
Anne Tasso

Le livre de

JAVA
premier langage

i r édition
V /

, \

■ Corrigé du projet et des exercices
 ̂ Code source des exemples du livre E Y R O L L E S

Le livre de JAUA
premier langage

1Г édition

Apprendre Java en douceur
Vous avez décidé de vous initier à la p ro gram m ation e t souhaitez opter pour
un lan g ag e larg em e n t utilisé dans le m onde professionnel ? Java se révèle
un choix idéal com m e vous le constaterez dans ce livre conçu pour les vrois
d ébutan ts en p ro gram m ation .

Vous apprendrez d 'a b o rd , à travers des exemples simples en Java, à m aîtri­
ser les notions com m unes à tous les longages : variables, types de données,
boucles et instructions conditionnelles, etc. Vous franchirez un nouveau pas
en décou vran t p a r la pra tique les concepts de la p ro g ram m atio n orientée
objet {classes, objets, héritage), puis !e fonctionnem ent des librairies g ra ­
phiques A W T e t Swing (fenêtres, gestion de la souris, tracé de grophiques).
C et ouvrage vous expliquera aussi com m ent réaliser des applicotîons Java
dotées d 'in terfaces graphiques conviviales grâce au logiciel libre N etBeans.
Enfin, vous vous in itierez ou développem ent d 'opplicotions avec l’ in terface
Android Studio.

C haqu e chapitre est accom pag né de deux types de travoux pratiques : des
exercices, dont le corrigé est fourni sur l'extension w eb du livre, et un projet
développé au fil de l'ouvrage, qui vous m ontrera com m ent com biner toutes
les techniques de p ro g ram m atio n étudiées pour constru ire une véritab le op-
plication Java.

Âqui s’adresse ce livre?
• Aux étudiants de 1 " cycle universitaire (IUT, Deug.„) ou d'écoles d'ingénieurs

• Aux vrais débutants en p rogram m ation r passionnés d 'in form atique e t pro­
gram m eurs autodidactes, concepteurs de sites W eb souhaitant a lle r au-delà
de H TM L e t JavaScript, etc.

• Aux enseignants et fo rm ateurs recherchant une m éthode pédag ogique et
un support de cours pour enseigner Java à des débutants

Sur le site wwui.annetasso.fr/java
• C onsultez les corrigés du pro jet e t des exercices

• Téléchargez le code source de tous les exem ples du livre

• D ia loguez avec l'au teu r

naître de conférences à l'nrîliiersité Patis-Est
Marne-la-WalléE. Anne Tassa Enseigne le langage
Java en fanration Initiale at continje. aii sein du
rlépartement ИИ1 (Hétiers rlu Plultiméiiia et de
rintetcet] de П1Т de Hame-la-Vallée. Son public
ünii/eisitaire est essectiEllerieiit constitué de
débutants en progiammation. ce щ lui a pemis
d’élaborer une métirode pédagogique structurée
et imagéE. San objectif est d'expliqueu avec tlas
mots simpies, les techniques de programmation
jusqu'à un nivaaü avancé.

Sommaire

Introduction. Qu'est-ce qj'nn pmoramme ? •
Construire in algorithme • Premier programme ел Java
> Exécutinn du programme • Outils nt techniques

de base. Stocker une informatinn * Données, variables
et opérateurs • Entées-sorties • Irstructiors et boucles
* Initiation à la programmatiDn orientée objet
De l'algorithme paramétré à l'écriture de fonctions
* Classes et objets • Passage de paramètres par
valeur et par référence • Héritage et poi^morphisme
* Interfaces • Programm ation orientée objet

et interfaces graphiqnes. Tableaux • Listes et
dictinrnaires • Archivage ries données • Gestion des
exceptions • LibrairiesAVffetSwing • Fenêtre,clavieret
souris • irterfacE graphique амес NetBeans • Développer
avec Android Studio.

Mfww.editioni-ey rai les. corn

Le livre de

premier langage
Avec 109 exercices corrigés

ifi

Oi_>
LU

T~i
0 fN
@
<̂u-i

01'k_
Cl
O
U

CHEZ LE MÊME ÉDITEUR

Autres ouvrages sur Java

C. Dti .ANNOY. - l’rogrammer en Java (9* édition).
N“ 1 4 0 0 7 ,2 0 1 4 .9 4 0 pages.

C. Dni ANNOY. - Exercices en Java (4' éditiun).
№ 14 0 0 9 ,2 0 14 , 360 pages.

C. Delannoy. - Programmer en Java (6' édition). Java 5 et 6.
№ 1 3 4 43 ,2 0 12 , 7S8 pages (formal semi-poche).

J -B BoH’H.AT. - Apprendre Java et C++ en parallèle (4' édition).
№12403,2008, ЫЮ pages + CD-Rom.

A. Patricio. - .)asa Persistence et Hibernate.
№12259,2008,364 pages.

E, PuYBARET, - Bien programmer en Java 7,
№ 12 7 9 4 ,2 0 1 2 ,4 2 8 pages.

R. Fleury. - Les Cahiers du programmeur Java/XML,
№ 11316,2004,218 pages.

P. H.AüG.AK. — Mieux programmer en Java. 6H astuces pour optimiser sou code.
№ 9171,2(Ю 0,256 pages.

J.-P. Ru ТЛ11 L1Î. - Refactoring des applications Java/J2EE.
№ 1 1 5 7 7 ,2 0 0 5 ,3 9 0 pages.

Autres ouvrages

C . De l ,annoy . - Programmer e n Fortran. Fortran 90 et scs évolutions - Fortran 95, 2003 et 2008.
№14020,201.5.454 pages.

1Л(U

>-LU
COrHOÎN
@
JZen'k—>-O.O
U

c . Dei ANNOY.- Le guide complet du langage C.
№14012,2014, 844 pages.

C. Delannoy, - S’initier à la programmation et à l'orienté ob.jet. Avec des exemples en C, C++, CH, Fvthon, Java et FHF.
№14067,2014, 382 pages.

G. Do\VKK et ai. - Informatique et sciences du numérique. Manuel de spécia lité ISN en terminale.
№13676,2013,354 pages.

G, Dowek et al. - informatique pour tous en classes pi éparatoires aux grandes écoles. Manuel d'algorithmique et
programmation structurée avec Python.
№13700,2013.408 pages.

Anne Tasso

Le livre de

premier langage
Avec 109 exercices corrigés

ifi

OL->
LU

T~i
0 fN
@
<̂u-i

01'k_
Cl
O
U

11° édition

E Y R O LLE S

EDITIONS EYROLLES
61, bd Saint-Germain
75240 Paris Cedex 05

www.editions-cyrolles.com

<u

>-
LU
VO
O
(N

®
JT
gi
>-Q.O
U

En application de la loi du 11 maî s 19.S7, il est interdit de reproduire intégralement ou partiellement le présent ouvrage,
sur quelque support que ce soit, sans l’autorisation de l’Éditeur ou du Centre Français d’exploitation du droit de copie,
20. rue des Grands Augustins, 75006 Paris.
© Groupe Eyrolles, 2000-2016, ISBN : 978-2-212-14384-3

http://www.editions-cyrolles.com

ifi<U

><
LU
UD
tH
OfN
@

A vec c e t t e on z ièm e éd ition , j e l i en s ¿i r em e r c i e r tou s m es nom breux le c t e u r s p o u r leu r s
JéU ciliition s qui m e von t d ro it au c œ u r e t leu r s rem a rqu es tou jou rs co n s tru c t iv e s .

J e r em er c ie é ga lem en t tous m es étudiants, qui p a r leu r s in terroga tion s, leu r s r e tou rs e t leu r
cu r io s i t é m ’on t p e rm is d ’é c r i r e c e liv re a v e c le .souhait d ’a p p o r te r d e s ex p lica tion s c la ir e s
e t p r é c i s e s .

Et enfin, un m er c i tout p a r t i cu lie r à A ntoine D erouin qui m ’o ffr e le tem p s d e fa ir e na ître
ch a qu e Vivre a v e c b ea u cou p d ’esp rit, d ’atlen ikm et d e p a tien ce .

JZoi
>•Q.O
U

0 Editions Eyrolfes

inй)

:>■ш
iû
TH
ОrN
@

Ol
>■Q.
OU

Table des matières

Avant-propos - Organisatian de l’ouvrage... 1

Introduction - Naissance d’un programme... 5
C o n stru ire un a lg o rith m e .. 5

Ne faire qu ’une seule chose à la f o is .. 6
Exem ple : l’algorithme du café chaud .. 6
Vers une m é th o d e 8

P asser d e l ’a lg o rith m e au p ro g ram m e 9
Q u ’est“Ce qu'un ordinateur ? .. 9
Un prem ier program me en Java, ou com m ent parler à un o rd in a te u r............................ 14

E x éc u te r un p ro g ram m e .. 22
Compiler, ou traduire en langage m achine .. 22
Com piler un program m e écrit en Java .. 22
Les environnements de d é v e lo p p e m e n t... 25

Le p ro je t : G e s tio n d ’un c o m p te b a n c a i r e .. 26
C ahier des c h a r g e s .. 26
Les objets m a n ip u lé s 29
La liste des o r d r e s ... 29

R é s u m é .. 31
E x e rc ic e s .. 32

Apprendre à décom poser une tâche en sous-tâches distinctes 32
O bserver et com prendre la structure d ’un program m e J a v a .. 32
Écrire un prem ier program m e J a v a ... 33

Partie I
Oudis et techniques de base

<D

>-
LU

OfN
®

oi
C l
O
U

1 Stockei une in fo rm ation 37
La n o tio n d e v a r ia b le .. 38

Les noms de v a r ia b le s ... 38
La notion de t y p e ... 39
Les types de base en Java .. 40
Com m ent choisir un type de variable plutôt qu'un autre ? ... 44
Déclarer une v a r ia b le ... 45

© Éditions EyroHes VII

le livre de lava Diemier langage T ^ l e des madères

L’in s tru c tio n d ’s f fc c ta t io n .. 47
Rôle et m écanism e de l’a ffe c ta t io n ... 47
Déclaration et a ffe c ta tio n .. 48
Quelques confusions à éviter ... 50
Échanger les valeurs de deux v a r ia b le s ... 51

Les o p é ra te u rs a r ith m é t iq u e s .. 52
Exem ple .. 52
La priorité des opérateurs entre e u x ... 53
Le type d’une expression m ath é m a tiq u e ... 54
La transformation de types ... 56

C a lc u le r des s ta tis tiq u e s s u r d e s o p é ra tio n s b a n c a ir e s ... 59
Cahier des c h a r g e s .. 59
Le code source complet .. 62
Résultat de l’exécution .. 62

R é s u m é .. 63
E xerc ices ... 64

R epérer les instructions de déclaration, observer la syntaxe d ’une instruction.......... 64
Com prendre le m écanism e de l’a ffe c ta tio n .. 64
Com prendre le m écanism e d’échange de valeurs .. 65
Calculer des expressions m ix te s .. 66
Com prendre le m écanism e du c a s t ... 66

Le p ro je t : G e s tio n d 'u n c o m p te b a n c a i r e .. 67
Déterm iner les variables nécessaires au p ro g ra m m e ... 67

O
Ol_>•
LU

T~{
0 fN

u-isz01'k_>-Q.O
U

VIII

Communiquer une inform ation................................ 69
La b ib lio th èq u e S y s te m ... 69
L’a ftic h a g e d e d o n n ée s ... 70

Affichage de la valeur d’une v a r ia b le ... 71
Affichage d'un com m entaire .. 71
Affichage de plusieurs variables .. 71
Affichage de la valeur d’une expression a rith m é tiq u e ... 72
Affichage d’un t e x te .. 73

La s a is ie d e d o n n é e s .. 76
La classe S c a n n e r .. 77

R é s u m é .. 31
E xerc ices .. 82

Com prendre les opérations de sortie .. 82
Com prendre les opérations d 'e n tré e ... 82
O bserver et comprendre la structure d ’un program m e J a v a .. 83

Le p ro je t : G estio n d 'u n c o m p te b a n c a ire 84
Afficher le menu principal ainsi que ses o p t io n s ... 84

© Éditions EyroHes

Table des madères Le dure de û va premier laagage

Faire des c h o w 8S
L’algorithme du café chaud, sucré ou n o n .. 85

Définition des objets manipulés 86
Liste des opérations.. 86
Ordonner la liste des opérations ... 86

L’instruction if-e lse 89
Syntaxe d’it-else .. 89
Comment écrire une condition... 90
Rechercher le plus grand de deux élém ents... 92
Deux erreurs à év ite r... 95
Des if-else imbriqués............................. 96

L’instruction switch, ou comment faire des choix m u it ip ie s .. 98
Construction du switch... 98
Calculer le nombre de jours d’un mois donné.. 99
Comment choisir entre if-else et switch ? .. 102

R é su m é .. 103
E x e rc ice s ... 104

Comprendre les niveaux d'imbrication... 104
Construire une arborescence de choix .. 105
Manipuler les choix muitipies, gérer les caractères... 106

Le projet : Gestion d’un compte b a n c a ire .. 107
Accéder à un menu suivant l’option cho isie .. 107

O
Ol_>•

LU

T~{
0 fN

sz01'k_>-Q.O
U

Faire des rép é titia iis 109
Combien de sucres dans votre café ? ... 110
La boucle do...w h ile ... I l l

Syntaxe ... 112
Principes de fonctionnement... 112
Un distributeur automatique de c a f é ... 112

La boucle while 119
Syntaxe .. 119
Principes de fonctionnement... 119
Saisir un nombre entier au clavier 120

La boucle f o r ... 127
Syntaxe .. 127
Principes de fonctionnement... 128
Rechercher le code Unicode d'un caractère de la table A S C I I ... 128

Queile boucle choisir ? ... 131
Choisir entre une boucle do...while et une boude w h ile ... 131
Choisir entre la boude for et while ... 132

R é su m é .. 132
E x e rc ice s ... 134

Comprendre la boude do...while ... 134

> Éditions Eyrolles IX

I Le Uvre de lava premier langage Tülle des madères

Apprendre à compter, accumuler et rechercher une valeur ... 135
Comprendre la boucle while, traduire une marche à suivre
en programme Ja v a .. 135
Comprendre la boucle f o r ... 136

Le projet : Gestion d’un compte b a n c a ire ... 137
Rendre le menu interactif ... 137

Partie II
In itiation à la program mation orientée omet

<D

LU
VûrH
O
rs|

@
JZoi'lI
O.OU

5 De l’algorithme paramétré à récriture de fonctions... 14i
Algorithme paramétré 142

Faire un thé chaud, ou comment remplacer le café par du th é ... 142
Des fonctions Java prédéfinies .. 144

La bibliothèque M ath ... 1 4 4
Exemples d’utilisation ... 146
Principes de fonctionnement... 147

Construire ses propres fonctions ... I 49
Appeler une fonction ... 150
Définir une fonction.. 151

Les fonctions au sein d’un programme Java .. 156
Comment placer plusieurs fonctions dans un programme ... 156
Les différentes formes d’une fonction.. 158

R é su m é .. 161
Exercices .. 162

Apprendre à déterminer les paramètres d’un algorithme .. 162
Comprendre l’utilisation des fonctions.. 162
Détecter des erreurs de compilation concernant les paramètres
ou le résultat d'une fonction ... 163
Écrire une fonction sim ple ... 164

Le projet : Gestion d’un compte b an ca ire .. 166
Définir une fonction.. 166
Appeler une fonction... 166

6 Fonctions, notions avancées ... 16 7
La structure d’un program m e... 167

La visibilité des variables... 169
Variable locale à une fonction... 170
Variable de c la s s e ... 1 7 3
Quelques précisions sur les variables de c la sse ... 175

) Éditions Eyroües

Taue des madères Le dure de u va premier laagage

Les fonctions communiquent
Le passage de paramètres par va leu r...
Le résultat d’une fonction..
Lorsqu'il y a plusieurs résultats à retourner...

R é s u m é ...
Exercices..

Repérer les variables locales et les variables de c la s s e
Communiquer des valeurs à l’appel d’une fonction...
Transmettre un résultat à la tonction appelante...

Le projet : Gestion d'un compte b ancaire ...
Comprendre la visibilité des variab les...
Les limites du retour de résultat ..

178
179
181
183
185
186
186
187
188
168
188
189

1Л
Oi_>•
Ш
Ю
T~{
0
ГМ

Д-1sz01'k_>-Q.O
U

7 Les classes et les o b je ts 191
La c lasse String, une approche de la notion d’objet .. 191

Manipuler des mots en programmation.. 192
Les différentes méthodes de la classe String .. 194
Appliquer une méthode à un objet... .. 203

Construire et utiliser ses propres c la s s e s .. 205
Définir une classe et un ty p e 205
Définir un objet .. 209
Manipuler un ob jet... 211
Une application qui utilise des objets C e rc le ... 212

R é su m é .. 216
E x e rc ice s ... 217

Utiliser les objets de [a classe S tring ... 217
Créer une classe d’objets 218
Consulter les variables d’in stance ... 218
Analyser les résultats d’une application o b je t .. 218

Le projet : Gestion d’un compte b a n c a ire .. 221
Traiter les chaînes de caractères... 221
Définir le type Com pte.......................... 221
Construire l’application Projet ... 222
Définir le type LigneComptable .. 222
Modifier le type Compte.. 222
Modifier l’application P ro je t .. 223

8 Les principes du concept objet 225
La communication objet .. 226

Les données sta tic ... 226
Le passage de paramètres par référence .. 229

> Éditions Eyrolles X I

le livre de lava Diemier langage T ^ le des madères

Les objets contrôlent leur fonctionnem ent.. 234
La notion d'encapsulation.......................... 235
La protection des données .. 235
Les méthodes d’accès aux données... 237
Les constructeurs ... 243

L’héritage .. 246
La relation « est un =>... 246
Le constructeur d’une classe héritée 248
La protection des données héritées ... 250
Le polymorphisme... 250

Les in terfaces .. 252
Qu’est-ce qu’une interface ? ... 252
Calculs géométriques ... 254

R é su m é ... 257
Exercices .. 258

La protection des données .. 258
L’héritage.. 260
Les interfaces ... 263

Le projet ; Gestion d’un compte b an ca ire ... 264
Encapsuler les données d’un compte bancaire.. 264
Comprendre l’héritage... 266

Partie III
Outils et techniaues orientés objet

O
O
>•

LU

T~{
0 fN

u-isz01'k_>-Q.O
U

Collectionner un nombre fixe li’abjets ... 271
Les tableaux à une dimension ... 272

Déclarer un tab leau .. 272
Manipuler un tab leau ... 274

Quelques techniques utiles .. 278
La ligne de commande 278
Trier un ensemble de données .. 283

Les tableaux à deux d im ensions ... 291
Déclaration d’un tableau à deux dim ensions... 291
Accéder aux éléments d’un tableau ... 292

Résum é...
Exercices

Les tableaux à une dimension . .
Les tableaux d’ob jets.....................
Les tableaux à deux dimensions

299
300
300
301
301

X II

Pour mieux comprendre le mécanisme des boucles imbriquées fo r-fo r........................ 302

© Éditions EyroHes

Table des madères le livre de lava premier langage

Le projet : Gestion d’un compte b ancaire ... 303
Traiter dix lignes com ptables... ... 303

10 Coflectionner un nombre indéterminé d’o b je ts 306
La programmation dynam ique... 305

306
311
322
324

Les listes ...
Les dictionnaires ...
Les streams et les expressions lambda...

L’archivage de d o n n ées ..
La notion de flux ... 324
Les fichiers textes ... 325
Les fichiers d’ob jets .. 329
Gérer les exceptions ... 334

R é su m é 337
E x e rc ice s ... 339

Comprendre les listes 339
Comprendre les dictionnaires ... 341
Créer des fichiers textes ... 342
Créer des fichiers d’objets ... 344
Gérer les e rre u rs ... 344

Le projet : Gestion d’un compte b a n c a ire ... 345
Les comptes sous forme de dictionnaire... 345
La sauvegarde des comptes bancaires.. 346
La mise en place des dates dans les lignes comptables... 346

1Л
Oi_>•
l_U
Ю
T~{
0
ГМ

@
Д-1sz01'k_>-Q.O
U

11 Dessiner des (A le ts ... 349
La bibliothèque A W T .. 349

Les fenêtres.. 350
Le d e ss in .. 352
Les éléments de communication graphique ... 358

Les événem ents ... 362
Les types d’événements ... 362
Exemple : associer un bouton à une action.. 363
Exemple : fermer une fenêtre... 367
Quelques principes .. 368

De l’AWT à S w in g .. 368
Un sapin en Sw ing ... 369
Modifier le modèle de présentation de l’interface .. 372

R é su m é .. 379
E x e rc ice s ... 360

Comprendre les techniques d'affichage graphique ... 380
Apprendre à gérer les événem ents.. 381

> Éditions Eyrol/es X III

le livre de lava Diemier langage T ^ le des madères

Le projet : Gestion d’un compte b a n ca ire .. 385
Calcul de statistiques ... 385
L'interface graphique... 386

12 Gréer une interface g rap h iau e.. 389
Un outil d'aide à la création d’ interfaces graphiques.. 389

Qu'est qu’un EDI ? .. 390
Une première application avec N etBeans.. 400

Gestion de bulletins de n o te s ... 410
Cahier des ch a rg es .. 411
Mise en place des éléments graphiques... 413
Définir le comportement des objets graphiques ... 420

Un éditeur pour dessiner ... 433
Cahier des ch a rg es .. 434
Créer une feuille de dessins ... 435
Créer une boîte à outils .. 445
Créer un menu .. 451

R é su m é .. 455
Exercices .. 455

S ’initier à NetBeans.. 455
Le gestionnaire d’étudiants version 2 .. 457
L’éditeur graphique version 2 ... 461

Le projet : Gestion de comptes b anca ires ... 463
Cahier des ch a rg es ... 463
Structure de l’application... 465
Mise en place des éléments graphiques... 467
Définition des comportements... 47Û

O
Oi_>•

LU

T~{
0 fN

u-isz01'k_>-Q.O
U

13 Développer
une application Android.. 475

Comment développer une application mobile ? ... 475
Bonjour le monde : votre première application mobile
L’application Liste de courses ...

Publier une application Android
Tester votre application sur un mobile Andro id
Déposer une application Android sur un serveur dédié

Résum é..
Exercices ..

Comprendre la structure d’un projet Android
La liste des courses - Version 2 ...

476
490
508
509
512
523
525
525
527

X IV © Éditions EyroHes

TaHe des madères Le Itwre de iaua premier langage

Annexe - Guide d’installations.. 5 3 1
Extension Web ... 531

Le fichier corriges.pdf ... 531
L’archive Sources.zip ... 5 3 5
Le lien J a v a .. 5 3 5
Le lien N etBeans.. 5 3 5
Le lien Android S tu d io ... 5 3 5

Installation d’un environnement de développement .. 5 3 6
Installation de Java S E Development Kit sous W indows... 5 3 5
Installation de Java S E Development Kit 8 sous Mac OS X ... 5 4 5
Installation de Java S E Develoment Kit 8 sous Linux .. 5 4 9
Installation de NetBeans sous Windows 2000, NT, XP, Vista et 7 5 5 0
Installation de NetBeans sous Mac OS X 10.7 et supérieur............................. 5 5 5
Installation de NetBeans sous L in u x ... 561

Utilisation des outils de développem ent... 565
Installer la documentation en ligne .. 565
Développer en mode commande... 565
Développer avec N etBeans.. 570
Développer des applications Android avec Android Stud io ... 576

Index..589

i/)V
ôL.
:>~UJ
v£i
tH
O<N
©
sz
01‘lI
D.O
U

© Éditions Eyrolles X V

inй)

:>■
ш
iûTH
ОrN
@

Ol
>■Q.
OU

Auant-propos

Organisation de l’ouvrage

>-
LU
UDtHOfN
@
JZCT

D.O
U

Ce livre esi tout particulièrenient destiné aux débutants qui souhaitent aborder l’apprentissage
de la programmation en utilisant le langage Java comme premier langage.
Les concepts fondamentaux de la programmation y sont présentés de façon évolutive, grâce à
un découpage de l’ouvrage en trois parties, chacune couvrant un aspect différent des outils et
techniques de programmation.
Le chapitre intnxluctif, « Naissance d’un programme », constitue le préalable nécessaire à la bonne
compréliension des parties suivantes. Il introduit aux mécanismes de con.struction d’un algorithme,
compte tenu du fonctionnement interne de l’ordinateur, et explique les notions de langage informa­
tique, de compilation et d’exécution à travers un exemple de programme écrit en Java.

La première partie concerne l'étude des « Outils et techniques de base » :
• Le chapitre I, « Stocker une information », aborde la notion de variables et de types. Il pré­

sente coiniiient stocker une donnée en mémoire, calculer des expressions mathématiques
ou échanger deux valeurs, et montre comment le type d’une variable peut influencer le
résultat d’un calcul.

• Le chapilre 2, « Communiquer une infornration », explique conrmenl transmettre des
valeurs à l ’ordinateur par l ’ intermédiaire du clavier et montre comment l’ordinateur fournit
des résultats en affichant des messages à l’écran.

• Le chapitre 3, « Faire des choix », examine comment tester des valeurs et prendre des déci­
sions en fonction du résultat. Il traite de la comparaison de valeurs ainsi que de l’arbores­
cence de choix. Avec en exemple, la nouvelle .structure de test s w itc h de la version 7 de
Java.

• Le chapitre 4, •« Faire des répétitions », est consacré à l’étude des outils de répétition et
d’ itération. 11 aborde les notions d’incrémentation et d’accumulation de valeurs (compter
et faire la somme d’une collection de valeurs).

La deuxième partie, « Initiation à la programmation orientée objet », introduit les concepts
fondamentaux indispensables à la programmation objet.

« Le chapitre 5, « De l’algorithme paramétré à l’écriture de fonctions », montre l’ intérêt de
l’emploi de fonctions dans la programmation. Il examine les différentes étapes de leur
création.

• Le chapitre 6, « Fonctions, notions avancées », décrit très précisément comment manipuler
les fonctions et leurs piiramètres. Il définit les termes de variable locale et de classe, et
explique le passage de paramètres par valeur.

© Éditions Eyrolles

le Hvre de lava premier langage

O
OL->
LU

T~{
OfN
@
A-t
szgi'k—>-aO
U

• Le chapitre 7, «Les classes et les objets», explique à partir de l ’étude de la classe
S t r in g , ce que sont les classes et les objets dans le langage Java. Il montre ensuite com­
ment définir de nouvelles classes et construire des objets propres à l ’application dévelop­
pée. Avec en exemple, une nouvelle façon de comparer des chaînes de caractères grâce à la
nouvelle structure de te.st s w itc h de la version 7 de Java.

• Le chapitre 8, « Les principes du concept d'objet », développe plus particulièrement com­
ment les objets se communiquent l ’information, en expliquant notamment le principe du
passage de paramètres par référence. Il décrit ensuite les principes fondateurs de la notion
d'objet, c’est-à-dire l’encapsulation des données (protection et contrôle des données, cons­
tructeur de classe) ainsi que l ’héritage entre classes et la notion d’interfaces.

La troisième partie, « Outils et techniques orientés objet », donne tous les détails sur l ’orgimi-
■sation, le traitement et l’exploitation intelligente des objets.

• Le chapitre 9, « Collectionner un nombre fixe d’objets », concerne l ’organisation des don­
nées sous la forme d’un tableau de taille fixe.

• Le chapitre 10, « Collectionner un nombre indéterminé d'objets », présente les différents
outils qui permettent d’organiser dynamiquement en mémoire les ensembles de données
de même nature, notamment les nouvelles fonctionnalités de Java 8, à savoir les expres­
sions lambda et les streams. Tl est également consacré aux différentes techniques d’archi­
vage et à la façon d’accéder aux informations stockées sous forme de fichiers.

• Le chapitre I I , « Dessiner des objets », couvre une grande partie des outils gi aphiques
proposés par le langage Java (bibliothèques AWT et Swing). Tl analyse le concept événe­
ment-action.

• Le chapitre 12, « Créer une interface graphique », expose dans un premier temps le fonc­
tionnement de base de l'environnement de programmation NetBeans. Puis, à travers trois
exemples très pratiques, il montre comment concevoir des applications munies d’interfaces
graphiques conviviales.

• Le chapitre 13, « Développer une application Android », décrit comment créer votre toute
première application Android, tout en expliquant la structure de base nécessaire au
déploiement de cette application. Tl présente ensuite le développement d’iine application
plus élaborée ainsi que .sa mise à disposition sur un seiweiir dédié.

Ce livre contient également en annexe :

• un guide d'installation détaillé des outils nécessaires au développement des applications
Java (Java, NetBeans), sous Linux, Mac OS X et sous Windows 20Üfl, NT, XP et Vista ;

• toutes les explications nécessaires pour construire votre environnement de développement
d’applications Java ou Android, que ce soit en mode commande ou en utilisant la plate­
forme ou Android Studio pour les applications sur smartphone ou tablette ;

• un index, qui vous aidera à retrouver une information sur le thème que vous recherchez, (les
mots-clés du langage, les exemples, les principes de fonctionnement, les classes et leurs
méthodes, etc.).

© Éditions Eyroties

Organlsatton de l’ouvrage

Chaque chapitre se termine sur une série d’exercices oiTraTil au lecteur la possibilité de mettre
en pratique les notions qui viennent d’être étudiées. Un projet est également proposé au fil des
chapitres afin de développer une application de gestion d’un compte bancaire. La mise en
œuvre de cette application constitue un fil rouge qui permettra au lecteur de combiner toutes
les techniques de programmation étudiées au fur et à mesure de l ’ouvrage, afin de construire
une véritable application Java.

Les codes sources des exemples, des exercices et du projet sont téléchargeables depuis
l’extension Web w w w .an n eîass o .fr/Jav a en cliquant sur le lien Sources.

<D

>■
LU
KOrHOrvl
@

CT
>*O.O
U

> Éditions Eyrolfes

inй)

:>■
ш
iûTH
ОrN
@

Ol
>■Q.
OU

Introduction

Naissance d’un programme
Aujourd'hui, l’ informatique en général et l ’ordinateur en particulier sont d’un usage courant.
Grâce à Internet, l'informatique donne accès à une information mondiale. Elle donne aussi la
possibilité de traiter cette information pour analyser, gérer, prévoir ou concevoir des événe­
ments dans des domaines aussi divers que la météo, la médecine, l’économie, la bureautique,
etc.
Cette communication et ces traitements ne sont possibles qu’au travers de l ’outil informatique.
Cependant, toutes ces facultés résultent davantage de l’application d’un programme résidant
sur l’ordinateur que de l’ordinateur lui-même. En fait, le programme est à l ’ordinateur ce que
l’ esprit est à l’être humain.
Créer une application, c’est apporter de l’esprit à l’ordinateur. Pour que cet esprit donne .sa
pleine mesure, il est certes nécessaire de bien connaître le langage des ordinateurs, mais, surtout,
il est indispensable de savoir programmer. La programmation est l ’art d’analyser un problème
afin d'en extraire la marche à suivre, l ’algorithme susceptible de résoudre ce problème.
C'est pourquoi ce chapitre commence par aborder la notion d’algorithme. À partir d’un exemple
tiré de la vie courante, nous déterminons les étapes e.ssentielles à l ’élaboration d’un
programme (voir section «Construire un algorithme»). A la section suivante, «Qu'est-ce
qu’un ordinateur?», nous examinons le rôle et le fonctionnement de l’ordinateur dans le
passage de l ’algorithme au programme. Nous étudions ensuite, à travers un exemple simple,
comment écrire un programme en Java et l’exécuter (voir section « Un premier programme en
Java, ou comment parler à un ordinateur »). Enfin, nous décrivons, à la section « Le projet :
Gestion d’un compte bancaire », le caliier des charges de l’application projet que le lecteur
assidu peut réaliser en suivant les exercices décrits à la fin de chaque chapitre.

C o is tiu re un algortthne

ifi

Ô1_>-
LU
ÜDrH0 fN
@
u-t
JZ01'k_>-Q.O
U

Un ordinateur muni de l’application adéquate traite une information. Il sait calculer, compter,
trier ou rechercher l ’information, dans la me.sure où un programmeur lui a donné les ordres à
exécuter et la nuu'che à suivre pour arriver au résultat.
Cette marche à suivre s’appelle uii algorithme.
Déterminer l’algorithme, c’est trouver un cheminement de tâches à fournir à l’ordinateur pour
qu’il les exécute. Voyons comment s’y prendre pour construire cette marche à suivre.

> Editions EyroHes

le Uvre de lava preinler langage

Ne faire qu’une seule chose à la fois
Avant de réaliser une application concrète, telle que celle proposée en projet dans cet ouvrage,
nécessairement complexe par la diversité des tâches qu’elle doit réaliser, simplifions-nous la
tâche en ne cherchant à résoudre qu’un problème à la fois.
Considérons que créer une application, c’est décomposer cette dernière en plusieurs sous-
applications qui. à leur tour, se décomposent en micro-applications, jusqu’à descendre au
niveau le plus élémentaire. Cette démarche est appelée analyse descendante. Elle est le prin­
cipe de base de toute construction algorithmique.
Pour bien comprendre cette démarche, penchons-nous sur un problème réel et simple à
résoudre : comment faire un calé chaud non sucré ?

Exemple : l’algorithm e du café chaud
Construire un algorithme, c’est avant tout analyser l’énoncé du problème afin de définir
l ’ensemble des objets à manipuler pour obtenir un résultat.

Définition des objets manipulés
Analysons l’énoncé suivant :

I Comment faire un café chaud non sucré ?
Chaque mot a son importance, et « non sucré » est au.ssi important que « café » ou « chaud ».
Le terme « non sucré » implique qu’ il n’est pas nécessaire de prendre du sucre ni une petite
cuillère.
Notons que tous les ingrédients et ustensiles nécessaires ne sont pas cités dans l’énoncé. En
particulier, nous ne savons pas si nous disposons d’une cafetière électrique ou non. Pour
résoudre notre problème, nous devons prendre certaines décisions, et ces dernières vont avoir
une influence sur l ’allure générale de notre algorithme.
Supposons que. pour réaliser notre café, nous soyons en possession des ustensiles et ingrédients
suivants :

1Л
(U

U J

va•rH
OГМ
@
JZCT'k—>-Q.O
U

Kl café moulu
filtre
eau
pichet
cafetière électrique
tasse

I électricité
table

En fixant la liste des ingrédients et des ustensiles, nous définissons un environnement, une
base de travail. Nous sommes ainsi en mesure d'établir une liste de toutes Les actions à mener
ptiur résoudre le problème et de construire la marche à suivre permettant d’obtenir un café.

© Éditions Eyroffes

Naissance H'bb programme

Liste des opérations
Verser l'eau dans la cafetière, le café dans la tasse, le café dans

I le filtre.
Remplir le pichet d'eau.
Prendre du café moulu, une tasse, de l'eau, une cafetière électrique,
un filtre, le pichet de la cafetière.
Brancher, allumer ou éteindre la cafetière électrique.
Attendre que le café remplisse le pichet.
Poser la tasse, la cafetière sur la table, le filtre dans la
cafetière, le pichet dans la cafetière.

Cette énumération est une description de toutes les actions nécessaires à la réalisation d’un
café chaud.
Chaque action est un fragment du problème donné et ne peut plus être découpée. Chaque
action est élémentaire par rapport à l’environnement que nous nous sommes donné.
En définissant l’ensembie des actions possibles, nous créons un langage minimal qui nous
penmet de réaliser le café. Ce langage est composé de verbes {Prendre, Poser, Verser,
Faire, Attendre, etc.) et d’objets (Café moulu. Eau, Filtre, Tasse, etc.).
La taille du langage, c’est-à-dire le nombre de mots qu’il renferme, est déterminée pim l ’envi-
ronnement. Pour cet exemple, nous avons, en précisant les hypothèses, volontairement choisi un
environnement restreint. Nous aurions pu décrire des tâches comme « prendre un contrat EDF »
ou « planter une graine de café », mais elles ne sont pas utiles à notre objectif pédagogique.

Quelle serait la liste des opérations supplémentaires si l’on décidait de faire un café sucré ?

Les opérations seraient ;

tTVg-

Prendre du sucre, une petite cuillère.
Poser le sucre dans la tasse, la cuillère dans la tasse.

Telle que nous l’avons décrite, la liste des opérations ne nous permet pas encore de faire un
café chaud. En suivant cette liste, tout y est, mais dans le désordre. Pour réaliser ce fameux
café, nous devons ordonner cette liste.

O
Ol_>■
LU
üDrHOfM
@
j::gi
>•Q.OU

Ordonner la liste des opérations
1. Prendre une cafetière électrique.
2. Poser la cafetière sur la table.
3. Prendre un filtre,
4. Poser le filtre dans la cafetière.
5. Prendre du café moulu.
6. Verser le café moulu dans le filtre.

> Éditions Eyrolles

Le Uure de lava aremler langage

7. Prendre le pichet de la cafetière.
8. Remplir le pichet d'eau.
9. Verser l'eau dans la cafetière.
10. Poser le pichet dans la cafetière.
11. Brancher la cafetière.
12. Allumer la cafetière.
13. Attendre que le café remplisse le pichet.
14. Prendre une tasse.
15. Poser la tasse sur la table.
16. éteindre la cafetière.
17. Prendre le pichet de la cafetière.
18. Verser le café dans la tasse.

L’exécution de l’ensemble ordonné de ces tâches nous permet maintenant d’obtenir du café
chaud non sucré.

Lordre d’exécution de cette marche à suivre est important. En effet, si l’utilisateur réalise l’opéra­
tion 12 (Allumer la cafetière) avant l’opération 9 (Verser l'eau dans la cafetière),
le résultat est sensiblement différent. La marche à suivre ainsi désordonnée risque de détériorer
la cafetière électrique.

Cet exemple tiré de la vie courante montre que, pour résoudre un problème, il est essentiel de
définir les objets utilisés puis de trouver la suite logique de tous les ordres nécessaires à la
résolution dudit problème.

Où placer les opérations supplémentaires, dans îa liste ordonnée, pour faire un café sucré ?

n tp m a Les opérations se placent à la fin de la liste précédente de la façon suivante ;
19. Prendre du sucre.
20. Poser le sucre dans la tasse.
21. Prendre une petite cuillère.
22. Poser la cuillère dans la tasse.

<u

>-
UJ
KO
rH
OfN
®
U-JJCCT
>D.O
U

Vers une méthode
La tâche consistant à décrire comment ré.soudre un problème n’est pa.s simple. Elle dépend en
partie du niveau de difficulté du problème et réclame un savoir-faire : la façon de procéder
pour découper un problème en actions élémentaires.
Pour aborder dans les meilleures conditions possibles la tâche difficile d'élaboration d’un
algorithme, nous devons tout d’abord :
• Déterminer les objets utiles à la résolution du problème.

) Édfiions Eyrof/es

Naissance d’nn programine

* CoTi.st.ruire ei. ordonner la liste de toutes les actions nécessaires à cette résolution.
Pour cela, il est nécessaire :
* d’analyser en detail la tâche à résoudre ;
* de fractionner le problème en actions distinctes et élémentaires.
Ce fractionnement est réalisé en tenant compte du choix des hypothèses de travail. Ces hypo­
thèses imposent un ensemble de contraintes, qui permettent de savoir si l ’action décrite est
élémentaire et ne peut plus être découpée.
Cela fait, nous avons comstruit un algorithme.

Passer de ralgoiiihnie au programine

Pour construire un algorithme, nous avons défini des hypothèses de travail, c’est-à-dire
supposé une base de connaissances minimales nécessaires à la résolution du problème. Ainsi,
le fait de prendre l’hypothèse d’avoir du café moulu nous autorise à ne pas décrire renserabtc
des tâches précédant l'acquisition du café moulu. C ’est donc la connaissance de î’envirnnnetnent
de travail qui détermine en grande partie la constmetion de T algorithme.
Pour passer de l ’algorithme au programme, le choix de l’environnement de travail n’est plus
de notre ressort. Jusqu’à présent, nous avons supposé que l ’exécutant était humain. Mainte­
nant, notre exécutant est l ’ordinateur. Pour écrire un programme, nous devons savoir ce dont
est capable un ordinateur et connaître son fonctionnement de façon à établir les connaissances
et capacités de cet exécutant.

f/>d)

>-m

O
(N

@
x:Ol
ClOU

Qu’est-ce qu’un ordinateur ?
Notre intention n’est pas de décrire en détail le fonctionnement de l’ordinateur et de ses compo­
sants mais d’en donner une image simplifiée.
Pour tenter de comprendre ctmiment travaille l’ordinateur et, surUmt, comment il .se programme,
nous allon.s schématiser à l ’extrême ses mécanismes de fonctionnement.
Un ordinateur est composé de deux parties distinctes, la mémoire centrale et l'unité centrale.
La mémoire centrale permet de mémoriser toutes les informations nécessaires à l’exécution
d’un programme. Ces informations correspondent à des données ou à des ordres à exécuter
(instructions). Les ordres placés en mémoire sont effectués ptu l’unité centrale, la partie
active de l’ordinateur.
Lorsqu’un ordinateur exécute un programme, son travail consiste en grande partie à gérer la
mémoire, soit pour y lire une instruction, soit pour y stocker une information. En ce sens, nous
pouvons voir l’oidinaletir comme un robot qui sait agir en fonction des ordres qui lui sont
fournis. Ces actions, en nombre limité, sont décrites ci-après.

© Éditions Eyrolles

Le Hure de lava premier langage

Déposer ou lire une information dans une case mémoire

La mcinoire est formée d’éléments, ou cases, qui possèdent chacune un numéro (une adresse).
Chaque case mémoire est en quelque sorte une boîte aux lettres pouvant eonlenii' une information
(une lettre). Pour y déposer cette information, l ’ordinateur (le facteur) doit connaître l’adresse
de la boîte. Lorsque le robot place une information dans une case mémoire, il mémorise
l’adresse où se situe celle-ci afin de retrouver rinformation en temps nécessaire.

Figure /-1 La mémoire de l’ordinateur est composée de cases possédant une adresse
et pouvant contenir à tout moment une valeur.

Le robot sait déposer une information dans une case, mais il ne sait pas la retirer (au sens de
prendre un courrier déposé dans une boîte aux lettres). Lorsque le robot prend l’information
déposée dans une case mémoire, il ne fait que la lire. En aucun ca,s il ne la retire ni ne l’efface.
L’ information lue reste toujours dans la case mémoire.

(Me TO Pour effacer une information d’une case mémoire, il est nécessaire de placer une nouvelle
information dans cette même case. Ainsi, la nouvelle donnée remplace l'ancienne, et l’information
précédente est détruite.

i/)
Ô
L_>

LU
LOrHOfN
@
u -t
JZgi'k—>-Q.O
U

10

Exécuter des opérations simples telles que raddition ou la soustraction

Le robot lit et exécute les opérations dans l’ordre où elles lui sont fournies. Pour faire une
addition, il va chercher les valeurs à additionner dans les cases mémoire appropriées (stockées,
par exemple, aux adresses a et b) et réalise ensuite l ’opération demandée. Il enregistre alors le
ré.sultat de cette opération dans une case d’adresse c. De telles operations sont décrites à l ’aide
d’ordres, appelés aussi inslructioiis.

© Éditions Eyrofles

Nalssaiice d 'u i programme

Figure 1-2 Le programme exécute les instructions dans l'ordre de leur apparition.

Comparer des valeurs

Le robot est capable de comparer deux valeurs entre elles pour de'terniiner si l ’une d’entre
elles est plus grande, plus petite, égale ou différente de l'autre valeur. Grâce à la comparaison,
le robot est capable de tester une condition et d’exécuter im ordre plutôt qu’un autre, en fonction
du résultat du test,

La réalisation d’une comparaison ou d’un test fait que le robot ne peut plus exécuter les
instructions dans leur ordre d’apparition. En effet, suivant le résultat du test, il doit rompre
l’ordre de la marche à suivre, en sautant une ou plusieurs instructions. C ’est pourquoi il existe
des instructions particulières dites de branchement. Grâce à ce type d’instructions, le robot
est à même non seulement de sauter des ordres mais aussi de revenir à un ensemble d’opérations
afin de les répéter.

t/><D

>-
LU
vûrH
OfN
@
JZoi'k_
Q.
O
U

Figure f-3 Suivant le résultat du test, l'ordinateur exécute i'une ou l'autre instruction
en sautant celle qu'il ne doit pas exécuter.

t Éditions Eyrolles 11

le livre de lava Diemler langage

Communiquer une information élémentaire
Un programme est esseiUiellemeiit un outil qui traite Tin formation. Cette information est
transmise à l’ordinateur par l’utilisateur. L’ information est saisie par Г intermédiaire du clavier
ou de la souris. Cette transmission de données à l’ordinateur est appelée conmrunieation
d’entrée (input en anglais). On parle aussi de saisie ou encore de lecture de données.
Après traitement, le programme fournit un résultat à l ’utilisateur, soit par l’intermédiaire de
l’écran, soit sous forme de fichiers, que l ’on peut ensuite imprimer. Tl s’agit alors de communi­
cation de sortie (output) ou encore d’affichage ou d’écriture de données.

Figure 1-4 L a s a is i e a u c l a v i e r d 'u n e v a le u r
c o r r e s p o n d à u n e o p é r a t io n d 'e n t r é e , e t l 'a f f i c h a g e d 'u n r é s u l t a t à u n e o p é r a t io n d e s o r t ie .

Coder ¡^information
De par la nature de ses composants électroniques, le robot ne perçoit que deux états ; compo­
sant allumé et composant éteint. De cette perception découle le langage binaire, qui utilise par
convention les deux symboles 0 (éteint) et 1 (allumé).
Ne connaissant que le 0 et le 1, l’ordinateur utilise un code pour représenter une information
aussi simple qu’un nombre entier ou un caractère, Ce code est un programme, qui différencie
chaque type d’information et transforme une information (donnée numérique ou alphabétique)
en valeurs binaires. A l’ inverse, ce programme sait aussi transformer un nombre binaire en
valeur numérique ou alphabétique. 11 existe autant de codes que de types d’informations. Cette
différenciation du codage (en fonction de ce qui doit être représenté) introduit le concept de
type de données.

ifiO
Oi_>
Ш
Ю
T~{
0
ГМ

@
.4-1x:01'k_
ClO
U

Données
numériques

12

Doniiccs
alphabétiques

Figure l - S T o u te In f o r m a t io n e s t c o d é e e n b in a ir e . I l e x is t e a u t a n t d e c o d e s q u e d e t y p e s d 'in fo r m a t io n s .

© Éditions Eyrolles

Hatesance d us programme

Remarque Toute intormation fournie à l’ordinateur est, au bout du compte, codée en binaire. Linformation
peut être un simple nombre ou une instruction de programme.

E x e m p le

Pour additionner deux nombres, Tordinateiir fait appel aux trois éléments qui lui sont néces­
saires pour réaliser cette opération. Ces éléments sont les suivants :
• Le code binaire représentant l’opération d’addition (par exemple 0101).
• L’adresse de la case mémoire où est stocké le premier nombre (par exemple 01 1101).
• L’adresse de la case mémoire où se trouve la deuxième valeur (par exemple 010101).
Pour finir, l’instruction d’addition de ces deux nombres s’écrit en assemblant les trois codes
binaires (soit, dans notre exemple, 0 101011101010101).

Remarque Le code binaire associé à chaque code d’opération (addition, test, etc.) n'est pas nécessaire­
ment identique d’un ordinateur à un autre. Ce code binaire est déterminé par le constructeur de
l'ordinateur. De ce fait, une instruction telle que l’addition de deux nombres n’a pas le même
code binaire d’une machine à une autre. Il existe donc, pour un même programme, un code
binaire qui diffère suivant le type d’ordinateur utilisé.

