères par exemple. C’est le
rôle d’un dictionnaire.

Un dictionnaire est une liste d’entrées. Chaque entrée est constituée :

j d’une clé, un objet quelconque, souvent de la classe NSString ;

j d’une valeur associée à la clé, également un objet quelconque.

Aucune entrée ne doit présenter de clé ou de valeur nil (l’objet nul
est autorisé). Une clé doit être unique dans le dictionnaire.

Les méthodes principales de la classe NSDictionary sont résumées
dans le tableau. Les méthodes les plus utilisées sont −objectForKey:
qui retourne la valeur associée à la clé passée en paramètre et −count
qui retourne le nombre d’éléments dans le dictionnaire.

Tableau 6.10 : Principales méthodes de la classe NSDictionary

Thème Méthode Objet de la méthode

Créer un diction-
naire

+ (id) dictionaryWith
Objects:(NSArray *)
objects forKeys:
(NSArray *)keys

Crée un dictionnaire constitué des
objets contenus dans le tableau
objects avec les clés contenus
dans le tableau keys. Les deux
tableaux doivent contenir le même
nombre d’éléments.

Initialiser un diction-
naire

− (id) initWithObjects:
(NSArray *)objects
forKeys:(NSArray *)keys

Initialise un dictionnaire constitué
des objets contenus dans le tableau
objects avec les clés contenus
dans le tableau keys. Les deux
tableaux doivent contenir le même
nombre d’éléments.

Accéder aux clés et
aux valeurs

− (NSUInteger)count Retourne le nombre de paires (clé,
objet) du dictionnaire.

− (id) objectForKey:
(id)aKey

Retourne l’objet associé à la clé
aKey, ou nil si la clé n’est pas
dans le dictionnaire.

− (NSArray *)allKeys Retourne un tableau constitué de
l’ensemble des clés du dictionnaire,
ou un tableau vide si le dictionnaire
est vide.

2076.2. Utiliser les conteneurs Cocoa

Conteneurs mutables
Les objets des classes NSArray et NSDictionary sont immuables ; une
fois créés, on ne peut les modifier. Il existe des versions modifiables
(mutable) de ces classes qui, en pratique, sont peu utilisées.

La classe NSMutableArray dérive de NSArray. Elle définit en particulier
les méthodes supplémentaires suivantes :
j −addObject: qui permet d’ajouter un élément à la fin du tableau ;
j −insertObject:atIndex: qui permet d’insérer un élément dans le

tableau ;
j −removeObjectAtIndex: pour supprimer un élément connaissant son

indice ;
j −replaceObjectAtIndex:withObject: pour remplacer un des élé-

ments du tableau.

Les méthodes les plus utilisées de la classe NSMutableDictionary sont :
j −setObject:forKey: qui permet d’ajouter une entrée dans le diction-

naire ;
j −removeObjectForKey: pour supprimer une entrée connaissant sa

clé.

6.3. Utiliser les Vues en table
La vue en table (TableView) est le principal outil de navigation au sein
d’une structure de données arborescente. Vous avez maintenant les
connaissances suffisantes pour en comprendre le fonctionnement et
pour la mettre en œuvre dans vos applications :
j pattern Modèle-Vue-Contrôleur ;
j délégation ;
j source de données ;
j conteneurs.

Pour illustrer le fonctionnement d’ensemble des classes mises en
jeu, nous créerons l’application Emprunts1. Il s’agit d’un aide-
mémoire pour nous souvenir des objets que nous avons prêtés à nos
amis. À qui les avons-nous prêtés et à quelle date ?

Présentation générale
Avec les vues en table, l’utilisateur visualise une liste de données
puis il choisit un élément de cette liste pour visualiser une autre liste
liée à cet élément, etc. Il parcourt ainsi la structure de données,
visualise les informations détaillées ou édite les données.

208 6. Contrôles complexes

L’exemple typique de ce mode de navigation est l’application
Contacts :

j L’application présente une liste de groupes.

j L’utilisateur choisit un groupe ; il visualise alors la liste des
contacts appartenant à ce groupe.

j Il parcourt la liste des contacts du groupe. Lorsqu’il en choisit un,
il en visualise les informations détaillées qu’il peut éditer s’il le
souhaite.

Figure 6.11 : Liste des groupes de contacts

Figure 6.12 : Liste des contacts

2096.3. Utiliser les Vues en table

Chacune de ces vues est une vue en table de style différent :

j vue en table simple ;

j vue en table indexée (par les lettres de l’alphabet) ;
j vue en table par groupe (téléphones, adresses de courriel, adres-

ses postales, etc.).

Le fonctionnement de l’application Emprunts1 est analogue à celui de
Contacts :

j Le sommet de la structure de données est la liste des catégories
d’objet (CD, DVD, Livre).

j Lorsqu’une catégorie et choisie, l’utilisateur accède à la liste des
objets de cette catégorie.

j Il peut ajouter un objet ou éditer les informations pour un objet.

Paradoxalement, nous utiliserons peu les objets de la classe
UITableView pour la programmation des vues en table. Nous manipu-
lerons surtout les protocoles et classes associés :

Figure 6.13 : Informations détaillées d’un contact

Figure 6.14 : Application Emprunts1

210 6. Contrôles complexes

j la classe UITableView, bien sûr ;

j la classe UITableViewController, que nous dériverons et qui répond
aux protocoles :

<UITableViewDelegate> ;

<UITableViewDataSource>.

j la classe UITableViewCell, qui est la vue devant être affichée dans
une cellule ou ligne de la table ;

j la classe NSIndexPath dont les instances permettent de repérer une
cellule particulière de la table.

La classe UITableViewCell méritera une attention particulière car elle
permet toute la richesse d’affichage de la vue en table.

La programmation d’une vue en table consiste principalement à
définir un contrôleur de vue qui hérite de UITableViewController.
Cette classe prend en charge, en particulier, la présentation générale
de la table et le défilement vertical lorsque la liste ne tient pas
entièrement sur l’écran.

Créer une vue en table
Pour créer une vue en table, il suffit de créer et d’initialiser un
contrôleur de vue qui hérite de la classe UITableViewController.

Par programmation, l’initialisation du contrôleur de vue crée auto-
matiquement la vue en table :

j pour créer une vue en table simple :

init ;

initWithStyle:UITableViewStylePlain.

j pour créer une vue en table par groupe :

initWithStyle:UITableViewStyleGrouped.

Sous Interface Builder, il faut faire glisser un objet de type Table View
Controller dans la fenêtre du document NIB. Le contrôleur de vue
ainsi ajouté contient une instance de la classe UITableView.

Sous XCode, lorsqu’on crée une application de type Navigation-
based, une barre de navigation et un contrôleur de vue en table sont
automatiquement créés.

La vue en table associée au contrôleur est accessible par sa propriété
tableView définie dans la classe UITableViewController.

2116.3. Utiliser les Vues en table

1 Ouvrez XCode et créez une application de type Navigation-based.

2 Laissez la case Use Core Data for storage décochée et nommez
l’application Emprunts1.

Afficher la table

Préparer la structure de données

La classe RootViewController est le contrôleur de vue racine, elle
dérive de UITableViewController. C’est cette classe que nous allons
modifier pour apporter le comportement souhaité à notre applica-
tion.

Nous commencerons par créer le tableau des catégories à afficher
sur la première table.

1 Ajoutez une propriété categories dans l’interface de la classe
RootViewController :

@interface RootViewController : UITableViewController {
NSArray * categories;

}
@property(nonatomic,retain) NSArray * categories;
@end

2 Modifiez la méthode −viewDidLoad dans le fichier RootViewControl-
ler.m pour initialiser le tableau des catégories :

@synthesize categories;
- (void)viewDidLoad {

[super viewDidLoad];
self.categories = [NSArray arrayWithObjects: @"CD",

@"DVD",@"Livres",@"Divers",nil];
}

3 Enlevez les marques de commentaires autour de la méthode
−viewDidLoad.

Dimensionner la table

À l’instar du sélectionneur standard, la vue en table interroge sa
source de données pour dimensionner son affichage.

Si la table est de style groupé, la méthode −numberOfSections
InTableView: doit être implémentée dans le contrôleur de vue et
retourner le nombre de sections. La table des catégories de l’appli-
cation Emprunts1 n’étant pas décomposée en section, vérifiez que
cette méthode retourne 1.

212 6. Contrôles complexes

La méthode −tableView:numberOfRowsInSection: est obligatoire.
Modifiez-la pour retourner le nombre de lignes dans la table (le
nombre de catégories) :
- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section {
return [self.categories count];

}

Afficher les titres

Le titre inscrit dans la barre de navigation est, par défaut, le titre du
contrôleur de vue actif. Modifiez la méthode −viewDidLoad pour indi-
quer le titre Catégories.
- (void)viewDidLoad {

[super viewDidLoad];
self.categories = [NSArray arrayWithObjects: @"CD",

@"DVD",@"Livres",@"Divers",nil];
self.title = @"Catégories";

}

Si la table est créée en mode Groupé et si l’on souhaite donner un
titre à chaque section, il faut que le contrôleur de vue implémente la
méthode −tableView:titleForHeaderInSection: qui retourne une ins-
tance de NSString.

Délégué et Source de données
Dans un but de simplification, nous écrivons qu’un contrôleur de vue en

table doit implémenter telle ou telle méthode sans préciser si cette méthode
est définie dans le protocole de délégué ou dans celui de source de donnée de
la vue en table.

Décrire une ligne

La méthode retenue par Apple pour afficher une ligne de la table
répond à plusieurs problématiques :

j Il faut pouvoir repérer la ligne en question, lui donner une identi-
fication.

j Il ne faut pas brider le développeur dans sa créativité.
j Il faut que la programmation d’affichages simples reste simple.
j La mémoire est limitée et il faut tenir compte du fait que seules

quelques lignes sont réellement affichées à l’écran à un instant
donné.

2136.3. Utiliser les Vues en table

Repérer la ligne

Une ligne dans une table est repérée par une instance de la classe
NSIndexPath. Cette classe fournit deux propriétés section et row qui
permettent d’identifier une ligne (row) dans une section de la table
(section).

Avec une table ne contenant qu’une section, seule la propriété row est
utilisée. La section et la ligne dans la section sont numérotées à partir
de 0. (La première section a le numéro 0.)

NSIndexPath
Les propriétés section et row sont définies dans une extension de la

classe NSIndexPath qui la rend plus facile à utiliser avec les vues en table.

Cellules de table

Chaque ligne de la table est affichée dans une vue de type
UITableViewCell, appelée cellule (cell). Cette classe définit un compor-
tement par défaut qui facilite la programmation dans les cas simples.
Elle peut aussi être dérivée ou peut inclure d’autres vues ou d’autres
contrôles afin d’obtenir un comportement enrichi.

C’est le contrôleur de vue de la table qui est chargé de fabriquer les
cellules pour chaque ligne à la demande de la vue en table. Le
contrôleur doit implémenter la méthode −tableView:cellForRow
AtIndexPath: et retourner la cellule initialisée qui doit être affichée sur
la ligne repérée par le paramètre indexPath.

Nous allons avancer dans la compréhension des cellules avant de
voir un exemple pratique de mise en œuvre.

Recycler les cellules

À mesure que l’utilisateur parcourt la liste de la vue en table, de
nouvelles lignes sont affichées et d’autres disparaissent de l’écran.
Nous venons de voir que lorsqu’une ligne est sur le point d’apparaî-
tre à l’écran, la vue en table demande à son contrôleur de créer une
cellule et de l’initialiser. Mais que se passe-t-il lorsqu’une ligne dis-
paraît de l’écran ?

La mémoire étant limitée, on ne peut se permettre de toutes les
conserver, mais ce serait dommage de toutes les détruire. Si une
ligne disparaît, c’est qu’une autre apparaît à l’écran et qu’il faudra
créer une cellule pour cette nouvelle ligne. Cela prend du temps de

214 6. Contrôles complexes

créer une cellule et il faut aussi économiser la batterie. L’idée est
donc de recycler les cellules qui disparaissent de l’écran.

Les instances de UITableView entretiennent à cet effet une liste de
cellules réutilisables. On peut obtenir une cellule en appelant la
méthode −dequeueReusableCellWithIdentifier:. Cette méthode re-
tourne nil s’il n’y a pas de cellule réutilisable. L’identifiant passé en
paramètre est une chaîne de caractères. Si la vue en table contient
des cellules de différents types, il est important de repérer chaque
type par un identifiant spécifique.

L’identifiant d’une cellule est défini lors de sa création, à l’aide de la
méthode −initWithStyle:reuseIdentifier: de la classe UITableView
Cell.

C’est une bonne pratique de toujours vérifier s’il n’existe pas une
cellule réutilisable avant d’en créer une nouvelle du même type.
Examinez la méthode −tableView:cellForRowAtIndexPath: de la classe
RootViewController. Le recyclage des cellules y est déjà prévu, le
développeur n’a plus qu’à saisir le code pour configurer la cellule :
- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath {
static NSString *CellIdentifier = @"Cell";
UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {

cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleDefault

reuseIdentifier:CellIdentifier] autorelease];
}
// Configure the cell.
return cell;

}

Classe UITableViewCell

La méthode d’initialisation de la classe UITableViewCell prend un
paramètre identifier qui permet de définir l’identifiant de la cellule
pour sa réutilisation, et un paramètre style qui définit son style de
présentation à l’écran. Les styles les plus utilisés sont :

j UITableViewCellStyleDefault, style par défaut, une ligne de texte
avec une image optionnelle ;

j UITableViewCellStyleSubtitle, style avec sous-titre, deux lignes de
texte et une image optionnelle.

2156.3. Utiliser les Vues en table

Ces différents éléments de la cellule sont accessibles par les proprié-
tés de la classe UITableViewCell :

j textLabel, propriété de type UILabel * qui contient le texte princi-
pal de la cellule ;

j detailTextLabel, propriété de type UILabel * qui contient le texte
secondaire de la cellule (seulement si la cellule est de style avec
sous-titre) ;

j imageView, propriété de type UIImageView * qui contient l’image
affichée à gauche de la cellule.

Figure 6.15 : Style par défaut sans image

Figure 6.16 : Style par défaut avec image

Figure 6.17 : Style avec sous-titre et image

216 6. Contrôles complexes

Il est également possible d’agrémenter chaque cellule d’un
accessoire qui s’affiche sur la droite. Il s’agit d’une icône qui indique
à l’utilisateur les opérations qu’il peut réaliser. Le type d’accessoire à
afficher est indiqué avec la propriété accessoryType de la classe
UITableViewCell. Les valeurs autorisées pour cette propriété sont
précisées dans le tableau.

Tableau 6.11 : Valeurs autorisées pour la propriété accessoryType

Icône Valeur de la propriété Utilisation

UITableViewCellAccessory
DisclosureIndicator

Indique qu’une touche sur la ligne permet d’ac-
céder à des informations plus détaillées.

UITableViewCellAccessory
DetailDisclosureButton

Indique qu’une touche sur l’accessoire permet
d’accéder à des informations plus détaillées.

UITableViewCellAccessory
Checkmark

Indique que la ligne est sélectionnée.

UITableViewCellAccessory
None

Indique que la ligne n’est pas sélectionnée et ne
contient pas d’accessoire spécifique.

Nous voulons afficher les catégories d’objets et que l’utilisateur
accède à la liste des objets de cette catégorie lorsqu’il touche la ligne
correspondante.

1 Modifiez la méthode -tableView:cellForRowAtIndexPath: du fi-
chier RootViewController.m.

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

static NSString *CellIdentifier = @"Cell";
UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {

cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleDefault

reuseIdentifier:CellIdentifier] autorelease];
}
cell.textLabel.text = [categories

objectAtIndex:indexPath.row];
cell.accessoryType =

UITableViewCellAccessoryDisclosureIndicator;
return cell;

}

2 Construisez l’application et testez-la. L’affichage est correct mais il
faut maintenant que l’application réagisse lorsque l’utilisateur tou-
che une catégorie.

2176.3. Utiliser les Vues en table

Réagir à une sélection

Préparer la structure de données

Comme nous l’avons fait lors de notre étude des sélectionneurs,
avec les pays et les villes, nous allons représenter les listes d’objets
prêtés dans un dictionnaire indexé par la catégorie d’objet. Au dé-
part, les listes d’objets sont vides.

1 Ajoutez une propriété lendObjects dans l’interface de la classe
RootViewController :

@interface RootViewController : UITableViewController {
NSArray * categories;
NSDictionary * lendObjects;

}
@property(nonatomic,retain) NSArray * categories;
@property(nonatomic,retain) NSDictionary * lendObjects;
@end

2 Modifiez la méthode −viewDidLoad dans le fichier RootViewControl-
ler.m pour initialiser le dictionnaire des objets prêtés. Nous em-
ployons ici des tableaux modifiables de la classe NSMutableArray
car l’utilisateur doit pouvoir modifier les listes d’objets :

@synthesize categories,lendObjects;
- (void)viewDidLoad {

[super viewDidLoad];
self.title = @"Catégories";
self.categories = [NSArray
arrayWithObjects:@"CD",@"DVD",@"Livres",@"Divers",nil];

self.lendObjects = [NSDictionary dictionaryWithObjects:
[NSArray arrayWithObjects:[NSMutableArray array],
[NSMutableArray array],[NSMutableArray array],

[NSMutableArray array],nil]
forKeys:self.categories];

}

Afficher la liste détaillée

Lorsque l’utilisateur touche une cellule de la vue en table, le contrô-
leur de vue reçoit un message −tableView:didSelectRowAtIndexPath:.
Modifiez cette méthode pour y créer un nouveau contrôleur de vue et
l’afficher à l’écran. Ce contrôleur de vue doit connaître la liste d’ob-
jets à afficher, il aura donc aussi une propriété lendObjects :

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

ObjectListViewController * objectListViewController =
[[ObjectListViewController alloc]

218 6. Contrôles complexes

initWithStyle:UITableViewStylePlain];
NSString * category =

[self.categories objectAtIndex:indexPath.row];
objectListViewController.title = category;
objectListViewController.lendObjects =

[self.lendObjects objectForKey:category];
[self.navigationController pushViewController:

objectListViewController animated:YES];
[objectListViewController release];

}

Si l’accessoire ajouté dans les cellules avait été du type
UITableViewCellAccessoryDetailDisclosureButton, ce code aurait du
être placé dans la méthode −tableView:accessoryButtonTappedForRow
WithIndexPath:. Cette méthode est appelée lorsque l’accessoire est
un bouton et qu’il est touché par l’utilisateur.

Il faut maintenant créer la classe ObjectListViewController. Créez une
nouvelle classe sous XCode (X+N), choisissez un contrôleur de vue
qui dérive de UITableViewController.

Figure 6.18 : Création d’un contrôleur dérivant de UITableViewController

2196.3. Utiliser les Vues en table

1 Ajoutez la propriété lendObjects dans l’interface de la classe :

@interface ObjectListViewController : UITableViewController{
NSMutableArray * lendObjects;

}
@property(nonatomic,retain) NSMutableArray * lendObjects;
@end

2 Modifiez le fichier ObjectListViewController.m afin de prendre en
compte cette propriété pour l’affichage de la table. Laissez inchan-
gées les autres méthodes du fichier.

@synthesize lendObjects;
- (void)viewDidUnload {

self.lendObjects = nil;
}
- (NSInteger)numberOfSectionsInTableView:

(UITableView *)tableView {
return 1;

}
- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section {
return [lendObjects count];

}
- (UITableViewCell *)tableView:(UITableView *)tableView

cellForRowAtIndexPath:(NSIndexPath *)indexPath {
static NSString *CellIdentifier = @"Cell";
UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {

cell = [[[UITableViewCell alloc] initWithStyle:
UITableViewCellStyleDefault reuseIdentifier:

CellIdentifier] autorelease];
}

cell.textLabel.text = [[lendObjects
objectAtIndex:indexPath.row] description];

return cell;
}

3 Ajoutez l’importation de l’interface de la classe ObjectList
ViewController dans le fichier RootViewController.m :
#import " ObjectListViewController.h"

4 Reconstruisez l’application et testez-la (voir Figure 6.19).

Les listes sont vides, ce qui était prévu, et un bouton de retour est
automatiquement ajouté par le contrôleur de navigation. Vous pou-
vez déjà naviguer dans la structure de données.

Il ne nous reste plus qu’à doter notre application d’une fonction pour
ajouter des objets dans les listes.

220 6. Contrôles complexes

Ajouter un élément

Classe LendObject

Nous avons besoin d’une classe pour représenter un objet prêté et
ses propriétés :

j le nom de l’objet ;

j le nom de l’emprunteur ;
j la date du prêt.

Cette classe est seulement un réceptacle de données, elle ne contient
pas d’autre méthode que les accesseurs de ses propriétés.

1 Sous XCode, créez une nouvelle classe LendObject qui dérive de
NSObject. Déclarez les propriétés dans le fichier LendObject.h :

@interface LendObject : NSObject {
NSString * objectName;
NSString * borrowerName;
NSDate * lendDate;

}
@property(nonatomic,retain) NSString * objectName;
@property(nonatomic,retain) NSString * borrowerName;
@property(nonatomic,retain) NSDate * lendDate;
@end

Figure 6.19 : La liste des objets prêtés est vide

2216.3. Utiliser les Vues en table

2 Modifiez le fichier LendObject.m pour y définir les accesseurs de
propriétés et la méthode −dealloc.

@implementation LendObject
@synthesize objectName, borrowerName, lendDate;
- (void)dealloc {

self.objectName = nil;
self.borrowerName = nil;
self.lendDate = nil;
[super dealloc];

}
@end

Contrôleur de vue LendObjecViewController

Il nous faut maintenant une Vue et un contrôleur de vue pour éditer
les propriétés d’une instance de la classe LendObject. Sous XCode,
créez une nouvelle classe qui dérive de UIViewController, décochez la
case UITableViewController subclass et cochez la case With XIB for
user interface. Nous aurons besoin en effet d’un fichier NIB pour
décrire l’interface utilisateur.

Figure 6.20 : Création de la classe LendObjectViewController

222 6. Contrôles complexes

Déclaration de l’interface

1 Intitulez le fichier LendObjectViewController.m puis ouvrez le fichier
LendObjectViewController.h pour déclarer les outlets et les proprié-
tés.

2 Déclarez une action −doneEditing: qui nous servira pour effacer le
clavier.

#import <UIKit/UIKit.h>
#import "LendObject.h"
@interface LendObjectViewController : UIViewController {

LendObject * lendObject;
IBOutlet UITextField * objectNameField;
IBOutlet UITextField * borrowerNameField;
IBOutlet UIDatePicker * datePicker;

}
@property(nonatomic,retain) LendObject * lendObject;
@property(nonatomic,retain) UITextField * objectNameField;
@property(nonatomic,retain) UITextField *borrowerNameField;
@property(nonatomic,retain) UIDatePicker * datePicker;
- (IBAction) doneEditing:(id)sender;
@end

Définition des méthodes

1 Ouvrez le fichier LendObjectViewController.m pour définir les ac-
cesseurs des outlets et propriétés. Modifiez la méthode −view
DidUnload pour libérer les outlets et les propriétés.

2 Créez l’action −doneEditing: pour effacer le clavier comme nous
l’avons fait précédemment et créez la méthode −viewWill
Disappear:. Cette dernière méthode est définie dans la classe
UIViewController, elle est appelée lorsque la vue va disparaître de
l’écran ; c’est le bon endroit pour prendre en compte la saisie
effectuée par l’utilisateur.

@synthesize lendObject, objectNameField, borrowerNameField,
datePicker;

- (void)viewDidUnload {
self.lendObject = nil;
self.objectNameField = nil;
self.borrowerNameField = nil;
self.datePicker = nil;

}
- (void)viewWillDisappear:(BOOL)animated{

self.lendObject.objectName = self.objectNameField.text;
self.lendObject.borrowerName=self.borrowerNameField.text;
self.lendObject.lendDate = self.datePicker.date;
[super viewWillDisappear:animated];

}

2236.3. Utiliser les Vues en table

- (IBAction) doneEditing:(id)sender {
[sender resignFirstResponder];

}

Le retour vers l’écran précédent sera pris en charge par le contrôleur
de navigation ; nous n’avons pas besoin de nous en occuper ici.

Création du fichier NIB

Ouvrez le fichier LendObjectViewController.xib. Disposez les contrôles
pour bâtir l’interface utilisateur de saisie d’un prêt.

Établissez les connexions avec les outlets et l’action du contrôleur de
vue. Vous pouvez en profiter pour retoucher quelques paramètres
des contrôles pour la saisie :

j augmenter la taille de caractère des champs de texte ;

j donner la valeur Done à la clé Return des champs de texte ;
j régler le sélectionneur de date en mode Date.

Nous avons terminé l’interface utilisateur pour la saisie des nou-
veaux prêts. Il nous reste à programmer la fonction pour accéder à
cette saisie depuis la liste des objets prêtés (toujours vide, pour
l’instant).

Figure 6.21 : Interface de saisie pour le prêt d’un objet

224 6. Contrôles complexes

Activer la fonction d’ajout

L’activation de la fonction d’ajout nécessite deux éléments :

j un bouton pour permettre à l’utilisateur de l’actionner ;

j une action connectée sur ce bouton pour activer l’interface utilisa-
teur de saisie.

Ajoutez une action dans le fichier ObjectListViewController.h :
- (IBAction) addItem;

La barre de navigation de l’interface utilisateur est actuellement
occupée :

j à gauche par le bouton de retour ;

j au centre par le titre de l’écran.

Il nous reste une place à droite pour le bouton d’ajout. Les boutons
de la barre de navigation sont de la classe UIBarButtonItem, ils peu-
vent comporter une image et un titre. Une vingtaine de boutons sont
prédéfinis dans Cocoa Touch que vous pouvez visualiser sous Inter-
face Builder. Nous utiliserons le bouton d’ajout standard représenté
par le signe plus.

Bouton d’ajout

Ajoutez une méthode −viewDidAppear: dans le fichier ObjectListView-
Controller.m pour y créer un bouton de barre de navigation et l’ajou-
ter à droite. Le bouton est connecté à l’action addItem lors de sa
création. La méthode −viewDidAppear: est définie dans la classe
UIViewController, elle est appelée lorsque la vue vient de s’afficher à
l’écran.
- (void)viewDidAppear:(BOOL)animated {

[super viewDidAppear:animated];
UIBarButtonItem * addButton = [[UIBarButtonItem alloc]

initWithBarButtonSystemItem:UIBarButtonSystemItemAdd
target:self action:@selector(addItem)];

self.navigationItem.rightBarButtonItem = addButton;
[addButton release];

}

Action addItem

Nous allons maintenant définir l’action addItem toujours dans le fi-
chier ObjectListViewController.m. Il nous faut :

j créer un contrôleur de vue de la classe LendObjectViewController,
celle que nous venons de coder pour s’occuper de la saisie ;

j charger le fichier NIB correspondant à cette classe ;

2256.3. Utiliser les Vues en table

j créer un nouvel objet de la classe LendObjet ;
j ajouter ce nouvel objet à la liste des objets prêtés ;
j transmettre ce nouvel objet au contrôleur de vue pour qu’il en

effectue la saisie ;
j afficher la vue pour la saisie.

1 Déclarez la classe que nous allons utiliser en tête du fichier :

#import "LendObjectViewController.h"

2 Créez la méthode −addItem :

- (void)addItem{
LendObjectViewController * itemViewController =

[[LendObjectViewController alloc] initWithNibName:
@"LendObjectViewController" bundle:nil];

LendObject * newLendObject = [[LendObject alloc] init];
itemViewController.lendObject = newLendObject;
[self.lendObjects addObject:newLendObject];
[self.navigationController pushViewController:

itemViewController animated:YES];
[itemViewController release];

}

3 Construisez l’application et testez-la. Tout semble fonctionner et
pourtant, l’objet créé n’apparaît pas dans la liste lorsque l’utilisa-
teur revient de l’écran de saisie ; il faut mettre la liste à jour à ce
moment-là.

Mise à jour de la liste

Il faut transmettre un message reloadData à la vue en table pour lui
indiquer que la liste a évolué.

1 Ajoutez une méthode −viewWillAppear: dans le fichier ObjectLis-
tViewController.m :

- (void)viewWillAppear:(BOOL)animated {
[self.tableView reloadData];
[super viewWillAppear:animated];

}

2 Construisez l’application et testez-la. La liste est mise à jour, en
tout cas il se passe quelque chose, mais le résultat n’est pas très
esthétique. Nous allons améliorer cela.

Améliorer l’affichage

Nous emploierons le style de cellule avec un sous-titre pour que
l’utilisateur puisse voir :

j le nom de l’objet prêté en titre de cellule ;

226 6. Contrôles complexes

j le nom de l’emprunteur et la date d’emprunt en sous-titre.

1 Modifiez la méthode −tableView:cellForRowAtIndexPath: dans le fi-
chier ObjectListViewController.m :

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

static NSString *CellIdentifier = @"Cell";
UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {

cell = [[[UITableViewCell alloc] initWithStyle:
UITableViewCellStyleSubtitle

reuseIdentifier:CellIdentifier] autorelease];
}
LendObject * lendObject = [lendObjects

objectAtIndex:indexPath.row];
NSDateFormatter * formatter =

[[NSDateFormatter alloc] init];
[formatter setDateFormat:@"dd MMMM yyyy"];
NSString * subTitle = [NSString stringWithFormat:

@"prêté à %@ le %@",lendObject.borrowerName,
[formatter stringFromDate:lendObject.lendDate]];

[formatter release];
cell.textLabel.text = [lendObject objectName];
cell.detailTextLabel.text = subTitle;
return cell;

}

2 Construisez l’application et testez-la. Cette fois, c’est parfait.

Subsiste un petit problème… Il ne faut pas quitter l’application.
Autrement, nous perdons tout ce que nous avons saisi. Nous allons
régler cela dès le chapitre suivant.

Figure 6.22 : Liste des objets prêtés

2276.3. Utiliser les Vues en table

Pour aller plus loin
Nous n’avons malheureusement qu’effleuré le vaste sujet des vues
en table, de leur cellules et de la navigation entre les vues. Pour
approfondir ces sujets, nous vous invitons à consulter la documen-
tation d’Apple soit sur le site des développeurs, soit directement
sous XCode : sélectionnez la commande Class Browser du menu
Project ([Maj]+X+[C]) puis sélectionnez l’option Flat, all classes.

Même si vous ne lisez pas l’anglais, vous pouvez consulter la liste
des propriétés et des méthodes disponibles dans chaque classe et
procéder à vos propres expérimentations.

Nous vous proposons quelques challenges par difficulté croissante.

Challenges

Challenge 1

Positionner le sélectionneur de date à la date du jour lors de l’affi-
chage de l’écran de saisie d’un nouvel objet.

Challenge 2

Autoriser la modification des prêts déjà saisis. Le même écran peut
être utilisé pour la saisie d’un nouveau prêt ou une modification.

Challenge 3

Ne pas autoriser la sortie de l’édition tant que le nom de l’objet et
celui de l’emprunteur ne sont pas saisis. Prévoir un bouton d’annu-
lation qui permette de revenir à la liste sans créer d’objet supplémen-
taire.

Challenge 4

Autoriser la suppression d’un élément d’une liste.

6.4. Checklist
Nous avons mis en œuvre dans ce chapitre des contrôles textuels
plus complexes, les sélectionneurs et les vues en table, ainsi que la
navigation entre les vues.

Nous avons détaillé le fonctionnement des sélectionneurs de date de
la classe UIDatePicker et les classes d’objets qui permettent le traite-
ment des dates et leur localisation :

228 6. Contrôles complexes

j NSDate ;

j NSDateFormatter ;
j NSTimeInterval.

Nous avons vu comment programmer un sélectionneur standard et
les protocoles qui accompagnent la classe UIPickerView :

j UIPickerViewDelegate ;

j UIPickerViewDataSource.

Nous avons exploré les principaux conteneurs utilisés en
Objective-C : les tableaux NSArray et les dictionnaires NSDictionary
ainsi que leur version modifiable.

Notre parcours nous a menés enfin vers les vues en table qui per-
mettent la navigation dans des structures de données complexes :

j la classe UITableView ;

j les protocoles associés UITableViewDelegate et UITableViewData
Source ;

j le contrôleur de vue de la classe UITableViewController qui prend
en charge ces protocoles ;

j les possibilités d’affichage des lignes avec la classe UITable
ViewCell.

Nous avons mis en œuvre ces techniques pour construire l’applica-
tion Emprunts1 qui est presque fonctionnelle. Il ne lui manque plus
que la mémoire ; une application qui oublie tout dès qu’on la quitte
n’est pas très utile. Nous la doterons de souvenance dès le prochain
chapitre.

2296.4. Checklist

C
H

A
P

IT
R

E
7

PERSISTANCE
DES DONNÉES

Utiliser le framework Core Data ... 233
Utiliser les listes de propriétés .. 258
Checklist .. 264

231

Sur un ordinateur, les opérations de sauvegarde des données d’une
application sont souvent explicitement demandées par l’utilisateur,
qui peut préciser un nom de fichier. Sur un iPhone, l’utilisateur
recherche l’immédiateté. Les données doivent s’enregistrer dès que
l’application se termine, à l’occasion de la prise d’un appel entrant
par exemple, et l’utilisateur souhaite retrouver l’application telle qu’il
l’a laissée.

Ce chapitre est consacré à quelques techniques d’enregistrement et
de récupération des données utilisées sur iPhone OS :

j Core Data est une technologie destinée à gérer des ensembles de
données élaborés ; elle prend en charge leur persistance.

j Les Listes de Propriétés sont une technique très élégante pour
conserver de petits ensembles de données.

À l’issue de ce chapitre, nous aurons doté nos applications Convert-
Pro et Emprunts de la persistance des données. Ce sera également
l’opportunité de découvrir le motif Notification qui est une technique
importante de la programmation Cocoa.

7.1. Utiliser le framework Core Data

Core Data comprend un outil de description d’un modèle de don-
nées, équivalent à ce que l’on trouve sous Access ou 4D, et un
ensemble de classes permettant de manipuler les données modéli-
sées. On peut voir Core Data comme l’encapsulation d’une base de
données SQLite dans des objets Objective-C. Le framework masque
au programmeur la complexité de gestion d’une base de données ; il
n’a besoin de connaître ni le langage SQL, ni l’administration des
bases de données, ni le format d’enregistrement des données, ni
l’entretien d’un cache mémoire. Core Data prend tout cela en charge.

SQLite
SQLite est un gestionnaire de base de données léger du domaine public,

écrit en C ANSI ; le code est donc portable sur différentes plateformes et
systèmes d’exploitation. Une base de données SQLite tient dans un fichier
unique, lui-même portable. Outre Cocoa, ce gestionnaire est utilisé en Py-
thon, PHP, dans Firefox et il est disponible dans de nombreuses distributions
Gnu/Linux.

2337.1. Utiliser le framework Core Data

Décrire le modèle de données

Entités, attributs et relations

Dans la programmation sans Core Data, la partie Modèle (au sens du
motif MVC) de l’application est constituée d’un ensemble de classes
d’objets définies par le développeur. Avec Core Data, le développeur
décrit le modèle de données dans un fichier spécifique au format
xcdatamodel, ce fichier sera ensuite exploité par le framework pour
gérer les données, les enregistrer et les retrouver ; le travail du
développeur est grandement facilité.

Dans le modèle de données, le développeur définit des entités (en-
tity), l’équivalent des classes d’objet, puis les propriétés de chaque
entité. Suivant leur nature, les propriétés sont des attributs (attribute)
ou des relations (relationship) :

j Les attributs sont de type scalaire :

booléen ;

numérique (entier, décimal ou flottant) ;

date ;

chaîne de caractères.

j Les relations sont des références vers d’autres entités.

Lorsqu’une relation est définie dans une entité A, il faut préciser vers
quelle entité B doit être établie la relation, ainsi que sa cardinalité,
c’est-à-dire les nombres minimum et maximum d’objets de type B
avec lesquels chaque objet de type A peut être en relation.

Dans l’application, les instances d’une entité sont généralement de la
classe NSManagedObject. Le développeur peut dériver cette classe s’il
souhaite donner un comportement spécifique à certaines entités.

Mise en pratique sous XCode

Nous allons créer une nouvelle application sous XCode, Emprunts2,
dans laquelle la classe LendObject sera remplacée par une entité Core
Data du même nom ; ainsi nous bénéficierons de la persistance des
données sans rédiger une ligne de code. Il nous faudra néanmoins
adapter le code que nous avions écrit dans l’application Emprunts1 à
l’utilisation du framework Core Data.

Créez un nouveau projet sous XCode, de type Navigation-based Ap-

plication. Cochez la case Use Core Data for storage cette fois, et
intitulez le projet Emprunts2.

234 7. Persistance des données

Vous constaterez l’existence d’un fichier Emprunts2.xcdatamodel
dans le groupe Resources du projet. Il contient le modèle de données
au format Core Data.

Nous allons mettre Core Data en œuvre avec un modèle simple
comprenant une relation.

Création des entités

1 Ouvrez ce fichier. Il contient un exemple d’entité, Event, avec un
attribut timeStamp. Vous pouvez soit détruire cette entité, soit la
modifier pour créer une entité LendObject. Pour détruire l’entité,
sélectionnez-la et pressez la touche [ˆ].

2 Créez une entité LendObject et ses attributs selon le tableau :

Tableau 7.1 : Attributs de l’entité LendObject

Nom Type Optional Transient Indexed

objectName String Non Non Non

lendDate Date Non Non Non

borrowerName String Non Non Non

Figure 7.1 : Utilisation de Core Data dans un nouveau projet

2357.1. Utiliser le framework Core Data

3 Pour chaque attribut, décochez toutes les cases Optional, Transien-
t et Indexed :

Optional signifie que l’attribut peut être absent. Au moment de
l’enregistrement des données, Core Data vérifie que tous les
attributs non optionnels sont présents. Si ce n’est pas le cas,
l’enregistrement est refusé.

Transient signifie qu’il n’y a pas de donnée sauvegardée pour cet
attribut. Une entité qui possède un attribut éphémère (Transient)
devrait être d’une classe dérivée de NSManagedObject afin d’y
définir le comportement relatif à cet attribut.

Indexed est employé sur les attributs que l’on veut utiliser
comme critère de recherche.

4 Créez une entité Category avec un attribut selon le tableau :

Tableau 7.2 : Attributs de l’entité Category

Nom Type Optional Transient Indexed

categoryName String Non Non Oui

5 Cochez la case Indexed pour l’attribut categoryName. Nous aurons
besoin de retrouver tous les objets appartenant à une catégorie ;
c’est donc un critère de recherche.

Figure 7.2 : ajout d’attributs dans le modèle de données

236 7. Persistance des données

Création des relations

1 Sélectionnez l’entité LendObject et ajoutez une relation (rela-
tionShip). Paramétrez cette relation de la façon suivante :

Name ; category ;

Optional ; non ;

Transient ; non ;

Destination ; Category ;

Inverse ; No Inverse Relationship ;

To-Many RelationShip ; Non ;

Delete Rule : Nullify.

Nous venons d’indiquer dans le modèle de données que chaque
instance de l’entité LendObject doit être liée à une instance (la case
Optional est décochée donc la relation est obligatoire), et une seule,
de l’entité Category (la case To-Many Relationship est décochée, un
objet prêté ne peut avoir qu’une catégorie).

C’est une bonne pratique de définir une relation inverse pour cha-
cune des relations du modèle de données. Cela facilite les vérifica-
tions d’intégrité réalisées par Core Data. Nous allons donc créer la
relation inverse de category.

2 Sélectionnez l’entité Category et ajoutez une relation paramétrée
de la façon suivante :

Name ; lendObjects ;

Optional ; non ;

Transient ; non ;

Destination ; LendObject ;

Inverse ; category ;

Figure 7.3 : Paramètres de la relation
category de l’entité LendObject

2377.1. Utiliser le framework Core Data

To-Many RelationShip ; Oui ;

Delete Rule : Deny.

Cette fois, la case To-Many RelationShip est cochée car une catégorie
peut contenir plusieurs objets. Nous définissons également la rela-
tion inverse. La relation inverse de category dans LendObject est
automatiquement définie à lendObjects ; les deux relations sont l’in-
verse l’une de l’autre.

Le paramètre Delete Rule définit le comportement de Core Data
lorsqu’un objet est détruit. C’est une caractéristique fonctionnelle
importante qui permet de garantir l’intégrité des données :

j No action ; l’objet est détruit sans autre action.

j Nullify ; la destruction de l’objet est prise en compte dans la rela-
tion inverse (c’est la valeur par défaut).

j Cascade ; les objets liés à l’objet détruit sont également détruits.
j Deny ; l’objet ne peut être détruit tant qu’il est en relation avec

d’autres objets.

Nous avons fixé le paramètre Delete Rule de la relation lendObjets à
Deny car nous souhaitons que l’application nous empêche de dé-
truire une catégorie tant qu’elle contient au moins un objet. Nous
allons illustrer ce comportement dans notre application Emprunts2.

3 Enregistrez le fichier Emprunts2.xcdatamodel une fois le modèle de
données complété.

Figure 7.4 : Paramètres de la relation
lendObjects de l’entité Category

Figure 7.5 : Modèle de données de Emprunts2

238 7. Persistance des données

Programmation du modèle de données

Au lancement de l’application, le fichier Emprunts2.xcdatamodel sera
lu et son contenu utilisé pour créer une instance de la classe
NSManagedObjectModel. Cette dernière contiendra l’ensemble des des-
criptions d’entité du modèle, chacune étant une instance de la classe
NSEntityDescription.