Figure 1-6 P o u r u n m ê m e p r o g r a m m e , l e c o d e b in a i r e d i f f è r e e n f o n c t io n d e l ’o r d i n a t e u r u t i l is é .

O
O1_>
LU

rH0 fN
@
j::01 'u
Q.
O
U

Uordinateur n'est qu’un exécutant
En pratique, le robot est très habile à réaliser l’ersemble des lâches énoncées ei-dessus. Il les
exécute beaucoup plus rapidement qu’un être humain.
En revanche, le robot n’est pas doué d’intelligence. Il n’est ni capable de choi.sir une action
plutfil qu’une autre, ni apte à exécuter de lui-même l’eiisembie de ces actions. Pour qu’il
puisse exécuter une instruction, il faut qu’un être humain détermine l’ instruction la plus
appropriée et lui donne l’ordre de l ’exécuter.
Le robot est un exécutant capable de comprendre des ordres. Compte tenu de ses capacités
limitées, les ordres ne peuvent pas lui être donnés dans le langage naturel propre à l’êlre humain.

> Editions Eyroües 13

Le Uvre de bva Dremler langage

En effet, le robot ne comprend pas le sens de.s ordres qu’ il exécute mais seulement leur ['orme.
Chaque ordre doit être écrit avec des mots particuliers et une fortne, ou syntaxe, préétablie.
L’ensemble de ces mots constitue un langage informatique. Les langages C, C++, Pascal,
Basic, Fortran, Cobol et Java sont des langage. ̂ de programmation, constitués de mots et
d’ordres dont la syntaxe diffère selon le langage.
Pour écrire un programme, il est nécessaire de connaître un de ces langages, de façon à
traduire un algorithme en un programme composé d’ordres.

Un prem ier programme en Java, ou comment parler à un ordinateur
Pour créer une application, nous allons avoir à décrire une liste ordonnée d’opérations dans un
langage compréhensible par l’ordinateur. La contrainte est de taille et se porte essentiellement
sur la façon de déJinir et de représenter les objets nécessaires à la résolution du problème en
fonction du langage de l’ordinateur.
Pour bien comprendre la difficulté du travail à accomplir, regardons comment faire calculer à
un ordinateur la circonférence d’un cercle de rayon quelconque.

Calcul de la circonférence d ’un cercle
L’exercice consiste à calculer le périmètre d’un cercle de rayon quelconque. Nous supposons
que l ’utilisateur emploie le clavier pour transmettre au progranuue la valeur du rayon.

Définition des objets manipulés
Pour calculer la circonférence du cercle, l’ordinateur a besoin de stocker dans ses cases
mémoire la valeur du rayon ainsi que celle du périmètre. Les objets à manipuler sont deux
valeurs numériques appartenant à l ’ensemble des réels IR. Nous appelons LePerimetre la
valeur correspondant au périmètre et unRayon la valeur du rayon.

ifi<D

LU
ViD
tH
Ors|
@

oi
D.OU

14

La liste des opérations
La circonférence d’un cercle est calculée à partir de la formule ;

LePerimetre = 2 x 71 x unRayon.
La valeur du rayon est fournie par Putilisateur à l’aide du clavier. Elle n’est donc pas connue
au moment de l'écriture du programme. En conséquence, il est nécessaire d’écrire l'ordre
(instruction) de saisie au clavier avant de calculer la circonférence.
La li.ste des opérations est la suivante :
1. Réserver deux cases mémoire pour y stocker les valeurs

^correspondant au rayon (unRayon) et au périmètre (lePerimetre) ,
2. Demander à l'utilisateur de saisir la valeur du rayon au clavier

•et la placer dans la case mémoire associée.
3. Connaissant la valeur du rayon, calculer la circonférence.
4. Afficher le résultat.

© Editions Eyrotles

Halssance d us programme

La valeur du rayon puis, après ealcul, celle de la circonférence som les données principales de
ce programme. L’ordinateur doit les stocker en mémoire pour le.s utiliser.

L’opération 1 consiste à donner un nom au.K cases mémoire qui vont servir à stocker ces
données. Lors de cette opération, appelée déclaration de variahles, l’ordinateur réserve une
case mémoire pour chaque nom de variable déüni. Ici, ces variables ont pour nom P et R. An
cours de cette réservation d’emplacements mémoire, l’ordinateur asstK'ie le nom de la variable
et l’adresse réelle de la case mémoire.

Remarque Pour le programmeur, le nom et l’adresse d’une case ne font qu’un, car il ne manipule les
variables que par leur nom, alors que l’ordinateur travaille avec leur adresse. En donnant un
nom à une case, l’être humain sait facilement identifier les objets qu’il manipule, alors qu'il
lui serait pénible de manipuler les adresses binaires correspondantes, inversement, en asso­
ciant un nom à une adresse codée en binaire, l’ordinateur peut véritablement manipuler ces
objets.

<U

LU
LO

OfN
®
JZoi
ClO
U

L’opération 2 permet de saisir au clavier la valeur du rayon. Pour que rutilisateur non initié
sache à quoi correspond la valeur saisie, Î1 est nécessaire, avant de procéder à cette saisie,
d’afficher un message explicatif à l’écran. L’opération 2 se décompose en deux instructions
élémentaires, à savoir :

Afficher un message demandant à l'utilisateur du programme de saisir
^une valeur pour le rayon.
Une fois la valeur saisie par l'utilisateur, la placer dans sa case
»mémoire.

Les opérations 3 et 4 sont des actions élémentaires direclenient traduisibles en langage infor­
matique.

La traduction en Java

Une application, ou programme, ne s’écrit pas en une seule fois. Nous verrons à la lecture de
cet ouvrage que programmer c’est toujours décomposer une difficulté en différentes tâches
plus aisées à réaliser. Celte décomposition s’applique aussi bien pour construire un algorilhnie
que pour l’écriture du programme lui-même.

D’une manière générale, la meilleure façon de procéder pour fabriquer un programme revient
à écrire une première ébauche et à la tester. De ces tests, il ressort des fautes à corriger et,
surtout, de nouvelles idées. Le programme final consiste en l’assemblage de toutes ces corrections
et de ces améliorations.

Pour traduire la marche à suivre définie précédemment selon les règles de syntaxe du langage
Java, nous allons utiliser cette même démarche. Nous nous intéresserons, dans un premier
temps, à la traduction du cœur du programme (opérations 1 à 4 décrites à la section précédente).

© Éditions EyroUes 15

le Hvre de lava aremler langage

Nous verrons pour finir commenl insérer l’ensemble de ces insiruclions dans une structure de
programme Java.
• L’opération 1 consiste à déclarer les variables utilisées pour le calcul de la circonférence.

Cette operation se traduit par T instruction :

I double unRayon, lePerimetre ;
Par cette instruction, le programme demande à l’ordinateur de réserver deux cases
mémoire, nommées unRayon et lePerimetre, pour y stocker les valeurs du rayon et
de la circonférence. Le mot réservé double permet de préciser que les valeurs numériques
sont réelles « avec une double précision », c’est-à-dire avec une précision pouvant aller
jusqu’à 17 chiffres après la virgule.

G M î E M 0 I 0 Pour plus d’informations sur la définition des types de variables, reportez-vous au chapitre 1,
« Stocker une information >»,

Ф
O
>

Ш
Ю
T~{
0
ГМ

@
Д-1x:01'k_>-Q.O
U

L’opération 2 s’effectue en deux temps :
1. Afiicber un message demandant à l’utilisateur de saisir une valeur. Cette opération se

traduit par l ’ instaiction :

I System.out.print("Valeur du rayon ; ") ;

System, out .print {) est ce que l ’on appelle un programme, ou une fonction, pré­
défini par le langage Java. Ce progr amme permet d’eerire à l’écran le message spécifié
à l'intérieur des parenthèses. Le message affiché est ici un fragment de texte, appelé,
dans le jargon informatique, une chaîne de caractères. Pour que l ’ordinateur com­
prenne que la chaîne de caractères n’est pas un nom de variable mais un texte à affi­
cher, il faut placer entre guillemets (" ") tous les caractères composant la chaîne.

2. Saisir et stocker la valeur demandée en mémoire. Pour ce faire, nous devons écrire
les instnictions suivantes :

(Scanner lectureClavier = new Scanner(System.in);
unRayon = lectureClavier.nextDouble();

Scanner est un outil (une cla.sse) proposé à partir de la version 1.5 de Java qui permet
à l ’utilisateur de communiquer une valeur numérique au programme par rintermé-
diaire du clavier. Cet outil utilise des fonctions (par exemple nextDouble ()) qui
donnent l ’ordre à l ’ordinateur d’attendre la saisie d’une valeur (de double précision,
pour notre exemple). La saisie est effective lorsque l ’utilisateur valide sa réponse en
appuyant sur la touche Entrée du clavier.

Une fois la valeur saisie, celle-ci est placée dans la case mémoire nommée unRayon grâce
au signe =.

16 © Éditions Eyroües

Naissance d'un programme

(MEIEiMB Pour plus de précisions sur les deux méthodes S y s te m .o u t .p r in t () et le c tu re
C lav ie r .n e xtD o u b le () reportez-vous au chapitre 2, « Communiquer une information ».
Pour le signe égal (=), voir le chapitre 1, « Stocker une information ». La notion de classe et
l’opérateur new sont étudiés au chapitre 7, « Les classes et les objets ».

* L’opération 3 permet de calculer la valeur de la circonférence. Elle se traduit de la façon
suivante :

I lePerimetre = 2 * Math,PI unRayon

U)<u

UJ
va
tH
O
(N

©
r :oi
>
ClOU

Le signe * est le symbole qui caractérise l’opération de multiplication. Math. PI est le
terme qui représente la valeur numérique du nombre Jt avec une précision de 17 chiffres
après la virgule. Le mot-clé Math désigne la boîte à outils composée de fonctions mathé­
matiques accompagnant le langage Java. Cette bibliothèque contient, outre des constantes
telles que p, des fonctions standards, comme sqrt <) (racine carrée) ou sin() (sinus).
Une fois les opérations de multiplication effectuées, la valeur calculée est placée dans la
variahie lePerimetre grâce au signe =,

* La dernière opération (4) de notre programme a pour rôle d’afficher le résultat du calcul
précédent. Cet affichage est l'éalisé grâce à l ’instruetion ;

I System.out.print(“Le cercle de rayon " + unRayon +
“ a pour periraetre ; " + lePerimetre);

Ce deuxième appel à la fonction System . o u t . print () est plus complexe que le premier.
Il mélange l’affichage de chaînes de caractères (texte entre guillemets) et de contenu de
variables.

Si les caractères R et P ne sont pas placés entre guillemets, c’est pour que l’ordinateur les
interprète non pas comme des caractères à afficher mais comitie les variables qui ont été
déclarées en début de programme. De ce fait, il affiche le contenu des variables et non
les lettres R et P.

Les signes+, qui apparaissent dans l’expression "Le cercle de rayon " +
unRayon + " a pour perimetre : " + lePerimetre, indiquent que chaque
élément du message doit être affiché en le collant aux autres ; d’abord la chaîne de caractères
"Le cercle de rayon ", puis la valeur de unRayon, puis la chaîne "a pour
périmètre : " et, pour finir, la valeur de lePerimetre.

En résumé, la partie centrale du programme contient les cinq instructions suivantes :

d o u b le unR ayon , l e P e r im e t r e ;
S c a n n e r l e c t u r e C l a v i e r = new S c a n n e r (S y s t e m . in) ;
S y s t e m .o u t . p r i n t (" V a le u r du r a y o n : ") ;

© Éditions Eyrol/es 17

le Uvre de lava preinler langage

ifiO
Ol_>
LU

T~{
0 fN
@
-T01'k_
Q.
O
U

+ unRayon +

• + l e P e r im e t r e) ;

18

unRayon. = l e c t u r e C l a v i e r .n e ic tD o ub le () ;
l e P e r im e t r e = 2 * M ath .P I * unR ayon ;
S y s te m .o u t . p r i n t ("Le c e r c l e d e r a y o n "

" a p o u r p e r im e t r e ;

Pour améliorer la lisibilité du programme, il est possible d’ insérer dans le programme, des
commentaires, comme suit :

// 1 . D é c la r e r l e s v a r i a b l e s
double unRayon, lePerimetre ;

Il Scanner lectureClavier = new Scanner (System, in) ;
I l 2 . a A f f ic h e r l e m e ssag e " V a le u r du r a y o n : " à l ' é c r a n
System.out.print("Valeur du rayon ; ") ;
// 2 . b L i r e au c l a v i e r une v a l e u r , p l a c e r c e t t e v a l e u r d an s l a

• v a r i a b l e unRayon
unRayon = lectureClavier.nextDouble();
/ / 3 . C a l c u l e r l a c i r c o n f é r e n c e en u t i l i s a n t l a fo rm u le c o n s a c r é e
lePerimetre = 2 * Math.PI * unRayon ;
// 4 . A f f ic h e r l e r é s u l t a t

I System.out.print("Le cercle de rayon " + unRayon +
" a pour perimetre : " + lePerimetre) ;

Les lignes du programme qui débutent par les signes / / sont considérées par l'ordinateur non
pas comme des ordres à exécuter niais comme des lignes de commentaire. Elles permettent
d’expliquer en langage naturel ce que réalise l’instruction associée.

Ecrites de la sorte, ces instructions constituent le cœur de notre programme. Elles ne peuvent
cependant pas encore être interprétées cotrectement par l’ordinateur. En effet, celui-ci exécute
les instructions d’un programme dans l ’ordre de leur arrivée. Une application doit donc êhe
constituée d’une instruction qui caractérise le début du programme. Pour ce faire, nous devons
écrire notre programme ainsi :

p u b l i c s t a t i c v o id m a in (String [] arg)
{

// 1. Déclarer les variables
double unRayon, lePerimetre ;
Scanner lectureClavier = new Scanner(System.in);
// 2.a Afficher le message "Valeur du rayon : " à l'écran
System.out.print("Valeur du rayon : ") ;
// 2.b Lire au clavier une valeur, placer cette valeur
// dans la variable unRayon
unRayon = lectureClavier.nextDouble0 ;
//3. Calculer la circonférence en utilisant la formule consacrée
lePerimetre = 2 * Math.PI * unRayon ;

© Editions Eyrotles

Halssaiice d 'u i programme

// 4, Afficher le résultat
System.out.print("Le cercle de rayon

" a pour perimetre :
} I I P in d e l a f o n c t io n m a in ()

+ unRayon +
' + lePerimetre

La ligne public static v o id main (String [] arg) est Tinstruction qui perniet
d’indiquer à I’oidinateur le début du programme. Ce début est identifié par ce que Гоп appelle
la fonction main (), c’est-à-dire la fonction principale du programme. De cette façon, lorsque
le programme est exécuté, l ’ordinateur recherche le mot-clé main. Une fois ce mot-clé trouvé,
l’ordinateur exécute une à une chaque instruction constituant la fonction.

G EEÎE ï ï ÏM B Les autres mots-clés, tels que public, static ou void, déterminent certaines caracté­
ristiques de la fonction main (). Ces mots-clés, obligatoirement placés et écrits dans cet
ordre, sont expliqués au fur et à mesure de leur apparition dans le livre et plus particulière­
ment à la section « Quelques techniques utiles » du chapitre 9, « Collectionner un nombre
fixe d’objets ».

1Л

>-
Ш
Ю
O
ГМ

@
sz.
CT
>-
ClO
U

Pour finir, nous devons insérer la fonction main () dans ce qui est appelé une cla.sse Java. En
programitiation objet, un programme n'est executable que s’ il est défini à rintérieur d’une
classe. Une classe est une entité inteiprétée par l’ordinateur comme étant une unité de
programme, qu'il peut exécuter dès qu’un utilisateur le souhaite.

Aucun programme ne peut être écrit en dehors d’une classe. Nous devons donc placer la fonc-
tion main () à rintérieur d'une classe définie par l’ instruction public class Cercle {} ,
comme suit :

p u b l i c c l a s s C e r c le
(
public static void main(String [] arg)
{
Ij 1. Déclarer les variables
double unRayon, lePeriraetre ;
Scanner lectureClavier = new Scanner(System,in);
II 2.a Afficher le message "Valeur du rayon : " à l'écran
System.out.print("Valeur du rayon : ") ;
// 2.b Lire au clavier une valeur, placer cette valeur dans
Il la variable unRayon
unRayon = lectureClavier.nextDouble();
Il 3. Calculer la circonférence en utilisant la formule consacrée

[lePerimetre = 2 * Math,PI * unRayon ;

© Editions Eyroltes 19

le Uvre de lava premier langage

// 4. Afficher le résultat

1 System.out.print{"Le cercle de rayon " + unRayon +
" a pour perimetre : " + lePerimetre);

}
} I l F in d e l a c l a s s e C e r c le

Nous obtenons ainsi le programme dans son intégralité. La ligne public class Cercle
permet de définir une classe. Puisque notre programme effectue des opérations sur un cercle,
nous avons choisi d’appeler cette classe Cercle. Nous aurions pu lui donner un tout autre nom,
comme Rond ou Exemple. Ainsi définie, la classe Cercle devient un programme à paît entière.
Pour finir, il convient de débuter le programme par l’ instniction :

I import java.util.*;

Cette instruction est obligatoire lorsqu’on utilise la classe Scanner. Elle indique au compila­
teur qu’il doit charger les classes (et notamment la classe Scanner) enregistrées dans la boîte
à outils {package) j a v a . util avant de commencer la phase de compilation. Si vous omettez
cette instruction, le compilateur Java signale une erreur du type cannot find symbol
class Scanner.

Remarque Les classes standards de Java sont regroupées par paquetage (en anglais package). Par
exemple toutes les classes relatives au traitement de texte son regroupées dans le paquetage
j a v a . t e x t , le paquetage j a v a . aw t fournit quant à lui toutes les classes correspondant à la
gestion des interfaces graphiques.

m m
Pour voir le résultat de l’exécution de ce programme, reportez-vous à la section « Exemple
sur plate-forme Unix », ci-après.

i/)
ôl_>
LU

T—t
0 <N
©
x :01
ClO
U

20

Figure I - 7 Un programme Java est cor}stliué de deux blocs encastrés. Le premier bloc
représente la classe associée au programme, tandis que le second détermine ta fonction principale.

© Éditions Eyrofles

Halssance d'ua programme

En observant la ligure 7, nous constatons que ce programme, de même que tous ceux à venir,
est constitué de deux blocs encastrés définis par les deux lignes public class Cercle {]
et p u b l ic s t a t i c v o id main (String [] arg){}.
Ces deux blocs constituent la charpente principale et nécessaire à tout programme écrit avec le
langage Java. Cet exemple montre en outre que les mots réservés par le langage Java sont
nombreux et variés et qu’ils constituent une partie du langage Java.

Si la syntaxe, c’est-à-dire la forme, tie ces instruction.s peut paraître étrange de prime abord,
nous verrons à ta lecture de cet ouvrage que leur emploi obéit à des règles strictes. En appre­
nant ces règles et en les appliquant, vous pourrez vous initier aux techniques de construction
d’un prograninie, qui reviennent à décomposer un problème en actions élémentaires puis à
traduire celles-ci à l’aide du tangage Java.

<D

LU
Vû
tH
O<N
©
JZoi'l->•
ClO
U

Dans la classe C e r c le , quelle instruction faut-il modifier pour calculer non plus le périmètre,
mais la surface d’un cercle ?

La surface d’un cercle est obtenue par la formule ; S u r fa c e = ît x Rayon x R a y o n .
Il suffit donc de modifier l’instruction de déclaration :

// Déclaration des variables
double unRayon, lePerimetre ;

en :

// Déclaration des variables
double unRayon, l a S u r f a c e ;

Puis de remplacer l’instruction :

// Calculer la circonférence en utilisant la formule consacrée
lePerimetre = 2*Math.PI*unRayon ;

en :

// Calculer la s u r f a c e en utilisant la formule consacrée
l a S u r f a c e = M ath .P I*unR ayon*unR ayo n ;

Et pour finir remplacer l’instruction :

en ;

// . Afficher le résultat
System.out.print("Le cercle de rayon

" a pour perimetre :

// . Afficher le résultat
System.out.print("Le cercle de rayon

" a pour surface : "

+ unRayon -I-

' + lePerimetre);

+ unRayon +
+ la S u r f a c e)

© Éditions Eyrolles 21

le Hvre de lava premier langage

Ixécuter un programme

Nous iivons écrit un progriinime constitué d’ordres, dont la syntaxe obéit à des règles strictes.
Pour obtenir le résultat des calculs décrits dans le programme, nous devons le faire lire par
rordiniiteur, c’est-à-dire l’exécuter.
Pour cela, nous devons traduire le programme en langage « compréhensible » par l’ordinateur. En
effet, nous l ’avons vu, l'ordinateur ne comprend qu’un seul langage, le langage binaire.

Compiler, ou traduire en langage machine
Cette tiadiiction du code source (le programme écrit en langage informatique) en code
machine exécutable (le code binaire) est réalisée par un programme appelé compilateur.
L’opération de compilation consiste à tancer un programme qui lit chaque instniction du code
source et vérifie si celles-ci ont une syntaxe correcte. S ’il n’y a pas d'erreur, le compilateur
crée un code binaire directement exécutable par l’ordinateur.
Tl existe autant de compilateurs que de langages. Un programme écrit en langage Pascal est
traduit en binaire à l’aide d’un compilateur Pascal, et un programme écrit en Java est compilé
par un compilateiir Java. Le compilateur Java ne travaille pas tout à fait comme un compilateur
classique, traduisant un code source en code exécutable. Pour mieux comprendre cette diffé­
rence, voyons son fonctionnement et comment l’utiliser.

1Л

>-
Ш
KOrHOfN
@
JZgi'k—>-Q.O
U

22

Compiler un programme écrit en Jaua
L’objectif premier de J. Gosling, le créateur du langage Java, a été de réaliser un langage indé­
pendant de l ’ordinateur. Dans cette optique, un programme écrit sur PC, par exemple, doit
pouv'oir s’exécuter sur un PC (de type IBM), un Macintosh (Apple) ou une station Unix (de
type Sun), et ce sans réécriture ni compilation du code source.
Or, le code binaire est spécifique à chaque machine, comme nous l ’avons vu à la section
« Coder l’information », Il est impossible de faire tourner un même programme source d’une
machine à une autre sans le compiler à nouveau. En effet, lors de la nouvelle compilation, des
erreurs apparaissent, dues aux différences de matériel informatique. Pour corriger cet inconvé­
nient majeur, l’idée de J.Gosling a été de créer un code intennédiaire entre le code source et le
code binaire. Ce code intermédiaire est appelé pseudo-code, ou encore byte code.
En effet, en créant un pseudo-code, identique pour tous les ordinateurs, il est possible
d’exécuter ce code .sur différentes machines, sans avoir à le recompiler. Cette exécution est
réalisée par un programme spécifique de la machine utilisée, qui interprète et exécute le
pseudo-code, compte tenu des ressources propres de L’ordinateur.
Ce programme s’appelle un interpréteur Java. Il en existe autant que de types d’ordinateurs
(plates-formes), L’en.semble des ces inteipréteurs constitue ce que l’on appelle la machine
virtuelle Java, ou JVM {Ja v a V irtual M achine).

© Éditions Eyrotles

Naissance d'un programme

Le compilaleur Java ne crée pas de code binaire, à la différence des autres compilateurs, tels
que les compilateurs C ou C++. Il fabrique un pseudo-code, qui est ensuite interprété par un
proj>raninie spécifique de rordinaleur. Ce dernier programme transforme le pseudo-code en
code directement exécutable par l'ordinateur choisi. L’avantage d’un tel système est que le
développeur d’applications est certain de créer des programmes totalement compatibles avec
les différents ordinateurs du marché sans avoir à réécrire une partie du code.

Figure 1-8 Le compilateur (javac) transforme le code source en pseudo-code.
C e d e r n i e r e s t e x é c u t é g r â c e à u n i n t e r p r é t e u r (j a v a) s p é c i f i q u e à c h a q u e t y p e d e m a c h i n e .

L ’e n s e m b l e d e s in t e r p r é t e u r s c o n s t i t u e l a J V M .

Le kit de développement Java (JDK)
Le tout premier compilateur Java a été écrit pai- J. Gosling à l’ initiative de Sun, le constructeur
de stations de travail sous Unix, au début des années 1990.
Aujourd'hui, le compilateur Java est téléchargeable depuis le site Inlemel de Sun. Il est fourni
avec le kit de développement Java {JDK J a v a D evelopm ent K it ou encore SDK S tan d ard
D evelopm ent Kit). Cet environnement est disponible sur les ordinateurs de type Solaris, PC
sous Windows, Linux et Mac OS.

[¡ЕЕШЕЖСЕ 3 Toutes les informations nécessaires à l'installation du JDK sur votre machine (Windows et
Linux), sont fournies dans l’annexe « Guide d’installations », section « Installation d’un envi­
ronnement de développement ».

>•
Ш
ЮrHOfN
@
sz
CT'l—
Q.
O
U

Le JDK est ce que l’on appelle une boîte à outils de développement d’applications. Cela
revient à dire qu’il est constitué d’outils, ou programmes, que l ’on utilise sous forme de
commande, ou ordre. Pour transmettre une commande à un ordinateur, le programmeur doit
saisir le nom de celte commande au clavier, dans une fenêtre spécifique du type d’ordinateur
utilisé. Les deux principale.s commandes à connaître pour cet ouvrage sont les commandes de
compilation (ja v a c) et d’exécution (ja va).

© Éditions Eyrolles 23

le livre de lava oremier langage

Exemple sur plate-forme Unix

La marche à suivre est la suivante :

1. Entrez le programme qui calcule la circonférence d’un cercle (exemple donné à la section
« Écrire un programme ») a l ’aide d’un éditeurde texte, c’est-à-dire un logiciel permettant
de saisir du texte au clavier. Les éditeurs de texte les plus couramment utilisés sous Unix,
.sont v i et emacs.

2. Sauvegardez votre programme en choisissant comme nom de lichier celui qui suit les
termes p u b lic c la s s . Pour notre exemple, nous avons écrit p u b lic c la s s C e r c le .
Le fichier est donc à sauvegarder sous le nom C e r c l e . j ava.

3. Lancez l ’ordre de compilation en .saisissant sous Unix la commande :

I javac Cercle.java

La compilation est lancée. Le compilateur exécute sa tâche et compile le fichier
C e r c l e . ja v a . Au final, si aucune erreur n’est détectée, le compilateur crée un nouveau
fichier, appelé C e rc le . c la s s . Ce fichier correspond au pseudo-codc relatif au prognumne
compilé.

Cr^ 111-! 11 ijlÉ j 11 convient de respecter la façon dont est nommé le fichier, orthographe, majuscule et minuscule
compris. L’utilisation de l’extension .ja v a est obligatoire.

1X
LU

’-HOCM
@
Jb
<31’C;X
ClOU 24

4. Exécutez le programme en lançant la commande :

I java Cercle

La commande j a v a lance le programme, qui interprète le pseudo-code créé à l ’étape pré­
cédente. Ce programme traduit le pseudo-code dans le code binaire conforme à la machine
sur laquelle il est lancé. Après exécution, le résultat obtenu à l’écran est :

(Valeur du rayon:5
Le c e r c le de rayon 5 a pour p e r im e tre : 3 1 . 4 1 5 9 2 6 5 3 5 8 9 7 9 3

où 5 e.st une valeur entrée au clavier par l ’utilisateur.

Notez que la commande de lancement du programme ne demande aucune extension, seule la
commande ja va suivie du nom du fichier suffit.

Pour exécuter un programme, les deux étapes suivimtes sont nécessaires ;

• La compilation du programme à l ’aide de la commande ja v a c , suivie du nom du pro­
gramme. Une fois la commande réalisée, le pseudo-C(xle est créé et enregistré dans un
fichier, dont le nom correspond au nom du programme suivi de l ’extension " . c l a s s

© Éditions Eyrolles

Halssaiice d 'ui programme

* L’exécution du progrumme en appelant l’interpréteur au moyen de la commande ja v a ,
suivie du nom du programme (sans extension). Cette commande interprète le fichier

c la s s " créé à l’étape précédente et exécute le programme.

« Ш И Ш En supposant que le programme qui calcule la surface d’un cercle s’apppelle S u r f a c e C e rc le :
1. Quel est le nom du fichier associé à ce program m e ?
2. Q uelle est la com m ande pour le compiler ?
3. Q uelle est la com m ande pour l’exécuter ?

1. Le nom du fichier est S u r f a c e C e r c le . ja v a .
2. La com m ande javac S u r f a c e C e rc le . j a v a perm et de com piler le program me.
3. Lorsqu’il n’y a plus d’erreurs signalées par le compilateur, la com m ande java S u r fa c e -

C e r c le lance l’exécution du program me.

1Л

Les environnements de développement
JDK fourni: un ensemble de commandes pour compiler et interpréter. C'est un environnement
courant et facile d’emploi dans le monde Unix. Il l ’est beaucoup moins, en revanche, sous
Windows. En effet, récriture d’une commande telle que donner l ’ordre de compiler un
programme ne peut se réaliser qu'en ouvrant une fenêtre « Commandes ».
Un certain nombre d’environnements de programmation permettent cependant d’écrire, de
compiler puis d ’exécuter de façon conviviale un programme Java. Citons, à titre d'exemples
les environnements de travail, tels que le logiciel Eclipse (Eclipse.org), sous Windows ou
Linux, ou Visual Café (Symantec), Project Builder (Apple) sur Macinto.sh et NetBeans sous
Windows, Linux et Mac OS,
Ces logiciels offrent, sous forme d’interface graphique conviviale, un ensemble d’outils de
développement d’applications. Les outils les plus utilisés sont, en général, les .suivants :
• L’éditeur de texte pour écrire le programme.
• Les menus et boîtes à outils, pour lancer la compilation et l’exécution.
• La fenêtre de compilation, qui affiche les éventuelles erreurs de syntaxe.
• La fenêtre d’exécution, qui affiche les messages et résultats du programme en cours.
• La fenêtre qui visualise les projets en cours, dans le cas d’un programme défini à partir de

plusieurs fichiers différents.

Ш

O
fN

@
s:oi
>■Q.O
U

Pour en savoir plus

© Éditions Eyrolles

Pour plus d ’informations, ou si vous souhaitez travailler avec [’interface NetBeans, vous
trouverez toutes les informations nécessaires à son installation et à son utilisation dans
l'annexe « G uide d'installations », sections « Installation d'un environnem ent de développe­
m ent » et « Développer avec NetBeans ».

25

le Uvre de lava dremler langage

le projet : Gestion d’un compte bancaire

Pour vous permettre de mieux maîtriser les différentes notions abordées dans cet ouvrage,
nous vous proposons de construire une application plus élaborée que les simples exercices
appliqués donnés en fin de chapitre.
Dans ce projet, nous avons volontairement évité remploi d’interfaces graphiques. Bien
qu’attrayantes, ces dernières sont difficiles à maîtriser- pour des débutants en programmation. Le
projet consiste à bâtir une application autour du concept de menu interactif. A l’heure du tout
graphique, il n'est pas vain d’apprendre à écrire des menus « texte ». Le fait de passer par cet
apprentissage permet d’appréhender toutes les notions fondamentales de la programmation, sans
avoir à s'évertuer à émdier la syntaxe de toutes les méthodes de la bibliothèque graphique Java.

Cahier des charges
Il s’agit d’écrire une application interactive qui permet de gérer l’ensemble des comptes
bancaires d’une personne. Les fonctionnalités fournies pai’ le progrannne de gestion de
comptes bancaires sont les suivantes :

|i Création, Suppression d'un compte
Affichage d'un compte donné
Saisie d'une ligne comptable pour un compte donné
Calcul de statistiques
Sauvegarde des données in" de compte, lignes comptables)

Niveau I : programme interactif sous forme de choix dans un menu
L’exécution du programme affiche le menu suivant ;

] 1. Créer un compte
2. Afficher un compte
3. Créer une ligne comptable
4. Sortir
5. De 1'aide

Ôl_>
LU

T~{

0 fN
@
.4-1-T01'k_
Q.
O
U

26

Votre choix ;
L’utilisateur choisit une valeur pour exécuter l’opération souhaitée (les zones grisées corres­
pondent à des valeurs choisies par l’utilisateur).
• Si l’ntilisaleur choisit l ’option 1, les informations à fournir concernent :

Le type du compte [Types possibles : Compte courant, joint,
épargne] ;
Le numéro du compte ;
La première valeur créditée :
Le taux de placement dans le cas d'un compte épargne :

© Éditions EyroHes

Nalssance d 'u i programme

• Si rutilisaleur choisit Toption 2, le programme affiche les caractéristiques d'un compte
(type, valeur courante, taux), ainsi que les dix dernières opértitions comptables dans l’ordre
des dates où ont été effectuées les opærations.

• Pour l’option 3, il s’agit de fournir des informations pour créer une ligne comptable.
Ces informations sont les suivantes :

Le numéro du conpte concerné (avec vérification de son existence) :
La somme à créditer (valeur positive) ou à débiter (valeur néga-

I tive):
La date de l'opération :
Le motif de l'achat ou de la vente [thèmes possibles : Salaire,

j Loyer, Alimentation, Divers] :
Le mode de paiement[Types possibles : CB, n' du Chèque, Virement]:

• L’option 4 . Sortir du menu général permet de sortir du programme.
• L’option 5 . Aide du menu général affiche une infonnation relative à chaque option du

menu.

(U

Niveau 2 : structure de données optimisée en termes d’utilisation de la mémoire
• Le programme doit pouvoir gérer autant de comptes que nécessaire. Pour chaque compte,

le nombre d’opérations comptables doit être inlini et est donc indéterminable au moment
de l’écriture du programme.

• En conséquence, la réservation des cases mémoire ne peut pas être réalisée de façon défi­
nitive en tout début de programme. A chaque ligne comptable et à chaque nouveau compte
créé, le programme doit être capable de réserver lui-même le nombre .suffisant d’empla­
cements mémoire pour la bonne marche du progranuiie. Lorsque le programnie gère lui-
même la réservation des emplacements mémoire, on dit qu’il gère .sa mémoire de manière
dynamique.

• L’option permettant la suppression d’un compte est dépendante de la façon dont est sUx;kée
l’ information. Cette option ne peut être abordée avant d’avoir choisi le mode de gestion
des emplacements mémoire.

• L’option 5. Sortir du menu général doit contrôler la sauvegarde de l’ infonuation.
Les données sont sauvegardées sur disque sous forme d’un fichier portant le nom
c o m p te .d a t.

LU
V)’i~lO
fN

@
S Ioi
D.O
(J

Niveau 3 : s ’initier aux graphiques
Un nouveau choix est ajouté à l’option 2 . Afficher un compte du menu général : il s’agit
d’afficher les statistiques pour un compte donné sous différentes formes graphiques (histo­
gramme, camembert, etc.).

© Éditions Eyroltes 27

Le Uvre de lava premier langage

Niveau 4 : s ’initier à la programmation d’interfaces graphiques
L’objectif est de rendre l ’application plus conviviale en la dotant d’une interface graphique
ergonomique.

Les actions à réaliser ne sont plus proposées sous la forme de menus textuels mais à l ’aide de
fenêtres composées de champs de saisie, de listes déroulantes... Ain.si, la première fenêtre
de l’application propose de créer, d’éditer un compte ou d’ajouter une ligne comptable (voir
figure 1-9).

Selon le choix réalisé piU" l ’utilisateur, différentes fenêtres s’affichent ensuite. Elles présentent
de nouveaux formulaires peruiettant la saisie des informations nécessaires à la création d’un
compte ou à une ligne comptable.

>-
LU
KOrHOfN
@
J Z
CT
>-D.O
U

2 8

e O Gestion de comptes bancaires
Fichier

Com ptes

© Créer
O Ajouter une ligne comptable

O Éditer

Num éro :

111-222-33.

F i g u r e 1 - 9 P a n n e a u d 'e n t r é e d e l ’a p p l ic a t io n m u n i d ’u n e i n t e r f a c e g r a p h iq u e .

© Editions Eyrolles

Nalssaiice d 'u i programme

Les objets manipulés
Un compte bancaire est défini par un ensemble de données :
• un numéro du compte ;
• un type de compte (courant, épargne, joint, etc.) ;
• des lignes comptables possédant chacune une valeur, une date, un thème et un moyen de

paiement.
Ces données peuvent être représentées de la façon suivante :

Données Exemple Type de l’objet

Numéro du compte 4010.205.530 Caractère

Type du compte Courant Caractère

Valeur -1 520,30 Numérique

Date 04 03 1978 Date

Thème Loyer Caractère

Moyen de paiement CB Caractère

Nous verrons, au chapitre I, «Stocker une infoimation », puis tout au long du chapitre 7,
« Les classes et les objets », comment définir et représenter les objets utiles et nécessaires à la
réalisation de cette application.

(U

>-
UJ
sotH
Orsi
@

oi
ClO
U

La liste des ordres
Pour créer une application de gestion de comptes bancaires, nous devons décomposer
l’ ensemble de ses fonctionnalités en tâches élémentaires. Pour ce faire, nous partageons
l’application en trois niveaux, de difficulté croissante. Les niveaux 1 et 2 doivent être abordés
dans cet ordre et sont nécessaires à la réalisation du niveau 3. La mise en œuvre du niveau 1
permet de réaliser les actions suivantes :
• con.struire un menu (voir les chapitres 2, « Communiquer une information », et 3, « Faire

des choix ») ;
• créer des comptes différents ou saisir plusieurs lignes comptables (voir les chapitres 4,

« Faire des répétitions », et 9, « Collectionner un nombre fixe d’objets ») ;
• définir les comptes et les lignes comptables comme des objets informatiques, au sens de la

programmation objet (voir les chapitre 5, « De l’algorithme paiamétré à l ’écriture d’une
fonction ». et 7, « Les ela.sses et les objets »).

© Éditions Eyrolles 29

le Uvre de lava premier langage

(J)d)

>-
LU

O
fN

@

Pour résoudre le niveau 2, nous allons apprendre les tâches suivantes :
• gérer la mémoire de l ’ordinateur (voir les chapitres 9, « Collectionner un nombre fixe

d’objets », et 10, « Collectionner un nombre indéterminé d’objets ») ;
• sauvegarder des informations pour que celles-ci ne disparaissent pas une fois l’ordinateur

éteint (voir le chapitre 10, « Collectionner un nombre indéterminé d’objets »).
Le niveau 3 va nous initier aux opérations suivantes :
• calculer des statistiques (voir les chapitres 1, « Stocker une information » et 9, « Collec­

tionner un nombre fixe d’objets ») ;
• dessiner, en particulier des histogrammes (voir le chapitre 11 , « Dessiner des objets »),
Le niveau 4 va nous apprendre à manipuler des objets tels que :
• les fichiers textes ou objets, les listes (voir le chapitre 10, « Collectionner un nombre indé­

terminé d’objets ») ;
• les composants graphiques et les gestionnaires d’événements (voir le chapitre 12, « Créer

une interface graphique »),
L’étude, étape par étape, de l’ensemble de cet ouvrage va nous permettre de réaliser cette
application.

J Z
CT
>-D.O
U

30 © Éditions Eyrolles

Halssance d 'u i programme

Résumé

i/i<D

>-
LU
KOrH
ofN
@
J Z
CT
>-Q.OU

En informatique, résoudre un problème c’est trouver la suite logique de tous les ordres néces­
saires à la solution dudit problème. Cette suite logique est appelée algorithme,
La construction d'un algorithme passe par l’analyse du problème, avec pour objectif de le
découper en une succession de tâches simplifiées et distinctes. Ainsi, à partir de l’énoncé
clair, précis et écrit en français d’un problème, nous devons accomplir les deux opérations
suivantes ;
m Décomposer l’énoncé en étapes distinctes qui conduisent à l'algorithme.
• Définir les objets manipulés par l’algorithme.
Une fois l'algorithme construit, il faut « écrire le programme », c’est-à-dire traduire l’algorithme de
façon qu’il soit compris par l'ordinateur. En effet, un programme est un algorithme traduit dans un
langage compréhensible par les ordinateurs.
Un ordinateur est composé des deux éléments principaux suivants :
m La mémoire centrale, qui sert à mémoriser des ordres ainsi que des informations manipulées

par le programme. Schématiquement, on peut dire qu’elle est composée d’emplacements
repérés chacun par un nom {côté programmeur) et par une adresse (côté ordinateur),

• Lunité centrale, qui exécute une à une les instructions du programme dans leur ordre de
lecture. Elle constitue la partie active de l’ordinateur. Ces actions, en nombre limité, sont les
suivantes ;
• déposer une information dans une case mémoire ;
• exécuter des opérations simples, telles que l’addition, la soustraction, etc. ;
• comparer des valeurs ;
• communiquer une information élémentaire par l’intermédiaire du clavier ou de l’écran ;
• coder l’information.

Du fait de la technologie, toutes les informations manipulées par un ordinateur sont codées
en binaire (0 ou 1). Pour s ’atfranchir du langage machine binaire, on fait appel à un langage
de programmation dit évolué, tel que les langages Pascal, C ou Java. Un tel programme se
compose d’instructions définies par ie langage, dont I’enchafnement réalise la solution du
problème posé.
Pour traduire ce programme dans le langage binaire directement exécutable par l’ordinateur, nous
devons utiliser un programme approprié, appelé compilateur ou interpréteur. Dans cet ouvrage,
nous nous proposons d’étudier comment construire un programme en prenant comme support de
langage, le langage et le compilateur Java.

© Éditions Eyrolles 31

le Uvre de lava Dremler langage

Exercices

Apprendre à décomposer une lâche en sous-tâches distinctes

Écrivez ia marche à suivre qui explique commeni accrocher un tableau au centre d'un mur. Pour cela,
vous devez :
a. Définir les objets nécessaires à la résolution du problème.
b. Établir la liste des opérations.
c. Ordonner cette liste.

Remarque Plusieurs solutions sont possibles, mais chacune doit rester logique à l'égard des hypothèses
prises en a. Par exemple, un clou et une perceuse ne vont pas ensemble.

Observer et comprendre la structure d'un program me Java

1-2 Observez le programme suivant :
import java-util.*;

Il public class Premier

public static void main(String [] argument)
I 'double a ;

Scanner lectureClavier = new Scanner(System.in);
System.out.print("Entrer une valeur : ") ;
a = lectureClavier.nextDoubleO;
System.out.print(“ Vous avez entre : " + a) ;

}
]

<u

>~
LU
LOrHOfN
@
JT
CT'k—>-Q.O
U

32

a. Repérez les instructions définissant la fonction main () et celles délimitant la classe Premier.
b. Recherchez les instructions d'affichage.
c. Quel est le rôle de Tinstruction d o u b le a ; ?
d. Décrivez l'exécution de ce programme, en supposant que l’utilisateur entre au clavier la valeur 10.

© Éd/itons Eyrof/es

N alsn M » d 'lii p rograiH tt

1.3 E r suivant la structure ci-dessous et er vous aidant du programme donné à la section « Calcul de la
circonférence d’un cercle », écrivez un programme qui calcule le périmètre d’un carré (rappel ;
périmètre - 4 x côté) :
Il public class -..........Il Donner un nom à la classe
I l {

public static void main(String [] argument)
{
// Déclaration des variables représentant le périmètre et le côté

// Déclaration de la variable représentant la lecture au clavier

// Afficher le message "Valeur du côté : " à l'écran

// Lire au clavier une valeur
// Placer cette valeur dans la variable correspondante

// Calculer le périmètre du carré

// Afficher le résultat

}

V)
(U

Écrire un prem ier programme Java

[M j a © 1.4 En suivant la structure de l’exercice précédent, écrivez un programme qui calcule la surface d’un rectangle
(rappel : surface = largeur x longueur).
En observant la formule :
a. Combien de variables faut-il déclarer pour exécuter ie calcul ?
b. Combien de valeurs faut-il saisir au clavier ?

>-
LU
LOtHOrN
@
JT
CT'u>-
ClO

U
I Éditions Eyrolles 33

inй)

:>■ш
iûTH
ОrN
@

Ol
>■Q.
OU

Partiel

Ouiils et techniques
de base

1Л
Ö
>•

Ш

■pH
0
ГМ

@
Д-1
01'k_
ClO

U

inй)

:>■ш
iûTH
ОrN
@

Ol
>■Q.
OU

Chapitre 1

stocker une information

i/i

LU
VOrH
OfN
@
J1oi'k->-Q.O
U

En décrivant, au chapitre introductif, « Naissance d'un programme », l’algorithme de confec­
tion d’un café chaud non sucré, nous avons constaté que la toute première étape pour élaborer
une marche à suivre consistait à déterminer les objets utiles à la résolution du problème.
En effet, pour faire du café, nous devons prendre le café, l’eau, le filtre, etc.
De la même façon, lorsqu’un développeur d’applications conçoit un programme, il doit non
pas « prendre », au sens littéral du mot, les données numériques mais définir ces données ainsi
que les objets nécessaires è la réalisaticm du programme. Cette définition consiste à nommer
ces objets et à décrire leur contenu afin qu’ ils puissent être stockés en mémoire.
C ’est pourquoi nous étudions dans ce cliapitre ce qu’est une variable et comment la définir
(voir section « La notion de variable »). Nous examinons ensuite, à la section « L’instruction
d’affectation », comment placer une valeur dans une variable, par l’intermédiaire de l’ instruc­
tion d’affectation. Enfin, nous analysons l ’ incidence du type des variables sur le résultat d’un
calcul arithmétique (voir section « Les opérateurs arithmétiques »).
Afin de clarifier les explications, vous trouverez tout au long du chapitre des exemples simples
et concis. Ces exemples ne sont pas des programmes complets mais de simples extraits, qui
éclairent un point précis du concept abordé. Vous trouverez en fin de chapitre (voir section
« Calculer des statistiques sur des opérations bancaires »), un programme entier qui aborde et
résume toutes les notions rencontrées au fil de ce chapitre.

© Éditions Eyrolles 37

oartle B° 1 Oiilfls e l teclHilQues de base

la Botion de variable

Line viiriable pennet la manipulation dc données et de valeurs. Elle est caractérisée par les
éléments suivants :

• Un nom, qui sert à repérer un emplacement en mémoire dans lequel une valeur est placée.
Le choix du nom d'une variable est libre. Il existe cependant des contraintes, que nous
présentons à la section « Les noms de variables ».

• Un type, qui détennine la façon dont est traduite la valeur en code binaire ainsi que la taille
de remplacement mémoire. Nous examinons ce concept à la section « La notion de type ».
Plusieurs types simples .sont prédéfinis dans le langage Java, et nous en détaillons les
caractéristiques à la section « Les types de base en Java ».

le s noms de variables

t/>d)

Le choix des noms de variables n’est pas limité. II est toutefois recommandé d’utiliser des
noms évocateurs. Par exemple, les noms des variables utilisées dans une application qui gère
les codes-barres de produits vendus en magasin sont plus certainement a r t i c l e , prix,
c o d e b a rre que xyzl, xy22, xya3. Les premiers, en effet, évoquent mieux rinformation
stockée que tes seconds.

Les contraintes suivantes sont à respecter dans l ’écriture des noms de variables ;

« Le premier caractère d’une variable doit obligatoirement être différent d’un chiffre.

• Aucun espace ne peut figurer dans un nom.

• Les majuscules sont différentes des minuscules, et tout nom de vimable possédant une
majuscule est différent du même nom écrit en minuscule.

m Les caractères {, }, |, \, %, *,
<, >, ainsi que ; et , ne peuvent être utilisés dans l’écriture d'un nom de variable.