En pratique, vous n’aurez pas à utiliser directement l’instance du
modèle dans vos programmes, XCode a fait le nécessaire lors de la
création du projet. Examinez les fichiers de la classe Emprunts2App
Delegate, une propriété privée managedObjectModel y est définie en
lecture seule ; deux autres propriétés relatives à Core Data y sont
également définies, nous les examinerons plus loin. L’accesseur de
cette propriété est défini explicitement dans le fichier Emprunts2App
Delegate.m :
- (NSManagedObjectModel *)managedObjectModel {

if (managedObjectModel != nil) {
return managedObjectModel;

}
managedObjectModel = [[NSManagedObjectModel

mergedModelFromBundles:nil] retain];
return managedObjectModel;

}

La méthode +mergedModelFromBundles: crée un modèle de données en
regroupant tous les fichiers au format .xcdatamodel contenus dans
les paquetages passés en paramètre, ou dans le paquetage de l’ap-
plication si le paramètre passé est nil.

C’est un motif courant pour écrire un accesseur sur une propriété en
lecture seule :

j Si la propriété est différente de nil, c’est qu’elle a déjà été initiali-
sée. Il suffit de la retourner.

j Si la propriété vaut nil, il faut l’initialiser et la retenir, avant de la
retourner à l’appelant.

Comprendre le fonctionnement de Core Data

La pile Core Data

Le fonctionnement de Core Data nécessite la collaboration de plu-
sieurs objets qui constituent la pile Core Data :

j Le modèle de données de la classe NSManagedObjectModel contient la
description des entités manipulées.

2397.1. Utiliser le framework Core Data

j Les unités de stockage de la classe NSPersistentStore gèrent les
accès aux différents fichiers dans lesquels les données sont
conservées.

j Le coordonnateur des unités de stockage de la classe NSPersistent
StoreCoordinator a la responsabilité d’unifier les différentes unités
de stockage.

j Les contextes Core Data, instances de la classe NSManaged
ObjectContext, sont la principale interface du développeur avec les
données Core Data.

La plupart du temps, on utilise une pile Core Data offrant une seule
unité de stockage (donc un seul fichier de données) et un seul contexte
Core Data.

Le contexte Core Data est l’objet manipulé par le développeur pour
créer, détruire ou rechercher des instances d’entités Core Data. Tous
nos contrôleurs de vue auront donc une propriété managedObject
Context.

Figure 7.6 : Pile Core Data dans le cas d’une unité de stockage et d’un contexte uniques

240 7. Persistance des données

Initialisation d’une pile Core Data

Avant de pouvoir manipuler le contexte Core Data, il faut initialiser les
différents éléments de la pile. Encore une fois, XCode a réalisé tout le
travail lors de la création du projet ; la pile Core Data est construite
par le délégué de l’application et nous n’aurons pas à ajouter une
ligne de code.

1 Ouvrez le fichier Emprunts2AppDelegate.m pour voir ce qui se
passe au lancement de l’application.

Options de lancement
Les méthodes −applicationDidFinishLaunching: et −application:

didFinishLaunchingWithOptions: sont équivalentes. La seconde permet
de récupérer les paramètres de lancement transmis à l’application, par le
système des notifications à distance par exemple.

2 Commencez par l’examen de la méthode −applicationDid
FinishLaunching:. Après avoir créé le contrôleur de vue principal
rootViewController, la propriété managedObjectContext de ce dernier
est initialisée avec celle du délégué de l’application :

rootViewController.managedObjectContext =
self.managedObjectContext;

Cette instruction fait beaucoup plus que donner une valeur à une
propriété. Le délégué d’application offre trois propriétés définies en
lecture seule :
@property (nonatomic, retain, readonly)

NSManagedObjectModel *managedObjectModel;
@property (nonatomic, retain, readonly)

NSManagedObjectContext *managedObjectContext;
@property (nonatomic, retain, readonly)

NSPersistentStoreCoordinator *persistentStoreCoordinator;

Nous avons déjà examiné l’accesseur de la propriété managed
ObjectModel. Les deux autres accesseurs sont réalisés selon le même
motif : si la propriété vaut nil, elle est initialisée par l’accesseur.
Regardez le code de l’accesseur −managedObjectContext, son premier
appel déclenche en cascade l’appel des autres accesseurs et donc
l’initialisation de la pile Core Data. Considérons les instructions d’ini-
tialisation dans l’ordre selon lequel elles sont exécutées, en suppri-
mant les contrôles d’erreur et les appels successifs, et en ajoutant
des étapes intermédiaires, pour nous concentrer sur l’essentiel, la
création de chacun des éléments de la pile Core Data :

2417.1. Utiliser le framework Core Data

j Identification du fichier de données à utiliser :

utilisation d’une fonction du framework Foundation pour obtenir
le chemin du dossier des documents par défaut :

NSString *directory = [NSSearchPathForDirectoriesInDomains
(NSDocumentDirectory,NSUserDomainMask, YES) lastObject];

construction du chemin d’accès vers le fichier en ajoutant son
nom Emprunts2.sqlite au chemin du dossier des documents par
défaut :

NSString *storeFile = [directory
stringByAppendingPathComponent: @"Emprunts2.sqlite"];

construction d’un URL permettant d’accéder au fichier de don-
nées.

NSURL *storeUrl = [NSURL fileURLWithPath: storeFile];

j Création et initialisation du modèle de données :

managedObjectModel = [[NSManagedObjectModel
mergedModelFromBundles:nil] retain];

j Création et initialisation du coordonnateur des unités de stockage et
initialisation avec le modèle de données :

création puis initialisation avec le modèle de données :

persistentStoreCoordinator =
[[NSPersistentStoreCoordinator alloc]
initWithManagedObjectModel:[self managedObjectModel]];

ajout d’une unité de stockage de type SQLite pointant sur le
fichier Emprunts2.sqlite :

NSError *error = nil;
[persistentStoreCoordinator

addPersistentStoreWithType:NSSQLiteStoreType
configuration:nil

URL:storeUrl
options:nil

error:&error];

j Création et initialisation du contexte Core Data :

création :

managedObjectContext =
[[NSManagedObjectContext alloc] init];

initialisation avec le coordonnateur des unités de stockage :

[managedObjectContext
setPersistentStoreCoordinator: persistentStoreCoordinator];

242 7. Persistance des données

Nous n’aurons pas à modifier ces lignes de code mais c’est toujours
intéressant de comprendre comment cela fonctionne. Il y a vraisem-
blablement des aspects de ce code que vous ne maîtrisez pas. Ce
n’est pas grave, vous n’en aurez pas besoin pour utiliser Core Data.
N’hésitez pas à consulter la documentation afin d’approfondir ces
sujets.

Au final, nous disposons d’une propriété managedObjectContext qui est
un contexte Core Data utilisant le modèle de données Emprunts2.
xcdatamodel de notre application et le fichier de données
Emprunts2.sqlite dans le dossier des documents de l’application sur
l’iPhone.

Utilisation dans une Vue en Table

Le contrôleur de résultats de recherche

Le framework Core Data propose une classe NSFetchedResults
Controller, un contrôleur de résultats de recherche, qui facilite l’écri-
ture du délégué et de la source de données d’une vue en table.
Vérifiez que le contrôleur de vue principal du projet Emprunts2 (Roo-
tViewController) offre une propriété fetchedResultsController, ins-
tance de cette classe.

Chaque instance de NSFetchedResultsController est associée à un
contexte Core Data (propriété managedObjectContext) et à une requête
Core Data (propriété fetchRequest). Une requête est une instance de
la classe NSFetchRequest, elle permet de trouver les instances d’une
entité qui répondent à un critère donné ; ces instances sont celles
que l’on souhaite afficher dans la vue en table.

Nos vues en table n’offrent qu’une section mais nous pourrions
souhaiter que les éléments de la vue en table soient regroupés en
fonction d’un critère de tri. Si nous activons cette fonction (nous
verrons comment un peu plus loin), la propriété sections du contrô-
leur de résultats de recherche est un tableau dont chaque élément
décrit une section. Ce sont des objets qui répondent au protocole
<NSFetchedResultsSectionInfo>, offrant les propriétés suivantes :

j numberOfObjects ; nombre de lignes dans la section ;

j objects ; tableau contenant les objets de la section ;
j name ; nom de la section, généralement affiché comme titre de la

section ;
j indexTitle ; titre de l’index, généralement utilisé lorsqu’un index

est affiché sur la droite de la vue en table.

2437.1. Utiliser le framework Core Data

Les principales méthodes de la classe NSFetchedResultsController
sont :

j −performFetch: qui exécute la requête associée au contrôleur et
retourne YES si l’exécution s’est bien déroulée, NO autrement. Cette
méthode prend en paramètre un pointeur sur une référence d’ins-
tance de la classe NSError qui nous fournit des informations dans le
cas où la requête ne s’est pas bien déroulée.

j −objectAtIndexPath: qui retourne l’instance d’entité (sous forme
d’instance de NSManagedObject) qui doit être affichée sur la ligne
identifiée par l’instance de NSIndexPath passée en paramètre.

Cette classe contient également un délégué répondant au protocole
<NSFetchedResultsControllerDelegate> qui est informé de toute modi-
fication de la liste des objets. Le contrôleur de vue en table qui
contient le contrôleur de résultats de recherche est généralement
défini comme son délégué pour informer la vue en table que les
données ont été modifiées.

Vérifiez que la classe RootViewController du projet Emprunts2 répond
à ce protocole et en implémente notamment les méthodes
−controllerWilChangeContent: et −controllerDidChangeContent:.

Gestion des erreurs

Voici la pratique recommandée par Apple concernant la détection et
le traitement des erreurs :

j Les fonctions ou méthodes susceptibles de ne pas s’exécuter
correctement retournent NO ou nil en cas d’erreur.

j La valeur de retour est systématiquement testée dans le code
appelant.

j Une référence à un objet NSError est passée par référence et initia-
lisée en cas d’erreur.

passage par référence
En langage C, donc aussi en Objective-C, les fonctions et méthodes ne

peuvent pas modifier les paramètres qui leur sont transmis. On dit que les
paramètres sont passés par valeur. Le seul moyen de modifier un paramètre
est donc de passer son adresse, c’est ce que l’on appelle le passage de
paramètre par référence ou par adresse.

Dans cet exemple, le paramètre de la méthode −performFetch: est de type
(NSError **). On lui passe l’adresse d’une error de type NSError * en
utilisant l’opérateur de référence du langage C "&error".

244 7. Persistance des données

Les potentialités d’erreur sont nombreuses quand on utilise Core
Data : incompatibilité entre un modèle de données et une unité de
stockage, entité inexistante dans un modèle de données, erreur de
cardinalité dans une relation, etc. Plusieurs méthodes du framework
adoptent donc la méthode de détection d’erreur préconisée. Par
exemple, la méthode −performFetch: de la classe NSFetchedResults
Controller s’utilise de la façon suivante :
NSError *error = nil;
if (![fetchedResultsController performFetch:&error]) {

// Traitement de l’erreur
}

Une instance de la classe NSError est un conteneur permettant de
transmettre des informations plus riches qu’un simple code d’erreur,
facilitant ainsi le diagnostic et le traitement de l’erreur. Les principa-
les méthodes de la classe NSError sont résumées dans le tableau.

Tableau 7.3 : Principales méthodes de la classe NSError

Thème Signature Objet

Création + (id) errorWithDomain:
(NSString *)domain code:
(NSInteger)code userInfo:
(NSDictionary *)dict

Crée une instance de la classe avec
les paramètres domain, code et
dict.

Propriétés − (NSString *)domain Chaîne de caractères identifiant le
domaine de l’erreur

− (NSInteger)code Code d’erreur

− (NSDictionary *) userInfo Dictionnaire contenant des informa-
tions complémentaires sur le
contexte de l’erreur

Les erreurs produites par le framework Core Data sont généralement
du domaine NSCocoaErrorDomain. Une erreur est identifiée par son
domaine et son code. Nous verrons un exemple de traitement d’er-
reur dans l’application Emprunts2.

Enregistrement des données Core Data

La création de la pile Core Data, au lancement de l’application, per-
met de mettre en place la lecture du fichier de données. La structure
de données contenue dans le fichier est reproduite au besoin dans le
contexte Core Data. Toutes les modifications effectuées par l’applica-
tion (modification des propriétés, création ou suppression d’objets)
sont enregistrées dans le contexte. Elles sont enregistrées dans le
fichier de données lorsque le contexte reçoit un message −save:.

2457.1. Utiliser le framework Core Data

La méthode −save: applique la méthode standard pour la détection
d’erreur. Elle retourne un booléen et prend en paramètre une varia-
ble NSError passée par référence.

Cette méthode doit être appelée notamment chaque fois qu’un objet
est créé ou détruit car ces opérations sont des sources potentielles
d’erreur ; il faut que l’utilisateur soit informé dès que possible s’il
réalise une action interdite.

Il faut également enregistrer les modifications effectuées dans le
contexte lorsque l’application est sur le point de quitter. XCode
génère le code nécessaire dans le délégué d’application, la méthode
−applicationWillTerminate est appelée juste avant que l’application
ne quitte :
- (void)applicationWillTerminate:

(UIApplication *)application {
NSError *error = nil;
if (managedObjectContext != nil) {

if ([managedObjectContext hasChanges] &&
![managedObjectContext save:&error]) {

NSLog(@"Unresolved error %@, %@",
error, [error userInfo]);

abort();
}

}
}

Dans le code proposé par défaut, un message est affiché dans la
console avec la fonction NSLog. Ce fonctionnement est suffisant pen-
dant le développement, mais pour une version distribuée, l’affichage
d’une alerte serait plus approprié.

Accès aux propriétés des objets Core Data

Les instances d’entités Core Data sont manipulées dans le code
comme des instances de la classe NSManagedObject, quel que soit le
type de l’entité. Les attributs et relations sont accessibles en utilisant
les méthodes du motif KVC sur cette instance :

j − (id)valueForKey:(NSString *)key pour obtenir une propriété ;

j − (void)setValue:(id)value forKey:(NSString *)key pour modifier
une propriété.

Dans les deux cas, la chaîne de caractères key est le nom de la
propriété tel qu’il a été défini dans le modèle de données pour
l’entité. La classe NSManagedObject vérifie que la clé employée est un
attribut ou une relation de l’entité considérée.

246 7. Persistance des données

Formuler des requêtes
L’application Emprunts2, comme l’application Emprunts1 du chapitre
précédent, présente à l’utilisateur une liste de catégories, puis dans
la vue suivante la liste des objets prêtés qui appartiennent à cette
catégorie. Chacune de ces listes est le résultat d’une requête Core
Data affichée dans une vue en table avec son propre contrôleur de
vue :

j La première liste utilise une requête qui porte sur l’entité Category
et dont le résultat est l’ensemble de toutes les instances de l’entité.

j La seconde liste porte sur l’entité LendObject. Nous souhaitons
conserver dans cette liste uniquement les objets liés par la relation
category à la catégorie dont l’attribut categoryName est le nom sé-
lectionné par l’utilisateur dans la liste précédente.

Réalisation d’une requête

Examinez la classe RootViewController du projet Emprunts2, en parti-
culier l’accesseur de la propriété fetchResultsController. Cette mé-
thode initialise le contrôleur de résultat de requête, en particulier la
requête qui y est associée.

Une requête est représentée par une instance de la classe NSFetched
Request :

j Sa propriété entity représente l’entité concernée par la requête.

j La propriété fetchBatchSize prend la valeur 20, pour limiter le nom-
bre d’objets lus en une fois dans le fichier de données. Cela permet
d’économiser la mémoire. Seules quelques lignes sont affichées à
un instant donné dans une vue en table. Il est donc inutile de lire
plus de 20 valeurs à la fois.

j La propriété sortDescriptors est un tableau de descripteurs de tri,
instances de NSSortDescriptor. Un descripteur de tri peut être ré-
sumé comme l’association du nom d’une propriété de l’entité et
d’un ordre de tri, ascendant ou descendant.

Création de la requête pour les catégories

Modifiez la méthode fetchResultsController dans le fichier RootView-
Controller.m pour y définir l’entité et le critère de tri souhaités.
NSFetchRequest *fetchRequest =

[[NSFetchRequest alloc] init];
NSEntityDescription *entity =

[NSEntityDescription entityForName:@"Category"
inManagedObjectContext:managedObjectContext];

[fetchRequest setEntity:entity];

2477.1. Utiliser le framework Core Data

[fetchRequest setFetchBatchSize:20];
NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]

initWithKey:@"categoryName" ascending:YES];
NSArray *sortDescriptors = [[NSArray alloc]

initWithObjects:sortDescriptor, nil];
[fetchRequest setSortDescriptors:sortDescriptors];

Création de la requête pour les objets

Nous avons besoin d’un contrôleur de vue en table pour la liste des
objets. Ce contrôleur sera analogue à celui des catégories ; aussi,
nous allons en faire un clone.

Création du contrôleur de vue

1 Dupliquez les fichiers RootViewController.h et RootViewController.m
sous Finder, dans le dossier du projet. Renommez-les respective-
ment ObjectListViewController.h et ObjectListViewController.m.
Ajoutez ces 2 nouveaux fichiers au projet Emprunts2 sous XCode.

2 Dans ces deux fichiers, modifiez toutes les occurrences de texte
RootViewController en ObjectListViewController. Vous pouvez pour
cela utiliser la fonction de recherche dans un fichier de XCode (X+[F]).

3 Modifiez la méthode fetchResultsController pour y adapter l’entité
et le critère de tri souhaités, respectivement LendObject et lendDate.

Définition d’un critère de recherche

Le critère de recherche est donné par la propriété predicate de la
requête NSFetchRequest. C’est une instance de la classe NSPredicate
qui doit être initialisée avec une chaîne de caractères.

Ajoutez une propriété category de classe NSManagedObject à la classe
ObjectListViewController que nous venons de créer. Ajoutez les li-
gnes suivantes dans la méthode fetchResultsController du fichier
ObjectListViewController.m pour sélectionner seulement les objets de
la catégorie choisie :
NSPredicate *predicate = [NSPredicate

predicateWithFormat:@"category.categoryName like %@",
[self.category valueForKey:@"categoryName"]];

[fetchRequest setPredicate:predicate];

Prédicat
Un prédicat est une proposition dont la valeur Vrai ou Faux dépend d’une

ou plusieurs variables. Le prédicat est évalué pour chaque instance d’entité.
Seuls sont retenus les objets pour lesquels le prédicat est vrai.

248 7. Persistance des données

Le prédicat le plus simple est une expression de comparaison d’un
attribut à une valeur. Un attribut est désigné par son nom. Ici, nous
avons utilisé la notation pointée category.categoryName ; cela signifie
que nous nous intéressons à l’attribut categoryName de l’objet lié par
la relation category à l’entité sur laquelle nous effectuons la recher-
che (LendObject).

On peut employer les opérateurs standard pour effectuer les compa-
raisons telles que =, < et >. Les chaînes de caractères sont comparées
avec l’opérateur like qui admet les caractères joker * et ?. Il est
également possible de combiner plusieurs expressions avec les opé-
rateurs AND, OR et NOT.

L’écriture des prédicats fait l’objet d’un guide complet dans la docu-
mentation Apple (Predicate Programming Guide).

Connecter les deux contrôleurs de vue

Le contrôleur de la vue des objets vient d’être ébauché par clonage
du contrôleur de vue des catégories. Il faut maintenant établir les
connexions entre ces deux contrôleurs.

Classe ObjectListViewController

1 Modifiez la méthode viewDidLoad pour définir le titre de la vue. Il
faut également supprimer le bouton Edit à gauche de la barre de
navigation. Il sera remplacé par le bouton de retour.

self.title = [self.category valueForKey:@"categoryName"];
//self.navigationItem.leftBarButtonItem=self.editButton

✂ Item;

2 Modifiez les méthodes −tableView:cellForRowAtIndexPath: et
−configureCell:atIndexPath: pour créer les cellules de la vue en
table.

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath {

static NSString *CellIdentifier = @"ObjectCell";
UITableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:CellIdentifier];
if (cell == nil) {

cell = [[[UITableViewCell alloc]
initWithStyle:UITableViewCellStyleSubtitle
reuseIdentifier:CellIdentifier] autorelease];

[self configureCell:cell atIndexPath:indexPath];
return cell;
}

- (void)configureCell:(UITableViewCell *)cell
atIndexPath:(NSIndexPath *)indexPath {

cell.accessoryType =

2497.1. Utiliser le framework Core Data

UITableViewCellAccessoryDisclosureIndicator;
NSManagedObject *managedObject =
[fetchedResultsController objectAtIndexPath:indexPath];
cell.textLabel.text =

[managedObject valueForKey:@"objectName"];
NSDateFormatter * formatter =

[[NSDateFormatter alloc] init];
[formatter setDateFormat:@"dd MMMM yyyy"];
NSString * subTitle = [NSString stringWithFormat:

@"prêté à %@ le %@",
[managedObject valueForKey:@"borrowerName"],
[formatter stringFromDate:

[managedObject valueForKey:@"lendDate"]]];
[formatter release];
cell.detailTextLabel.text = subTitle;

}

Cette suite d’instructions ressemble à celle que nous avons écrite
pour l’application Emprunts1. Notez toutefois ces différences :

j Nous avons un identifiant de cellule ObjectCell, pour le distinguer
de celui que nous utiliserons pour la vue en table des catégories.

j Nous utilisons le contrôleur de résultats de requête afin d’obtenir
l’objet à afficher dans la cellule.

j Nous employons le motif KVC pour accéder aux attributs de l’objet
Core Data.

Fichier RootViewController.m

C’est dans le fichier RootViewController.m que nous écrirons le code
afin d’utiliser le contrôleur de la vue en table pour les objets.

Procédez ainsi :

1 Ajoutez une clause d’importation de la déclaration de ce contrô-
leur :
#import "ObjectListViewController.h"

2 Définissez un titre de la vue en table dans la méthode didLoadView.
Autrement, vous ne distinguerez pas le bouton de retour dans la
vue suivante.
self.title = @"Catégories";

3 Définissez les cellules dans la méthode −configureCell:atIndex
Path: :

- (void)configureCell:(UITableViewCell *)cell
atIndexPath:(NSIndexPath *)indexPath {

NSManagedObject *managedObject =
[fetchedResultsController objectAtIndexPath:indexPath];

250 7. Persistance des données

cell.textLabel.text =
[managedObject valueForKey:@"categoryName"];

cell.accessoryType =
UITableViewCellAccessoryDisclosureIndicator;

4 Programmez l’affichage de la liste des cellules lorsqu’une catégo-
rie est sélectionnée. Veillez à initialiser les propriétés managed
ObjectContext et category avant d’activer le contrôleur de vue.

- (void)tableView:(UITableView *)tableView
didSelectRowAtIndexPath:(NSIndexPath *)indexPath {

NSManagedObject *selectedCategory =
[fetchedResultsController objectAtIndexPath:indexPath];

ObjectListViewController * objectListViewController =
[[ObjectListViewController alloc]
initWithStyle:UITableViewStylePlain];

objectListViewController.managedObjectContext =
[fetchedResultsController managedObjectContext];

objectListViewController.category = selectedCategory;
[self.navigationController

pushViewController:objectListViewController
animated:YES];

[objectListViewController release];
}

5 Construisez l’application pour vérifier qu’il n’y a pas d’erreur dans
votre code. Vous pouvez également l’essayer sur le simulateur
mais ce premier test sera très frustrant car la liste des catégories
est vide. Nous allons maintenant écrire le code pour créer des
catégories.

Ajouter un objet

Créer une instance d’entité

La création d’une instance d’entité nécessite le nom de l’entité et un
contexte Core Data. Elle se déroule en deux étapes :

j créer une description de l’entité ;

j créer une instance de NSManagedObject et l’initialiser pour qu’elle
devienne une instance de l’entité souhaitée, tout en l’insérant dans
le contexte.

Par exemple, si nous souhaitons créer une instance de l’entité Len-
dObject :
NSEntityDescription *entity = [NSEntityDescription

entityForName:@"LendObject"
inManagedObjectContext: managedObjectContext];

NSManagedObject *newLendObject = [[NSManagedObject alloc]

2517.1. Utiliser le framework Core Data

initWithEntity: entity
insertIntoManagedObjectContext: managedObjectContext];

Classes dérivées de NSManagedObject
Même s’il est déclaré de type NSManagedObject *, l’objet retourné par la

méthode −initWithEntity:insertIntoManagedObjectContext: est une
instance de la classe définie pour cette entité dans le modèle de données.

Créer une vue détaillée pour les catégories

Lors de sa création, il faut que l’utilisateur puisse saisir le nom de la
catégorie. Vous devez donc créer une vue spécifique et son contrô-
leur :

1 Sous XCode, créez un nouveau fichier pour une classe qui dérive
de UIViewController. Cochez l’option With XIB for user interface.
Intitulez cette classe CategoryViewController.

2 Ouvrez le fichier CategoryViewController.xib pour y tracer l’inter-
face utilisateur. Vous avez besoin uniquement d’un champ de texte
pour saisir le nom de la catégorie.

3 Sous XCode, modifiez la classe CategoryViewController :

Ajoutez une propriété NSManagedObject * category.

Ajoutez un outlet UITextField * categoryNameField.

Modifiez la méthode –viewDidLoad.

Créez une méthode −viewWillDisappear: :

- (void)viewDidLoad {
self.categoryNameField.text =

[self.category valueForKey:@"categoryName"];
self.title = @"Catégorie";
[super viewDidLoad];

}
- (void)viewWillDisappear:(BOOL)animated{

[self.category setValue:self.categoryNameField.text
forKey:@"categoryName"];

Figure 7.7 : interface utilisateur pour la saisie
d’une catégorie

252 7. Persistance des données

[super viewWillDisappear:animated];
}

4 Connectez l’outlet au champ de texte sous Interface Builder.

Modifier le contrôleur de vue principal

Il faut maintenant prévoir l’activation de la vue que nous venons de
réaliser. Le modèle d’application que nous avons indiqué lors de la
création du projet dispose un bouton d’ajout dans la barre de navi-
gation. L’action connectée à ce bouton est la méthode −insert
NewObject préparée par XCode.

1 Modifiez cette méthode dans le fichier RootViewController.m :

- (void)insertNewObject {
NSManagedObjectContext *context =

[fetchedResultsController managedObjectContext];
NSEntityDescription *entity =

[[fetchedResultsController fetchRequest] entity];
NSManagedObject *newManagedObject = [NSEntityDescription

insertNewObjectForEntityForName:[entity name]
inManagedObjectContext:context];

[newManagedObject
setValue:@"saisissez le nom" forKey:@"categoryName"];

NSError *error = nil;
if (![context save:&error]) {

NSLog(@"Unresolved error %@, %@", error,
[error userInfo]);

abort();
}
CategoryViewController * itemViewController =

[[CategoryViewController alloc]
initWithNibName:@"CategoryViewController" bundle:nil];
itemViewController.category = newManagedObject;
[self.navigationController

pushViewController:itemViewController animated:YES];
[itemViewController release];

}

2 Ajoutez une clause #import "CategoryViewController.h" en tête du
fichier.

Vous reconnaissez dans le code proposé par XCode les instructions
pour créer un objet Core Data. La particularité ici est que le contexte
et la description de l’entité sont extraits du contrôleur de résultats de
requête. Ainsi le nom de l’entité est inscrit à un seul endroit dans le
fichier RootViewController.m ; il est plus facile d’assurer la mainte-
nance du code.

2537.1. Utiliser le framework Core Data

Nous initialisons l’objet nouvellement créé puisque la présence de
l’attribut est obligatoire, puis nous enregistrons le contexte.

Les autres instructions sont classiques : création du contrôleur de
vue pour la saisie du nom de la catégorie, initialisation de ses
propriétés et activation.

Challenge

Vous savez maintenant comment ajouter une instance d’entité à un
contexte Core Data. Nous vous proposons donc de mettre en œuvre
la même méthode pour la fonction d’ajout d’un objet prêté.

Ce challenge est assez facile. Vous pouvez adapter le contrôleur de
vue LendObjectViewController et son fichier NIB que nous avions réa-
lisés pour l’application Emprunts1.

Nous rencontrerons des challenges plus complexes dans la suite de
ce chapitre.

Supprimer un objet
Si vous avez testé votre application Emprunts2, vous avez constaté
que la vue principale comprenait un bouton Edit à gauche de la barre
de navigation. Si vous avez eu la curiosité de toucher ce bouton,
vous avez pu voir une vue en table en mode Édition.

Programmation du mode édition

Le bouton Edit est activé dans la méthode −viewDidLoad du contrôleur
de vue principal.

self.navigationItem.leftBarButtonItem = self.editButtonItem;

Figure 7.8 : Mode Édition d’une vue en table

254 7. Persistance des données

Par défaut, en mode Édition, un bouton permettant la suppression
est affiché dans chaque cellule. Ce comportement peut être modifié
en implémentant la méthode −tableView:editingStyleForRowAt
IndexPath: dans le délégué de la vue en table (généralement son
contrôleur). Cette méthode doit retourner une valeur du type énu-
méré UITableViewCellEditingStyle pour définir le style de bouton à
afficher dans la cellule.

Tableau 7.4 : Valeurs du type énuméré UITableViewCellEditingStyle

Bouton Valeur

UITableViewCellEditingStyleNone

C07-10.png UITableViewCellEditingStyleDelete

C07-11.png UITableViewCellEditingStyleInsert

Lorsque la vue en table est en mode Édition et que l’utilisateur
touche le bouton d’édition d’une cellule, la source de données (gé-
néralement le contrôleur de la vue en table) reçoit le message
−tableView:commitEditingStyle:forRowAtIndexPath:. Nous allons modi-
fier cette méthode proposée par XCode.

Vérification à la suppression d’une catégorie

La suppression d’un objet s’effectue par l’envoi du message
−deleteObject: au contexte Core Data, avec l’objet à supprimer passé
en paramètre.

Dans le modèle de données, nous avons donné la valeur Deny au
paramètre Delete Rule de la relation lendObjects de l’entité Category.
Nous souhaitons en effet interdire la suppression d’une catégorie
tant qu’elle contient au moins un objet. Cette règle concernant la
suppression fait partie d’un ensemble plus global nommé règles

d’intégrité.

Règles d’intégrité
Ce sont les règles que doivent respecter les données enregistrées dans

une base de données afin que cet ensemble de données conserve un sens.

Les règles d’intégrité sont vérifiées par Core Data au moment de
l’enregistrement du contexte. Nous allons donc tester les valeurs
retournées par la méthode −save:, en particulier l’instance de NSError,
pour savoir si nous sommes dans le cas de la règle de suppression :

2557.1. Utiliser le framework Core Data

j Le domaine de l’erreur est NSCocoaErrorDomain.

j Le code d’erreur est NSValidationRelationshipDeniedDeleteError.

Le traitement de cette erreur est alors :

j afficher un message d’alerte pour informer l’utilisateur ;

j réinsérer l’objet détruit dans le contexte :

- (void)tableView:(UITableView *)tableView
commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

forRowAtIndexPath:(NSIndexPath *)indexPath {
if (editingStyle == UITableViewCellEditingStyleDelete) {

NSManagedObjectContext *context =
[fetchedResultsController managedObjectContext];

NSManagedObject *objectToDelete =
[fetchedResultsController objectAtIndexPath:indexPath];

[context deleteObject:objectToDelete];
NSError *error = nil;
if (![context save:&error]) {

if (([error.domain
isEqualToString:NSCocoaErrorDomain]) &&

(error.code == NSValidationRelationshipDeniedDeleteError)){
UIAlertView * alertView = [[UIAlertView alloc]

initWithTitle:@"Suppression d’une catégorie"
message:@"Il n’est pas autorisé de supprimer

une catégorie pour laquelle il existe des objets prêtés"
delegate:nil

cancelButtonTitle:@"OK"
otherButtonTitles:nil];

[alertView show];
[alertView release];

}
[context insertObject:objectToDelete];

}
}

}

Liste des codes d’erreur
La liste des codes d’erreur de Core Data est dans la documentation Core

Data Constants Reference.

Construisez et testez l’application. Son comportement devrait être
satisfaisant maintenant.

256 7. Persistance des données

Challenges

Challenge 1

Finalisez l’application Emprunts2 pour permettre à l’utilisateur de
supprimer un objet prêté.

Challenge 2

Ajoutez une fonctionnalité permettant à l’utilisateur de voir la liste de
tous les objets prêtés. Pour que cette fonction soit utilisable, il faut
penser à permettre à l’utilisateur de préciser la catégorie d’un objet
lors de sa création.

Challenge 3

Un challenge purement technique, les classes RootViewController et
ObjectListViewController se ressemblent beaucoup. Il y a de nom-
breuses lignes de code dupliquées, ce qui ne favorise pas la mainte-
nance.

Écrivez une classe qui puisse être utilisée pour remplacer ces deux
contrôleurs de vue.

Figure 7.9 : Détection d’erreur lors de la
suppression

2577.1. Utiliser le framework Core Data

7.2. Utiliser les listes de propriétés
Core Data est un très bon framework mais sans doute lourd dans les
situations où seules quelques données sont concernées. Les Listes

de propriétés (property list) sont plus faciles à employer.

Format des listes de propriétés
Vous avez déjà utilisé une liste de propriété : le fichier au format .plist
que l’on trouve dans tous les projets et dans lequel vous avez défini
l’icône de l’application.

Ce fichier est au format XML. Il contient un dictionnaire composé
d’un ensemble de couples (clé, valeur) :
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundleDisplayName</key>
<string>${PRODUCT_NAME}</string>
<key>CFBundleExecutable</key>
<string>${EXECUTABLE_NAME}</string>
<key>CFBundleIconFile</key>
<string></string>
<key>CFBundleIdentifier</key>
<string>com.yourcompany.

${PRODUCT_NAME:rfc1034identifier}</string>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundleName</key>
<string>${PRODUCT_NAME}</string>
<key>CFBundlePackageType</key>

Figure 7.10 : Exemple de liste de propriétés

258 7. Persistance des données

<string>APPL</string>
<key>CFBundleSignature</key>
<string>????</string>
<key>CFBundleVersion</key>
<string>1.0</string>
<key>LSRequiresIPhoneOS</key>
<true/>
<key>NSMainNibFile</key>
<string>MainWindow</string>

</dict>
</plist>

Utilisation des listes de propriétés

Accès à une liste de propriétés

Une liste de propriétés est un dictionnaire, la classe NSDictionary
dispose donc des méthodes pour y accéder :

j + (id)dictionaryWithContentsOfFile:(NSString *)path permet de
créer un dictionnaire à partir de la liste de propriétés dont le
chemin d’accès est passé en paramètre.

j − (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag per-
met d’enregistrer le récepteur dans un fichier dont le chemin
d’accès est passé en paramètre. Le paramètre atomically permet
de garantir l’intégrité du fichier. En cas d’erreur lors de l’écriture, le
fichier n’est pas modifié si ce paramètre vaut YES.

Types de données

Une liste de propriétés est donc un dictionnaire soumis à quelques
limitations :

j Les clés sont obligatoirement des chaînes de caractères.

j Les valeurs doivent être de l’un des types prédéfinis ci-après.

Le tableau indique, pour chaque type autorisé, l’étiquette utilisée
dans le fichier XML et la classe d’objet correspondante.

Tableau 7.5 : Types de données autorisés dans une liste de propriétés

Type Élément XML Classe Objective-C

Tableau <array> NSArray

Dictionnaire <dict> NSDictionary

Chaîne de caractères <string> NSString

Data <data> NSData

Date <date> NSDate

2597.2. Utiliser les listes de propriétés

Tableau 7.5 : Types de données autorisés dans une liste de propriétés

Type Élément XML Classe Objective-C

Nombre entier <integer> NSNumber (intValue)

Nombre réel <real> NSNumber (floatValue)

Booléen <true/> ou <false/> NSNumber (boolValue)

Mise en pratique
Nous allons reprendre notre application Convertisseur2 pour la doter
de la persistance des données. Le principe sera le suivant :

j Des méthodes pour lire et écrire un fichier sont ajoutées à la classe
Convertisseur. C’est elle qui détient les données que nous souhai-
tons persistantes.

j Le fichier de données est lu au démarrage de l’application puis
écrit lorsque l’application va quitter.

Modifier la classe Convertisseur

1 Ajoutez la déclaration des méthodes dans le fichier Convertis-
seur.h :

- (BOOL)readFromFile:(NSString *)path;
- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag;

Ces méthodes prennent les mêmes paramètres que les méthodes de
NSDictionary pour la lecture et l’écriture d’une liste de propriétés.
Leur travail consistera essentiellement à constituer un dictionnaire
intermédiaire.

2 Ajoutez-les dans le fichier Convertisseur.m.

- (BOOL)readFromFile:(NSString *)path{
if ([self init]) {

NSDictionary * dict = [NSDictionary
dictionaryWithContentsOfFile:path];

if (dict) {
dollar =

[[dict objectForKey:@"dollar"] floatValue];
euro = [[dict objectForKey:@"euro"] floatValue];
dollarsPourUnEuro =

[[dict objectForKey:@"dollarsPourUnEuro"] floatValue];
}

}
return self;

}
- (BOOL)writeToFile:(NSString *)path atomically:(BOOL)flag{

260 7. Persistance des données

NSDictionary *dict = [NSDictionary dictionaryWithObjects:
[NSArray arrayWithObjects:

[NSNumber numberWithFloat:self.dollar],
[NSNumber numberWithFloat:self.euro],

[NSNumber numberWithFloat:self.dollarsPourUnEuro],nil]
forKeys:[NSArray arrayWithObjects:

@"dollar",@"euro",@"dollarsPourUnEuro",nil]];
return [dict writeToFile:path atomically:flag];

}

Classe NSNumber

La classe NSNumber utilisée précédemment sert à empaqueter un
nombre, entier ou flottant, dans un objet. On ne peut pas insérer
directement une valeur de type int ou float dans un conteneur
NSArray ou NSDictionary. On utilise donc la classe NSNumber. On em-
ploie également cette classe avec le motif KVC.

Tableau 7.6 : Principales méthodes de la classe NSNumber

Thème Signature de la méthode Remarque

Créer un nombre + (NSNumber *) number
Wih<Type>: (type) value

<Type> doit être remplacé par
l’un des types scalaires ci-après.

Obtenir la valeur d’un
nombre

− (type) <type>Value

Les types scalaires utilisables sont : Bool, Char, Double, Float, Int,
Integer, Long, LongLong, Short, UnsignedChar, UnsignedInt, Unsigned
Integer, UnsignedLong, UnsignedLongLong et UnsignedShort.

Le nom du type utilisé prend une majuscule dans les méthodes
+number, et une minuscule dans les méthodes Value. Par exemple :
+ (NSNumber *) numberWihLongLong: (long long) value
- (long long) longLongValue

Lecture au démarrage de l’application

Jusqu’à présent, nous avons réalisé les initialisations dans le délé-
gué d’application. Dans l’application Convertisseur2, ce délégué n’a
pas de propriété convertisseur contrairement au contrôleur de la vue
principale. Nous aurons donc moins de code à modifier si l’initiali-
sation est réalisée dans ce dernier.

Identification du fichier

Nous allons nous inspirer de la technique utilisée pour identifier et
gérer l’unité de stockage Core Data.

2617.2. Utiliser les listes de propriétés

1 Déclarez une propriété NSString * storeFile dans l’interface de la
classe MainViewController puis ajoutez le synthétiseur des acces-
seurs pour cette propriété dans le fichier MainViewController.m

2 Ajoutez la définition de l’accesseur :

- (NSString *)storeFile {
if (!storeFile){

NSString *directory =
[NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES) lastObject];
storeFile = [directory stringByAppendingPathComponent:

@"Convertisseur.plist"];
[storeFile retain];

}
return storeFile;

}

Nous utiliserons un fichier nommé Convertisseur.plist situé dans le
dossier des documents.

Initialisation

Les initialisations de l’interface utilisateur doivent être réalisées dans
la méthode −viewDidLoad du contrôleur de vue, c’est le bon endroit
pour lire la liste de propriétés et initialiser les champs de texte :
- (void)viewDidLoad {

[super viewDidLoad];
[self.convertisseur readFromFile:self.storeFile];
euroField.text =

stringWithCurrency(self.convertisseur.euro);
dollarField.text =

stringWithCurrency(self.convertisseur.dollar);
}

La propriété storeFile est obtenue en passant par son accesseur ;
cela garantit qu’elle contiendra le chemin du fichier à utiliser.

Écriture lorsque l’application quitte

Lorsque l’application se termine, nous savons que le message
−applicationWillTerminate est transmis au délégué d’application. Ce
serait l’endroit idéal pour sauvegarder l’objet convertisseur dans la
liste de propriétés Convertisseur.plist. Mais la lecture du fichier est
réalisée dans le contrôleur de vue. C’est ce dernier qui possède les
propriétés convertisseur et storeFile. Il est donc logique que l’écri-
ture du fichier soit également réalisée dans le contrôleur de vue.

Il faut que le contrôleur de vue soit prévenu lorsque l’application va
se terminer, de la même façon que le délégué d’application.

262 7. Persistance des données

Notifications

Le framework Cocoa Touch propose le mécanisme des notifications.
Chaque fois qu’un événement important se produit, le Centre de
notification est informé. Les objets qui souhaitent être informés de
ces événements doivent s’abonner au centre de notification.

Comment connaître la liste des événements disponibles ? Dites-vous
que toutes les classes possédant un délégué sont susceptibles
d’émettre des notifications. À titre d’exemple, le tableau ci-après
indique quelques notifications émises par les classes que nous
connaissons déjà.

Tableau 7.7 : Exemples de notifications émises

Classe Notification

UITextField UITextFieldTextDidBeginEditingNotification

UITextFieldTextDidChangeNotification

UITextFieldTextDidEndEditingNotification

UITableView UITableViewSelectionDidChangeNotification

UIApplication UIApplicationDidBecomeActiveNotification

UIApplicationDidFinishLaunchingNotification

UIApplicationDidReceiveMemoryWarningNotification

UIApplicationSignificantTimeChangeNotification

UIApplicationWillResignActiveNotification

UIApplicationWillTerminateNotification

Le délégué est informé des événements importants mais on voit
également que le mécanisme des notifications le permet aussi à tout
objet d’être informé de ces événements.

Nous allons abonner le contrôleur de vue principal de Convertisseur2
à la notification UIApplicationWillTerminateNotification.

Programmer l’abonnement

Modifiez la méthode −initWithNibName: dans le fichier MainViewCon-
troller.m.
- (id)initWithNibName:(NSString *)nibNameOrNil

bundle:(NSBundle *)nibBundleOrNil {
if (self = [super initWithNibName:nibNameOrNil

bundle:nibBundleOrNil]) {
[[NSNotificationCenter defaultCenter]

addObserver:self
selector:@selector(applicationWillTerminate:)

2637.2. Utiliser les listes de propriétés

name:UIApplicationWillTerminateNotification
object:nil];

}
return self;

}

Nous indiquons au centre de notification par défaut que nous sou-
haitons que le message applicationWillTerminate: soit transmis au
contrôleur de vue principal (addObserver:self), lorsque l’application
est sur le point de se terminer, quel que soit l’objet émettant cette
notification (object:nil).

Le contrôleur de vue principal devient un observateur. Il ne faut pas
oublier de supprimer l’observateur lorsqu’il est appelé à disparaître.
- (void)dealloc {

[self viewDidUnload];
[[NSNotificationCenter defaultCenter]

removeObserver:self];
[super dealloc];

}

Réception de la notification

Il suffit maintenant d’ajouter la déclaration de la méthode
applicationWillTerminate: dans le fichier MainViewController.h :
- (void)applicationWillTerminate:

(NSNotification *)notification;

Définissez ensuite cette méthode dans le fichier MainViewControl-
ler.m.
- (void)applicationWillTerminate:

(NSNotification *)notification{
[self.convertisseur writeToFile:self.storeFile

atomically:YES];
}

L’instance de la classe NSNotification qui est reçue par cette méthode
est un conteneur dont les propriétés décrivent la notification :

j name est un NSString contenant le nom de la notification.

j object est l’objet qui a émis la notification.
j userInfo est un dictionnaire contenant des informations complé-

mentaires optionnelles.

7.3. Checklist
Nous avons exploré deux techniques importantes mises en œuvre
pour la persistance des données :

264 7. Persistance des données

j Core Data qui permet de réaliser de petites bases de données :

les entités, attributs et relations ;

les règles d’intégrité ;

la pile Core Data, composée des unités de stockage, du coor-
donnateur, du modèle de données et du contexte.

j les listes de propriétés qui permettent la persistance de dictionnai-
res de données :

le format XML utilisé pour représenter un dictionnaire ;

les types de données autorisés.

Nous avons également avancé dans notre compréhension des vues
en table et de la navigation par barre de navigation :

j le mode Édition ;

j la classe NSFetchedResultsController qui facilite l’utilisation de Core
Data et son délégué.

Nous avons vu les classes NSError, NSNumber et NSNotification et le
motif notification/observation.

2657.3. Checklist

C
H

A
P

IT
R

E
8

DESSINS
ET ANIMATIONS

Animer les images .. 269
Dessiner avec Quartz2D ... 282
Débuter la 3D avec OpenGL ES .. 290
Checklist .. 299

267

Nous en avons terminé avec les interfaces utilisateur un peu tristes
contenant des champs de texte et des boutons. Nous allons mainte-
nant tirer parti des possibilités graphiques de l’iPhone, en particulier
de ses capacités à gérer les animations. Nous apprendrons égale-
ment à agrémenter nos applications avec des effets sonores.

8.1. Animer les images
Il existe deux techniques pour agrémenter son interface utilisateur
avec des éléments graphiques :

j disposer d’images préparées, positionnées voire animées par le
programme ;

j coder les instructions pour que le programme dessine.

Le plus simple et le plus efficace est de disposer d’images déjà
prêtes, au format PNG ou JPEG. Nous avons déjà appris à position-
ner une image statique avec Interface Builder dans le chapitre consa-
cré à la prise en main du SDK. Nous nous attacherons ici aux deux
techniques d’animation utilisées avec les images :

j animation du contenu de l’image : les images animées ;

j déplacement d’une image sur l’écran.

Images animées
La technique d’animation d’une image est celle utilisée dans les des-
sins animés : nous affichons une succession d’images à un rythme
rapide, par exemple 30 images par seconde, pour produire la sensa-
tion d’animation. Nous supposerons donc que nous disposons d’un
ensemble d’images. Il nous reste à voir comment utiliser cet ensem-
ble dans une application iPhone.

Application Terre

L’objet de l’application Terre est de voir tourner le globe terrestre. La
rotation complète du globe est décomposée en 44 images au format
PNG disponibles dans les exemples complémentaires à cet ouvrage.
Vous pouvez aussi choisir votre propre séquence d’images pour
réaliser cette application (voir Figure 8.1).

L’interface utilisateur doit contenir une vue de type UIImageView dans
laquelle sera effectuée l’animation.

2698.1. Animer les images

Contrôleur de vue

1 Sous XCode, créez une application de type View Based Application
et nommez-la Terre. Ajoutez au projet les fichiers d’images pour
composer l’animation.

2 Modifiez l’interface de la classe TerreViewController pour y décla-
rer l’outlet terre de type UIImageView*.

@interface TerreViewController : UIViewController {
IBOutlet UIImageView *terre;

}
@property(nonatomic,retain) UIImageView *terre;
@end

Nous allons maintenant écrire le code pour charger les 44 images
dans la vue terre puis déclencher l’animation.

3 Modifiez la méthode −viewDidLoad dans le fichier TerreViewControl-
ler.m. N’oubliez pas d’enlever la mise en commentaire de cette
méthode :

- (void)viewDidLoad {
[super viewDidLoad];
NSMutableArray *images = [[NSMutableArray alloc] init];
for (int i=1;i<=44;i++) {

UIImage *oneImage=[UIImage imageNamed:[NSString
stringWithFormat:@"%d.png",i]];

[images addObject:oneImage];
}

Figure 8.1 : Application Terre

270 8. Dessins et animations

terre.animationImages = [NSArray arrayWithArray:images];
[images release];
[terre startAnimating];

}

Les fichiers images sont nommés 1.png, 2.png, etc. jusqu’à 44.png. La
méthode contient donc une boucle pour composer le nom de chaque
fichier et l’ajouter dans le tableau modifiable images. Ce tableau est
ensuite converti en tableau immuable, pour améliorer les perfor-
mances, avant d’être utilisé pour initialiser la propriété
animationImages de la vue terre. Enfin, l’animation de cette vue est
déclenchée par l’émission du message startAnimating.

Interface utilisateur

1 Ouvrez le fichier TerreViewController.xib pour composer l’interface
utilisateur. Ajoutez une Vue Image (Image View) et liez-la avec
l’outlet terre du contrôleur de vue.

2 Utilisez l’inspecteur d’attributs pour définir le mode de dessin de
l’image comme souhaité. Vous pouvez faire glisser l’une des ima-
ges à partir de la bibliothèque media dans la vue image pour
réaliser des essais.

Les modes les plus appropriés sont généralement les suivants :

j Scale To Fill redimensionne l’image qui sera insérée pour qu’elle
remplisse toute la vue.

j Aspect Fit redimensionne l’image pour qu’elle prenne la place
maximale sans que son aspect soit modifié. Les zones éventuelle-
ment non occupées sont transparentes.

Figure 8.2 : Mode de dessin

2718.1. Animer les images

j Aspect Fill redimensionne l’image pour qu’elle occupe toute la vue
sans que son aspect soit modifié. Certaines parties de l’image
peuvent être coupées.

j Center centre l’image dans la vue sans la redimensionner.

Vous pouvez tester votre application.

Classe UIImage

Dans la méthode −viewDidLoad, nous utilisons la méthode
−imageNamed: de la classe UIImage pour créer une image. Le paramètre
de cette méthode est le nom d’un fichier, y compris l’extension mais
sans chemin d’accès. Le fichier est recherché dans les ressources de
l’application.

Cette classe dispose aussi de la méthode −imageWithContentsOfFile:
qui joue le même rôle mais prend en paramètre le chemin d’accès
complet à un fichier. Ces deux méthodes retournent nil si le fichier
n’a pu être trouvé.

Challenge

Le code que nous avons écrit fonctionne pour charger 44 images. Il
serait plus facile d’en assurer la maintenance s’il ne contenait pas
cette information, s’il fonctionnait quel que soit le nombre d’images
insérées dans les ressources de l’application.

Modifiez la méthode −viewDidLoad du contrôleur de vue pour qu’elle
ne dépende plus du nombre d’images à lire.

Classe UIImageView

La création d’une animation était très simple : tout le travail est
réalisé par la classe UIImageView. Elle mérite qu’on la regarde plus
attentivement ; les méthodes et propriétés les plus utilisées sont
documentées dans le tableau.

Tableau 8.1 : Principales méthodes et propriétés de la classe UIImageView

Thème Signature Objet

Initialisation − (id) initWithImage:
(UIImage *)image

Initialise le récepteur avec une image.

Image @property(nonatomic,
retain) UIImage *image

Image contenue dans le récepteur.

272 8. Dessins et animations

Tableau 8.1 : Principales méthodes et propriétés de la classe UIImageView

Thème Signature Objet

Animation @property(nonatomic,
copy) NSArray
*animationImages

Tableau d’images pour l’animation. Si cette
propriété est initialisée, la propriété image
n’est pas utilisée.

@property(nonatomic)
NSTimeInterval
animationDuration

Durée d’un cycle en secondes. Par défaut, le
cycle est calculé pour une vitesse d’affi-
chage de 30 images pas seconde.

@property(nonatomic)
NSInteger animation
RepeatCount

Nombre de cycles à dérouler avant l’arrêt de
l’animation. Par défaut 0 ; l’animation ne s’ar-
rête pas seule.

− (void)startAnimating Démarre l’animation.

− (void)stopAnimating Stoppe l’animation.

− (BOOL)isAnimating Retourne YES si l’animation est en cours.

Sonoriser une application
Pour donner encore plus de vie à une application, on peut lui adjoin-
dre des effets sonores. Nous allons ajouter un bruit d’ambiance sur la
rotation du globe terrestre.

1 Ajoutez un fichier au format MP3 ou au format WAV au projet Terre,
par exemple ambiance.mp3. Ajoutez les lignes de code suivantes
dans la méthode −viewDidLoad du contrôleur de vue :

NSError *error;
player = [[AVAudioPlayer alloc] initWithContentsOfURL:

[NSURL fileURLWithPath:[[NSBundle mainBundle]
pathForResource:@"ambiance"

ofType:@"mp3"
inDirectory:@"/"]] error:&error];

player.numberOfLoops = -1;
[player prepareToPlay];
[player play];

2 Ajoutez une propriété AVAudioPlayer *player à la classe
TerreViewController.

Nous avons créé un lecteur audio, une instance de la classe
AVAudioPlayer. Nous l’avons initialisé avec le fichier ambiance.mp3.
Nous avons ensuite demandé à ce lecteur de préparer la restitution
puis de lire le fichier sonore.

Les méthodes principales de cette classe sont :

j −initWithContentOfURL:error: pour initialiser le lecteur avec le
contenu d’une URL ;

2738.1. Animer les images

j −prepareToPlay pour préparer la restitution ;
j −play pour commencer la lecture ;
j −pause pour suspendre la lecture ;
j −stop pour arrêter la lecture.

3 Testez l’application afin de vérifier que la terre tourne maintenant
dans une belle ambiance sonore.

Format des sons
L’iPhone sait lire plusieurs formats sonores mais les meilleures perfor-

mances sont atteintes avec le format natif du processeur : PCM 16 bits signé,
little endian, 44 100 Hz, encapsulé dans un fichier WAV ou AIF.

Déplacer une image
Intéressons-nous maintenant à la technique de base permettant de
déplacer sur l’écran un objet représenté par une image. Cette der-
nière pourra ensuite être enrichie pour animer plusieurs objets. Nous
aborderons plus tard les techniques permettant de créer des images
par programmation : Quartz2D puis OpenGL-ES.

Nous illustrerons cette technique avec le déplacement d’une boule
sur une table de billard.

Débuter l’application

1 Créez une application Billard de type View Based Application.
Ajoutez un outlet ball de type UIImageView* à la classe
BillardViewController :

@interface BillardViewController : UIViewController {
IBOutlet UIImageView *ball;

}
@property(nonatomic,retain) UIImageView *ball;
@end

2 Ajoutez aux ressources du projet un fichier au format PNG ou JPEG
contenant une image représentant la boule de billard. L’effet gra-
phique sera optimal si le pourtour de la bille est transparent,
l’image doit contenir une couche Alpha (voir Figure 8.3).

274 8. Dessins et animations

Couche Alpha
Sur iPhone PS, les couleurs sont définies par quatre composantes dont la

valeur est comprise entre 0. et 1.0. Les trois premières définissent l’intensité
des couleurs primaires, Rouge, Vert et Bleu, la quatrième est la valeur Alpha
de la couleur qui en définit le niveau de transparence ; 1.0 pour une couleur
opaque et 0. pour une couleur totalement transparente.

3 Ouvrez le fichier BillardViewController.xib pour préparer l’interface
utilisateur :

Modifiez la couleur de fond de la vue principale pour obtenir un
vert proche du feutre d’une table de billard.

Faites glisser l’image de la boule de billard depuis la bibliothè-
que media d’Interface Builder sur la vue principale.

Si vous souhaitez modifier la taille de l’image, choisissez le
mode approprié, par exemple Aspect Fit.

Connectez l’outlet ball du propriétaire du fichier (File’s owner) à
l’image de la bille, en fait à la vue image (Image View) contenant
l’image.

Se repérer dans une vue

Jusqu’à présent, nous avons utilisé Interface Builder pour disposer
les différents éléments de l’interface utilisateur. Nous allons mainte-
nant procéder par programmation ; il faut donc comprendre com-
ment est définie la position d’une vue sur l’écran.

Un système de coordonnées par vue

Dans la hiérarchie des vues dont est composée l’interface utilisateur,
chaque vue dispose de son propre système de coordonnées. Sur
iPhone OS, l’origine par défaut se situe en haut à gauche de la vue,
l’axe des abscisses défile de gauche à droite et l’axe des ordon-
nées de haut en bas.

Figure 8.3 : Effet de la transparence sur le pourtour de la bille

2758.1. Animer les images

Mac OS X et iPhone OS
Pour les habitués de la programmation sur Mac OS X, sur lequel l’origine

des coordonnées se situe en bas à gauche de la vue sous Cocoa, l’axe des
ordonnées est inversé par rapport à Cocoa Touch.

Frame et Bounds

La position d’une vue incluse dans sa super-vue s’appelle le cadre-

(frame) de la vue. C’est le rectangle, exprimé dans le système de
coordonnées de la super-vue, dans lequel la vue est inscrite.

Un rectangle est défini par :

j un point ; l’origine du rectangle ;

j une taille, c’est-à-dire une largeur et une hauteur.

Taille "négative"
La largeur ou la hauteur d’un rectangle peuvent être négatives. Leur signe

permet de déterminer la position de l’origine : par exemple, si elles sont

Figure 8.4 : Système de coordonnées d’une vue

276 8. Dessins et animations

positives, l’origine du rectangle est son angle en haut à gauche. Si elles
sont toutes deux négatives, l’origine est son angle en bas à droite.

Une vue incluse peut elle-même contenir d’autres vues, il faut donc
définir son système de coordonnées. Cela est fait indirectement en
exprimant le cadre dans les coordonnées de la vue : les limites-

(bounds) de la vue. Par défaut, le rectangle défini par les limites
présente la même taille que le cadre et (0.,0.) pour origine.

Le cadre et les limites sont un seul et même rectangle, mais le cadre
est exprimé dans les coordonnées de la super-vue alors que les
limites le sont dans les coordonnées de la vue incluse.

Trois propriétés de la classe UIView sont interdépendantes, frame (le
cadre), bounds (les limites) et center (les coordonnées du centre de la
vue incluse, exprimées dans les coordonnées de la super-vue) :

j Lorsque frame est modifiée, center est recalculée et la taille de
bounds prend la valeur de la taille de frame.

j Lorsque la taille de bounds est modifiée, elle est utilisée ainsi que
center pour recalculer frame.

j Lorsque center est modifiée, l’origine de frame est recalculée.

Types C pour les éléments graphiques

Les propriétés frame et bounds sont de type CGRect, La propriété center
est de type CGPoint, deux structures C.

Tableau 8.2 : Principales structures C utilisées pour les opérations graphiques

Structure Composition Utilisation

CGRect CGPoint origin Origine du rectangle

CGSize size Taille du rectangle

CGPoint CGFloat x Abscisse du point

CGFloat y Ordonnée du point

CGSize CGFloat width Largeur

CGFloat height Hauteur

S’agissant de structures C, leurs éléments sont donc accessibles par
la notation pointée, par exemple ball.center.x pour l’abscisse du
centre de la boule et ball.center.y pour son ordonnée.

2778.1. Animer les images

CGFloat
Le type CGFloat est un synonyme de float défini dans le framework

CoreGraphics. Nous avons déjà rencontré des types spécifiques à un fra-
mework, par exemple NSInteger. C’est une pratique qui permet d’améliorer
la portabilité du code.

Les structures ne sont pas des classes
Les variables et propriétés graphiques sont généralement des structures,

pas des références, contrairement aux objets qui sont toujours des référen-
ces. En pratique, la déclaration des variables ne contient pas le caractère *. Ce
sont des structures :

UIView * myView ; // référence sur un objet
CGRect rect ; // variable de type structure

Le framework CoreGraphics fournit plus de 30 fonctions pratiques
pour manipuler ces structures géométriques, par exemple :

j des constructeurs :

CGPoint CGPointMake (CGFloat x,CGFloat y) ;

CGSize CGSizeMake (CGFloat width,CGFloat height) ;

CGRect CGRectMake (CGFloat x,CGFloat y,CGFloat width,CGFloat height).

j des comparateurs :

bool CGRectContainsPoint (CGRect rect,CGPoint point) ;

CGRect CGRectIntersection (CGRect r1,CGRect r2).

j des calculs d’informations :

CGFloat CGRectGetMinX (CGRect rect) ;

CGFloat CGRectGetMaxY (CGRect rect).

Vous trouverez la liste exhaustive de ces fonctions dans la documen-
tation CGGeometry Reference.

Animer la boule de billard

Après cette introduction sur les concepts des coordonnées graphi-
ques, revenons à notre application Billard.

Nous avons besoin de plusieurs éléments pour animer la boule de
billard :

278 8. Dessins et animations

j la valeur d’un déplacement élémentaire ;

j une méthode qui réalise un déplacement élémentaire ;
j la fréquence des déplacements élémentaires ;
j un moyen de séquencer les déplacements élémentaires à la bonne

fréquence.

1 Modifiez le fichier BillardViewController.h pour y ajouter la mé-
thode −moveBall qui réalisera un déplacement élémentaire et les
variables d’instances qui contiendront la valeur d’un déplacement
élémentaire.

@interface BillardViewController : UIViewController {
IBOutlet UIImageView *ball;
CGFloat moveX;
CGFloat moveY;

}
@property(nonatomic,retain) UIImageView *ball;
- (void)moveBall;
@end

2 Dans le fichier BillardViewController.m, définissez une constante
timerInterval à la valeur souhaitée pour la fréquence de rafraîchis-
sement, 1/30e de seconde :

#import "BillardViewController.h"
const float timerInterval = 1./30.;
@implementation BillardViewController

3 Modifiez la méthode −viewDidLoad pour initialiser la valeur du dé-
placement élémentaire et lancer le premier déplacement :

- (void)viewDidLoad {
[super viewDidLoad];
moveX = 3.;
moveY = -5.;
[self moveBall];

}

4 Écrivez la méthode −moveBall :

- (void) moveBall {
CGPoint center = ball.center;
center.x += moveX;
center.y += moveY;
ball.center = center;
[self performSelector:@selector(moveBall)

withObject:nil afterDelay:timerInterval];
}

Après avoir déplacé la boule en modifiant sa propriété center, nous
armons un temporisateur qui va réémettre le message −moveBall
après une attente de timerInterval secondes. La méthode −perform

2798.1. Animer les images

Selector:withObject:afterDelay: est disponible pour tous les objets,
quelle que soit leur classe. Son paramètre withObject: est utilisé
comme paramètre du message armé si le sélecteur attend un para-
mètre.

5 Construisez l’application et testez-la sur le simulateur. La boule se
déplace correctement mais malheureusement, elle disparaît rapi-
dement. Nous allons maintenant implémenter les rebonds sur les
bandes de la table de billard.

Détecter les bandes

Dans les nombreux jeux que vous programmerez, il vous faudra
surveiller les interactions entre différents objets. Le framework Core-
Graphics propose la fonction CGRectIntersectsRect qui prend deux
rectangles en paramètres et retourne YES si ces rectangles se recou-
vrent au moins en partie, et NO s’ils sont disjoints. Cette fonction est
intéressante pour détecter si deux objets sont en contacts mais ne
convient pas pour détecter si la boule de billard est sur le point de
"sortir" de la table.

1 Modifiez la méthode −moveBall pour détecter si la boule sort de la
table et éventuellement changer le déplacement élémentaire :

- (void) moveBall {
// tableRect doit contenir les limites de l’écran
CGRect tableRect = self.view.bounds;
// ballRect doit contenir le cadre de la boule
CGRect ballRect = self.ball.frame;
if (CGRectGetMinX(ballRect)<CGRectGetMinX(tableRect)||

CGRectGetMaxX(ballRect)>CGRectGetMaxX(tableRect)){
moveX = -moveX;

}
if (CGRectGetMinY(ballRect)<CGRectGetMinY(tableRect)||

CGRectGetMaxY(ballRect)>CGRectGetMaxY(tableRect)){
moveY = -moveY;

}
CGPoint center = ball.center;
center.x += moveX;
center.y += moveY;
ball.center = center;
[self performSelector:@selector(moveBall)

withObject:nil afterDelay:timerInterval];
}

Nous n’avons pas utilisé la fonction CGRectContainsRect qui teste si le
second rectangle passé en paramètre est contenu en totalité dans le

280 8. Dessins et animations

premier car nous avons besoin de savoir si le débordement est dans
le sens horizontal ou vertical pour modifier le déplacement élémen-
taire.

2 Reconstruisez et testez l’application ; la boule rebondit maintenant
sur les bandes. Essayez d’augmenter le déplacement élémentaire
pour accélérer le mouvement :

moveX = 15.;
moveY = -12.;

L’animation reste fluide. Le framework CoreGraphics est optimisé
pour que le déplacement d’une vue ne nécessite pas de redessiner
cette vue ou celle située en dessous : chaque vue possède son
propre calque (layer).

Challenges

Challenge 1

Pour améliorer simplement le rendu du mouvement de la boule de
billard, il faut modéliser le frottement sur la table et la perte d’énergie
due aux chocs. Apportez cette amélioration dans la méthode
−moveBall. Vous pouvez adopter une perte de vitesse de 10 % à
chaque choc et de 0,5 % à chaque déplacement élémentaire.

Challenge 2

Pour atteindre un rendu très réaliste, ajoutez l’émission d’un son à
chaque rebond de la boule sur une bande, comme nous l’avons fait
précédemment dans ce chapitre.

Seul le premier son est émis lorsque deux rebonds sont trop rappro-
chés. Une solution pour corriger ce problème consiste à utiliser
alternativement 2 lecteurs.

Où trouver des sons
Outre les ressources, sons et images, qui vous sont proposées avec le

code source accompagnant cet ouvrage, vous trouverez de nombreux effets
sonores de bonne qualité sur le site http://www.soundsnap.com.

Challenge 3

Plus difficile, restructurez l’application pour pouvoir positionner plu-
sieurs boules sur la table. Il faut bien sûr détecter et traiter les
collisions entre les boules.

2818.1. Animer les images

Pour calculer les vitesses des deux boules après l’impact, vous
inspirez-vous du code C que vous trouverez sur le site http://fr.wikipedia
.org/wiki/Choc_élastique.

8.2. Dessiner avec Quartz2D
Cette section est consacrée aux moyens de composer et d’optimiser
le tracé d’un dessin pour conserver une bonne fluidité des anima-
tions.

Afin d’illustrer ces techniques, nous visualiserons la trajectoire de la
boule, pendant son déplacement, dans notre application Billard.

Principe de fonctionnement

Précisions sur la classe UIView

Tous les objets qui s’affichent à l’écran, les vues, dérivent directe-
ment ou indirectement de la classe UIView. Elle a la responsabilité de
gérer :

Figure 8.5 : Tracé de la trajectoire

282 8. Dessins et animations

j la hiérarchie des vues ;

j l’affichage ;
j l’animation des vues.

La méthode −drawRect: de la classe UIView dessine le contenu de la
vue. Cette méthode est appelée par le framework lorsque la vue est
affichée la première fois, puis lorsque son contenu évolue. Si vous
voulez personnaliser l’aspect graphique de vos applications, il vous
faudra donc définir votre propre classe dérivée de UIView, et coder le
comportement graphique souhaité dans la méthode −drawRect:.

Le paramètre passé à cette méthode est le rectangle dans lequel le
dessin doit être exécuté. Par défaut, le contenu de ce rectangle est
effacé avant l’appel de −drawRect:, son contenu doit alors être com-
plètement redessiné par la méthode.

La vue que vous définissez devra vraisemblablement avoir un affi-
chage variable, par exemple en fonction des valeurs des propriétés.
Lorsque l’affichage doit évoluer, il faut appeler l’une des deux mé-
thodes :

j −setNeedsDisplay pour redessiner toute la vue.

j −setNeedsDisplayInRect:. La partie à redessiner est l’intérieur du
rectangle passé en paramètre qui sera retransmis à −drawRect:.

Ne pas appeler drawRect
Vous ne devez pas appeler la méthode −drawRect: directement. Vous

devez appeler l’une des méthodes −setNeedsDisplay ou −setNeeds
DisplayInRect: pour informer le framework qu’il doit appeler −drawRect:.

Contexte graphique

Les fonctions permettant de dessiner sont regroupées dans le fra-
mework CoreGraphics. Elles prennent pratiquement toutes pour pre-
mier paramètre un pointeur sur le contexte graphique, leur permet-
tant de savoir "où" dessiner. Lorsque la méthode −drawRect: est
appelée, un contexte graphique adéquat est initialisé par défaut, avec
le système de coordonnées défini par les limites de la vue.

Généralement, le code de la méthode −drawRect: commence par
l’obtention du contexte graphique courant.
CGContextRef context = UIGraphicsGetCurrentContext();

2838.2. Dessiner avec Quartz2D

Contexte graphique
Le contexte graphique permet de faire le lien entre les fonctions graphi-

ques et la destination de l’image. Que le dessin soit tracé sur l’écran ou dans
un fichier PDF, le développeur utilise les mêmes fonctions graphiques. Il n’a
pas à se préoccuper de la destination de l’image qu’il compose, c’est le
contexte graphique qui prend en charge les opérations détaillées.

Les fonctions graphiques sont des fonctions C
Pour des raisons de performances, les fonctions graphiques n’ont pas été

développées sous forme de classes Objective-C mais regroupées dans une
bibliothèque de fonctions C.

Mise en pratique
Avant d’aller plus loin, mettons en pratique ce que nous venons
d’apprendre : −drawRect: et le contexte graphique.

Nous allons réaliser une classe dérivée de UIView pour effectuer le
tracé de la trajectoire de la boule de billard. Cette classe SnookerView
comportera deux propriétés qui permettront au contrôleur de vue de
lui transmettre les mouvements de la boule :

j lastPoint, position finale de la boule, mise à jour à chaque mou-
vement élémentaire ;

j drawing, booléen indiquant si le tracé doit être réalisé, indispensa-
ble pour commencer le dessin uniquement après avoir indiqué la
position initiale de la boule.

Un trait doit être dessiné à chaque mouvement élémentaire entre la
dernière position de la boule et sa nouvelle position.

Créer la classe SnookerView

1 Sous XCode, créez les fichiers sources .m et .h pour la classe
SnookerView, en indiquant que cette classe hérite de UIView (voir
Figure 8.6).

2 Modifiez le fichier SnookerView.h pour y déclarer les propriétés de
la nouvelle classe :

284 8. Dessins et animations

@interface SnookerView : UIView {
BOOL drawing;
CGPoint precedingLastPoint;
CGPoint lastPoint;

}
@property(nonatomic,getter=isDrawing) BOOL drawing;
@property(nonatomic) CGPoint lastPoint;
@end

Nous déclarons :

j une variable d’instance precedingLastPoint qui n’est pas définie
comme une propriété ; nous aurons besoin de retenir la position
précédente de la boule pour effectuer le tracé mais les utilisateurs
de la classe SnookerView n’ont pas besoin d’y accéder ;

j un accesseur dénommé isDrawing plutôt que drawing ; c’est une
pratique courante pour les propriétés de type BOOL.

3 Ajoutez la définition de la méthode −setLastPoint: dans le fichier
SnookerView.m :

-(void)setLastPoint:(CGPoint)aPoint{
precedingLastPoint = lastPoint;
lastPoint = aPoint;
if (drawing) {

Figure 8.6 : Création d’une classe dérivée de UIView

2858.2. Dessiner avec Quartz2D

[self setNeedsDisplayInRect:
CGRectMake(precedingLastPoint.x, precedingLastPoint.y,

lastPoint.x-precedingLastPoint.x,
lastPoint.y-precedingLastPoint.y)];

}
}

Nous modifions le manipulateur par défaut de la propriété lastPoint
car nous avons deux choses importantes à faire lors de chaque
modification de cette propriété :

j enregistrer la position précédente de la boule ;

j informer le framework que cette vue doit être redessinée dans le
rectangle dont une diagonale est définie par le dernier point et le
point précédent.

Dessiner le tracé

Écrivez le code de la méthode −drawRect: :
- (void)drawRect:(CGRect)rect {

CGContextRef context = UIGraphicsGetCurrentContext();
CGContextSetRGBStrokeColor(context, 1., 0.5, 0., 1.0);
CGContextSetLineWidth(context, 3.);
CGContextSetLineCap(context, kCGLineCapSquare);
CGPoint segment[2] = {precedingLastPoint,self.lastPoint};
CGContextStrokeLineSegments(context, segment, 2);

}

Nous reconnaissons la première instruction qui permet d’obtenir
une référence au contexte graphique courant, vers lequel toutes les
commandes graphiques seront transmises.

Nous voulons que l’appel de cette méthode provoque le tracé d’un
trait entre le dernier point (propriété lastPoint) et le point précédent
(variable d’instance precedingLastPoint). Cela est accompli par l’ap-
pel de la fonction CGContextStrokeLineSegments qui prend en paramè-
tres un tableau de points et le nombre de points contenus dans le
tableau. Cette fonction est utilisable pour tracer une succession de
segments.

Trois autres fonctions sont employées pour définir les attributs gra-
phiques du trait à tracer :

j CGContextSetRGBStrokeColor permet de définir les composants
Rouge, Vert, Bleu et Alpha de la couleur du trait.

j CGContextSetLineWidth permet de définir la largeur du trait.
j CGContextSetLineCap permet de définir le tracé de l’extrémité des

segments. Le paramètre de cette fonction est une constante.

286 8. Dessins et animations

Tableau 8.3 : Paramètres de la fonction CGContextSetLineCap

Forme de terminaison Paramètre à utiliser Commentaire

kCGLineCapButt Le trait est arrêté à l’extrémité du segment.

kCGLineCapRound Le trait est arrondi autour de l’extrémité du
segment.

kCGLineCapSquare Le trait est carré autour de l’extrémité du
segment.

Il existe d’autres fonctions graphiques mais nous vous demandons
un peu de patience. Il nous reste à utiliser notre nouvelle classe dans
le contrôleur de vue pour terminer l’application.

Utiliser la nouvelle classe

Modifier le fichier NIB

Afin d’utiliser les propriétés et les méthodes que nous venons de
définir, il faut modifier la classe de la vue dans le fichier NIB.

1 Ouvrez le fichier BillardViewController.xib dans Interface Builder.

2 Sélectionnez la vue principale et indiquez qu’elle doit être de la
classe SnookerView dans l’inspecteur d’identité (X+[4]).

Figure 8.7 : La vue principale doit appartenir à la classe
SnookerView

2878.2. Dessiner avec Quartz2D

Modifier le contrôleur de vue

1 Modifiez la méthode −viewDidLoad dans le fichier BillardViewCon-
troller.m pour initialiser le tracé du déplacement :

- (void)viewDidLoad {
[super viewDidLoad];
moveX = 15.;
moveY = -12.;
[(SnookerView *)self.view setLastPoint: ball.center];
[(SnookerView *)self.view setDrawing:YES];
[self moveBall];

}

cast (SnookerView *)
La propriété view est déclarée comme une UIView dans la classe

UIViewController, et ne dispose pas des propriétés lastPoint et drawing.
Nous employons donc l’instruction de changement de type (cast)
(SnookerView *) pour éviter un message d’avertissement à la compilation.

2 Modifiez la méthode −moveBall pour réaliser le tracé de la trajec-
toire à chaque déplacement élémentaire :

- (void) moveBall {
CGRect tableRect = self.view.bounds;
CGRect ballRect = self.ball.frame;
if (CGRectGetMinX(ballRect)<CGRectGetMinX(tableRect)||

CGRectGetMaxX(ballRect)>CGRectGetMaxX(tableRect)){
moveX = -moveX;

}
if (CGRectGetMinY(ballRect)<CGRectGetMinY(tableRect)||

CGRectGetMaxY(ballRect)>CGRectGetMaxY(tableRect)){
moveY = -moveY;

}
CGPoint center = ball.center;
center.x += moveX;
center.y += moveY;
ball.center = center;
[(SnookerView*)self.view setLastPoint: center];
[self performSelector:@selector(moveBall)

withObject:nil afterDelay:timerInterval];
}

3 Reconstruisez l’application et vérifiez que la trajectoire est dessi-
née correctement.

Cette application démontre deux caractéristiques importantes du
framework CoreGraphics pour l’optimisation du dessin et des anima-
tions :

288 8. Dessins et animations

j Seul le contenu du rectangle passé en paramètre à la méthode
−drawRect: doit être redessiné.

j Chaque vue étant dessinée dans son propre calque, la boule se
superpose au tracé de la trajectoire. Elle apparaît bien au-dessus
de la table et il n’est pas nécessaire de redessiner ce qui était sous
la boule lorsque celle-ci se déplace.

Primitives graphiques
Les principales primitives graphiques sont résumées dans le tableau
ci-après.

Tableau 8.4 : Principales primitives graphiques

Thème Signature Objet

Contexte Graphique CGContextRef
UIGraphicsGet
CurrentContext
(void)

Retourne le contexte graphique par dé-
faut.

Attributs graphiques void CGContextSet
LineCap (
CGContextRef c,
CGLineCap cap)

Définit le type de terminaison du tracé
des segments de droite.

void CGContextSet
LineWidth (
CGContextRef c,
CGFloat width)

Définit la largeur du tracé des segments
de droite.

void CGContextSet
RGBFillColor (
CGContextRef c,
CGFloat red,
CGFloat green,
CGFloat blue,
CGFloat alpha)

Définit les composantes de la couleur
de remplissage pour les formes géomé-
triques.

void CGContextSet
RGBStrokeColor (
CGContextRef c,
CGFloat red,
CGFloat green,
CGFloat blue,
CGFloat alpha)

Définit les composantes de la couleur
de tracé.

2898.2. Dessiner avec Quartz2D

Tableau 8.4 : Principales primitives graphiques

Thème Signature Objet

Fonctions de dessin void CGContext
FillRect (
CGContextRef c,
CGRect rect)

Peint le contenu du rectangle passé en
paramètre avec la couleur de remplis-
sage préalablement définie.

void CGContext
FillEllipseInRect (
CGContextRefcontext,
CGRect rect)

Peint le contenu de l’ellipse définie par
le rectangle passé en paramètre avec la
couleur de remplissage préalablement
définie.

void CGContext
StrokeRect (
CGContextRef c,
CGRect rect)

Trace le contour du rectangle passé en
paramètre avec la couleur de tracé
préalablement définie.

void CGContext
StrokeEllipseInRect (
CGContextRefcontext,
CGRect rect)

Trace le contour de l’ellipse définie par
le rectangle passé en paramètre avec la
couleur de tracé préalablement définie.

void CGContext
StrokeLineSegments (
CGContextRef c,
const CGPointpoints[],
size_t count)

Trace la suite de segments dont les
points sont dans le tableau passé en
paramètres.

N’hésitez pas à consulter la documentation Apple et à essayer les
nombreuses fonctions graphiques. Le framework Core Graphics est
très riche et permet notamment de :

j tracer des arcs, des courbes de Bézier, des motifs et des lignes
discontinues ;

j définir des dégradés de couleurs, des ombres ;
j réaliser des rotations ou d’autres transformations ;
j dessiner du texte, etc.

8.3. Débuter la 3D avec OpenGL ES
Le graphisme en trois dimensions permet de représenter des scènes
très réalistes : ombres portées, textures, sources de lumière,
brillance, etc. Malheureusement, ce résultat est obtenu au prix d’une
grande complexité ; le livre OpenGL superbible édité par Addison
Wesley compte 1 200 pages. Nous allons limiter notre ambition dans
cette section qui est destinée à ceux d’entre vous qui connaissent
déjà OpenGL ES et souhaitent savoir comment le mettre en œuvre
sur iPhone OS :

290 8. Dessins et animations

j présenter OpenGL ES utilisé sur iPhone OS pour le graphisme en
trois dimensions ;

j expliquer comment cette bibliothèque standard est exploitée dans
une application Cocoa Touch.

Présentation d’OpenGLES
OpenGL est une bibliothèque graphique (Graphics Library) standard
accessible en langage C, donc en Objective-C. Elle est largement
utilisée dans nombre d’applications professionnelles ou ludiques.
OpenGL ES est une version allégée d’OpenGL conçue pour les appa-
reils mobiles (Embedded Systems).

OpenGL ES existe en deux versions, prises en charge sur iPhone OS.
Le développeur choisira celle qu’il souhaite utiliser :

j la version 1.1 est une bibliothèque classique de primitives graphi-
ques.

j la version 2.0 permet de programmer des fonctions qui s’exécu-
tent directement sur le processeur graphique.

La documentation de référence officielle, en anglais, se trouve sur les
sites suivants :

j http://www.khronos.org/opengles/sdk/1.1/docs/man/ pour la version 1.1 ;

j http://www.khronos.org/opengles/sdk/docs/man/ pour la version 2.0.

Intégration dans Cocoa Touch
L’utilisation d’OpenGL ES nécessite de la part du développeur un
effort supplémentaire. Non seulement il faut connaître la bibliothè-
que et les principes du graphisme 3D, mais il faut aussi comprendre
comment OpenGL ES et Core Animation travaillent ensemble.

Figure 8.8 : Exemple de graphisme
3D

2918.3. Débuter la 3D avec OpenGL ES

Il n’y a pas dans Cocoa Touch, contrairement à Cocoa sur Mac OS X,
d’objet de type Vue prêt à l’emploi pour utiliser OpenGL ES. Il nous
faudra dériver une classe d’UIView, appelons-la EAGLView, pour nous
conformer au modèle d’application proposé par XCode.

Frameworks

Pour utiliser OpenGLES dans un projet sous XCode, il faut y ajouter
les frameworks QuartzCore et OpenGLES. Sélectionnez la cible (tar-
get) du projet puis activez la commande Existing Framework … du
sous-menu Add du menu contextuel.

Modèle OpenGL ES
Les frameworks nécessaires sont inclus dans le modèle de projet OpenGL

ES Application sous XCode.

Les déclarations à importer sont les suivantes :
#import <QuartzCore/QuartzCore.h>
#import <OpenGLES/ES1/gl.h> // pour OpenGL ES 1.1
#import <OpenGLES/ES1/glext.h> // pour OpenGL ES 1.1
#import <OpenGLES/ES2/gl.h> // pour OpenGL ES 2.0
#import <OpenGLES/ES2/glext.h> // pour OpenGL ES 2.0
#import <OpenGLES/EAGL.h>
#import <OpenGLES/EAGLDrawable.h>

Calque OpenGL ES

Nous savons déjà que chaque instance de la classe UIView, ou d’une
classe dérivée, possède son propre calque. Il est accessible via la
propriété layer de type CALayer*. La vue et le calque associé étant
intimement liés, la classe UIView définit une méthode +layerClass qui
retourne la classe à utiliser comme calque. Cette classe doit dériver
de CALayer qui est le défaut.

Pour utiliser la bibliothèque OpenGL ES, il faut utiliser un calque de
la classe CAEAGLLayer. Notre classe EAGLView devra donc modifier la
méthode +layerClass de la classe UIView :
+ (Class) layerClass {

return [CAEAGLLayer class];
}

Contexte graphique

Les primitives graphiques d’OpenGL ES, comme celles de Core Gra-
phics, sont dirigées vers un contexte graphique. Dans le cas

292 8. Dessins et animations

d’OpenGL ES, le contexte graphique doit être une instance de la
classe EAGLContext créée à l’initialisation de la vue :
context = [[EAGLContext alloc]

initWithAPI:kEAGLRenderingAPIOpenGLES1];

Le contexte est créé soit avec la constante kEAGLRendering
APIOpenGLES1, soit avec la constante kEAGLRenderingAPIOpenGLES2 sui-
vant que l’on veut travailler en version 1.1 ou en version 2.0.