Tout aulre caractère peut être utilisé, y compris les caractères accentués, le caractère de souli­
gnement (_), les Ctuactères grecs (p) et les symboles monétaires $, ,£, etc.).

Le nombre de lettres composant le nom d’une variable est indéfini. Néanmoins, l’objectif d’un
nom de variable étant de renseigner le programmeur sur le contenu de la variable, il n’est pas
courant de rencontrer des noms de variables de plus de trente lettres.

LJJ
SO
OfN
®

g i

>■
a .OU

38 © Éditions Eyrotles

chapHre я° 1 Stocker une Information

ÎT Parmi les variables suivantes quelles sont celles dont le nom n’est pas autorisé, e t pourquoi ?
Ifl Compte, pourguoilpas, Wum_2, -plus, Undeux, 2001espace, Sadresse, VALEUR_

temporaire, ahlah!, Val$solde
lil^ 3 1n rû 0 3 Les noms des variables suivantes ne sont pas autorisés :

pourquoilpas, -plus, âdresse, ah! ah!, car les caractères @ et ! sont interdits.
2001espace car, il n’est pas possible de placer un chiffre en début de variable.
Par contre les noms de variable autorisés sont :
Compte, Num_2 (" _ " et non pas " - "), Undeux (et non pas un deux), VALEUR_temporaire,
Val$solde.

4Л<D

Ш

rHOfN
@
j::çn'b.>•Q.OU

La notion de type
Un programme doit gérer des informations de nature diverse. Ainsi, les valeurs telles que 123
ou 2 . 4 sont de type numérique tandis que Spinoza est un mot composé de caractères. Si
l’ être humain sait, d’un simple coup d’œil, faire la di.stinction entre un nombre et un mot,
l’ordinateur n’en est pas capable. Le programmeur doit donc « expliquer» à l’ordinateur la
nature de chaque donnée. Cette explication pas.se par la notion de type.

Le type d’une valeur permet de différencier la nature de l’information sltx'kée dans une
variable. A chaque type sont as.stK’iés les éléments suivants :

• Un code spécifique permettant la traduction de l ’information en binaire et réciprociuement.

• Un ensemble d’opérations réalisables en fonction du type de variable utilisé. Par exemple,
si la division est une opération cohérente pour deux valeurs numériques, elle ne l’est pas
pour deux valeurs de type caractère, •

• Un intervalle de valeurs possibles dépendant du codage utilisé. Par définition, à chaque
type correspond un même nombre d’octets et, par conséquent, un nombre limité de valeurs
différentes.

En effet, un octet est un regroupement de 8 bits, sachant qu’un bit ne peut être qu’un 0 ou un 1.
Lorsqu’une donnée est codée sur 1 octet, elle peut prendre les valeurs 0 0 0 0 0 0 0 0 (8 zéros), ou
encore 1 1 1 1 1 1 1 1 1 (8 un) et tontes les valeurs intermédiaires entre ces deux extrêmes (par
exemple 1 0 1 0 1 0 1 0 , 1 1 1 1 0 0 0 0 ou 1 0 0 1 0 1 1 0) .

En fait, une donnée codée sur 8 bits peut, par le jeu des combinaisons de 0 et de 1, prendre
valeurs différentes, .soit 256 valeurs possibles comprises entre - 1 2 8 et 127. L’ intervalle

[- 128, 127] est en effet composé de 256 valeurs et possède autant de valeurs positives que
négatives.

Pour représenter la valeur numérique 120, un codage sur 1 octet suffit, mais pour représenter
la valeur 250, 1 octet ne suffit pas, et il est nécessaire d'utili.ser un codage sur 2 exhets.

> Éditions EyroHes 39

parue в° 1 Ouffls ei tecimiaues de base

jTÎI ■ Quel est l’intervalle de valeurs possibles pour une donnée codée sur 2 octets ?

2 octets correspondent à 2 x 8 bits, soit 16 bits. Une donnée codée sur 16 bits peut donc
prendre 2^® valeurs différentes, soit 6 55 3 6 valeurs comprises entre -3 2 7 6 8 et 32767.

Les types de base en Java
Chaque tangage de programmation propose un ensembîe de types de base permettant la mani­
pulation de valeurs numériques entières, réelles, ou de caractères. Ces types sont :
• représente's par un mot-clé prédéfini par le langage ;
• dits simples, car, à nn instant donné, une variable de type simple ne peut contenir qu’une

et une seule valeur.
À l’opposé, il existe des types appelés types structurés, qui permettent le stockage, sous un
même nom de variable, de plusieurs valeurs de même type ou non. Tl s'agit des tableaux, des
classes, des listes ou encore des dictionnaires. Ces types stracturés sont en général définis par
le programmeui. Nous les étudions en détail dans la troisième partie de cet ouvrage, intitulée
« Outils et techniques orienté,s objet ».
Pour sélectionner un type plutôt qu’un autre, le langage Java définit huit types simples, qui
appartiennent, selon ce qu’ils représentent, à l’une ou l’autre des quatre catégories suivantes ;
logique, caractère, entier, réel.

Catégorie logique
Il s’agit du type b o o le a n . Les valeurs logiques ont deux états : " t r u e " (vrai) ou " f a l s e "
(faux). Elles ne peuvent prendre aucune autre valeur que ces deux états.

Catégorie caractère
Cette catégorie ne comprend qu’un type de base, le type c h a r , qui permet de représenter les
caractères isolés.

1Л

Ш
•rH
OГМ
@
x:Ol
ClO
U

40

Pour décrire une suite de caractères (mots, phrases), on utilise le type String, qui n’est pas un
type simple, mais un type structuré. Pour com prendre les types structurés tels que le type
String, reportez-vous au ch ap itre7 , « L e s classes et les o b je ts» , section « L a classe
String, une approche vers la notion d'objet ».

Comme nous l ’avons ob.servé dans le chapitre introductif de ce livre, toute information, toute
donnée traitée par l ’ordinateur n’est en réalité qu’une suite de 0 et de 1. Les caractères
n’échappent pas à cette règle. Ainsi, pour décrire une variable de type c h a r , l’ordinateur doit
utiliser une table de corre.spondance qui associe à un caractère donné (voir la .section « Le code
Unicode » ci-après), une valeur numérique (voir la section « Codage d'un caractère »).

© Éditions Eyrotles

chailiire ш° 1 Stocker une inlormation

Le code Unicode
L’ensemble des caractères provenant des différents alphabets internationaux (européens, afri­
cains, asiatiques, etc.) est répertorié dans une charte internationale appelée jeu de caractères
Unicode. La table Unicode dresse la liste de tous les caractères utilisés dans le monde et définit
pour chacun d’entre eux une valeur numérique unique appelée code-point.
Ainsi, par exemple, dans la table Unicode, le caractère K majuscule a pour code-point 004B et
le caractère k minuscule a pour code-point 00 5B. Plus précisément, les 128 premières valeurs
de la table Unicode sont organisées comme suit ;

Ф
O1_>
Ш
ЮrH0 fN
@
Д-1x:01'k_
Q.O

U

Caractère NUL OLE SP 0 P P
Unicode 0000 0010 0020 0030 0040 0050 0060 0070
Caractère SOH DCl t 1 A Q a q
Unicode 0001 0011 0021 0031 0041 0051 0061 0071
Caractère STX DC2 » 2 B R b r

Unicode 0002 0012 0022 0032 0042 0052 0062 0072
Caractère ETX DC3 # 3 C S c S

Unicode 0003 0013 0023 0033 0043 0053 0063 0073
Caractère EOT DC4 $ 4 D T d t

Unicode 0004 0014 0024 0034 0044 0054 0064 0074
Caractère ENQ NAK % 5 E U e U

Unicode 0005 0015 0025 0035 0045 0055 0065 0075
Caractère ACK SYN a 6 F V f V

Unicode 0006 0016 0026 0036 0046 0056 0066 0076
Caractère BEL ETB \ 7 G W я W
Unicode 0007 0017 0027 0037 0047 0057 0067 0077
Caractère BS CAN i 8 H X h X

Unicode OOOB 0018 0028 0038 0048 0058 0068 0078
Caractère HT EM) 9 I y i Y
Unicode 0009 0019 0029 0039 0049 0059 0069 0079
Caractère LF SUS ■* J Z j Z

Unicode OOOA Û01A 002A Û03A 004A 005A 006A Û07A
Caractère VT ESC + ; K [к {
Unicode OOOB 001B 002B 003B 004B 005B 006B 007B
Caractère FF FS г < L \ 1 I

Unicode oooc 001 c 002C 003C 004C 005C 006C Û07C
Caractère CR GS - = Ы] m 1
Unicode GOOD 0 0 1 D 002D 003D 004D 005D 006D 007D
Caractère SO RS > N - n

Unicode OOOE 001E 002E 003E 004E 005E 006E 007E
Caractère S I u s / 7 D _ O DEL

Unicode OOOF 001F 002f 003F 004F 005F 006F 007F

© Éditions Eyrolfes 4 1

name B° 1 omfls e i leclmlaues de base

• Les valeurs comprises entre 00 00 el OOlF correspondent à des caractères qui ne peuvent
être affichés, comme le caractère de tabulation HT, le saut de ligne CR, ou le bip sonore BEL.

• Les valeurs comprises entre 002 0 et 007F correspondent aux caractères du code ASCII
{Amertran Slandanl Code for ¡ttformaiioft Inteœhaiige} qui était, avant la mise en place
de l ’Unicode, le code définissant tout caractère. Dans cet intervalle, tous les caractère.s de
base sont définis, c ’est-à-dire l ’ensemble des lettres de l ’alphabet, en minuscules et en
majuscules, ainsi que les signes de ponctuation et les symboles mathématiques.

• Les valeurs suivantes (00 SO à FFFF) correspondent à des caractères spéciaux tels que les
caractères accentués, les caractères de l ’alphabet russe, les idéogrammes chinois, les sym­
boles du copyright et de I’enro, etc.

Pour connaître le code Unicode d’un caractère de l’alphabet latin, consultez les fichiers
Unicode0000a007F.pdf et Unicode0080a00FF.pdf placés sur l'extension W eb de
l’ouvrage. Pour connaître le code Unicode d ’un caractère chinois ou cyrillique, rendez-vous
sur le site w w w .un icod e.org . * •

Née en 1991, la table Unicode est aujourd’hui le standard des jeux de caractères. Il existe cepen­
dant d’autres jeux de caractères comme riSO -8859-1, ISO-8859-15, ou encore Windows-1252
qui restent encore très utilisés, notamment par les systèmes d’exploitation des ordinateurs.

ifi

Oi_>■
LU
KO
tH
OfN
@
u-t
J Z
CT'k—>-Q.O
U

42

Codage d’un caractère
Quel que soit le jeu de caractères choi.si (alphabet latin, alphabet russe, idéogrammes chinois,
signes cunéiformes...), chaque caractère est représenté dans la mémoire de l’ordinateur par
une valeur numérique unique : cette opération s’appelle le codage de caractères ou encore
l’encodage.
Selon la taille du jeu de caractères utilisé, l’encodage pourra s’effectuer sur 1 ,2 ou 4 octets. La
valeur numérique attribuée à un caractère est alors calculée à l’aide de son code-point, défini
dans la table Unicode, et codée sur 1, 2 ou 4 octets.
Ainsi, lorsque i’encodage s’effectue sur :

• 1 octet, on dispose au total de 256 valeurs. Cette forme d’encodage suffit par exemple pour
coder l’ensemble de l ’alphabet latin. Le caractère k a alors pour code 6B.

• 2 octets, le nombre de valeurs disponibles est plus important (62 536 valeurs), ce qui per­
met de coder par exemple la totalité des idéogrammes chinois. Dans ce cas, le caractère k
aura pour code 00 6 B.

■ 4 octets, le nombre de valeurs disponibles s’élève à 2 -̂. Le caractère k a alors pour code
00 00 00 6B.

Suivant le nombre d’octets utilisés (1,2 ou 4), ces formes d’encodage se nonunent respectivement
UTF-8 (Unicode Transformation Format), UTF-16 et UTF-32.
Le langage Java utilise par défaut la forme d’encodage sur deux octets (UTF-16), ce qui
couvre la plupart des systèmes d’écriture utilisés dans le monde.

© Éditions Eyrotles

http://www.unicode.org

cftapitre n° 1 Stocker une intotmadoii

Remaraue Avec la form e d ’encodage U T F -1 6, le code d’un caractère s’écrit en Java \u suivi du code-point
codé sur 2 octets. Ainsi, le code Unicode de la lettre k minuscule s’écrit \u 0 0 6 B et celui de la
lettre K, \u 004B .

Catégorie entier
Cette catégorie contient quatre types distincts : b y te , s h o r t , in t , long. Chacun de ces types
autorise la manipulation de valeurs numériques entières, positives ou négatives. Leur différence
re'side essentiellement dans le nombre d’octets utilisés pour coder le contenu de la variable.

Type Nombre
d’octets Éventail de valeurs

byte 1 octet De - 128 à 127
short 2 octets De - 32 768 à 32 767
int 4 octets De - 2 147 483 648 à 2 147 483 647
long 8 octets De - 9 223 372 036 854 775 8 0 8 3 9 223 372 036 854 775 807

Dans certains cas, il est intéressant de représenter une valeur entière sous fomie octale ou
hexadécimale comme pour l’affichage des caractères de la table Unicode.

c m i m J] Pour calculer une valeur dans le systèm e hexadécim al, reportez-vous au chapitre 2,
« Com m uniquer une information », section « Afficher les caractères accentués ».

Valeur décimale Valeur octale Valeur hexadécimale

45 055 0x2d

Pour représenter un nombre sous forme octale, il est nécessaire de placer un zéro au début du
nombre. Pour la représentation sous forme hexadécimale, les caractères Ox doivent être placés
en début de valeur.

Remamue Dans le langage Java, tous les types de la catégorie entier ont un signe (+ ou -) .

{fi

><
LU

T~{
OfN
@
JZ
CT
'k—>-Q.O
U

Catégorie réel (flottant)
La catégorie réel permet l ’emploi de nombres à virgule, appelés nombres réels ou encore flottants.
Deux types composent cette catégorie, le type f l o a t et le type d o u b le . Une expression
numérique de cette catégorie peut s’écrire en notation décimale ou exponentielle.
• La notation décimale contient obligatoirement un point symbolisant le caractère « virgule »

du chiffre à virgule. Les valeurs 6 7 .3 , - 3 . ou .6 4 sont des valeurs réelles utilisant la
notation décimale.

© Éditions Eyrolles 43

partie n° 1 OuUls et technipues de base

• La nolaîian exponentielle utilise la lettre E pour déterminer où se trouve la valeur de
Texposant (puissance de lü). Les vateurs 8.76E4 et 6.5E-12 sont des valeurs utilisant la
notation exponentielle.

Dans les deux cas, le nombre réel est suivi de la lettre F (pour f lo a t) ou D (pour double).
Les caractères minuscules f ou d sont également autorisés. La distinction entre f l o a t et
double s’effectue sur le nombre d’octets utilisés pour coder l’information. Il en résulte une
précision plus ou moins grande suivant le type employé.

Type Nombre
d’octets Éventail des valeurs

float 4 octets de 1.4023 9846e-45F à 3.402 823347e38F
double 8 octets de 4 . 9 4 O e 5 S 4 5 0 4 1 2 4 S & 4 4 e - 3 2 4 D à 1. 7 9 7 6 9 3 134862315 7 OeBOBD

En langage Java, toute valeur numérique réelle est définie par défaut en double précision. Par
conséquent, la lettre d (ou D) placée en lin de valeur n’est pas nécessaire. Par contre, dès qu’on
utilise une variable f lo a t , la lettre f (ou F) est indispensable, sous peine d’erreur de compi­
lation.

tjp a iT ïïit Avec quel type de variables les valeurs suivantes peuvent-elles être définies ?
1. 2,15Fet6.7éf
2. 1.35E22 et 463.4E+2J4D
1. Les valeurs 2 . 1 5F et 6 . 7 6 f sont des nombres à virgule. La lettre F ou f indique à l’inter­

préteur Java que ces valeurs sont de simple précision. Elles peuvent donc être stockées
dans des variables de type float.

2. Les valeurs 1.35E22 et 463.4E+234D sont des nombres à virgule de double précision.
La lettre F étant absente, les valeurs sont considérées par l’interpréteur com m e étant de
type double.

t/ï

>-
LU
KOrHOfN
@
JTgi
>■O.O

U
44

Comment choisir un type de variable piutôt qu’un autre P
Sachant qu’une variable de type in t (codée sur 4 octets) peut prendre toutes les valeurs de
l ’intervalle ¡-2 14 74 83 648, 2 147483647] et donc prendre, eu particulier, toutes les valeurs
comprises entre -3 2 7 6 8 et 32767 (type sh o rt) ou même entre - 1 2 8 et 127 (type byte),
posons-nous les questions suivantes :

■ Pourquoi ne pas déclarer toutes les variables entières d’un programme en type lon g (le
type long nous offrant le plus grand choix de valeurs entières) ?

• Pourquoi ne pas déclarer les variables réelles d’uu programme en type double piutôt
qu’ert f l o a t ?

) Éditions Eyrolles

chapitre n° 1 Stocker une Inlormation

Pour répondre à ces questions, examinons le nombre d’oclels utilisés par un programme de
gestion de comptes bancaires. Pour simplifier, supposons que le programme garde en mémoire
les 10 dernières opérations bancaires et le solde de chaque compte. Imaginons enfin que notre
banque gère 50 (XK) comptes.

Pour stocker les 10 dernières opérations, nous devons déclarer 10 variables plus I pour le
solde du compte, soit 11 variables. Les valeurs sont des montants en euros et cents, donc des
valeurs réelles.

• Si nous déclarons l’ensemble de ces variables en type d o u b le (8 octets), le programme
utilise alors 50 000 X 11 X 8 (x;tets, soit 4 4(Ю CK)0 retets, soit 4,4 mégacKtets de la mémoire
de l’ordinateur.

• Si nous choisissons de prendre des variables de type f l o a t (ce qui reste cohérent, puisque
les montants en euros n’ont pas besoin d’être d’une précision extrême), notre programme
n’utilise plus que 2,2 mégaoctets, soit deux fois moins que précédemment.

Bien entendu, cet exemple simpliste n’a pour seul objectif que de montrer l’effet du choix du
type de variable sur le taux d’occupation de la mémoire de l’ordinateur. Il existe, en réalité, un
grand nombre de techniques pour t>ptimiser la gestion de la mémoire de l’ordinateur.

СШШПШШ La prem ière dém arche pour gérer au mieux ia m ém oire de i'ordinateur consiste à bien choisir
ie type de ses variabies. Si i’on sait que, par définition, une variabie ne dépasse jam ais, pour un
program me donné, la valeur num érique 120, celle-ci doit être déclarée avec le type b y te .

]]■ A quel type peut-on associer une variable représentant l’âge d ’une personne ?

Le type byte suffit, puisque les valeurs d’un byte varient entre -128 et 127. Raisonnablement,
on peut dire que 127 ans reste encore aujourd’hui un âge limite pour l’espèce humaine.

À quel type peut-on associer une variable représentant le nombre correspondant aux années ?

Tout dépend du calendrier utilisé. Pour le calendrier chrétien, le type short suffit, puisque les
valeurs d ’un short varient entre -32768 et 32767 . La question reste à savoir s ’il convient de
penser au futur bug de l’an 32767.

(J)

>-
Ш

O
fN

@
J Z
CT'k->-D.O
U

Déclarer une variable
La définition d’une variable dans un programme est réalisée par Tintcmiédiairc de l’ instruc­
tion de déclaration des variables. Au cours de cette instruction, le programmeur donne le type
et le nom de la variable. Pour déclarer une variable, il suffit d’écrire l’instruction selon la
syntaxe suivante :

I type nomdevariable ;

© Editions EyroUes 45

DarUe B° 1 OulBs e i leclHilaues He base

ou

I type nomdevariablel, nomdevariable2 ;

où ty p e correspond à l’un des mots-clés à choisir parmi ceux donnés aux sections précé­
dentes fb o o le a n , c h a r , S t r in g , b y te , s h o r t , in t , lo n g , f l o a t ou doub le). Si deux
variables de même type sont à déclarer, il n'est pas besoin de répéter le tĵ pe, une virgule séparant
les deux noms suffisant à les distinguer.

Pour expliquer à l’ordinateur que l’instruction de déclaration e.st terminée pour le type donné,
un point virgule < ;) est placé obligatoirement à la fin de la ligne d’instruction.

r
Réponse

Quel est le rôle des instructions suivantes ?

float fl, f2 ;
long CodeBar ;
int test ;
char choix, tmp ;
boolean OK ;

Pinstruction ;

float fl, f2 ;
fait que deux variables de type f l o a t sont déclarées.

long CodeBar ;
perm et de déclarer une variable de type lo n g ,

int test ;
perm et de déclarer une variable de type i n t .

char choix, tmp ;
fait que deux variables de type char sont déclarées,

boolean OK ;
perm et de déclarer une variable de type boolean.

OJ
O
L .>

LU
VûrH
0
(N

@
sz01
C l
O
U

Remaïuue

46

La virgule perm et de séparer les deux noms des variables lorsque celles-ci sont de m êm e type.

Les instructions de déclaration peuvent être placées indifféremment au début ou en cours de
programme. Une fois la variable déclarée, l’ interpréteur Java réserve, au cours de l ’exécution
du programme, un emplacement mémoire correspondant en taille à celle demandée par le

© Éditions Eyrotles

chapitre п° 1 Siocket une inlotmadon

type. Il associe ensuite le nom de la variable à l ’adresse de l ’emplacement mémoire. À cette
étape du programme, observons que l’emplacement ainsi défini est vide.

Observons cependant que si l ’on souhaite alficher le contenu d’une variable sans y avoir préa­
lablement déposé de valeur, le compilateur émet le message d’erreur suivant : Variable
may n o t have been initialized. Celle erreur indique que la variable dont on souhaite
afficher le contenu n’a pas été initiali.sée. Comme l’ interpréteur Java ne peut afficher un
emplacement mémoire vide, l ’exécution du programme n’est pas possible.

[M E I E i l I ® Nous verrons à partir du chapitre 6, « Fonctions, notions avancées » et au chapitre 7, « Les
classes et les objets >» que la position de déclaration des variables influence fortem ent le
com portem ent d ’une application.

L’Instruction d’aftectaiion

Une fois la variable déclarée, il est nécessaire de stocker une valeur à remplacement mémoire
désigné. Pour ce faire, nous utilisons l’ instruction d’affectation, qui nous permet d’initiali.ser
ou de modifier, en cours d’exécution du programme, le contenu de l'emplacement mémoire (le
contenu d’une variable n’étant, par définition, pas constant).

<D

Ш
vû•rH
OГМ
©

oi
C l
O
U

Rôle et mécanisme de l’affectaNen
L’affectation est le mécanisme qui permet de placer une valeur dans un emplacement
mémoire. Elle a pour forme :

I Variable = Valeur ;

OU encore,

I Variable = Expression mathématique ;

Le signe égal (=) symbolise le fait qu’une valeur est placée dans une variable. Pour éviter toute
confusion sur ce signe mathématique bien connu, nous prendrons l’habitude de le traduire par
les termes p re n d l a v a le u r .

Examinons les exemples suivants, en supposant que les variables n et p soient déclarées de
type entier :

n = 4 ; // n prend la valeur 4
P = 5*n+l ; // calcule la valeur de l'expression mathématique soit

// 5*4+1 et range la valeur obtenue dans la variable
// représentée par p.

© Editions EyroUes 47

partie B° 1 Oiiffls et technloites de base

L’ instruction d’affectation s’effectue dans l ’ordre suivant ;

1. calciiLe la valeur de T expression figurant à droite du signe égal ;

2. range le résultat obtenu dans la variable mentionnée à gauche du signe égal.

Remarque La variable placée à droite du signe égal {=) n’est jam ais modifiée, alors que celle qui est à
gauche l'est toujours. Com m e une variable de type simple ne peut stocker qu ’une seule valeur
à la fois, si la variable située à gauche possède une valeur avant l’affectation, cette valeur est
purem ent et sim plem ent rem placée par la valeur située à droite du signe é g a l (=).

Exemple

a = l ;
b = a + 3 ;
a = 3 ;

Lorsqu’on débute en programmation, une bonne méthode pour comprendre ce que réalise un
programme consiste à écrire, pour chaque instruction exécutée, un état de toutes les variables
déclarées. Il suffit pour cela de construire un tableau dont chaque colonne représente une
variable déclarée dans le programme et chaque ligne une instruction de ce même programme.
Soit, pour notre exempte :

Instruction a b
a = 1 1 -
b = a + 3 1 4
a - 3 3 4

t/ï

>-
LU
KOrHOfN
@
J Zgi'k—>-Q.O
U

4B

Le tableau est composé des deux colonnes a et b et des trois lignes associées aux instructions
d’affectation du programme. Ce tableau montre que les instnictions a = l e t a = 3 font que
la valeut initiale de a (1) est effacée et écrasée par la valeur 3.

Déclaration et affectation
Comme nous l ’avons vu à ta section « Déclarer une variable », la déclaration est utili.sée pour
réserver un emplacement mémoire. Une fois résené, l’emplacement reste vide jusqu’à ce
qu’une valeur y .soit placée par l ’ intermédiaire de l ’affectation.

Tl est cependant nsqué de déclarer une variable sans lui donner de valeur initiale. En effet, le
compilateur Java vérifie strictement si toutes les variables conlienneul une valeur ou non. Une
erreur de compilation est détectée dè.s qu’une variable à afficher ne contient pas de valeur à un
moment donné du programme.

© Édfiions Eyroües

chapiire я° 1 Siocker une infotmaifDn

ÎT [№ ÎT'T]T| Quelles sont les valeurs des variables p r i x , t v a et t o t a l après exécution des instructions
suivantes;
prix -20 ;
tva =18.6 ;
total = prix + prix*tva / 100;

Mil
Instruction prix tva total

prix = 2 0 ; 20 • -

tva = 18.6 ; 20 18.6 -

total = prix + prix * tva / 100 ; 20 18.6 23.72 (20 + 20* 18.6/100)

Initialiser une variable
Pour éviter toute erreur de compilation, une bonne habitude con.siste à initialiser toutes les
variables au moment de leur déclaration, en procédant de la façon suivante :

float fl = O.Of, f2 = 1.2f ; // Initialisation de deux float
long CodeBar = 123456789 ; // Initialisation d'un long
int test = 0 ; // Initialisation d'une variable de type int
boolean OK = true // Initialisation d'un boolean

De cette façon, les variables fl, f2, CodeBar et OK sont déclarées. Le compilateur
réserve un emplacement mémoire pour chacune d’entre elles. Grâce au signe d’affectation, le
compilateur place dans chacun des emplacements mémoire respectifs les valeurs données.

(U

Ш
ua•rH
OГМ
©
sr.oi
C l
O
U

Initialiser une variable de type char
Les variables de type c h a r s’initialisent d’une façon pariieulière, Supposons que l ’on
soulmite déclarer et placer le eametère n dans une variable c h o ix de type ch ar. Pour cela,
écrivons l’instruction de déclaration et d’initialisation suivante :
I char choix = n ;
Pour le compilateur, cette instruction est problématique, car il comsidère n non pas comme le
« caractère n » mais comme une variable appelée n.

Pour lever cette ambiguïté, nous devons entourer le caractère n d’apostrophes, de la façon
suivante :

I char choix = 'n ' ;

Ainsi, des données telles que ' a ', ' * ', ' $ ', ' 3 ', ' : ' ou ' ? ' .sont considérées comme des
caractères.

© Éditions Eyrolles 49

partie в° 1 Ouffls et leclmlaues de base

Par contre c = ' ab ' ne peut s’écrire, car ' ab ’ n'est pas un caractère mais un mot de deux
caractères. Nous devons, dan.s ce cas, utiliser une variable de type s t r i n g .

в ш н ш ш ш в Le type String est décrit au chapitre 7, « Les classes et les objets », dans la section « La
classe String, une approche vers la notion d’objet ».

Q uelles sont les valeurs des variables c l , c2, c3 et OK après exécution des instructions
suivantes :
char cl = 'O', c2 = 'u', c3 = 'i' ;
String OK ;
OK = cl + c2 + c3 ;

Remarque

Instruction cl c2 c3 OK

char c l = ' O ' ; ‘o’ - -
char c2 = 'u' ; ‘o’ ■u’ -

char c3 = 'i' ; ‘O’ 'u' T

OK = cl + c2 + c3 ; ‘o’ ‘u’ T “oui"

La variable OK est de type string puisqu'elle est composée de plusieurs caractères.

1Л
O
>

Ш
ЮtH0 fN
@
л-t
JC01'k_>-Q.OU

50

Quelques confusions à éviter
Le symbole de l ’affectation est le signe égal (=). Ce signe, très largement utilisé dans l’écriture
d’équation.s niathématiques, est source de confusion lorsqu’il est employé à contre-sens.
Pour mieux nous faire comprendre, étudions trois cas ;

I 1 . a = a + 1 ;

Si cette expression est impossible à écrire d’un ptrint de vue malbématique, elle est très largement
utilisée dans le langage informatique. Elle signifie :
• calculer l ’expression a + 1 ;
■ ranger le résultat dans a .
Ce qui revient à augmenter de 1 la valeur de a,

I 2. a + 5 = 3 ;

© Éditions Eyrolles

cftapitre n° 1 Stocker une inlotmadon

Cette expression n’a aucun sens d'un point de vue informatique. Tl n’est pas possible de placer
une valeur à l’ intérieur d’une expression mathématique, puisque aucun emplacement mémoire
n’est attribué à une expression mathématique.

I 3 . a = b ; e t b = a ;

À l’inverse de l’écriture mathématique, ces deux instructions ne sont pas équivalentes. La
première place le contenu de b dans a, tandis que la seconde place le contenu de a dans b.

Échanger les ualeurs de deux variables
Nous souhaitons échanger les valeurs de deux variables de même type, appelées a et b ; c’est-
à-dire que nous voulons que a prenne la valeur de b et que b prenne celle de a. La pratique
courante de l’écriture des expressions mathématiques fait que, dans un premier temps, nous
écrivions les instructions suivantes :

Ia = b ;
b = a ;

Vérifions sur un exemple si l’exécution de ces deux instmetions échange les valeurs de a et de b.
Pour cela, supposons que les variables a et b contiennent initialement respectivement 2 et 8.

a b

valeur initiale 2 8

a = b 8 8

b = a 8 8

Du fait du mécanisme de l’affectation, la première instruction a = b détruit la valeur de a en
plaçant la valeur de b dans la case mémoire a. Lorsque la seconde instruction b = a est
réalisée, la valeur placée dans la variable b est celle contenue à cet instant dans la variable a,
c’est-à-dire la valeur de b. Il n’y a donc pas échange, car la valeur de a a disparu par écrasement
lors de rexéciition de la première instruction.
Une solution consiste à utiliser une variable supplémentaire, dc.stinée à contenir temporairement
une copie de la valeur de a, avant que cette dernière soit écrasée par la valeur de b.

O
ôL.>
LU
KO
tH
OfN
@
x:CT’C>•aO
U

Remarque Pour évoquer le caractère temporaire de la copie, nous appelons cette nouvelle variable tmp,
nous aurions pu choisir tout aussi bien tempo, ttt ou toto.

Voici le déroulement des opérations :
tmp = a ;
a = b ;
b = tmp ;

> Éditions Eyrolles 51

I n a n i e B ° 1 o m i s e i t e c l H i l a u e s d e b a s e

Vérifions qu’il y a réellement échange, en supposant que nos variables a el b contiennent
initialement respectivement 2 et 8.

a b tm p

valeur initiale 2 8 _

trap = a 2 8 2

a = b 8 8 2

b = tmp 8 2 2

À la lecture de ce tableau, nous constatons qu’ il y a bien échange des valeurs entre a et b. La
valeur de a est copiée dans un premier temps dans la variable tmp. La valeur de a peut dès lors
être effacée par celle de b. Pour finir, grâce à la variable tmp, la variable b récupère l’ancienne
valeur de a.

Iilll^i Une autre solution vous est proposée dans la feuille d'exercices, à la section « Com prendre
le m écanism e d ’échange de valeurs », située à la fin du chapitre.

les opérateuis aridiménaues

Écrire un programme ne consiste pas uniquement à échanger des valeurs, c’est aussi calculer
des équations mathématiques plus ou moins complexes. Pour exprimer une opération, le
langage Java utilise des caractères qui symbolisent les opérateurs arithmétiques.

<D

LU
Vû
tH
O<N
@

CT
>-D.O
U

Symbole Opération

+ Addition

- Soustraction
■* Multiplication

/ Division

% Modulo

Exemple
Soient a, b, c trois variables de même type.
• L’opération d’addition s’écrit : a = b + 4 .
• L’opération de soustraction s’écrit : a = b - 5,

52 © Éditions Eyrolles

chapitre n° 1 Siocker une inlormatfon

• L’opération de division s’écrit : a = b / 2 et non pas ® ̂ 2 '
• L’opération de multiplication s’écrit : a = b * 4
• et non pas a = 4b ou a = 4 x b .
• L’opération de modulo s’écrit : a = b % 3 .
Le modulo d’une valeur correspond au reste de la division entière. Ainsi : 5 % 2 = 1 .
Il s’agit de calculer la division en s’anêtant dès que la valeur du reste devient inférieure au
diviseur, de façon à trouver un résultat en nombre entier. L’opérateur % n’existe pas pour les
réels, pour lesquels la notion de division entière n’existe pas.

iTJI Les opérations suivantes sont-elles valides ?
delta = b2 - 4ac ;

Réponse

Z = - г 3%xa 2

Aucune des deux opérations n’est valide.
delta = b2 - 4ac ; doit s’écrire delta = b * b - 4
Z = - + 3%xa T doit s’écrire z = b / 2 - i - 3 % x * a

2
En supposant que x corresponde à une variable de type entier et non pas réel. En effet, le
modulo est une opération valide uniquement pour les entiers.

L'en.semble de ces opérateurs est utilisé pour calculer des expressions mathématiques
courantes. Le résultat de ces expressions n’est cependant pas toujours celui auquel on s’attend.
Trois phénomènes ont une influence non négligeable sur la valeur du résultat d’un calcul.
Ce sont :
• la priorité des opérateurs entre eux ;
• le type d’une expression mathématique ;

• la transformation de types.

4Л<D

>-
Ш
LO
O
fN

@

CT'k->-D.O
U

La priorité des opérateurs entre eux
Lorsqu’une expression arithmétique est composée de plusieurs opérations, l ’ordinateur doit
pouvoir déterminer quel est l ’ordre des opérations à effectuer. Le calcul de l’expression
a - b / c * d peut signifier a p r io r i :
• calculer la soustraction puis la divi.sion et pour finir la multiplication, soit le calcul :

{ (a - b) / c) * d ;
• calculer la multiplication puis la division et pour finir la soustraction, c'e.st-à-dire l'expression :

a - (b / (c * d)) .

© Éditions Eymiles 53

I panic B° 1 Oiilfls e i leclHilaues He base

A(in d’éviter toute umbiguïlé, il existe des règles de priorité entre les opérateurs, règles basées
sur la définition de deux groupes d'opérateurs.

Groupe 1 Groupe 2

+ - * / %

Les groupes étant ainsi définis, les opérations sont réalisées sachant que ;

• Dans UTi inême groupe, l ’opération se fait dans l ’ordre d’apparition des opérateurs (sens de
lecture).

• Le deuxième groupe a priorité sur le premier.

L’expression a - b / c + d est calculée de la fac;on suivante :

Priorité Opérateur

Groupe 2 / Le groupe 2 a priorité sur le groupe 1, et la division apparaît dans le sens
de [a lecture avant la multiplication.

Groupe 2 ■ie Le groupe 2 a priorité sur le groupe 1, et la multiplication suit la division.

Groupe 1 - La soustraction est la dernière opération à exécuter, car elle est du
groupe 1.

Cela signifie que l’expression est calculée de la façon suivante :

I a - (b / c * d)

Remarque Les parenthèses permettent de modifier les règles de priorité en forçant le calcul préalable de
l’expression qui se trouve à l'intérieur des parenthèses. Elles offrent en outre une meilleure lisi­
bilité de l’expression.

<D

LJJ

rH
OfN
@
sz
CT‘l-5-
ClO
U

54

Le type d’une expression m athém atique
Le résultat d’une expression mathématique peut être déterminé à partir du type de variables
(termes) qui composent l ’expression.

Terme Opération Terme Résultat

Entier -f - * / % Entier Entier

Réel + - * / Réel Réel

© Editions Eyrolles

chapKre n° 1 Stocker une Information

De ce fail, pour un même calcul, le résultat dil'lière selon t|u’ il esl effectué à l ’aide de variables
de type réel ou de type entier.

Exemple : diviser deux entiers
in t X = 5 , Y - 2, 2 ;
•i = yi I Y ■.

X y Z

valeur initiale 5 2 -

■Z = y / Y 5 2 2

Ici, toutes les variables déclarées sont de type entier. Par conséquent, l’opération effectuée a
pour résultat une valeur entière, même si l ’opération demandée n’a pas forcément un résultat entier.
Soit, pour notre exemple. 2 et non 2.5. Cela ne cotTespond pas toujours au résultat attendu par
le programmeur débutant.

Que vaut la variable r é s u l t a t après exécution des instructions suivantes ;
int résultat, premier = 5, second = 3, coefficient = 2 ;
résultat = coefficient * premier / second ;

La multiplication et la division appartiennent au même groupe, les opérations sont donc réali­
sées dans le sens de la lecture. La multiplication coefficient * premier donne pour
résultat 10, puis la division de 10 par second donne 3, puisque les deux valeurs sont entières.
La variable r é s u l t a t a donc pour valeur 3.

EWiïïl Que vaut la variable r é s u l t a t après exécution des instructions suivantes :

Iint résultat, premier = 5, second = 3, coefficient = 2
résultat = premier / second * coefficient;

I I

{fi

><
LU
KOrHOrvl
@
j::
en'u.>•
ClO
U

Remarque

La multiplication et la division appartiennent au même groupe, les opérations sont donc réali­
sées dans le sens de la lecture. La division premier / se co n d a pour résultat 1, puisque
les deux valeurs sont entières. Puis la multiplication d e l par c o e f f i c i e n t donne 2.
La variable résultat a donc pour valeur 2.

A travers ces deux questions-réponses, nous observons que l’ordre des opérations et le type
des données utilisées à une forte influence sur le résultat du calcul effectué.

© Éditions Eyrolles 55

I paiHc B° 1 Oiilfls e i leclHilaues He base

Exemple : diviser deux réels

■double X = 5 , y = 2, z
Z = X / y ;

X y Z

valeur initiale 5 2 -
Z = X / y 5 2 2.5

Ici, toutes les variables déclarées sont de type réel. Par conséquent, l’opération effectuée
donne un résultat de type réel. Ce résultat correspond à la valeur généralement attendue de ce
type d’opération.

Que vaut la variable r é s u lt a t après exécution des instructions suivantes :
double résultat, premier = 5, second = 3, coefficient = 2 ;

I résultat = coefficient * premier / second :

La multiplication et la division appartiennent au même groupe, les opérations sont donc réali­
sées dans le sens de la lecture, La multiplication c o e f f ic ie n t * prem ier donne pour
résultat 10.0, puis la division de 10.0 par second donne 3.3333333, puisque les deux
valeurs sont réelles. La variable r é s u lt a t a donc pour valeur 3.3333333.

I l m

Que vaut la variable r é s u lt a t après exécution des instructions suivantes :

(double résultat, premier = 5, second = 3, coefficient = 2 ;
résultat = premier / second * coefficient;

La multiplication et la division appartiennent au même groupe, les opérations sont donc réali­
sées dans le sens de la lecture. La division prem ier / second a pour résultat 1.6665666,
puisque les deux valeurs sont réelles. Puis la multiplication de 1.6666666 par c o e f f ic ie n t
donne 3.3333333. La variable ré s u lta t a donc pour valeur 3.3333333.

O
O
>

LU

T~{

0 fN
@
-T01'k_
C l
O
U

56

La transformation de tvpes
Les termes d’une opération ne sont pas nécessairement tous du même type. Pour écrire une opé­
ration, toutes les combinaisons entre les différentes catégories de types peuvent se présenter.

Terme Opération Terme Résultat
b y t e + - * / i n t i n t

i n t + - * / d o u b l e d o u b l e

© Éditions EyroHes

chavKre h° 1 Stocker une inlonnatfon

L’ordinateur ne sail calculer une expression mathématique que lorsque toutes les variables de
l’expression sont du même type. En effet, les opérateurs arithmétiques ne sont définis que pour
des variables de type identique.
Lorsque tel n’est pas le cas, c'est-à-dire si l’expression est mixte, l ’ordinateur doit transformer
le type de certaines variables pour que tous les membres de l ’expression deviennent de même
type.
Cette transformation, appelée conversion d ’ajustement de type, .se réalise suivant une hiérar­
chie bien déterminée, qui permet de ne pas perdre d’infonnation. On dit que le compilateur
respecte l’intégralité des données.
La conversion d’un nombre réel en nombre entier, par exemple, ne peut se réali.ser qu’en
supprimant les nombres situés après la virgule et en ne gardant que la partie entière du nombre.
Une telle conversion ne garantit pas l’ intégralité des données car il y a perte de données.
C’est pourquoi, du fait du codage des données et du nombre d’octets utilisé pour ce codage, le
compilateur effectue automatiquement la conversion des données selon l’ordre suivant :

b y t e - > s h o r t - > i n t - > l o n g - > f l o a t - > d o u b l e

De cette façon, il est toujours possible de convertir un b y t e en lo n g ou un i n t en f l o a t .
Il est également possible de convertir un c h a r en in t . Par contre, il est impossible de trans­
former un f l o a t en s h o r t sans perte d’information.

Exemple

I i n t a = 4 , r e s u l t _ i n t ;

f l o a t X = 2 . O f , r e s u l t _ f l o a t

result float = a. / x ;
result int = a / X ;

us
(U

UJ
so
OfN
©

CT'k—>-Q.O
U

3 X re su lt f lo at r e s u i t jn t

a - 4 4 — — -

X = 2 . Of 4 2 . Of — —

r e s u l t _ f l o a t = a / x 4 2 . Of 2 . Of -

r e s u l t _ i n t = a / x 4 2 . Of - Impossible dès la compilation

La troisième instaiction montre que le calcul d’une of>éralion dont les termes .sort de type i n t
et f l o a t donne pour résultat un f l o a t . La dernière instruction révèle que, .si le résultat
d'une opération est de type f l o a t , il n’est pas pos.sible de le stocker dans une variable de type
in t . En effet, la division d’un entier par un réel est une opération toujours possible à réaliser
(le résultat est de type réel), mais l’affectation directe de ce résultat dans une variable entière
est impossible du fait que la conversion entraîne une perte d’information.

> Éditions Eyrolles 57

I panic B° 1 OiiUs ei leclmlaues de base

Une telle instruction provoque à la compilation une erreur dont le message est : incom pa­
t i b l e t y p e f o r = . E x p l i c i t c a s t n e e d e d t o c o n v e r t f l o a t t o i n t . Cela
signifie : « Type incompatible de part el d’aulre du signe =. Pour convertir un f l o a t en i n t ,

i! est nécessaire de le formuler explicitement par l ’ intermédiaire d’un cast. »

Le cast

La conversion avec perte d’information est autorisée dans certains cas grâce au mécanisme du
cast. Il peut être utile de transformer un nombre réel en entier, par exemple pour calculer sa
partie entière. Pour cela, le compilateur demande de convertir explicitement les termes de
l’opération dans le type souhaité en plaçant devant la variable ou l’opération le type de conver­
sion désiré. Ainsi, pour tiiuisformer un f l o a t en i n t , il suffit de placer le terme t i n t)

devant la variable ou l’opération de type f l o a t .

Exemple

i n t a = 5 , r e s u l t ;

f l o a t X = 2 . Of ;

r e s u l t 1 = t i n t) a / X

a X resul t l

a = 5 5 — —

X = 2 . Of 5 2 . Of —

r e s u l t l - (i n t) a / X 5 2 . Of 2

La dernière instruction montre que la conversion f l o a t vers i n t est autorisée malgré la perte
d’ information (le chiffre 5 placé après la virgule disparaît). Cette conversion n’est possible
que si elle est précisément indiquée au compilateur.

it)

O
U

LU

OCN

x:Ol
C l
O
U

Réponse

58

Que vaut la variable résultat après exécution des instructions suivantes :

i n t p r e m i e r = 5 , s e c o n d

d o u b l e r é s u l t a t ;

r é s u l t a t - (d o u b l e) c o e f f i c i e n t

3 , c o e f f i c i e n t = 2 ;

p r e m i e r / s e c o n d ;

Le mécanisme de cast transforme la variable coefficient en double. Ensuite, la multipli­
cation et la division appartenant au même groupe, les opérations sont réalisées dans le sens
de la lecture. La multiplication coefficient * premier donne pour résultat 10,0 {de type
double), puis la division de 10.0 par second donne 3.3333333, puisque 10.0 est une
valeur réelle, La variable résultat a donc pour valeur 3.3333333.

) Éditions Eyrotles

chapitre n° i Siochet une Inlonnatfon

Que vaut la variable r é s u lta t après exécution des instructions suivantes ;
i n t p r e m i e r = 5 , s e c o n d = 3 , c o e f f i c i e n t - 2 ;

d o u b l e r é s u l t a t ;
r é s u l t a t = (d o u b l e) (c o e f f i c i e n t * p r e m i e r / s e c o n d) ;

Les parenthèses entourant l’expression (coefficient * premier / second) font que
cette expression est calculée avant d’être transformée en double. La multiplication et la division
appartenant au même groupe, les opérations sont réalisées dans le sens de la lecture. La
multiplication coefficient * premier donne pour résultat 10, puis la division de 10 par
second donne 3, puisque les deux valeurs sont entières. Ce résultat est ensuite transformé en
double grâce au mécanisme du cast. La variable résultat a donc pour valeur finale 3.0.

Calculer des stadstiqaes sur des epérations bancaires

Pour résumer en pratique l’ensemble des notions abordées dans ce chapitre, nous allons écrire
un programme, dont le sujet se rapporte au thème du projet énoncé à la fin du chapitre intro­
ductif, « Nai.ssance d’un programme ».

Cahier des charges
L’objectif de ce programme est d'établir des statistiques sur l’utilisation des différents modes
de paiement effectués sur un compte bancaire. Nous supposons que les moyens techniques
pour débiter un compte sont au nombre de trois : la Carte Bleue, le chéquier et le virement.
Pour évaluer le taux d’utilisation de ces trois moyens de paiement, nous devons calculer te
pourcentage d’utilisation de chaque technique par rapport aux autres. Par exemple, pour
connaître le pourcentage d’utilisation de la Carte Bleue, nous utilisons le calcul suivant ;

Nombre de paiements par Ciirte Bleue / Nombre total de paiements * 100

(D

>-
LU
Vû
tH
O
(N

@
JZ
CT
5-ClO

U

Liste des opérations
Partant du principe de décomposition d’un problème en sous-tâches plus simples à réaliser,
distinguons, pour résoudre la question, les quatre actions suiviuites :

1. Déterminer le nombre de débits par Carte Bleue, chèque et virement. Comme il s’agit du
premier programme concernant ce thème, nous n’avons pas encore saisi de valeur, ni de
ligne comptable. C ’est pourquoi nous demandons à l'utilisateur de communiquer au pro­
gramme ces trois informations, par l’ intermédiaire du clavier.

2. Calculer le nombre total de paiements effectués.
3. Calculer le pourcentage d'utilisation de la Carte Bleue, du chéquier et du virement.
4. Afficher l ’ensemble des résultats.

© Editions Eyroltes 59

partie »° 1 Omfls et technlpues de base

Dans un premier temps, nous traiterons séparément chacun de ces points afin de les analyser
entièrement. Pour finir, nous écrirons le programme dans son intégralité, en regroupant chacun
des points étudiés.

1. Il s’agit d’écrire les instructions qui permettent à l’utilisateur de communiquer des infor­
mations à l'ordinateur à l'aide du clavier. Nous avons vu, au chapitre introductif, un exemple
de saisie d’une valeur au clavier (voir section « Calcul de la circonférence d’un cercle »).
Cette opération se réalise en deux temps : d’abord l’affichage à l’écran d’un message
infomiant Tutilisateur d’une demande de saisie de valeur, puis la saisie effective de l’infor­
mation. Pour notre problème, ces deux points se traduisent de la façon suivante :

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

S y s t e m . o u t . p r i n t {" N o m b r e d e p a i e m e n t s p a r C a r t e B l e u e ") ;
n b C B = l e c t u r e C l a v i e r . n e x t i n t () ;
S y s t e m . o u t . p r i n t (" N o m b r e d e c h e q u e s é m i s ") ;
n b C h e q u e = l e e t u r e C l a v i e r . n e x t i n t O ;
S y stem.out.print (" N o m b r e d e v i r e m e n t s a u t o m a t i q u e s ") ;
n b V i r e m e n t = lectureClavier.nextint() ;

Chaque appel de la fonction S y s t e m , o u t . p r i n t () affiche à l’écran le message placé
entre g u i l l e m e t s . Trois messages sont affichés, chacun indiquant respectivement à quel
mode de paiemeni est associée la valeur saisie par Tutilisateur.
Les valeurs à saisir correspondent aux nombres de débits dans chaque mode de paiement.
Ces valeurs sont de type entier. La fonction l e c t u r e C l a v i e r . n e x t i n t () donne
l’ordre à l ’ordinateur d’attendre la saisie d’une valeur entière. La saisie est effective
lorsque rutilisateur valide sa répon.se en appuyant sur la touche E n t r é e du clavier.
Trois valeurs sont à saisir, et il est nécessaire d’appeler trois fois la fonction l e c t u r e

c l a v i e r . n e x t i n t () .

Pour plus d’informations sur la fonction lectureClavier.nextlntf) voir le chapitre 2,
« Communiquer une information ».

<D

LU
VûvH
O<N
©

oi
C l
O
U

60

Une fois saisie, chaque valeur doit être stockée dans un emplacement mémoire distinct.
Ces emplacements mémoire cori'espondenl aux trois variables n b C B , n b C h e q u e et
n b V i r e m e n t et sont déclarés en début de programme grâce à l’ instruction :
I i n t n b C B = 0 , n b C h e q u e = 0 , n b V i r e m e n t = 0 ;

2. Pour calculer le nombre total de paiements effectués, il suffit de faire la somme de toutes
les opérations de débit pour tous les types de paiement, soit l’ instruction :

I n b D e b i t = n b C B + n b C h e q u e + n b V i r e m e n t ;

La variable n b D e b i t permet la mémorisation du nombre total d’opérations effectuées,
quel que soit le mode de paiement. Elle doit être déclarée en même temps que les autres
variables du même type ;

I i n t n b C B = 0 , n b C h e q u e = 0 , n b V i r e m e n t = 0 , n b D e b i t = 0 ;

© Éditions Eyrotles

chapitre n° 1 Stocker une Inlotmadon

3. Pour calculer le pourcentage d’utilisation de la Carte Bleue, du chéquier et du virement,
nous allons d'abord étudier le mode Carte Bleue puis appliquer cette analyse aux autres modes
de paiement. Rappelons que la formule du calcul de ¡xmrcentage pour la Carte Bleue est :

Nombre de paiements par Carte Bleue / Nombre total de paiements * 100

soit, en utilisant les variables déclarées au point 1 : n b C B / n b D e b i t * 10 0.

Examinons sur un exemple numérique le résultat d’un tel calcul. Supposons pour cela que
nous ayons effectué 10 retraits Carte Bleue sur un total de 40 retraits. Nous ttbtenons le
calcul suivant : 10 / 40 * 10 0 . Soit 0 * 10 0 , c’est-à-dire 0. La division est la pre­
mière opération exécutée parce qu’elle est du même groupe que la multiplication et qu’elle
apparaît en premier dans l’opération. De surcroît, les valeurs étant de type entier, la
division a pour résultat un nombre entier. Ici 10 / 4 0 a pour résultat 0.

Pour corriger cette erreur de calcul, l ’ idée est de réaliser une division sur des valeurs réel­
les et non sur des entiers. Pour cela, nous utilisons le mécanisme du cast, qui, placé devant
la variable n b C B , transforme cette dernière en variable de type réel et permet la division en
réel. Pour stocker le résultat de cette opération, nous déclarons une variable de type
f l o a t , nommée p r c t C B .

L'instruction :

I p r c t C B - (f l o a t) n b C B / n b D e b i t * 1 0 0 ;

permet de trouver un résultat eohérent. Vérifions cela sur un exemple numérique. Supposons
que nous ayons effectué 10 débits par Carte Bleue sur un total de 20 retraits. Grâce au cast, la
valeur 10 correspondant à n b C B est transformée en 1 0 .0 . La division par 20 a donc un résul­
tat réel égal à 0.5. Le taux d’utilisation de la Carte Bleue est donc de 0 .5 * 10 0 , soit 50 %.

Pour établir le pourcentage relatif aux modes chéquier et virement, il suffit d’appliquer le
même calcul, en utilisant des variables appropriées aux deux autres moyens de paiement.
En nommant p r e t C h et p r c t v i le,s variables associées aux mixles de paiement pur chèque
et par virement automatique, le taux d’utilisation pour chacun de ces modes s’écrit ;

p r e t C h = (f l o a t) n b C h e q u e / n b D e b i t * 1 0 0 ;

p r c t v i = (f l o a t) n b V i r e m e n t / n b D e b i t * 1 0 0 ;

4. L’affichage des résultats s’effectue par l’intermédiaire de la fonction System ,
o u t . p r i n t (). Les valeurs calculées sont commentées de la façon suivante :

i/ï

>-
LU

O
fN

@

CT'k->-D.O
U

S y s t e m , o u t . p r i n t l n ('

• » d e b i t ") ;

S y s t e m . o u t , p r i n t l n ('

S y s t e m . o u t . p r i n t l n ('

S y s t e m . o u t . p r i n t l n ('

V o u s a v e z é m i s " + n b D e b i t + " o r d r e s d e

d o n t + p r c t C B +

+ p r e t C h +

+ p r c t v i +

% p a r C a r t e B l e u e ")

% p a r c h e q u e ") ;

% p a r v i r e m e n t ")

Le programme final s’écrit en regroupant l’ensemble des instructions définies précédemment
et en les insérant dans une classe à l ’intérieur de la fonction m ain ().

© Éditions Eymiles 61

Darde B° 1 OiilHs ei teclHilQues de base

le code source com plet
import java.util.*;
public class Statistique
{
public static void main (String [] arg)
{

i n t t i bCB 0 , n b C h e q u e = û , n b V i r e m e n t = Û, n b D e b i t = 0

f l o a t p r c t C B , p r c t C h , p r c t V i ;

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e i n . i n) ;

S y s t e m . o u t , p r i n t (" N o m b r e d e p a i e m e n t s p a r C a r t e B l e u e :

n b C B = l e c t u r e C l a v i e r . n e x t I n t () ;

S y s t e m . o u t . p r i n t {" N o m b r e d e c h e q u e s é m i s : "} ;

n b C h e q u e = l e c t u r e C l a v i e r . n e x t i n t O ;

S y s t e m , o u t . p r i n t {" N o m b r e d e v i r e m e n t s a u t o m a t i q u e s : ' ')

n b V i r e m e n t = l e c t u r e C l a v i e r . n e x t I n t () ;

n b D e b i t = n b C B + n b C h e q u e + n b V i r e m e n t ;

p r c t C B = (f l o a t) n b C B / n b D e b i t * 1 0 0 ;

p r c t C h = (f l o a t) n b C h e q u e / n b D e b i t * 1 0 0 ;

p r c t V i = (f l o a t) n b V i r e m e n t / n b D e b i t * 1 0 0 ;

S y s t e m . o u t . p r i n t l n i " V o u s a v e z é m i s " + n b D e b i t

d é b i t ") ;

S y s t e m . o u t . p r i n t l n (“ d o n t " + p r c t C B +

S y s t e m . o u t , p r i n t l n (" " + p r c t C h +

S y s t e m . o u t . p r i n t l n (" " + p r c t V i +

}

o r d r e s d e

% p a r C a r t e B l e u e ")

% p a r c h e q u e “) ;

% p a r v i r e m e n t ") ;

ôL->
LU

T~{
0 fN
@
-T01'k_
Q.O

U
62

Résultat de l’exécution
À rexécHtion de ce programme, nous avons à l’écran l’affichage suivant (les caractères grisés
sont des valeurs choisies par l’utilisateur) :

N o m b r e d e p a i e m e n t s p a r C a r t e B l e u e

N o m b r e d e c h e q u e s é m i s ; 1 0

m b r e d e v i r e m e n t s a u t o m a t i q u e s : 5

V o u s a v e z é m i s 2 0 o r d r e s d e d e b i t

d o n t 2 5 . 0 % p a r C a r t e B l e u e

5 0 . 0 % p a r c h e q u e

2 5 . 0 % p a r v i r e m e n t

: 5

© Éditions Eyrolles

chapitre n° 1 Stocker une inlotmadon

Résumé

ifi

ÔU>-
LU

T~i

OfN
@
j-t
JZ
CT'k—>-
ClO

U

Une variable est caractérisée par un nom et un type. Le nom sert à repérer un emplacement
mémoire. Le type détermine la taille de cet emplacement, ainsi que la manière dont l’information
est codée, les opérations autorisées et l'intervalle des valeurs représentables.
Il existe plusieurs types simples, dont les plus utilisés sont les suivants :
• in t . Représente les entiers variant, pour le langage Java, entre - 2 147 483 648 et 2 147 483 647.
• double. Décrit de manière approchée les nombres réels dont la valeur absolue est grande.

Les variables de type double se notent soit sous forme décimale (67.7, -9.2, 0.48 ou .22), soit
sous forme exponentielle 3.14E4, .325707e2, -45.567E-5.

• char. Désigne les caractères. Les valeurs de type caractère se notent en plaçant entre apos­
trophes le caractère lui-même.

L’instruction d'affectation permet de placer une valeur dans une variable. Elle est de la forme :
variable = expression;
Elle calcule d'abord la valeur de l’expression mentionnée à droite du signe = , puis elle l’affecte
à la variable placée à gauche du signe.
Il est conseillé d’attribuer une valeur initiale à une variable au moment de sa déclaration. Par
exemple in t i - 5 ; ou char c - ' n ' ; .
Pour calculer des expressions mathématiques, il existe cinq opérateurs arithmétiques : + - * / % .
Ces opérateurs sont utilisés respectivement pour l’addition, la soustraction, la multiplication, la
division et le modulo (reste de la division entière). Les expressions arithmétiques sont calculées à
partir des règles suivantes :
• Entier + - * / % entier donne un entier.
• Réel + - * / réel donne un réel.
• Les opérations mixtes du type :
entier + - * / réel ou réel + ~ * ! entier
donnent un résultat dans la mesure où la valeur résultante n’est pas dénaturée par la conversion
des types. Les conversions sont effectuées automatiquement dans le sens suivant :

b y t e - > s h o r t - > i n t - > l o n g - > f l o a t - > d o u b l e

Un int peut donc être transformé en un double. L’inverse n'est possible que lorsque le mode de
conversion est explicitement décrit dans l’expression, comme dans n = (in t) x, o ù n est de
type int et X de type double.
Linformation ainsi transformée est tronquée pour être codée sur moins d’octets.
• Il existe des règles de priorité entre les opérateurs. Pour cela, deux groupes d’opérateurs sont

définis.
Groupe 1 Groupe 2

/ %
Dans un même groupe, l’opération se fait dans l'ordre d’apparition des opérateurs.
Le second groupe a priorité sur le premier.
Les parenthèses permettent la modification des priorités.

© Éditions Eyrolles 63

Darde B° 1 OulBs ei leclHilaues de base

Exercices

Repérer les instructions de déclaration, observer la svntaxe
d’une instruction

1.1 O bservez ce qui suit, e t indiquez ce qui est ou n'est pas une déclaration et ce qui est ou n’est p a s
valide ;

a . i n t i , j , v a l e u r ;

Il b . l i m i t e - j = 1 0 2 4 ;

G . v a l = v a l e u r / 16 ;

d , c h a r c h a r ;

I 1 * 1 ,■
f . i n t X ;

g . f l o a t A ;

h. A - X / 2 ;
i . X = A / 2

j . X = X / 2 ;

Comprendre le mécanisme de raffectatio n

1.2 Quelles sont les valeurs des variables A, B, C après l’exécution de chacun des extraits de programme
suivants :

OJ

>■LU
KOtHOfN
@
r :oi‘u5-ClOU

64

a. b.

£ l o a . t A = 3 , 5 f ; d o u b l e A = 0.1 ;
f l o a t B 1 . 5 f ; d o u b l e B = 1.1 ;
f l o a t C d o u b l e C, D ;

C = A + B ; B = A

B = A + c ; C = E

A = B D = C

A = D

© Éditions Eyrotles

chapitre a° 1 Stocker une inlormadon

E a i S B 1 - 3 Quelles sont les valeurs des variables a , b , v a l e u r , x , y et z , après l’exécution d e chacune des
instructions suivantes :

a. b. c.

i n t a - 5 , b ; i n t v a l e u r = 2 i n t X = 2 , y = 10, Z ;
b = a + 4 ; v a l e u r = v a l e u r + 1 ; Z - X + y ;
a = a + 1 ; v a l e u r = v a l e u r ★ 2 : X = 5 ;

b = a - 4 ; v a l e u r = v a l e u r % 5 : Z = Z - X ;

Comprendre le mécanisme d’échange de valeurs

Dans chacun des cas, quelles sont les valeurs des variables a et b après l’exécution de chacune des
instructions suivantes :

1. 2.

i n t a = 5 ; i n t a = 5 ;
i n t b = 7 ; i n t b = 7 ;
a = b ; b = a ;
b = a ; a = b ;

1 ,5 Laquelle des options suivantes perm et d'échanger les valeurs des deux variables a et b ?

a - b ; b = a ;
t = a ; a = b ; b = t ;

'! t = a ; b = a ; t = b ;

V)ÛJ
Ô
i_>

LU

tH
Or\I
@

CT
>.Q.O

U

1 .B Soit trois variables a , b et c (entières). Écrivez les instructions pernnutant les valeurs, de sorte que la
valeur de a passe dans b , celle de b dans c et celle de c dans a . N 'utilisez qu’une (et une seule)
variable entière supplémentaire, nom m ée tm p ,

ÎT T Î IT ĥ iT ^ 1 .7 Quel est l’effet des instructions suivantes sur les variables a et b (pour vous aider, initialisez a à 2 et b
à 5) :

Ia = a -r b ;

b = a - b ;
a = a - b ;

© Éditions Eyrolles 65

oanie B° 1 Oiilfls ei leclmlaues de base

Calculer des expressions mixtes

1.8 Donnez les valeurs des expressions suivantes, sachant que i e t j sont de type i n t e t x et y de type
d o u b l e (x = 2.0, Y = 3 .0) :

a . i = 1 0 0 / 6 ;
b. j = 1 0 0 % 6 ;
c . i = 5 % 8 ;
d . (3 * i - 2 * j) / (2 A X - y) ;
e* 2 * (fi / 5) + (4 * (j - 3)) % (1 + j
f . (i - 3 * j) / (x + 2 A y) / (i - j 1 ;

1.9 Donnez le type et la valeur des expressions suivantes, sachant que n , p , r , s et t sont de type i n t
(n = 1 0 , p = 7, r = 8, s = 7, t = 21) et que X est de type f l o a t (x = 2 , 0 f) :

a. b.

X + n % P r -f- t / s
X + n / P (r + t) / s
(X + n) / P r + t % s
5 . * n (r + t) % s

(n + 1) / n r + s / r +• s
(n + 1 . 0) / n (r + s) / (r + s)
r + s / t r + s % t

Comprendre le mécanisme du cast

1.10

O
OL->
LU

rHOfN
@
u-t
JZ
CT'k—>-Q.O
U

66

Soit l es déclarations suivantes :

I i n t v a l e u r = 7 , c h i f f r e = 2 , i l , i 2 ;

f l o a t £1 , £2 ;

Quelles sont les valeurs attribuées à i l , i 2 , f l et f 2 après le calcul de

i l = v a l e u r / c h i f f r e ;
i 2 = c h i f f r e / v a l e u r ;
f l =; [f l o a t] (v a l e u r / c h i f f r e) ;
f 2 =: (f l o a t) (v a l e u r / c h i f f r e) -1- 0 . 5 f ;
i l (i n t) f l ;
i 2 [i n t) f 2 ;
f l (f l o a t) v a l e u r / (f l o a t) c h i f f r e ;
f 2 = (f l o a t) v a l e u r / (f l o a t) c h i f f r e + 0 . 5 f
i l (i n t) f l ;
i 2 (i n t) f 2 ;

© Éditions Eyrofles

cftapitre n° 1 Siocker une inlonnatfon

i/iCJ

>~
in

1-1
o(N
@
s :oi'k_>-Q.OU

Le projet : Gestion d’un compte bancaire

Déterminer les variables nécessaires au programme
Le programme de gestion d’un compte bancaire ne peut s’écrire et s’exécuter sans aucune
variable. Pour pouvoir définir toutes les variables nécessaires à la bonne marche du programme,
nous devons examiner attentivement le cahier des charges décrit au chapitre introductif,
« Naissance d’un programme ».
La section « Les objets manipulés » nous donne une première idée des variables à déclarer.
Toutes les données relatives au compte bancaire y sont décrites.
Un compte bancaire est défini par un ensemble de données ;
• un numéro de compte ;
• un type de compte (courant, épargne, joint, etc.) ;
• des lignes comptables possédant chacune une valeur, une date, un thème et un moyen de

paiement.
Ces données peuvent être représentées de la façon suivante :

Données Exemple Type de l’objet

Num éro du compte 4 01 0 .2 0 5 .5 3 0 Suite de caractères

Type du compte Courant Suite de caractères

Valeur -1 5 2 0 .3 0 Num érique

Date 04 03 1978 Date

Thèm e Loyer Suite de caractères

M oyen de paiem ent CB Suite de caractères

Compte tenu de ces informations, donnez un nom et un type Java pour chaque donnée définie
ci-dessus.
Remarquons que le type qui représente les suites de caractères (S t r i n g) iTa pa.s encore été
étudié, ni toutes ses fonctionnalités. Il est possible de transfoniier pour Tinstant les données
T y p e du c o m p t e , T h è m e et M o y e n de p a i e m e n t en caractères simples. Par exemple, le
cai'actère C cmiictétise le type du compte C o u r a n t , le caractère J le compte J o i n t et le caractère
E l e compte E p a r g n e .

De la même façon, la donnée Muméro du com pte peut être transformée dan.s un premier
temps en type l o n g .

> Éd/ifons Eyro/fes 67

inй)

:>■ш
iûTH
ОrN
@

Ol
>■Q.
OU

Chapitre 2

Communiquer une information

Un programme n’a d’ intérêt que s’il produit un résultat. Pour conununiquer ce résultat, l ’ordi­
nateur utilise l’écran. Cette action, qui consiste à afficher un message, est appelée opération de
sortie, ou d’écriture, de données.

Parallèlement, un programme ne produit de résultats que si l ’utilisateur lui fournit au préalable
des informations. Ces informations, ou données, sont transmises au programme le plus
.souvent par l’ intermédiaire d'un clavier. Dans le jargon informatique, cette opération est
appelée opération de saisie, d’entrée ou encore de lecture de données.

Dans ce chapitre, nous commençons par étudier les fonctionnalités proposées par le langage
Java pour gérer les opérations d’entrée-sortie (voir section « La bibliothèque System »).

A la section « L’afficiiage de données », nous examinons ensuite conunent afficher à l’écran
des messages et des données. Enfin, à la section « La saisie de données », nous proposons une
technique de saisie de valeurs au clavier.

i/iCJ

;>■
LU
LO
O
(N

@
J-gi'l.>-
C lOU

La bibliothèque System

Nous l ’avons vu dans les exemples des chapitres précédents, l’affichage de valeurs ou de texte
est réalisé par l’utilisation d’une fonction prédéfinie du langage Java. Cette fonction a pour
nom d'appel S y s te m .o u t . p r i n t ().

© Éditions Eyrolles 69

Darde в° 1 ОиШа ei teclHilQues de base

Pourquoi un nom si complexe, pour réaliser une action aussi « simple » que rarfidiage tie
données ?
Le langage Java est accompagné d'un ensemble de bibliothèques de programmes préécrits, qui
épargnent au programmeur d’avoir à réécrire ce qui a déjà été fait depuis les débuts de Père
informatique. Ces bibliothèques portent chacune un nom qui renseigne sur leur fonctionnalité.
Ainsi, la bibliothèque où se trouve l ’ensemble des fonctions de calcul mathématique s’appelle
M a t h , et celle relative à la gestion des éléments de bas niveau (écran, clavier, etc.) impliquant
le sy.stème de l’ordinateur s’appelle S y s t e m .

La gestion de l’affichage d’un message à l’écran ou la saisie de valeurs au clavier fait partie
des fonctions impliquant le système de l ’ordinateur. C ’est pourquoi le nom d’appel de telles
fonctions a pour premier terme S y s t e m .

Les opération.s d’entrée ou de sortie de données impliquent le système de l’ordinateur mais
sont en rapport inverse l’iine de l’autre. Pour dissocier ces opérations, la bibliothèque S y s t e m

est composée de deux sous-ensembles, i n et o u t . L’affichage est une opération de sortie et
fait donc partie des éléments o u t de la classe S y s t e m . Le point (.) qui relie le mot S y s t e m

à o u t permet d’expliquer à l’ordinateur que Гоп souhaite accéder au sous-ensemble o u t de la
bibliothèque S y s t e m plutôt qu’au sous-ensemble in . Pour finir, nous faisons appel, dans le
.sous-ensemble o u t , à la fonction p r i n t (), qui affiche un message à l ’écran. Le nom de la
fonction p r i n t {) signifie imprimer, car. au tout début de l ’informatique, les ordinateurs
n’avaient pas d’écran, et les résultats d’un calcul étaient imprimés sur papier ou sur carte
informatique.

Remarque La notation point (.) est une écriture courante en programmation objet. Comme nous le ver­
rons au chapitre 7, « Les classes et les objets », elle offre le moyen d'accéder à des programmes
ou à des données spécifiques.

Notons que, dans la classe S y s t e m , se trouve aussi le sous-ensemble e r r , qui permet d’affi­
cher les erreurs éventuelles d’un programme sur la sonie standard des erreurs. Ce type de
sortie n’est défini que dans le monde Unix, et la sortie e r r est identique à la sortie o u t dans
le inonde DOS,

l'affiGhage de données
ifi<D

>Ш

OfN
@

oi
Q.O

U
70

Le principe général, pour l’affichage d’un message, est de placer ce dernier en paramètre de la
fonction S y s t e m . o u t . p r i n t (), c’est-à-dire à l’ intérieur des parenthèses qui suivent le terme
S y s t e m , o u t . p r i n t . Plusieurs possibilités existent quant à la forme et à la syntaxe de ce
message, et nous les présentons ci-après.

© Éditions Eyrolles

chapiire i° 2 Gommuiilaiier une iniomtation

Affichage de la valeur d’une variable
Soit la variable entière v a le u r . Uaffichage de son contenu à récran est réalisé par :

i n t v a l e u r = 2 2 ;

System.out.print (v a l e u r) ;

À l’écran, le résultat s’affiche ainsi :

22

Affichage d ’un com m entaire
Le fait d’écrire une valeur numérique, sans autre commentaire, n’a que peu d’ intérêt. Pour
expliquer un résultat, il est possible d’ajouter du texte avant ou après la variable, comme dans
l’exemple :

I S y s t e m . o u t . p r i n t (" L e m o n t a n t s ' e le v e a : " + v a le u r) ;

ou

I S y s t e m . o u t . p r i n t (valeur + " c o r r e s p o n d a u m o n t a n t t o t a l ") ;

Pour ajouter un commentaire avant ou après une variable, il suffit de le placer entre guillemets
(" ") et de l’accrocher à la variable à l’aide du signe +. De cette façon, le compilateur est
capable de distinguer le texte à afficher du nom de la variable. Tout caractère placé entre
guillemets e.st un message, alors qu’un mot non entouré de guillemets correspond au nom
d’une variable.

f f l[~4T'ijn En reprenant la même variable v a l e u r qu'à l’exemple précédent, quel est le résultat affiché
par les instructions précédentes ?

Réponse La première instruction affiche à l’écran :

L e m o n t a n t s ' e l e v e a r 2 2

La seconde :

i 2 2 c o r r e s p o n d a u m o n t a n t t o t a l

<D

LU
VûvH
O<N
©
s:oi
C lO
U

Affichage de plusieurs variables
On peut afficher le contenu de plusieurs viuiables en utilisant la même technique. Les
commentaires sont placés entre guillemets, et les variables sont précédées, entourées ou
suivies du caractère +. Le signe + réunit chaque terme de l’affichage au suivant ou au précédent.
Pour afficher le contenu de deux variables ;

I i n t V = 5 , s = 3 3 ;

© Éditions Eyroltes 71

partie »° 1 Outfls et technlpues de base

nous écrivons

I S y s t e m , o u t . p r i n t (v + " e l e m e n t s v a l e n t a u t o t a l " + s + " e u r o s ") ;

O iïE a n i ia Quel est le résultat de l’instruction précédente ?

Lexécution de cette instruction a pour résultat :

5 e l e m e n t s v a l e n t a u t o t a l 3 3 e u r o s■

Affichage de la valeur d’une expression arlthm étiaue
Dans une instruction d’affichage, il est possible d’afficher directement le résultat d’une expres­
sion mathématique, sans qu'elle ail été calculée auparavant. Par exemple, nous p<.)uvons écrire :

I i n t a = 1 0 , b = 5 ;

S y s t e m . o u t . p r i n t [a + " f o i s " + b + " e s t é g a l a " + a * b) ?

À l’écran, le résultat s’affiche ainsi :

1 0 f o i s 5 e s t é g a l a 5 0

Mais attention ! Cette expression est calculée au cours de l ’exécution de l ’instruction, elle
n’est pas mémorisée dans un emplacement mémoire. Le résultat ne peut donc pa.s être réutilisé
dans un autre calcul.
L’écriture d’une expression mathématique à l’intérieur de la fonction d’affichage peut être source
de confusion pour le compilateur, surtout si l’expression mathématique comporte un ou plusieurs
signes +. En remplaçant, dans l’exemple précédent, le signe * par +, nous obtenons :

I i n t a = 1 0 , b = 5 ,-

S y s t e m . o u t . p r i n t (a + " p l u s " + b + " e s t é g a l a " + a + b) ;

A l’écran, le résultat s'affiche de la façon suivante :

1 0 p l u s 5 e s t é g a l a 1 0 5

(J)d)

Remarque L’ordinateur ne peut pas afficher la somme de a et de b parce que, lorsque le signe + est placé
dans la fonction d’affichage, il a pour rôle de réunir des valeurs ef du texte sur une même ligne
d’affichage, et non d’additionner deux valeurs. 105 n’est que la réunion de 10 et de 5. On dit
qu’il s’agit d’une opération de concaténation.

LU
SO
O
fN

@
JZ
CT'k—>-Q.O
U

72

Pour afficher le résultat d’une addition, il est nécessaire de placer entre parenthèses le calcul à
afficher. Par exemple :

i n t a = 1 0 , b = 5 ;

S y s t e m . o u t . p r i n t (a + " p l u s + b + " e s t é g a l a + (a+b))

) Éditions Eyrotles

chapitre a° 2 Gommuhlquer une inlormaiion

Le ré.sullal à l ’écran est ;

1 0 p l u s 5 e s t é g a l a 1 5

t/ï

>-
LU
KOrHOfN
@
x:Oi'k_>Q.O
U

Affichage d ’un texte
Nous pouvons aussi afficher un simple texte sans utiliser de variable ;

I S y s t e m . o u t . p r i n t (" Q u i s e m e l e v e n t r é c o l t é l a t e m p e t e ! ") ;

À l’écran, le résultat s’affiche ainsi :

Q u i s e m e l e v e n t r é c o l t é l a t e m p e t e !

Pour changer de ligne
Signalons que l’ instruction S y s t e m . o u t . p r i n t affiche le.s informations à la suite de celles
qui ont été affichées par un précédent S y s t e m . o u t , p r i n t . Il n’y a pas de passage à la ligne
entre (Jeux instructions d’affichage. Ainsi, les instructions :

I S y s t e m . o u t . p r i n t (" Q u i s e m e l e v e n t ") ;

S y s t e m , o u t . p r i n t (" r é c o l t é l a t e m p e t e ! ") ;

ont le même résultat à l ’écran que celle de l’exemple précédent :

Q u i s e m e l e v e n t r é c o l t é l a t e m p e t e !

Pour obtenir un passage à la ligne, il est nécessaire d’utiliser la fonction

I S y s t e m . o u t . p r i n t l n ()

Ainsi, les instructions :

(S y s t e m . o u t . p r i n t l n (" Q u i s e m e l e v e n t ") ;

S y s t e m , o u t . p r i n t (" r é c o l t é l a t e m p e t e ! ") ;

ont pour résultat :

Q u i s e m e l e v e n t

r é c o l t é l a t e m p e t e !

Les caractères spéciaux
La table Unicode définit tous les ctiractères textuels (alphanumériques) et semi-graphiques
(idéogrammes, etc.).
Les caractères spéciaux sont définis à partir du code-point 0080 de la table Unicode. Ils
correspondent à des caractères n’existant pas sur le clavier mais qui sont néanmoins utiles.
Les cttraetères accentués font aussi partie des caractères spéciaux, les claviers Qwerly américains
ne possédant pas ce type de caractères.

> Éditions Eyrol/es 73

panic B° 1 omns Cl teclHilaues de base

Pour afficher un message comporlant ties caractères n'ex.istanL pas sur le clavier, ou compre­
nant des caractères accentués, vous devez insérer à l’ intérieur du message le code Unicode des
caractères souliaités.

La table Unicode est décrite au chapitre 1, « Stocker une information », à la section « Les
types de base en Java - Catégorie caractère ». Vous pouvez également consulter la table
Unicode des caractères de l'alphabet latin, en ouvrant les fichiers uriicodeOOOOaO 07 F , p d f
et U n ic o d e 0 0 8 0 a 0 0 F F .p d f placés SUT l’extension Web de l’ouvrage.

IflO
O
l_>•

LU

T~{
0 rN

le01'k—
ClO

U
74

Ainsi le p r o v e r b e " Q u i s è m e l e v e n t r é c o l t e l a t e m p ê t e " s’écrit e n J a v a "Qui
s \ u 0 0 E 8 m e l e v e n t , r \ u 0 0 E 9 c o l t e l a t e m p \ u O O E A t e " .

Il est à noter que même si le langage Java utilise le jeu de caractères Unicode, le traitement des
chaînes de caractères par une application Java dépend du jeu de caractères par défaut du
système d’exploitation ou de l'environnement de développement de l’application, ce qui pose
parfois problème pour l ’affichage des caractères accentués.

Par exemple, dans le jeu de caractère.s ANSI utilisé par Windows, le caractère ù se trouve à la
même position que le caractère tréma (") dans le jeu de caractères DOS, Ainsi, le mot "où"
s’affiche "où" avec l ’outil Bloc-notes de Window.s et "o" avec l’éditeur edit de DOS.

Pour éviter d’obtenir des caractères plus ou moins étranges à l’afficliage d’une chaîne de carac­
tères, la solution con,siste à enccxler la chaîne de caractères dans le système d’encodage par défaut
de l’environnement du système utilisé. Cette technique est réalisée par le programme suivant :

p u b l i c c l a s s E n c o d a g e P a r D e f a u t {

public static void m a i n (String[] args)
t h r o w s j a v a . i o . l O E x c e p t i o n {

S t r i n g e n c o d a g e = S y s t e m . g e t P r o p e r t y [" f i l e . e n c o d i n g ") ; // Q

S y s t e m . o u t . p r i n t l n t " E n c o d a g e p a r d é f a u t : " + e n c o d a g e) ;

S t r i n g p r o v e r b e = " Q u i s \ u 0 0 E 8 m e l e v e n t , r \ u 0 0 E 9 c o l t e l a

t e m p \ u 0 0 E A t e " ; // 0

S t r i n g p r o v e r b e E n c o d e = n e w S t r i n g (p r o v e r b e . g e t B y t e s () ,

^ e n c o d a g e) ; // 0

I S y s t e m . o u t . p r i n t l n (" p r o v e r b e : " + p r o v e r b e E n c o d e) ;

I 1

O Lit méthode S y s t e m , g e t P r o p e r t y (} récupère le .système d’encodage par défaut de
votre environnement de travail lorsque le ternre " f i l e . e n c o d i n g " est passé en paramètre
de la méthode.

O La chaîne de caractères "Qui sème l e v e n t , r é c o l t e l a tem pête" est mémorisée
dans la variable p ro v e rb e , en uLilisant les codes Unicode des caractères è, é el ê, respectivement.

© Éditions EyroHes

ch â tre 1° 2 Gommunlauer une inlotmadoii

0 L’instruction new String (...) e.st un peu plus complexe a déchiffrer. Elle s'exécute en
tiois temps :

• Le terme p r o v e r b e . g e tB y te s () transforme la chaîne de caractères enregistrée dans
p ro v e rb e , en une suite d’octets.

• L’expression new String (..., encodage) crée une nouvelle chaîne de caractères à
partir de la suite d’octets passée en premier paramètre, selon l ’encodage fourni en
second paramètre. Ici, l ’encodage est celui de l ’environnement dans lequel vous travaillez.

• La nouvelle chaîne ainsi créée est enregistrée dans la variable proverbeEncode grâce
à l’opérateur =,

CMliiJIIi) Notez l’expression throws lOException placée juste après l’en-tête de la fonction main().
La présence de cette expression indique au compilateur que la méthode main () est susceptible
de traiter ou de propager une éventuelle erreur du type lOException, qui pourrait apparaître
en cours d’exécution. Ainsi, une erreur de type UnsupportedEncodingException est pro­
pagée lorsque l’interpréteur Java ne connaît pas l’encodage par défaut de l’environnement
dans lequel vous travaillez.

Pour en savoir Plus Pour plus de précision sur la notion d’exception, voir la section « Gérer les exceptions », à
la fin du chapitre 10, « Collectionner un nombre indéterminé d’objets » et l’exercice 10.8 de
ce même chapitre. La classe String et l’opérateur new sont étudiés plus précisément au
chapitre 7, « Les classes et les objets ».

Exécution sous DOS
L’exécution du programme EncodageParDefaut a pour résultat d’afficher, dans la fenêtre
de commandes D O S :
Encodage par défaut : Cpl252
Proverbe : Qui sème le vent, récolte la tempête

Il se peut cependant que l’affichage ne soit pas encore tout à fait correct. Pour cela, vous devez
vérifier que l’enctrdage par défaut de la fenêtre cmd. exe soit bien Cpl252.

Remamue

ifi<D

Le code page cpl252 est le jeu de caractères par défaut de Windows. Il correspond à la norme
ISO-8859-1. La fenêtre and. exe utilise en général le code page IBM850 qui n'est pas supporté
par Java.

>-
LU
KO
tH
OfN
@
JZoi'k—>-Q.O
U

Pour modifier le jeu de caractères par défaut de la fenêtre c m d . exe, vous devez, taper la commande
chcp dans la fenêtre de commandes afin de vérifier quel jeu de ciuactères a été chargé.
Si la réponse est autre chose que :

Page de codes active : 1252

© Éditions EyroHes 75

parde B° 1 auiBs ei teclmlaues de base

ii convieni de modiiier les pages de code par deCaut, en tapant la commande :

c h c p 1 2 5 2

La police de caractères utilisée par la fenêtre de commandes a également une incidence sur
l'affichage des caractères accentués. Pour afficher correctement les accents, vous devez modifier
la police de caractères par défaut de la fenêtre de commandes. Pour cela :
• Cliquer droit sur la barre d’en-lête de la fenêtre de commandes.
• Sélectionner l’ilem P r o p r ié t é s , dans le menu contextuel qui apparaît en effectuant un

clic droit.
• Cliquer sur l ’onglet P o l i c e et choisir la police de caractères L u c i d a C o n so le .
• Valider le tout en cliquant sur le bouton OK.

Exécution sous Linux
Sous Linux (distribution Debian), le programme E ncodageParD ef a u t a pour résultat ;

E n c o d a g e p a r d é f a u t : I S O - 8 8 5 9 - 1 5

P r o v e r b e : Q u i s è m e l e v e n t j r é c o l t e l a t e m p ê t e

La saisie de données

Java est un langage conçu avant tout pour être exécuté dans un environnement Internet et utili­
sant des programmes essentiellement axés sur le concept d’interface graphique (gestion des
boutons, menus, fenêtres, etc.). Dans ce type d’environnement, la saisie de données est gérée
par des fenêtres spécialisées, appelées fenêtres de dialogue.
L’objectif de cet ouvrage est d’ initier le lecteur au langage Java et, surtout, de lui faire comprendre
comment construire et élaborer un programme. Pt)ur cet apprentissage (algorithme et langage), il
n’est pas recommandé de se lancer dans l’écrinire de programmes utilisant des boutons, des
menus et autres fenêtres sans avoir étudié au préalable toute la bibliothècjue AWT (Abstract
Windowing Toolkit) de Java. Cette bibliothèque facilite, il est vrai, la construction d’applications
grapliiques, mais elle complique et alourdit l ’écriture des programmes.

in(U

>UJ
sorHOfN
@

oi'k_>-
ClO
U

I M i E i E l M î D Pour plus de détails sur la bibliothèque graphique AWT, reportez-vous au chapitre 11,« Des­
siner des objets »■.

C’est pourquoi nous avons délibérément choi.si de travailler dans un environnement non
graphique, plus simple à progrannner.

Dans cet environnement, le langage Java propose la fonction S y s t e m . i n . r e a d () , qui
permet la saisie de données au clavier, sans l’ intermédiaire de fenêtres graphiques. Cette fonc­
tion est définie dans la bibliothèque S y s t e m , à l’ intérieur du sous-ensemble in . Elle utilise le
programme de lecture au clavier r e a d () .

76 © Éditions EyroHes

cftapitre n° 2 Gommunlquer une Inlonnatfon

La l'onction System , i n . r e a d () permet de récupérer un et un seul caractère saisi au clavier.
Si Putilisateiir .souhaite sai.sir des valeurs ou des noms composés de plusieurs caractères, le
programme doit contenir autant d’instructions S y s te m . i n . re a d () que de caractères à
saisir. Le nombre de caractères à .saisir variant suivant l’utilisation de l’application, cette fonction
n’est pas directement utili.sable de cette façon.

La classe Scaaner
Avant la version Java 1.5, il était difficile de saisir une valeur au clavier (voir section « Saisir
un nombre entier au clavier », chapitre 4, « Faire des répétitions »). Aujourd’hui la situation
s'est améliorée grâce à la classe S ca n n er, du package j a v a . u t i l .

La classe S c a n n e r propose au lecteur un ensemble de fonctions de lecture qui permet de
saisir autant de caractères que souhaité. Pour terminer la saisie, il suffit de la valider en
appuyant sur la touche E n t r é e du clavier. De plus, il existe autant de fonctions de lecture que
de types de variables. Il est très facile de saisir des valeurs numériques de ty'pe entier (b y te ,
s h o r t , i n t et l o n g) ou réel (f l o a t et d o u b l e) et des caractères de type c h a r ou S t r i n g .

Pour ce faire, la technique consiste à :

1. importer la classe S c a n n e r grâce à l ’instruction :

I i m p o r t j a v a . u t i l . * ;

Cette instmction doit être placée en tout début de programme, avant la définition de la classe.
Elle est utilisée pour préciser au compilateur qu’il doit charger les classes enregistrées dans le
paquetage j a v a . u t i l .

Remarque Comme son nom l’indique, le package j a v a .u t i l rassemble différents outils de programmation
très utiles. On y trouve par exemple la classe Date qui permet de connaître l’heure à la seconde
prêt, ou encore les classes Vector ou HashTable qui offre des outils très performants pour trai­
ter des listes de données (voir chapitre 10, « Collectionner un nombre indéterminé d’objets »).

V)
ô
k_>

LU
LOT~{
OfN
@

IM TTT

2. créer un objet de type S c a n n e r à l’aide de l’instruction ;

I S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

L’objet se nomme l e c t u r e C l a v i e r . Il est créé grâce à l’opérateur nevj. Le fait de placer en
paramètre le terme System , in indique au compilateur, que l ’objet l e c t u r e C l a v i e r doit
scanner (en français, parcourir ou encore balayer) le système d’entrée des valeurs, c’est-à-dire
le davier.

La notion d’objet ainsi que l’opérateur new sont étudiés au chapitre 7, « Les classes et les
objets ».

oi'k_
Q.O

U
© Éditions Eymiles 77

name B° 1 Oiilfls ei teclHilaues de base

3. u t i l i s e r u n e m é t h o d e d e l a c l a s s e S c a n n e r p o u r l i r e u n e n t i e r , un r é e l o u e n c o r e un c a r a c ­

t è r e . A i n s i p a r e x e m p l e l a m é t h o d e n e x t I n t () a p p l i q u é e à l ’ o b j e t l e c t u r e C l a v i e r

p e r m e t l a s a i s i e d ’ u n e v a l e u r d e t y p e i n t .

L’exemple ci-après regroupe l ’ensemble des méthodes permettant la saisie de valeurs de type
s h o r t , b y t e , i n t , l o n g , f l o a t , d o u b l e , c h a r et S t r i n g .

Exemple : code source complet

j i m p o r t j a v a . u t i l ;

p u b l i c c l a s s T e s t L e c t u r e C l a v i e r [

p u b l i c s t a t i c v o i d m a i n (S t r i n g [] A r g) {

i n t i n t L u ;

f l o a t f l o a t L u ;

d o u b l e d o u b l e L u ;

c h a r c h a r L u ;

b y t e b y t e L u ;

l o n g l o n g L u ;

s h o r t s h o r t L u ;

S t r i n g s t r i n g L u ;

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

SI
ô
L .>-

LU
VO
1—1
0 <N
@
r :01
S'
C lO
U

S y s t e m . o u t . p r i n t l n (" E n t r e z u n s h o r t :

s h o r t L u = l e c t u r e C l a v i e r . n e x t S h o r t O ;

S y s t e m . o u t . p r i n t l n (" E n t r e z u n b y t e : ") ;

b y t e L u = l e c t u r e C l a v i e r . n e x t B y t e C) ;

S y s t e m . o u t . p r i n t l n (" E n t r e z u n i n t : ") ;

i n t L u = l e c t u r e C l a v i e r . n e x t i n t O ;

S y s t e m . o u t . p r i n t l n (“E n t r e z u n l o n g : ") ;

l o n g L u = l e c t u r e C l a v i e r . n e x t L o n g () ;

S y s t e m . o u t . p r i n t l n (" E n t r e z u n f l o a t : ") ;

f l o a t L u = l e c t u r e C l a v i e r . n e x t F l o a t O ;

S y s t e m . o u t . p r i n t l n (" E n t r e z u n d o u b l e : ") ;

d o u b l e L u = l e c t u r e C l a v i e r . n e x t D o u b l e O ;

S y s t e m . o u t . p r i n t l n { " E n t r e z u n S t r i n g : ") ;

S t r i n g L u = l e c t u r e C l a v i e r . n e x t O ;

S y s t e m . o u t . p r i n t l n (" E n t r e z u n c h a r : ") ;

c h a r L u = l e c t u r e C l a v i e r . n e x t () . c h a r A t (0) ;

S y s t e m . o u t . p r i n t l n (" e n t i e r : " + i n t L u) ;

S y s t e m . o u t . p r i n t l n (" f l o a t : " + f l o a t L u) ;

S y s t e m . o u t . p r i n t l n (" d o u b l e : " + d o u b l e L u) ;

S y s t e m . o u t . p r i n t l n (" c h a r : " + c h a r L u) ;

78 © Éditions Eyrolles

chapitre n° 2 Gommuhlquet une Inlonnatfon

S y s t e m , o u t . p r i n t l n (" b y t e :

S y s t e m . o u t . p r i n t l n (" s h o r t :

S y s t e m . o u t . p r i n t l n (" S t r i n g

S y s t e m . o u t . p r i n t l n (" l o n g :

+ b y t e i i U) ;

' + s h o r t L u) ;

" + s t r i n g L u) ;

+ l o n g L u) ;

lîlM flilEE)

. 1

Apres la dcclaratiun des variables, le programme demande la saisie de valeurs d'un certain type.
L’utilisateur fournit la valeur correspondant au type demandé et valide la saisie en appuyant
sur la touche E n t r é e du clavier. Une fois saisies, les valeurs sont affichées à l’écran.
Observez la particularité de l’instruction de saisie d’un caractère; n e x tO .c h a rA t(O).
Cette instruction demande de bien connaître la classe S t r i n g (voir chapitre 7, « Les classes
et les objets », section « La classe String, une approche de la notion d’objet »), Succinctement,
l’ instruction T

I c h a r L u = l e c t u r e C l a v i e r . n e x t () . c h a r A t (0) ;

a pour rôle de saisir une suite de caractères grâce â la méthode n e x t {), puis de ne retenir que
le premier caractère de cette suite tt l’aide de la méthode c h a rA t (0). De celte façon, même
si rutilisateur .saisi plu.sieurs caractères, seul le premier saisi (numéroté 0) est enregi.stré dans
la variable charLu.

La méthode L e c t u r e C l a v i e r . n e x t [] ne permet pas de saisir des phrases mais juste un mot.
En effet, le caractère « Espace » constitue pour cette méthode, un marqueur de fin de saisie au
clavier.
Pour saisir une phrase (c’est-à-dire une suite de mots séparés par des espaces), vous devez
utiliser la méthode L e c tu re C la v ie r .nextLineO .

<D

LU
Vû
tH
OfN
@
jT01'k_
ClO

U

Que se passe-t-il si l’utilisateur saisit la valeur 1. 5 lorsque l’application testLectureClavier
demande d'entrer un f lo a t ou un double,

Lapplication cesse son exécution en précisant l’erreur java.util. InputMismatchException.
En effet, en France, un nombre réel s ’écrit à l'aide d’une virgule alors qu’aux États-Unis, on
utilise le point. En utilisant la classe Scanner sur un système d’exploitation réglé en zone
française, nous devons saisir les valeurs réelles avec une virgule. Pour utiliser la notation
américaine, nous devons modifier la localité grâce à l’instruction :

l e c t u r e C l a v i e r . u s e L o c a l e (L o c a l e . u s) ;

L'instruction ;

l e c t u r e C l a v i e r . u s e L o c a l e (L o c a l e . F R E N C H) ;

permet de revenir à la saisie des valeurs réelles avec une virgule.

) Éditions Eyrolles 79

name B° 1 Ouifls ei techniaiies de base

Résultat de Vexécution
Les caractères grisés sont des valeurs choisies par T utilisateur.