Le contexte auquel toutes les commandes graphiques doivent être
transmises est ensuite spécifié par l’instruction :
[EAGLContext setCurrentContext:context];

Zones tampons

Lorsque l’application compose une image, elle ne travaille pas direc-
tement sur l’écran. Elle utilise des zones tampons (buffers) spécifi-
ques, suivant le type d’informations (couleur, profondeur, pochoir)
qui servent à composer l’image, liées entre elles dans un cadre

tampon (framebuffer). Une fois l’image composée, elle est transmise
en une fois sur l’écran.

Chaque tampon est repéré par un identificateur qui est un nombre
entier. Les tampons sont généralement créés à l’initialisation de la
vue.

Créer le cadre tampon

Sous OpenGL ES v1.1, le cadre tampon est créé puis lié au contexte
graphique par la suite d’instructions :
GLuint framebuffer;
glGenFramebuffersOES(1, &framebuffer);
glBindFramebufferOES(GL_FRAMEBUFFER_OES, framebuffer);

La fonction glGenFrameBuffersOES est employée ici pour créer un seul
cadre tampon. Elle prend deux paramètres :

j le nombre de cadres tampons à créer ;

j un tableau d’entiers dans lequel les identifiants des cadres créés
seront rangés.

La fonction glBindFramebufferOES est utilisée pour lier le cadre tam-
pon nouvellement créé au contexte courant, afin d’en faire la desti-
nation des commandes graphiques à venir.

Extension OES
Les fonctions de gestion des zones tampons et du cadre tampon sont

définies dans la version 2.0 d’OpenGL ES. Sous iPhone OS, on utilise le même

2938.3. Débuter la 3D avec OpenGL ES

système de fonctions avec la version 1.1. Les noms de ces fonctions se
terminent dans ce cas par OES, nom de l’extension Apple à OpenGL ES 1.1.

À partir de cette section, les exemples seront donnés en version 1.1. Il sera
facile d’en déduire l’utilisation en version 2.0 en enlevant les caractères OES à
la fin des fonctions et constantes.

Le cadre tampon est susceptible de regrouper :

j Une zone tampon pour les couleurs (color buffer) dans laquelle
seront calculées les couleurs de l’image à dessiner. Cette zone
tampon est obligatoire.

j Une zone tampon pour la profondeur (depth buffer) permettant de
déterminer les parties cachées de l’image. Cette zone tampon
n’est pas utilisée pour les images en deux dimensions.

j Optionnellement, une zone tampon pour les pochoirs (stencil buf-
fer) ou une zone tampon pour les textures (texture buffer).

Créer la zone tampon des couleurs

Sous OpenGL ES v1.1, la zone tampon des couleurs est créée puis liée
au contexte graphique par la suite d’instructions :
GLuint colorRenderbuffer;
glGenRenderbuffersOES(1, &colorRenderbuffer);
glBindRenderbufferOES(GL_RENDERBUFFER_OES,

colorRenderbuffer);
glFramebufferRenderbufferOES(GL_FRAMEBUFFER_OES,

GL_COLOR_ATTACHMENT0_OES,GL_RENDERBUFFER_OES,
colorRenderbuffer);

La fonction glFramebufferRenderbufferOES permet d’attacher une zone
tampon à un cadre tampon. Le deuxième paramètre permet de
spécifier le type d’attachement :

j GL_COLOR_ATTACHMENT0_OES pour la zone tampon des couleurs ;

j GL_DEPTH_ATTACHMENT_OES pour la zone tampon de profondeur ;
j GL_STENCIL_ATTACHMENT_OES pour la zone tampon des pochoirs.

Les autres zones tampons éventuellement nécessaires sont créées et
attachées de la même façon.

Définir le port OpenGL

Le port OpenGL (view port) est la zone sur l’écran dans laquelle
doivent être effectués les tracés graphiques. Il doit donc être lié à la
vue EAGLView et plus précisément à son calque. Mais auparavant, il

294 8. Dessins et animations

faut le dimensionner, ce qui ne peut être fait qu’après que la vue soit
concrètement disposée sur l’écran. C’est pourquoi les instructions
suivantes sont généralement placées dans la méthode
−layoutSubviews de la classe EAGLView :
GLint viewWidth, viewHeight;
[context renderbufferStorage:GL_RENDERBUFFER_OES

fromDrawable:self.layer];
glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES,

GL_RENDERBUFFER_WIDTH_OES, &viewWidth);
glGetRenderbufferParameterivOES(GL_RENDERBUFFER_OES,

GL_RENDERBUFFER_HEIGHT_OES, &viewHeight);
glViewport(0, 0, viewWidth, viewHeight);

Le contexte graphique est d’abord attaché au calque de la vue ; il en
prend donc les dimensions. Puis ces dimensions sont récupérées
pour définir le système de coordonnées du port OpenGL.

Utiliser le contexte graphique

Lorsque toutes les zones tampons ont été créées et attachées au
cadre tampon, on peut tester la bonne configuration de ce dernier,
par exemple de la façon suivante :
if (glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES) !=

GL_FRAMEBUFFER_COMPLETE_OES) {
NSLog(@"Echec lors de la création du cadre tampon %x",

glCheckFramebufferStatusOES(GL_FRAMEBUFFER_OES));
return;

}

Le contexte graphique est enfin prêt pour recevoir les instructions de
dessin. Lorsque l’image est prête, elle peut être affichée à l’écran :
[context presentRenderbuffer:GL_RENDERBUFFER_OES];

Lorsque l’image a été transmise à l’écran, le tampon des couleurs est
réinitialisé. Dans le cas d’une animation, il faut recomposer complè-
tement l’image après l’affichage de chaque trame.

Exemple d’application
Afin d’illustrer les concepts que nous venons de voir, nous allons
analyser un exemple d’application : le modèle OpenGL ES Application
proposé par XCode.

Sous XCode, créez un projet de type OpenGL ES Application. Cons-
truisez l’application et testez-la sur le simulateur ; un carré rempli par
un dégradé de couleurs se balance doucement. Vous pouvez créer
une application pour iPhone ou pour iPad ; elles fonctionnent de la
même façon.

2958.3. Débuter la 3D avec OpenGL ES

Structure des classes

Examinez les fichiers du groupe Classes, le modèle proposé par
XCode contient :

j une classe pour le délégué d’application ;

j une classe EAGLView, qui dérive de UIView ;
j deux classes ES1Renderer et ES2Renderer ;
j un protocole ESRenderer.

Ce modèle ne contient pas de contrôleur de vue spécifique, c’est le
délégué d’application qui gère la vue directement : il a une propriété
glView et contrôle le fonctionnement de l’animation. Les applications
OpenGL ES ne respectent pas le modèle MVC.

L’aspect graphique est réparti en trois classes :

j ES1Renderer contient les instructions spécifiques à OpenGL ES 1.1.

j ES2Renderer contient les instructions spécifiques à OpenGL ES 2.0.
j EAGLView contient le code indépendant de la version utilisée et le

mécanisme d’aiguillage entre les deux versions d’OpenGL ES.

Le protocole ESRenderer permet au code d’EAGLView de fonctionner
indifféremment avec l’une des classes ES1Renderer ou ES2Renderer.

C’est dans l’une des classes ES1Renderer ou ES2Renderer, suivant que
vous adoptez la version 1.1 ou la version 2.0, que vous devez mettre
votre code OpenGL ES, plus particulièrement dans la méthode
−render. Ouvrez le fichier ES1Renderer.m et vérifiez que vous localisez
les instructions de paramétrage du contexte graphique et des zones
tampons vus dans les sections précédentes.

Nous allons nous concentrer sur la classe EAGLView qui offre quelques
particularités que nous n’avons pas encore vues.

Classe EAGLView

La classe EAGLView prend en charge :

j La configuration du calque (layer). En particulier, elle implémente
la méthode +layerClass pour indiquer qu’il faut utiliser un calque
OpenGL ES.

j Le pilotage de l’animation.
j Le choix de la version d’OpenGL ES, en l’occurrence 1.1 unique-

ment si la version 2.0 ne fonctionne pas sur l’appareil.

296 8. Dessins et animations

j L’interface avec les deux méthodes du protocole ESRenderer.

−resizeFromLayer: pour finaliser l’initialisation du contexte gra-
phique lorsque la dimension définitive de la vue est connue ;

−render pour dessiner l’image.

Pilotage de l’animation

Ouvrez le fichier EAGLView.m pour étudier la méthode employée
pour rythmer l’animation.
- (void) startAnimation {

if (!animating) {
if (displayLinkSupported) {

displayLink = [NSClassFromString(@"CADisplayLink")
displayLinkWithTarget:self

selector:@selector(drawView:)];
[displayLink

setFrameInterval:animationFrameInterval];
[displayLink

addToRunLoop:[NSRunLoop currentRunLoop]
forMode:NSDefaultRunLoopMode];

}
else

animationTimer =
[NSTimer scheduledTimerWithTimeInterval:
(NSTimeInterval)((1.0 / 60.0) * animationFrameInterval)

target:self
selector:@selector(drawView:)
userInfo:nil
repeats:TRUE];

animating = TRUE;
}

}

Nous voyons que l’une des deux classes suivantes est utilisée :

j CADisplayLink ;

j ou NSTimer, le temporisateur universel.

L’avantage de CADisplayLink sur NSTimer est que le temps nécessaire
pour calculer une nouvelle image est pris en compte afin de fixer le
rythme de rafraîchissement ; c’est la classe à favoriser pour synchro-
niser une animation. Elle n’est malheureusement disponible qu’à
partir de la version 3.1 de l’iPhone OS, c’est pourquoi la classe
EAGLView possède une propriété displayLinkSupported qui est évaluée
dans la méthode −initWithCoder: :
displayLinkSupported = FALSE;
NSString *reqSysVer = @"3.1";
NSString *currSysVer =

2978.3. Débuter la 3D avec OpenGL ES

[[UIDevice currentDevice] systemVersion];
if ([currSysVer compare:reqSysVer

options:NSNumericSearch] != NSOrderedAscending)
displayLinkSupported = TRUE;

NSClassFromString
Dans le code de la méthode −startAnimation, Il faut utiliser l’appel de

fonction NSClassFromString(@"CADisplayLink") plutôt que simplement la
classe CADisplayLink pour éviter les erreurs à la construction de l’applica-
tion si l’on emploie un SDK qui ne contient pas cette classe.

Classe UIDevice

Nous avons vu précédemment un exemple de quelques instructions
permettant de connaître les caractéristiques de l’appareil sur lequel
l’application s’exécute. Le tableau ci-après résume quelques-unes
des propriétés des instances de la classe UIDevice.

Tableau 8.5 : Principales propriétés de la classe UIDevice

Thème Signature Objet

Obtenir l’instance
courante

+ (UIDevice *)current
Device

Retourne l’instance représentant
l’appareil sur lequel l’application
s’exécute.

Identifier l’appareil et
le système d’exploita-
tion

@property (nonatomic,
readonly, retain)
NSString
*uniqueIdentifier

Identifiant unique de l’appareil
(UDID)

@property (nonatomic,
readonly, retain)
NSString *name

Nom de l’appareil

@property (nonatomic,
readonly, retain)
NSString
*systemVersion

Version du système d’exploitation

@property (nonatomic,
readonly, retain)
NSString *model

Modèle d’appareil, actuellement
retourne @"iPhone",
@"iPod touch", @"iPad",
@"iPhone Simulator" ou
@"iPad Simulator".

État de la batterie @property (nonatomic,
readonly) float
batteryLevel

Niveau de charge de la batterie.
Retourne une valeur comprise en-
tre 0 (0 %) et 1 (100 % de charge).

298 8. Dessins et animations

8.4. Checklist
Ce chapitre nous a permis d’explorer quelques-unes des possibilités
graphiques et d’animation d’iPhone OS :

j animation d’une image, avec les classes UIImageView et UIImage ;

j déplacement d’une image sur l’écran ;
j primitives graphiques de Quartz2D :

le cadre (frame), les limites (bounds) et les différents systèmes
de coordonnées ;

les types de données CGRect, CGPoint et CGSize ;

la méthode −drawRect:.

j intégration de la bibliothèque OpenGL ES pour le graphisme en
trois dimensions :

l’existence des deux versions 1.1 et 2.0 ;

le paramétrage du contexte graphique ;

les zones tampons et le cadre tampon.

Nous avons agrémenté nos applications avec des effets sonores à
l’aide de la classe AVAudioPlayer et vu comment les animer avec la
méthode −performSelector:withObject:afterDelay: ou la classe
CADisplayLink.

Nous avons également exposé la classe UIDevice qui permet de
connaître les caractéristiques de l’appareil courant.

2998.4. Checklist

C
H

A
P

IT
R

E
9

TAPES, TOUCHES
ET GESTES

Comprendre les événements ... 303
Traiter les événements .. 307
Mettre en œuvre les gestes .. 313
Checklist .. 320

301

Nous avons découvert le mécanisme cible-action au chapitre 2. Il
nous a permis de réaliser des applications qui réagissent aux actions
de l’utilisateur :

j édition d’un champ de texte ;

j appui sur un bouton ;
j changement de valeur d’un sélectionneur.

L’iPhone OS nous permet aussi de proposer à l’utilisateur une inter-
face élaborée avec des gestes complexes, à un ou plusieurs doigts.
Leur mise en œuvre dans une application nécessite d’avancer dans
notre compréhension des événements (events) gérés par Cocoa
Touch.

Nous commencerons par explorer les classes et techniques de base
mises en jeu puis développerons quelques applications mettant en
œuvre les gestes courants sur iPhone OS.

Gestes sous iPhone OS 3.2
La version 3.2 d’iPhone OS, disponible sur iPad, permet une mise en

œuvre simplifiée des gestes standard (pincement, déplacement, glissement,
etc.) par le mécanisme cible-action. Cette mise en œuvre sera détaillée dans
le chapitre consacré aux spécificités de l’iPad.

Ce chapitre concerne donc principalement le développement sur iPhone et
iPod Touch. Il est destiné également à ceux qui souhaitent développer leur
propre analyseur de geste pour iPad.

9.1. Comprendre les événements

Classe UIResponder
Le mécanisme cible-action est mis en œuvre par les objets
de la classe UIControl qui dérive indirectement de la classe
UIResponder avec laquelle nous avons fait connaissance au chapitre 4.
(voir Figure 9.1)

Lorsqu’un événement survient, l’application – plus précisément l’ins-
tance unique de la classe UIApplication – recherche le répondeur
(une instance de la classe UIResponder) approprié et lui transmet
l’événement :

j Si l’événement est une action sur l’écran, le répondeur est la vue
située sous le doigt de l’utilisateur.

3039.1. Comprendre les événements

j Dans le cas contraire, l’événement est transmis au premier répon-
deur (First responder) puis remonte la chaîne des répondeurs
jusqu’à ce que l’un d’eux accepte de le traiter.

Si le répondeur est un contrôle (une instance de la classe UIControl),
l’événement est susceptible d’être utilisé pour déclencher le méca-
nisme cible-action. Nous allons nous intéresser ici à la façon dont les
événements sont reçus par un répondeur pour définir nos propres
comportements dans des vues ou des contrôleurs spécifiques.

Événements élémentaires
Les événements reçus par un répondeur peuvent être de deux sortes
représentées par le type énuméré UIEventType :

j UIEventTypeTouches pour les touches sur l’écran ;

j UIEventTypeMotion pour les mouvements de l’appareil.

Le type énuméré UIEventSubtype est également défini. Dans la version
actuelle, les sous-types concernent uniquement les mouvements de
l’appareil :

j UIEventSubtypeNone, pas de sous-type particulier ;

j UIEventSubtypeMotionShake, mouvement de secousse de l’appareil
(shake).

Les événements concernant les touches sont plus complexes ; cha-
que touche élémentaire peut être :

j la pose du doigt sur l’écran ;

Figure 9.1 : Classes gestionnaires des événements

304 9. Tapes, touches et gestes

j le déplacement du doigt sur l’écran ;
j le retrait du doigt de l’écran.

Touche
Une touche est un événement élémentaire concernant seulement un

doigt : pose du doigt sur l’écran, déplacement du doigt sur l’écran ou retrait
du doigt de l’écran.

En outre, pour décrire la touche élémentaire, il faut également préciser :

j La position de la touche. Cocoa Touch fournit un point dans les
coordonnées de la vue concernée, bien que la taille d’un doigt
normal recouvre plusieurs points lorsqu’il touche l’écran.

j Le moment précis auquel l’événement est intervenu. Il est donné par
le nombre de secondes écoulées depuis le démarrage de l’appareil.

Un petit point pour un gros doigt
La zone touchée par un doigt sur l’écran est généralement de forme

ellipsoïdale, de taille variable en fonction du doigt et de la pression exercée.
Le système Multi-Touch analyse cette information pour calculer un point
unique associé à la touche.

Toutes ces informations sont présentées dans une instance de la
classe UITouch décrite dans le tableau ci-après.

Tableau 9.1 : Méthodes et propriétés de la classe UITouch
Thème Signature Objet
Emplacement
des touches

− (CGPoint)location
InView:(UIView *)view

Retourne l’emplacement de la touche dans
le système de coordonnées de la vue pas-
sée en paramètre, ou dans le système de
coordonnées de la fenêtre si nil est
passé en paramètre.

− (CGPoint)previous
LocationInView:
(UIView *)view

Retourne l’emplacement précédent de la
touche dans le système de coordonnées de
la vue passée en paramètre, ou dans le
système de coordonnées de la fenêtre si
nil est passé en paramètre.

@property(nonatomic,
readonly, retain)
UIView *view

La vue dans laquelle la touche a débuté.

@property(nonatomic,
readonly, retain)
UIWindow *window

La fenêtre dans laquelle la touche a dé-
buté.

3059.1. Comprendre les événements

Tableau 9.1 : Méthodes et propriétés de la classe UITouch
Thème Signature Objet
Attributs
de la touche

@property(nonatomic,
readonly) NSUInteger
tapCount

Le nombre de tapes effectuées par l’utilisa-
teur.

@property(nonatomic,
readonly) NSTime
Interval timestamp

L’horodate de la dernière modification de la
touche.

@property(nonatomic,
readonly) UITouch
Phase phase

La phase dans laquelle se trouve la tou-
che :
UITouchPhaseBegan lorsque le doigt
vient de toucher l’écran ;
UITouchPhaseMoved lorsque le doigt
vient de se déplacer ;
UITouchPhaseStationary lorsque le
doigt n’a pas bougé depuis le dernier
événement ;
UITouchPhaseEnded lorsque le doigt
vient de se retirer de l’écran ;
UITouchPhaseCancelled si l’événe-
ment a été interrompu.

Remarquez la propriété phase qui permet de déterminer la touche
élémentaire représentée : pose, déplacement ou retrait du doigt.
Cette propriété peut également indiquer :

j si le doigt est immobile sur l’écran ;

j si l’événement a été interrompu (cancelled) ; c’est le cas par exemple
si l’iPhone reçoit un appel pendant l’utilisation d’une application.

Écran Multi-Touch
La technologie Multi-Touch permet au système de suivre les mouve-
ments simultanés de plusieurs doigts sur l’écran. Chaque mouve-
ment est décomposé en une série de touches élémentaires. Les
touches élémentaires simultanées sont regroupées au sein d’un
même événement, une instance de la classe UIEvent.

Il appartient au répondeur d’interpréter ces suites d’événements
pour déterminer les gestes effectués par l’utilisateur. Par exemple, un
pincement (pinch) est décomposé de la façon suivante :
j Deux doigts sont posés simultanément sur l’écran.

j La distance entre les deux doigts diminue.
j Les deux doigts sont retirés de l’écran.

Chacun de ces trois événements est composé de deux touches
élémentaires : deux posés, deux déplacements et deux retraits.

306 9. Tapes, touches et gestes

Les classes dérivées de UIView ou de UIControl doivent implémenter
le code nécessaire pour interpréter les gestes qui leur sont propres :
glissement (swipe), pichenette (flick), pincement (pinch), etc. Nous
allons examiner les méthodes à utiliser pour implémenter vos pro-
pres gestes dans vos classes dérivées.

9.2. Traiter les événements

Recevoir les événements

Classe UIEvent

Une instance de la classe UIEvent représente un événement ; c’est
sous cette forme qu’il est transmis au répondeur. Elle peut contenir
une ou plusieurs touches, sous la forme d’instances de UITouch, ou
représenter une secousse de l’appareil. Les méthodes et propriétés
de la classe UIEvent sont décrites dans le tableau ci-après.

Tableau 9.2 : Méthodes et propriétés de la classe UIEvent
Thème Signature Objet
Obtenir les touches − (NSSet *)allTouches Retourne toutes les touches de l’événe-

ment.
− (NSSet *)touches
ForView:(UIView
*)view

Retourne les touches appartenant à
une vue.

− (NSSet *)touches
ForWindow:(UIWindow
*)window

Retourne les touches appartenant à
une fenêtre.

Obtenir les attributs
de l’événement

property(nonatomic,
readonly) NSTime
Interval timestamp

L’horodate de l’événement en secon-
des depuis le démarrage du système.

Type d’événement @property(readonly)
UIEventType type

Le type est soit
UIEventTypeTouches pour un
ensemble de touches, soit
UIEventTypeMotion pour un mou-
vement de l’appareil.

@property(readonly)
UIEventSubtype
subtype

Le sous-type est
UIEventSubtypeNone si l’événe-
ment n’a pas de sous-type particulier
ou
UIEventSubtypeMotionShake
pour une secousse de l’appareil.

Les touches de l’événement sont retournées dans une instance de la
classe NSSet. Il s’agit d’un conteneur, au même titre que NSArray et

3079.2. Traiter les événements

NSDictionary que nous connaissons déjà, qui représente un ensem-
ble. Les éléments d’un ensemble ne sont pas rangés de façon parti-
culière et son contenu est exploré avec l’instruction for :
NSSet * aSet = [NSSet setWithObjects:@"Jean",@"Marc",

@"Paul",nil];
for (NSString * name in aSet) {

// name contiendra successivement Jean, Marc et Paul
}

Deux autres méthodes de la classe NSSet sont utiles pour traiter les
événements :

j −(id)anyObject qui retourne un élément quelconque du conteneur ;

j −(NSArray*)allObjects qui retourne un tableau contenant tous les
objets du conteneur.

Conditions de réception

Événements de touches

Pour des raisons de performance, les événements de touches ne
sont transmis par l’application qu’aux vues qui satisfont certains
critères :

j La vue doit être affichée à l’écran.

Figure 9.2 : Cases à cocher pour recevoir les
événements de touches

308 9. Tapes, touches et gestes

j La vue doit contenir le point touché par l’utilisateur, sauf si sa
propriété exclusiveTouch vaut YES, auquel cas la vue recevra tous
les événements de la fenêtre.

j La propriété userInteractionEnabled de la vue doit valoir YES ou la
case User Interaction Enabled doit être cochée dans l’inspecteur
des attributs de la vue sous Interface Builder.

j Une vue ne peut recevoir qu’une touche à la fois, sauf si sa
propriété multipleTouchEnabled vaut YES ou si la case Multiple Touch
est cochée.

Événements de mouvements

Les événements de mouvements sont transmis par l’application au
premier répondeur (First Responder).

Un répondeur devient le premier répondeur lorsque :

j Il reçoit le message –becomeFirstResponder.

j Uniquement si sa méthode −canBecomeFirstResponder retourne YES.

Par défaut, la méthode −canBecomeFirstResponder retourne NO. Il faut
donc redéfinir cette méthode si l’on veut que nos propres classes
dérivées de UIResponder puissent devenir des premiers répondeurs :
- (BOOL)canBecomeFirstResponder{

return YES;
}

Pour qu’une vue puisse devenir premier répondeur, il faut également
qu’elle soit affichée à l’écran. De la même façon, pour qu’un contrô-
leur de vue puisse devenir premier répondeur, sa vue doit être
affichée à l’écran. Il ne faut donc pas appeler la méthode
−becomeFirstResponder tant que cette condition n’est pas remplie ; la
méthode −viewDidAppear de UIViewController constitue une bonne
opportunité pour définir le premier répondeur :
- (void)viewDidAppear:(BOOL)animated {

[self becomeFirstResponder];
}

À signaler aussi la possibilité de bloquer temporairement le traite-
ment des événements par l’application :
UIApplication * appli = [UIApplication sharedApplication];
[appli beginIgnoringInteractionEvents];
// plus aucun événement n’est traité par l’application
[appli endIgnoringInteractionEvents];
// les événements sont de nouveau traités par l’application

3099.2. Traiter les événements

Notification d’événements

Nous avons compris ce qu’est un événement, une touche, et quelles
sont les conditions pour que les événements arrivent au répondeur.
Intéressons-nous maintenant à la façon dont un répondeur reçoit les
événements et à la façon dont il doit les traiter.

Mouvements

La secousse de l’appareil est le seul mouvement qui provoque un
événement dans la version actuelle d’iPhone OS.

Secouer le Simulateur
Vous pouvez simuler une secousse sur le Simulateur d’iPhone avec la

commande Secousse du menu Matériel ([Ctrl]+X+[Z])

Lorsqu’un tel événement se produit, le premier répondeur reçoit les
messages suivants :

j −(void)motionBegan:(UIEventSubtype)motion withEvent:(UIEvent *)event
lorsqu’un mouvement débute ;

j −(void)motionEnded:(UIEventSubtype)motion withEvent:(UIEvent *)event
lorsque le mouvement se termine ;

j −(void)motionCancelled:(UIEventSubtype)motion withEvent:(UIEvent *)
event lorsque le mouvement est interrompu.

En pratique, les paramètres motion et event ne sont pas utilisés,
puisqu’un seul type d’événement peut survenir, et le code qui permet
à l’application de réagir à l’action de l’utilisateur est placé dans la
méthode −motionEnded:withEvent: :
- (void)motionBegan:(UIEventSubtype)motion

withEvent:(UIEvent *)event {
}
- (void)motionEnded:(UIEventSubtype)motion

withEvent:(UIEvent *)event {
// Insérer ici le code pour traiter l’événement

}
- (void)motionCancelled:(UIEventSubtype)motion

withEvent:(UIEvent *)event {
}

310 9. Tapes, touches et gestes

Définir toutes les méthodes
Si votre répondeur dérive de UIView ou UIViewController, ce qui est le

cas le plus courant, les trois méthodes précédemment décrites doivent être
redéfinies même si certaines d’entre elles ne contiennent pas de code.

Challenge

Complétez l’application Billard du chapitre précédent : la vitesse de la
boule doit être réinitialisée lorsque l’utilisateur secoue l’appareil.

Indications :

j Implémentez les méthodes de traitement des événements dans le
contrôleur de vue BillardViewController.

j N’oubliez pas de définir ce contrôleur de vue comme premier
répondeur.

Touches

Les événements de touches élémentaires sont transmis aux répon-
deurs par les messages suivants :

j −(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
pour les touches qui débutent (qui correspondent à une pose de
doigt) ;

j −(void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
pour les touches qui correspondent à un déplacement ;

j −(void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event
pour les touches qui se terminent (retrait du doigt) ;

j −(void)touchesCancelled:(NSSet*)toucheswithEvent:(UIEvent*)event
pour les touches interrompues.

Le paramètre touches de chacune de ces méthodes contient les
touches élémentaires, instances de la classe UITouch, qui sont
respectivement dans les états UITouchPhaseBegan, UITouchPhaseMoved,
UITouchPhaseEnded et UITouchPhaseCancelled. Le paramètre event re-
groupe toutes les touches élémentaires de l’événement, quel que
soit leur état.

Nous mettrons en œuvre ces méthodes dans la section suivante.

Libérer les ressources
Les ressources éventuellement allouées pour gérer un geste doivent être

libérées lorsque le geste se termine, c’est-à-dire dans la méthode

3119.2. Traiter les événements

−touchesEnded:withEvent: s’il s’agit de l’événement qui clôt le geste,
et dans la méthode −touchesCancelled:withEvent: lorsque le geste est

interompu.

Définir toutes les méthodes
Comme dans le cas des événements de mouvement, si votre répondeur

dérive de UIView ou UIViewController, les quatre méthodes précédemment
décrites doivent être redéfinies même si certaines d’entre elles ne contien-
nent pas de code.

Tapes multiples
La classe UITouch définit une propriété tapCount ; un entier contenant
le nombre de tapes effectuées au même endroit. Pour savoir si une
touche est une tape multiple, il suffit de tester cette propriété dans la
méthode −touchesEnded:withEvent:.

Il y a un petit détail auquel il faut faire attention si nous souhaitons
obtenir un comportement différent pour chaque tape. Notre répon-
deur va recevoir une première série d’événements à la première
tape, une autre série à la deuxième, etc. Lorsque la première tape est
reçue, nous devons attendre une fraction de secondes avant de
déclencher l’action attendue afin de déterminer s’il s’agit d’une tape
simple, double, etc.

Le plus simple pour arriver à ce résultat est de lancer l’action déclen-
chée par une tape simple avec la méthode −performSelector:
withObject:afterDelay: :
- (void)touchesEnded:(NSSet *)touches

withEvent:(UIEvent *)event {
UITouch *theTouch = [touches anyObject];
if (theTouch.tapCount == 1) {
[self performSelector:@selector(handleSingleTap)

withObject:nil
afterDelay:0.3];

} else if (theTouch.tapCount == 2) {
// Instructions pour traiter une tape double

}
}
- (void) handleSingleTap {

// Instructions pour traiter une tape unique
}

312 9. Tapes, touches et gestes

Ceci nous laissera l’opportunité d’annuler cette action s’il s’avère
que la première tape était le début d’une tape double :
- (void)touchesBegan:(NSSet *)touches

withEvent:(UIEvent *)event {
UITouch *aTouch = [touches anyObject];
if (aTouch.tapCount == 2) {

[NSObject
cancelPreviousPerformRequestsWithTarget:self];

}
}

On peut utiliser le même mécanisme pour discriminer les tapes
triples, quadruples, etc. La multiplicité des tapes n’est pas limitée par
Cocoa Touch.

9.3. Mettre en œuvre les gestes
Il est temps de mettre en œuvre les éléments que nous venons de
voir en réalisant des vues qui réagissent aux gestes de l’utilisateur.

Nous allons enrichir notre application Billard en donnant la possibi-
lité à l’utilisateur de propulser la boule par une chiquenaude. Nous
illustrerons ensuite les touches multiples par la mise en œuvre du
pincement.

Chiquenaude

Comportement souhaité

Physique de la chiquenaude

La chiquenaude est un déplacement d’un doigt sur l’écran qui doit :

j être rapide ; s’il est trop lent, il ne doit pas être pris en compte ;

j percuter la boule ; le mouvement doit passer à proximité du centre
de la boule, il faut prendre en compte l’imprécision due à la taille
du doigt.

Nous allons émettre des hypothèses simplificatrices quant à l’effet
de la chiquenaude sur la boule :

j La boule est propulsée à la vitesse de la chiquenaude ; la vitesse
de déplacement du doigt sur l’écran.

j La boule est propulsée dans la direction de la chiquenaude ; il n’y
a pas d’effet de rotation de la boule due à une percussion qui ne
serait pas radiale.

3139.3. Mettre en œuvre les gestes

Mathématique de la chiquenaude

Une chiquenaude se traduira par une série d’événements de dépla-
cement d’une touche élémentaire. Chaque déplacement peut être
considéré séparément, nous n’avons besoin de conserver que l’ho-
rodate (timestamp) de la dernière touche élémentaire pour calculer la
vitesse de déplacement lors de l’événement suivant.

Nous utiliserons les méthodes −previousLocationInView: et −location
InView: de UITouch pour déterminer les caractéristiques de la chique-
naude :

j Le déplacement rencontre-t-il la boule ?

j Quel est le vecteur vitesse à donner à la boule ?

Répondre à la première question requiert un niveau de mathémati-
que élémentaire. Si ce n’est pas votre cas, nous vous demandons de
nous faire confiance. Si le dernier déplacement élémentaire va du
point 1 au point 2, nous considérons les deux vecteurs :

j celui qui va du point 1 au point 2 ;

j celui qui va du point 1 à la position de la boule.

On considérera que la boule est percutée si :

j le premier vecteur est plus long que le second, au diamètre de la
boule près ;

j l’angle entre les deux vecteurs est suffisamment petit. Cet angle
sera indirectement évalué à l’aide du déterminant des deux vec-
teurs.

Figure 9.3 : Le déplacement rencontre-t-il la boule ?

314 9. Tapes, touches et gestes

Classe SnookerView

Le travail de cette classe est de détecter la chiquenaude et d’en
transmettre les paramètres au contrôleur de vue :

j un rectangle défini par les deux points du déplacement ;

j la durée du déplacement du doigt entre ces deux points.

Pour transmettre ces informations, nous allons définir un protocole
de délégué spécifique auquel le contrôleur de vue devra se confor-
mer.

1 Ouvrez le projet Billard sous XCode et modifiez le fichier Snooker-
View.h, nous en profitons pour définir une variable d’instance
lastTime qui nous servira à calculer la durée du déplacement :

@protocol SnookerViewDelegate;
@interface SnookerView : UIView {

BOOL drawing;
CGPoint precedingLastPoint;
CGPoint lastPoint;
NSTimeInterval lastTime;
IBOutlet id <SnookerViewDelegate> delegate;

}
@property(nonatomic,getter=isDrawing) BOOL drawing;
@property(nonatomic) CGPoint lastPoint;
@property(nonatomic,assign)

id <SnookerViewDelegate> delegate;
@end

@protocol SnookerViewDelegate <NSObject>
@optional
- (void)swipeMove:(CGRect)move

withDuration:(NSTimeInterval)swipeDuration;
@end

2 Modifiez le début du fichier SnookerView.m pour synthétiser les
accesseurs de la propriété delegate et la vitesse minimale d’une
chiquenaude :

const float minSpeed = 300.;
@implementation SnookerView
@synthesize drawing,lastPoint,delegate;

3 Ajoutez les méthodes permettant de traiter les événements de
touches :

- (void)touchesBegan:(NSSet*)touches
withEvent:(UIEvent*)event{

lastTime = [[touches anyObject] timestamp];
}
- (void)touchesMoved:(NSSet*)touches

3159.3. Mettre en œuvre les gestes

withEvent:(UIEvent*)event{
UITouch * touch = [touches anyObject];
NSTimeInterval currentTime = [touch timestamp];
NSTimeInterval swipeDuration = currentTime-lastTime;
lastTime = currentTime;
CGPoint point1 = [touch previousLocationInView:self];
CGPoint point2 = [touch locationInView:self];
CGRect move = CGRectMake(point1.x, point1.y,

point2.x-point1.x, point2.y-point1.y);
CGFloat speed = sqrt(move.size.width*move.size.width +

move.size.height*move.size.height)/swipeDuration;
if (speed > minSpeed) {

if ([self.delegate respondsToSelector:
@selector(swipeMove:withDuration:)]) {

[self.delegate swipeMove:move
withDuration:swipeDuration];

}
}

}
- (void)touchesEnded:(NSSet*)touches

withEvent:(UIEvent*)event{
}
- (void)touchesCancelled:(NSSet*)touches

withEvent:(UIEvent*)event{
}

Classe BillardViewController

Le travail du contrôleur est de vérifier si la chiquenaude doit avoir un
effet sur la boule, et le cas échéant de réaliser cet effet. Tout cela sera
effectué dans la méthode −swipeMove:withDuration: définie dans le
protocole SnookerViewDelegate.

1 Ajoutez cette méthode dans le fichier BillardViewController.m :

- (void)swipeMove:(CGRect)move
withDuration:(NSTimeInterval)swipeDuration {

// Détermination de la proximité de la boule
// longueur de la chiquenaude

CGFloat moveLength =
sqrt(move.size.width*move.size.width+

move.size.height*move.size.height);
// Vecteur Origine-Boule et longueur

CGSize ballVector =
CGSizeMake(ball.center.x-move.origin.x,

ball.center.y-move.origin.y);
CGFloat ballLength =

sqrt(ballVector.width*ballVector.width+
ballVector.height*ballVector.height);

// calcul du déterminant
CGFloat det = (move.size.width*ballVector.height-

move.size.height*ballVector.width)/(moveLength*ballLength);
// Modification de la vitesse de la boule

316 9. Tapes, touches et gestes

if ((ballLength<moveLength+distancePrecision)&&
(fabs(det)<anglePrecision)){

moveX = move.size.width*timerInterval/swipeDuration;
moveY = move.size.height*timerInterval/swipeDuration;

// effacement de la table
[(SnookerView*)self.view setDrawing:NO];
[self.view setNeedsDisplay];
// premier déplacement

[(SnookerView*)self.view setLastPoint: ball.center];
[(SnookerView*)self.view setDrawing:YES];
[self moveBall];

}
}

2 Déclarez les constantes nécessaires en tête du fichier :

const float distancePrecision = 15.;
const float anglePrecision = 0.1;

3 N’oubliez pas de déclarer que la classe BillardViewController
adopte le protocole SnookerViewDelegate dans son fichier d’inter-
face puis ouvrez le fichier BillardViewController.xib sous Interface
Builder pour attacher le délégué de la vue SnookerView au proprié-
taire du fichier.

4 Cochez la case Clear Context Before Drawing dans l’inspecteur des
attributs pour la vue SnookerView dans le fichier NIB.

Vous pouvez construire l’application et la tester.

Challenge

Vous aurez certainement remarqué que l’on peut devenir très violent
avec la boule, et lui donner une vitesse faramineuse au point qu’elle
peut sortir de l’écran. Limitez la vitesse de la boule ou améliorez le
code pour que la boule ne sorte jamais de l’écran.

Pincement
Le deuxième exemple de geste que nous allons développer est le
pincement tel qu’il est utilisé dans Safari pour iPhone et qui a parti-
cipé à la popularité de l’iPhone.

Un pincement est un geste dans lequel deux doigts sont posés sur
l’écran et s’écartent ou se rapprochent. Nous allons créer une vue qui
détecte ce geste en vérifiant, lors d’un déplacement d’une touche
élémentaire, que deux touches sont en cours d’utilisation.

3179.3. Mettre en œuvre les gestes

Si c’est le cas, le ratio (distance actuelle entre les deux touches)/
(distance précédente entre les deux touches) sera transmis au délégué
de la vue.

Classe PinchView

1 Créez un nouveau projet sous XCode de type View Based Applica-

tion. Intitulez-le Pinch. Créez une nouvelle classe PinchView qui
dérive de UIView. Ajoutez la définition du protocole de délégué de
cette classe dans son fichier d’interface :

#import <UIKit/UIKit.h>
@protocol PinchViewDelegate;

@interface PinchView : UIView {
id <PinchViewDelegate> delegate;

}
@property(nonatomic,retain) id delegate;
@end

@protocol PinchViewDelegate
@required
- (void) pinchPerformed:(float) ratio;
@end

2 Ajoutez les méthodes de traitement des événements de touche
dans le fichier PinchView.m :

- (void)touchesBegan:(NSSet *)touches
withEvent:(UIEvent *)event {

}
- (void)touchesMoved:(NSSet *)touches

withEvent:(UIEvent *)event {
if ([[event touchesForView:self] count]==2) {

// 2 doigts sont posés sur l’écran
NSArray *t=[[event touchesForView:self] allObjects];
// t1 et t2 sont les deux touches sur l’écran
UITouch *t1 = [t objectAtIndex:0];
UITouch *t2 = [t objectAtIndex:1];
// calcul de la distance précédente
CGPoint p1 = [t1 previousLocationInView:self];
CGPoint p2 = [t2 previousLocationInView:self];
CGFloat previousDistance =

sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
// calcul de la distance actuelle
p1 = [t1 locationInView:self];
p2 = [t2 locationInView:self];
CGFloat currentDistance =

sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));
// transmission du ratio au délégué
[delegate pinchPerformed:

currentDistance/previousDistance];

318 9. Tapes, touches et gestes

}
}
- (void)touchesEnded:(NSSet *)touches

withEvent:(UIEvent *)event {
}
- (void)touchesCancelled:(NSSet *)touches

withEvent:(UIEvent *)event {
}

On dénombre toutes les touches présentes sur l’écran
([event touchesForView:self]) et pas seulement celles qui viennent de
se déplacer (touches).

Classe PinchViewController

1 Modifiez l’interface du contrôleur de vue pour qu’il adopte le
protocole de délégué de PinchView. Nous y ajoutons un champ de
texte qui nous permettra de visualiser l’effet des pincements :

#import <UIKit/UIKit.h>
#import "PinchView.h"
@interface PinchViewController : UIViewController

<PinchViewDelegate>{
IBOutlet UILabel *label;

}
@property(nonatomic,retain) UILabel *label;
@end

2 Dans le fichier PinchViewController.m, synthétisez les accesseurs
pour la propriété label et ajoutez la méthode −pinchPerformed: :

- (void)pinchPerformed:(float)ratio{
float previousValue = [label.text floatValue];
label.text = [NSString stringWithFormat:@"%f",

previousValue*ratio];
}

Finaliser l’application

Pour finaliser l’application :

1 Ouvrez le fichier PinchViewController.xib sous Interface Builder.

2 Définissez la classe de la vue principale ; PinchView.

3 Autorisez les touches multiples dans la vue principale.

4 Définissez le propriétaire du fichier NIB comme délégué de la vue
principale.

5 Ajoutez un label sur la vue principale. Initialisez-le à 100.

6 Liez ce label à l’outlet label du propriétaire du fichier.

Vous pouvez maintenant construire et tester l’application.