E n t r e z u n b y t e : 1 0 0

E n t r e z u n s h o r t : - 3 0 5 6 0

E n t r e z u n i n t : 1 2 5 6 9 $ -

E n t r e z u n l o n g ; 9 8 7 6 E 7 6 5

E n t r e z u n f l o a t : 3 . 1 4 1 5 9

E n t r e z u n d o u b l e : 1 2 3 . 8 7 6 4 5 3 0 9 7 4 3 2

E n t r e z u n S t r i n g ; E x e m p l e

E n t r e z u n c h a r : A

v o u s a v e z e n t r e l e b y t e :

v o u s a v e z e n t r e l e s h o r t

v o u s a v e z e n t r e l ' e n t i e r

v o u s a v e z e n t r e l e l o n g :

VOUE a v e z e n t r e l e f l o a t

v o u s a v e z e n t r e l e d o u b l e

v o u s a v e z e n t r e l e c a r a c t è r e : A

v o u s a v e z e n t r e l e S t r i n g : E x e m p l e

100
- 3 0 5 5 0

1 2 5 6 9 8

9 8 7 6 8 7 6 5

3 , 1 4 1 5 9

: 1 2 3 , 8 7 6 4 5 3 0 9 7 4 3 2

(D

>-
LU
LO
T-l
OfN

JCgi
'l.>'O.O
U

Répons

80

Que réalisent les instructions suivantes ?

s t r i n g p d t ;
f l o a t p r i x ;

i n t q u a n t i t é ;
S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;
S y s t e m . o u t . p r i n t (" E n t r e z l e n o m d u p r o d u i t : ") ;

p d t = l e c t u r e C l a v i e r . n e x t 0 ;
S y s t e m . o u t . p r i n t (" E n t r e z l e p r i x d u p r o d u i t :
p r i x = l e c t u r e C l a v i e r . n e x t D o u b l e () ;

S y s t e m . o u t . p r i n t (" E n t r e z l a q u a n t i t é a c h e t é e : ") ;
q u a n t i t é = l e c t u r e c l a v i e r . n e x t l n t () ;
S y s t e m . o u t . p r i n t (" V o u s a v e z a c h e t é : " + q u a n t i t é +
S y s t e m , o u t , p r i n t l n (" a u p r i x u n i t a i r e d e "+ p r i x + "

S y s t e m . o u t . p r i n t (" M o n t a n t t o t a l : "+ q u a n t i t é * p r i x + " e u r o s ") ;

Les instructions précédentes réalisent l’affichage et la saisie de valeurs de la façon suivante
E n t r e z l e n o m d u p r o d u i t : DVD

E n t r e z l e p r i x d u p r o d u i t : 3 3 . 5

E n t r e z l a q u a n t i t é a c h e t é s : 2

V o u s a v e z a c h e t é 2 DVD a u p r i x u n i t a i r e d e 3 3 . 5 e u r o s

M o n t a n t t o t a l : 6 7 . 0 e u r o s

© Éditions Eyroliss

' " + p d t) ;

e u r o s ") ;

chapitre a° 2 Gommuplquet une Inlormation

Résumé

fJ)<D

Pour communiquer une information, l’ordinateur affiche un message à l’écran. On dit qu’il réalise
une opération de sortie (out) ou d'écriture de données. À l’inverse, lorsque l’utilisateur commu­
nique des données au programme par l’intermédiaire du clavier, il effectue une opération d’entrée
(in) ou de lecture de données.
Dans le langage Java, les opérations de sortie sont réalisées grâce à l’instruction
System, out .print!). qui permet d’afficher des informations à l’écran. Par exemple, l’instruction :

S y s t e m . o u t , print{F + " f r a n c s v a l e n t " + E + " e u r o s ") ;
affiche à l'écran le contenu de la variable F, suivi du texte fra n cs v a le n t , puis le contenu de la
variable E, suivi du texte euros.
Pour distinguer le commentaire du nom de variable, le commentaire est placé entre guillemets. Le
contenu de la variable est affiché en réunissant la variable au commentaire à l’aide du signe +.
Pour afficher des résultats sur plusieurs lignes, il convient d’utiliser l’instruction ;

S y s tem.ou t.print Ln()
Avec la version Java 1.5, les opérations d’entrée sont réalisées par l’intermédiaire de la classe
Scanner grâce aux instructions suivantes :

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

i n t i = l e c t u r e C l a v i e r . n e x t i n t () ;

Les méthodes de lecture ont pour nom d’appel :
• nextByte (} pour saisir une valeur de type byte ;
• nextSho rt () pour saisir une valeur de type sho rt ;
• n e x t i n t {) pour saisir une valeur de type i n t ;
• nextLong () pour saisir une valeur de type long ;

• n e x tF lo a t () pour saisir une valeur de type f lo a t ;
• nextDoablel) pour saisir une valeur de type double ;
• next () pour saisir une valeur de type S tr in g ;
• next () . charAt (0) pour saisir une valeur de type char.

LU
LO
tHO
fN

@
JZoi
Q.OU

© Éditions EyroUes 81

partie B° 1 Ouifls et technlpues de base

Exercices

Comprendre les opéraoons de sortie

Soit un program m e Java contenant les déclarations

I i n t i = 2 2 3 , j = 1 3 5 ;

f l o a t a = 3 3 5 . 5 f , b = 2 0 . 5 f ;

c h a r R = ' R ' , T = ’ T ' ;

D écrive ï l'affichage généré par chacune des instructions suivantes ;

S y s t e m . o u t . p r i n t L n [" V o u s a v e z e n t r e : " + i) ;

S y s t e m . o u t . p r i n t l n (" P o u r u n m o n t a n t d e "+ a + " l e t o t a l v a u t : "+ i + j) ,

S y s t e m . O u t . p r i n t (" A p r e s r e d u c t i o n d e " + b + ” %, v o u s g a g n e z : ;

S y s t e m . o u t . p r i n t I n [(a * b) / 1 0 0 + ” e u r o s ") ;

S y s t e m . o u t . p r i n t C " L a v a r i a b l e R = " + R + " e t T = " + T) ;

2.2 En tenant com pte des déclarations de variables suivantes, écrivez les instructions
S y s t e m . o u t . p r i n t () de façon à obtenir l’affichage suivant :

double X = 4, y = 2 ; double X =9, y = 3 ;

X = 4 .0 et y = 2 .0

Racine carrée de 4 .0 = 2,0

4 ,0 a la puissance 2 .0 = 1 6 .0

X = 9 .0 et y = 3 .0

Racine carrée de 9 .0 = 3 .0

9 .0 a la puissance 3 .0 = 729 .0

rTtllifili'jJiItj Notez que la racine carrée de x s ’obtient par la fonction M a t h , s q r t (x) et que â " se calcule
avec la méthode M a t h . p o w { a , b) .

Comprendre les opérations d'entrée

<D

LU

O
fN

@

CT
>-
D.O
U

nmiftin 2.3 Pour chacun des deux program m es suivants, et com pte tenu des informations fournies par l’utilisateur,
quelles sont les valeurs affichées à l’écran ?

82 © Éditions Eyrotles

chapitre n° 2 Gommuplquet une Inlormation

L'utilisateur fournit au clavier 2, puis 3, puis 4 L’utilisateur fournit au clavier 2

i n t X, Y ; i n t X, Y ;
X = l e c t u r e C l a v i e r . n e x t l n t () ; X = l e c t u r e C l a v i e r . n e x t i n t () ;
Y = l e c t u r e C l a v i e r . n e x t i n t () ; Y = 0 ;
X = l e c t u r e C l a v i e r . n e x t i n t 0 ; X = X+Y ;
X = X+Y ; S y s t e m . o u t . p r i n t l n (" X = ' + X) ;
S y s t e m . o u t . p r i n t (" X = " + X) ;
S y s t e m . o u t . p r i n t l " Y = " + Y) ;

S y s t e m . o u t . p r i n t l n (" Y = " + Y) ;

Obsorver et comprendra la structura d'un programme lava

2,4 En prenant exemple sur la structure suivante, écrivez un program m e E u r o qui convertit des francs en
euros. (Rappel ; 1 euro = 6 ,5 59 57 francs) :

p u b l i c c l a s s .. // D o n n e r u n nom à l a c l a s s e

{
p u b l i c s t a t i c v o i d m a i n (S t r i n g [] a r g u m e n t)

{
// D é c l a r e r l e s v a r i a b l e s r e p r é s e n t a n t l e s f r a n c s e t l e s e u r o s

// a i n s i q u e l e t a u x d e c o n v e r s i o n

// D é c l a r a t i o n d e l a v a r i a b l e r e p r é s e n t a n t l a l e c t u r e a u c l a v i e r

// A f f i c h e r e t s a i s i r l e n o m b r e d e f r a n c s

// C a l c u l e r l e n o m b r e d ' e u r o s

// A f f i c h e r l e r é s u l t a t s u i v a n t l ’ e x e m p l e d o n n é c i - d e s s o u s

}
V)
Ô
>

LU

0 fN
@
,4-1x :01'k_
ClO

U

}
Laffichage du résultat se fera sous la form e suivante :

N o m b re d e f r a n c s : 1 2 0

C o n v e r s i o n F/E : 6 , 5 5 9 5 7

N o m b r e d ' e u r o s : 1 8 , 2 9 3

> Éditfons Eyrol/es 83

I panic B° 1 OuiBs ei leclHilaues de base

le projet : GesHon d’un compte bancaire

<u

>-
UJ
vorH
OrN
@

Afficher le menu principal ainsi nue ses options
L’objectif de ce premier programme est d’écrire toutes les instructions qui permettent l ’afti-
chage des menus définis dans le cahier des charges décrit au chapitre introductif, « Naissance
d'un programme », ainsi que la saisie des données demandées. Le programme affiche tous les
messages de toutes les options, sans contrôle sur le choix de rutilisateur.
• Le menu principal s’affiche de la façon suivante :

1 . C r é e r u n c o m p t e

2 . A f f i c h e r u n c o m p t e

3 . C r e e r u n e l i g n e c o m p t a b l e

4 . S o r t i r

5 . D e 1 ' a i d e

V o t r e c h o i x :

• Une fois le menu affiché, le progranmie attend la saisie du choix de l ’utilisateur.
• L’option 1 du menu principal a pour affichage ;

T y p e d u c o m p t e [T y p e s p o s s i b l e s : c o u r a n t , j o i n t , é p a r g n e] :

N u m é r o d u c o m p t e :

P r e m i è r e valeur c r é d i t é e :

T a u x d e p l a c e m e n t :

L’option 2 réalise les opérations suivantes :
- Affiche la demande de saisie du numéro du compte que rutilisateur .souhaite consulter.
- Saisine numéro de compte.

• L’option 3 affiche : " o p t io n non prograitim ee
• L’option 4 termine l’exécution du programme. Pour cela, utilisez la fonction Java

S y s t e m . e x i t (0) ; .

• Avec l’option 5, le programme affiche une ligne d’explication pour chaque option du
menu principal.

oi
>-
Q.OU

84 © Éditions EyroUes

Chapitre 3

Faire des choix

Une fois les variables définies et les valeurs stockées en mémoire, l’ordinateur est capable de
les tester ou de les comparer de façon à réaliser une instruciitm plutôt qu'une autre, suivant le
résultat de la comparaison.
Le programme n’est alors plus exécuté de façon séquentielle (de la première ligne jusqu’à la
dernière). L’ordre est rompu, une ou plusieurs instructions étant ignorées en fonction du
résultat du test. Le programme peut s’exécuter, en tenant compte de contraintes imposées par
le programmeur.
Dans ce chapitre, nous abordoms la notion de choix ou de test, en reprenant l’algorithme du
café chaud, pour le transformer en un algorithme du café chaud sucré ou non (voir section
«. L’algorithme du café chaud, sucré ou non »).
Ensuite, à la section « L’insiniclion if-else», nous étudions la structure i f - e l s e proposée
ptm le langage Java, qui pennet de réaliser des choix.
Enfin, à la section « L’instruction switch, ou conurient faite des choix multiples », nous examinons
le concept de choix multiples par l’intermédiaire de la structure s w i t c h .

i/)O
O
>

LU
LÛ
rH0 fN
@
sz01'k_>Q.O
U

L’algorithme du calé chaud, sucré ou non

Pour mieux comprendre la notion de choix, nous allons reprendre l’algorithme du café chaud pour
le transformer en a lg o r it lu n e du c a fé chaud, s u c ré ou non. L’énoncé ainsi transfomié
nous oblige à modifier la liste des objets manipulés, ainsi que celle des opérations à réaliser.

© Éditions Eyrolles 85

Darde B° 1 Outfls et techniaues de base

Définition des obiets manipulés
Pour obtenir du café sucré, nous devons ajouter à notre liste un nouvel ingrédient, le sucre, et
un nouvel ustensile, la petite cuillère,

c a f é m o u l u

I f i l t r e

r e a u

c a f e t i è r e é l e c t r i q u e

t a s s e

é l e c t r i c i t é

t a b l e

s u c r e

petite cuillère

lis te des opérations
De la même façon, nous devons modifier la liste des opérations, de façon qu’elle prenne en
compte les nouvelles données :

V e r s e r l ' e a u d a n s l a c a f e t i è r e , l e c a f é d a n s l a t a s s e , l e c a f é d a n s

le filtre.
Prendre d u c a f é m o u l u , u n e t a s s e , d e l ' e a u , u n e c a f e t i è r e é l e c t r i q u e ,

u n f i l t r e , un morceau de sucre, une petite cuillère.
B r a n c h e r , a l l u m e r o u é t e i n d r e l a c a f e t i è r e é l e c t r i q u e .

A t t e n d r e q u e l e c a f é s o i t p r ê t .

Poser l a t a s s e , l a c a f e t i è r e s u r l a t a b l e , l e f i l t r e d a n s l a

c a f e t i è r e , le sucre dans la tasse, la petite cuillère dans la tasse.

(U

>LU
LO
rHOfN
@
JCCT'k—
a.
OU

86

Ordonner la liste des opérations
Ainsi modifiée, la liste des opérations doit être réordonnée afin de rechercher le moment le
mieux adapté pour ajouter les nouvelles opérations :

• En décidant de prendre le sucre et la petite cuillère en même temps que le café et le filtre,
nous plaçons les nouvelles instructions " p r e n d r e . .. " entre les instructions 2 et 3 définies
à la section « Ordonner la liste des opérations » du chapitre introductif, « Naissance d’un
programme ».

• En décidant de poser le sucre et la petite cuillère dans la lasse avant d’y verser le café,
nous écrivons les nouvelles instructions " p o se r..." avant l’ instruction 15 du même
exemple.

© Éditions Eyrotles

chamtre n° 3 Faire des cboik

in(U

LU
LO
tH
0 rs|
@
x:01 X >■
O. O
U

Nous obtenons la liste des opérations suivantes :
0 . P r e n d r e u n e c a f e t i è r e .

1 . P o s e r l a c a f e t i è r e s u r l a t a b l e .

2 . P r e n d r e d u c a f é .

3. Prendre un morceau de sucre.
4. Prendre une petite cuillère.
5 . P r e n d r e u n f i l t r e .

6 . V e r s e r l e c a f é d a n s l e f i l t r e ,

7 . P r e n d r e d e 1 ’ e a u .

8 . V e r s e r l ' e a u d a n s l a c a f e t i è r e .

9 . B r a n c h e r l a c a f e t i è r e .

1 0 . A l l u m e r l a c a f e t i è r e .

I 1 1 . A t t e n d r e q u e l e c a f é s o i t p r ê t .

1 2 . P r e n d r e u n e t a s s e .

1 3 . P o s e r l a t a s s e s u r l a t a b l e .

14. Poser le sucre dans la tasse.
15. Poser la petite cuillère dans la tasse.
1 6 . E t e i n d r e l a c a f e t i è r e .

1 7 . V e r s e r l e c a f é d a n s l a t a s s e .

Ecrite ainsi, cette marche à suivre nous permet d'obtenir un café chaud sucré. Elle ne nous
autorise pas à choisir entre sucré ou non. Pour cela, nous devons introduire un test, en posant
une condition devant chaque instruction concernant la pri.se du sucre, c'est-à-dire :

0 . P r e n d r e u n e c a f e t i è r e .

1 . P o s e r l a c a f e t i è r e s u r l a t a b l e .

2 . P r e n d r e d u c a f é .

3. Si (café sucré) P r e n d r e u n m o r c e a u d e s u c r e .

4. Si (café sucré) P r e n d r e u n e p e t i t e c u i l l è r e .

5 . P r e n d r e u n f i l t r e .

6 . V e r s e r l e c a f é d a n s l e f i l t r e .

I 7 . P r e n d r e d e 1 ' e a u ,

8 . V e r s e r l ' e a u d a n s l a c a f e t i è r e .

9 . B r a n c h e r l a c a f e t i è r e .

1 0 . A l l u m e r l a c a f e t i è r e .

1 1 . A t t e n d r e q u e l e c a f é s o i t p r ê t .

1 2 . P r e n d r e u n e t a s s e .

1 3 . P o s e r l a t a s s e s u r l a t a b l e .

14. Si (café sucré) P o s e r l e s u c r e d a n s l a t a s s e .

15. Si (café sucré) P o s e r l a p e t i t e c u i l l è r e d a n s l a t a s s e .

1 6 . É t e i n d r e l a c a f e t i è r e .

1 7 . V e r s e r l e c a f é d a n s l a t a s s e .

© Éditions Eyrolles 87

Darde B° 1 OiiUs ei teclHilQues de base

Dans cette situation, nous obtenons du café sucré ou non, selon notre choix. Observons cepen­
dant que le test S i (c a fé s u c ré } est identique pour les instructions 3, 4, 14 et 15 . Pour
celte raison, et sachant que chaque test représente un coût en ternies de temps d’exécution, il
est con.seillé de regrouper au même endroit toutes les instructions relatives à un même lest.

C ’csl pourquoi nous distinguons deux blocs d’instructions distincts :

• les instroction.s soumises à la condition de café sucré (IJ Préparer le sucre) ;
• les instructions réalisables quelle que soit la condition f / Préparer le café).

Dans ce cas, la nouvelle solution s’écrit ;

Instructions Bloc d'instructions

0 . P r e n d r e u n e c a f e t i è r e .
I . P o s e r l a c a f e t i è r e s u r l a t a b l e .

2 . P r e n d r e du c a f é .

3 . P r e n d r e un f i l t r e .

4 . V e r s e r l e c a f é d a n s l e f i l t r e .

5 . P r e n d r e d e l ' e a u .

6 . V e r s e r l ' e a u d a n s l a c a f e t i è r e .

B r a n c h e r l a c a f e t i è r e .
/ Préparer le café

7 .

&. A l l u m e r l a c a f e t i è r e .

9 . A t t e n d r e q u e l e c a f é s o i t p r ê t .
1 0 . P r e n d r e u n e t a s s e .

1 1 . P o s e r l a t a s s e s u r l a t a b l e .

1 2 . E t e i n d r e l a c a f e t i è r e .

1 3 . V e r s e r l e c a f é d a n s l a t a s s e .

S i (c a f é s u c r é)

L. P r e n d r e un m o r c e a u d e s u c r e .

2 . P r e n d r e u n e p e t i t e c u i l l è r e .
fl Préparer le sucre

3 . P o s e r l e s u c r e d a n s l a t a s s e .

4 . P o s e r l a p e t i t e c u i l l è r e d a n s l a t a s s e .

ifi

><
LU
KOrHOfN
@
JZ
CT'k—>-
Q.O
U

8B

La réalisation du bloc ¡P réparer le café nous permet d’obtenir du café chaud. Ensuite, en
exécutant le test S i (c a fé s u c r é), deux solutions sont possibles ;

• La proposition (c a fé su c ré) est vraie, et alors les instructions 1 à 4 du bloc II Préparer
le sucre sont exécutées. Nous obtenons du café chaud sucré.

• Laproposition (c a fé su c ré) estfausse, et les instructions qui suivent ne sont pas exécutées.
Nous obtenons un café non sucré.

Pour programmer un choix, nous avons écrit une condition devant les instructions concernées.
En programmation, il en est de même. Le langage Java propose plusieurs instructions de test,

© Editions Eyrolles

c h â tre H° 3 Faire des choiK

à savoir la structure i f - e l s e , que nous étudions ci-après, et la structure s w itc h que nous
analysons a la section « L'instruction switch, ou comment faire des choix multiples », un peu
plus loin dans ce chapitre.

L’instruction if-else

L'instruction i f - e l s e se traduit en français par les termes s i - s in o n . Elle pennet de
programmer un choix, en plaçant derrière le terme i f une condition, comme nous avons placé
une condition derrière le terme s i de l’algorithme du café chaud, sucré ou non.
L'instruction i f - e l s e se constniit de la façon suivante :
• en suivant une syntaxe, ou forme, précise du langage Java (voir « Syntaxe d’ if-else ») ;

• en précisant la condition à tester (voir « Comment écrire une condition »).
Nous présentons en fin de cette section un exemple de programme qui recherche la plus grande
des deux valeurs saisies au clavier (voir « Rechercher le plus grand de deux éléments »).

{fi

><
LU
UDtHOrsi
®
j::oi'k_>-
ClO

U

Syntane d’if-e lse
L’écriture de l’ instruction i f - e l s e obéit aux règles de syntaxe suivantes ;

// s i l a c o n d it io n e s t v r a i e
// f a i r e

i f (c o n d itio n)
{

p lu s ie u r s in s t r u c t io n s ;
} // f a i t
e l s e // sin on (la c o n d it io n c i-d e s s u s e s t fa u sse)
t / / fa ire

p lu s ie u r s in s t r u c t io n s ;
} / / fa it

• Si la condition située après le mot-clé i f et placée obligatoirement entre parenthèses est
vraie, alors les instructions placées dans le HUk- défini parles accolades ouvrante cl fermante
immédiatement après sont exécutées.

• Si la condition est fausse, alors les instructions définies dans le bloc situé après le mot-clé
e l s e sont exécutées.

De cette façon, un seul des deux blocs peut être exécuté à la fois, selon que la condition est
vérifiée ou non.
Signalons que ;
• La ligne d'instruction i f (condition) ou e l s e ne se termine jamais par un point-virgule

© Éditions Eyrolles 8 9

I panic B° 1 OuiBs e i teclHilgues He base I

Les Liccolades { e t } définissent un bloc d'instructions. Cela permet de regrouper ensemble
toutes les instructions relatives à un même test.

L'écriture du bloc e l s e n’est pas obligatoire. Tl est possible de n’écrire qu’un bloc i f

sans programmer d’ instruction dans le cas où la condition n’est pas vérifiée (comme dans
l’algorithme du calé chaud, sucré ou non). En d’autres termes, il peut y avoir des i f
■san.s e l s e .

S ’il existe un bloc e l s e , celui-ci est obligatoirement « accroché » à un i f . Autrement dit,
il ne peut y avoir d ’ e l s e sans i f .

Le langage Java propo.se une syntaxe simplifiée lorsqu’il n’y a qu'une seule instruction à
exécuter dans l’un des deux blocs i f ou e l s e . Dans ce cas, les accolades ouvrante et
fermante ne sont pas obligatoires :

i£ (condition) une seule instruction ;
else une seule instruction ;

ou :

i f (c o n d i t i o n)

{ I l f a i r e

p l u s i e u r s i n s t r u c t i o n s ;

] // f a i t

else une seule instruction ;

O U encore :

if (condition) une seule instruction ;
e l s e

{ // f a i r e

p l u s i e u r s i n s t r u c t i o n s ;

} // f a i t

Une fois connue la syntaxe générale de la structure i f - e l s e , nous devons écrire la condition
(placée entre parenthèses, juste après i f) permettant à l’ordinateur d’exécuter le test.

Comment écrire une condition

<D

><
LU
KO■rHOfN
@
JZ
CT'k—>-
Q.O
U

90

L’écriture d’une condition en Java fait appel aux notions d’opérateurs relationnels et condi­
tionnels.

Les opérateurs relationnels
Une condition est formée ptir l’écritui'e de la comparaison de deux expressions, une expression
pttuvant être une valeur numérique ou une expres.sion arithmétique. Pour comparer deux

© Éditions EyroUes

chapHre я° 3 Faire des сйо1к

expressions, le langage Java dispose de six symboles représenianl les opérateurs relationnels
traditionnels en niathéniatiqnes.

Opérateur Signification pour des
valeurs numériques Signification pour des valeurs de type caractère

= = égal identique
< inférieur strictement plus petit dans l'ordre alphabétique
< = inférieur ou égal plus petit ou identique dans l’ordre alphabétique
> supérieur strictement plus grand dans l'ordre alphabétique
> = supérieur ou égal plus grand ou identique dans l’ordre alphabétique
1 = différent différent

Un opérateur relationnel permet de comparer deux expressions de même type. 11 n’est pas
possible de comparer un réel avec un entier ou un entier avec un caractère.
Lorsqu’il s’agit de compruer deux expressions composées d’opérateurs arithmétiques (+ - * / %),
les opérateurs relationnels sont moins prioritaires par rapport aux opérateurs arithmétiques. De
cette façon, les expressions mathématiques sont d’abord calculées avant d’être comparées.
Notons que pour tester l ’égalité entre deux expressions, nous devons utili.ser le symbole == et
non pas un simple =. En effet, en Java, le signe = n’est pas un .signe d'égalité au sens de la
comparaison mais le signe de l’affectation, qui permet de placer une valeur dans une
variable.

(Ш Й Т1

CJ

>«Ш
tHO
ГМ

@
x :Oi'k_
Q.O

U

Réponse

En initialisant les variables a , b, l e t t r e et c a r de la façon suivante :
i n t a = 3 , b = 5 ;

c h a r l e t t r e = ' i ' , c a r = ' j ' ;

examinez si les conditions suivantes sont vraies ou fausses :
[a != b)

[a + 2 == b)

[a + 8 < 2 * Ы

(l e t t r e <= c a r)

[l e t t r e == ' w ')

La condition (a ! - b) est vraie car 3 est différent de 5.
La condition (a r 2 - - b) est vraie сагЗ + 2 vaut 5.
La condition (a 4- 8 < 2 * b) est fausse car 3 + 8 est plus grand que 2 * 5.
La condition (l e t t r e car) est vraie car le caractère ' i ' est placé avant ' j ' dans
l’ordre alphabétique,
La condition (le t t r e == 'w') est fausse car le c a ra c tè re 'i'e s t différent du caractère'w '.

> Éditions EyroHes 91

partie B° 1 Huifls et leclHilaues de base

Les opérateurs logiques
Les opérateurs logiques sont utilisés pour associer plusieurs conditions simples et, de cette
façon, créer des conditions multiples en un seul test. Tl existe trois grands opérateurs logiques,
symbolisés par les caractères suivants :

Opérateur Signification
I NON logique
&& ET logique
li OU logique

En initialisant les variables x , y , z et r de la façon suivante :
i n t x = 3 , y = 5 , 7 . - 2 , r = 6 ;

examinez si les conditions suivantes sont vraies ou fausses :
(x < y) && (z < r)
(x > y) I l (z < r)
! I z < r)

Sachant que la condition (x < y) && (z < r) est vraie si les deux expressions
(x < y ; et (z < r) sont toutes les deux vraies et devient fausse si l’une des deux expres­
sions est fausse, l’expression donnée en exemple est vraie. En effet (3 < 5) est vraie et
<2 < 6) est vraie.
Sachant que la condition (x > y) | | (z < r) est vraie si l'une des expressions
(x > y) ou (z < r) est vraie et devient fausse si les deux expressions sont fausses,
l’expression donnée en exemple est vraie car (3 > 5) est fausse, mais (2 < 6) est vraie.
Sachant que la condition ! (z < r) est vraie si l’expression (z < r) est fausse et devient
fausse si l’expression est vraie, alors l’expression donnée en exemple est fausse car
(2 < 6) est vraie.

Si.
Ot_>

LU
VûrH0
(N

@
sz01
Cl
O
U

9 2

Rechercher le plus grand de deux élém ents
Pour mettre en pratique les notions théoriques abordées aux deux sections précédentes, nous
allons écrire un programme qui affiche, dans l ’ordre croissant, deux valeurs entières saisies au
clavier et recherche la plus grande des deux. Pour cela, nous devons :

1. Demander la saisie de deux valeurs au clavier.
2. Te.ster si la première valeur saisie est plus grande que la seconde.

a. Si tel est le cas :
- afficher dans l ’ordre croissant, en affichant la seconde valeur saisie puis la première ;
- stocker la plus grande des valeurs dans une variable spécifique, soit la première valeur.

b. Sinon :
- afficher dans l’ordre croissant, en affichant la première valeur saisie puis la seconde ;
- stocker la plus grande des valeurs dans une variable spécifique, soit la seconde valeur.

© Éditions Eyrolles

chapiire h° 3 Faire des cboiK

ifiO
Ol_>
LU

T-H
ofN
@
u-t
J ZCT'k—>-
Q.OU

3. Afficher la plus grande des valeurs.
Nous devons, dans un premier temps, déclarer trois variables entières, deux pour les valeurs à saisir
et une pour stocker la plus grande des deux. Nous écrivons l’instniction de déclaration suivante ;
I i n t p r e m i è r e , d e u x i è m e , l a P l u s G r a n d e ;

1. La saisie des deux valeurs est ensuite réalisée par (voir le chapitre 2, « Communiquer une
information ») :

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

S y s t e m . o u t . p r i n t (" E n t r e r u n e v a l e u r : ") ;

p r e m i è r e = l e c t u r e C l a v i e r . n e x t I n t () ,-

I S y s t e m . o u t . p r i n t (" E n t r e r u n e d e u x i e m e v a l e u r : ") ;

d e u x i è m e = l e c t u r e C l a v i e r . n e x t i n t () ;

2. Pour tester si la première valeur saisie est plus grande que la seconde, l’ instruction i f
s’écrit :

I i f (p r e m i è r e > d e u x i è m e)

a. Deux instmctions composent ce test ; l’affichage dans l’ordre crois.sant puis le stockage
de la plus grande valeur. Il est donc nécessaire de les placer dans un bloc défini par une
accolade ouvrante ({) et une accolade fermante (]) :

{
// A f f i c h e r l e s v a l e u r s d a n s l ' o r d r e c r o i s s a n t

S y s t e m . o u t . p r i n t l n (d e u x i è m e + " " + p r e m i è r e) ;

// S t o c l c e r l a p l u s g r a n d e d a n s u n e v a r i a b l e s p é c i f i q u e

l a P l u s G r a n d e = p r e m i è r e ;

}
b. De la même façon, le cas contraire est décrit par l’ instruction e l s e et est composé de

deux instructions. Nous avons donc ;

e l s e

C
// A f f i c h e r l e s v a l e u r s d a n s l ' o r d r e c r o i s s a n t

S y s t e m . o u t . p r i n t l n (p r e m i è r e + " " + d e u x i è m e) ;

// S t o c k e r l a p l u s g r a n d e d a n s u n e v a r i a b l e s p é c i f i q u e

l a P l u s G r a n d e = d e u x i è m e ;

}
3. Nous affichons enfin la plus grande valeur par l’ instmction ;

I S y s t e m , o u t , p r i n t l n (" L a p l u s g r a n d e v a l e u r e s t ; " + l a P l u s G r a n d e) ;

Ce message est affiché dans tous les cas, et l’ instruction est donc placée en dehors de toute
structure conditionnelle.

© Éditions Eyrolles 9 3

partie B° 1 omns et teclHilQues de base

P o u r f in ir , l e p r o g r a m m e e s t p l a c é d a n s u n e fo n c t io n m a i n () e t u n e c l a s s e , t ju e n o u s a p p e l o n s

M a x i m u m , p u i s q u ’ i l s ’ a g i t i c i d e t r o u v e r l a v a l e u r m a x i m a l e d e d e u x v a l e u r s . D e c e t t e f a ç o n ,

l e p r o g r a m m e p e u t ê t r e c o m p i l é e t e x é c u t é .

Exemple : code source complet

'/ L e f i c h i e r s ' a p p e l l e M a x i m u m . j a v a
i m p o r t j a v a . u t i l . * ;
public class Maximum
{
public static void main (S t r i n g [] p a r a m é t r é)

{
i n t p r e m i è r e , d e u x i è m e , l a P l u s G r a n d e ;

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;
S y s t e m . o u t . p r i n t { " E n t r e r u n e v a l e u r : ") ;
p r e m i è r e = l e c t u r e C l a v i e r . n e x t I n t O ;
S y s t e m . o u t . p r i n t { " E n t r e r u n e d e u x i e m e v a l e u r
d e u x i è m e = l e c t u r e C l a v i e r . n e x t I n t O ;
if (p r e m i è r e > d e u x i è m e)

{
S y s t e m . o u t . p r i n t l n { d e u x i è m e + " " + p r e m i è r e)
l a P l u s G r a n d e = p r e m i è r e ;

1
else
{

S y s t e m . o u t . p r i n t l n (p r e m i è r e + " " + d e u x i è m e)

l a P l u s G r a n d e = d e u x i è m e ;

}
S y s t e m . o u t . p r i n t l n (" L a p l u s g r a n d e v a l e u r e s t :

l a P l u s G r a n d e) ;
} // F i n d u m a i n ()

} // F i n d e l a C l a s s M a x im u m

\fi

>-
LU
UDtHOfN
®
J Zoi'k_>
ClO

U

Réiionse 1

94

Que se passe-t-il si l’utilisateur entre les valeurs suivantes :
{Les caractères grisés sont des valeurs choisies par l’utilisateur.)

E n t r e r u n e v a l e u r r 3

E n t r e r u n e d e u x i e m e v a l e u r : 5

Le programme affiche la réponse suivante :
3 5

L a p l u s g r a n d e v a l e u r e s t : 5

La première valeur étant plus petite que la seconde, le programme n’exécute que les instructions
placées dans le bloc e lse .

© Éditions Eyrolles

chapitre a° 3 Faire des choix

Deux erreurs à éviter
Deux types d’erreurs sont à éviter par le programmeur débutant. Il s’agit des erreurs issues d'une
mauvaise consiruclion des blocs i f ou e l s e et d’un placement incorrect du point-virgule.

La construction de blocs
Reprenons l'exemple précédent en l ’écrivant comme suit :

if (première > deiucième)
S y s t e m , o u t . p r i n t l n (d e u x i è m e -r
l a P l u s G r a u d e = p r e m i è r e ;

+ p r e m i è r e)

e l s e

C
S y s t e m , o u t . p r i n t l n (p r e r a i è r e + " " + d e i r x i è m e)
l a P l u s G r a n d e = d e u x i è m e ;

}
En exécutant pa.s à pas cet extrait de programme, nous observons qu’ il n’y a pas d’accolade
ouvrante ({) derrière l’ instruction i f . Cette dernière ne pos.sède donc pas de bloc composé de
plusieurs instructions. Seule l ’instruction d’afiichage System , o u t . p r i n t l n (deuxièm e
+ " " + p re m iè re) ; se situe dans i f . L’exécution d’ i f s’achève donc ju.ste après
raffichage des valeurs dans l’ordre croissant.

Ensuite, l'instruction la P lu s G ra n d e = p re m iè re ; est théoriquement exécutée en
dehors de toute condition. Cependant, l’ instruction suivante est e l s e , alors que l’ instruction
i f s’est achevée précédemment. Le compilateur ne peut attribuer ce e l s e à un i f . Il y a
donc erreur de compilation du type ' e l s e ' w ith o u t ' i f .
De la même façon, il y a erreur de compilation lorsque le programme est construit sur la forme
suivante :

I i f (p r e m i è r e > d e u x i è m e)

' }
laPlusGrande = première ;
e l s eI i...
)

OL_>
LU
LOT~{Orvl
@
M J
J Zgi
>.
Q.O
U

Le point-virgule
Dans le langage Java, le point-viigule constitue une instmction à part entière, qui représente
l’instruction vide. Par conséquent, écrire le programme suivant ne provoque aucune erreur à la
compilation :

i f (p r e m i è r e > d e u x i è m e) j

S y s t e m . o u t . p r i n t l n (d e u x i è m e + + p r e m i è r e)

© Éditions EyroUes 95

partie B° 1 Omfls e i technlpues de base

L’exécution de cet extrait de programme a pour résultat :

Si p r e m iè re est plus grand que deu xièm e, l’ordinateur exécute le ; (point-virgule) situé
immédiatement après la condition, c ’est-à-dire rien. L’instruction i f est terminée,
puisqu'il n’y a pas d'accolades ouvrante et fermante. Seule l ’instruction ; est soumise à
i f .

Le message affichant les valeurs par ordre croissant ne fait pas partie du test. Il est donc
affiché, quelles que soient les valeurs de p re m iè re et deuxièm e.

Des if-e lse im briqués

Dans le cas de choix arborescents - un choix étant fait, d’autres choix sont à faire, et ainsi de
suite - , il est possible de placer des structures i f - e l s e à l’ intérieur d’ i f - e l s e . On dit alors
que les structures i f - e l s e sont imbriquées les unes dans les autres.

Lorsque ces imbrications sont nombreuses, il est possible de les représenter à l ’aide d’un
graphique de structure arborescente, dont voici un exemple :

i/iCJ

Imbrications cT if e lse Représentation du choix arborescent

i f (C o n d i t i o n 1)

{

i f (C o n d i t i o n 2)

{

i n s t r u c t i o n A C o n d i t i o n 1

)

e l s e
i n s t r u c t i o n C C o n d i t i o n 2

i n s t r u c t i o n 3

}

1

e l s e

{

i n s t r u c t i o n C

}

i n s t r u c t i o n B i n s t r u c t i o n A

F i g u r e 3 - 1

LU
SO
T-lO<N
©
x:Ol
Cl
O
U

96

Quand U y a moins d êlse que d’if
Une instruction i f peut ne pas contenir d’instruction e ls e . Dans de tels cas, il peut paraîtie diffi­
cile de savoir à quel i f est associé le dernier e ls e .

© Éditions Eyrolles

c h â tre 1° 3 Faire des caoix

Coniparonsi les deux exemples suivants :

Imbrications d’i f else Arbre des choix

i f [C o n d i t i o n 1)

{
if (Condition 2]

{
i f (C o n d i t i o n 3)

{
i n s t r u c t i o n A

}
e l s e

[
instruction B

}
)

)
e l s e

[
i n s t r u c t i o n C

)

C o n d i t i o n 1
Ka i

i n s t r u c t i o n c C o n d i t i o n 2
'’\̂ Vrai
Condition 3

F a i ix / ’'^ ' ' \ ^ a i

instruction B instruction A

F i g u r e 3 - 2

ifi<D

>•
LU
LOrHO
fN

@
J Zoi
Cl
O
U

i f (C o n d i t i o n 1)

[
i f (C o n d i t i o n 2)

1
i f (C o n d i t i o n 3)

i
i n s t r u c t i o n A

}
e l s e

{
i n s t r u c t i o n B

}
]
e l s e
i

i n s t r u c t i o n C
1

}

C o n d i t i o n 1

C o n d i t i o n 2

i n s t r u c t i o n C C o n d i t i o n 3

F a u x X ' ’' \ ^ a i
i n s t r u c t i o n B i n s t r u c t i o n A

F i g u r e 3 - 3

Du premier au deuxième exemple, par le jeu des fermetures d’accolades, le dernier bloc e l s e
est déplacé d’un bloc vers le haut. Ce déplacement modifie la stmcture arborescente. Les algo­
rithmes ass(x:iés ont des résultats totalement différents.

© Éditions EyroUes 97

Darde B° 1 Oiiins e i teclHilQues de base

O M ïïïïïïI T[Tï ̂ Pour déterminer une relation if-else, observons qu’un « bloc else » se rapporte toujours au
dernier « bloc if » rencontré, auquel un else n’a pas encore été attribué.
Les blocs i f et else étant délimités par les accolades ouvrantes et fermantes, ii est conseillé,
pour éviter toute erreur, de bien relier chaque parenthèse ouvrante avec sa fermante.

1’insirucHon switch, ou comment faire des cheix multiples

Lorsque le nombre de choix possible est plus grand que deux, l ’utilisation de la structure i f -
e l s e devient rapidement fastidieuse. Les imbrications des blocs demandent à être vérifiées
avec précision, sous peine d’erreur de compilation ou d’exécution.
C ’est pourquoi, le langage Java propose l’instruction s w itc h (traduire par selon, ou .suivant),
qui permet de programmer des choix midtipies selon une syntaxe plus claire.

Construction du sw itcli

ifi

><
LU
KOrHOfN
@
J Z
CT'k—>-
Q.O

U
9 8

L’écriture de rinstruetion s w itc h obéit aux règles de syntaxe suivantes :

s w i t c h (v a l e u r)

{
c a s e é t i ç f u e t t e I ;

// U t ie o u p l u s i e u r s i n s t r u c t i o n s

b r e a k ;

c a s e é t i q u e t t e 2 ;

c a s e é t i q u e t t e 3 :

// U n e o u p l u s i e u r s i n s t r u c t i o n s

b r e a k ;

d e f a u l t ;

// U n e o u p l u s i e u r s i n s t r u c t i o n s

}
La variable v a l e u r est évaluée. Suivant cette valeur, le progranuiie recherche
l ’é t i q u e t t e correspondant à la valeur obtenue et définie à partir des instructions c a s e
étiquette.
• Si le programme trouve une étiquette correspondani au contenu de la variable v a le u r , il exé­

cute la ou les instructions qui suivent l’étiquette, jusqu’à rencontrer le mot-clé b reak .

• S ’il n’existe pa.s d’étiquette correspondant à v a le u r , alors le programme exécute les ins­
tructions de l ’éliquetle d e f a u l t .

© Éditions Eyrolles

cftapfire n° 3 Faire des cboiK

Remamues

• Le type de la variable v a le u r ne peut être que c h a r ou in t , b y te , s h o r t ou long.
Il n’est donc pas possible de tester des valeurs réelles.

• Une étiquette peut contenir aucune, une ou plusieurs instructions.

• L’instruction b r e a k permet de sortir du bloc sw itc h . S ’il n’y a pas de b r e a k pour une
étiquette dttnnée, le programme exécute les instructions de l’étiquette suivante.

Notes sur la version Java 7

À partir de la version 7 de Java, le test sur des chaînes de caractères est autorisé. Il devient
possible de réaliser un sw itch en utilisant des mots comme étiquette. Par exemple :

r s t r i n g c h o i x ;

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m , i n) ;

S y s t e m . o u t . p r i n t l n (" V o t r e c h o i x (o u i / n o n) ? : ") ;

c h o i x = l e c t u r e C l a v i e r . n e x t L i n e () ;

s w i t c h (c h o i x)

{
c a s e “o u i " :

S y s t e m . o u t . p r i n t l n (" V o u s a v e z s a i s i o u i ! ") ;

b r e a k ;

c a s e " n o n " :

S y s t e m . o u t . p r i n t l n (" V o u s a v e z s a i s i n o n ! ") ;

b r e a k ;

d e f a u l t :

S y s t e m . o u t . p r i n t l n (" V o u s a v e z s a i s i n i o u i n i n o n ! ") ;

V)
(U

>-
LU

T~{O
(N

@
j::
en

>•aO
U

Calculer le nombre de jours d ’un mois donné

Pour mettre en pratique les notions théoriques abordées à la section précédente, nous allons
écrire un programme qui calcule et affiche le nombre de jours d’un mois donné.

Le nombre de jours dans un moi.s peut varier entre les valeurs 28, 2 9, 30 ou 3 1, suivant le
mois et l’année. Les mois de janvier, mars, mai, juillet, août, octobre et décembre sont des mois
de 3 1 jours. Les mois d’avril. Juin, septembre et novembre sont des mois de 3 0 jours. Seul le
mois de février est particulier, puisque son nombre de jours est de 2 9 jours pour les années
bissextiles et de 28 jours dans le cas contraire. Sachant cela, nous devons ;

• Demander la saisie au clavier du numéro du mois ainsi que de l’année recherchée.

© Éditions EyroHes 99

oarüe B° 1 OuiBs e i leclHilques de base]

• Créer autant d’étic)ueUes qu'il y a de mois dans une année, e’est-à-dire 12. Compte tenu du
fonctionnement de la structure sw itc h , chaque étiquette est une valeur entière correspondant
au numéro du mois de Tannée {1 pour Janvier, 2 pour février, etc.).

• Regrouper les étiquettes relatives aux mois à 3 1 jouns et stocker cette dernière valeur dans
une variable spécifique.

• Regrouper les étiquettes relatives aux mois à 30 jours et stocker cette dernière valeur dans
une variable spécifique.

■ Pour l’étiquette relative au mois de février, tester la valeur de Tannée pour savoir si Tannée
concernée c-st bissextile ou non. Une année est bissextile tous les q u a t r e ans, sauf lorsque
le millésime est divisible par 10 0 et non pas par 400. En d’autres termes, pour qu’une
année soit bissextile, il suffit que Tannée soit un nombre divisible par 4 et non divisible par
100 ou alors par 400. Dans tous les autres cas. Tannée n’est pas bissextile.

Compte tenu de toutes ces remarques, nous devons dans un premier temps déclarer trois varia­
bles entières, une pour représenter le mois, la deuxième Tannée, et la troisième le nombre de
jours par mois. Sachant que le mois et le nombre de jours par mois ne dépassent jamais la
valeur 12 7 , nous pouvons les déclarer de type b y te . Pour Tannée, le type s h o r t suffit,
puisque les valeurs de ce type peuvent aller juscju’à 32767 ,

ifiO
Oi_>
LU

T~{OfN
@
„u-ix:qi'k_>-Q.O
U

100

Exemple : code source complet
i m p o r t j a v a . u t i l . * ;

public class JourParMois // L e f i c h i e r s ' a p p e l l e J o u r P a r M o i s . j a v a

{
public static void main (S t r i n g [] p a r a m é t r é)

{
b y t e m o i s , n b j o u r s = 0 ;

s h o r t a n n é e ;

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

S y s t e m . o u t , p r i n t l n ("D e q u e l m o i s s ' a g i t - i l ? : "

m o i s = l e c t u r e C l a v i e r . n e x t B y t e O ;

S y s t e m . o u t . p r i n t l n ("D e q u e l l e a n n e e ? : ") ;

a n n é e = l e c t u r e C l a v i e r . n e x t S h o r t () ;

B w i t c h t m o i s)

{
case
case
case

case 3 I
case 7 :

case 10

// Pour les mois à 31 jours

case 12

case

n b j o u r s = 3 1

break ;
d j case 6 ! // Pour les mois à 30 jours

© Éditions Eyrolles

clrapitre й° 3 Faire des clo ix

case 9 : case 11 :
n b j o u r s = 3 0 ;
break ;

case 2 : / / Pour le cas particulier du mois de février
- 0 && a n n é e % 1 0 0 != 0 || a n n é e %

4 0 0 == 0]

2 9 ;
= 2 8 ;

i f (a n n é e % 4

n b j o u r s
e l s e n b j o u r s
break ;

d e f a u l t i / / E n c a s d ' e r r e u r d e f r a p p e
S y s t e m . o u t . p r i n t l n (" I m p o s s i b l e , c e m o i s n ' e x i s t e p a s ")
S y s t e m , e x i t (0) ;

}
S y s t e m . o u t . p r i n t (" En

S y s t e m . o u t . p r i n t l n (" a
} // Pin du main()

} // Fin de la class JourParMois

+ a n n e e + " , l e m o i s n '

+ n b j o u r s + '' j o u r s ")

+ m o i s)

uestionШ

Réponse

Que se passe-t-il si l’utilisateur entre les valeurs suivantes :
De q u e l m o i s s ' a g i t - i l ? : 5

De q u e l l e a n n e e ? : 1 9 9 9

Le programme affiche la réponse suivante :
E n 1 9 9 9 l e m o i s n ‘ 5 a 3 1 j o u r s

Le programme recherche l’étiquette 5. Il exécute les instructions qui suivent jusqu’à rencontrer
un break. Pour l’étiquette 5, le programme exécute les instructions des étiquettes 7, 8,10 et
12 car ces étiquettes ne possèdent ni instruction, ni break. Seule l’étiquette 12 possède une
instruction, qui affecte la valeur 31 à la variable nbjours. Linstruction break qui suit permet
de sortir de la structure switch. Le programme exécute enfin l’instruction située immédiatement
après le switch, c’est-à-dîre l’affichage du message annonçant le résultat.

ЦДЕОИШ

1ЛФ
ôU>
Ш
Ю
rH0
ГМ

@
u-t
sz01 'U >-
D. O

U

II

Que se passe-t-il si l’utilisateur entre les valeurs suivantes :
De q u e l m o i s s ' a g i t - i l ? : 2

De q u e l l e a n n e e ? : 2 0 0 0

Le programme affiche la réponse suivante :
E n 2 0 0 0 l e m o i s n ' 2 a 2 9 j o u r s

Ici, le programme va directement à l’étiquette 2, qui est composée d’un test sur l’année pour
savoir si l’année est bissextile. Une année est bissextile lorsque son millésime est divisible par 4 ,
à l’exception des années dont le millésime est divisible par 100 et non pas par 400. La valeur
2 000 est divisible par 4, 100 et 400 puisque le reste de la division entière (%) de 2000 par 4 ,100
ou 400 est nul. La variable nbjours prend donc la valeur 29. Le programme sort ensuite du
sw itch grâce à l’instruction break qui suit et exécute pour finir l'affichage du résultat.

> Éditions Eyrolles 101

Darde B° 1 BuiBs ei leclHilques de b^e|

Réponse

Que se passe-l-il si l'utilisateur entre les valeurs suivantes :
De q ^ e l m o i s s ‘ a g i t - i l ? : 1 5

De q u e l l e a n n e e ? : 1 9 9 9

Le programme affiche la réponse suivante :
I m p o s s i b l e , c e m o i s n ' e x i s t e p a s

L’étiquette 15 n'étant pas définie dans le bloc sw itch , le programme exécute les instructions
qui composent l’étiquette d e fa u lt . Le programme affiche un message d’erreur et termine
son exécution grâce à l'instruction System, e x i t (0) ;

Remarque Grâce à l’étiquette d e fa u lt , le programme connaît les instructions à exécuter dans le cas de
choix « anormaux » (erreur de frappe, par exemple, ou valeur saisie n’entrant pas dans l'inter­
valle des valeurs possibles traitées par le programme). De cette façon, il devient possible de
prévenir d’éventuelles erreurs pouvant causer l’arrêt brutal de l’exécution du programme.

Gomment choisir entre it-e ise et sw itch ?
La stmcture s w itc h ne permet de tester que de.s égalités de valeurs entières (b y t e , s h o r t ,
i n t ou lon g) ou de type caractère c h a r (et S t r i n g à partir de la version 7 de Java). Elle ne
peut donc pas être utilisée pour :
• Tester des valeurs réelles (f l o a t ou doub le).
• Rechercher si la valeur est plus grande, plus petite ou différente d’une certaine étiquette.
Par contre, l’instruction I f - e l s e peut être employée dans tous les cas en testant tout type de
variable, selon toute condition.

Si une condition parmi d’autres conditions envisagées a une plus grande probabilité d'être
satisfaite, celle-ci doit être placée en premier test dans une structure i f - e l s e , de façon à évi­
ter à l’ordinateur d'effectuer de trop nombreux tests inutiles.
Si toutes les conditions ont une probabilité voisine ou équivalente d’être réalisées, la structure
sw itch est plus efficace. Elle ne demande qu’une seule évaluation, alors que dans les instruc­
tions if-else imbriquées, chaque condition doit être évaluée.

<u

>>
LU
VO

0 CM
@
j-jJT01 'h
aO
U

102 © Éditions Eyrofles

chapitre a° 3 Faire des choix

Résumé

fJ)

O
LU
VJDi~i0 <N
@
J Z01
Q.OU

L’instruction i f - e l s e (traduction : si, sinon) permet de programmer des choix. De façon générale,
l’instruction i f - e l s e s ’écrit :

i f (c o n d i t i o n) Ou e n c o r e
U s i l a c o n d i t i o n e s t v r a i e
{ // f a i r e i f (c o n d i t i o n) u n e s e u l e

p l u s i e u r s i n s t r u c t i o n s ; i n s t r u c t i o n ;

} // f a i t e l s e u n e s e u l e i n s t r u c t i o n ;
e l s e // s i n o n
{ / / f a i r e

p l u s i e u r s i n s t r u c t i o n s ;
) / / f a i t

Si la condition située après le mot-clé i f (placée obligatoirement entre parenthèses) est vraie,
alors les instructions placées dans le bloc défini par les accolades ouvrante et fermante immé­
diatement après sont exécutées.
Si la condition est fausse, alors les instructions définies dans le bloc situé après le mot-clé
e ls e sont exécutées.
De cette façon, un seul des deux blocs est exécuté, selon que la condition est vérifiée ou non.
De plus, cette condition fait intervenir des ;

opérateurs relationnels :

Opérateur Signification pour des
valeurs numériques Signification pour des valeurs de type caractère

= = égal identique
< inférieur strictement plus petit dans l’ordre alphabétique
< = inférieur ou égal plus petit ou identique dans l’ordre alphabétique
> supérieur strictement plus grand dans l’ordre alphabétique
> = supérieur ou égal plus grand ou identique dans l’ordre
1 = différent alphabétique

différent

opérateurs logiques
Opérateur Signification
! NON logique

ET logique
1 1 OU logique

© Editions Eyrolles 1 0 3

partie B° 1 omfls e i technipues de base

Lorsque plusieurs instructions i f - e l s e sont imbriquées les unes dans les autres, un e lse se
rapporte toujours au dernier bloc i f rencontré auquel un e lse n’a pas encore été attribué.
L’instruction sw itch (traduction ; selon ou suivant) permet de programmer des choix multiples.
Elle a pour syntaxe ;

switch(valeur)

case é t i q u e t t e
break ; !/

case é t i q u e t t e
break

default

/ / l e t y p e d e l a v a r i a b l e e s t c h a r o u i n t

: // s u i t e d ' i n s t r u c t i o n s
f a c u l t a t i f , p o u r s o r t i r d u b l o c s w i t c h
: // s u i t e d ' i n s t r u c t i o n s

// f a c u l t a t i f , p o u r s o r t i r d u b l o c s w i t c h
î // s u i t e d ' i n s t r u c t i o n s

}
La variable va le u r est évaluée. Suivant cette évaluation, le programme recherche l’étiquette
correspondant à la valeur évaluée et définie à partir des instructions case é t iq u e tte .
• Si le programme trouve une étiquette correspondant au contenu de la variable va le u r , il

exécute la ou les instructions qui suivent l’étiquette, jusqu’à rencontrer le mot-clé break.
• S ’il n’existe pas d’étiquette correspondant à va leu r, alors le programme exécute les instructions

de l’étiquette d e fa u lt .
L’instruction i£ - e ls e est utilisée lorsque l'une des conditions envisagées a une grande probabi­
lité d’être satisfaite. Si toutes les conditions ont une même probabilité d’être réalisées, on utilise
plutôt la structure sw itch .

Exercices

Comprendre les niveaux d’Im brlcallon

[/i
Oi_>
LU

T~{0 fN
.4-1-T01'k_>
ClO

U

3.1 Exécutez à la main (c’est-à-dire ligne par ligne) ce programme. Pour cela, vous supposerez que la
valeur saisie au clavier soit 4, Quel est ie résultat affiché ?

I m p o r t j a v a . u t i l . * ;

p u b l i c c l a s s R a c i n e

{

p u b l i c s t a t i c v o i d m a i n (S t r i n g f] p a r a m é t r é }

{
d o u b l e X , r ;

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m , in .) ;

S y s t e m , o u t . p r i n t (" E n t r e r u n c h i f f r e : ") ;

1 0 4) Éditions Eyrofles

chapitre a° 3 Faire des choix

X = lectureClavier,nextDouble{};
if (x > = 0)
{
r = Math.sqrt(x) ;

}
else
(

}
Math.sqrt(-x) ;

System.out.print("Pour "+x+" Le résultat est: "+r) ;
} n Fin du main ()

} i l Fin de la Class Racine

Même question en supposant la valeur saisie égale à - 9.

C onsiniire une arborascence de d ieM

3,2 Reprenez et modifiez le programme Maximum donné dans ce chapitre, de façon qu’l! affiche un mes­
sage lorsque les deux valeurs saisies au davier sont égales,

ûj
Ôi_>
LU
yOT~{OfN
@

I t e t t i ï ï l 3,3 Représentez graphiquement les choix arborescents suivants
if (Condition 1)

{
if (Condition 2)
i

if (Condition 3}
{

instruction A
}

}
e l s e
{

instruction B
}

}
else
[
instruction C

oi'k_
Q.OU

> Éditions Eyrol/es 1 0 5

partie B° 1 omfls et technlpues de base

mïïTffln 3.4 Ecrivez un programme qui résout les équations du second degré à l’aide de structures i f - e l s e
imbriquées.
Soit l’équation + b x + c = 0, où a, b, et c représentent les trois coefficients entiers de
i’équation. Pour trouver ies soiutions réelies x , si elles existent :
a. Étabiissez i’arbre des choix associés :

" 1 . a = 0
1 . 1 . b = 0

1 . 1 . 1 . c = 0 t o u t r é e l e s t s o l u t i o n
1 . 1 . 2 . c '= 0 p a s d e s o l u t i o n

1 . 2 . b != 0 u n e s e u l e s o l u t i o n : x = - c / b ;
I. a != 0

2 . 1 . - 4 a c >= 0 d e u x s o l u t i o n s :

x l = - b + M a t h . s q r t f b * b - 4 * a * c) / 2 * a ;
x 2 = - b - M a t h . s q r t t b * b - 4 c) / 2

2 . 2 , 4 a c < 0 p a s d e s o l u t i o n d a n s l e s r é e l s

b. Itéterminez les différentes variables à déclarer.
c. À partir de l'arbre des choix, écrivez les instructions i f - e l s e suivies du test correspondant.
d. Placez dans chaque bloc i f ou e ls e les instructions de calcul et d'affichage appropriées.
e. Placez l’ensemble de ces instructions dans une fonction m a i n () et une classe portant le nom

S e c o n d D e g r e .

Manipuler les choix m ultiples, gérer les caractères

3.5

LU
Vû
1— IOfN
@

CT
>-
D .O
U

106

En utilisarrt la structure s w i t c h , écrire un programme qui simule une machine à calculer dont les
opérations sont l'addition {-i-), la soustraction {-), la multiplication (*) et la division (/).
a. En cours d’exécution, le programme demande à l’utilisateur d’entrer deux valeurs numériques puis

le caractère correspondant à l’opération à effectuer. Suivant le caractère entré (+-* /) le programme
affiche l’opération effectuée, ainsi que le résultat.
Lexécution du programme peut, par exemple, avoir l’allure suivante (les valeurs grisées sont celles
saisies par l’utilisateur) ;
I E n t r e z l a p r e m i e r e v a l e u r : 2

' E n t r e z l a s e c o n d e v a l e u r : 3

T y p e d e l ' o p e r a t i o n (+ , - , * , /) ; *

t C e t t e o p e r a t i o n a p o u r r é s u l t a t : 2 * 3 = 6

b. Après avoir écrit et exécuté le programme avec différentes valeurs, saisissez dans cet ordre les
valeurs suivantes : 2, 0 puis /.Que se passe-t-il ? Pourquoi ?

c. Modifiez le programme de façon à ne plus rencontrer cette situation en cours d’exécution.

) Éditions Eyrofles

chapitre n° 3 Faire des choix

Le projet : Gestion d’un compte bancaire

Accéder à un menu suivant l ’option choisie
L’objectif est d’amélioi'er le programme réalisé à la fin du chapitre 2, « Communiquer une
information », afin d’afficher chaque menu en fonction de roption choisie par rutilisatcur.

a. Après l’affichage du menu principal, le programme teste la valeur entrée pur rutilisatcur
et affiche l’option correspondante. Sachant que toutes le.s options du menu principal ont
une probabilité voisine ou équivalente d’être réalisées, quelle est la structure de test la
plus appropriée ?

b. Modifiez le programme en fonction de la structure de test choisi, et placez le.s instructions
d’aflichagc et de saisie dans les options correspondantes.

c. Pour l’option 1, testez le type du compte afin de saisir le taux d’épargne.
d. Pour l’option 2, demandez au programme de vérifier que le numéro du compte saisi par

l'utili.sateur existe, de façon à :
- Afficher le numéro du compte, le type, la valeur initiale et son taux dans le cas d’un

compte d’épargne, si le compte existe.
- Afficher un message indiquant que le numéro du compte n’est pas valide, .si le compte

n’existe pas.

i/ï

>-
LU
KO
rHOfN
@
szgi'k_>
D.O

U
> Éditions EyroHes 1 0 7

inй)

:>■ш
iûTH
ОrN
@

Ol
>■Q.OU

Chapitre 4

Faire des répéWions

</)ÇJ
ôL_>
LU
LO
rHOfN
@
JTgi'k_>■Q.OU

La notion de répétition est une des notions fondamentales de la programmation. En effet,
beaucoup de traitements informatiques sont répétitifs. Par exemple, la création d’un agenda
électronique nécessite de saisir un nom. un prénom et un numéro de téléphone autant de fois
qu’il y a de persoimes dans l’agenda.
Dans de tels cas, la solution n’est pas d’écrire un programme qui comporte autant d’instruc­
tions de saisie qu’il y a de personnes mais de faire répéter par le programme le jeu d’ instructions
nécessaires à la saisie d’une seule personne. Pour ce faire, le programmeur utilise des instruc­
tions spécifiques, appelées structures de répétition, ou boucles, qui permettent de déterminer
la ou les instructions à répéter.
Dans ce chapitre, nous abordons la notion de répétition à partir d’un exemple imagé (voir
section « Combien de sucres dans votre café »),
Nous étudions ensuite les différentes structures de boucles proposées par le langage Java
(sections c< La boucle do...while », « La boucle while » et « La boucle for »). Pour chacune de
ces structures, nous présentons et analysons un exemple afin d’examinei' les difféientes techniques
de programmation associées aux structures répétitives.

© Éd/t/ons Eyrolfes 109

partie B° 1 Outfls e i technipues de base

Combien de sucres dans uoire café P

Pour bien comprendre la notion de répétition ou de boucle, nous allons améliorer l’algorithme
du Ccifé chaud sucré, de sorte que le programme demande à l’utilisateur de prendre un morceau
de sucre autant de fois qu’il le souhaite. Pour cela, nous reprenons uniquement le bloc
d’instructions II Préparer le sucre (voir, au chapitre 3, « Faire des choix », la section « L’algo­
rithme du café chaud, .sucré ou non »).

Instructions Bloc d'instructions

s i (c a f é s u c r é)

1 . P r e n d r e u n e p e t i t e c u i l l è r e .
2 . P o s e r l a p e t i t e c u i l l è r e d a n s l a t a s s e .

Il P r é p a r e r le s u c r e
3 . P r e n d r e un m o r c e a u d e s u c r e .
4 . P o s e r l e s u c r e d a n s l a t a s s e .

O
O1_>
LU

T~{OfN
@
oi'k_
Q.O

U
110

L’exécution du bloc d’ instructions I I P ré p a re r le su cre nous permet de mettre un seul morceau
de sucre dans la tasse. Si nous désirons mettre plus de sucre, nous devons exécuter les instruc­
tions 3 et 4 autant de fois que nous souhaitons de morceaux de sucre. La marche à suivre
devient dès lors :

1 P r e n d r e u n e p e t i t e c u i l l è r e .

P o s e r l a p e t i t e c u i l l è r e d a n s l a t a s s e .

D é b u t r é p é t e r s

1 . P r e n d r e u n m o r c e a u d e s u c r e .

2 . P o s e r l e s u c r e d a n s l a t a s s e ,

3 . P o s e r l a q u e s t i o n : " S o u h a i t e z - v o u s u n a u t r e m o r c e a u d e s u c r e ? "

4 . A t t e n d r e l a r é p o n s e .

Tant que la r é p o n s e est O U I , retourner à D é b u t r é p é t e r .

Analysons les résultats possibles de cette nouvelle marche à suivre :

m Dans tous les cas, nous prenons et posons une petite cuillère.

■ Ensuite, nous entrons sans condition dans une structure de répétition.

• Nous prenons et posons tin morceau de sucre, quelle que soit la suite des opérations.
De cette façon, si nous sortons de la boucle, le café est quand même sucré.

• Pttis le programme nous demande si nous souhaitons à nouveau un morceau de sucre.

• Si notre réponse est O U I , le programme retourne au début de la struclure répétitive, place
le sucre dans la tasse et demande de nouveau si nous souhaitons du sucre, etc.

• Si la réponse est négative, la répétition s’aiTêle, ainsi que la marche à .suivre.

© Éditions Eyrofles

chavitre ш° 4 Faire des rédéoilons

Remaraue Pour écrire une boucle, il est nécessaire de déterminer où se trouve le début de la boucle et où
se situe la fin (Début répéter et Tant que pour notre exemple),
La sortie de la structure répétitive est soumise à la réalisation ou non d'une condition (la
réponse fournie est-elle affirmative ou non ?).
Le résultat du lest de sortie de boucle est modifiable par une instruction placée à l'intérieur de
la boucle (la valeur de la réponse est modifiée par l’instruction 4. Attendre la réponse).

Que se passe-t-il si l’on place les instructions :
P r e n d r e u n e p e t i t e c u i l l è r e .

I P o s e r l a p e t i t e c u i l l è r e d a n s l a t a s s e .

à l'intérieur de la structure de répétition :
D é b u t r é p é t e r :

T a n t q u e l a r é p o n s e e s t O U I , r e t o u r n e r à D é b u t r é p é t e r .

Les deux instructions sont répétées autant de fois que l’on souhaite ajouter un morceau de
sucre. Nous aurons donc autant de petites cuillères que de morceaux de sucre.

Dans le langage informatique, la construction d’une répétition ou boucle .suit le même modèle.
Dans le langage Java, il existe trois types de boucles, qui sont décrites par les constnictions
suivantes :

d o . . . w h i l e

w h i l e

f o r

Faire... tant que
Tant que
Pour

Dans la suite de ce chapitre, nous allons, pour chacune de ces boucles :
* Étudier la syntaxe.
* Analyser les principes de fonctionnement.
* Donner un exemple qui introduise un concept fondamental de la programmation, à savoir

le compteur de boude, raccumulation de valeurs ou la recherche d’une donnée parmi un
ensemble d’informations.

>-
Ш
Ю
rHO
ГМ

@
j::
en’u.
Cl
O
U

La boucle do...whle
La boude do..,w hile est une structure répétitive, dont les instructions sont exécutées avant
même de tester la condition d’exécution de la boucle. Pour construire une telle structure, il est
nécessaire de suivre les règles de syntaxe décrites ci-après.

> Éditions EyroHes 111

panic n° 1 Ouifls e i technlpues He base

Syntaxe
La boucle do...w hile se traduit par les termes f a i r e . . . t a n t que. Cette structure s’écrit de
deux façons differentes en fonction du nombre d’ instructions qu’elle comprend.
Dans le cas où une seule instruction doit être répétée, la boude s’écrit de la façon suivante ;

d o

u n e s e u l e i n s t r u c t i o n ;

w h i l e (e x p r e s s i o n c o n d i t i o n n e l l e) ;

Si la boucle est composée d’au moins deux instructions, celles-ci sont encadrées par des
accolades, ouvrante et fermante, de façon à déterminer où commence et se termine la boucle.

d o {

p l u s i e u r s i n s t r u c t i o n s ;

} w h i l e (e x p r e s s i o n c o n d i t i o n n e l l e) ;

Principes de foneflonnem ent
Ainsi décrite, la boude do...w hile s’exécute selon les principe.s suivants :
• Les instructions située,s a l ’intérieur de la boude sont exécutées tant que l ’expression condi­

tionnelle placée entre parenthèses () est vraie.
m Les instructions sont exécutées au moins une fois, puisque l’expression conditionnelle est

examinée en fin de boude, après exécution des instructions.
• Si la condition mentionnée entre parenthèses reste toujours vraie, les instructions de la

boude sont répétées à l ’in Uni. On dit que le programme « boude ».
• Une instruction modifiant le résultat du test de sortie de boude est placée à l’intérieur de la

boucle, de façon à stopper les répétitions au moment souhaité.
• Ob.servons qu’un point-virgule est placé à la lin de l’ instmclion w h ile <e x p re s s io n) ;.

i/ïCJ

>
LU

rHOfN
@
s:oi'k_
Cl
O
U

112

Un distributeur autom atique de café
L’objectif de cet exemple est double : apprendre à construire une boucle do...w hile et étudier
comment compter et accumuler des valeurs. Le comptage des valeurs, quelles qu’elles soient,
est une technique très utilisée en informatique. Il existe deux façons de compter :
• Le comptage d’un certain nombre de valeurs. Par exemple, le programme compte le nombre

de notes d’un étudiant.
• L’accumulation de valeurs. Le programme calcule la somme des notes d’un étudiant (les

notes sont accumulées).
Le calcul de la moyenne des notes d ’un étudiant s’effectue en divisant l’accumulation des
notes pai‘ le nombre (comptage) de notes obtenues.
Pour bien comprendre ces différentes techniques, nous allons écrire un programme dont
l’objectif est de simuler de façon simplifiée un distributeur automatique de café.

© Édftions Eyrof/es

chapitre n° 4 Faire des rêaêtttloRs

<D

LU
Vû
tHO<N
@
j::gi
>-
D.OU

Cahier des charges
Pour obtenir un café, l’utilisateur introduit un certain nombre de pièces de monnaie dans le
distributeur. Pour simplifier, nous supposons que l’appareil n’accepte que les pièces de 5, 10 et
20 centimes d’euros (cents). Lorsqu'une pièce est introduite, le distributeur affiche la valeur
totale engagée, ainsi que le nombre de pièces par catégorie (nombre de pièces de 5 cents,
10 cents et 20 cents). La machine prépare un café dès que la somme totale introduite vaut ou
dépasse le prix du café. Nous prenons pour hypothèse que le prix d’un café est de 45 cents.
La machine rend la monnaie, s’il y a lieu.
Après lecture et analyse du cahier des charges, nous observons que la démarche se déroule en
trois temps.

1. Introduction une à mie des pièces dans le distributeur.
2. À chaque pièce fournie, calcul et affichage :

a. Du nombre de pièces de 10 cents, 20 cents et 5 cents.

b. De la somme engagée.
3. Y a-t-il suffisamment d’argent ?

a. Non, alors retourner en 1.
b. Oui, alors préparer le café et rendre la monnaie.

Pourécrire le programme, nous allons nous attacher à résoudre, dans l’ordre, chacun de ces points.

1. Construire la boucle et introduire les pièces.
Les points I et 3.a décrivent la structure de la boucle. L’introduclion des pièces dans le
distributeur est une opération répétitive, qui s’arrête lorsque l’utilisateur a placé suffi.sam-
ment d’argent dans le distributeur, c’est-à-dire lorsque le montant total engagé vaut ou
dépas,se la somme de 45 cents. Par conséquent. Failure générale de la structure répétitive est
la suivante :

D é b u t r é p é t e r

E n t r e r u n e p i è c e d e m o n n a i e

C o m p t e r l a so m m e e n g a g é e

T a n t q u e l a so m m e e n g a g é e n e d é p a s s e p a s 4 5 c e n t s , r e t o u r n e r à

D é b u t r é p é t e r .

En langage Java, cette structure est traduite en reprenant la syntaxe de la boucle
do...w hile, c’est-à-dire par :

d o // D é b u t d e b o u c l e

{

/ / E n t r e r l e s p i è c e s d e m o n n a i e

// C o m p t e r l a so m m e e n g a g é e

}
w h i l e (s o m m e e n g a g é e < 4 5 c e n t s) ; // F i n d e b o u c l e

© Éditions Eyrolfes 113

oarüe B° 1 Otilfls e i leclHilQues de base

De celle façon, la boucle esl exécutée tant que la somme engagée est inférieure à 45 cents.
Dès que cette somme vaut ou dépasse 45 cents, la condition somme en g ag ée
< 45 c e n ts n’est plus vérifiée, et le programme sort de la boucle.
Ensuite, pour simuler l ’ introduction des pièces de monnaie dans le distributeur, le
programme demande à l’utilisateur de saisir au clavier la valeur de chaque pièce entrée.

IM Pour plus d’informations sur la saisie de valeurs au clavier, voir le chapitre 2, « Communiquer
une information ».

i/iCJ
ô
k_>

LU
LOT—tOfN
@

Nous écrivons donc :

S y s t e m . o u t . p r i n t { " v a l e u r d e l a p i e c e e n t r e e : ") ;

p i è c e = l e c t u r e C l a v i e r . n e x t i n t () ;

2. Compter le nombre de pièces et la somme totide engagée.
Pour compter le nombre de pièces de 5 cents, 10 cents et 20 cents, le programme doit pou­
voir distinguer les différentes pièces introduites. Pour cela, nous déclarons autant de variables
qu’ il y a de catégories de pièces, soit :

I i n t n b P i è c e l O C = 0 , n b P l è c e 2 0 C = 0 , n b P i è c e 5 C = 0 , p i è c e ;

i n t t o t a l R e ç u = 0 ;

Les variables dont le nom commence par nb repiésentenl le nombre de pièces pour
chacune des catégories. La variable p iè c e désigne, quant à elle, la valeur de la pièce saisie
au clavier. Enfin, la variable t o t a l R e ç u représente la somme totale engagée en cours
d’exécution de la boucle. Ces variables sont déclarées de type i n t .

a. Pour compter séparément les pièces de 5 cents, de 10 cents et de 20 cents, la meilleure
méthode con.siste à placer dans la boucle d o . . , w h i l e une structure s w i t c h distinguant
quatre cas :

s w i t c h (p i è c e)

{
c a s e 5 :

// C o m p t e r l e s p i è c e s d e 5 c e n t s
b r e a k ;

c a s e 1 0 :

// C o m p t e r l e s p i è c e s d e 1 0 c e n t s
b r e a k ;

c a s e 2 0 :

.// C o m p t e r l e s p i è c e s d e 2 0 c e n t s
b r e a k ;

d e f a u l t :

S y s t e m . o u t . p r i n t l n (" P i e c e i m p o s s i b l e ") ;

}
oi'k_
Cl
O
U

114 © Édffions Eyroffes

chaoKre h° 4 Faire des réaeflUons

Suivant la valeur de la pièce engagée, le programme compte le nombre de pièces, pour
cliacune des catégories en utilisant une instruction du type :

I a = a + 1 ;

où a représente l ’objet à compter. Si la variable a est initialisée à 0, la nouvelle valeur
de a, après affectation, vaut 1.

Pour plus d’inlormations sur ce mécanisme de calcul voir, au chapitre 1, « Stocker une
information », la section « Quelques confusions à éviter ».

Placé dans une stmcture répétitive, le nombre d’objets représentés par a augmente de I
à chaque tour de boucle. En informatique, on dit que a est incrénienté de 1. Pour
compter le nombre de pièces de 5 cents, 10 cents et 20 cents, il suffit de remplacer la
variable a par n b P i è c e 5 C , n b P i è c e l O C ou n b P i è c e 2 0C . Nous obtenons ainsi,
pour chaque catégorie de pièces, les instructions suivantes :

I n b P i è c e 5 C = n b P i è c e S C + 1 ;

n b P i è c e l O C = n b P i è c e l O C + 1 ;

n b P i è c e 2 0 C = n b P i è c e 2 0 C + 1 ;

b. Ces instructions sont ensuite placées dans les étiquettes 5, 10 et 20 de la structure
s w i t c h .

Pour mieux comprendre l’évolution de la valeur de ces variables, reportez-vous à la section
« Question Réponse » ci dessous.

ifiO
Ol_>
LU

T-H0 <N
©
x:01
Cl
O
U

© Éditions Eymiles

Pour calculer la somme engagée à chaque pièce introduite, la technique est légèrement
différente de la précédente. En effet, la somme engagée doit être augmentée non plus
du nombre de pièces introduites mais de la valeur de la pièce intrcKluite. L'incrément
n'est plus de I mais de la valeur de la pièce. Comme la variable p i è c e représente la
valeur de la pièce, l’ instruction d’accumulation est la suivante :

I t o t a l R e ç u = t o t a l R e ç u + p i è c e ;

Ainsi, la variable t o t a l R e ç u , initialisée à zéro, augmente progre.ssivement de la
valeur de chaque pièce engagée, par accumulation de la valeur précédente de t o t a l R e ç u

avec la valeur de la pièce entrée.

Ce calcul est réalisé quelle que soit la valeur de la pièce. Par conséquent, cette instruc­
tion est placée en dehors de la structure s w i t c h , mais, à l’ intérieur de la boucle. Le
montant total engagé est modifié chaque fois qu’une nouvelle pièce de 5 cents, 10 cents
ou 20 cents est introduite.

115

partie B° 1 OulBs et teclHilaues de base

P o u r é v i t e r d ’ a c c u m u l e r t l a n s t o t a l R e ç u l a v a l e u r d ’ u n e p i è c e n o n a u t o r i s é e , n o u s

d e v o n s m o d i f i e r l a v a l e u r d e l a p i è c e d a n s l ’ é t i q u e t t e d e f a u l t d e l a s t r u c t u r e s w i t c h

p a r [’ i n s t r u c t i o n :

d e f a u l t :

p i è c e = 0 ;

S y s t e m . o u t . p r i n t l n (" P i e c e i m p o s s i b l e ") ;

L o r s q u ’ u n e m a u v a i s e p i è c e e s t i n t r o d u i t e , l a v a r i a b l e p i è c e p r e n d l a v a l e u r 0 . D e

c e t t e f a ç o n , l ’ i n s t m c t i o n d ’ a c c u m u l a t i o n e s t r é a l i s é e , q u e l l e q u e s o i t l a v a l e u r d e l a

p i è c e , p u i s q u e l a v a r i a b l e t o t a l R e ç u n ’ e s t p a s m o d i f i é e p a r l ’ a c c u m u l a t i o n d ’ u n e

p i è c e v a l a n t 0 e u r o .

D M iH IiM lD Pour mieux comprendre l’évolution de la valeur de la variable to ta lR eçu reportez-vous à
la section « Question - Réponse» ci-après.

t/ï
ôU>-
LU

T~{OtN
©

g i
>■
O.O
U

116

Une fois le nombre de pièces compté et le montant total calculé, le programme affiche
les différentes valeurs à l ’aide des instmetions suivantes :

S y s t e m . o u t . p r i n t l n (" V o u s a v e z e n t r e : ") ;

S y s t e m . , o u t . p r i n t l n (" " + n b P i è c e S C + " p i e c e (s) d e 5 c e n t s ' ') ;

S y s t e m . o u t . p r l n t l n C " + n b P i è c e l O C + " p i e c e (s) d e 10 c e n t s ") ;

S y s t e m , o u t . p r i n t l n ('■ “ + n b P i è c e 2 0 C + " p i e c e { s) d e 2 0 c e n t s ") ;

S y s t e m . o u t . p r i n t l n (" S o i t a u t o t a l : " + t o t a l R e ç u + " c e n t s ") ;

L’ensemble de ces instructions est placé avant le test de sortie de boucle, puisque les
valeurs calculées sont affichées chaque fois que I’litilisateur entre une pièce.

3. Y a-t-il suffisamment d’argent ?

a. Non, alors retourner en 1.

Il s’agit de détcmiiner la condition de sortie ou non de la boucle. Cette opération est
décrite au point I.

Notons, cependant, que grâce â l ’ instruction d’accumulation

I t o t a l R e ç u = t o t a l R e ç u + p i è c e ;

la valeur de la variable t o t a l R e ç u est augmentée à chaque tour de boucle. Par consé­
quent, le résultat de la condition de sortie de boucle (t o t a l R e ç u < 4 5) ne reste pas
toujours vrai. Le programme peut sortir de la boucle.

b. Oui, alors préparer le café et rendre la monnaie.

Lorsque l ’utilisateur a entré suffisamment de pièces de monnaie, le programme affiche
un message qui annonce que le café est prêt, à l’aide de l’ instruction :

I S y s t e m . o u t . p r i n t l n (" J e v o u s v e r s e 1 c a f e ") ;

© Éditions Eyrolles

chapitre h° 4 faire des répédiiDas

P o u r d é t e c t e r un I r o p -p e r ç u , l e p r o g r a m m e t e s te s i t o t a l R e ç u d é p a s s e l a v a l e u r d u

p r i x d u c a f é . S i t e l e s t l e c a s , il c a l c u l e l a m o n n a i e à r e n d r e e t a f f i c h e u n m e s s a g e e n

c o n s é q u e n c e . C e s a c t i o n s so n t r é a l i s é e s p a r l e s i n s t r u c t i o n s :

I i f (t o t a l R e ç u > 4 5)

S y s t e m . o u t . p r i n t l n (" e t v o u s r e n d s : " + (t o t a l R e ç u - 4 5)

+ " c e n t s ") ;

Exemple : code source
P o u r o b t e n i r u n p r o g r a m m e à p a r t e n t i è r e , l ’ e n s e m b l e d e s i n s t r u c t i o n s d é v e l o p p é e s a u c o u r s

d e l a s e c t io n p r e c e d e n t e e s t à p l a c e r d a n s u n e f o n c t io n m a i n {) e t u n e c l a s s e , c o m m e c i - d e s s o u s :

in^ort java.util.*;
public class CompteurMonnaie
{
public static void main(String [} arg)

LU
VOvHO<N
©

oi
Cl
O
U

i n t n b P i è c e B C = 0 , n b P i è c e l O C = 0 , n b P i è c e 2 0 C = 0 , p i è c e ;
i n t t o t a l R e ç u = 0 ;
S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;
S y s t e m . o u t . p r i n t l n (" P o u r o b t e n i r u n c a f e , e n t r e z a u m o i n s 4 5

c e n t s ") ;
S y s t e m . o u t . p r i n t l n (" J e r e n d s l a m o n n a i e ") ;
d o
{
Sys t e m , o u t . p r i n t (" v a l e u r d e l a p i e c e e n t r e e : ") ;
p i è c e = l e c t u r e C l a v i e r . n e x t i n t () ;
s w i t c h (p i è c e)
C

c a s e 5 :
n b P i è c e B C = n b P i è c e B C + 1 ;
b r e a k ;

c a s e 1 0 :
n b P i è c e l O C = n b P i è c e l O C + 1 ;
b r e a k ;

c a s e 2 0 :
n b P i è c e 2 0 C = n b P i è c e 2 0 C + 1 ;
b r e a k ;

d e f a u l t :
p i è c e = 0 ;
S y s t e m . o u t . p r i n t l n (" P i e c e i m p o s s i b l e ") ;

}
t o t a l R e ç u = t o t a l R e ç u + p i è c e ;
S y s t e m . o u t . p r i n t l n (" V o u s a v e z e n t r e : ") ;
S y s t e m . o u t . p r i n t l n (" " + n b P i è c e B C + '
S y s t e m . o u t . p r i n t l n C " + n b P i è c e l O C +
S y s t e m . o u t . p r i n t l n (" " + n b P i è c e 2 0 C +
S y s t e m . o u t . p r i n t l n (" S o i t a u t o t a l : " +

p i e c e (s) d e 5 c e n t s ") ;
" p i e c e (s) d e 1 0 c e n t s ”)
'■ p i e c e (s) d e 2 0 c e n t s ")
t o t a l R e ç u + ” c e n t s ") ;

© Éditions EyroHes 1 1 7

partie B° 1 BuiBs et leclmlques de base]

} w h i l e (t o t a l R e ç u < 4 5) ;
S y s t e m . o u t . p r i n t l n (" J e v o u s v e r s e 1
i f (t o t a l R e ç u > 4 5)
S y s t e m . o u t . p r i n t l n (" e t v o u s r e n d s :

}

c a f e ") ;

" + (t o t a l R e ç u - 4 5) +■ " c e n t s ")

i m

Comment s ’exécute le programme C o m p t e u r M o n n a i e , s i l’utilisateur entre successivement
les valeurs 10, 30, 2 0 e\ 2 0 ?

Le tableau d’évolution des variables créées en mémoire lors de l’exécution du programme est
le suivant :

ifi

><
LU

T~{OfN

pièce nb
PièceSC

nb
PiècelOC

nb
Pièce20C

total
Reçu

Valeurs initiales au début de l’exécution 0 0 f< D

Valeur de la piece entree : lo (1 ^
Vous avez entre ; ^

0 piece(s) de 5 cents V
1 piece!s) de 10 cents ^
0 piece!s) de 20 cents

Soit au total : 10 cents

0 / ̂L
0

^ car __

Vaieur de la piece entree : 30
Piece impossible
Vo us avez entre :

0 piece(s) de 5 cents
1 piece(s) de 10 cents
0 plece(s) de 20 cents

Soit au total : 10 cents
V a i e u r d e l a p i e c e e n t r e e ; 20
V o u s a v e z e n t r e :

0 piece(s) de 5 cents
1 piece(s) de 10 cents
1 piece(s) de 20 cents

S o i t a u t o t a l : 30 c e n t s

V a i e u r d e l a p i e c e e n t r e e : 20
V o us a v e z e n t r e :

0 piece(s) de 5 cents
1 piece(s) de 10 cents
2 piece!a) de 20 cents

Soit au total ; 50 cents
J e v o u s v e r s e 1 c a f e
e t v o u s r e n d s : 5 c e n t s

20 50

oi'k_>
ClOU

1 1 8 © Éditions Eyrotles

chapitre n° 4 Faire des répéiiiioiis

■ Й Que se passe-t-il si l’on supprime l’instruction :
I p iè c e = 0 ;
dans le cas d e fa u lt ?

La valeur de la pièce saisie reste stockée dans la variable p i è c e (par exemple 30 cents pour
l’exemple précédent) et l’instruction :

t o t a l R e ç u = t o t a l R e ç u + p i è c e ;

a pour conséquence d’incrémenter la variable to ta lR eçu de 30 alors que la pièce de
30 cents n’existe pas. En réinitialisant la variable p ièce à 0. la variable to ta lReçu est incré-
mentée de 0. Cela n’a donc plus d'incidence sur le résultat final.

m

La boucle while

Le langage Java propose une autre structure répétitive, analogue à la boucle do...w hile, mais
dont la décision de poursuivre la répétition s’effectue en début de boucle. 11 s’agit de la boucle
w h ile .

Syntaxe
La boucle w h i le s’écrit de deux façons différentes, en fonction du nombre d’instructions
qu’elle comprend.
Dans le cas où une seule instruction doit être répétée, la boucle s’écrit :

I w h i l e (e x p r e s s i o n c o n d i t i o n n e l l e)

u n e s e u l e i n s t r u c t i o n ;

Si la boude est composée d’au moins deux instructions, celles-ci sont encadrées ptu' des acco­
lades, ouvrante et fermante, de façon à déterminer où débute et se termine la boude.

w h i l e (e x p r e s s i o n c o n d i t i o n n e l l e)

p l u s i e u r s i n s t r u c t i o n s ;

1Л(U

UJ
T-iO<N
@

oi
Q.O
U

Principes de fonctionnem ent
Le terme w h ile se traduit par t a n t que. La structure répétitive s’exécute selon les principes
suivants :
• Tant que l'expression à l’ intérieur des parenthè.ses reste vraie, la ou les instmctions composant

la boucle sont exécutées.

© Éditions EyroUes 1 1 9

oarüe B° 1 Oiilfls e i lecImlQues de base

• Le programme sort de la boucle dès que l ’expression à rintérieur des parenthèses devient
fausse.

• Une insmiction est placée à rintérieur de la boucle pour modifier le résultat du test à
l’ entrée de la boucle, de fa<̂ on à stopper les répétitions.

• Si l’expression à rintérieur des parenthèses est fausse dès le départ, les instructions ne sont
jamais exécutées.

• Observons qu’à l ’inverse de la boucle do,..w hile, il n’y a pas de point-virgule à la fin de
l’ instruction w h ile (e x p re s s io n) .

Saisir un nombre entier au clavier
L’objectif de cet exemple est d’apprendre à écrire une boucle w h ile et de comprendre
comment réaliser ta saisie d’un entier an clavier sans utiliser la classe Scan n er.

Nous avons déjà noté (voir, au diapitre 2, « Communiquer une information », la section « La
saisie de données ») que ta fonction System , i n , re a d () ne permettait de saisir qu’un seul
caractère à la fois au clavier. Pour saisir un nombre composé de plusieurs chiffres ou un mot
constitué de plusieurs caractères, nous devons faire appel à la fonction System , in . re a d ()
autant de fois qu’ il y a de caractères à saisir.

Cette saisie de caractères est donc une opération répétitive, qui doit s’arrêter lorsque la valeur
numérique ou le mot est entièrement entré. L’ordinateur n’e.st pas à même de déterminer
quand la saisie est terminée. L’ulilisalcur confirme qu’il a fini d’entrer des valeurs en appuyant
sur une touche caractéristique du clavier. Cette touche, utilisée pour passer à la ligne dans les
logiciels de traitement de texte, est communénicnl appelée la touche E n tré e .

Notre but étant de saisir une valeur numérique enlière, nous devons traduire l ’ensemble des
caractères saisis, de façon à les stocker non plus dans un s t r i n g mais dans une variable de
type in t . Si cette traduction n’e.st pas réalisée, il n’est pas possible d’additionner ou de diviser
les caractères lus à la manière des valeurs numériques. Par exemple, le fait d’ additionner la
suite de caractères 123 avec la valeur 4 a pour résultat 1234. Par contre, après traduction des
caractères en valeur numérique, la même opération donne pour résultat 127.

<D

LU
ViD
tHOrs|
@
x:Ol
>Q.O

U
120

Cahier des charges
Nous venons de l’ob-server, pour confirmer que nous n’avons plus de caractère à saisir, nous
devons appuyer sur la touche E n tré e du clavier. Pour sai.sir une valeur numérique entière, la
liste des opérations s’exprime sous la forme de la structure répétitive suivante :

1, Tant que le caractère saisi n’est pas le caractère E n tré e :

a. Lire un caractère.

© Editions Eyrolles

chapitre n° 4 Fahe des répéotloiis

i/i<U

>-
LU
KOrHOfN
@
JZ
CT'k—>-Q.OU

b. SttK'ker le caractère lu dans un mol.
Retourner en 1.

2. Tous les caractères étant saisis, les traduire en un nombre entier.
Pour écrire le programme en langage Java, reprenons cette marche à suivre point par point.
I. La boucle tant que est traduite en Java par la construction suivante :

while {C != ’\n')
i
// Lire un caractère au clavier
// Stocker le caractère dans un mot

}

En Java, le caractère Entrée est symbolisé par le caractère ' \n’ sui- des ordinateurs de
type Unix ou Macintosh. Sur un PC, la touche Entrée correspond à la série de caractères
■\r’ et '\n'.Afin de rendre compatible le programme avec tons les ordinateurs, nous
allons lester la condition de sortie de boucle sur le caractère ' \n ■, puisque celui-ci est
commun à tous les mondes, qu’ils soient Unix, Macintosh ou PC, De cette façon, en
écrivant while {C ! = ’ \n'), où C représente le caractère lu, nous exprimons en
langage informatique la phrase : tant que le caractère saisi n’est pas le caractère
Entrée.
La première fois que le programme entre dans la boucle, aucun caractère n’a encore été
saisi. Tl est donc néce.ssaire d’initialiser la variable C à un caractère différent de ’ \n ', de
façon à assurer que la condition d’entrée dans la boucle soit au moins vérifiée la première
fois. Pour cela, nous déclarons C en début de programme, de la façon suivante :
I char C = ‘\0 ‘;

Par cette instruction, nous initialisons la variable C au caractère nul (' \ 0 '). Nous aurions
pu l'initialiser à tout autre caractère à condition que celui-ci fût différent de ' \n’. Le
choix du caractère nul n’est ici réalisé que parce que, en général, les variables de type
entier ou réel sont initialisées à 0 ou 0.0. En Java, le caractère ' \ 0 ' est l’équivalent de la
valeur numérique nulle,
a. Pour lire un caractère au clavier, l’instruction est la suivante :

I C = (char) System.in.read() ;
La fonction System, in. read() attend que Putilisateur appuie sur une touche du
clavier. Cela fait, elle retourne en résultat la valeur entière correspondant au caractère
associé à la touche du clavier. Pour traduire cette valeur entière en code caractère, il est
nécessaire de placer le cast (char) devant la fonction. De cette façon, la variable c
contient le code Unicode du caractère saisi.

) Éditions Eyrolles 121

parde B° 1 Oiiuis e i technlaues He base

b. Stcjcker le caractère lu dans un mot.
L’objectif est de lire plusieurs caractères d’affilée. Nous devons donc stocker dans une
variable de type string chaque caractère au fur et à mesure de la saisie. Grâce au type
String, plusieurs caractères peuvent être stockés sous un même nom de variable.
La méthode consiste à accumuler dtuis une variable les valeurs lues, en utilisant
l'instruction :
I tmp = tm© + C;

G M E E M 0 Le type String est détaillé, au chapitre 7, « Les classes et les objets », dans la section
« La classe String, une approche vers la notion d’objet ».

Cette instruction permet d’accumuler les valeurs saisies en les plaçant les unes derrière
les autres dans la variable tmp. Eu effet, lorsque deux ctu-actères sont additionnés,
ceux-ci sont placés dans la variable l'un après l’autre dans l'ordre d’exécution de
l’opération. L’addition du caractère ' e ' et du caractère 't'a pour résultat le mot et.
Dans le jargon informatique, l’addilion de caractères est aussi appelée la concaténation
de caractères.
En début de programme, la variable tmp ne doit pas contenir de caractère. Cela vient
du fait que, la première fois qu’un caractère lu est placé dans la variable tmp, il doit
correspondre au tout premier caractère du mot stocké dans la variable tmp. C’est pour­
quoi, la variable tmp doit être déclarée de la façon suivante (" " correspondant à un mot
vide de caractère) :
I string tmp — u n .

Lorsque, au final, rutilisateur appuie sur la touche Entrée pour valider la fin de la
saisie, le programme (sur PC) reçoit la suite de caractères ’ \r ' et ' \n'. La variable
tmp contient en définitive la suite des caractères saisis, plus les caractères ' \ r ' et
' \n ’. Or, nous souhaitons transformer cette suite de caractères en valeur numérique.
Pour cela, nous devons éliminer les caractères ' \ r ' et ' \ n ', qui empêchent cette
tiansfomiation. L’accumulation des caractères ne se réalise donc qu’à la condition que
le caractère saisi ne soit égal ni à ' \r ', ni à ’ \n '.

ifi<D

Pour plus d’informations, reportez-vous à la section «Traduire les caractères en un nombre
entier », un peu plus loin dans ce chapitre.

:>■
LU
v£)
tH
Ors|
@
x:Ol
>Q.O

U

Pour résumer, la boucle s’écrit :
string tmp = "";
char C = ' \0’;
while (C != '\n')

122 © Editions Eyrotles

chapitre n° 4 Faire des reaettuons

{
C = (char) System.in.read() ;
if (C != '\r' c != ’\n') tmp = txnp + C;

}

Pour mieux comprendre en pratique le déroulement de cette boucle, examinons l’évolution
des variables à partir d’un exemple. Nous supposons que l’utilisateur entre les caractères 2,
8 et Entrée.