3199.3. Mettre en œuvre les gestes

Pincement sur le simulateur
Le pincement est le seul geste à plusieurs doigts réalisable sur le simula-

teur d’iPhone. Pressez la touche z sur le clavier en manipulant la souris.

9.4. Checklist
Ce chapitre nous a permis de connaître les différents types d’événe-
ments élémentaires de Cocoa Touch :

j secousse de l’appareil ;

j touches élémentaires et leurs différents stades permettant d’inter-
préter les gestes effectués par l’utilisateur :

Un doigt se pose sur l’écran.

Un doigt se déplace.

Un doigt est retiré de l’écran.

Nous avons ensuite compris comment sont représentés ces événe-
ments par des instances des classes UIEvent et UITouch, puis com-
ment ils sont reçus et traités par les répondeurs de la classe
UIResponder.

Ces principes ont été illustrés par l’implémentation de deux gestes
courant, la chiquenaude et le pincement.

320 9. Tapes, touches et gestes

C
H

A
P

IT
R

E
10

APPAREIL PHOTO

Sélectionner une photo .. 323
Prendre des photos .. 331
Enregistrer ses photos .. 332
Éditer les photos .. 336
Envoyer ses photos .. 336
Checklist .. 339

321

Nous allons améliorer notre application Emprunts2 qui deviendra
Emprunts3. Notre objectif maintenant est de conserver une preuve
du prêt ; nous allons créer une fonctionnalité permettant d’ajouter
une photo à chaque enregistrement.

Certains exemples fournis dans ce chapitre fonctionnent unique-
ment sur iPhone. Il n’y a actuellement pas d’appareil photo sur iPod
Touch ni sur iPad.

10.1. Sélectionner une photo
Nous allons commencer par découvrir la classe UIImagePicker
Controller et son utilisation dans notre application Emprunts pour
sélectionner une photo parmi les albums de l’application Photos.

Codage de l’interface
Sous XCode, créez un projet Emprunts3 à partir du projet Emprunts2.

Interface de la classe

1 Sous XCode modifiez le fichier LendObjectViewController.h pour y
ajouter :

Figure 10.1 : Interface pour choisir une photo

32310.1. Sélectionner une photo

un outlet imageView de classe UIImageView afin de visualiser une
miniature de la photo choisie ;

une variable d’instance picture de classe UIImage qui contiendra
la photo choisie ;

un outlet pictureButton de classe UIButton pour régler le com-
portement du bouton ;

une action −takePicture qui sera activée lorsque l’utilisateur
souhaitera choisir une image :

@interface LendObjectViewController : UIViewController
<UINavigationControllerDelegate,
UIImagePickerControllerDelegate>{

NSManagedObject * lendObject;
IBOutlet UITextField * objectNameField;
IBOutlet UITextField * borrowerNameField;
IBOutlet UIImageView * imageView;
IBOutlet UIButton * pictureButton;
IBOutlet UIDatePicker * datePicker;
UIImage * picture;

}
@property(nonatomic,retain) NSManagedObject * lendObject;
@property(nonatomic,retain) UITextField * objectNameField;
@property(nonatomic,retain) UITextField * borrowerNameField;
@property(nonatomic,retain) UIImageView * imageView;
@property(nonatomic,retain) UIButton * pictureButton;
@property(nonatomic,retain) UIDatePicker * datePicker;
@property(nonatomic,retain) UIImage * picture;
- (IBAction) doneEditing:(id)sender;
- (IBAction) deleteObject;
- (IBAction) takePicture;
@end

Nous déclarons aussi que notre classe LendObjectViewController
adopte les protocoles UINavigationControllerDelegate et UIImage
PickerControllerDelegate.

2 Enregistrez le fichier LendObjectViewController.h.

Interface utilisateur

1 Ouvrez le fichier LendObjectViewController.xib sous Interface Buil-
der pour y ajouter une vue image et un bouton.

2 Liez la vue image à l’outlet imageView, le bouton à l’outlet
pictureButton et l’événement Touch Up Inside du bouton à l’action
takePicture du propriétaire du fichier.

324 10. Appareil photo

Codage du contrôleur de vue
Le contrôleur de vue LendObjectViewController doit réaliser plusieurs
tâches :

j vérifier que des albums photos sont disponibles sur l’appareil ;

j lancer le sélectionneur de photo lorsque l’utilisateur a touché le
bouton adéquat ;

j prendre en compte la photo choisie ;
j afficher une miniature de la photo choisie.

Vérifier que les albums photos sont disponibles

Sous XCode, ouvrez le fichier LendObjectViewController.m et modifiez
la méthode −viewDidLoad :
- (void)viewDidLoad {

[super viewDidLoad];
UIBarButtonItem *cancelButton = [[UIBarButtonItem alloc]

initWithTitle:@"Delete"
style:UIBarButtonItemStyleDone

target:self
action:@selector(deleteObject)];

self.navigationItem.rightBarButtonItem = cancelButton;
[cancelButton release];
if ([UIImagePickerController isSourceTypeAvailable:

UIImagePickerControllerSourceTypePhotoLibrary]){
[pictureButton setTitle:@"Choisir une photo"

forState:UIControlStateNormal];
} else {

pictureButton.enabled = NO;
}

}

Le chargement de la vue est le bon endroit pour définir le titre du
bouton ou le désactiver si l’album photo n’est pas disponible sur
l’appareil.

Nous utilisons la classe UIImagePickerController qui permet de gérer
toutes les sources de photos de l’appareil. Sa méthode
+isSourceTypeAvailable: renvoie YES si la source dont l’identifiant est
passé en paramètre est disponible sur l’appareil. Les types de source
existants sont :

j UIImagePickerControllerSourceTypePhotoLibrary pour accéder aux
albums de la bibliothèque de l’application Photos ;

j UIImagePickerControllerSourceTypeCamera pour accéder à la caméra
vidéo ou à l’appareil photo ;

32510.1. Sélectionner une photo

j UIImagePickerControllerSourceTypeSavedPhotosAlbum pour accéder
aux vidéos ou photos enregistrées depuis la caméra ou l’appareil
photo, ou par défaut aux albums de la bibliothèque de l’applica-
tion Photos.

Lancer le sélectionneur de photos

Ajoutez le code de l’action −takePicture :
- (void) takePicture {

UIImagePickerController *picker =
[[UIImagePickerController alloc] init];

picker.sourceType =
UIImagePickerControllerSourceTypePhotoLibrary;

picker.delegate = self;
[self presentModalViewController:picker animated:YES];
[picker release];

}

Nous créons un contrôleur spécifique pour la sélection d’une photo,
une instance de la classe UIImagePickerController puis nous lui indi-
quons que nous souhaitons explorer les albums photo. Enfin, nous
activons le contrôleur.

Prendre en compte le choix d’image

Nous allons maintenant coder les deux méthodes du protocole
UIImagePickerControllerDelegate, l’une qui est appelée lorsque l’utili-
sateur a sélectionné une image, et l’autre lorsqu’il annule l’opéra-
tion :
- (void)imagePickerController:(UIImagePickerController *)
picker didFinishPickingMediaWithInfo:(NSDictionary *)info{

self.picture = [info
objectForKey:UIImagePickerControllerOriginalImage];

[self dismissModalViewControllerAnimated:YES];
}
- (void)imagePickerControllerDidCancel:

(UIImagePickerController *)picker {
[self dismissModalViewControllerAnimated:YES];

}

Le paramètre info de la méthode −imagePickerController:didFinish
PickingMediaWithInfo: est un dictionnaire qui contient les informa-
tions relatives au média sélectionné (photo ou vidéo). La clé
UIImagePickerControllerOriginalImage permet de récupérer la photo
sélectionnée.

Comme pour les vues modales standard, il est de la responsabilité
du délégué de désactiver la vue modale en appelant la méthode
−dismissModalViewControllerAnimated:.

326 10. Appareil photo

Afficher la photo

Pour afficher la photo sélectionnée, il suffit de compléter la méthode
−viewWillAppear: qui est appelée juste avant que la vue soit affichée :
- (void)viewWillAppear:(BOOL)animated{

if ([self.lendObject valueForKey: @"lendDate"]) {
self.objectNameField.text =

[self.lendObject valueForKey: @"objectName"] ;
self.borrowerNameField.text =

[self.lendObject valueForKey: @"borrowerName"] ;
self.datePicker.date =

[self.lendObject valueForKey: @"lendDate"] ;
}
self.imageView.image = self.picture;
[super viewWillAppear:animated];

}

Finaliser l’application

1 Synthétisez les accesseurs pour les trois propriétés que nous
venons de déclarer : imageView, pictureButton et picture :
@synthesize imageView, pictureButton, picture;

2 Libérez les propriétés retenues :

- (void)viewDidUnload {
self.objectNameField = nil;
self.borrowerNameField = nil;
self.datePicker = nil;
self.imageView = nil;
self.pictureButton = nil;

}
- (void)dealloc {

[self viewDidUnload];
self.lendObject = nil;
self.picture = nil;
[super dealloc];

}

Libération des propriétés
Nous libérons les propriétés. Celles qui sont définies dans le fichier NIB,

les outlets, et celles qui sont allouées dans la méthode −viewDidLoad doivent
être libérées dans la méthode −viewDidUnload. Les autres sont libérées dans
la méthode −dealloc.

Le sélectionneur d’image étant susceptible d’utiliser beaucoup de
ressources, il n’est pas impossible que la méthode −viewDidUnload
soit appelée sur l’instance de LendObjectViewController pendant que

32710.1. Sélectionner une photo

l’utilisateur choisit une photo. Il est donc important de libérer tous les
outlets car ils seront tous recréés lorsque ce contrôleur reprendra la
main sur l’interface utilisateur. Il est important aussi de ne pas libérer
les références vers le modèle, en l’occurrence les propriétés
lendObject et picture, car le contrôleur ne saura pas les recréer seul.

3 Construisez l’application et testez-la. À ce stade, le test peut être
effectué sur le simulateur.

C’est bien de pouvoir choisir une photo. Ce serait encore mieux si ce
choix pouvait être conservé avec la liste des objets prêtés. Avant de
nous occuper de cela, nous allons faire plus ample connaissance
avec la classe UIImagePickerController et son protocole de délégué.

Classe UIImagePickerController
Le tableau résume les méthodes et propriétés de la classe
UIImagePickerController.

Tableau 10.1 : Méthodes et propriétés de la classe UIImagePickerController

Thème Signature Objet

Sources des images + (NSArray *) available
MediaTypesForSourceType:
(UIImagePickerController
SourceType)sourceType

Retourne un tableau contenant la
liste des types de médias disponi-
ble dans le type de source passé
en paramètre. En particulier
kUTTypeMovie si l’appareil est
capable d’enregistrer de la vidéo.

+ (BOOL) isSourceType
Available: (UIImage
PickerController
SourceType)sourceType

Retourne YES si la source est
disponible sur l’appareil.

@property(nonatomic)
UIImagePickerController
SourceType sourceType

Source utilisée pour la sélection
d’images. Doit être initialisé avant
d’activer le contrôleur.

Configurer le sélec-
tionneur

@property(nonatomic)
BOOL allowsEditing

Doit être initialisé à YES pour
autoriser l’édition par l’utilisateur
de l’image ou de la vidéo sélec-
tionnée. Vaut NO par défaut.

@property(nonatomic,
assign) id <UINavigation
ControllerDelegate,
UIImagePickerController
Delegate> delegate

Délégué.

@property(nonatomic,copy)
NSArray *mediaTypes

Tableau contenant les médias dont
l’accès est autorisé.
kUTTypeImage par défaut

328 10. Appareil photo

Tableau 10.1 : Méthodes et propriétés de la classe UIImagePickerController

Thème Signature Objet

Configuration de la
prise de vidéo

@property(nonatomic)
UIImagePickerController
QualityType videoQuality

Niveau de qualité sélectionnée.
Médium par défaut.

@property(nonatomic)
NSTimeInterval
videoMaximumDuration

Durée maximale de la capture vi-
déo. La valeur par défaut est de
10 minutes, ce qui est la va-
leur maximale admissible.

Commandes de la
prise de vue

@property(nonatomic)BOOL
showsCameraControls

YES pour que les commandes
par défaut soient affichées.

@property(nonatomic,
retain) UIView
*cameraOverlayView

Vue contenant des commandes
personnalisées.
nil par défaut.

@property(nonatomic)
CGAffineTransform
cameraViewTransform

Transformation à appliquer sur
l’image pendant la prise de vue.

− (void) takePicture Utilisé dans un contrôle personna-
lisé pour prendre une photo.

On voit que cette classe peut être utilisée aussi bien pour mettre en
œuvre la caméra de l’appareil, prendre une photo ou capturer une
vidéo. Nous ajouterons cette fonctionnalité à l’application Em-
prunts3.

Cette classe permet également au développeur d’ajouter ses propres
contrôles pendant la prise de vue et d’activer le module élémentaire
d’édition d’image.

La propriété videoQuality est du type énuméré UIImagePicker
ControllerQualityType qui peut prendre l’une des trois valeurs suivan-
tes :

j UIImagePickerControllerQualityTypeHigh pour une qualité haute ;

j UIImagePickerControllerQualityTypeMedium pour une qualité
moyenne ;

j ou UIImagePickerControllerQualityTypeLow pour une qualité médio-
cre.

Type de média
Seule la caméra de l’iPhone 3GS peut capturer de la vidéo, l’iPod Touch ne

dispose pas de caméra et à la date où nous écrivons ces lignes, l’iPad n’en
dispose pas non plus.

32910.1. Sélectionner une photo

Utilisez les méthodes −isSourceTypeAvailable: et −availableMedia
TypesForSourceType: pour connaître les caractéristiques de l’appareil sur

lequel votre application s’exécute.

Protocole UIImagePickerControllerDelegate
Le tableau résume les deux méthodes définies dans le protocole
UIImagePickerControllerDelegate, nous les avons déjà utilisé toutes
les deux.

Tableau 10.2 : Méthodes du protocole UIImagePickerControllerDelegate

Méthode Objet

− (void) imagePickerController:
(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:
(NSDictionary *)info

Le sélectionneur passé en paramètre vient de
sélectionner une image. Les informations sont
dans le dictionnaire passé en second paramè-
tre.

− (void) imagePickerController
DidCancel:(UIImagePicker
Controller *)picker

Le sélectionneur passé en paramètre vient
d’être annulé par l’utilisateur.

Le dictionnaire info reçu par la méthode −imagePickerController:
didFinishPickingMediaWithInfo: est susceptible de contenir les infor-
mations suivantes :

j le type de média capturé, sous la clé UIImagePickerController
MediaType ; kUTTypeImage pour une image et kUTTypeMovie pour une
vidéo ;

j l’image originale, sous la clé UIImagePickerControllerOriginalImage,
de type UIImage ;

j l’image éventuellement modifiée par l’utilisateur lors de la prise
de vue, sous la clé UIImagePickerControllerEditedImage ; de type
UIImage ;

j le rectangle délimitant la partie de l’image sélectionnée par l’utili-
sateur, sous la clé UIImagePickerControllerCropRect ; de type
CGRect ;

j l’adresse URL de la vidéo capturée, sous la clé UIImagePicker
ControllerMediaURL ; de type NSURL.

330 10. Appareil photo

10.2. Prendre des photos
Ce serait sans doute plus pratique pour l’utilisateur, s’il pouvait
prendre une photo directement depuis l’application Emprunts3. La
classe UIImagePickerController le permet, mais comme certains ap-
pareils (iPod Touch et iPad) ne sont pas dotés d’un appareil photo, il
faut que l’interface utilisateur s’adapte à la situation.

Adapter l’interface utilisateur
Modifiez la méthode −viewDidLoad de la classe LendObjectViewController
pour y adapter le titre du bouton en fonction des capacités de
l’appareil :
- (void)viewDidLoad {

[super viewDidLoad];
UIBarButtonItem *cancelButton = [[UIBarButtonItem alloc]

initWithTitle:@"Delete"
style:UIBarButtonItemStyleDone

target:self
action:@selector(deleteObject)];

self.navigationItem.rightBarButtonItem = cancelButton;
[cancelButton release];
if ([UIImagePickerController isSourceTypeAvailable:

UIImagePickerControllerSourceTypeCamera]){
[pictureButton setTitle:@"Prendre une photo"

forState:UIControlStateNormal];
} else if ([UIImagePickerController

isSourceTypeAvailable:
UIImagePickerControllerSourceTypePhotoLibrary]){

[pictureButton setTitle:@"Choisir une photo"
forState:UIControlStateNormal];

} else {
pictureButton.enabled = NO;

}
}

Adapter le sélectionneur de photos
1 Modifiez la méthode −takePicture de la classe LendObjectView

Controller pour indiquer au sélectionneur de photo quelle source
utiliser en fonction des capacités de l’appareil :

- (void) takePicture {
UIImagePickerController *picker =

[[UIImagePickerController alloc] init];
if ([UIImagePickerController isSourceTypeAvailable:

UIImagePickerControllerSourceTypeCamera]){
picker.sourceType =

UIImagePickerControllerSourceTypeCamera;

33110.2. Prendre des photos

} else {
picker.sourceType =

UIImagePickerControllerSourceTypePhotoLibrary;
}
picker.delegate = self;
[self presentModalViewController:picker animated:YES];
[picker release];

}

2 Reconstruisez et testez l’application. Testez-la successivement
avec le simulateur et sur un iPhone ou sur un iPod Touch pour
vérifier qu’elle s’adapte aux capacités de l’appareil.

10.3. Enregistrer ses photos
Pour que l’application Emprunts3 soit utile, il faut que la photo prise
par l’utilisateur soit rangée avec les données de l’objet prêté, dans la
structure Core Data. Nous allons réaliser cette fonction.

Gérer une image sous Core Data

Déclarer une image dans le modèle de données

Éditez le fichier Emprunts3.xcdatamodel sous XCode. Ajoutez une
propriété image, de type Binary data, dans l’entité LendObject.

Outre les types d’attribut prédéfinis que nous connaissons déjà
(nombre, chaîne de caractères, booléen, et date), le type Binary Data
permet de stocker tout autre type de données dans une structure
Core Data, en particulier une image de type UIImage comme nous le
verrons bientôt.

Le type d’attribut Binary Data est équivalent à la classe Objective-C
NSData qui encapsule un tableau d’octets. Et comme toute donnée
informatique n’est au final qu’un tableau d’octets, on peut utiliser
cette classe et ce type d’attribut pour stocker n’importe quel type de
données.

Figure 10.2 : Propriété image
de LendObject

332 10. Appareil photo

Classe NSData

Le tableau ci-après résume les principales méthodes de la classe
NSData.

Tableau 10.3 : Principales méthodes de la classe NSData

Thème Signature Objet

Création
d’instances

+ (id) dataWithBytes:
(const void *)bytes
length:(NSUInteger)length

Crée une instance NSData à partir
d’un tableau d’octets.

+ (id) dataWithContents
OfFile:(NSString *)path

Crée une instance NSData à partir
du contenu d’un fichier.

+ (id) dataWithContents
OfURL:(NSURL *)aURL

Crée une instance NSData à partir
du contenu d’une URL.

Accéder
aux données

− (const void *) bytes Renvoie un pointeur sur le tableau
d’octets encapsulé dans le NSData.

− (NSUInteger) length Renvoie la longueur en octets du
tableau encapsulé dans le NSData.

Enregistrer
les données

− (BOOL) writeToFile:
(NSString *)path
atomically:(BOOL)flag

Crée un fichier avec le contenu de
l’instance NSData. Si flag vaut
YES, le fichier est créé unique-
ment si son intégrité peut être ga-
rantie.

− (BOOL) writeToURL:
(NSURL *) aURL
atomically:(BOOL)
atomically

Crée une URL avec le contenu de
l’instance NSData. Si flag vaut
YES, l’URL est créée uniquement si
son intégrité peut être garantie.

Ces méthodes permettent la conversion d’une instance NSData de et
vers :

j un tableau d’octets en mémoire ;

j le contenu d’un fichier ;
j un contenu adressé par une URL.

Le framework Cocoa Touch contient également plusieurs fonctions
utilitaires qui permettent de convertir des données particulières en
instance NSData. Notamment les images, ce que nous allons voir à la
section suivante.

Transformer l’image en data

La fonction UIImagePNGRepresentation prend une instance UIImage en
paramètre et retourne une instance NSData contenant l’image au
format PNG. La méthode +imageWithData: de la classe UIImage réalise
l’opération inverse.

33310.3. Enregistrer ses photos

1 Modifiez les méthodes −viewWillAppear: et −imagePickerController:
didFinishPickingMediaWithInfo: de la classe LendObjectView
Controller pour enregistrer la photo sélectionnée dans la structure
Core Data et la récupérer :

- (void)viewWillAppear:(BOOL)animated{
if ([self.lendObject valueForKey: @"lendDate"]) {

self.objectNameField.text =
[self.lendObject valueForKey: @"objectName"] ;

self.borrowerNameField.text =
[self.lendObject valueForKey: @"borrowerName"] ;

self.datePicker.date =
[self.lendObject valueForKey: @"lendDate"]

self.imageView.image = [UIImage
imageWithData:[self.lendObject valueForKey: @"image"]] ;

}
[super viewWillAppear:animated];

}
- (void)imagePickerController:(UIImagePickerController *)
picker didFinishPickingMediaWithInfo:(NSDictionary *)info{

UIImage *picture = [info
objectForKey:UIImagePickerControllerOriginalImage];

[self.lendObject setValue:
UIImagePNGRepresentation(picture) forKey: @"image"] ;

[self dismissModalViewControllerAnimated:YES];
}

Dans cette classe, vous pouvez également supprimer la propriété
picture qui est désormais inutile.

2 Reconstruisez et testez l’application pour vérifier que les images
sont conservées avec les données des objets prêtés.

Le modèle Core Data a été modifié
Pour tester cette nouvelle version de l’application, il faudra d’abord sup-

primer la version précédente sur le simulateur ou sur l’appareil. Par défaut,
Core Data nécessite que le fichier de stockage utilisé soit lu et produit avec le
même modèle.

Challenge

Si vous disposez d’un iPhone 3GS, vous pouvez modifier l’applica-
tion pour conserver une capture vidéo plutôt qu’une photo.

Enregistrer dans l’album
Le framework Cocoa Touch propose des fonctions permettant d’en-
registrer des images, photos ou des vidéos dans les albums par
défaut de l’appareil.

334 10. Appareil photo

Enregistrement d’une image

Pour enregistrer une image ou une photo dans l’album, utilisez la
fonction qui prend pour paramètres :

j une référence à l’image à enregistrer, de type UIImage * ;

j une référence à l’objet, de type id, devant recevoir la notification
de l’enregistrement, ou nil si vous ne souhaitez pas que l’applica-
tion soit informée de la fin de l’enregistrement ;

j le sélecteur de la méthode à appeler pour la notification de l’enre-
gistrement, ou nil ;

j une référence de type void * sur des informations, qui sera passée
à la méthode de notification, ou nil s’il n’y a pas d’informations
complémentaires à transmettre.

Le sélecteur de la méthode de notification doit prendre trois paramè-
tres :

j la référence à l’image qui vient d’être enregistrée, de type
UIImage * ;

j une référence vers une instance NSError contenant la description
de l’erreur éventuelle ;

j la référence vers les informations complémentaires.

Enregistrement d’une vidéo

Pour enregistrer une capture vidéo dans l’album, utilisez la fonction
UISaveVideoAtPathToSavedPhotosAlbum qui prend pour paramètres :
j une chaîne de caractères contenant le chemin d’accès vers la

vidéo, de type NSString * ;
j une référence à l’objet, de type id, devant recevoir la notification

de l’enregistrement, ou nil si vous ne souhaitez pas que l’applica-
tion soit informée de la fin de l’enregistrement ;

j le sélecteur de la méthode à appeler pour la notification de l’enre-
gistrement, ou nil ;

j une référence de type void * sur des informations, qui sera passée
à la méthode de notification, ou nil s’il n’y a pas d’informations
complémentaires à transmettre.

Le sélecteur de la méthode de notification doit prendre trois paramètres :
j le chemin d’accès à la vidéo qui vient d’être enregistrée, de type

NSString * ;

j une référence vers une instance NSError contenant la description
de l’erreur éventuelle ;

j la référence vers les informations complémentaires.

33510.3. Enregistrer ses photos

10.4. Éditer les photos
Le sélectionneur de photos est doté d’un éditeur élémentaire qui
permet à l’utilisateur de recadrer et de zoomer l’image avant de la
sélectionner. Pour utiliser cet éditeur, il faut :

j l’activer avant d’afficher le sélectionneur, ce qui est réalisé avec la
propriété booléenne allowsEditing ;

j choisir l’image éditée plutôt que l’image originale.

Pour utiliser l’éditeur de photos dans l’application Emprunts3, modi-
fiez les méthodes −takePicture et −imagePickerController:didFinish
PickingMediaWithInfo: :
- (void) takePicture {

UIImagePickerController *picker =
[[UIImagePickerController alloc] init];

if ([UIImagePickerController isSourceTypeAvailable:
UIImagePickerControllerSourceTypeCamera]){

picker.sourceType =
UIImagePickerControllerSourceTypeCamera;

} else {
picker.sourceType =

UIImagePickerControllerSourceTypePhotoLibrary;
}
picker.allowsEditing = YES;
picker.delegate = self;
[self presentModalViewController:picker animated:YES];
[picker release];

}
- (void)imagePickerController:

(UIImagePickerController *)picker
didFinishPickingMediaWithInfo:(NSDictionary *)info{

UIImage *picture =
[info objectForKey:UIImagePickerControllerEditedImage];
[self.lendObject setValue:

UIImagePNGRepresentation(picture) forKey: @"image"] ;
[self dismissModalViewControllerAnimated:YES];

}

Vous pouvez reconstruire l’application pour la tester.

10.5. Envoyer ses photos
Le framework MessageUI permet d’envoyer des courriels depuis une
application. La classe MFMailComposeViewController qui y est définie
est un contrôleur de composition de courriel. Il présente une inter-
face standard à l’utilisateur, lui permettant de composer un message

336 10. Appareil photo

et de le transmettre. Les différents champs du courriel peuvent être
préremplis par l’application : destinataire, objet, pièces jointes, etc.

Classe MFMailComposeViewController
La classe MFMailComposeViewController s’utilise comme la plupart des
contrôleurs de vue utilitaires, UIImagePickerController par exemple :

j création d’une instance du contrôleur de vue ;

j initialisation des propriétés de cette instance, en particulier son
délégué ;

j activation du contrôleur par −presentModalViewController:animated:.

Le délégué du contrôleur est informé lorsque l’utilisateur souhaite
fermer l’interface de composition, soit pour envoyer le courriel, soit
pour l’enregistrer dans les brouillons, soit pour annuler.

Les méthodes et propriétés de la classe MFMailComposeViewController
sont répertoriées dans le tableau.

Tableau 10.4 : Méthodes et propriétés de la classe MFMailComposeViewController

Thème Signature Objet

Capacité d’envoyer
des courriels

+ (BOOL)canSendMail Retourne YES si l’appareil est
configuré pour envoyer des
courriels.

Préremplissage
des champs

− (void) setSubject:
(NSString*)subject

Préremplit le champ Objet.

− (void) setToRecipients:
(NSArray*)toRecipients

Préremplit le champ Destina-
taires.

− (void) setCcRecipients:
(NSArray*)ccRecipients

Préremplit le champ Copies.

− (void) setBccRecipients:
(NSArray*)bccRecipients

Préremplit le champ Copies
cachées.

− (void) setMessageBody:
(NSString*)body
isHTML:(BOOL)isHTML

Préremplit le champ Texte.

− (void) addAttachmentData:
(NSData*)attachment
mimeType:(NSString*)mimeType
fileName:(NSString*)filename

Attache un document en pré-
cisant son contenu, son type
MIME et son nom.

Délégué @property(nonatomic,assign)
id<MFMailComposeView
ControllerDelegate>
mailComposeDelegate

Délégué du contrôleur de
composition de courriel

33710.5. Envoyer ses photos

types MIME
Le type MIME permet au destinataire du message d’exploiter le fichier

attaché en précisant son format. Par exemple, un fichier de texte pur est de
type text/plain, une image au format PNG de type image/png, etc.

La liste des types existants est disponible à l’adresse http://www.iana.org
/assignments/media-types/.

Protocole
MFMailComposeViewControllerDelegate

Le délégué du contrôleur de composition de courriel est informé
lorsque l’utilisateur souhaite fermer la vue de composition. Le pro-
tocole MFMailComposeViewControllerDelegate ne déclare qu’une mé-
thode.

Tableau 10.5 : Méthodes du protocole MFMailComposeViewControllerDelegate

Méthode Objet

− (void) mailComposeController:
(MFMailComposeViewController*)
controller didFinishWith
Result:(MFMailComposeResult)
result error:(NSError*)error

Méthode appelée lorsque l’utilisateur veut
refermer la fenêtre de composition de
courriel.

C’est dans cette méthode que le développeur doit appeler
−dismissModalViewControllerAnimated: pour désactiver le contrôleur
de composition de courriel.

Les valeurs de retours définies dans le type énuméré
MFMailComposeResult sont :

j MFMailComposeResultCancelled si l’utilisateur a annulé la composi-
tion ;

j MFMailComposeResultSaved si l’utilisateur a enregistré le courriel
dans les brouillons ;

j MFMailComposeResultSent si l’utilisateur a envoyé le courriel ;
j MFMailComposeResultFailed en cas d’erreur.

l’envoi est différé
Un résultat MFMailComposeResultSent ne signifie pas que le courriel est

effectivement parti. Il a été placé dans la boîte d’envoi et sera envoyé à la

338 10. Appareil photo

première occasion, par exemple lorsque l’appareil accrochera un réseau
Wi-Fi.

Challenge
Complétez l’application Emprunts3 en ajoutant la capacité d’envoyer
la photo prise lors du prêt. Cela vous permettra de vous rappeler au
bon souvenir des amis indélicats…

10.6. Checklist
Nous avons appris dans ce chapitre à utiliser l’album photo de
l’appareil, et l’appareil de prise de vues ou de capture vidéo pour
ceux qui en sont doté. Pour cela, nous avons détaillé le fonctionne-
ment :

j de la classe UIImagePickerController ;

j du protocole UIImagePickerControllerDelegate.

Nous avons vu comment utiliser la classe NSData pour enregistrer et
récupérer des images dans une structure Core Data, grâce aux attri-
buts de type binaire.

Nous savons maintenant doter nos applications de la capacité de
préparer et envoyer des courriels avec le framework MessageUI :

j classe MFMailComposeViewController ;

j protocole MFMailComposeViewControllerDelegate.

33910.6. Checklist

C
H

A
P

IT
R

E
11

GÉO-LOCALISATION

Déterminer sa position ... 343
Déterminer l’orientation géographique .. 349
Framework MapKit ... 352
Checklist .. 360

341

Deux frameworks sont au programme de ce chapitre :
j CoreLocation, qui permet d’utiliser les capacités de géo-

localisation de l’iPhone ;
j MapKit, qui permet d’insérer des cartes géographiques dans une

application et qui s’utilise en conjonction avec CoreLocation, par
exemple, pour y visualiser des marqueurs.

11.1. Déterminer sa position

Technologies de géo-localisation
L’iPhone met en œuvre simultanément plusieurs technologies pour
localiser sa position géographique :
j la localisation des réseaux Wi-Fi publics, qui est une technologie

relativement précise (quelques dizaines de mètres), mais n’est pas
disponible partout ;

j la triangulation des antennes relais de téléphonie mobile, partout
disponible mais avec une précision très variable (en montagne,
par exemple, le nombre d’antennes relais accessibles est souvent
insuffisant pour obtenir une bonne précision) ;

j le positionnement par satellites GPS, très précis en plein air et
généralement indisponible à l’intérieur des bâtiments.

La précision de la géo-localisation va de plusieurs kilomètres à quel-
ques mètres. Il faut être conscient qu’une bonne précision nécessite
des calculs, donc du temps (souvent plusieurs secondes), et
consomme également de l’énergie. Il est recommandé de limiter la
précision demandée au strict nécessaire en fonction de l’application.

La mise en œuvre des différentes technologies de géo-localisation
est transparente pour le développeur. Le gestionnaire de géo-
localisation en masque la complexité pour se concentrer sur l’essen-
tiel : fournir une localisation avec le niveau de précision requis.

Classe CLLocationManager

Mise en œuvre du gestionnaire de géo-localisation

La mise en œuvre de la géo-localisation utilise un motif analogue à
celui du sélectionneur d’images vu au chapitre précédent et à celui
des accéléromètres que nous verrons au chapitre suivant :

j Création d’une instance de la classe CLLocationManager (le gestion-
naire de géo-localisation) qui est programmée pour définir les critè-
res de notifications relatifs à la position géographique de l’appareil.

34311.1. Déterminer sa position

j Activation du gestionnaire ; il commence à délivrer des notifications.
j Les notifications sont délivrées au délégué du gestionnaire qui doit

répondre au protocole CLLocationManagerDelegate.
j Le gestionnaire est désactivé lorsque les notifications ne sont plus

nécessaires.

Les deux premières étapes sont réalisées typiquement par les ins-
tructions suivantes :
locationManager = [[CLLocationManager alloc] init];
locationManager.delegate = self;
locationManager.desiredAccuracy =

kCLLocationAccuracyKilometer;
locationManager.distanceFilter = 500.;
[locationManager startUpdatingLocation];

Dans ce cas, le gestionnaire est programmé pour délivrer des notifi-
cations précise au kilomètre près et à chaque fois que l’appareil s’est
déplacé de 500 mètres ou plus.

Les notifications sont reçues par le délégué sur sa méthode
−locationManager:didUpdateToLocation:fromLocation: détaillée dans la
section relative au protocole CLLocationManagerDelegate.

La dernière étape est réalisée par l’instruction suivante :
[locationManager stopUpdatingLocation];

Détails de la classe CLLocationManager

La classe CLLocationManager permet de gérer les notifications relatives
à la position géographique de l’appareil et celles relatives à son
orientation par rapport au Nord, dont il sera question plus loin dans
ce chapitre. Les méthodes et propriétés de la classe sont détaillées
dans le tableau ci-après.

Tableau 11.1 : Méthodes et propriétés de la classe CLLocationManager

Thème Signature Objet

Configuration des
mises à jour de la
position

@property(assign,
NS_ NONATOMIC_ IPHONEONLY)
id<CLLocationManager
Delegate> delegate

Délégué du gestionnaire de géo-
localisation

@property(assign,
NS_ NONATOMIC_IPHONEONLY)
CLLocation
Distance distanceFilter

Distance de déplacement mini-
male entre deux événements de
mise à jour de la position

@property(assign,
NS_NONATOMIC_IPHONEONLY)
CLLocation
Accuracy desiredAccuracy

Précision demandée (non garan-
tie)

344 11. Géo-localisation

Tableau 11.1 : Méthodes et propriétés de la classe CLLocationManager

Thème Signature Objet

Configuration des
mises à jour des
directions

@property(assign,
nonatomic) CLLocation
Degrees headingFilter

Distance de déplacement mini-
male entre deux événements de
mise à jour de la direction du Nord

@property(readonly,
nonatomic) BOOL
headingAvailable

Retourne YES si l’appareil dis-
pose de la capacité de détermi-
ner la direction du Nord (compas
magnétique).

Démarrer et arrê-
ter les mises à
jour

− (void) startUpdating
Location

Démarre les mises à jour de géo-
localisation.

− (void) stopUpdating
Location

Stoppe les mises à jour de géo-
localisation.

− (void) startUpdating
Heading

Démarre les mises à jour de la
direction du Nord.

− (void) stopUpdating
Heading

Stoppe les mises à jour de la di-
rection du Nord.

− (void) dismissHeading
CalibrationDisplay

Referme le panneau de calibration
magnétique.

Disponibilité des
services de géo-
localisation

@property(readonly,
NS_ NONATOMIC_IPHONEONLY)
BOOL locationServices
Enabled

YES si l’utilisateur de l’appareil a
autorisé la géo-localisation dans
les préférences système

@property(copy,
nonatomic) NSString
*purpose

Chaîne de caractères à afficher en
même temps que le message de-
mandant à l’utilisateur l’autorisa-
tion d’utiliser la géo-localisation

Obtenir la position
de l’appareil

@property(readonly,
NS_ NONATOMIC_IPHONEONLY)
CLLocation *location

Dernière position mise à jour

La plupart des propriétés de la classe CLLocationManager sont décla-
rées avec une clause NS_NONATOMIC_IPHONEONLY. En effet, le framework
CoreLocation étant commun à Cocoa sur Mac OS X et à Cocoa Touch
sur iPhone OS, cette déclaration permet de définir des propriétés
atomiques sur Mac OS X et non-atomiques sur iPhone OS. Rappe-
lons qu’une propriété est dite atomique si ses accesseurs permettent
d’en garantir la validité, même dans un environnement multithrea-
ding où le même objet peut être manipulé simultanément par plu-
sieurs threads. La priorité est mise sur l’intégrité des données sur
Mac OS X (on peut utiliser le même gestionnaire simultanément
dans plusieurs threads), alors qu’elle est mise sur les performances
sur iPhone OS.

34511.1. Déterminer sa position

Propriété purpose
La propriété purpose est disponible uniquement à partir de la version 3.2.

Types scalaires

Outre la classe CLLocationManager, le framework Core Location définit
également la classe CLLocation et le protocole CLLocation
ManagerDelegate, que nous détaillerons plus loin, ainsi que les types
scalaires décrits ci-après.

Tableau 11.2 : Types scalaires CLLocation

Type CLLocation Type C Utilisation

CLLocation
Accuracy

double Précision de distance en mètres

CLLocation
Coordinate2D

struct
{ CLLocation
Degrees
latitude;
CLLocation
Degrees
longitude;}

Le champ latitude prend une valeur comprise
entre -90 et +90 (une valeur positive indique
une latitude dans l’hémisphère Nord et néga-
tive dans l’hémisphère Sud) Le champ longi-
tude prend une valeur comprise entre -180 et
+180 (une valeur positive indique une longi-
tude à l’Est du méridien de Greenwich, et
négative à l’Ouest)

CLLocation
Degrees

double Angle en degrés

CLLocation
Direction

double Direction du Nord en degrés

CLLocation
Distance

double Distance en mètres

CLLocation
Speed

double Vitesse en mètres par seconde

Quelques constantes sont définies dans le framework Core Location
pour en faciliter l’usage :

j kCLDistanceFilterNone, de type CLLocationDistance, est utilisé avec
la propriété distanceFilter du gestionnaire de géo-localisation
pour lui indiquer de ne pas filtrer les notifications de position.

j Plusieurs constantes sont définies pour le type CLLocationAccuracy
et la propriété desiredAccuracy du gestionnaire de géo-
localisation :

kCLLocationAccuracyBest pour obtenir la meilleure précision pos-
sible ;

346 11. Géo-localisation

kCLLocationAccuracyNearestTenMeters pour obtenir une position à
10 mètres près ;

kCLLocationAccuracyHundredMeters pour obtenir une position à
100 mètres près ;

kCLLocationAccuracyKilometer pour obtenir une position à 1 kilo-
mètre près ;

kCLLocationAccuracyThreeKilometers pour obtenir une position à
3 kilomètres près.

Protocole CLLocationManagerDelegate
Le tableau résume les méthodes déclarées dans le protocole
CLLocationManagerDelegate. Toutes ces méthodes sont optionnelles.

Tableau 11.3 : Méthodes du protocole CLLocationManagerDelegate
Thème Signature Objet
Événements de mise
à jour de la géo-
localisation

− (void) locationManager:
(CLLocationManager *)
manager didUpdateTo
Location:(CLLocation
*)newLocation from
Location:(CLLocation
*)oldLocation

Mise à jour de la géo-
localisation. La méthode reçoit la
nouvelle position et l’ancienne.

− (void) locationManager:
(CLLocationManager *)
manager didFailWith
Error:(NSError *)error

Une erreur s’est produite pen-
dant la géo-localisation.

Événements de mise
à jour de la direction
du Nord

− (void) locationManager:
(CLLocationManager *)
manager didUpdate
Heading:(CLHeading *)
newHeading

Mise à jour de la direction du
Nord. La méthode reçoit la nou-
velle direction.

− (BOOL) locationManager
ShouldDisplayHeading
Calibration:
(CLLocationManager *)
manager

Doit retourner YES si le délégué
autorise l’affichage du panneau
de calibration magnétique.

Le délégué du gestionnaire de géo-localisation reçoit les notifications :

j des mises à jour de la géo-localisation de l’appareil, pour savoir où
se situe l’appareil sur le globe terrestre ;

j des mises à jour de la direction du Nord, pour savoir commet est
orienté l’appareil par rapport au Nord.

Le protocole CLLocationManagerDelegate permet également au délé-
gué d’être informé d’une erreur de géo-localisation ou de la néces-

34711.1. Déterminer sa position

sité d’une calibration magnétique (voir plus loin la section Déterminer
l’orientation géographique).

Classe CLLocation
Les notifications de géo-localisation délivrent la position de l’appa-
reil sous forme d’instances de la classe CLLocation décrite dans le
tableau ci-après.

Tableau 11.4 : Méthodes et propriétés de la classe CLLocation
Thème Signature Objet
Initialisation − (id) initWithLatitude:

(CLLocationDegrees)
latitude longitude:
(CLLocationDegrees)
longitude

Crée une instance avec les coordon-
nées passées en paramètre. La pré-
cision horizontale prend une valeur
nulle, la précision verticale prend la
valeur −1. L’horodate est celle de
l’initialisation de l’objet.