(U

>-
UJ
sotH
OfN
@
r :oi
Cl
O
U

C tmp Explication

String tmp = " " ; —
tl H initiaiisation.

char C = ' \ 0 ' ; \ 0 It il initiailsation.

while (C ! = ' \ n ')
{

\ 0 n II C étant initiaiisé au caractère ' \ 0 ' ,
C est différent du caractère ' \n ' .
La condition placée entre {) est
vérifiée. Le program m e entre dans ia
boucle.

C = (char)System.in.read() ; 2 11 H Le program m e attend ia saisie d'une
vaieur au ciavier. Nous supposons que
le caractère saisi soit 2 .

i f {C ! = ' \ r ’ Sl& C ! = ' \n ’)
tmp = tmp + C ?

2 2 Le caractère C étant différent de
’ \ r ‘ , la concaténation est exécutée.
La variable tmp étant initialisée à la
chaîne vide (" "), l'opération
" + ' 2 ' stocke !e caracère 2 en

première position dans la variable tmp.
2 2 Fin de boucle. Le program m e retourne

en début de boucle.

whi1 e (C ! = ’ \ n ')
{

2 2 La variable C contient la valeur 2 . C
est donc différent du caractère ' \ n ' .
La condition placée entre () est
vérifiée. Le program m e entre dans la
boucle.

C = (char)S y s t e m . i n .read {) ; 8 2 Nous entrons le caractère 8 .

if (C ! = ' \r' && C ! = ' \n’)
tmp = tmp + C;

8 28 Le caractère C étant différent de
' \ r ‘ , l’opération ' 2 ' + ' 8 ' est
exécutée et stocke le mot 28 dans la
variable tmp.

} 8 28 Fin de boucle. Le program m e retourne
en début de boucle.

© Éditions Eyrolles 1 2 3

Darde B° 1 OuiBs ei leclHilQues de base

C tmp Explication

while (C ! = '\n')
{

8 2 8 La variable C contient ie caractère 8 .
C est done différent du caractère ' \ n ' ,
La condition placée entre { } est
vérifiée. Le programme entre dans la
boucle.

C = (char) System.i n .read () ; \r 2 8 Nous appuyons sur la touche
Entrée. Sur PC, le premier
caractère entré est ' \ r ' ,

i f {C ! = ' \r' && C ' \n’)
tmp = tmp+C }

\r 2 8 C vaut ' \ r ' . La condition n’étant pas
vérifiée, i[n ’y a pas accumulation du
caractère dans tmp.

} \r 2 8 Fin de boucle. Le programme retourne
en début de boucle.

while (C ! = ' \n ')
{

\r 2 8 La variable C contient le caractère \ r.
C est donc différent du caractère
' \ n ' . La condition placée entre {)

est vérifiée. Le program m e entre dans
la boucle.

C = (char) System.i n .read() ; \ n 2 8 Le caractère suivant envoyé par la
touche Entrée est ' \n ' .

i f (C ! = ' \r ' C 1= ’ \n’)
tmp = tmp + Cf

\n 2 8 C vaut ' \n ' . La condition n’est pas
vérifiée, et il n y a pas accumulation du
caractère dans tm p .

} \n 2 8 Fin de boucle. Le program m e retourne
en début de boucle.

while (C ! = ' \n’)
{

\n 2 8 La variable C contient le caractère \ n .
La condition placée entre () n ’est
plus vérifiée. Le program m e sort de la
boucle et passe à l’é tape suivante.

l/)
O
>-

LU

rHOfM
@
u-t

gi
>■a.OU

1 2 4

2. Traduire les caractères en un nombre entier.
Pour traduire un ensemble de caractères en une valeur numérique, le langage Java propose
un certain nombre de fonctions. Dans notre cas, il s’agit de traduire un mot en une valeur
entière de type int. La fonction Java Integer .parselnt {) permet une telle tiaduction.
L’instruction est la suivante :
I valeur = Integer.parselnt(tnp);

valeur est une variable déclarée de type int, et tmp est le mot qui contient les caractères
à traduire. La variable titip ne doit contenir que des caractères représentant des chiffres.

© Éditions Eyrotles

chapitre n° 4 Faire des répêtltlDiis

Si tel n’est pas le cas, le programme s’arrête avec un message d’erreur à l’exécution. Par
exemple, si l’utilisateur entre le mot deux, au lieu du caractère 2, l’interpréteur Java affiche
le message suivant :

I java.lang.NuniberFonnatException : deux
at java.lang.Integer.parseint (compiled Code)

Ce message indique que le format du nombre saisi ne correspond pas au format attendu
par la fonction Integer. parseint (). Nous aurions obtenu le même type d’erreur en
stockant les caractères ' \r' ou ' \n' dans la variable tmp.
Pour finir, le programme affiche les différents résultats à l’aide de la fonction Sys­
tem . out. println. Cet affichage est réalisé à la fin du code source complet ci-dessous.

V)
(U

>-
LU
LOT~{
OfN
@

oi'k_>-
ClOU

Exemple : code source complet

Pour obtenir un programme à part entière, l’ensemble des instructions développées au cours
de la section précédente est à placer dans une fonction main() et une classe, comme ci-
dessous :
public class LireUnEnt1er

I ' public static void main (String [] parain) throws java.io. lOSxcep-
tion

II ^II String tmp = ” " ;
char C= '\0' ;
int valeur ;
System.out.print["Entrez des chiffres et appuyez sur ");
System.out.println("la touche Entree, pour valider la saisie :

") ;
while (C != '\n’)
[
C =: (char) System.in.read() ;
if (C != '\r' & & C != '\n') tmp = tmp + C;

}
System,out.println("Vous avez entre
valeur = Integer.parseint(tmp);
System.out.printlni'C'est a dire :
] // Fin du main [)
1 J Fin de la Class LireUnEntier

" + tmp);

+ valeur + " en entier");

Notez l’expression tlirows lOException placée juste après ren-tête de la fonction
main (). La présence de cette expression est obligatoire pour toutes les méthodes qui manipu­
lent des opérations d’entrée-sortie. Succinctement, cette clause indique au compilateur que la

© Editions Eyro/tes 1 2 5

name B° 1 OiiUs e i teclHilQues de base

méthode ainsi définie est susceptible de traiter ou de propager une éventuelle erreur, du type
lOException, qui pourrait apparaître en cours d’exécution.

Pour plus de précisions sur la notion d'exception, voir la section « Gérer les exceptions »,
en fin du chapitre 10, « Collectionner un nombre indéterminé d’objets ».

Que se passe-t-il si l’utilisateur entre au clavier ta valeur suivante {valeur grisée) :
Entrez des chiffres et appuyez sur la touche Entrée, pour valider
la saisie : 28

Le programme affiche les messages suivants :
Vous avez entre : 28
C'est a dire : 28 en entier
La première valeur 28 affichée est un mot. Uaddition de cette valeur avec le nombre 4 a pour
résultat 284. La deuxième valeur affichée est un nombre, et la même addition a pour résul­
tat 32.

MB

Que se passe-t-il si l’utilisateur entre au clavier la valeur suivante (valeur grisée) :
Entrez des chiffres et appuyez sur la touche Entree, pour valider
la saisie : trois

Le programme affiche les messages suivants :
java,laug.NumberFormatException : trois
at java.lang.Integer.parseint (compiled Code)
Le mot t ro is n'est pas un nombre mais un mot sans signification particulière pour l’ordinateur ;
l’interpréteur Java ne peut traduire ce mot en un nombre entier.

i/)

O
LU
vûrH
0
(N

@
JZ01
Cl
O
U

126

Que se passe-t-il si l’utilisateur entre au clavier la valeur suivante (valeur grisée) :
Entrez des chiffres et appuyez sur la touche Entree, pour valider
la saisie : 2.5

Le programme affiche les messages suivants ;
java.lang.NumberFormatException: 2,5
at java.lang.Integer.parseint (compiled Code)
Le mot 2 ,5 n’a pas le format d’un nombre entier mais d’un nombre réel. La fonction
Integer .parseint () ne peut le traduire en un nombre entier.

© Éditions EyroUes

chapitre n° 4 Faire des réaémiDiis

La boucle for

L’instruction for permet d’écrire des boucles dont on connaît à l’avance le nombre d’itéra­
tions (de tours) à exécuter. Elle est équivalente à l’instruction while mais est plus simple à
écrire.

ÇJ
ôU>
LU
KO
O
rN

@
O—f
j::ai
>.
ClO

U

Remamue

Syntaxe
La boucle for s’écrit elle aussi de deux façons différentes en fonction du nombre d’instructions
qu’elle comprend.
Dans le cas où une seule instruction doit être répétée, la boucle s’écrit :
for (initialisation; condition; incrément)
une seule instruction ;

Si la boucle est composée d’au moins deux instructions, celles-ci sont encadrées par deux
accolades, ouvrante et fermante, de sorte à déterminer où débute et se termine la boucle.
for (initialisation; condition; incrément)
{
plusieurs instructions ;

}

Les termes initialisation, condition et incrément sont des instructions séparées
obligatoirement par des points-virgules (;). Ces instructions définissent une variable, ou
indice, qui contrôle le bon déroulement de la boucle. Ainsi :
• initialisation permet d’initialiser la variable représentant l’indice de la boucle

(exemple : i = 0, i étant l’indice). Elle est la première instruction exécutée, à l'entrée
de la boucle.

• condition définit la condition à vérifier pour continuer à exécuter la boucle (exemple :
i < 10). Elle est examinée avant chaque tour de boucle, y compris au premier tour de
boucle.

• incrément est l’instruction qui permet de modifier le résultat du test précédent en aug­
mentant ou diminuant la valeur de la variable testée. L’incrémenr peut être augmenté ou
diminué de N. N est appelé le pas d’incrémentation (exemple : i = i + 2). Cette
instruction est exécutée à la fin de chaque tour de boucle.

Avec la version 1.5 du compilateur { jd k l ,5 .0) , le langage Java propose une nouvelle syntaxe
pour la boucle for , qui simplifie le parcours de liste de valeurs (tableaux, collection...), Cette
syntaxe est étudiée plus précisément au cours du chapitre 9, « Collectionner un nombre fixe
d’objets ", section « Manipuler un tableau

> Éditions EyroHes 1 2 7

partie B° 1 Oiit№ et technlpues de base

Principes de toncaonnement
Les boucles for réalisent un nombre précis de boucles dépendant de lu valeur initiale, de la
valeur finale et du pas d’incrémentation. Voyons sur différent.s exemples comment ces boucles
sont exécutées :

in t i ;
ch ar c ; Valeur

initiale
Valeur
finale

Pas
d’incrémentation

Nombre
de
boucles

Valeurs
prises par i
ou c

for (i = 0; i < 5 ; i = i -Ll) 0 4 1 5 0,1,2, 3,4
for (i = 4; i <=12; i = i + 2) 4 12 2 5 4,6,8, 10. 12

for (c = ' a ’ ; c < ' f ; c = c + l) ’a' 'e‘ 1 5 a, b, c, d, e
for (i = 5; i > 0 ; i = i - 1) 5 1 - 1 5 5,4,3, 2,1

i î lM H ir ï Tp^ Le nombre de tours est identique dans chacune de ces boucles, malgré une définition diffé­
rente pour chacune des instructions de contrôle.
Lécriture de l’instruction incrément, qui augmente ou diminue de 1 la variable de contrôle de
la boucle, peut être simplifiée. En effet, par convention, l’instruction i = i + 1 s ’écrit plus
simplement i+ f , et l'instruction i - - a le même résultat que l’instruction i = i - 1.

Rechercher le code Unicode d’un caractère de la table ASCII
L’objectif de cet exemple est d’apprendre à construire une boucle for et de s’initier à la
recherche d’information dans un en.semble de données. Pour cela, nous allons écrire un
programme qui recherche dans la table Unicode le code d’un caractère ASCII donné ptir
l’utilisateur. Cette recherche s’effectue en comparant chaque caractère de la table Unicode au
caractère ASCiT saisi.

<u

>~
LU
LOrHOfN
@
JT
CT'k—>-
ClO

U
128

Cahier des charges
La méthode est la suivante :
1, Lire le caractère ASCII dont on souhaite connaître le code Unicode.
2. Pour chaque caractère de la table Unicode :
Si le caractère Unicode est identique au caractère choisi, afficher son code Unicixle.

Reprenons chaque point, pour le traduire en un programme Java.
1. Pour lire au clavier le caractère dont on .souhaite connaître le code Uniaxle, les instructions
sont les suivantes :
System,out,println("Quel caractère recherchez-vous : ");
recherche = lectureClavier.next{).charAt(0);

Où la variable recherche est déclarée de type char.

© Éditions Eyrofles

chapitre n° 4 Faire des répémiDiis

Pour en savoir plus Pour plus d'informations sur la saisie de valeurs au clavier, voir le chapitre 2, « Communiquer
une information ».

2. Le programme parcourt la table Unicode caractère par caractère et recherche le caractère
souhaité. Cette opération est répétitive et s’exécute sur les 128 premières valeurs de la
table Unicode, puisque nous ne recherchons que les codes Unicode des caractères de la table
ASCII.

Pour plus d’informations sur la table Unicode, voir, au chapitre 1, « Stocker une information »,
la section « Catégorie caractère ».

<D

>-LU
LO
OfN
®
x:Ol
Cl
O
U

Pour parcourir cette table, la solution est d’utiliser une boucle for, dont la valeur de
l’indice varie de 1 en 1, dans l’intervalle [0, 127]. Cette boucle s’écrit :
I for (i = 0; i <= 127; i++)

La variable i, déclarée de type int, représente l’indice du caractère dans la table Unicode.
II y a équivalence entre l'indice et le caractère. En effet, un caractère ASCII est défini à
partir d’une valeur numérique.
La seule différence entre une valeur numérique et un caractère provient du type de codage
utilisé pour les représenter l’un et l’autre. Pour connaître le caractère correspondant à cet
indice, la méthode consiste à transformer la valeur de l’indice en un code caractère par
rintermédiaire du cast (char!. Ainsi, rinstniction :
I atrouver = (char) i;

© Éditions EyroUes

transfomie l’indice i de la table Unicode en son code caractère. La variable atrouver,
déclarée de type char, prend la valeur de ce code.
Connaissant le caractère à rechercher ainsi que le code caractère de chaque caractère de la
labié Unicode, il suffit de les comparer pour savoir s’ils sont identiques ou non. L’instniction
s’écrit sous la forme du test suivant ;
I if (atrouver == recherche)

Si le caractère Unicode est identique au caractère choisi, le programme affiche son code
Unicode à l’aide des instructions :

System,out-print("le code Unicode de " + atrouver);
System.out-println(" est WuOO" + Integer-.toString(i, 16)) ;

Rappelons que pour la table ASCII, le code Unicode d’un caractère s’obtient en plaçant
derrière les ctu'actères \u00, la valeur hexadécimale de la position du caractère dans la
table Unicxxie. Pour afficher ce ccxle, nous devons donc traduire la variable i (qui correspond

1 2 9

partie B° 1 Oiitfls et technlQues de base

à la position du caraclèn; dans la table Unicode) en valeur hexadécimale. Celte traduction est
réalisée par la fonction ;
I Integer.toString{valeur entière, base)

qui transforme le paramètre valeur entière en une chaîne de caractères suivant le
codage donné par le paramètre base. Si valeur entière représente l’indice i et que
base prend la valeur 16, nous obtenons la valeur hexadécimale de la position du caractère
trouvé.
La suite des caractères \u00 placée dans la fonction System, out .println est consi­
dérée comme une séquence particulière puisqu’elle permet l’affichage des caractères spé­
ciaux. Pour annuler le caractère spécifique de celte séquence, il est nécessaire de placer un
premier \ devant \u00.

O
Ol_>
LU

T~{
0 fN
@
..i-ix:01'k_>-Q.O
U

Exemple : code source complet

Pour obtenir un programme à ptirt entière, l’ensemble des instructions développées au cours
de la section precedente est à placer dans une fonction main () et une classe, comme ci-
dessous :
import java.util.* ;
public class QuelUnicode
{
public static void main (String [] paramétra)
{
int i ;
char recherche, atrouver;
Scanner lectureClavier = new Scanner(System.in);
System.out.println(“Quel caractère recherchez-vous : ");
recherche = lectureClavier.next().charAt(0);
for (i = 0; i <= 127; i++)
{
atrouver = (char) i;
if (atrouver -- recherche)
{
System.out.print("le code Unicode de " + atrouver);
System.out.println(" est \\u00" + Integer.toString(i,16));
} // Fin du if

) // Fin du for
} // Fin du main()

}// Pin dé QuélUnicode

130 © Éditions EyroHes

chapitre n° 4 Faire des régêatloRS

Résultat de Vexécution

Les valeurs grisées correspirnderu aux valeurs saisies par l’utilisateur.
ScQuel caractère recherchez-vous :

le code Unicode de & est \u0026
Quel caractère recherchez-vous :
le code Unicode de { est \uD07b

i

Remarque Il n’est pas possible de retrouver le code Unicode d’un caractère accentué, c’est-à-dire d’un
caractère dont la valeur se situe au-delà de l’indice 127 de la table Unicode, En effet, comme
nous avons pu le remarquer à la section << Les caractères spéciaux » du chapitre 2. « Commu­
niquer une information », il existe plusieurs formes d’encodage des caractères spéciaux, La
transformation d’une valeur numérique en char par rinlermédiaire d’un simple cast n’est pas
suftisante pour déterminer le code Unicode des caractères spéciaux.

Quelle boucle choisir ?

Chacune des trois boucles étudiées dans ce chapitre permet de répéter un en.semble d’instruc-
lions. Cependaiu, les différentes propriétés de chacune d’entre elles font que le programmeur
utilisera un type de boude plutôt qu’un autre, suivant le problème à résoudre.

if)O
O
>■

LU
KOrHO
(N

@
S I

>•Q.OU

Choisir entre une boucle d o ...while et une boucle w hile
Les boucles do...while et while se ressemblent beaucoup dans leur syntaxe, et il paraît
parfois difficile au programmeur débutant de choisir l’une plutôt que l’autre.
Notons cependant que la différence essentielle entre ces deux boucles réside dans la position
du test de sortie de boucle. Pour la boucle do...while, la .sortie de boucle s’effectue en fin
de boucle, alors que, pour la boucle while, la sortie de boucle se situe dès l’entrée de la
boucle.
De ce fait, la boucle do...while est plus souple à manipuler, les instructions qui la composent
étant exécutées au moins une fois, quoi qu’il arrive. Pour la boude while, il est nécessaire de
veiller à l’initialisation de la variable figurant dan.s le test d'entrée de boude, de façon à être
sûr d’exécuter au moins une fois les instructions composant la boude.
Certains algorithmes demandent à ne jamais répéter, sous certaines conditions, un
ensemble d’instructions. Dans de tels cas, la structure while est préférable à la structure
do...while.

> Éditions Eyrolles 131

Darde B° 1 OiiUs ei teclHilQues de base

Résumé

Choisir e im o la b o id e fo r e t u ih ia
Les boudes for et while sont équivalentes. En effet, en examinant les deux boudes du
tableau ci-dessous.

La boucle for La boucle whila

i n t i ; i n t i = 0

f o r (i = 0 ; i < = 10,- i = i + 1) w h i l e (i <= 1 0)

{ {

} i = i + 1 ;

}

Nous constatons que, pour chacune d’entre elles, la boucle débute avec i = û , puis, tant que
i est inférieur ou égal à 10, i est incrémenté de 1.
Malgré cette équivalence, poui’choisir entre une boucle for et une boude whi le, observons que :
■ La boude for est utilisée quand on connaît à l’avance le nombre d’itérations à exécuter.
• La boucle whi le esr employée lorsque le nombre d’itérations est laisse au choix de l'iiti-

lisateur du prognuiinie ou déterminé k partir du résultat d’un calcul réalisé au cours de la
répétition.

ifi

ÔU>-
LU

T~{
0 fN
@
.4-1x:01'k_
Q.O

U

En langage Java, il existe trois types de structures pour réaliser des répétitions. Elles sont
décrites par les instructions : d o , . .w h ile , w h ile et fo r .
• La boucle do.. .w h ile (faire... tant que) permet d’exécuter les instructions situées dans le

bloc défini par des { } , tant que l'expression conditionnelle placée entre () est vraie.

d o {

plusieurs instructions ;
} w h i l e (e x p r e s s i o n) ;

Les instructions sont exécutées au moins une fois puisque l’expression conditionnelle est
examinée en fin de boucle, après exécution des instructions.

132 © Éditions Eyrotles

chapitre a° 4 fa iie des réoéddoes

i/iCJ
ô
>

LU
v£i1~l
O
(N

@
sz
O)

Cl
O
U

La boucle w h ile (tant que} permet d'e>técuter les instructions situées dans le bloc défini par
{] , tant que l'expression conditionnelle placée entre [) est vraie.

while (expression)
{
plusieurs instructions ;

}
L’expression conditionnelle étant examinée en début de boucle, les instructions situées dans
le bloc peuvent ne pas être exécutées si ta condition n’est pas vérifiée dès le début.
La boucle fo r permet d’écrire des boucles dont on connaît à l’avance le nombre d’itérations à
exécuter. Eiie est équivalente à l'instruction w h ile mais est plus simple à écrire.

for (initialisation ; condition ; incrément)
{
plusieurs instructions

}

Les termes in i t i a l i s a t io n , co n d itio n et incrém ent sont des instructions séparées obliga­
toirement par des points-virgules (;) . Ces instructions définissent un indice qui contrôle le bon
déroulement de la boucle. Ainsi ;
• i n i t i a l i s a t io n permet d’initialiser la variable représentant l’indice de la boucle.
• co n d itio n définit la condition à vérifier pour continuer à exécuter la boucle.
• incrém ent permet d’augmenter ou de diminuer de A/ la valeur de la variable représentant

l’indice de la boucle. A/est appelé le pas d’incrémentation.
À partir des structures répétitives nous avons également abordé la notion de comptage de
valeurs, c’est-à-dire ;
■ Le comptage d’un certain nombre de valeurs (par exemple, compter le nombre de notes d’un

étudiant). Pour cela, il suffit d’employer une variable entière initialisée à 0 avant d'entamer la
boucle. La variable augmente de 1 à l'intérieur de la boucle à l’aide de l’instruction i = i -i- 1
(en supposant que i soit notre variable compteur). On dit alors que la variable i est incré-
menlée de 1.

• Laccumulation de valeurs (par exemple, faire la somme des notes d’un étudiant). Cette
technique est réalisée à l’aide d’une variable entière initialisée à 0 avant d'entamer la boucle.
La variable augmente de la valeur de la variable à accumuler (de la valeur de la note,
par exemple), à l’intérieur de la boude. Cette augmentation s ’effectue à l’aide de l’instruction
g = s + v a le u r , en supposant que s soit notre variable d’accumulation et v a le u r la variable
représentant la valeur à accumuler.

Signalons, pour finir, que l’instruction i++ est l’équivalent simplifié de i = i + 1, tandis que i —
est l’équivalent simplifié de i = i - 1.

© Éditions Eyrolles 1 3 3

panic »° 1 Omis Cl teclHilQues de bas^

Exercices

Comprendre la boucle do„ .while

RTïï7i?Tïï ̂ 4.1 Afin d ’exécuter le program m e suivant :

import java.util.*;
public class Exercicel
{
public static void main (String [] argument)
{
int a,b,r:
Scanner lectureClavier = new Scanner(System.in);
System.out.print("Entrer un entier ;
a = lectureClavier.nextint(];
System.out.print{"Entrer un entier :
b = lectureClavier.nextint();
do
{
r = a%b;
a - b;
b = r;
} while (r 1=0);

System.out.println("Le résultat est

") ;

") ;

+ a) ;
}

}

<u

a. Examinez le code source (programme), repérez les instructions concernées par la boucle répé­
titive, et déterminez les instructions de début et fin de boucle.

b. Quelle est l’instruction qui permet de modifier le résultat du test de sortie de boucle ?
c. En supposant que l’utilisateur entre les valeurs 3 0 et 42, exécutez le programme à la main (pour

vous aider, construisez le tableau d’évolution de chaque variable déclarée).
d. En supposant que l'utilisateur entre les valeurs 3 5 et 6, exécutez le programme à la main (pour

vous aider, construisez le tableau d'évolution de chaque variable déclarée).
e. Quel est le calcul réalisé par ce programme ?

LU
UO
tH
O<N
©
s:oi
Cl
O
U

4.2 En Utilisant une boucle d o . . .w h ile , écrire un program m e qui dem ande la saisie d’une valeur, tant
que celle-ci n’est pas comprise entre 0 et 1 0 0 .

1 3 4 © Éditions Eyrotles

clrapKre n° 4 falle des répéUdons

tporendre à compter, accumuler ei rechercaer uua waiour

4 . 3 Écrivez en français, en faisant ressortir la structure répétitive de ia m arche à suivre, le programme
résolvant les quatre points suivants :

a. Lire un nombre quelconque de valeurs entières non nuHes, La saisie des valeurs se term ine
lorsqu’on entre la valeur 0 .

b. Afficher la plus grande des valeurs.

c. Afficher la plus petite des valeurs.

d. Calculer et afficher la m oyenne de toutes les valeurs.

Traduisez la m arche à suivre précédente en un program m e Java. Utilisez pour cela une boucle
d o . . , w h i l e .

Pour trouver la plus grande ou la plus petite valeur, vous pouvez vous aider de l’exemple
« Rechercher le plus grand de deux élém ents », décrit chapitre 3, section « Faire des
choix ».

Comprendre la boucle while, traduire une marche à suivre
en programme Java

ifi

l ^ t ï ï T î t m 4 . 4 Écrivez un program m e D e v i n e t t e , qui tire un nombre au hasard entre 0 et 10 et dem ande à l’utili­
sateur de trouver ce nombre. Pour ce faire, la m éthode est la suivante :
a. T irer au hasard un nombre entre 0 et 10,
b. Lire un nombre,
0, Tant que le nombre lu est différent du nombre tiré au hasard :

- Lire un nombre.
- Com pter le nombre de boucle.

d. Afficher un m essage de réussite ainsi que le nombre de boucles.
Reprenez chaque point énoncé ci-dessus, e t traduisez-le en langage Java. Notez que, pour tirer
un nombre au hasard entre 0 et 10, l’instruction s’écrit ;
I i = { i n t } (1 0 * M a t h . r a n d o m O) ;

où i est une variable entière qui reçoit la valeur tirée au hasard.

>-
LU
LOtHOrvl
@
j::gi
>•Q.O
U

f l M f f i ï ï) 4 . 5 D éclarez toutes les variables utilisées dans le program m e précédent en veillant à ce qu’elles soient
bien initialisées. P lacez les instructions dans une fonction m a i n () et une classe D e v i n e t t e .

© Éditions Eyrol/es 135

oartle B° 1 OiiiBs ei teclHilQiies de base

Exercice 4.6 Lorsque le program m e D e v i n e t t e fonctionne bien, m odifiez-le de façon à ce que :
a. Les valeurs tirées au hasard soient comprises entre 0 et 50.
b. Un m essage d'erreur s’affiche si la réponse est mauvaise.
c. Le program m e indique si la valeur saisie au clavier est plus grande ou plus petite que la valeur

tirée au hasard.
d. À titre de réflexion : com m ent faut-il s’y prendre pour trouver la valeur en donnant le moins de

réponses possibles ?

Comprendre la boucle for

4.7 Afin d'exécuter le program m e suivant :

import java.util.*;
public class Exercice?
{

p u b l i c s t a t i c v o i d m a i n (S t r i n g [] p a r a m é t r é)

{
long i, b = 1 ;
int a;
S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

S y s t e m . o u t . p r i n t l n (" E n t r e r u n e n t i e r : ”) ;

a = l e c t u r e C l a v i e r . n e x t i n t () ;

f o r (i = 2 ; i < = a ; i + +)

b = b * i ;

System.out.printlni"Le résultat vaut ” + b);
}

}

V)(U

a. Exam inez le programme, repérez les instructions concernées par la boucle répétitive, et déterminez
Iss instructions de début et fin de boucie.

b. Quelle est la valeur initiale de i et quelle est sa valeur en sortie de boucle ? Com bien de boucles
sont réalisées ?

c. Quelle est l’instruction qui perm et de modifier le résultat du test de sortie de boucle ?
d. En supposant que l’utilisateur entre la valeur 6, exécutez le program m e à la main (pour vous aider,

construisez le tableau d’évolution de chaque variable déclarée).
e. Quel est le calcul réalisé par ce program m e ?

>-LU
LO
tHOrvl
@
j::çn
>•aOU

4.8 En utilisant une boucle f o r , écrivez un program m e qui affiche l’alphabet, d'abord à l’endroit, puis à
l’envers, après un passage à la ligne.

136 © Éditions Eyrotles

chapitre n° 4 ra lle des réoéddons

Le projet : Gestion d’un compte bancaire

Rendra la menu lile n c til
Une fois l’affichage du menu réalisé à partir de l’énoncé donné à la fin du chapitre 3, « Faire
des choix le programme exécuté donne à choisir parmi les cinci options suivantes :

1. Création d'un compte
2 . A f f i c h a g e d ' u n c o m p t e

3. Créer u n e l i g n e comptable
4. Sortir
5 . D e l ' a i d e

Votre choix :
Si l’utilisateur choisit l’option 1, le programme lui demande de saisir les données nécessaires
à la création du compte (type, numéro, valeur initiale, etc.). Une fois les données saisies, le
programme s’arrête. Il n’est pas possible de choisir, par exemple, l’option 2 pour afficher les
valeurs saisies à l’étape précédente.
Pour remédier à cette situation, il est nécessaire de placer les instructions concernées à l’inté­
rieur d’une boucle, de façon à voir réapparaître le menu une fois l’option réalisée. Pour cela,
vous devez :
a. Écrire en français la structure répétitive, afin de déterminer la condition de sortie de boucle.
b. Choisir la structure répétitive parmi les trois proposées par le langage Java.
c. Traduire la marche à suivre en programme Java, en prenant soin d’initialiser la variable
de contrôle de la boucle et en insérant, à l’intérieur de la boucle, toutes les instmclions
nécessaires à l’affichage du menu.

in

ôL.
;>~LJ
vbrH0 <N
@
4-*x :01
>•ClO
U

© Editions Eyrolles 1 3 7

in
й)

:>■ш
iûTH
ОrN
@

Ol
>■Q.
OU

Partiel

iniUation
à la programmation

orientée objet

ÖL_>•
Ш

■pH
0
ГМ

@
-1-1x :01'k_
Cl
O
U

in
й)

:>■ш
iûTH
ОrN
@

Ol
>■Q.
OU

Chapitre 5

De l’elgoriihme paramétré
à récriiure de fonctiens

<D

LU

OfN
@
s:oi'k_
Q.O

U

L’étude des chapitres précédents montre qu’un programme informatique est constitué d’instruc­
tions élémentaires (affectation, comparaison ou encore répétition) et de sous-programmes
(calcul de la racine carrée, affichage de données), appelés fonctions ou encore méthodes.
Ces instructions sont de nature suffisamment générale pour s’adapter à n’importe quel
problème. En les utilisant à bon escient, il est possible d’écrire des programmes informatiques
.simples mais d’une grande utilité.
Dans le cadre du développement de logiciels de grande envergure, les programmeurs souhai­
tent aussi définir leurs propres instructions, adaptées au problème qu’ils traitent. Pour cela, les
langages de programmation offrent la possibilité de créer des fonctions spécifiques, différentes
des fondions prédéfinies par le langage.
Pour comprendre l’intérêt des fonctions, nous analysons d’abord le concept d’algorithme
paramétré à partir d’un exemple imagé.
Ensuite, nous étudions la bibliothèque de fonctions mathématiques définie dans le langage
Java (section « Des fonctions Java prédéfinies »). Cette étude montre les principes d’utilisa­
tion de ces fonctions et explique comment élaborer et construire vos fonctions (section
« Construire ses propres fonctions »).
Pour finir, nous examinons comment la constmetion et l’utilisation de fonctions font évoluer
la structure générale d’un programme (section <(Les fondions au sein d’un programme Java »).

) Éditions Eyrolles 141

oarüe B° 2 Initiation à la Drogrammaiion orienlée lA let

Algoritiime paramétré

Certains algorithmes peuvent être appliqués à des problèmes voisins en modifiant simplement
les données pour lesquels ils ont été constniits. En faisant varier certaines valeurs, le programme
fournit un résultat différent du précédent. Ces valeurs, caractéristiques du problème à traiter,
sont appelées paramètres du programme.
Pour comprendre concrètement ce concept, nous allons reprendre l’algorithme du café chaud
pour le transformer en un algorithme qui nous permettra de faire du thé ou du café chaud.

Faire un thé chaud, ou comment remplacer le café par du thé
Faire un café chaud ou faire un thé chaud est une opération à peu près semblable. En reprenant
la liste de toutes les opérations nécessaires à la réalisation d’un café chaud, nous constatons
qu’en remplaçant simplement le mot café par le mot thé, nous obtenons du thé chaud.

Instructions Bloc d'instructions

0. Prendre une cafetière.
1. Poser la cafetière sur la table.
3. Prendre un filtre.
4. Verser le thé dans le filtre.
5. Prendre de 1'eau.
6. Verser l’eau dans la cafetière.
7. Brancher la cafetière. Préparer le thé
8. Allumer la cafetière.
9. Attendre que le thé soit prêt.
10. Prendre une tasse.
11. Poser la tasse sur la table.
12. Éteindre la cafetière.
13. Verser le thé dans la tasse.

ifi

><
LU
KOrHOfN
@
JZ
CT'k—>-Q.OU

142

Cette recelle n’est certes pas traditionnelle, mais elle a le mérite d’être pédagogiquement
simple. Pour faire du café ou du thé, il suffit d’employer la même recette ou méthode, en
prenant conuiie ingrédient du calé ou du thé, selon notre choix.
Dans le monde réel, le fait de remplacer un ingrédient par un autre ne pose pas de difficultés
particulières. Dans le monde informatique, c’est plu.s complexe. En effet, l’ordinateur ne fait
qu'exécuter la marche à suivre fournie par le programmeur. Dans notre cas, pour avoir du café
ou du (hé, le progranuueur doit écrire la marche à suivre pour chacune des boissons. La lâche
est fastidieuse, puisque chacun de.s programmes se ressemble, tout en étant différent sur un
détail (café ou thé).

© Éditions Eyrolles

chapHra n° 5 De I'atgorfihme paraméiré à l'écriture de fonctions

Définir les paramètres

Pour éviter d’avoir à recopier ctiaque fois des niardies à suivre tjui ne diffèrent que sur un
détail, l’idée est de construire un algorithme général. Cet algorithme ne varie qu’en fonction
d’ingrédients déterminés, qui font que le programme donne un résultat différent.
En général isant l’algorithme du thé ou du café chaud, on exprime une marche à suivre permet­
tant de réaliser une boisson chaude. Pour obtenir un résultat différent (café ou thé), il suflit de
définir comme paramètre de l’algorithme l’ingrédient, café ou thé, à choisir.
La marche à suivre s’écrit en remplaçant les mots café ou thé par le mot ingrédient.

Instructions Nom du bloc d'instructions

0. Prendre une cafetière.
1. Poser la cafetière sur la table.
2. Prendre ingrédient.
3. Prendre un filtre.
4. Verser ingrédient dans le filtre.
5. Prendre de 1'eau.
6. Verser l'eau dans la cafetière.
7. Brancher la cafetière.
8. Allumer la cafetière.
Э. Attendre que ingrédient; soit prêt.
10. Prendre une tasse.
11. Poser la tasse sur la table.
12. Éteindre la cafetière.
13. Verser ingrédient dans la tasse.

Préparer (ingrédient)

1Л

>-
Ш
KO■rH
O
ГМ

@
x:qi'k_>Q.O
U

Faire du café équivaut donc à exécuter le bloc d’instractions P ré p a re r {ingrédient) en utilisant
coiTuiie ingrédient du café. L'exécution du bloc Préparer (le café) a pour conséquence de
réaliser les instructions 2, 4, 9 et 13 du bloc d’instructions avec comme ingrédient du café.
L’instniction 2 , par exemple, s’exécute en remplaçant le tenue ingrédient par le café.
Au lieu de lire prendre ingrédient, il faut lire prendre le café.
De la même façon, faire du thé revient à exécuter le bloc d’instructions Préparer (le thé).
Le paramèti’e ingrédient correspond ici au thé, et les instructions 2, 4, 9 et 13 sont exécutées
en conséquence.
Suivant la valeur prise par le paramètre ingrédient, l’exécution de cet algorithme fournit
un résultat différent. Ce peut être du café ou du thé.

Donner un nom au bloc d ’instructions

Nous constatons qu’en paramétrant un algorithme, nous n’avons plus besoin de recopier
plusieurs fois les instructions qui le composent pour obtenir un résultat différent.

© Éditions EyroUes 1 4 3

Darde B° 2 iniflailan à la Drogrannnaaon otiH ilée iriilet

En dormant un nom au bloc d’instructions correspondant à ralgorithme général PréparerO,
nous définissons un sous-programme capable d’être exécuté autant de fois que nécessaire.
Il suffit pour cela d’appeler le sous-programme par son nom.
De plus, grâce au paramètre placé enUe les parenthèses qui suivent le nom du sous-
programnie, la fonction s’exécute avec des valeurs différentes, modifiant de ce fait le résultat.

n r t n t ïï l ï ï ï ï i Un algorithme paramétré est défini par :
- un nom ;
- un ou plusieurs paramètres.
En fin d’exécution, il fournit un résultat, qui diffère suivant la valeur du ou des paramètres.

Dans le langage Java, les algorithmes paramétrés s'appellent des fonctions ou encore des
méthodes. Grâce à elles, il est possible de traduire un algorithme pai'amétré en programme
informatique. Avant d’examiner comment écrire ces algorithmes en langage Java, nous allons
tout d’abord étudier les fonctions prédéfinies du langage Java, de façon à mieux comprendre
comment elles s’utilisent.

Des (onctions Java prédéflnies

Un grand nombre de programmes informatiques font appel à des calculs mathématiques
simples, tels que le calcul d'un sinus ou d’une racine carrée. Pour trouver la valeur d’un sinus,
par exemple, le programmeur n’a pas, fort heureusement, à réécrire pour chaque programme
ralgoritlinie mathématique du calcul d’un sinus. Les fonctions mathématiques sont déjà
programmées.
Le langage Java propose un ensemble de fonctions prédéfinies, mathématiques ou autres, très
utiles, comme nous le verrons au cours des chapitres suivants. Notre objectif n’est pas de
décrire l’intégralité des fonctions disponibles, car ce seul manuel n’y suffirait pas. Nous
souhaitons faire comprendre la manipulation de ces fonctions. Pour ce faire, nous allons
étudier une partie de la bibliothèque mathématique de Java, appele'e Math, et de'terminer
ensuite les principes généraux d’utilisation des fonctions.

<D

>
LU
LOrHOfN
@
JZgi
>■a.OU 144

La bibliothèque Math
La bibliothèque mathématique du langage Java est composée d’un ensemble de fonctions
prédéfinies, qui permettent de calculer toutes sortes d’équations mathématiques. Parmi ces
fonctions, se trouvent les lonclions trigononiétriques (sinus, cosinus, tangente, etc.), logarith­
miques, d’arrondis, de calcul de puissances ou de racines carrées.
Ces fonctions sont regroupées dans la bibliothèque de programmes Math. Le nom de chaque
fonction débute toujours par le terme Math, suivi d’un point puis du nom de la fonctiim.

) Éditions Eyrotles

ino
oL->
LU

T~{
0fN
@
<̂u-ix:01'k_>Q.OU

Chapitre a° 5 De t'aigorfihine paraméiré à récriiure de foncaons

Ce nom commence loujours par une minuscuîe.
composent la bibliotlièque Math :

Voici une liste partielle des fonctions qui

Fonctions trigonométriques

Opération mathématique Fonction Java

Calculer le cosinus d’un angle (radian) Math.cos()
Calculer le sinus d’un angle (radian) Math.sin()
Calculer la tangente d’un angle (radian) Math.tan()

Fonctions logarithmiques

Opération mathématique Fonction Java

Calculer le logarithme d’une valeur Math.log()
Calculer l’exponentielle d’un nombre Math.exp()

Calcul d ’arrondis

Opération Fonction Java

Arrondir à l’entier inférieur Math.floor()
Arrondir à l’entier supérieur Math.ceil()

Autres calculs mathématiques

Opération mathématique Fonction Java

Calcu ler la racine carrée d’un nombre Math.sqrt()
(a puissance b) Math.pow()

|a| (valeur absolue de a) Math.abs()

Divers

Opération Fonction Java

Trouver la plus grande de deux valeurs Math.max()
Trouver la plus petite de deux valeurs Math.min()
Tirer un nom bre au hasard entre 0 et 1 Math.random{)

> Éditions Eyrol/es 145

I parte B° 2 Initiation à la Drogrammaiion orientée lA let

>-
LU
KO
ofN
@
J-gi*1-
D.Ou

Exemples d’utilisation
Ces fonctions s’utilisent en plaçant dans le programme Java le nom d’appel de la fonction.
Voici en exemple un programme qui utilise l’ensemble des fonctions décrites ci-dessus :

Exemple : code source complet

import java.u t i l ;
public class FonctionMathématique
{
public static void main(String [] argument)
{
double résultat, a, b;
Scanner lectureClavier = new Scanner(Systein.in);
System.out.print["Entrez une premiere valeur

I a = lectureClavier.nextDoublet);
System.out.print["Entrez une seconde valeur :");
b = lectureClavier.nextDouble();
résultat - Math.cos(a)
System.out.printIn(" Cos
résultat = Math.sin{a)
System,out,println("Sin
résultat = Math,tan(a)
System.out.println("Tan
résultat - Math.log(a)
System.out.println("Log
résultat = Math.exp(a)
System.out.println("Exp("
résultat = Math.floor(a)
System,out.println("Floor(
résultat = Math.ceil(a) ;
System.out.println("Ceil{"
résultat = Math.sgrtia) ;
System.out.println("Sqrt("
résultat = Math.powia,b) ;
System.out.println("Pow("
résultat = Math.abs{a) ;
System.out.println("Abs("
résultat = Math.maxia,b) ;
System.out.println("Max("
résultat = Math.minta, b) ;
System.out.println("Min("
résultat = Math.random() ;
System.out.println("Random()

+ a + ") = " + résultat);

a + ") = " + résultat)

" + a + ") = " + résultat);

" + a + ”) = " + résultat);

a + ") = " + résultat);

: " + résultat);

") = " + résultat);

") = " + résultat) ;

, " + b +") = " + résultat);

) = " + résultat);

, " + b + ") = " + résultat)

+ résultat)

+ a +

a +

+ a +

+ a +

■I- a +

+ a + + b + ") -

+ résultat);
}

146 © Éditions Eyrotles

clrapKre 1° 5 De t'atgormiine paraméiré à ¡’écriture de foncaons

mI I

Une ft>is les instruelions de ce prugramme compilées, l’inteTpréteur Java les exécute une à une.

Qu’affiche le programme FonctionM athém atique si l’utilisateur entre les valeurs 0 .1 et 2 ?

L'exécution du programme réalise l'affichage suivant :
Les caractères grisés sont des valeurs choisies par l’utilisateur,

Entrez une premiere valeur : 0.1
Entrez une seconde valeur : 2
Cos(O.l) = 0.9950041652780257
Sln(O.l) = 0.09983341664682815
Tan(0.1) = 0.10033467208545055
Log(O.l) = “2.3025850929940455
Exp(O.l) = 1.1051709180756477
Floor(0.1) = 0.0
Ceil(O.l) = 1.0
Sqrt(0.1) = 0.316227756011683794
PowtO.l, 2.0) = 0.01
Abs(O.l) = 0.1
Max(0.1, 2.0) = 2.0
Min(0.1, 2.0)= 0.1
RandortiO = 0.5993848420032578

Principes de fonctionnement
L’étude de ce programme met en évidence plusieurs aspects importants concernant l’utilisa­
tion des fonctions et leur mode de fonctionnement.

V)
ôU>-
LU

T~{
OfN
@
jT
•SP
>•Q.O
U

Le nom des fonctions

• Le nom de chaque fonction est défini par le langage Java. Pour connaître le nom des diffé­
rentes fonctions proposées par le langage Java, il est nécessaire de consulter l’aide en ligne
du compilateur ou le site Internet de Sun (voir l’annexe « Guide d’installations », sec­
tion « Installer la documentation en ligne »), ou encore des livres plus spécifiques sur le lan­
gage Java et les bases de données ou les réseaux.

L'exécution d'une fonction passe par l'écriture, dans une instruction, du nom de la fonction
choisie, suivi de paramètres éventuels placés entre parenthèses.

© Éditions Eyrol/es 1 4 7

I name B° 2 iniflation à la Drogrammailon orfenlée oblel

Mémoriser le résultat d ’une fonction

Pour mémoriser le résultat du calcul, la fonction est placée dans une instruction d'affec­
tation. La fonction, située à droite du signe =, est exécutée en premier. Après quoi, la
variable située à gauche du signe = récupère la valeur calculée lors de l’exécution de la
fonction.

Pour plus d’informations, voir, au chapitre 1, « Stocker une information », la section « Rôle
et mécanisme de l’affectation ».

Dans notre exemple, toutes les fonctions de la bibliothèque Math fournissent en résultat une
valeur numérique de type double. En conséquence, la variable résultat, qui récupère le
résultat de chaque fonction, est déclarée de type double.

Les paramètres d ’une fonction

Les fonctions possèdent zéro, un, voire deux paramètres. Ainsi :
• La fonction Math. random () ne possède pas de paramètre. Cette fonction donne en

résultat une valetir au hasard, comprise entre O.ü et 1.0, indépendamment de toute condi­
tion. Aucun paramètre n’est donc nécessaire à sa bonne marche.

• Signalons que même si la fonction n’a pas de paramètre, il reste nécessaire de placer des
parenthèses, ouvrante puis fermante, derrière le nom d’appel de la fonction. Si aucune
píucnthcsc n'esi placée, le compilateur ne considère pas le terme Math, random conuuc
une fonction mais comme un nom de variable.

riïtiiif-iliijild Toute fonction possède dans son nom d’appel des parenthèses, ouvrante puis fermante.

if)

OL_>LU
LOT~{
0 fN
@
..i-ix :01'k_>Q.OU

m La fonction Math, sqrt () ne comporte qu’un seul paramètre, puisqu’elle calcule la
racine carrée d’un seul nombre à la fois. Il est possible de placer entre parenthèses
une expression mathématique plutôt qu’un paramètre. Ainsi. l’expression
Math, sqrt (b*b - 4*a*c) permet le calcul de la racine carrée du discriminant d’une
équation du second degré.
Obseivons que le paramètre placé entre parenthèses dans la fonction Math. sqrt () est de
type double. De cette façon, il est possible de calculer la racine carrée de tout type de
valeur numérique, les types byte, short, int ou long se transformant sans difficulté en
type double.

Î̂ ï ï iT M Î^ j îT i^ Pour plus d’informations, voir, au chapitre 1, « Stocker une information », la section « La
transformation de types ».

148 © Editions Eyrotles

chapitre № S De ratgorfihroe paramétré à l'écriture de fonctions

Tl n’esl pas permis de placer en paramètre un caractère, une suite de caractères ou un boo­
léen. Par exemple, le fait d’écrire Math, sqrt ("Quatre") entraîne une erreur en
cours de compilation, l’ordinateur ne sachant pas transformer le mot « Quatre » en la
valeur numérique 4 (message d’erreur ; Incompatible type for method. Can't
convert java.lang.String to double) .

t i M ï ï t l i P Dans l’appel de la fonction, le type des paramètres doit être respecté, sous peine d'obtenir une
erreur de compilation.