− (id) initWith
Coordinate:(CLLocation
Coordinate2D)coordinate
altitude:(CLLocation
Distance)altitude
horizontalAccuracy:
(CLLocationAccuracy)
hAccuracyvertical
Accuracy:(CLLocation
Accuracy)vAccuracy
timestamp:(NSDate *)
timestamp

Crée une instance avec les données
passées en paramètre.

Attributs de
géo-
localisation

@property(readonly,
NS_NONATOMIC_IPHONEONLY)
CLLocationCoordinate2D
coordinate

Coordonnées de la position

@property(readonly,
NS_NONATOMIC_IPHONEONLY)
CLLocationDistance altitude

Altitude

@property(readonly,
NS_NONATOMIC_IPHONEONLY)
CLLocationAccuracy
horizontalAccuracy

Précision horizontale

@property(readonly,
NS_NONATOMIC_IPHONEONLY)
CLLocationAccuracy
verticalAccuracy

Précision verticale

@property(readonly,
NS_NONATOMIC_IPHONEONLY)
NSDate *timestamp

Horodate à laquelle la position a été
déterminée

− (NSString *)description Retourne une chaîne de caractères
contenant la description de la position.

348 11. Géo-localisation

Tableau 11.4 : Méthodes et propriétés de la classe CLLocation
Thème Signature Objet
Mesure de
distance

− (CLLocationDistance)
getDistanceFrom:(const
CLLocation *)location

Retourne la distance entre la position
du récepteur et celle de l’instance
passée en paramètre.

Détermina-
tion du mou-
vement

@property(readonly,
NS_NONATOMIC_IPHONEONLY)
CLLocationSpeed speed

Vitesse instantanée de l’appareil.
Une valeur négative indique que
cette propriété est indisponible.

@property(readonly,
NS_NONATOMIC_IPHONEONLY)
CLLocationDirection course

Direction de déplacement de l’appa-
reil Une valeur négative indique que
cette propriété est indisponible.

La classe CLLocation permet non seulement de retrouver la position
de l’appareil, sous forme de latitude et de longitude, mais aussi :

j l’altitude de l’appareil ;

j la précision horizontale et verticale ;
j l’horodate précise de la mesure ;
j s’il y a lieu, la vitesse et la direction de déplacement de l’appareil.

Challenge
Réalisez une application qui affiche la position de l’appareil.

Vous pourrez agrémenter cette application de fonctions permettant à
l’utilisateur de jouer sur la précision recherchée et sur le filtre en
distance pour les notifications de géo-localisation.

11.2. Déterminer l’orientation
géographique

L’iPhone 3GS est doté d’un compas magnétique permettant soit de
mesurer un champ magnétique, soit de déterminer l’inclinaison de
l’appareil par rapport à la direction du Nord ; les applications Bous-
sole et Plans (sur iPhone 3GS) utilisent le compas magnétique.

Le compas magnétique est mis en œuvre dans une application à l’aide
du gestionnaire de géo-localisation dont nous venons de traiter. Il peut
être étonnant au premier abord de mélanger la géo-localisation et la
détection magnétique dans un même framework. L’explication est sim-
ple, la détermination de la direction du Nord géographique nécessite la
connaissance de la position de l’appareil sur le globe terrestre afin de
calculer la déclinaison magnétique ; l’écart entre les directions du Nord
géographique et du Nord magnétique.

34911.2. Déterminer l’orientation géographique

Mise en œuvre du compas magnétique
La mise en œuvre du compas magnétique utilise le gestionnaire de géo-
localisation et son motif standard. Les méthodes et propriétés traitant de
la géo-localisation et du compas magnétique y sont bien séparées :

j Une instance de la classe CLLocationManager (le gestionnaire de
géo-localisation) est créée.

j On vérifie que le compas magnétique est disponible sur l’appareil
avec la propriété headingAvailable.

j Le gestionnaire de géo-localisation est programmé pour définir les
critères de notification relatifs à la l’inclinaison de l’appareil par
rapport à la direction du Nord.

j Le gestionnaire est activé ; il commence à délivrer des notifications.
j Les notifications sont délivrées au délégué du gestionnaire qui doit

répondre au protocole CLLocationManagerDelegate.
j Le gestionnaire est désactivé lorsque les notifications ne sont plus

nécessaires.

Les quatre premières étapes sont réalisées typiquement par les
instructions suivantes :
locationManager = [[CLLocationManager alloc] init];
if (locationManager.headingAvailable) then {

locationManager.delegate = self;
locationManager.headingFilter = 5.;
[locationManager startUpdatingHeading];

}

Dans ce cas, le gestionnaire est programmé pour délivrer des notifi-
cations chaque fois que l’inclinaison de l’appareil change de 5 de-
grés ou plus.

Les notifications sont reçues par le délégué sur sa méthode
−locationManager:didUpdateHeading: détaillée dans la section relative
au protocole CLLocationManagerDelegate.

La dernière étape est réalisée par l’instruction suivante :
[locationManager stopUpdatingHeading];

un seul délégué
Bien que les méthodes et propriétés relatives à la géo-localisation et au

compas magnétique soient séparées dans la classe CLLocationManager et
dans le protocole associé, le délégué du gestionnaire de géo-localisation est
unique pour ces deux fonctionnalités.

350 11. Géo-localisation

Calibration magnétique
Un compas magnétique étant très sensible aux perturbations, fré-
quentes dans notre univers domestique et ses nombreux appareils
électroniques, le gestionnaire de géo-localisation peut avoir à affi-
cher un panneau de calibration. Ce dernier invite l’utilisateur à faire
des 8 avec l’appareil ou à s’éloigner d’une source magnétique trop
forte.

Dans ce cas, le délégué du gestionnaire reçoit le message
−locationManagerShouldDisplayHeadingCalibration:. Il doit répondre
YES s’il autorise l’affichage du panneau et NO dans le cas contraire. Par
défaut, s’il n’implémente pas cette méthode, le panneau n’est pas
affiché.

Classe CLHeading
L’information d’inclinaison par rapport au Nord est transmise au
délégué sous la forme d’une instance de la classe CLHeading.

Tableau 11.5 : Méthodes et propriétés de la classe CLHeading

Thème Signature Objet

Attributs de Direction @property(readonly,
nonatomic) CLLocation
Direction
magneticHeading

Direction vers laquelle pointe le
sommet de l’appareil, par rapport au
Nord magnétique (0 pour le Nord,
90 pour l’Est, etc.) Une valeur
négative indique que cette pro-
priété ne peut être calculée.

@property(readonly,
nonatomic) CLLocation
Direction trueHeading

Direction vers laquelle pointe le
sommet de l’appareil, par rapport au
Nord géographique (0 pour le
Nord, 90 pour l’Est, etc.) Une va-
leur négative indique que cette
propriété ne peut être calculée. Le
calcul de cette propriété néces-
site que l’appareil puisse être
géo-localisé.

@property(readonly,
nonatomic) CLLocation
Direction
headingAccuracy

Estimation de l’erreur sur la direc-
tion du Nord magnétique Une valeur
négative indique que cette propriété
ne peut être calculée.

@property(readonly,
nonatomic) NSDate
*timestamp

Horodate de la mesure du compas
magnétique

− (NSString *)
description

Description de la mesure du com-
pas magnétique sous forme de
chaîne de caractères

35111.2. Déterminer l’orientation géographique

Tableau 11.5 : Méthodes et propriétés de la classe CLHeading

Thème Signature Objet

Mesures brutes @property(readonly,
nonatomic) CLHeading
ComponentValue x

Mesure du champ magnétique en
microTesla selon l’axe des abscis-
ses

@property(readonly,
nonatomic) CLHeading
ComponentValue y

Mesure du champ magnétique en
microTesla selon l’axe des ordon-
nées

@property(readonly,
nonatomic) CLHeading
ComponentValue z

Mesure du champ magnétique en
microTesla selon l’axe des
profondeurs

La propriété magneticHeading contient l’inclinaison de l’axe de l’appa-
reil par rapport à la direction du Nord magnétique. La propriété
trueHeading contient l’inclinaison par rapport au Nord géographique.

le Nord géographique nécessite la géo-localisation
La propriété trueHeading est mise à jour uniquement si la notification de

la géo-localisation est activée sur le gestionnaire de géo-localisation.

11.3. Framework MapKit
Lorsque l’on traite de géo-localisation, le besoin de visualiser une
carte vient naturellement. Nous allons voir dans cette section com-
ment afficher une carte et permettre à l’utilisateur d’interagir avec
elle ; nous mettrons en œuvre le framework MapKit.

Afficher une carte
Créez un nouveau projet sous XCode, de type View Based Applica-

tion. Nommez-le Carte.

Ajouter le framework MapKit

Le framework MapKit n’est pas intégré par défaut aux projets XCode ;
rappelons la démarche à suivre pour ajouter un framework à un
projet :

1 Dans la zone Groups&Files de la fenêtre principale, ouvrez le
groupe Targets, sélectionnez la cible Carte et cliquez du bouton
droit pour afficher le menu contextuel.

352 11. Géo-localisation

2 Sélectionnez la commande Get Info. Dans le panneau d’informa-
tion qui s’affiche, choisissez l’onglet General et cliquez sur le bou-
ton + de la partie Linked Libraries.

3 Choisissez le fichier MapKit.framework pour ajouter le framework
MapKit au projet Carte.

Ajouter une vue Carte

1 Sous XCode, double-cliquez sur le fichier CarteViewController.xib
pour l’ouvrir. Ajoutez une vue cartographique (Map View) sur
l’interface utilisateur (voir Figure 11.1).

2 Utilisez l’inspecteur de taille (X+[3]) pour définir une vue carrée,
par exemple une hauteur et une largeur de 280 pixels.

La vue cartographique que nous venons d’insérer est de la classe
MKMapView. Dans la suite de ce chapitre, nous examinerons les carac-
téristiques les plus courantes de la classe MKMapView qui est au centre
du framework MapKit.

Figure 11.1 : Vue cartographique sous
Interface Builder

35311.3. Framework MapKit

Tester l’application

Construisez l’application sous XCode et testez-la (X+[R]).

Par défaut, la carte affichée est celle du pays défini dans les préfé-
rences de localisation de l’appareil ou le planisphère complet. Vous
pouvez la déplacer ou zoomer. Nous allons voir comment connaître
et contrôler le positionnement de la carte par programmation.

Connaître la zone affichée
La zone affichée sur la carte est accessible par la propriété region de
la classe MKMapView. Nous allons en illustrer le fonctionnement en
modifiant l’application Carte pour que l’utilisateur puisse en visuali-
ser les caractéristiques.

Définir les outlets

Sous Interface Builder, ajoutez quatre labels de texte sur la vue
principale afin d’y afficher les coordonnées du centre de la carte
(latitude et longitude) et la taille de la zone affichée (hauteur et
largeur).

1 Sous XCode, ouvrez le fichier CarteViewController.h pour y ajouter
les outlets permettant d’accéder aux éléments de la vue principale.

Figure 11.2 : Carte affichée par défaut

354 11. Géo-localisation

Nous y définissons également le contrôleur comme répondant au
protocole MKMapViewDelegate pour qu’il soit notifié des change-
ments sur la carte :

#import <UIKit/UIKit.h>
#import <MapKit/MapKit.h>
@interface CarteViewController : UIViewController

<MKMapViewDelegate> {
IBOutlet MKMapView * carte;
IBOutlet UILabel * latitudeLabel;
IBOutlet UILabel * longitudeLabel;
IBOutlet UILabel * hauteurLabel;
IBOutlet UILabel * largeurLabel;

}
@property(retain,nonatomic) MKMapView * carte;
@property(retain,nonatomic) UILabel * latitudeLabel;
@property(retain,nonatomic) UILabel * longitudeLabel;
@property(retain,nonatomic) UILabel * hauteurLabel;
@property(retain,nonatomic) UILabel * largeurLabel;
@end

inclure MapKit.h
Le framework MapKit n’étant pas inclus par défaut dans le projet, il faut

ajouter une clause #import <MapKit/MapKit.h> dans les fichiers sources qui
doivent l’utiliser.

2 Revenez sous Interface Builder pour attacher les outlets du contrô-
leur aux éléments de la vue et définissez le délégué de la vue
MKMapView comme étant le propriétaire du fichier.

Code source du contrôleur de vue

1 Sous XCode, ajoutez les accesseurs des propriétés de la classe
CarteViewController dans son fichier source :

@implementation CarteViewController
@synthesize carte, latitudeLabel, longitudeLabel,

hauteurLabel, largeurLabel;

Figure 11.3 : Liens de la vue MKMapView

35511.3. Framework MapKit

2 Ajoutez la définition de la méthode −mapView:regionDidChange
Animated: du protocole MKMapViewDelegate. Cette méthode est appe-
lée chaque fois que la propriété region est modifiée :

- (void)mapView:(MKMapView *)mapView
regionDidChangeAnimated:(BOOL)animated{

MKCoordinateRegion region = carte.region;
latitudeLabel.text = [NSString stringWithFormat:@"%g",

region.center.latitude];
longitudeLabel.text = [NSString stringWithFormat:@"%g",

region.center.longitude];
hauteurLabel.text = [NSString stringWithFormat:@"%g",

region.span.latitudeDelta];
largeurLabel.text = [NSString stringWithFormat:@"%g",

region.span.longitudeDelta];
}

3 Construisez l’application pour la tester.

Propriété region

La propriété region de la classe MKMapView est une structure de type
MKCoordinateRegion composée de :

j center qui est une structure de type CLLocationCoordinate2D elle-
même composée de :

latitude de type CLLocationDegrees ;

longitude de type CLLocationDegrees.

Figure 11.4 : Visualisation des caractéristiques de
la région affichée

356 11. Géo-localisation

j span qui est une structure de type MKCoordinateSpan composée de :

latitudeDelta de type CLLocationDegrees ;

longitudeDelta de type CLLocationDegrees.

Ainsi une région sur la carte est définie par son centre (latitude et
longitude) et par sa taille, elle-même exprimée en écarts de latitude
et de longitude. Un écart de latitude de un degré représente une
hauteur de 111 km. Un écart de longitude de un degré représente
une largeur qui dépend de la latitude : 111 km à l’équateur et 0 aux
pôles.

Contrôler la zone affichée
Maintenant que nous savons extraire la zone affichée dans une
instance de la classe MKMapView, nous allons compléter notre applica-
tion Carte afin qu’elle nous permette de mémoriser une région pour
y revenir plus tard.

Définir l’interface

1 Ajoutez deux boutons sur l’interface utilisateur, Définir Zone et
Retrouver Zone. Ajoutez une action pour chacun de ces boutons
dans l’interface du contrôleur de vue de l’application, respective-
ment defineZone et retrieveZone. Liez les boutons et les actions
sous Interface Builder.

2 Toujours dans l’interface du contrôleur de vue, déclarez une nou-
velle propriété zone de type MKCoordinateRegion. Cette propriété
n’étant pas une référence, elle doit être déclarée avec la clause
assign au lieu de retain.

Code du contrôleur

1 Dans le fichier CarteViewController.m, synthétisez les accesseurs
de la nouvelle propriété zone, puis définissez les méthodes pour
les actions :

-(IBAction) defineZone{
self.zone = carte.region;

}
-(IBAction) retrieveZone{

[carte setRegion:self.zone animated:YES];
}

Nous utilisons ici la méthode −setRegion:animated: de la classe
MKMapView pour définir la région à visualiser sur la carte.

2 Construisez l’application pour la tester.

35711.3. Framework MapKit

Appréhender la vue satellite
La classe MKMapView dispose des propriétés suivantes pour modifier
son comportement :

j mapType de type MKMapType ;

j scrollEnabled de type Booléen ;
j zoomEnabled de type Booléen.

scrollEnabled et zoomEnabled permettent d’autoriser respectivement
le déplacement de la carte et le zoom par l’utilisateur. Ces propriétés
ont la valeur YES par défaut.

MKMapType est un type énuméré qui permet de définir le type de
visualisation de la carte :

j MKMapTypeStandard, pour visualiser le plan ;

j MKMapTypeSatellite, pour visualiser la vue satellite ;
j MKMapTypeHybrid, pour visualiser la vue satellite augmentée d’infor-

mation.

Challenge

Modifiez l’application Carte pour que l’utilisateur puisse choisir entre
les différents types de visualisation.

Figure 11.5 : Différents types de visualisation

358 11. Géo-localisation

Annoter la carte
Nous allons terminer ce parcours du framework MapKit par la mise
en œuvre du protocole MKAnnotation et de la méthode −addAnnotation:
qui permettent d’ajouter sur la carte des marqueurs en forme d’épin-
gle à tête.

Créer une annotation

Il n’y a pas de classe spécifique pour contenir une annotation. N’im-
porte quel objet fait l’affaire pourvu qu’il respecte le protocole
MKAnnotation qui définit trois propriétés :

j coordinate, propriété obligatoire de type CLLocationCoordinate2D,
pour définir l’emplacement du marqueur sur la carte ;

j title et subTitle, propriétés optionnelles de type NSString * ; ces
chaînes de caractères sont affichées lorsque l’utilisateur touche le
marqueur.

Procédez ainsi :

1 Sous XCode, créez une nouvelle classe Annotation dérivant de
NSOject. Complétez l’interface de la classe pour y déclarer qu’elle
adopte le protocole MKAnnotation et ses propriétés :

#import <Foundation/Foundation.h>
#import <MapKit/MapKit.h>
@interface Annotation : NSObject <MKAnnotation> {

CLLocationCoordinate2D coordinate;
NSString * title;
NSString * subTitle;

}
@property(assign,nonatomic)

CLLocationCoordinate2D coordinate;
@property(retain,nonatomic) NSString * title;
@property(retain,nonatomic) NSString * subTitle;
@end

2 Complétez la définition de la classe en définissant les accesseurs
pour les propriétés dans le fichier Annotation.m. Cette classe est un
réceptacle de données, elle ne contient pas d’autres méthodes :

#import "Annotation.h"
@implementation Annotation
@synthesize coordinate, title, subTitle;
@end

Afficher un marqueur

1 Sous XCode, ouvrez le fichier CarteViewController.m pour y décla-
rer la classe Annotation :

35911.3. Framework MapKit

#import "Annotation.h"

2 Modifiez la méthode −defineZone pour ajouter un marqueur au
centre de la carte :

-(IBAction) defineZone{
self.zone = carte.region;
Annotation * annotation = [[Annotation alloc] init];
annotation.coordinate = self.zone.center;
annotation.title = @"Centre de la zone";
[carte addAnnotation:annotation];
[annotation release];

}

3 Construisez l’application pour la tester. Si vous touchez le mar-
queur défini en même temps que la zone, le texte s’affiche.

Nous vous laissons explorer le framework MapKit et les fonctions
permettant d’adapter les vues associées aux annotations.

11.4. Checklist
Nous connaissons maintenant les différentes technologies mises en
œuvre pour la géo-localisation de l’appareil, et nous savons mettre
en œuvre le framework Core Location : le gestionnaire de géo-

Figure 11.6 : Carte avec un marqueur

360 11. Géo-localisation

localisation, instance de la classe CLLocationManager, et son protocole
de délégué CLLocationManagerDelegate.

Nous avons détaillé les classes décrivant la position de l’appareil :

j CLLocation pour la position sur le globe terrestre ;

j CLHeading pour l’inclinaison de l’appareil par rapport au Nord,
géographique ou magnétique.

Enfin, nous avons appris à utiliser le framework MapKit, la vue
MKMapView et son délégué MKMapViewDelegate pour :

j visualiser et manipuler une carte ;

j connaître la zone géographique visualisée ;
j modifier le mode de visualisation de la carte ;
j insérer des annotations sur la carte.

36111.4. Checklist

C
H

A
P

IT
R

E
12

ACCÉLÉROMÈTRES

Utiliser les accéléromètres .. 365
Déterminer les mouvements de l’appareil .. 375
Connaître l’orientation de l’appareil ... 375
Checklist .. 381

363

Tous les appareils, iPhone et iPod Touch, sont dotés de trois accélé-
romètres. Grâce à ces derniers, on peut connaître l’orientation de
l’appareil par rapport à la verticale ainsi que ses mouvements ; ce
chapitre est consacré à l’étude de leur utilisation.

Nous commencerons par quelques expérimentations avec les clas-
ses UIAccelerometer et UIAcceleration, puis nous nous intéresserons à
la détection des mouvements et à la détermination de la position de
l’appareil.

Testez sur un appareil
Les exemples développés dans ce chapitre ne fonctionnent pas sur le

simulateur qui ne dispose pas d’accéléromètres.

L’annexe décrit le mode opératoire à suivre pour tester vos appli-
cations sur un appareil réel.

12.1. Utiliser les accéléromètres
Nous allons commencer par écrire une application nous permettant
de visualiser les données fournies par les accéléromètres. Elle sera
notre support d’expérimentation qui nous permettra de mieux com-
prendre le fonctionnement de ces "petites bêtes", et donc de mieux
les utiliser par la suite.

Figure 12.1 : Visualiser les accélérations

36512.1. Utiliser les accéléromètres

Visualiser l’accélération
1 Créez un projet de type View Based Application sous XCode et

intitulez-le Accelero.

Notre première expérimentation contient trois labels, qui contien-
dront les composantes données par les trois accéléromètres. Nous
devons définir les outlets pour ces labels dans notre contrôleur de
vue et il faut également qu’il se conforme au protocole
UIAccelerometerDelegate.

2 Modifiez le fichier AcceleroViewController.h :

#import <UIKit/UIKit.h>
@interface AcceleroViewController : UIViewController

<UIAccelerometerDelegate> {
IBOutlet UILabel * xLabel;
IBOutlet UILabel * yLabel;
IBOutlet UILabel * zLabel;

}
@property(nonatomic,retain) UILabel * xLabel;
@property(nonatomic,retain) UILabel * yLabel;
@property(nonatomic,retain) UILabel * zLabel;
@end

Le protocole UIAcceleromerDelegate définit une seule méthode,
−(void)accelerometer:(UIAccelerometer *)didAccelerate:
(UIAcceleration *) qui fournit :

j une instance de UIAcceleromer représentant les trois accéléromè-
tres ;

j une instance de UIAcceleration, conteneur d’une mesure d’accélé-
rations.

Tableau 12.1 : Propriétés de la classe UIAcceleration

Propriétés Objet

@property(nonatomic, readonly)
UIAccelerationValue x

Accélération en g sur l’axe des abscisses

@property(nonatomic, readonly)
UIAccelerationValue y

Accélération en g sur l’axe des ordonnées

@property(nonatomic, readonly)
UIAccelerationValue z

Accélération en g sur l’axe des profondeurs

@property(nonatomic, readonly)
NSTimeInterval timestamp

L’horodate de la mesure d’accélération, en se-
condes, depuis le démarrage de l’appareil

366 12. Accéléromètres

Type UIAccelerationValue
Le type UIAccelerationValue est équivalent au type double.

Orientation des axes
Les axes utilisés par les accéléromètres sont les mêmes que ceux

d’OpenGL ES ; lorsque l’appareil est en mode Portrait, le bouton principal
vers le bas, les abscisses sont disposées de gauche à droite, les ordonnées du
bas vers le haut et les profondeurs du dos vers l’avant de l’appareil

Figure 12.2 : Orientation des composantes d’accélération

36712.1. Utiliser les accéléromètres

3 Écrivez le code de cette méthode de délégué dans le fichier Acce-
leroViewController.m. Nous voulons simplement afficher les va-
leurs des composantes de l’accélération mesurée :

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acc

{
xLabel.text = [NSString stringWithFormat:@"%f", acc.x];
yLabel.text = [NSString stringWithFormat:@"%f", acc.y];
zLabel.text = [NSString stringWithFormat:@"%f", acc.z];

}

4 Activez les mesures et modifiez la méthode viewDidLoad dans le
fichier AcceleroViewController.m :

- (void)viewDidLoad {
[super viewDidLoad];
UIAccelerometer *accelerometer =

[UIAccelerometer sharedAccelerometer];
accelerometer.updateInterval = 0.1;
accelerometer.delegate = self;

}

La variable accelerometer y est définie comme l’instance partagée
(unique) de la classe UIAccelerometer, puis nous définissons la pério-
dicité des mesures (1/10e de seconde, nous n’arriverons pas à lire
plus vite). Enfin, nous définissons le délégué qui recevra les mesu-
res.

5 Synthétisez les accesseurs des propriétés avec @synthesize
xLabel, yLabel, zLabel; et libérez-les dans la méthode
viewDidUnload :

- (void)viewDidUnload {
self.xLabel = nil;
self.yLabel = nil;
self.zLabel = nil;

}

6 Ouvrez le fichier AcceleroViewController.xib pour placer trois labels
dans la vue principale et les lier aux outlets du contrôleur de vue.

7 Testez l’application sur votre appareil réel ; le simulateur ne per-
met pas d’émuler les accéléromètres. Au besoin, consultez l’an-
nexe A qui détaille le mode opératoire à suivre pour charger et
tester une application sur un appareil réel.

Des valeurs non nulles s’affichent, même lorsque l’appareil est im-
mobile. C’est satisfaisant de voir que notre application affiche des
éléments mais il faut expliquer pourquoi notre appareil accélère
quand il ne bouge pas.

368 12. Accéléromètres

Un accéléromètre est en fait un capteur de force, et tous les objets
sur la Terre sont soumis à la force de la gravitation. Nous voilà dans
la même position qu’Isaac Newton qui eut l’intuition de la loi de la
gravitation universelle en observant la chute d’une pomme ; nous
découvrons la même chose avec un iPhone, de marque Apple, évi-
demment.

Lorsque l’appareil est au repos, nous mesurons l’attraction terrestre.

Visualiser la verticale
Améliorons notre application Accelero pour visualiser la verticale par
un segment de droite représentant la projection de la force d’attrac-
tion sur l’écran. Nous aurons besoin de définir une vue spécifique
VerticalView dont la largeur sera de préférence le double de la hau-
teur.

Modifier le contrôleur de vue

1 Modifiez le fichier AcceleroViewController.h pour y définir un nou-
vel outlet de type VerticalView :

#import <UIKit/UIKit.h>
@class VerticalView;
@interface AcceleroViewController : UIViewController

<UIAccelerometerDelegate> {
IBOutlet UILabel * xLabel;
IBOutlet UILabel * yLabel;
IBOutlet UILabel * zLabel;
IBOutlet VerticalView * vert;

}
@property(nonatomic,retain) UILabel * xLabel;
@property(nonatomic,retain) UILabel * yLabel;
@property(nonatomic,retain) UILabel * zLabel;
@property(nonatomic,retain) VerticalView * vert;
@end

Nous doterons notre vue VerticalView d’une propriété vertLine de
type GCSize qui contiendra les abscisses et ordonnées de l’accéléra-
tion.

Figure 12.3 : Vue VerticalView

36912.1. Utiliser les accéléromètres

2 Modifiez le fichier AcceleroViewController.m pour utiliser cette pro-
priété :

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acc

{
xLabel.text = [NSString stringWithFormat:@"%f", acc.x];
yLabel.text = [NSString stringWithFormat:@"%f", acc.y];
zLabel.text = [NSString stringWithFormat:@"%f", acc.z];
vert.vertLine = CGSizeMake(acc.x,acc.y);

}

3 Dans ce même fichier, importez le fichier VerticalView.h, synthéti-
sez les accesseurs de la propriété vert et libérez cette propriété.

Le type GCSize et la fonction GCSizeMake sont détaillés au chapi-
tre Dessins et animations.

Créer la vue VerticalView

Cette classe met en œuvre les techniques vues au chapitre Dessins et
animations. Elle doit assurer que :

j L’origine du segment se situe au milieu du bord supérieur de la
vue. Nous avons besoin d’une variable d’instance origin de type
CGPoint pour conserver ce point.

j La longueur maximale du segment est la hauteur, ou la demi-
largeur, de la vue. Nous définirons une variable d’instance scale de
type CGFloat pour conserver cette longueur maximale.

j Le segment est toujours visible, quelle que soit l’orientation de
l’appareil. Une variable d’instance endPoint de type CGPoint sera
évaluée à chaque modification de la propriété vertLine.

Procédez ainsi :

1 Sous XCode, créez une nouvelle classe VerticalView dérivée de
UIView. Déclarez son interface :

#import <UIKit/UIKit.h>
@interface VerticalView : UIView {

CGFloat scale;
CGPoint origin;
CGSize vertLine;
CGPoint endPoint;

}
@property(nonatomic,assign) CGSize vertLine;
@end

370 12. Accéléromètres

Les variables d’instance scale et origin doivent être évaluées lorsque la
vue est insérée dans la hiérarchie des vues et que sa taille est définie.

2 Ajoutez la méthode layoutSubviews dans le fichier VerticalView.m :
- (void) layoutSubviews
{

CGFloat height = self.bounds.size.height;
CGFloat width = self.bounds.size.width;
if (height<2.*width)

scale = height;
else

scale = width/2.;
origin = CGPointMake(width/2.,0.);

}

Lorsque la propriété vertLine est modifiée, la variable d’instance
endPoint doit être évaluée et la vue redessinée.

3 Définissez la méthode setVertLine: dans le fichier VerticalView.m :
- (void)setVertLine:(CGSize)line{

vertLine = line;
if (line.height<0) {

endPoint.x = line.width*scale+origin.x;
endPoint.y = -line.height*scale+origin.y;

} else {
endPoint.x = -line.width*scale+origin.x;
endPoint.y = line.height*scale+origin.y;

}
[self setNeedsDisplay];

}

4 Écrivez la méthode drawRect: qui ne présente pas de difficulté
particulière :
- (void)drawRect:(CGRect)rect {

CGContextRef context = UIGraphicsGetCurrentContext();
CGContextSetRGBStrokeColor(context, 1., 0.5, 0., 1.0);
CGContextSetLineWidth(context, 15.);
CGContextSetLineCap(context, kCGLineCapRound);
CGPoint segment[2] = {origin,endPoint};
CGContextStrokeLineSegments(context, segment, 2);

}

Finaliser et tester l’application

N’oubliez pas de synthétiser les accesseurs de la propriété vertLine.

1 Ouvrez le fichier AcceleroViewController.xib pour ajouter une vue
sur l’interface utilisateur. Définissez sa classe : VerticalView. Liez
cette vue à l’outlet vert du propriétaire du fichier.

2 Construisez l’application pour la tester sur un appareil réel. Nous
visualisons maintenant la verticale.

37112.1. Utiliser les accéléromètres

Même l’appareil au repos, la verticale gigote sans arrêt. Les accélé-
romètres sont sensibles et perçoivent les vibrations de quelques
milli-g. Si l’on souhaite une verticale plus stable, ou connaître la
position de l’appareil en faisant abstraction des vibrations, il faut
filtrer les données mesurées.

Filtrer les données
Nous allons ajouter un filtre paramétrable à notre application pour expé-
rimenter un filtre numérique et en illustrer les effets.

Figure 12.4 : Visualisation de la verticale

Figure 12.5 : Application avec un filtre numérique

372 12. Accéléromètres

1 Ouvrez le fichier AcceleroViewController.m et modifiez la méthode
−accelerometer:didAccelerate: :

- (void)accelerometer:(UIAccelerometer *)accelerometer
didAccelerate:(UIAcceleration *)acc

{
static UIAccelerationValue accelX=0.,accelY=0.,accelZ=0.;
accelX = self.coef*acc.x + (1.-self.coef)*accelX;
accelY = self.coef*acc.y + (1.-self.coef)*accelY;
accelZ = self.coef*acc.z + (1.-self.coef)*accelZ;
xLabel.text = [NSString stringWithFormat:@"%f",accelX];
yLabel.text = [NSString stringWithFormat:@"%f",accelY];
zLabel.text = [NSString stringWithFormat:@"%f",accelZ];
vert.vertLine = CGSizeMake(accelX,accelY);

}

La méthode utilise une propriété coef et trois variables statiques qui
contiennent le résultat du calcul des composantes de l’accélération.
Si par exemple la propriété coef vaut 10 %, le résultat du calcul est la
somme de 10 % de la nouvelle mesure et 90 % du calcul précédent.
Ainsi les tremblements seront atténués.

Nous utiliserons un ascenseur pour modifier la valeur du coefficient,
ceci facilitera l’expérimentation du filtre et nous aidera à comprendre
son effet.

2 Ajoutez une méthode −changeCoef: dans le fichier AcceleroView-
Controller.m. Elle sera l’action déclenchée par l’événement Change

Value de l’ascenseur.

- (void)changeCoef:(id)sender{
self.coef = [[sender valueForKey:@"value"] floatValue];
self.coefLabel.text =

[NSString stringWithFormat:@"%f",self.coef];
}

3 Synthétisez les accesseurs pour les nouvelles propriétés et
initialisez-les dans la méthode viewDidLoad :

@synthesize xLabel, yLabel, zLabel, coef, coefLabel, vert;
- (void)viewDidLoad {

[super viewDidLoad];
UIAccelerometer *accelerometer =

[UIAccelerometer sharedAccelerometer];
accelerometer.updateInterval = 0.1;
accelerometer.delegate = self;
self.coef = 0.5;
self.coefLabel.text = @"0.5";

}

37312.1. Utiliser les accéléromètres

4 Modifiez le fichier AcceleroViewController.h pour y déclarer les
nouvelles propriétés et la nouvelle méthode de la classe :

#import <UIKit/UIKit.h>
@class VerticalView;
@interface AcceleroViewController : UIViewController

<UIAccelerometerDelegate> {
IBOutlet UILabel * xLabel;
IBOutlet UILabel * yLabel;
IBOutlet UILabel * zLabel;
IBOutlet UILabel * coefLabel;
float coef;
IBOutlet VerticalView * vert;

}
@property(nonatomic,retain) UILabel * xLabel;
@property(nonatomic,retain) UILabel * yLabel;
@property(nonatomic,retain) UILabel * zLabel;
@property(nonatomic,retain) UILabel * coefLabel;
@property(nonatomic,assign) float coef;
@property(nonatomic,retain) VerticalView * vert;
- (IBAction)changeCoef:(id)sender;
@end

5 Modifiez l’interface utilisateur en ouvrant le fichier AcceleroView-
Controller.xib. Ajoutez un ascenseur et un label. Vérifiez que les
valeurs de l’ascenseur sont comprises entre 0 et 1. Liez ces élé-
ments aux nouveaux outlets du propriétaire du fichier et liez l’évé-
nement Change Value de l’ascenseur à l’action changeCoef: du
propriétaire du fichier.

Vous pouvez maintenant construire l’application et la tester sur votre
appareil. Une faible valeur du coefficient, environ 0,1, diminue forte-
ment les perturbations ; le repère graphique de la verticale ne trem-
ble plus, et les deux premières décimales des composantes de l’ac-
célération sont stables. Mais cette amélioration présente un
inconvénient : lors d’un changement d’orientation de l’appareil, il
faut plusieurs secondes pour que le segment représentant la verti-
cale rallie sa nouvelle position.

Apple recommande d’utiliser un coefficient de 0,1. Si vous trouvez
qu’avec cette valeur, l’accélération calculée n’est pas assez réactive,
vous pouvez augmenter la fréquence de mesure en modifiant la
valeur de la propriété updateInterval de l’accéléromètre. Les valeurs
recommandées par Apple sont :

j entre 0,05 et 0,1 pour connaître l’orientation de l’appareil ;

374 12. Accéléromètres

j entre 0,015 et 0,03 pour utiliser les mouvements de l’appareil dans
des jeux ;

j entre 0,01 et 0,015 pour mesurer des mouvements très rapides,
0,01 est la valeur la plus faible admissible.

12.2. Déterminer les mouvements
de l’appareil

Le filtre passe-bas que nous venons d’expérimenter permet de
connaître l’orientation de l’appareil. Dans certains cas, on peut sou-
haiter que notre application réagisse aux changements d’orientation.
Physiquement, l’application doit rechercher les modifications d’ac-
célération, via un filtre passe-haut :

accelX = acc.x - ((acc.x * self.coef) +
(accelX* (1.0 - self.coef)));

accelY = acc.y - ((acc.y * self.coef) +
(accelY* (1.0 - self.coef)));

accelZ = acc.z - ((acc.z * self.coef) +
(accelY* (1.0 - self.coef)));

Essayez ce filtre dans l’application Accelero.

Souvenez-vous, vous avez également la possibilité de détecter les
secousses en utilisant les événements gérés par l’application.
Reportez-vous pour cela au chapitre Tapes, touches et gestes.

12.3. Connaître l’orientation
de l’appareil

Nous savons maintenant utiliser les accéléromètres afin de connaître
la position relative de l’appareil par rapport à la verticale, ou pour en
déterminer précisément les mouvements. Dans la plupart des cas
cependant, l’application n’a pas besoin de ce niveau de détail, elle a
simplement besoin de connaître l’orientation de l’écran afin d’affi-
cher les vues dans le "bon" sens.

37512.3. Connaître l’orientationde l’appareil

Figure 12.6 : Orientation Portrait de
l’appareil

Figure 12.7 : Orientation Paysage de l’appareil

376 12. Accéléromètres

Retour sur la classe UIDevice
La classe UIDevice dispose d’une propriété orientation à lecture seule
de type UIDeviceOrientation. La valeur de cette propriété donne
l’orientation de l’appareil :

j UIDeviceOrientationUnknown, l’orientation ne peut être déterminée.

j UIDeviceOrientationPortrait, orientation Portrait bouton principal
en bas.

j UIDeviceOrientationPortraitUpsideDown, orientation Portrait bouton
principal en haut.

j UIDeviceOrientationLandscapeLeft, orientation Paysage bouton
principal à droite.

j UIDeviceOrientationLandscapeRight, orientation Paysage bouton
principal à gauche.

j UIDeviceOrientationFaceUp, l’appareil est parallèle au sol, l’écran
vers le haut.

j UIDeviceOrientationFaceDown, l’appareil est parallèle au sol, l’écran
vers le bas.

Nous avons déjà rencontré la classe UIDevice au chapitre Dessins
et animations.

L’obtention de l’orientation est très simple. Il faut privilégier l’ins-
tance unique de la classe UIDevice, puis activer l’entretien de sa
propriété orientation avant d’obtenir sa valeur :
UIDevice *device = [UIDevice currentDevice];
[device beginGeneratingDeviceOrientationNotifications];
UIDeviceOrientation *orientation = device.orientation;

Afin d’économiser la batterie, il est recommandé de désactiver les
accéléromètres lorsque l’application n’a pas besoin de connaître
l’orientation de l’appareil :
[device endGeneratingDeviceOrientationNotifications];

S’abonner aux changements d’orientation
Interroger l’instance unique de la classe UIDevice est un moyen de
connaître l’orientation de l’appareil. Il est parfois plus pratique d’être
informé lors d’un changement d’orientation. Il faut pour cela s’abon-
ner aux notifications UIDeviceOrientationDidChangeNotification émi-
ses par cette instance.

37712.3. Connaître l’orientationde l’appareil

Dans ce cas aussi, il faut activer l’émission des notifications par le
message beginGeneratingDeviceOrientationNotifications sur l’ins-
tance unique de la classe UIDevice.

Reportez-vous au chapitre Persistance des données si vous avez
oublié comment vous abonner à une notification.

Orienter automatiquement les vues
Une fonctionnalité très attrayante des logiciels sur iPhone est de voir
l’interface utilisateur suivre l’orientation de l’appareil. Cette fonction-
nalité est facile à obtenir ; nous allons la réaliser avec notre applica-
tion Accelero.

Obligatoire sur l’iPad
Sauf cas exceptionnel, vos applications pour iPad devront prendre en

charge l’orientation automatique des vues.

La prise en charge de l’orientation automatique nécessite deux éta-
pes :

j Le contrôleur indique les orientations prises en charge.

j La taille et la position de chaque vue doivent être définies pour les
orientations Portrait et Paysage.

Figure 12.8 : Accelero en mode paysage

378 12. Accéléromètres

Autorotations prises en charge

Modifiez la méthode −shouldAutorotateToInterfaceOrientation: dans
le fichier AcceleroViewController.m :
- (BOOL)shouldAutorotateToInterfaceOrientation:

(UIInterfaceOrientation)interfaceOrientation {
return YES;

}

Cette méthode est appelée à chaque changement d’orientation de
l’interface. Elle doit retourner YES si l’autorotation est prise en charge
pour l’orientation passée en paramètre.

Par défaut, la méthode définie dans la classe UIViewController répond
YES pour l’orientation Portrait UIDeviceOrientationPortrait, et NO pour
les trois autres orientations de l’interface. Nous redéfinissons cette
méthode dans la classe AcceleroViewController pour qu’elle réponde
YES pour toutes les orientations ; l’interface utilisateur sera toujours
orientée correctement quelle que soit la position de l’appareil.

Orientation de l’appareil et de l’interface
Seules les quatre valeurs UIDeviceOrientationPortrait, UIDevice

OrientationPortraitUpsideDown, UIDeviceOrientationLandscapeLeft et
UIDeviceOrientationLandscapeRight peuvent être utilisées pour l’orienta-
tion de l’interface utilisateur.

Disposition des vues

1 Ouvrez le fichier AcceleroViewController.xib sous Interface Builder.
Le bouton en haut à droite de la fenêtre de la vue principale permet
de basculer la représentation de l’interface entre le mode Portrait
et le mode Paysage.

2 Cliquez sur le bouton de basculement pour voir ce que donnerait
l’interface en mode Paysage : le résultat n’est pas très concluant.
Les vues restent à gauche de l’écran, la partie droite n’est pas
utilisée, et les vues du bas sortent de l’écran. Nous aimerions

Figure 12.9 : Basculer la vue en mode Paysage

37912.3. Connaître l’orientationde l’appareil

qu’en mode Paysage, les champs de texte indiquant les valeurs
des composantes de l’accélération restent à gauche de l’écran, et
que la vue graphique ainsi que le réglage du filtre passent à droite.

3 Revenez en mode Portrait et sélectionnez les vues que vous sou-
haitez faire glisser sur la droite lorsque la vue principale basculera
en mode Paysage.

4 Affichez l’inspecteur de taille, commande Size Inspector du menu
Tools (X+[3]), et réglez les paramètres Autosizing de sorte que ces
vues soient attachées par leurs bords droit et bas plutôt que par
leurs bords haut et gauche, ce qui est le défaut.

5 Basculez la vue principale en mode Paysage ; les vues du bas
glissent vers la droite de l’écran. Au besoin, ajustez la position et la
taille de chacune des vues pour que leur disposition soit correcte
aussi bien en mode Paysage qu’en mode Portrait.

Figure 12.10 : Sélection suite au glisser à droite en
mode Paysage

Figure 12.11 : Attache des vues par leurs bords droit et bas

380 12. Accéléromètres

Les paramètres Autosizing fonctionnent de la façon suivante :

j Il existe un attachement pour chacun des quatre bords de la vue,
représenté par un trait plein ou pointillé :

Un trait plein signifie que la distance est fixe entre le bord de la
vue sélectionné et le bord correspondant de sa super-vue.

Un trait pointillé signifie qu’il n’y a pas de contrainte de distance
entre le bord de la vue sélectionné et le bord correspondant de
sa super-vue.

j Il existe deux indicateurs de dimension, pour la hauteur et la
largeur de la vue, représentés par un trait plein ou pointillé :

Un trait pointillé signifie que la dimension est fixe.

Un trait plein signifie que la dimension est variable en fonction
de la dimension correspondante de sa super-vue.

j En principe, si les attachements de bords opposés sont tous les
deux en traits pleins, il faut que la dimension entre ces bords soit
variable, donc également en trait plein.

Pour que ces paramètres soient pris en compte, la case Autoresize
Subviews doit être cochée dans l’inspecteur des attributs de la super-
vue, en l’occurrence la vue principale, ce qui est le défaut.

6 Reconstruisez l’application sous XCode et vérifiez que l’interface
utilisateur suit l’orientation de l’appareil.

Challenge

En testant l’application Accelero, vous remarquez que l’indicateur
graphique de verticale fonctionne uniquement en mode Portrait.
Votre challenge sera de modifier l’application Accelero, et principale-
ment la classe VerticalView pour qu’elle fonctionne pour les quatre
orientations de l’interface.

12.4. Checklist
Nous avons appris à mettre en œuvre les accéléromètres pour dé-
terminer la position de l’appareil ou pour en détecter les mouve-
ments, et les classes et types concernés :

j UIAccelerometer ;

j UIAccelerometerDelegate ;
j UIAcceleration ;

38112.4. Checklist

j UIAccelerationValue.

Nous avons vu comment utiliser la classe UIDevice, et son instance
unique, pour connaître l’orientation de l’appareil et programmer les
notifications des changements d’orientation.

Nous savons doter nos applications de la fonctionnalité d’autorota-
tion de l’interface utilisateur.

382 12. Accéléromètres

C
H

A
P

IT
R

E
13

SPÉCIFICITÉS
DE L’IPAD

Un SDK, deux cibles .. 385
Nouveautés de l’interface visuelle .. 387
Reconnaissance des gestes .. 396
Checklist .. 405

383

Vous disposez maintenant de connaissances suffisantes pour déve-
lopper vos propres applications, qui peuvent s’exécuter de façon
identique sur iPhone, iPod Touch et iPad.

Certains ne voient dans l’iPad qu’un gros iPhone simplement moins
pratique à glisser dans la poche de son veston. Il est vrai que ces
appareils mettent en œuvre exactement les mêmes technologies,
avec pour l’iPad un écran plus large et une puissance et une autono-
mie accrues. L’iPad ouvre un univers d’applications qui reste à défri-
cher ; il lance une révolution de l’informatique mobile comparable à
ce que la musique a connu avec le baladeur MP3.

À la fin de ce chapitre, vous connaîtrez les techniques spécifiques à
l’iPad qui vous permettront de créer vos applications, et pourquoi
pas d’être un acteur de la révolution en marche.

13.1. Un SDK, deux cibles
La version 3.2 du SDK de l’iPhone OS permet de développer des
applications pour des versions très anciennes ; par exemple la ver-
sion 2.0 distribuée au printemps 2008. En principe, une application
est produite pour la dernière version d’OS disponible, mais il peut
être intéressant d’accroître le nombre de ses clients en étendant la
compatibilité de l’application avec des versions d’OS antérieures.

La particularité introduite par l’iPad est la coexistence de deux "der-
nières" versions :

j La version 3.1.3 est la dernière version pour iPhone (et iPod Touch).

j La version 3.2 est la dernière version pour iPad (c’est aussi la
première).

Tous les chapitres précédents portent sur l’utilisation du SDK 3.2
pour la production d’applications destinées à la version 3.1.3 : les
applications iPhone capables de tourner sur iPad. Le présent chapitre
porte sur les spécificités de la version 3.2 : sur les applications spé-
cifiquement dédiées à l’iPad.

Choisir sa cible de déploiement
Le plus simple pour choisir la cible de déploiement de l’application
(iPhone ou iPad) est de le préciser à la création du projet.

38513.1. Un SDK, deux cibles

Si l’on veut redéfinir la cible de déploiement sur un projet préexis-
tant, on peut le faire dans la fenêtre d’information de la cible du
projet. Le tableau ci-après résume les valeurs des paramètres de
build en fonction de la cible de déploiement.

Tableau 13.1 : Valeurs des paramètres de build pour fixer la cible de déploiement

Paramètre Valeur pour iPhone Valeur pour iPad Valeur universelle

iPhone OS deployment target iPhone OS 3.1.3 iPhone OS 3.2 iPhone OS 3.1.3

Targeted Device Family iPhone iPad iPhone/iPad

Base SDK iPhone Device 3.1.3 iPhone Device 3.2 iPhone Device 3.2

Figure 13.1 : Définition de la cible
de déploiement du projet

Figure 13.2 : Paramètres de la cible de déploiement

386 13. Spécificités de l’iPad

La dernière colonne du tableau est intitulée Valeur universelle. Une
application iPhone OS est dite universelle lorsqu’elle s’adapte à l’ap-
pareil sur lequel elle s’exécute : iPhone ou iPad.

Créer une application universelle
Le plus simple pour créer une application universelle est de partir
d’un projet iPhone.

1 Ouvrez votre projet iPhone sous XCode et ouvrez le groupe Targets

dans la partie gauche de la fenêtre, Groups & Files.

2 Cliquez du bouton droit sur la cible désirée pour ouvrir le menu
contextuel et sélectionnez la commande Upgrade Current Target for

iPad…. Une boîte de dialogue s’ouvre pour vous permettre d’indi-
quer si vous souhaitez créer une application universelle unique
(One Universal application) ou deux applications spécifiques (Two

device-specific applications).

Dans les deux cas, XCode va générer des fichiers NIB pour iPad en
dupliquant les fichiers NIB du projet dans un dossier et dans un
groupe Resources-iPad. Ainsi vous pouvez modifier ces fichiers pour
particulariser l’interface utilisateur à chaque type d’appareil.

Dans le cas d’une application universelle, il vous faudra écrire du code
qui sache s’adapter à l’appareil. Dans le second cas, vous écrirez
deux applications dans le même projet.

13.2. Nouveautés de l’interface visuelle
La surface de l’écran plus de quatre fois plus grande sur l’iPad ouvre
des possibilités supplémentaires que nous allons examiner dans
cette section. Il y sera question notamment des vues contextuelles
(popover) et des vues scindées (splitview), deux des principales nou-
veautés de la version 3.2.

Recommandations générales

Autorotation de l’interface

Commençons par une nouveauté qui n’en est pas une. Nous avons
vu au chapitre précédent comment inclure l’autorotation de l’inter-
face dans une application iPhone.

38713.2. Nouveautés de l’interface visuelle

Reportez-vous au chapitre Accéléromètres si vous avez oublié
comment gérer l’autorotation.

La "nouveauté" est que cette fonctionnalité doit être systématique-
ment incluse dans les applications pour iPad afin de respecter les
directives d’Apple concernant l’interface utilisateur. Vous pouvez
consulter ces directives dans le document iPad Human Interface Gui-
delines d’Apple.

Hiérarchisation des données

La petite taille de l’écran de l’iPhone nécessite un design particulier
de l’interface utilisateur, qui impose généralement de structurer les
données hiérarchiquement. Cette hiérarchisation est à éviter sur iPad
dont l’écran est plus grand que celui d’un iPhone.

Il faudra donc éviter à l’utilisateur d’avoir à naviguer entre plusieurs
écrans, lui donner le maximum d’informations et de possibilité sur
un écran. L’application de type navigation, très courante sur iPhone,
est remplacée par l’application de type Vues Scindées (splitview) spé-
cifique à l’iPad.

On peut également atteindre ce résultat en regroupant le contenu de
plusieurs écrans d’une application iPhone sur un seul écran dans
l’application équivalente sur iPad. Pensez aussi, lors du design de

Figure 13.3 : Application de type vues scindées

388 13. Spécificités de l’iPad

l’interface utilisateur, à présenter les informations détaillées ou les
formulaires de saisie dans une vue contextuelle (popover).

Vues modales
Il y a deux différences dans la façon dont sont utilisées les vues
modales entre l’iPhone et l’iPad :

j Sur iPhone, une vue modale occupe tout l’écran, ce n’est pas
forcément le cas sur iPad.

j Il n’y a pas de limitation à l’emploi des vues modales sur iPhone ;
les directives d’Apple en limitent l’usage sur iPad.

Présentation à l’écran

La propriété modalPresentationStyle de la classe UIViewController
(dans la version 3.2 du SDK) permet de spécifier la façon dont la vue
modale doit être présentée. Elle peut prendre les valeurs suivantes :

j UIModalPresentationFullScreen, valeur par défaut, présentation de
la vue modale en plein écran (comme sur l’iPhone) ;

j UIModalPresentationPageSheet, la vue modale occupe toute la hau-
teur de l’écran, mais sa largeur est celle de la plus petite dimen-
sion de l’écran (768 pixels sur iPad) ;

j UIModalPresentationFormSheet, la vue modale est plus petite que
l’écran et centrée sur celui-ci ;

j UIModalPresentationCurrentContext, la vue modale utilise le même
style que sa vue parente.

Lors de l’affichage d’une vue modale, les parties de l’écran non
recouvertes par la vue sont grisées et inaccessibles.

Usage des vues modales

Sur iPad, les vues modales doivent être utilisées exclusivement lors-
que la tâche en cours requiert l’intervention de l’utilisateur.

Figure 13.4 : Utilisation d’une vue contextuelle

38913.2. Nouveautés de l’interface visuelle

Pour tous les autres usages, il est préférable d’utiliser les vues
contextuelles (popover), nouveauté de la version 3.2 :

j présenter une liste de sélections ou d’actions ;

j présenter des informations détaillées ;
j présenter une boîte à outils ou des options de configuration.

La différence essentielle entre une vue modale et une vue contextuelle
porte sur le comportement lorsque l’utilisateur touche l’extérieur de
la vue :

j La première interdit toute action à l’extérieur de la vue, qui est
grisée.

j La seconde est refermée.

Vues contextuelles
Une vue contextuelle (popover) est présentée à l’écran avec une flè-
che pointant vers un bouton ou une autre vue.

Préparer une vue contextuelle

Deux contrôleurs de vue sont mis en jeu :

j le contrôleur de vue contextuel, instance de la classe
UIPopoverController, chargé de gérer le contenant de la vue contex-
tuelle ;

j un contrôleur de vue quelconque, dont la classe dérive de
UIViewController, chargé de gérer le contenu de la vue contex-
tuelle.

Le contrôleur du contenu est préparé de la même façon, quelle que
soit la manière dont il sera affiché : dans une vue contextuelle, une
vue modale, une pile de navigation, etc. Une spécificité toutefois, la
taille du contenu de la vue contextuelle doit être spécifiée dans la
propriété contentSizeForViewInPopover de son contrôleur, par exem-
ple :

Figure 13.5 : Exemple de
vue contextuelle

390 13. Spécificités de l’iPad

contentViewController.contentSizeForViewInPopover =
CGSizeMake(320.0, 110.0);

Limitation de la taille
La largeur du contenu d’une vue contextuelle doit être comprise entre 320

et 600 pixels. Sa hauteur est libre.

Afficher une vue contextuelle

Le contrôleur du contenu est associé au contrôleur du contenant à la
création de ce dernier :
UIPopoverController* aPopover =

[[UIPopoverController alloc]
initWithContentViewController:contentViewController];

Lors de sa présentation à l’écran, il faut préciser l’objet sur lequel doit
pointer la flèche de la vue contextuelle ainsi que les directions
autorisées. On utilise deux méthodes différentes suivant que la vue
est associée à un bouton de barre d’outils (UIBarButtonItem) ou plus
généralement à un rectangle dans une vue :

j −presentPopoverFromBarButtonItem:permittedArrowDirections:animated:
pour associer la vue à un bouton ;

j −presentPopoverFromRect:inView:permittedArrowDirections:animated:
dans le cas général.

Le paramètre permittedArrowDirections permet de préciser quelles
directions sont autorisées pour la flèche de la vue contextuelle :

j UIPopoverArrowDirectionUp autorise une flèche vers le haut.

j UIPopoverArrowDirectionDown autorise une flèche vers le bas.
j UIPopoverArrowDirectionLeft autorise une flèche vers la gauche.
j UIPopoverArrowDirectionRight autorise une flèche vers la droite.

Ces valeurs peuvent être combinées par l’opérateur | afin d’autoriser
plusieurs directions. La valeur UIPopoverArrowDirectionAny peut éga-
lement être utilisée pour autoriser la flèche dans toutes les direc-
tions.

Refermer une vue contextuelle

Lorsque l’utilisateur touche l’extérieur d’une vue contextuelle, cette
dernière est automatiquement refermée. Le délégué du contrôleur
de la vue contextuelle en est informé ; il peut bloquer la fermeture au
besoin.

39113.2. Nouveautés de l’interface visuelle

On peut également refermer la vue contextuelle en transmettant le
message −dismissPopoverAnimated: à son contrôleur.

Délégué de vue contextuelle

Le délégué du contrôleur de vue contextuelle, non obligatoire, ré-
pond au protocole UIPopoverControllerDelegate. Il reçoit le message
–popoverControllerShouldDismissPopover: lorsque l’utilisateur touche
l’extérieur de la vue. Il doit retourner YES pour autoriser sa fermeture
(valeur par défaut).

Lorsque la vue contextuelle est effectivement refermée, son délégué
reçoit le message

–popoverControllerDidDismissPopover:.

Vues scindées
Les vues scindées (splitview) concernent un mode d’utilisation de
l’écran de l’iPad :

j En mode Paysage, l’écran est scindé en deux, une vue est affichée
dans la partie gauche, d’une largeur de 320 pixels, et une seconde
vue occupe l’autre partie de l’écran.

j En mode Portrait, seule la partie droite est affichée, la partie
gauche peut être visualisée dans une vue contextuelle.

Figure 13.6 : Vue scindée en mode Paysage

392 13. Spécificités de l’iPad

Contrôleur de vue scindée

Le contrôleur de vue scindée, instance de la classe
UISplitViewController, doit être le contrôleur racine de la fenêtre. Il ne
peut être inclus dans un autre contrôleur de vue. Il prend en charge
le comportement de la vue lors des changements d’orientation de
l’interface utilisateur.

Cette classe présente seulement deux propriétés :

j viewControllers, tableau contenant les deux contrôleurs de vue
associés à la vue scindée, dans l’ordre la vue de gauche puis la vue
de droite ;

j delegate, le délégué de vue scindée qui est informé des change-
ments d’orientation de l’interface utilisateur.

Délégué du contrôleur de vue scindée

Le délégué du contrôleur de vue scindée répond au protocole
UISplitViewControllerDelegate. Il reçoit un message –splitView
Controller:willHideViewController:withBarButtonItem:forPopover
Controller: lorsque l’appareil passe en mode Portrait et que la vue de
gauche va être masquée. Ce message contient notamment un bou-
ton de barre d’outils préparé par le contrôleur de vue scindée. Il
appartient au délégué d’afficher ce bouton qui permettra à l’utilisa-
teur de voir le contenu de la vue de gauche dans une vue contex-
tuelle. Par exemple, pour afficher ce bouton à gauche d’une barre
d’outils tout en lui donnant un titre :

Figure 13.7 : Vue scindée en mode Portrait

39313.2. Nouveautés de l’interface visuelle

- (void)splitViewController:(UISplitViewController*)svc
willHideViewController:(UIViewController *)aViewController

withBarButtonItem:(UIBarButtonItem*)barButtonItem
forPopoverController: (UIPopoverController*)pc {

barButtonItem.title = @"Objets prêtés";
NSMutableArray *items = [[toolbar items] mutableCopy];
[items insertObject:barButtonItem atIndex:0];
[toolbar setItems:items animated:YES];
[items release];

}

À l’inverse, le message –splitViewController:willShowViewController:
invalidatingBarButtonItem: est reçu par le délégué du contrôleur de
vue scindée lorsque l’appareil passe en mode Paysage. Il faut alors
retirer le bouton précédent :
- (void)splitViewController: (UISplitViewController*)svc
willShowViewController:(UIViewController *)aViewController

invalidatingBarButtonItem:(UIBarButtonItem *)barButtonItem {
NSMutableArray *items = [[toolbar items] mutableCopy];
[items removeObjectAtIndex:0];
[toolbar setItems:items animated:YES];
[items release];

}

Le dernier message susceptible d’être reçu par le délégué du contrô-
leur de vue scindée est –splitViewController:popoverController:
willPresentViewController:, en mode Portrait lorsque la vue contex-
tuelle contenant la vue de gauche est sur le point d’être affichée.

Application de type Vue scindée

Le plus simple pour utiliser les vues scindées est de créer sous
XCode une application de type Vue scindée.

Figure 13.8 : Création d’une
application de type Vue
scindée

394 13. Spécificités de l’iPad

Nous disposons alors d’un fichier MainWindow.xib appartenant à
l’application et qui contient :

j le délégué d’application, classique ;

j un contrôleur de vue scindé dont :

la vue de gauche est un contrôleur de navigation dont la vue
principale est un contrôleur de vue en table RootViewController ;

la vue de droite est décrite dans le fichier DetailView.xib et son
contrôleur est DetailViewController.

La vue détaillée préparée dans le fichier DetailView.xib offre une barre
d’outils qui contiendra le bouton permettant de voir la vue de gauche
en mode Portrait. Le contrôleur de la vue détaillée DetailView
Controller est le délégué de la vue scindée ; c’est lui qui gère le
bouton de visualisation de la vue gauche en mode Portrait.

Figure 13.9 : Contenu du fichier MainWindow.xib

Figure 13.10 : Contenu du fichier DetailView.xib

39513.2. Nouveautés de l’interface visuelle

Challenge

Réécrivez l’application Emprunts sous forme de vue scindée pour
iPad. Souvenez-vous qu’il n’est pas utile de hiérarchiser les données
pour les manipuler sur iPad.

13.3. Reconnaissance des gestes
Vous savez déjà comment interpréter les événements reçus par une
vue pour reconnaître les gestes effectués par l’utilisateur.

Reportez-vous au chapitre Tapes, touches et gestes si vous avez
besoin de vous rafraîchir la mémoire au sujet de la gestion des
événements et la reconnaissance des gestes sur iPhone.

La version 3.2 permet heureusement de simplifier grandement la
reconnaissance des gestes. Il suffit maintenant de programmer une
cible-action sur un ou plusieurs analyseurs de geste, puis d’attacher
ces dernier à la vue. C’est une bonne nouvelle, vous n’avez plus
besoin de dériver la classe UIView ni d’écrire le code pour la recon-
naissance des gestes, sauf bien sûr si vous voulez développer vos
propres analyseurs.

Gestes de base
Un analyseur de geste est une instance d’une classe dérivée de
UIGestureRecognizer. En effet, cette classe est une classe abstraite qui
implémente les mécanismes fondamentaux pour la reconnaissance
des gestes. Chaque geste particulier est reconnu par une classe
concrète qui dérive de UIGestureRecognizer.

Un analyseur est programmé pour reconnaître un geste particulier.
Lorsque ce geste est reconnu, l’analyseur délivre une notification par
le mécanisme cible-action ; plusieurs cibles-actions peuvent être pro-
grammées sur chaque analyseur.

Modes de fonctionnement

Certains analyseurs fonctionnent de façon discrète ; une notification
vers chaque cible est émise lorsque le geste est reconnu, puis l’ana-
lyseur est remis à zéro pour attendre le geste suivant. D’autres
fonctionnent de façon continue ; ils délivrent une série de notifica-
tions qui débute quand le geste est reconnu et dure tant qu’il est
maintenu.

396 13. Spécificités de l’iPad

Analyseurs discrets

j Un analyseur de la classe UITapGestureRecognizer reconnaît les
tapes, simples ou multiples avec un ou plusieurs doigts. L’analy-
seur est programmé pour un nombre de tapes et un nombre de
doigts définis.

j Un analyseur de la classe UISwipeGestureRecognizer reconnaît les
glissements. Il est programmé pour reconnaître un geste dans une
ou plusieurs des quatre directions et avec un nombre de doigts
prédéterminés.

Analyseurs continus

j Un analyseur de la classe UIPinchGestureRecognizer reconnaît les
pincements ; rapprochement ou éloignement de deux doigts sur
l’écran. L’analyseur peut être interrogé sur le taux et la vitesse
d’éloignement des deux doigts.

j Un analyseur de la classe UIPanGestureRecognizer reconnaît les
déplacements libres sur l’écran d’un ou plusieurs doigts. L’analy-
seur est programmé pour un minimum et un maximum de tou-
ches simultanées. Il délivre le vecteur et la vitesse de déplacement.

j Un analyseur de la classe UIRotationGestureRecognizer reconnaît
les rotations avec deux doigts. L’analyseur peut être interrogé sur
la valeur et la vitesse de rotation.

j Un analyseur de la classe UILongPressGestureRecognizer reconnaît
les appuis prolongés. L’analyseur est programmé pour un nombre
de tapes (une par défaut), un nombre de doigts (un par défaut),
une durée minimale (0,4 secondes par défaut) et un déplacement
maximal (10 pixels).

Classe UIGestureRecognizer

La méthode −initWithTarget:action: est définie dans la classe abs-
traite UIGestureRecognizer. Elle doit être appliquée à la création d’une
instance de classe concrète pour associer l’analyseur à un couple
cible-action. Le sélecteur passé en paramètre doit répondre à la
signature standard d’une action ; il peut recevoir un paramètre qui
est l’émetteur de l’action (sender). Des exemples de code seront
donnés plus loin.

L’émetteur de l’action peut être utilisé par la cible pour connaître les
caractéristiques du geste qui vient d’être reconnu ; en particulier,
l’emplacement du geste dans la vue qui est rendu par l’une des deux
méthodes :

39713.3. Reconnaissance des gestes

j −locationInView: ;

j −locationOfTouch:inView: pour connaître l’emplacement d’une tou-
che particulière.

La propriété numberOfTouches permet de connaître le nombre de tou-
ches du geste, et la propriété enabled, de type BOOL et dont l’accesseur
est isEnabled, permet d’autoriser ou pas le fonctionnement de l’ana-
lyseur (il est autorisé par défaut).

Propriétés particulières à chaque geste

Pour chaque classe concrète dérivée de UIGestureRecognizer, les pro-
priétés et méthodes permettant de programmer l’analyseur (P) ou
d’obtenir les caractéristiques du geste reconnu (C) sont résumées
dans le tableau ci-après

Tableau 13.2 : Propriétés et méthodes des analyseurs de geste

Analyseur concret Propriété ou méthode P/C Usage

UITapGesture
Recognizer

NSUInteger number
OfTaps Required

P Nombre de tapes requis pour recon-
naître le geste (1 par défaut)

NSUInteger number
OfTouches Required

P Nombre de doigts requis pour recon-
naître le geste (1 par défaut)

UIPinch
Gesture
Recognizer

CGFloat scale C Facteur de pincement

CGFloat velocity C Vélocité en facteur d’échelle par se-
conde

UIPanGesture
Recognizer

NSUInteger maximum
Number OfTouches

P Nombre maximum de doigts requis
pour reconnaître le geste

NSUInteger minimum
Number OfTouches

P Nombre minimum de doigts requis
pour reconnaître le geste (1 par dé-
faut)

−(CGPoint)
translationInView:
(UIView *)view

C Déplacement du doigt dans les coor-
données de la vue passée en paramè-
tre

−(CGPoint)velocity
InView:
(UIView *)view

C Vitesse de déplacement du doigt dans
les coordonnées de la vue passée en
paramètre

UISwipe
Gesture
Recognizer

UISwipeGesture
RecognizerDirection
direction

P Direction du déplacement pour recon-
naître le geste

NSUInteger number
OfTouches
Required

P Nombre de doigts requis pour recon-
naître le geste (1 par défaut)

398 13. Spécificités de l’iPad

Tableau 13.2 : Propriétés et méthodes des analyseurs de geste

Analyseur concret Propriété ou méthode P/C Usage

UIRotation
Gesture
Recognizer

CGFloat rotation C Rotation en radians depuis le dernier
message

CGFloat velocity C Vitesse de rotation en radians/se-
conde

UILongPress
Gesture
Recognizer

CFTimeInterval
minimumPress
Duration

P Durée minimale de la touche (défaut
0,4 s)

NSInteger number
OfTouches
Required

P Nombre de doigts requis pour recon-
naître le geste (1 par défaut)

NSUInteger number
OfTaps
Required

P Nombre de tapes requis pour recon-
naître le geste (1 par défaut)

CGFloat allowable
Movement

P Déplacement maximum pour recon-
naître le geste (défaut 10 pixels)

UISwipeGestureRecognizerDirection est un type énuméré qui admet les
constantes suivantes :

j UISwipeGestureRecognizerDirectionRight, glissement vers la droite ;

j UISwipeGestureRecognizerDirectionLeft, glissement vers la gauche ;
j UISwipeGestureRecognizerDirectionUp, glissement vers le haut ;
j UISwipeGestureRecognizerDirectionDown, glissement vers le bas.

Ces valeurs peuvent être combinées par l’opérateur | pour autoriser
la reconnaissance du geste selon plusieurs directions.

Utiliser un analyseur de geste
Nous allons illustrer le fonctionnement des analyseurs de geste par
la mise en œuvre d’un analyseur de pincement (continu) et d’un
analyseur de tapes (discret).

Créer l’interface utilisateur

1 Créez une application pour iPad basée sur une vue (View-based
application) intitulée AnalyseurDeGeste. Ouvrez le fichier Analyseur-
DeGesteViewController.xib et placez trois labels et trois champs de
texte.

39913.3. Reconnaissance des gestes

2 Créez les outlets pour les champs de texte dans l’interface du
contrôleur de vue dans le fichier AnalyseurDeGesteViewControl-
ler.h. Profitez-en pour ajouter une variable d’instance afin de
compter les tapes simples et doubles et pour rendre compte du
pincement :

@interface AnalyseurDeGesteViewController :
UIViewController {

IBOutlet UITextField *scaleField;
IBOutlet UITextField *simpleTaps;
IBOutlet UITextField *doubleTaps;
CGFloat scale;
NSUInteger simpleTapCounter;
NSUInteger doubleTapCounter;

}
@property(retain,nonatomic) UITextField *scaleField;
@property(retain,nonatomic) UITextField *simpleTaps;
@property(retain,nonatomic) UITextField *doubleTaps;
@end

3 Effectuez les liens entre les outlets et les champs de texte sous
Interface Builder.

Mettre en œuvre les analyseurs

Les analyseurs de geste communiquent par le mécanisme cible-
action lorsqu’ils reconnaissent un geste. Ajoutez une action dans le
contrôleur de vue pour chaque geste que nous souhaitons détecter
(simple tape, double tape et pincement) :
@interface AnalyseurDeGesteViewController :

UIViewController {
IBOutlet UITextField *scaleField;
IBOutlet UITextField *simpleTaps;
IBOutlet UITextField *doubleTaps;
CGFloat scale;
NSUInteger simpleTapCounter;
NSUInteger doubleTapCounter;

}
@property(retain,nonatomic) UITextField *scaleField;
@property(retain,nonatomic) UITextField *simpleTaps;

Figure 13.11 : Interface de l’analyseur de geste

400 13. Spécificités de l’iPad

@property(retain,nonatomic) UITextField *doubleTaps;
- (IBAction) scaleChange:(UIGestureRecognizer *)sender;
- (IBAction) simpleTap;
- (IBAction) doubleTap;
@end

Nous allons maintenant écrire le code pour mettre en œuvre les
analyseurs.

Analyseur de tapes

La méthode −initWithTarget:action: définie dans la classe mère de
tous les analyseurs de geste (UIGestureRecognizer) permet d’identifier
le couple cible-action à actionner à la reconnaissance du geste. Par
exemple, pour l’analyseur de tape simple :
UITapGestureRecognizer *simpleTapRecognizer ;
simpleTapRecognizer = [[UITapGestureRecognizer alloc]

initWithTarget:self action:@selector(simpleTap)];

Ensuite, il faut programmer l’analyseur en utilisant ses propriétés.
Pour un analyseur de tapes, les propriétés sont :

j numberOfTapsRequired, nombre de tapes requises ;

j numberOfTouchesRequired, nombre de doigts requis.

Enfin, la méthode −addGestureRecognizer: définie dans UIView permet
d’attacher des analyseurs de geste à une vue. On peut ensuite libérer
la référence à l’analyseur car elle est retenue par la vue :
[self.view addGestureRecognizer:simpleTapRecognizer];
[simpleTapRecognizer release];

Dans notre application, la réception des tape simples et doubles va
simplement incrémenter leur compteur respectif. Saisissez le code
des actions dans le fichier AnalyseurDeGesteViewController.m :
- (IBAction) simpleTap{

simpleTapCounter++;
simpleTaps.text =

[NSString stringWithFormat:@"%d",simpleTapCounter];
}
- (IBAction) doubleTap{

doubleTapCounter++;
doubleTaps.text =

[NSString stringWithFormat:@"%d",doubleTapCounter];
}

Analyseur de pincement

L’analyseur de pincement est encore plus simple à créer car il ne se
programme pas :

40113.3. Reconnaissance des gestes

UIPinchGestureRecognizer *pinchRecognizer ;
pinchRecognizer = [[UIPinchGestureRecognizer alloc]

initWithTarget:self action:@selector(scaleChange:)];
[self.view addGestureRecognizer:pinchRecognizer];
[pinchRecognizer release];

Nous utilisons ici un sélecteur dont le nom finit par deux points pour
indiquer qu’il faut lui passer l’émetteur de l’action (sender) en para-
mètre lors de la notification. Ainsi nous pourrons interroger l’analy-
seur sur les caractéristiques du geste, ce qui était inutile avec les
tapes qui n’ont pas de caractéristique particulière.

L’action connectée au pincement affiche le facteur d’échelle à l’écran.
Saisissez le code de l’action dans le fichier AnalyseurDeGesteView-
Controller.m :
- (IBAction) scaleChange:(UIGestureRecognizer *)sender{

scale = 100.*[(UIPinchGestureRecognizer *)sender scale];
scaleField.text=[NSString stringWithFormat:@"%f",scale];

}

Initialiser l’application

Le code pour initialiser les analyseurs de geste doit être inséré dans
la méthode −viewDidLoad du contrôleur de vue. Cette méthode
contient aussi le code pour initialiser les champs de texte et les
variables d’instances. Saisissez ce code dans le fichier Analyseur-
DeGesteViewController.m :
- (void)viewDidLoad {

[super viewDidLoad];
// Create and configure the Pinch recognizer
UIPinchGestureRecognizer *pinchRecognizer ;
pinchRecognizer = [[UIPinchGestureRecognizer alloc]

initWithTarget:self action:@selector(scaleChange:)];
[self.view addGestureRecognizer:pinchRecognizer];
// Create and configure the Double Tap recognizer
UITapGestureRecognizer *doubleTapRecognizer ;
doubleTapRecognizer = [[UITapGestureRecognizer alloc]

initWithTarget:self action:@selector(doubleTap)];
doubleTapRecognizer.numberOfTapsRequired = 2;
doubleTapRecognizer.numberOfTouchesRequired = 1;
[self.view addGestureRecognizer:doubleTapRecognizer];
// Create and configure the Simple Tap recognizer
UITapGestureRecognizer *simpleTapRecognizer ;
simpleTapRecognizer = [[UITapGestureRecognizer alloc]

initWithTarget:self action:@selector(simpleTap)];
simpleTapRecognizer.numberOfTapsRequired = 1;
simpleTapRecognizer.numberOfTouchesRequired = 1;
[self.view addGestureRecognizer:simpleTapRecognizer];
// Release the Gesture Recognizers
[pinchRecognizer release];

402 13. Spécificités de l’iPad

[doubleTapRecognizer release];
[simpleTapRecognizer release];
// Counters initialization
scale = 100.;
simpleTapCounter = 0;
doubleTapCounter = 0;
// Text Field initialization
scaleField.text =

[NSString stringWithFormat:@"%f",scale];
simpleTaps.text =

[NSString stringWithFormat:@"%d",simpleTapCounter];
doubleTaps.text =

[NSString stringWithFormat:@"%d",doubleTapCounter];
}

Complétez le code du contrôleur de vue avec la synthèse des acces-
seurs des propriétés, construisez l’application et testez-la.

Améliorer le comportement

Lorsque vous testez l’application, vous constatez que deux tapes
rapprochées sont comptabilisées deux fois :

j La première tape est comptée comme une tape simple.

j La seconde est comptée comme la deuxième tape d’une tape
double ; elle n’est pas comptée comme une tape simple.

L’analyseur de tape double ayant reconnu un geste, une notification
est émise par le mécanisme cible-action, et l’analyse des gestes est
interrompue ; c’est le comportement par défaut.

Dans certains cas, il est souhaitable de retarder la reconnaissance de
la tape simple ; attendre l’éventualité d’une deuxième tape pour
déterminer s’il s’agit d’une tape simple ou double. La méthode
−requireGestureRecognizerToFail: permet de demander au récepteur
du message de notifier la reconnaissance du geste uniquement si
l’analyseur passé en paramètre déclare qu’il n’a pas reconnu son
geste.

Pour éviter que la première tape d’une tape double ne soit interpré-
tée comme une tape simple, ajoutez la ligne de code suivante dans la
méthode −viewDidLoad :
[simpleTapRecognizer

requireGestureRecognizerToFail:doubleTapRecognizer];

Challenge

Complétez l’application AnalyseurDeGeste pour tester tous les gestes
proposés par la version 3.2 du SDK.

40313.3. Reconnaissance des gestes

Synchroniser les analyseurs
Dans la version 3.2, les événements de touches sont transmis simul-
tanément à la vue et aux éventuels analyseurs de geste qui lui sont
attachés.

Les analyseurs de geste sont très faciles à utiliser, le seul point
délicat est leur synchronisation lorsque plusieurs sont attachés à la
même vue. Un seul geste est reconnu lorsqu’un événement est reçu
par la vue, le premier analyseur qui déclenche une action bloque
tous les autres, le problème est que l’on ne sait pas lequel est "le
premier".

Par exemple si l’on programme simultanément un analyseur de tape
pour une tape simple et un second pour une tape double, une tape
double peut déclencher, en fonction de l’analyseur qui est "le pre-
mier" :

j soit la notification d’une tape simple puis d’une tape double ;

j soit la notification de deux tapes simples.

Le développeur dispose de plusieurs moyens pour synchroniser le
fonctionnement des analyseurs de geste :

j La propriété enabled permet de bloquer ou d’activer le fonctionne-
ment d’un analyseur.

j La méthode −requireGestureRecognizerToFail:, que nous venons
d’utiliser, permet de définir la priorité entre deux analyseurs.

j L’un des délégués de deux analyseurs peut permettre qu’ils émet-
tent une notification simultanée, au lieu que l’un bloque l’autre
comme dans le fonctionnement par défaut.

j Le délégué d’un analyseur peut bloquer temporairement sont
fonctionnement.

Délégué d’analyseur

Chaque analyseur dispose d’une propriété delegate qui référence son
éventuel délégué. Ce dernier doit répondre au protocole UIGesture
RecognizerDelegate qui déclare les trois méthodes suivantes :

j −gestureRecognizerShouldBegin: est appelée lorsque l’analyseur est
sur le point de commencer l’analyse d’un geste. Elle doit retourner
YES (valeur par défaut) si l’analyseur est autorisé à débuter l’ana-
lyse. Si elle répond NO, l’analyse est interrompue.

j −gestureRecognizer:shouldReceiveTouch: est appelée avant qu’un
événement de touche ne soit transmis à l’analyseur. Elle doit

404 13. Spécificités de l’iPad

retourner YES (valeur par défaut) pour autoriser la transmission et
NO pour l’interdire.

j −gestureRecognizer:shouldRecognizeSimultaneouslyWithGesture
Recognizer: est appelée lorsque deux analyseurs sont sur le point
de reconnaître simultanément un geste. La simultanéité est auto-
risée si l’un des délégués répond YES. NO est la valeur par défaut.

13.4. Checklist
Nous avons exploré dans ce chapitre les spécificités du développe-
ment d’applications pour iPad concernant l’interface utilisateur.

Nous avons commencé par les réglages des paramètres de XCode
pour sélectionner la cible des applications : iPhone ou iPad.

Concernant l’aspect visuel, nous savons maintenant :

j que l’utilisation des vues modales est limitée à des cas très parti-
culiers et que l’on peut modifier leur aspect visuel avec la pro-
priété modalPresentationStyle ;

j que pour les autres usages, il faut préférer les Vues contextuelles
(popover) avec la mise en œuvre du contrôleur UIPopoverController
et de son délégué UIPopoverControllerDelegate ;

j que les applications de type Vue scindée (splitview) sont à préférer
à la navigation hiérarchique, avec la mise en œuvre du contrôleur
UISplitViewController et de son délégué UISplit ViewController
Delegate.

Concernant la gestion des événements de touche, nous avons exa-
miné le fonctionnement et l’utilisation des analyseurs de geste (ges-
ture recognizer).

40513.4. Checklist

C
H

A
P

IT
R

E
14

ANNEXE

Épilogue ... 409
Politique d’Apple ... 409
Processus de diffusion .. 412

407

14.1. Épilogue
Nous avons exploré dans cet ouvrage les principaux frameworks
permettant de mettre en œuvre les possibilités de l’iPhone, de l’iPod
Touch et de l’iPad, en nous concentrant sur celles qui rendent ces
appareils si attrayants : écran multi Touch, accéléromètres, capteur
magnétique.

Nous vous laissons explorer par vous-même, en fonction de vos
besoins, les technologies plus classiques, par exemple celles liées à
la connectivité, puis celles plus avancées (sécurité, debugger, tests
automatiques, etc.). Certaines de ces technologies sont disponibles
sur iPhone et iPad, d’autres sont spécifiques à ce dernier :

j possibilité élémentaire de communication de fichiers ;

j production de documents PDF ;
j gestion améliorée des polices de caractères ;
j possibilité d’adapter la saisie de texte, etc.

La documentation d’Apple est très bien faite et les forums de déve-
loppeurs francophones vous seront d’une aide précieuse : par exem-
ple http://forum.macbidouille.com ou http://www.pommedev.com.

Nous vous souhaitons un parcours rempli de découvertes et de
succès.

14.2. Politique d’Apple
La suite de cette annexe est consacrée à la description de la politique
d’Apple concernant les développeurs pour iPhone et aux processus
de diffusion des applications.

Apple pouvant à tout moment modifier ces conditions, les informa-
tions contenues dans cette annexe sont fournies à titre purement
indicatif.

Les différents statuts de développeur
Apple a défini trois niveaux de développeur :

j développeur enregistré (Registered iPhone Developer) qui permet :

de télécharger le SDK ;

d’accéder à la documentation Apple ;

de tester ses applications avec le simulateur d’iPhone.

40914.2. Politique d’Apple

j équipe de développement inscrite au programme iPhone (iPhone
Developer Program) qui permet :

de tester ses application sur des appareils réels ;

de diffuser ses applications de façon limitée ;

d’accéder aux versions Bêta d’iPhone OS et du SDK.

j équipe de développement inscrite au programme iTunes (iTunes
Connect) qui permet :

de diffuser ses applications sur l’AppStore ;

de percevoir des revenus.

Le tableau ci-après résume les conditions associées à ces différents statuts.

Tableau 14.1 : Conditions associées aux différents statuts

Niveau Coût Objectif Condition

Enregistré 0 Développer sur simulateur -

Programme
Standard

99 $ par an
(79 5)

Tester ou diffuser sur
100 appareils

Être enregistré

Programme
Entreprise

299 $ par an
(239 5)

Diffuser en interne dans
l’entreprise

Être enregistré et être une société
de plus de 500 personnes

Programme
iTunes

0 Diffuser sur l’App Store Avoir adhéré au programme
standard

Programme Entreprise
Ce programme ne permet pas de diffuser sur l’AppStore. Il est utile uni-

quement pour les grandes organisations souhaitant développer des applica-
tions spécifiques à usage interne.

Programme Standard
Ce programme est ouvert aux personnes physiques et aux personnes

morales (entreprises). Une équipe de plusieurs personnes peut adhérer à ce
programme.

Diffusion des applications
Il existe trois façons de diffuser son application :

j diffusion privée sur un maximum de 100 appareils référencés, qui
nécessite l’adhésion au programme Standard ;

410 14. Annexe

j diffusion privée sur plus de 500 appareils, qui nécessite l’adhésion
au programme Entreprise ;

j diffusion au grand public sur l’AppStore, qui nécessite l’adhésion
au programme Standard et à l’iTunes Connect.

Diffusion des applications
La politique d’Apple interdit tout autre mode de diffusion.

Une application peut être mise en diffusion gratuite ou payante sur
l’AppStore, au choix du responsable de l’équipe de développement :

j Le prix de l’application est défini par le responsable de l’équipe.

j 70 % du prix des ventes est reversé mensuellement à l’équipe de
développement par Apple.

j Cette marge de 30 % prise par Apple intègre tous les services
fournis par l’AppStore :

frais de paiement par carte de crédit ;

hébergement sur le site d’Apple ;

marketing.

j Les applications gratuites sont diffusées gratuitement sur l’App-
Store.

Signature du code
Le code qui s’exécute sur un appareil réel doit obligatoirement être
signé par l’adhérent au programme iTunes Connect. Cette signature-
permet à Apple de contrôler la diffusion des applications, puisqu’il
faut passer par le programme Standard pour obtenir les certificats

permettant de signer le code. Elle permet surtout aux utilisateurs
d’être certains de l’origine des applications qu’ils utilisent ; elle est
garantie par Apple. Sans cette précaution, un appareil éminemment
communiquant tel que l’iPhone, et dans une moindre mesure l’iPod
Touch, deviendraient très sensibles aux attaques malveillantes.

Apple a prévu trois types de signature en fonction de la destination
du code :

j le test des applications sur des appareils réels ; le développeur
doit les installer lui-même à partir de XCode ;

41114.2. Politique d’Apple

j la diffusion limitée (diffusion ad hoc) ; les applications peuvent être
transmises aux possesseurs des appareils référencés ;

j la diffusion publique, sur l’AppStore.

La signature est réalisée sous XCode par le développeur (pour le test)
ou par le responsable de l’équipe de développement (pour la diffu-
sion). Elle nécessite :

j la possession d’un certificat qui identifie le développeur ou le
responsable de l’équipe ; ce certificat est fourni par Apple et per-
met d’assurer aux utilisateurs que l’application a été réalisée par
l’équipe identifiée ;

j l’identification de l’application ;
j pour les tests et les diffusions limitées, l’identification des appa-

reils autorisés.

Certificats
La personne qui s’inscrit à un programme de développeur, Standard
ou Entreprise, est considérée par Apple comme le représentant et
responsable de l’équipe de développement. Chaque membre de
l’équipe doit être un développeur enregistré sur le site des déve-
loppeurs d’Apple afin de pouvoir télécharger le SDK et accéder à la
documentation sur le site.

Le responsable de l’équipe est nommé Agent. Une équipe de déve-
loppement ne peut avoir qu’un seul agent ; il déclare les identifiants
d’application et a le droit de les diffuser. Il cumule également les
privilèges attachés aux administrateurs.

Un administrateur gère les développeurs (il autorise leur certifica-
tion) et le parc d’appareils. Il peut y avoir plusieurs administrateurs
dans une équipe de développement. Ils sont nommés par l’agent.

Un simple membre peut demander un certificat personnel. Une fois
qu’il l’a obtenu, il peut signer les applications qu’il produit pour les
tester sur des appareils réels.

14.3. Processus de diffusion
Apple pouvant à tout moment modifier le site des développeurs, les
copies d’écrans et le processus décrits dans cette section sont four-
nis à titre purement indicatif.

412 14. Annexe

S’enregistrer comme développeur
Chaque personne physique qui souhaite parcourir le site des déve-
loppeurs doit y être enregistrée : http://developer.apple.com/iphone.

L’identifiant et le mot de passe sont personnels et ne doivent pas être
communiqués, sauf aux mineurs de 13 à 17 ans qui peuvent utiliser
ceux d’un de leurs représentants légaux.

Un développeur enregistré n’a pas le droit de divulguer les informa-
tions confidentielles auxquelles il a accès sur le site des déve-
loppeurs : les informations relatives aux versions Bêta et les infor-
mations payantes sont confidentielles.

Si vous êtes personnellement déjà enregistré sur l’un des sites d’Ap-
ple, par exemple sur l’iTunes Store ou sur le service Mobile Me, vous
pouvez utiliser le même identifiant pour vous enregistrer comme
développeur. Il est généralement conseillé d’avoir des identifiants
séparés pour l’usage privé (acheter de la musique sur l’iTunes Store,
par exemple) et pour l’usage professionnel ou semi professionnel ;
vendre des applications sur l’AppStore.

S’inscrire au programme des développeurs

Création d’un compte

Vous pouvez adhérer au programme des développeurs soit à titre
individuel, soit comme représentant d’une personne morale et d’une

Figure 14.1 : Enregistrement sur le site des développeurs sur iPhone

41314.3. Processus de diffusion

équipe de développement. Dans ce dernier cas, la personne physi-
que qui s’inscrit au programme des développeurs doit avoir la capa-
cité d’engager son organisation. Elle sera considérée comme res-
ponsable de l’équipe de développement par Apple, appelée Agent du
programme pour l’organisation.

La personne qui adhère au programme des développeurs doit préa-
lablement être enregistrée sur le site des développeurs. Apple pro-
pose le programme Standard et le programme Entreprise. Le pro-
gramme Standard correspond à la majorité des usages ; il donne
ensuite accès à la diffusion sur l’AppStore.

Administration du compte

Une fois l’inscription au programme Standard réalisée, l’agent et les
éventuels administrateurs gèrent le compte à l’aide des portails web
prévus à cet effet :

j le centre des membres (Member Center) pour gérer la composition
de l’équipe ;

j le portail des autorisations (iPhone Provisioning Portal) pour gérer
les certificats.

Figure 14.2 : Inscription au programme des développeurs

414 14. Annexe

Centre des membres

La page People du centre des membres permet aux administrateurs
de gérer les membres de l’équipe.

Figure 14.3 : Accès aux portails du programme des développeurs

Figure 14.4 : Accès à la gestion des membres de l’équipe

41514.3. Processus de diffusion

Ils ont la possibilité d’inviter une ou plusieurs personnes à rejoindre
l’équipe en fournissant pour chacune :

j son prénom ;

j son nom ;
j son adresse de courriel ;
j son rôle, administrateur (Admin) ou membre (Member).

Si vous souhaitez inviter un développeur dans votre équipe, saisis-
sez les renseignements demandés et cliquez sur le bouton Send

Invitation pour envoyer l’invitation.

Chaque personne invitée reçoit un courriel lui proposant de s’enre-
gistrer comme développeur et de rejoindre l’équipe. Lorsqu’il aura
accepté l’invitation, il pourra accéder au portail du programme avec
son propre identifiant.

Portail des autorisations

Le bandeau gauche de la page principale du portail permet d’accéder
à ses différentes fonctions :

j Certificates ; gestion des certificats des membres de l’équipe de
développement et des certificats de distribution pour l’agent du
compte ;

j Devices ; gestion des appareils de test ou pour la diffusion limitée
des applications. Le nombre d’appareils est limité à 100 par an au
total (test et diffusion, tout type d’appareil confondu) ;

j App IDs ; gestion des identifiants pour les applications ;

Figure 14.5 : Invitation d’un nouveau membre

416 14. Annexe

j Provisioning ; gestion des fichiers de Provisioning, ces fichiers
permettent la signature et l’exécution du code ;

j Distribution ; informations pour la distribution et accès au portail
de l’iTunes Connect.

Certifier un développeur
Afin de pouvoir signer une application pour la tester sur un ou
plusieurs appareils, un développeur doit au préalable obtenir un
certificat approuvé par un administrateur du programme des déve-
loppeurs. Ces certificats doivent être renouvelés tous les ans.

Créer une demande de certificat

Le développeur commence par créer une demande de certificat.

1 Ouvrez l’application Trousseau d’Accès ; elle est située dans le
dossier Utilitaires des Applications. Il faut vérifier que le paramé-
trage des certificats est adéquat. Sélectionnez la commande
Préférences du menu Trousseau d’accès et vérifiez le paramétrage
des certificats ; les protocoles OCSP et CRL doivent être désacti-
vés.

Figure 14.6 : Page principale
du portail du programme des
développeurs

Figure 14.7 : Vérification du
paramétrage des certificats

41714.3. Processus de diffusion

2 Fermez la fenêtre des préférences puis sélectionnez la commande
Demander un certificat à une autorité de certification … du sous-
menu Assistant de certification du menu Trousseau d’accès.

3 Saisissez votre nom et votre adresse de courriel de la même façon
que lors de votre enregistrement sur le site des développeurs.
Sélectionnez les options Enregistrée sur le disque et Me laisser

indiquer les données sur la bi-clé puis cliquez sur le bouton Conti-

nuer.

4 Indiquez l’emplacement et le nom du fichier que vous souhaitez
créer. Vous pouvez laisser le nom par défaut CertificateSigningRe-
quest.certSigningRequest. Indiquez les paramètres de la bi-clé :
2048 bits et RSA.

Un couple de clé privée-publique est alors créé dans votre trousseau
de session et le fichier de demande de certificat est créé. Il faut

Figure 14.8 : Création d’une
demande de certificat

Figure 14.9 : Paramétrage de
la bi-clé

418 14. Annexe

maintenant envoyer cette demande sur le portail du programme des
développeurs.

Conserver cette demande de certificat
Conservez cette demande de certificat, vous pourrez la réutiliser pour

générer un certificat de diffusion.

Obtenir le certificat

1 Sélectionnez la fonction Certificates sur le portail du programme
des développeurs. L’onglet Development vous permet de transfé-
rer le fichier contenant la demande de certificat (CertificateSignin-
gRequest.certSigningRequest).

Un administrateur doit approuver la demande de certificat. Une fois
cette validation effectuée, vous pouvez télécharger le certificat de-
puis le même onglet du portail.

Auto-approbation
Même lorsque l’équipe de développement est composée d’une seule

personne, cette dernière doit approuver sa propre demande de certificat.

2 Téléchargez également le certificat intermédiaire WWDR.

Installer les certificats

Vous avez ainsi récupéré :

j votre certificat personnel, dans un fichier developer_identity.cer ;

j un certificat intermédiaire AppleWWDRCA.cer.

Double-cliquez sur chacun de ces fichiers pour les installer dans le
Trousseau d’accès de votre session.

Les certificats sont maintenant installés et prêts à être utilisés sous
XCode.

Figure 14.10 : Téléchargement des certificats

41914.3. Processus de diffusion

Tester son application sur un appareil

Identifier les appareils

L’identifiant d’un appareil peut être obtenu, lorsque l’appareil est
connecté à un Mac, sous XCode ou sous iTunes. Sous iTunes, il suffit
de cliquer sur le numéro de série de l’appareil, dans la page Résumé,
pour faire apparaître son identifiant (UDID) ; c’est une suite de 40 ca-
ractères alphanumériques. Lorsqu’il est affiché sous iTunes, on peut
copier l’identifiant dans le Presse-papiers (X+[C]).

La gestion des appareils de test sous XCode est réalisée dans la
fenêtre Organizer.

1 Sélectionnez la commande Organizer du menu Windows ou tapez
le raccourci clavier [Ctrl]+X+[O].

2 Sélectionnez l’appareil dans le bandeau gauche et l’onglet
Summary pour en afficher les paramètres, dont l’identifiant (iden-
tifier).

Enregistrer les appareils

Les administrateurs du compte du programme peuvent enregistrer
des appareils de test sur le portail.

Enregistrez votre appareil sur le portail du programme des déve-
loppeurs, dans la fonction Devices. Procédez de la même façon pour
enregistrer tous les appareils sur lesquels vous souhaitez tester vos
applications en cours de développement.

Figure 14.11 : Identifiant de
l’appareil sous XCode

Figure 14.12 : Appareils
enregistrés sur le portail

420 14. Annexe

Vous pouvez enregistrer jusqu’à 100 appareils par an. Apple vous
propose une fois par an d’apurer cette liste des appareils que vous
n’utilisez plus.

Identifier les applications

Un identifiant d’application est composé d’un préfixe de 10 caractè-
res fournis par Apple (Bundle Seed ID) et d’un identifiant de paque-
tage (Bundle ID) transmis par un administrateur. Il est recommandé
d’utiliser une notation de domaine inversée pour identifier un paque-
tage, par exemple com.jpiconseil.convertpro.

Pour créer un identifiant d’application, connectez-vous sur le portail
du programme et sélectionnez la fonction App ID. Cliquez sur le
bouton Create Add ID et saisissez :

j un nom qui vous permettra de repérer l’identifiant pour en faciliter
la gestion ;

j un identifiant de paquetage ; c’est cet identifiant qu’il faudra insé-
rer dans les informations de l’application sous XCode.

Cliquez sur le bouton Submit. L’identifiant d’application est généré.

Identifiant du paquetage
L’identifiant du paquetage devra être saisi dans le fichier Info.plist de

l’application sous XCode.

Partage de l’identifiant d’application
Les applications qui doivent partager les mêmes mots de passe, pour

accéder à des sites web par exemple, doivent avoir le même identifiant
d’application. Pour ce faire, il faut saisir un identifiant de paquetage avec un
caractère joker "*", par exemple com.jpiconseil.*.

Figure 14.13 : Identifiants d’applications sur le portail

42114.3. Processus de diffusion

Générer un profil d’autorisation

Un profil d’autorisation (provisioning profile) est un fichier qui doit
être installé sur un appareil afin de pouvoir y exécuter des applica-
tions. Il contient :

j un identifiant d’application ;

j un ou plusieurs certificats de développement ;
j un ou plusieurs identifiants d’appareil.

Les profils d’autorisation pour le test sont générés par un adminis-
trateur. Ils seront ensuite téléchargés par les développeurs pour être
utilisés.

Pour créer un profil d’autorisation, connectez-vous sur le portail du
programme des développeurs, sélectionnez la fonction Provisioning

dans le bandeau gauche puis l’onglet Development.

Cliquez sur le bouton New Profile, saisissez les informations deman-
dées puis cliquez sur Submit.

Ces profils sont valables 3 mois. Ils peuvent être édités et renouvelés
par un administrateur.

Installer un profil d’autorisation

Pour pouvoir tester une application sur un appareil, ce dernier doit
être connecté sur le poste du développeur qui doit comporter :

Figure 14.14 : Création d’un nouveau profil d’autorisation

422 14. Annexe

j le certificat du développeur dans le Trousseau d’Accès ;

j le profil d’autorisation adéquat dans XCode.

Procédez ainsi :

1 Pour télécharger un profil d’autorisation, connectez-vous sur le
portail du programme des développeurs, sélectionnez la fonction
Provisioning dans le bandeau gauche puis l’onglet Development.

2 Cliquez sur le bouton Download du profil que vous souhaitez
obtenir. Une fois le téléchargement terminé, connectez l’appareil
sur lequel vous souhaitez transférer le profil, ouvrez la fenêtre
Organizer sous XCode ([Ctrl]+X+[O]) puis faites glisser le fichier
téléchargé (un fichier d’extension .mobileprovision) dans la zone
Provisioning correspondant à l’appareil.

Figure 14.15 : Liste des profils disponibles

Figure 14.16 : Installation d’un profil d’autorisation sous XCode

42314.3. Processus de diffusion

Utilisation des profils téléchargés
Bien que tous les membres d’une équipe puissent télécharger un profil

d’autorisation, seuls les développeurs dont le certificat est inclus dans le
profil pourront utiliser celui-ci.

Construire l’application pour l’appareil

Une fois que vous disposez d’un certificat et d’un profil installé sous
XCode, vous pouvez construire votre application pour l’appareil, l’y
installer et la tester.

Compiler pour un appareil réel

Ouvrez le projet de votre application sous XCode et dans la barre
d’outils de la fenêtre principale, sélectionnez un iPhone Device dans
le menu déroulant Active SDK.

Signer l’application

1 Dans la liste gauche de la fenêtre principale, ouvrez le groupe
Targets et sélectionnez la cible correspondant à votre application.
Cliquez du bouton droit et sélectionnez la commande Get Info du
menu contextuel (voir Figure 14.18).

2 Dans la fenêtre d’informations qui s’ouvre, saisissez sign dans le
champ de recherche afin de limiter la liste des informations affi-
chées. Ouvrez la rubrique Code Signing Identity pour définir la
valeur du paramètre Any iPhone OS Device : iPhone Developer (voir
Figure 14.19).

Figure 14.17 : Sélection du SDK pour un appareil réel

424 14. Annexe

Figure 14.18 : Ouverture de la fenêtre des informations de l’application

Figure 14.19 : Signature du code
pour le test en développement

42514.3. Processus de diffusion

Identifier l’application

Sous XCode, sélectionnez le groupe Ressources puis le fichier …In-
fo.plist de l’application. Modifiez le paramètre Bundle Identifier pour
lui donner la valeur de l’identifiant de paquetage que vous avez
défini lors de l’identification de l’application sur le portail du pro-
gramme des développeurs.

Tester l’application sur l’appareil

Vous pouvez maintenant connecter votre appareil et lancer l’exécu-
tion depuis XCode (X+[R]). L’application est chargée sur l’appareil et
exécutée sur celui-ci.

Diffusion limitée de son application
Une diffusion limitée permet un usage privé de votre application ou
un bêta-test avant une diffusion publique.

Créer un certificat de diffusion

Seul l’agent du compte du programme des développeurs peut diffu-
ser une application. Il doit pour cela commencer par créer son certi-
ficat de diffusion. Le processus est identique à celui utilisé pour créer
un certificat de développeur.

Figure 14.20 : Identification du paquetage sous XCode

426 14. Annexe

Ce certificat doit être renouvelé tous les ans.

Créer une demande de certificat

La demande de certificat est créée exactement de la même façon que
pour un développeur.

Utiliser la même demande de certificat
La demande de certificat que vous avez générée pour le certificat de

développeur est utilisable pour obtenir un certificat de diffusion.

Obtenir le certificat

1 Sélectionnez la fonction Certificates sur le portail du programme
des développeurs. L’onglet Distribution vous permet de transférer
le fichier contenant la demande de certificat (CertificateSigningRe-
quest.certSigningRequest). Cliquez sur le bouton Request Certifi-

cate.

2 Envoyez votre demande de certificat sur le site puis approuvez-la ;
votre certificat de diffusion est prêt à être téléchargé.

Figure 14.21 : Accès à la demande de certificat

Figure 14.22 : Téléchargement du certificat

42714.3. Processus de diffusion

Installer le certificat

De la même façon que pour le certificat de développeur, double-
cliquez sur le fichier distribution_identity.cer que vous venez de télé-
charger pour l’installer dans le Trousseau d’accès de votre session.

Votre certificat de diffusion est installé et prêt à être utilisé sous
XCode.

Créer et installer un profil de diffusion limitée

Vous avez déjà généré un profil d’autorisation pour le développe-
ment. De la même façon, nous allons créer un profil d’autorisation
pour la diffusion limitée (ad hoc distribution provisioning profile). Seul
l’agent du compte peut créer et utiliser un profil de diffusion limitée.

1 Connectez-vous sur le portail du programme des développeurs,
sélectionnez la fonction Provisioning dans le bandeau gauche puis
l’onglet Distribution. Cliquez sur le bouton New Profile, saisissez
les informations demandées – en particulier choisissez ad hoc pour
une diffusion limitée –, puis cliquez sur Submit.

Ces profils sont valables 1 an. Ils peuvent être édités et renouvelés
par l’agent du compte.

2 Revenez à la liste des profils de diffusion et cliquez sur le bouton
Download du profil que vous souhaitez obtenir.

Figure 14.23 : Création d’un profil de diffusion limitée

428 14. Annexe

3 Ouvrez la fenêtre Organizer sous XCode ([Ctrl]+X+[O]) puis faites
glisser le fichier téléchargé (Convert_Pro_Ad_Hoc.mobileprovision)
dans la zone Provisioning correspondant à l’appareil connecté.

4 Conservez le fichier contenant le profil de diffusion ; les utilisa-
teurs en auront besoin pour installer votre application sur leurs
appareils.

Construire l’application pour la diffusion

Interdire le contrôle externe

Les applications en développement peuvent être lancées et exami-
nées depuis l’ordinateur de développement sur lequel l’appareil est
connecté en USB. Cette possibilité est interdite pour les applications
diffusées, il faut donc configurer l’application à cet effet.

1 Sous XCod, créez un nouveau fichier (X+[N]). Dans la rubrique
Code Signing de l’iPhone OS, choisissez le type Entitlements puis
cliquez sur le bouton Next (voir Figure 14.25).

2 Donnez un nom à ce fichier, par exemple Entitlement.plist, puis
cliquez sur le bouton Finish.

Figure 14.24 : Installation d’un profil d’autorisation sous XCode

42914.3. Processus de diffusion

Le fichier doit être à la racine
Vérifiez que le fichier est bien créé à la racine du projet, qu’il n’appartient

à aucun groupe.

3 Sélectionnez ce fichier sous XCode et décochez la case get-task-
allow.

Construire l’application

La construction pour la diffusion nécessite un paramétrage spécifi-
que. Nous allons donc créer une configuration sous XCode.

1 Cliquez du bouton droit sur la cible de l’application et sélectionnez
la commande Get Info du menu contextuel qui s’affiche.

Figure 14.25 : Création d’un fichier Entitlements

Figure 14.26 : Interdiction du contrôle externe

430 14. Annexe

2 Sélectionnez l’onglet Build dans la fenêtre d’information et ouvrez
le menu Configuration. Sélectionnez la commande Edit

Configurations ….

3 Sélectionnez la configuration Release dans la liste puis cliquez sur
le bouton Duplicate. Changez le nom de la configuration créée :
Distribution.

Figure 14.27 : Afficher les informations de
la cible

Figure 14.28 : Éditer les
configurations

43114.3. Processus de diffusion

4 Refermez la fenêtre pour revenir aux informations de la cible.
Sélectionnez la configuration Distribution puis saisissez sign dans
le champ de recherche. Nous allons configurer la signature de
l’application pour la distribution.

5 Modifiez le paramètre Code Signing Entitlements, saisissez le nom
du fichier que vous avez créé : Entitlement.plist.

6 Modifiez le sous-paramètre Any iPhone OS Device du paramètre
Code Signing Identity pour lui donner la valeur iPhone Distribution.

Figure 14.29 : Création d’une
configuration Distribution

Figure 14.30 : Paramétrage de
la configuration Distribution

432 14. Annexe

7 Fermez la fenêtre d’information de la cible. Sous XCode, sélection-
nez la configuration Distribution à l’aide de la commande Set

Active Build Configuration du menu Project.

8 Effacez les constructions précédentes avec la commande Clean

([Maj]+X+[K]) et construisez l’application (X+[B]).

L’application est prête à être distribuée.

Distribuer son application

L’application terminée se trouve dans le dossier du projet sous
XCode, dans le sous-dossier build.

Transmettez l’application ainsi que le profil de diffusion aux utilisa-
teurs. Ils devront faire glisser ces deux fichiers dans l’application
iTunes puis synchroniser leur appareil.

Compressez l’application
Il faut compresser l’application (format ZIP) pour la transmettre par cour-

riel. Le type de fichier .app étant un dossier (Bundle), il est déconseillé de le
placer directement en pièce jointe.

L’application est alors prête à être utilisée.

Figure 14.31 : Localisation de l’application terminée

43314.3. Processus de diffusion

Diffuser son application sur l’AppStore
Apple met à la disposition des développeurs le site iTunes
Connect (https://itunesconnect.apple.com) pour gérer la diffusion des appli-
cations sur l’App Store.

L’ouverture d’un compte sur le programme standard des déve-
loppeurs provoque automatiquement la création d’un compte sur
l’iTunes Connect avec le même mot de passe. Ce compte est immé-
diatement disponible pour la diffusion d’applications gratuites, la
diffusion d’applications payantes sera possible après avoir saisi les
informations bancaires et fiscales.

Engagement iTunes Connect

Lors de votre première connexion sur le site de l’iTunes Store, il vous
est demandé d’approuver les conditions d’utilisation. En acceptant
ces conditions, vous vous engagez à :

j fournir des informations juridiques, bancaires et fiscales exactes
et précises concernant votre organisation, ou votre situation per-
sonnelle, et mettre à jour ces informations ;

Figure 14.32 : Site web iTunes Connect

434 14. Annexe

j ne pas divulguer votre identifiant et votre mot de passe (vous avez
la possibilité d’ajouter des utilisateurs sur le même compte, avec
leur propre identifiant) ;

j accepter les conditions de vente sur l’App Store.

En outre, Apple ne garantit pas le bon fonctionnement de l’iTunes
Connect.

Profil de diffusion

Le processus pour créer un profil de diffusion sur l’App Store est
exactement le même que pour un profil de diffusion limitée. La seule
différence est qu’il faut sélectionner App Store à la place de Ad Hoc
pour le paramètre Distribution Method du profil.

La construction de l’application est réalisée de la même façon quel
que soit le type de diffusion.

Soumission d’une application

Considérations légales

Vous devez donner un nom à votre application afin de la diffuser ;
veillez à ne pas utiliser le nom d’une marque dont vous ne détien-
driez pas les droits.

Concernant l’utilisation des logos et des marques déposées par Ap-
ple, vous pouvez consulter la page http://www.apple.com/legal/trademark
/guidelinesfor3rdparties.html. En résumé, vous n’avez le droit d’utiliser
aucun nom de marque déposé par Apple ni aucun dérivé, à l’excep-
tion notable du terme Mac qui peut être utilisé lorsqu’il est combiné
(MacWorld, MacProject, etc.) mais pas seul.

La liste des marques déposées par Apple peut être consultée sur la
page http://www.apple.com/legal/trademark/appletmlist.html.

Préparer la soumission

La soumission d’une application sur l’iTunes Connect n’est pas com-
plexe mais assez longue. Il est conseillé de préparer tous les élé-
ments :

j le nom de l’application ;

j une description de l’application (4 000 caractères au maximum) ;
j le type d’appareil sur lequel l’application fonctionne : iPhone, iPod

touch, iPad ou iPhone/iPad (pour les applications universelles) ;
j un numéro de référence (SKU) devant identifier sans ambiguïté

chaque version majeure de chacune de vos applications ;

43514.3. Processus de diffusion

j la catégorie principale de l’application (voir le tableau) et éventuel-
lement une catégorie secondaire ;

j le numéro de version ;
j le copyright, par exemple 2010 JPI−Conseil ;
j l’adresse du site web où l’utilisateur peut trouver des informations

complémentaires ;
j une adresse de courriel ; cette adresse sera utilisée par Apple, elle

ne sera pas diffusée ;
j éventuellement le texte de la licence d’utilisation de l’application,

par défaut la licence standard de l’App Store s’applique ;
j la liste des pays ou zones géographiques sur lesquels on souhaite

diffuser l’application ;
j la date de disponibilité de l’application ;
j le prix de l’application ;
j éventuellement, les localisations pour le texte descriptif et la li-

cence d’utilisation. Les localisations admises sont l’anglais, le
français, l’allemand, le hollandais, l’italien, l’espagnol et le japo-
nais ;

j l’icône de votre application en grand format ; 512 x 512, 72 dpi, au
format JPEG ou TIFF ;

j la copie de l’écran principal de votre application, au format JPEG
ou TIFF ;

pour iPhone ou iPod Touch, 320 x 460 (sans la barre d’état), ou
320 x 480 (pour les applications plein écran), 480 x 300 ou
480 x 320 ;

pour iPad 1 024 x 748, 1 024 x 768, 768 x 1 004 ou 768 x 1 024.

j éventuellement des copies d’écrans additionnelles :

Tableau 14.2 : Catégories d’applications sur l’App Store

Anglais Français Anglais Français

Book Livres numériques Navigation Navigation

Business Économie et entreprise News Actualités

Education Enseignement Photography Ptotographie

Entertainment Divertissement Productivity Productivité

Finance Finance Reference Références

Games Jeux Social Networking Réseaux sociaux

Healthcare & Fitness Forme et santé Sports Sports

436 14. Annexe

Tableau 14.2 : Catégories d’applications sur l’App Store

Anglais Français Anglais Français

Lifestyle Style de vie Travel Voyages

Medical Médecine Utilities Utilitaires

Music Musique Weather Météo

Après avoir saisi ces informations, il vous faudra attendre la valida-
tion d’Apple, de quelques jours à quelques semaines, avant de voir
votre application sur l’App Store.

Autres services

Pour améliorer votre marketing, Apple vous autorise à utiliser gra-
tuitement un logo afin de signaler la présence de votre application
sur l’App Store, ainsi que les photos officielles d’un iPhone et d’un
iPod touch pour y insérer vos copies d’écran.

Pour cela, renvoyez l’accord de licence signé. Consultez les informa-
tions sur le site http://developer.apple.com/iphone/appstore/.

Vous pouvez encore renforcer vos liens avec l’iTunes Store et vous
affilier à l’iTunes : http://www.apple.com/uk/itunes/affiliates.

43714.3. Processus de diffusion

!
#define.. 168
#import ... 53
#include.. 54

A
Abscisses .. 275
Accéléromètres................................ 365
Accesseur 56, 66
Action ... 57

Déclaration ... 51
Activity Indicator 137
Administrateur 412
Agent .. 412
Albums ... 323
Aligner.. 36
Alloc.. 70
Alpha .. 275
Analyseur de geste.......................... 396
Animation... 269
Annotation ... 359
App Store... 434
Application à barre d’onglets......... 176
ApplicationDidFinishLaunching 112
AppStore.. 410
Ascenseur ... 137
Assign... 85, 87
Atomique.. 345
Attribut.. 234-235
Attribute ... 234
Autorelease... 89

Autorelease pool 89
Autorotation 379, 387
Autosizing .. 380
AVAudioPlayer 273

B
Back Button....................................... 181

Badge ... 176, 179
BadgeValue... 176

Barre
d’onglets ... 175
de navigation .. 181
de progression .. 136

Bascule .. 136
Binary data .. 332
Boucle d’événement........................ 109
Bounds ... 277
Bouton.. 136

de retour ... 181
Buffers.. 293
Build ... 28, 56, 59
Bundle .. 149

Bundle ID .. 421
Bundle Seed ID 421

C
CADisplayLink 297
Cadre .. 150, 276
Calendrier .. 191
Calibration ... 351
Cardinalité ... 234
Carte ... 352
Cell .. 214
Cellule... 214
Centre des membres 414
Certificat .. 417
CGPoint .. 277
CGRect ... 277
CGSize .. 277
Champ de Texte 137
Chiquenaude 313
Cible.. 57

cible-action ... 303
Classe... 43

nommage .. 52
Clean... 124
CLHeading ... 351
CLLocation... 348
CLLocationManager 343, 350

IN
D

E
X

Index 439

CLLocationManagerDelegate 344,
347, 350

Codage par valeur de clé 101
Code

completion .. 55
factorisation.. 93
terminaison ... 55

Colors ... 48
Commentaire....................................... 64
Compas magnétique 349
Components 199
Composants....................................... 199
Compteur de références................... 84
Connections 50, 57
Construction pour la diffusion........ 430
Construire .. 59
Conteneurs .. 205
Contexte

Core Data.. 240
graphique .. 284

Contrôle.. 62
de pages ... 137
inversé .. 199

Contrôleur de navigation 182
Coordonnées..................................... 275
Copy.. 85, 87
Core Data................................... 233, 332

contexte .. 240
CoreGraphics 283
Courriels... 336

D
DataSource 200
Date picker .. 187
Dates .. 191
Dealloc..................................... 72, 84, 91
Debogueur... 96
Debug ... 97
Debugger ... 96
Déclaration.................................... 52, 63

Action.. 51
Default.png .. 36

Définition.. 52, 68
Délégation ... 101
Délégué.. 200
Déplacement..................................... 274
Déploiement 385
Descripteur de tri 247
Design patterns 101
Dictionnaire............................... 203, 207
Diffusion

ad hoc ... 412
application .. 410
limitée... 412, 428
publique .. 412

DrawRect... 283
Durées.. 192

E
Éléments .. 176
Encapsulation 52
@end .. 64, 68
Entités... 234
Entity... 234
Équipe de développement 412
Erreur.. 244
Événement... 303

boucle ... 89, 109
Events... 303
EXC_BAD_ACCESS............................ 95
EXC_BAD_INSTRUCTION............... 107

F
Factorisation du code........................ 93
Fichier

ajouter... 30
chargement NIB...................................... 110

File’s Owner 50, 58
First responder 133, 304, 309
Float .. 56
Fonts ... 48
For in... 205

440 Index

Format
de date.. 194
régional ... 121

Frame.. 150, 276
Framebuffer 293

G
Géo-localisation 343
Gestes .. 306

analyseur de geste 396
Gestionnaire de géo-localisation .. 343
Getter.. 66, 85
Graphique .. 269

H
Héritage ... 51, 60
Hiérarchie de vues............................. 62
Home .. 80

I
IBAction................................. 51, 65, 128
IBOutlet .. 46
Id ... 65
Identifiant................................... 413, 420

d’application ... 421
Image.. 30, 35
Immuables ... 208
Implementation............................. 52, 68
Indexed .. 236
Indicateur d’activité......................... 136
Init.. 70-71
Initialiseur désigné............................. 71
InitWithNibName
Inspecteur 36, 48, 50, 57
Instance ... 43
Instruments ... 79
Interface .. 52, 64
Interface Builder 26

Invitation .. 416
IPhone Simulator................................ 28
ITunes Connect................................. 434

J
JPEG ... 269

K
Key Value Coding 101
Keyboard.. 49
KVC 101, 127, 246

L
Label...................................... 26, 136-137
Lancement... 36
Latitude .. 349
Layer... 281
Leaks .. 79
Library .. 26, 35
Lignes ... 199
Limites .. 277
Listes de propriétés 258
Localisation 120
Logo .. 32
Longitude ... 349

M
Macro-instruction 168
MainWindow.xib............................... 109
Manipulateur....................................... 66
MapKit .. 352
Marques déposées 435
Media ... 35
Mémoire... 92

fuite... 78
règle.. 88, 90

Message .. 44, 69

441Index

Méthode... 42
d’instance ... 65
de classe... 65
déclaration .. 65
nommage .. 66

MFMailComposeViewController.... 337
MFMailComposeViewController
Delegate... 338
MIME.. 338
MKAnnotation................................... 359
ModalTransitionStyle....................... 151
Mode édition 254
Model-View-Controller............ 101, 134
Modèle de données......................... 234
Modèle-Vue-Contrôleur 101, 134
Motifs de conception 101
Multi-threading................................... 86
Mutable.. 208
MVC .. 101, 134

N
Navigateur de Classes 147
Navigation Bar.................................. 181
Navigation Controller....................... 182
NextStep .. 191
NIB.. 25
Nil .. 70
Nommage

classe .. 52
méthode .. 66
variable ... 65

Nonatomic...................................... 85-86
Nord.. 349
Notation pointée................................. 70
Notification................................ 263, 377
NSArray ... 205
NSCharacterSet 104
NSClassFromString.......................... 298
NSData... 333
NSDate... 192
NSDateFormatter 193
NSDictionary............................. 203, 207

NSEntityDescription......................... 239
NSError .. 244
NSFetchedRequest 247
NSFetchedResultsController.......... 243
NSFetchedResultsController
Delegate... 244
NSFetchedResultsSectionInfo....... 243
NSFetchRequest............................... 243
NSIndexPath 211, 214
NSManagedObjectContext............. 240
NSManagedObjectModel............... 239
NSMutableArray 208
NSMutableDictionary...................... 208
NSNull .. 205
NSNumber................................. 127, 261
NSObject.. 60
NSPersistentStore 240
NSPersistentStoreCoordinator 240
NSScanner .. 117
NSSortDescriptor............................. 247
NSString... 56
NSTimeInterval 192

O
Objective-C.. 15
Objet ... 42

comportement... 42
état.. 42
libération... 72
message.. 69
nul ... 205
programmation ... 41

Observateur....................................... 264
Onglet ... 175
OpenGL... 291
Opérateur de référencement 117
Optional.. 236
Ordonnées ... 275
Orientation... 377
Outlet .. 46

connexion.. 50
Outlets .. 110

442 Index

P
Page Control...................................... 138
Paquet .. 149
Paysage ... 377
Photos .. 323, 329
Picker ... 187
Picker View 196
Pile .. 183

de navigation .. 183
état.. 80

Pincement.. 313
PNG... 269
Pool d’autolibération.......................... 89
Popover 389-390
Portail des autorisations................. 414
Portée... 43
Portrait ... 377
Positionnement................................... 36
Premier répondeur................... 133, 304
PresentModalViewController......... 151
Prix.. 411
Profil d’autorisation.......................... 422
Progress View................................... 137
Projet .. 19

créer .. 20
fenêtre .. 23
modèles .. 21

Property ... 69
@property (attributs) 85
Property list 258
Propriété .. 69

libération... 91
notation pointée 70

Protocole ... 107
Provisioning profile 422

R
Readonly .. 85
Readwrite .. 85
Recadrer .. 336

Référence .. 77
obsolète .. 94

Refurb Store .. 11
Règle d’intégrité 255
Relations 234, 237
Relationship....................................... 234
Release 72, 84, 97
Répondeur ... 60
Requête.. 247
ResignFirstResponder 132
RespondsToSelector........................ 107
Retain... 84 à 86
Retain count .. 84
Root View... 181
Round Rect Button........................... 137
Rows... 199

S
Sandbox ... 15
SDK... 12, 59, 409
Secousse ... 304
Segmented Control 137
SEL .. 107
Sélecteur ... 136
Sélection multiple............................... 48
Sélectionneur de date..................... 187
@selector... 107
Self .. 72
Setter.. 66, 85
Shake.. 304
Signature du code............................ 411
Simulateur ... 28
Slider .. 137
Son.. 273
Source de données.......................... 200
Splitview 388, 392
SQLite ... 233
Stack... 80
Super .. 72
Superclasse .. 64

443Index

Switch .. 137
@synthesize 56, 69, 85

T
Tab Bar Application 176
Tab Bar Controller 176
TabBarItem.. 179
Tableau... 205
TableView .. 208
Target ... 57
Temporisateur 279
Terminaison de Code 55
Test ... 411
Tester (Interface)................................ 51
Text Field...................................... 47, 138
Texte (champ) 137
Transient .. 236
Tri... 247

U
UDID ... 420
UIAcceleration.................................. 366
UIAccelerationValue........................ 367
UIAcceleromer 366
UIAccelerometerDelegate.............. 366
UIActionSheet................................... 172
UIActionSheetDelegate 174
UIActivityIndicatorView 137
UIAlertView........................ 170-171, 174
UIAlertViewDelegate....................... 174
UIApplication 109, 303
UIApplicationDelegate 109
UIApplicationMain 109
UIButton... 137
UIControl...................................... 62, 303
UIDatePicker..................................... 190
UIDevice 298, 377
UIDeviceOrientation 377
UIEvent... 306

UIGestureRecognizer 396
UIImage.. 272
UIImagePickerController 323, 328
UIImagePickerController
Delegate... 330
UIImageView............................. 270, 272
UIKit .. 53
UILabel ... 137
UILongPressGestureRecognizer ... 397
UINavigationController.................... 182
UIPageControl................................... 138
UIPanGestureRecognizer 397
UIPickerView 196, 199
UIPickerViewDataSource............... 197
UIPickerViewDelegate 197
UIPinchGestureRecognizer 397
UIPopoverController 390
UIPopoverControllerDelegate........ 392
UIProgressView................................ 137
UIResponder 60, 132, 303
UIRotationGestureRecognizer 397
UISegmentedControl 137
UISlider .. 137
UISplitViewController 393
UISplitViewControllerDelegate...... 393
UISwipeGestureRecognizer 397
UISwitch .. 137
UITabBar .. 175
UITabBarController 177, 180
UITabBarControllerDelegate.......... 180
UITabBarItem.................................... 176
UITableView 210
UITableViewCell 211, 214
UITableViewController..................... 211
UITableViewDataSource................. 211
UITableViewDelegate 211
UITapGestureRecognizer 397
UITextField 45-46, 60, 62, 138
UITextFieldDelegate......... 103, 107, 156
UITouch .. 305
UIView.. 61, 282

444 Index

UIViewController 60
UIWindow.. 62
Unicode.. 194
Universelle... 387

V
Variable

nommage .. 65
d’instance ... 42, 64

Versions Bêta.................................... 410
Vidéo... 329, 335
View-based Application........ 45, 54, 63
ViewController 45
ViewDidLoad 118, 163
Void ... 65

Vue.. 61
contextuelle 389-390
en table... 208
modale .. 152, 389
racine .. 181
scindée.. 388, 392

X
XCode ... 19
XML... 258

Z
Zombi.. 77
Zoomer ... 336

445Index

Composé en France par Jouve
11, bd de Sébastopol - 75001 Paris

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /FRA <FEFF005b00500061007200200072006100700070006f00720074002000e0002000270043006f007500760065007200740075007200650027005d0020005b00500061007200200072006100700070006f00720074002000e0002000270043006f00750076006500720074007500720065002d00720065006c006900e90027005d0020005b00500061007200200072006100700070006f00720074002000e000200027005100750061006c0069007400e900200046006f007200730069007500730027005d0020005b00500061007200200072006100700070006f00720074002000e000200027005100750061006c0069007400e900200046006f007200730069007500730027005d0020005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 14.173230
 14.173230
 14.173230
 14.173230
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 14.173230
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