La fonction Math. pow (a, b) possède deux paramètres pour calculer a^ (a à la puissance
b). Ces paramètres sont séparés par une virgule. Si les valeurs a et b sont inversées dans
l’appel de la fonction (Math, pow (b, a)), le calcul effectué a pour résultat b® (b à la puis­
sance a).

Remarque Dans l'appel de la fonction, l’ordre des paramètres doit être respecté, sous peine d'obtenir un
résultat différent de celui attendu.

Les fonctions étudiées dans cette section sont des fonctions prédéfinies par le langage Java. Le
programmeur les utilise en connaissant le résultat qu’il souhaite obtenir. Les programmes ainsi
écrits sont constitués d’instructions simples et d'appels à des fonctions connues du langage
Java.
Le langage Java offre aussi au programmeur la possibilité d’écrire ses propres fonctions de
façon à obtenir différents programmes adaptés au problème qu’il doit résoudre. Nous éludions
cette technique à la section qui suit.

CoNstntire ses propres fonctions

iJ)

>•
LU
LOrH
0 rvl
@
..UJ
j::01'k_>-
ClO
U

Une fonction dévek)ppée par un programmeur s’utilise de la même façon qu’une fonction
prédéfinie. Elle s’exécute en plaçant l’instruction d’appel à la fonction dans le programme.
Cette étape est décrite à la section « Appeler une fonction ».
Pour que l’ordinateur puisse lire et exécuter les instructions composant la fonction, il convient
de définir cette dernière, c’est-à-dire d’écrire une à une les insti-uctions qui la composent.
Plusieurs étapes sont nécessaires à cette définition. Nous les étudions à la sectnin « Définir une
fonction ».
Pour mieux cerner les difficultés liées aces opérations, nous allons prendre comme exemple la
création J’une fonction qui calcule le périmètre d’uii cercle de rayon quelconque.

> Éditions Eyrolles 149

paiHc n° 2 Initiation I la Drogrammation orientée oblet

Appeler une fonction
Toute fonction possède un nom d’appel, qui permet de ridenlifler. Ce nom est choisi de façon
à représenter et résumer tout ce qui est réalisé par son intermédiaire. Dans notre exemple,
nous devons calculer le périmètre d’un cercle. Nous appelons donc la fonction qui réalise ce
calcul, c’est-à-dire périmètre ().

Remarque D’une manière générale, une fonction représente une action. C ’est pourquoi le choix d'un
verbe comme nom de fonction permet de mieux symboliser les opérations réalisées. Ici, le
terme périmètre () n’est pas un verbe, mais il faut comprendre par périmètre () l'action
de calculer le périmètre.

ifi

><
LU
KOrHOfN
@
JZ
CT'k—>-Q.O
U

150

Le nom de la fonction périmètre () étant défini, nous souhaitons calculer le périmètre d'un
cercle dont la valeur du rayon est saisie au clavier. Pour cela, observons le programme qui
calcule la racine carrée d’un nombre saisi au clavier :
double résulat, a,-

I Scanner lecturedavier = new Scanner(System.in);
System.out.print("Entrez une valeur
a = lectureClavier.nextDouble();
résultat = Math.sgrt(a) ;
System.out.printlnf"Sgrt(” + a + ") = " + résultat);

L’in.struction résultat = Math.sqrt(a) ; calcule la racine carrée du nombre a, dont la
valeur a été saisie au clavier à l’instruction précédente. Elle place ensuite le résultat de ce
calcul dans la variable résultat.
En modifiant le nom d’appel de la fonction Math, sqrt () par périmètre (), nous obte-
nt3n.s un programme qui appelle la fonction périmètre () et qui, par conséquent, calcule le
périmètre d’un cercle dont la valeur du rayon a, est saisie au clavier. La valeur du périmètre est
placée dans la variable résultat par l’intermédiaire du signe d’affectation =.
Pour notre exemple, te programme d’appel à la fonction périmètre {) s’écrit :
public static void main(String [] paramétré)
{
// Déclaration des variables
double résultat ;
int valeur ;
Scanner lectureClavier = new Scanner(Systera.in);
System.out.print["Valeur du rayon : ");
valeur = lectureClavier.nextint();
résultat = périmètre (valeur);
System, out. print ("rayon - " + valeur + " perimetre = " -t- résultat);

1

© Éditions Eyrotles

chapitre n° S De l'atgorfihine paraméiré à i'écriiure de foncdons

(M i n Que se passe-t-il si l’on veut compiler ce programme (après l’avoir inséré dans une classe) ?

M M Le compilateur atfiche le message d’erreur suivant :

cannot resolve symbol,
symbol : method périmètre (int)

En effet, la fonction périmètre () n’est pas encore définie ; le compilateur n’est donc pas
en mesure de comprendre à quoi correspond le terme périmètre () .

Le programme ainsi écrit permet de calculer le périmètre d’un cercle de rayon donné, à la
seule condition de définir la fonction périmètre () dans le programme. En effet, celte fonc­
tion n’est pas prédéfinie dans le langage Java, et il est nécessaire de détailler le,s instmctions
qui la compo,scnt.

Définir une foncflon
La définition d’une fonction fournil à l’ordinateur les instructions à exécuter lors de l’appel de
la fonction. Cette opération passe par les étapes suivantes ;
• déterminer les instructions composant la fonction ;
• associer le nom de la fonction aux instructions ;
• établir les ptiramètres utiles à l’exécution de la fonction ;
• préciser le type de résultat fourni par la fonction.
De façon à mieux comprendre le rôle de chacune de ces étapes, définissons la fonction qui
calcule le périmètre d’un cercle de rayon quelconque.

Déterminer les instructions composant la fonction

Pour sélectionner les instructions utiles au calcul du périmètre d’un cercle, reprenons le
programme Cercle.

Voir, au chapitre introductif, « Naissance d’un programme », la section « Un premier
programme en Java »,

i/i

>-
LU
KOrHOfN
@
JZgi'k_
Q.O
U

import java.u t i l ;
public class Cercle
i
public static void main(String [] argument)
{
// Déclaration des variables
double r, P ;

© Éditions Eyrolfes 151

Darde B° 2 Iniflation à la Drogrammaaon ortenlée iriilet

Scanner lectureClavier = new Scanner (System., in) ;
// Afficher le message "Valeur du rayon : " à l'écran
System.out.print("Valeur du rayon : ;
// Lire au clavier une valeur, placer cette valeur dans la variable r
r = lectureClavier.nextDouble() ;
n Calculer la circonférence en utilisant la formule consacrée
P = 2*Math.PI*r ;
// Afficher le résultat
System,out.print{"Le cercle de rayon "+ r +" a pour

perimetre ; "+ p);
}

i/)(U

>-UJ
y£>T~{
OfN
@
x:Ol
ClO
U

Nous avons observé, lors de la mise en œuvre d’algorithmes paramétrés, que la marche à
suivre décrivant l’algorithme devait être la plus générale possible (voir la section « Définir les
paramètres »). C’est pourquoi, pour notre cas, seules les instructions r
// Déclaration des variables

double r, P ;
// Calculer la circonférence en utilisant la formule consacrée

P = 2*Math.PI*r ;

sont utilisées dans la fonction de calcul du périmètre d’un cercle. Les instruelions relatives à la
demande de saisie d’une valeur au davier ne sont pa.s à placer dans la fonction. Pour vous en
convaincre, observez que l’ordinateur, à l’appel de la fonction Math, sqrt O , ne demande
pas de valeur à saisir. 11 ne fait que calculer la racine carrée d’une valeur passée en paramètre.
Les instructions ainsi choisies sont placées dans ce que l'on appelle, dans le jargon informa­
tique, le corps de la fonction, et ce de la façon suivante :
// Définition du corps de la fonction
{ // début de la fonction
double P, r;
P = 2 Math.PI r :

152

} // fin de la fonction

Le corps de la fonction est déterminé par les accolades { et }, Les instructions qui le
composent sont ici des déclarations de variables et des instructions d’affectation. Dans
d’antres cas, peuvent aussi figurer des instructions de test, de répétition, etc.

Associer le nom aux instructions

Une fois écrit le corps de la fonction, il est nécessaire de l’associer au nom d’appel de la fonction.
Le nom d’une fonction est lié au bUx- d’instructions qui la compose, grâce à un en-tête de
fonction. Ce dernier a pour forme
I public static type nomdelafonction (paramètres)

© Éditions Eyrolles

chapitre n° S De raigorfiiime paraoiéiré à récriture de foncflons

L’en-tête d’une fonction permet de préciser :

• Le nom de la fonction (pour notre exemple le n o m d e la fo n c t io n est p é r im è tre) .

• Les p a ra m è tre s éventuels de la fonction.

• Le ty p e de résultat fourni par la fonction.

Les mots-clé.s p u b lic s t a t i c sont à placer pour l ’instant obligatoirement devant le type de
résultat de la fonction.

|t It i Mous expliquons la présence de ces term es à la section « Collectionner un nombre fixe
d'objets » du chapitre 9, « La ligne de com m ande », car ils sont liés aux concepts de la
programmation objet.

L’en-tête d’une fonction se place, comme son nom l’indique, au-dessus du corps de la fonction.
Pour notre exemple, il se place de la façon suivante :

l i En-tête de la fonction
public static t y p e périmètre { p a r a m è t r e s)

{ // début de la fonction
double P, r;
P = 2 * Math.PI * r;

} // fin de la fonction

De celte façon, le corps de la fonction est associé au nom p é r im è t r e {). À l’appel du nom
de la fonction p é r im è t r e () , l ’ordinateur exécute les instructions placées dans le corps de
la fonction.

t/>d)

>-LU
yûrHOrs|
@
x:oi'k_>-Q.O
U

Établir les paramètres utiles
Comme nous venons de le voir, le périmètre du cercle est calculé à partir du rayon, dont la
valeur est saisie avant l’appel de la fonction. La valeur du rayon est placée en ptu^amètre de la
fonction, comme lors du calcul de la racine carrée d’un nombre.

Le rayon du cercle est considéré comme le paramètre de la fonction p é r im è tr e (), et l’en­
tête de la fonction s’écrit comme suit :

I public static type périmètre (int r)

Comme la viuiable r est déclarée à rintérieur des parenthèses de la fonction p é r im è tr e (),
elle est considérée par le compilateur Java comme étant le paramètre de la fonction
p é r im è t r e (). L’ instruction de déclaration, située dans le corps de la fonction, doit être ainsi
modifiée :

I double p;

> Éditions Eyrol/es 153

partie в° 2 Initiation à la programmation orientée obiet

La variable r est déclarée dans l’en-têle de la fonction, et elle ne peut donc être déclarée une
deuxième fois à T intérieur de la fonction, sous peine de provoquer une en eur de compilation
(message d’erreur : v a r i a b l e ' r ' i s a l r e a d y d e f in e d in t h i s method).

Remarque Le param ètre r est aussi appelé paramètre formel. Il prend la forme (la valeur) de la variable
donnée au moment de l'appel de la fonction.

Pour bien comprendre cela, rappelons-nous de l ’algorithme du café ou du thé chaud, dans
lequel nous avons utilisé une variable ingrédient prenant la forme de café ou de thé suivant
ce que l ’on souhaitait obtenir, Tci, r prend la valeur de la variable valeur lors de l'appel de la
fonction résultat = périmètre (valeur) depuis la fonction main ().

Remarque Le param étre valeur fourni lors de l'appel de la fonction périmètre () est appelé paramètre
réel ou encore paramètre effectif. C ’est la valeur de ce param ètre qui est transmise au
param ètre formel lors de l’appel de la fonction.

С Ш Ш Ш Q ue se passe-t-i) au m om ent de la com pilation, si l’on écrit l’en -tête de la fonction p é r i ­
m è t r e (} de la façon suivante :
public static double périmètre ()

Réponse Le com pilateur affiche le m essage d’erreur suivant :
cannot resolve symbol variable r

En effet, l’instruction :
P = 2 * Math.PI * r;

se situe à l'intérieur de la fonction périmètre (). Il est donc nécessaire de déclarer une
variable r. Ce qui n’est pas fait, puisque r n’est déclaré ni à l’ intérieur de la fonction, ni
com m e param ètre de la fonction.

1Л(U

Ш
UO•rH
OГМ
@
r:oi
ClO
U

154

Préciser le type de résultat fourni
Une fois le périmètre calculé grâce à l’ instruction :

I P = 2 * Math.PI * r;

la valeur contenue dans la variable p doit être transmise et placée dans la variable résultat,
déclarée dans le programme décrit à la section « Appeler une fonction » de ce chapitre.
Pour ce faire, les deux opérations suivantes sont à réaliser :

• Placer une instruction r e tu r n , suivie de la variable contenant le résultat en fin de fonction.
Pour notre cas :

I return P ;

© Éditions Eyroües

GhapHre 1° 5 De I'atgorfihme paraméiré à récriture de (onctions

À la leclure de eette inslraction, le programme sort de la (onction p é r im è t r e () et transmet
la valeur contenue dans la variable p au programme qui a appelé la fonction p é r im è t r e ().
• Spécifier le type de la valeur retournée dans Геп-tête de la fonction. Pour notre exemple, la

valeur retournée est contenue dans la variable p de type d o u b le . C ’est pourquoi l’en-tête
de la fonction s’écrit :

I p u b lic s t a t i c doub le p é r im è tre (in t r)

De cette façon, le compilateur sait, à la seule lecture de l’en-tête, que la fonction transmet un
re'sultat de type d o u b le .
La fonction p é r im è t r e () s’écrit en résumé de la façon suivante :

p u b lic s t a t i c doub le p é r im è tre (in t r)
i

doub le p ;
p = 2 * M ath.PI * r ;
r e tu r n p ;

}
Dans notre exemple, la fonction p é r im è tr e {) utilise un seul paramètre et retourne un
résultat numérique. Dans d’autres situations, le nombre de paramètres peut varier, et les fonc­
tions peuvent avoir soit aucun, soit plusieurs paramètres. De la même façon, une fonction peut
ne pas retourner de résultat.

Ш Ш Q ue se passe-t-il au moment de la compilation, si l'on écrit l’en-tête de la fonction p é r im è tre ()
de la façon suivante ;

p u b lic s t a t i c i n t p é r im è tre (in t r)

Le compilateur atfiche le m essage d’erreur suivant ;

I p o s s ib le lo s s o f p r e c is io n
found : double
re q u ire d : in t

En effet, le résultat retourné est stocké dans la variable p qui est de type d o u b le , alors que le
type de retour précisé dans l’en-tète est i n t . Passer d ’un type d o u b le à un type i n t entraîne
une perte de précision qui peut gêner la bonne m arche du programme.

1ЛCJ

>•Ш
ЮT~i
OfN
@

oi'k_>Q.O
U

© Éditions Eyrol/es 155

partie B° 2 Initiation à la orogrammation orientée oblet

Les fonctions au sein d’un nrogramme Java

Avec les fonctions, nous voyons apparaître la notion de fonctions appelées et de programmes
appelant des fonctions.

Dans notre exemple, la fonction p é r im è tr e () est appelée par la fonction m ain (). Cette
dernière est considérée par l’ordinateur comme étant le programme principal (le terme anglais
main se traduit par principal). En effet, la fonction m ain () est la première fonction exécutée
par l'ordinateur au lancement d'un programme Java.

Toute fonction peut appeler ou être appelée par une autre fonction. Ainsi, rien n’interdit que la
fonction p é r im è tr e () soit appelée par une autre fonction que la fonction m ain {).

Seule la fonction m ain () ne peut pas être appelée par une autre fonction du programme.
Eu effet, la fonction main () n’est exécutée qu’une seule fois, et uniquement par l’imeipréteur
Java, lors du lancement du programme.

Comment placer plusieurs fonctions dans un programme
Les fonctions sont des programmes distincts les uns des autres. Elles sont en outre définies
séparément les unes des autres. Pour exécuter un programme constitué de plusieurs fonc­
tions, il est nécessaire, pour l’ instant, de les regrouper dans un même fichier, une même
classe.

(M J E E M I îD Voir, au chapitre 7, « Les classes et les objets », la section « Compilation et exécution
d ’une application multifichier ».

O
Ol_>LU
T~{
0rs
@
..l-lx:01'k_>-Q.OU

156

Pour des raisons pédagogiques, les fonctions main () et périmètre () ont été présentées
.séparément. En réalité, ces deux fonctions sont placées à l ’ intérieur de la même classe
C e r c le (définie notammeni au chapitre intnxluctif, « Naissanee d’un programme »).

Le programme prend la forme suivante :

in^ort java.util.*;
public class Cercle / / L e fichier s'appelle Cercle.java
{
public static void main{String [] arg)

i
// Déclaration des variables
int valeur ;
double résultat ;

© Éditions Eyrofles

chapitre n° S De raiaorfflime paramétré à récriture de (onctions

Scanner lectureClaviervaleur = lectureClavier.nextlnt();
résultat = périmètre (valeur) ;
System.out.print("rayon = " + valeur + " perimetre = " + résultat);
} // fin de maint)

public static double périmètre (int r)

double P ;
P = 2 * Math.PI * r ;
return P ;
} // fin de périmètre()

} //fin de class Cercle

En examinant la structure générale de ce programme, nous observons qu’ il existe deux blocs
d’instructions séparés, nommés m a in t) ot p é r im è t r e t). Ces deux blocs sont placés à
l’intérieur d'un bloc représentant la classe C e rc le , comme illustré à la figure 5-1.

putolicf cl<ai3s CeriTîle

public:
{

I

static voici mainiString [] arg)

public
t

}

atatic double périmètre (int r)

Figure 5-1 Les fonctions main() et périmètreQ, à l’intérieur de la classe Cercle.

U)<D

LU
VU
O
(N
@
szCT’l_5-D.O
U

Nous observons que la structure de la fonction p é r im è t r e () est très voisine de celle de la
fonction m ain (). Elle est constituée d'un en-tête, suivi d’un corps, formé d'un bloc défini par
des accolades, ouvrante et fermante.

Notons, pour finir, que la fonction m ain t) est ici placée avant la fonction p é r im è t r e ()
mais qu’il est aussi permis de récrire après. L’ordre d'apparition des fonctions dans une classe
importe peu et est laissé au choix du programmeur.

© Éditions EyroUes 157

partie B° 2 Initiation à la progranimailon orieniée oblel

Les différentes formes d’une fonction
Nous l’avons déjà observé (voir la section « Principes de fonctionnement » de ce chapitre), les
fonctions peuvent posséder zéro, un, voire plusieurs paramètres de différents types. De la
même façon, elles peuvent fournir ou non un résultat. Suivant les cas, leur définition varie
légèrement.

Fonction avec résultat
Comme nous l’avons observé lors de la définition de la fonction p é r im è t r e (), toute fonc­
tion fournissant un résultat possède un r e t u r n placé dans le coips de la fonction. De plus,
l’en-tête de la fonction possède obligatoirement un type, qui correspond au type du résultat
retourné.

Si une fonction retourne en résultat une variable de type i n t , son en-tête s’écrit p u b lic
s t a t i c i n t n o m d e la fo n c t io n ().

Remarque Une fonction ne retourne qu 'une et une seu le valeur. Il n ’est donc pas possible d ’écrire
l’instruction re tu rn sous la form e re tu rn a ,b ; pour retourner deux valeurs
au program m e ap pelan t. Dans un tel cas, le com pilateur détecte une erreur du type : « ' ; '
expected ».

Lorsqu’une fonction fournit plusieurs résultats, la transmission des valeurs ne peut se réaliser ptn
l ’intermédiaire de l ’instruction r e tu r n . Il est nécessaire dans ce cas d’employer des techniques
plus avancées (voir le chapitre 7, « Les classes et les objets »).

>-LU
UDrHOfN
@
JZgi
>-Q.OU

158

Fonction sans résultat
Une fonction peut ne pas fournir de résultat. Tel est, en général, le cas des fonctions utilisées
pour l’affichage de messages. Par exemple, la fonction menu () suivante ne fournit pas de
résultat et ne fait qu’exécuter les opérations selon la valeur du paramètre c h o ix :

public static void menu (int choix)
(

switch (choix)

I case 1 r
// Saisie d'une personne

break;
case 2 ;
// Afficher une personne

© Éditions Eyrolles

chapitre n° S De l'aioorfilime paraméiré à récriture de (oncOons

break;
}

} I l fin de m e n u O

L'en-tête public static void menu (int choix) mentionne que la fonction
menu () ne retourne pas de résultat grâce au mot-clé void placé devant le nom de la fonction.

Si une fonction ne retourne pas de résultat, son en-tête est de type v o id , et l ’instruction
return ne figure pas dans le corps de la fonction.

Fonction à plusieurs paramètres
Prenons pour exemple une fonction max () qui fournisse en résultat la plus grande des deux
valeurs données en paramètres :

I import java.uti1.* ;
public class Maximum / / L e fichier s'appelle Maximum.java
i
public static void m a i n (String [] paramétré]
{

I // Déclaration des variables
int vl, v 2 , sup;
Scanner lectureClavier = new Scanner(System.in);
System.o u t .print("Entrer une valeur : ");
vl = lectureClavier.nextInt();
System.out.print("Entrer une valeur : ");
v2 = lectureClavier,nextI n t ();
sup = max (vl,v2);
System.out.print("le max de " + vl + " et de " + v2 + " est " + sup) ;

) // fin de m a i n ()

(U

LU
SO
OfN
@
JZ
CT'k->-D.O
U

public static int max (int a, int b)
i
int m = a;
i£ (b > m) m = b;
return m;
} J / fin de m a x ()

I] //fin de class Maximum

La fonction max () possède un en-tête :

public static int max {int a, int b)

qui mentionne deux paramètres, a el b, de type entier.

© Éditions Eyrolles 159

partie B° 2 Initiation I la programmation orientée oblet

Nous observons t|ue :
• Lorsqu’une fonction possède plusieurs paramètres, ceux-ci sont séparés par une virgule.

L’en-tête d’une fonction peut alors prendre la forme suivante :

I public static int quelconque {int a, char c, double t}

• Devant chaque paramètre est placé son type, même si deux paramètres consécutifs sont de
type identique.

Q ue se passe-t-il si i’en-tête de ia fonction max () est écrit de ia façon suivante :
I public static int max (int a, b)

Le com pilateur affiche le m essage d’erreur suivant : id e n t if ie r expected.

Fonction sans paramètre
Une fonction peut ne pas avoir de paramètre. Son en-tête ne possède alors aucun paramètre
entre parenthèses.
Ainsi, la fonction s o r t i e !) suivante permet de sortir proprement de n’ importe quel
programme :

public static void sortie ()
{

I System.out.print("Au revoir et a bientôt...");
// Fonction. Java qui permet de sortir proprement d'un programme
System.exit(0);

1

><LU
KOrHOfN
@
JZ
CT'k->-D.OU

160 © Éditions Eyrotles

clrapKre 1° 5 Be I'atgormiine paraméiré à récriture de (oncflons

Résumé

>-LU
O■pH
OfN
@
JZ
CT'l—>-Q.O
U

Un algorithme paramétré est une marche à suivre qui fournit un résultat pouvant différer suivant la
valeur du ou des paramètres. Dans le langage Java, les algorithmes paramétrés s’appellent des
fonctions ou encore des méthodes.
Le langage Java propose un ensemble de fonctions prédéfinies fort utiles. Parmi ces fonctions, se
trouvent les fonctions mathématiques, telles que Math, sqrt (), pour calculer la racine carrée du
nombre placé entre parenthèses, ou Math . log (), pour le logarithme.
L’étude des fonctions mathématiques montre que :
• Pour exécuter une fonction, il est nécessaire d’écrire dans une instruction le nom de la fonc­

tion choisie, suivi des paramètres éventuels, placés entre parenthèses.
• Toute fonction possède, dans son nom d’appel, des parenthèses, ouvrante et fermante.
• Le type et l’ordre des paramètres dans l’appel de la fonction doivent être respectés, sous

peine d’obtenir une erreur de compilation ou d’exécution.
Le langage Java offre en outre au programmeur la possibilité d’écrire ses propres fonctions, de
façon à obtenir des programmes bien adaptés au problème qu’il doit résoudre. La définition d’une
fonction passe par plusieurs étapes, qui permettent de :
• Préciser les instructions composant la fonction, en les plaçant dans le corps de la fonction.

Ce dernier est déterminé par des accolades { }.
• Associer le nom de la fonction aux instructions à l’aide d’un en-tête, qui précise le nom de la

fonction, le type des paramètres (appelés paramètres formels) et le type de résultat retourné.
Cet en-tête se rédige sous la forme suivante :

public static type nomdelafonction (paramètres)
• Établir les paramètres utiles à l’exécution de la fonction en les déclarant à l’intérieur des

parenthèses placées juste après te nom de la fonction.
• Lorsqu’une fonction possède plusieurs paramètres, ceux-ci sont séparés par une virgule.

Devant chaque paramètre est placé son type, même si deux paramètres consécutifs sont de
type identique.

• Lorsqu’une fonction n’a pas de paramètre, son en-tête ne possède aucun paramètre entre
parenthèses.

• Préciser le type de résultat fourni par la fonction dans l’en-tête de la fonction et placer l’instruction
return dès que le résultat doit être transmis au programme appelant la tonction.
• Toute fonction fournissant un résultat possède un return placé dans le corps de la fonction.
■ L'en-tête de la fonction possède obligatoirement un type, qui correspond au type de résultat

retourné. Notons qu’une fonction ne retourne qu’une et une seule valeur.
« Si une fonction ne retourne pas de résultat, son en-tête est de type void, et l'instruction

return ne figure pas dans le corps de la fonction.
Une fonction peut être appelée (exécutée) depuis une autre fonction ou depuis la fonction main 1), qui
représente le programme principal. L’appel d’une tonction est réalisé en écrivant une instruction
composée du nom de la fonction suivi, entre parenthèses, d’une liste de paramètres.

© Éditions Eyrolles 161

partie B° 2 initialion à la Drogrammaaon otiHilée oblet

Exercices

Apprendre à déterm iner les param ètres d’un algorithm e

5.1 Pour écrire l’algorithme perm ettant de réaliser une boissorr plus ou moins sucrée, procédez de la
façon suivante :

a. Écrivez le bloc d’instructions qui place un nombre déterm iné de morceaux de sucre dans une
boisson chaude.

b. Déterm inez le param ètre qui perm et de sucrer plus ou moins la boisson.

c. Donnez un nom à l’algorithm e et précisez le paramètre.

d. Écrivez l’algorithme en utilisant le nom du paramètre.

e. Appelez l’algorithme param étré par son nom, en tenant compte du nombre de m orceaux de sucre
souhaité.

Comprendre l’utilisation des fonctions

fM üri 5.2 À la lecture du program m e suivant ;

public class Fonction

I ‘ public static void main{String [] paramétré)
{
// Déclaration des variables
int a,compteur;
for (compteur = 0; compteur 5; compteur++)
{
a = calculer(compteur);
System.out.print (a + " a ;

}
} // fin de maint)

(U

LU
00
tH
O<N
©

01
>•D.O
U

162

public static int calculer(int x)
{

int y;
y = X * x;
return y ;
) // fin de calculer 0

} //fin de class

© Éditions Eyrolles

chapitre n° S De l'aioorfiiime paraméiré à récriture de tonctloiis

a. Délimitez les trois blocs définissant la fonction m ain () , la fonction c a lc u le r () et la classe
F o n c t io n .

b. Quel est le paramètre formel de la fonction c a lc u le r () ?
c. Quelles sont les valeurs transmises au paramètre de la fonction c a lc u le r () lors de son appel

depuis la fonction m ain () ?
d. Quels sont les résultats produits par la fonction c a lc u le r () ?
e. Quelles sont les valeurs transmises à la variable a ?
f. Décrivez l’affichage réalisé par la fonction m ain () .

5.3 Soit la fonction ;
public static int f (int x)
{
int résultat;
résultat = - x * x + 3 * x - 2 ;
return résultat;

}

a. Ecrivez la fonction ma i n () qui affiche le résultat de la fonction f (x) pour x = 0.
b. Transformez la fonction m ain () de façon à calculer et à afficher le résultat de la fonction pour x

entier variant entre -5 et 5, Utilisez pour cela, dans la fonction m ain () , une boucle for avec
un indice variant entre - 5 et 5.

c. Pour déterminer le maximum de la fonction f (x) entre -5 et 5, calculez la valeur de f (x) pour
chacune de ces valeurs, et stockez le maximum dans une variable max.

Détecter des erreurs de compHation concernant les param ètres
ou le résultat d’une fonction

[M2© 5.4

ifi

OL->LU
T~{
0 fN
@
O—fx :01 'lI
Cl
O
U

Déterminez les erreurs de compilation des extraits de programmes suivants ;
a. En utilisant la fonction max () décrite au cours de ce chapitre ;

public static void main(String [] paramétré)
{
// Déclaration des variables
double vl, v 2 , sup;
Scanner lectureClavier = new Scanner(Systein.in);
System,out.print("Entrer une valeur ; ");
vl = lectureClavier.nextDouble();
System.out.print("Entrer une valeur :
v2 = lectureClavier.nextDouble0 ;
sup = max (vl,v2);
System.out.print{"Le max de " + vl 4 " et " + v2
} I l fin de main()

est

© Éditions EyroWes

sup)

163

partie B° 2 Initiation à la programmation orientée obiet

b.

c.

public static int max <int a, int b)
{

float m = a;
if <m < b) m = b;
return m;

} ¡ 1 fin de max()
En utilisant la fonction menu () décrite au cours de ce chapitre :
public static void main(String [] paramétré)
{
// Déclaration des variables

Il int vl, v2 ;
Scanner lectureClavier = new Scanner(System.in);
System.out.print("Entrer une valeur : ");
vl = lectureClavier.nextint();
vl = menu {v2);

} I l fin de main()

public static void menu {int c)
{

switch (c)
{ . . .

}
return c;

}

Ecrire une fonction sim ple

S i
Ôi_>LU
T~{
oCM
@

oi'k_
Q.OU

5.5 Écrivez la fonction p o u rce n ta g e {) , qui permet de calculer les pourcentages d’utilisation de la
Carte Bleue, du chéquier et des virements automatiques, sachant que la formule de calcul du pour­
centage pour la Carte Bleue est, comme nous Pavons vu au chapitre 1, « Stocker une information », la
suivante :
Nombre de paiements par Carte Bleue / Nombre total de paiements * 100.
Suivez les étapes décrites dans le présent chapitre :
a. Déterminez les instructions composant la fonction.
b. Associez le nom de la fonction aux instructions.
c. Pour déterminer les paramètres de la fonction, recherchez les valeurs pouvant modifier le résultat

du calcul.

164 © Éditions Eyrolles

chapitre n° S De raioorfiiiroe paramétré à l'écriture de (oncflons

Remaraue L’en-tête d’ime fonction ayant deux paramètres entiers s ’écrit :
public static type nomdelafonction(int a, int b).

d. Précisez le type de résultat fourni par la fonction.

e. Écrivez la fonction m a i n () qui fait appel à la fonction p o u r c e n t a g e () et qui perm ette
d’obtenir une exécution telle que :

Nombre de paiements par Carte Bleue : 5
Nombre de cheques émis : 10
Nombre de virements automatiques : 5
Vous avez émis 20 ordres de debit
dont 25.0 % par Carte Bleue

50.0 % par cheque
25.0 % par virement

V)
û;
ÔL_>LU
LO
tH
0 fN
@
..i-ix :01'k_
Cl
O
U

5.6 En vous inspirant de la structure de la fonction £ () de l’exercice 5 .3 et de la boucle d o . . . w h i l e
écrite au cours de l’exercice 4 .2 de chapitre précédent :

a. Écrivez la fonction v é r i f i e r () qui dem ande la saisie d’une valeur tant que celle-ci est com­
prise entre 0 et 1 0 0 . Dès que la valeur saisie appartient à l’intervalle dem andé, la fonction
retourne la valeur saisie, en résultat.

b. Exam inez le code suivant :

public class Exercices {
public static void main(String [] paramétré) {
int valeur;
valeur = vérifler();
System, out .print ("valeur -i- valeur);
}

} // fin de main{)

Q u e réalise l'application si l’utilisateur saisi les valeurs - 1 0 . 1 2 3 et 2 2 ?

c. Com m ent modifier la fonction v e r i f i e r () pour que la valeur saisie soit comprise non plus
entre 0 et 1 0 0 mais, entre deux valeurs a et b choisies par l’utilisateur.

d. Écrivez la fonction v e r i f i e r A v e c B o r n e s () qui prend en compte cette modification et faites
en sorte que la valeur saisie depuis la fonction m a i n () soit comprise entre 1 0 et 2 0 .

> Éditions EyroHes 165

oarüe B° 2 mitlalion à la Drogrammaiion oriealée lA let

Le projet : Gestion d’un compte bancaire

Le progranriine écrit au chapitie 4, «; Faire des répétitions », est suffisamment structuré pour y
placer des fonctions. En effet, chaque option du projet est un programme à part entière et peut
donc être décrite sous forme de fonction.
Dans le cadre de ce chapitre, nous allons construire trois fonctions relativement simples, qui
vont nous permettre de comprendre le mécanisme de construction des fonctions.

Définir une fonction
Les fonctions sans paramètre avec résultat
La fonction menuPrincipal () affiche le menu principal du programme et demande ta saisie
de l ’option choisie. Cette valeur doit être communiquée à la fonction m ain t) pour exécuter la
structure switch qui suit cette fonction.

a. Décrivez l’en-tête de la fonction menuPrincipal {), en prenant soin de préciser le
type correspondant à la valeur retournée.

b. Placez les instructioas relatives à l'affichage du menu et à la saisie de l'option dans le
corps de la fonction.

c. 'Vérifiez que l’operateur rsturn soit appliqué à la variable contenant le choix de l’option.

t/ï

>-LU
KOrHOfN
@
JZgi'k—>-Q.OU

166

Les fonctions sans paramètre ni résultat
La fonction s o r t i r () affiche un message de politesse avant de sortir proprement du
programme. Elle ne fournit pas de résultat et n’a pas non plus besoin de paramètre, puisque
aucune valeur spécifique n’est nécessaire à son exécution.

a. Décrivez l’en-tête de la fonction s o r t i r {}.
b. Déterminez les instnictions composant cette fonction et placez-les dans le corps de la

fonction,
La fonction a l A id e () affiche à l’écran une explication sur ce que réalise chaque option de
l’application.

a. Décrivez l ’en-tête de la fonction alAide ().
b. Déterminez les instructions composant cette fonction et placez-les dans le corps de la

fonction.

Appeler une fonction
Modifiez la fonction main () de votre programme de façon à utiliser les trois fonctions
alAide (), s o r t i r {} et menuPrincipal (), définies aux étapes précédentes.
L’exécution finale du programme doit être identique à celle du chapitre précédent. Seule la struc­
ture interne du programme est modifiée, ce dernier étant composé de quatre « blocs fonctions ».

© Éditions Eyrolles

Chapitre 6

F o n c flo n s , n o u o n s a va n c é o s

La création et rutilisation de fonctions dédiées à la résolution d’un prohlème donné sont, nous
l’avons observé au chapitre précédent, des opérations fondamentales, qui permettent le déve­
loppement de logiciels dont le code source est facilement réutilisable.
Ces fonctions transforment la structure générale des programmes et apportent, de ce fait, de
nouveaux concepts, qu’il est important de bien maîtriser avant d’émdter la programmation objet.
Nous commençons par examiner (section « La structure d’un programme »), ces nouvelles
notions, telles que la visibilité des variables, les variables locales et les variables de classe, à
partir d’exemples simples. Pour chacune de ces notions, nous observons leur répercussion sur
le résultat des différents programmes donnés en exemple.
Nous analysons ensuite (section « Les fonctions communiquent »), comment les fonctions
échangent des données par l’intermédiaire des paramètres et du retour de résultat. A partir de
cette analyse, nous constatons que ces modes de communication ne permettent pas toujours
d’obtenir l ’opération souhaitée.

<D

LU
VûrHOrvl
@
j::en
>•Q.OU

La stnicture d’un programme

Nous avons déjà observé (voir, au chapitre précédent, la section « Les fonctions au sein d’un
programme Java » } qu’un programme était constitué d’une classe, qui englobe un ensemble
de fonctions définissant chacune un bloc d’instructions indépendant.

© Éditions Eyrolles 167

I panic B° 2 initlallan à la Drogrammaiion otiHilée lAiet

En réalité, il existe trois principes fondamentaux qui régissent la structure d’un programme
Java. Ces principes sont détaillés ci-dessous.

1. Un programme contient ;
- une fonction principale, appelée fonction m ain {) ;
- un ensemble de fonctions définies par le programmeur ;
- des instructions de déclaration de variables.

2. Les fonctions contiennent :
- des instructions de déclaration de variables ;
- des instructions élémentaires (affectation, test, répétition, etc.) ;
- des appels ii des fonctions, prédéfinies ou non.

3. Chaque fonction est comparable à une boîte noire, dont le contenu n’est pas visible en
dehors de la fonction.

De ces trois propriétés, découlent les notions de visibilité des variables, de variables locales et
de variables de classe. Concrètement, ces trois notions sont attachées au lieu de déclaration
des variables, comme l’ illustre la figure 6-1.

<D

LU
VûtH
O<N
©

oi
Cl
O
U

168

public class NomDeLaClasse
t

/ / D é c l . a s r a ' t a . o n d a v a r i a l i l e a

pub l i c st.a’tic void main (String [] arg)
\

/ / D é d a r ’a . t i . o n d e - v g j i - g i h v l g s

//instructions élémeintaires (if, for, « . . >
/ / A p p e l d e fonctions prédéfinies ou non

p u b l i c ¡Static type n o m F o n c t i o n (paramètre)
/ / D ë d a ï r a ' t i . o n d A v a r - i . A t > X e s

//Instructions élémentaires (if, for,...)
//Appel de fonctions p r é d é f i n i e s ou non

Figure 6-1 Las variables peuvent être déclarées à l'intérieur ou à l ’extérieur des fonctions
mais toujours dans une classe.

Pour mieux comprendre ces différents concepts, nous allons observer un programme
composé de deux fonctions, m ain {) et m o d i f ie r (), et d'une variable, nommée v a le u r . La
fonction m o d i f i e r)) a pour objectif de modifier le contenu de la variable v a le u r .

) Éditions Eyrofles

chapitre n° 6 roDcdons, notions avancées

Pour chaque exemple, la variable v a l e u r est déclarée en un lieu différent du programme.
A partir de ces variations, le programme fournit un résultat différent, que nous analysons.

ISESMI Q ue se passe-t-il si l’on place l’instruction :

System.out.print("Bonjour ! ") ;
en dehors de toute fonction ?

Lors de la compilation, deux m essages d’erreur s’affichent :

<identifier> expected System,out.print("Bonjour ! ") ;
cannot resolve symbol : class out

En effet, les seules instructions autorisées en dehors des fonctions sont les instructions de
déclarations de variables.

La visibilité des variables
Après étude des trt)is propriétés énoncées ci-dessus, nous observons qu’un programme est
constitué de déclarations de variables et de fonctions. Il existe, de fait, une notion d’exté­
rieur et d’intérieur aux fonctions. Les instructions élémentaires, de type affectation, test, etc.,
se situent toujours à l’ intérieur d’une fonction, alors que la déclaration de variables est une
opération réalisable à l ’ intérieur ou à l’extérieur d’une fonction.

De plus, la troisième propriété énumérée ci-dessus exprime qu’une fonction ne peut pas
utiliser dans ses instaictions une variable déclarée dans une autre fonction. Pour mieux visua­
liser cette propriété, examinons le programme ci-dessous.

i/i

>-LU
KOrHOfN
@
JZoi'k_
Q.OU

Exemple : code source complet
public class Visibilité
{
public static void main(String [] arg)

{
// Déclaration des variables
int valeur = 2 ;
System.out.println("Valeur = " + valeur +
modifier[);
System.out.printI n ("Valeur = " + valeur +
1 I I fin de m a i n ()

avant modifier!) ")

apres modifier!) ")

© Éditions Eyrol/es 169

partie в° 2 intoaiion à la programmanon orientée objet

+ valeur + " dans modifier{) “);

public static void modifier {)
{
valeur = 3 ;
System.out.println("Valeur =
} // fin de modifier

} //fin de class Visibilité

Dans ce programme, nous constatons que l’instruction v a le u r = 3 ; , placée dans la fonc­
tion m o d i f ie r {), cherche à modifier le contenu de la variable v a le u r , déclarée non pas
dtuis la fonction m o d i f ie r {) mais dans la fonction m ain ().

p u b l i c c l a s s V i s i b i l i t é

{

p u b l i c s t a t i c vo id m a in (S t r in g |] arg)

{
/ fd.B з.а!эЛ.ев valeur

iiit vuleur = 2 г

p u b l i c s t a . t i c voi<i m o d if i e r <)

valeur = 3; ■■

1

)
________________1

Figure 6-2 Une variable déclarée dans une fonction n e peut p a s être utilisée p ar une autre fonction.

Cette modification n’est pas réalisable, car la variable v a le u r n’est définie qu’à rintérieur de
la fonction main (). Elle est donc invisible depuis la fonction m o d i f ie r (). Les fonctions
sont, par définition, des blocs distincts. La fonction m o d i f ie r () ne peut agir sur la variable
valeur, qui n’est visible qu’à l ’ intérieur de la fonction main {).
C’est pourquoi le M t d’écrire rinstriiction valeur = 3 ; dans la fonction modifier ()
provoque une erreur de compilation du type : Line 12 : Undefined variable :
valeur.

4Л

Ш
VPrH
Ors
@
JZ
CT'lI
Cl
O
U

170

Variable locale à une fonction
La deuxième propriété énoncée précédemment établit qu’une fonction est formée d'instructions
élémentaires, et notamment des instructions de déclaration de variables.

Par définition, une variable déclarée à l’intérieur d’ une fonction est dite variable locale à la
fonction. Pour l'exemple précédent, la variable v a le u r est ittcale à la fonction m ain (),

) Éditions Eyroffes

chapitre n° 6 Fonctions, notions avancées

Les variables Ux-ales n’existent que pendant le temps de l’exécution de la fonction. Elles ne sont
pas modifiables depuis une autre fonction. Nous l’avons vu à la section précédente, le contenu
de la variable v a le u r ne peut être modifié piu une instruction située en dehors de la fonction
m a i n {).
Cependant, le programmeur débutant qui .souhaite modifier à tout prix la variable v a le u r va
chercher à corriger, dans un premier temps, l’erreur de compilation énoncée ci-dessus. Pour
cela, il déclare une Viuiable v a le u r à l’intérieur de la fonction m o d i f ie r () et une autre à
l’intérieur de la fonction m a in () . De cette façon, la variable v a le u r est définie dans
chacune des fonctions, et aucune erreur de compilation n’est détectée. Examinons plus préci­
sément ce que réali.se un tel programme.

Exemple : code source complet
public class VariableLocale

I <
public static void main(String [] arg)

// déclaration de variables locales
int valeur = 2 ;
System.out.println("Valeur = " + valeur + " avant raodifierO ") ;
modifier();
System, out .println ("Valeur = " + valeur + " apres inodifierO ");
] // fin de m a i n ()

public static void modifier ()

i l déclaration de variables locales
int valeur ;
valeur = 3 ;
System.out.println("Valeur = " + valeur + " dans modifier() "];
} // fin de modifier

} //fin de class VariableLocale

Pour bien comprendre ce qu’effectue ce programme, construisons le tableau d’évolution de
chaque variable déclarée dans le programme V a r ia b le L o c a le . ja v a .

ûj
OL_

T~{
OCM
@
JZoi
>-ClOU

Le tableau d ’évolution des variables est décrit au chapitre 1, « Stocker une information », à
la section « Linslruction d’affectation ».

Puisque les fondions m a in () et m o d i f i e r (} sont des blocs d’instructions séparés,
l’ interpréteur Java crée un emplacement mémoire pour chaque déclaration de la variable
v a l e u r . Tl existe deux cases mémoire v a l e u r distinctes portant le même nom.

© Éditions EyroUes 171

partie a° 2 Initiation à la Drogrammaiion orientée olilet

Elles sont distinctes parce qu'elles n'appartiennent pas à la même fonction. Le tableau des
variables déclarées pour chaque fonction est le suivant ;

Variable locale à m aint) valeur Variable locale à m o d if ie r (] valeur

valeur = 2 ; 2 valeur = 3 ; 3

Résultat de Vexécution
L’exécution du programme a pour résultat :

Valeur = 2 avant modifier()
Valeur = 3 dans modifier()
Valeur = 2 apres modifier()

À l’exécution du programme, le premier appel à la fonction S y s t e m .o u c .p r in t ln ()
affiche le contenu de la variable v a l e u r définie dans la fonction m ain (), soit 2.

Le programme réalise ensuite les actions suivantes ;

• Appeler la fonction m o d i f ie r {) , qui affiche le contenu de la variable v a l e u r définie à
l’ intérieur de cette fonction, soit 3.

• Sortir de la fonction m o d i f ie r () et détruire la variable v a l e u r locale il cette fonction.

• Retourner à la fonction m ain () et afficher de nouveau le contenu de la variable v a le u r
définie dans la fonction m ain (), soit 2.

\fiO
Ol_>LU
T~{
0 fN

.4-1-T01'k_>ClOU

Figure 6 - 3 Toute i/ariabte déclarée à l’intérieur d ’une fonction est une variable locale,
propre à cette fonction.

172 © Éditions Eyrolles

cl»iii(rei°6 roDcOons, nDUons avancMs

La variable valeur est déclarée deux fois dans chacune des deux fonctions, et nous
constatons que la fonction modifier () ne change pas le contenu de la variable valeur
déclarée dans la fonction m ain {). En réalité, même si ces deux variables portent le même
nom, elles sont totalement différentes, et leur valeur est stockée dans deux cases mémoire
distinctes.

En cherchant à résoudre une erreur de compilation, nous n’avons pas écrit la fonction qui modifie
la valeur d’une variable définie en dehors d’elle-même. Cette modification est impossible dans
la mesure où la variable v a le u r n’est connue que de la fonction, et d’aucune autre.

Variable de classe
En examinant plus attentivement la première propriété définie au début de ce chapitre (voir
section « La structure d’un programme »), nous constatons que les classes contiennent égale­
ment des instructions de déclaration, en dehors de toute fonction. Les variables ainsi déclarées
sont appelées variables de classe. Elles .sont définies pour l ’ensemble du programme et sont
visibles depuis toutes les fonctions.

La déclaration des variables de classe se réalise conune décrit ci-dessous.

Exemple : code source complet
public class VariableDeClasse

I (
// déclaration de variables de classe
static int valeur ;
public static void main(String [] paramétré)
{

valeur = 2 ;
System, out .println ("Valeur = " + valeur " avant modifier{) ") ;
modifier();
System.out.println("Valeur = " r valeur i " apres modifier() ");
} // fin de m a i n ()

(U

UJ
iprHOfN
@
sz
CT'u>-Q.OU

public static void modifier ()
{
valeur = 3 ;
System.out .println("Valeur = " + valeur " dans modifier () ")
] // fin de modifier

) //fin de class VariableDeClasse

> Éditions EyroHes 173

oartle B° 2 inttlalion à la Dnwranimalioii orieniée rtijel |

Grâce à l ’instruction s t a t i c i n t v a le u r lu variable v a le u r est définie pour tout le
programme VariableDeClasse. Le mot-clé s t a t i c est important, car lorsque l’ interpré­
teur Java le rencontre, il créé une case mémoire en un seul exemplaire, accessible depuis
n’ importe quelle méthode.

JillUnlM Ù'iiïïii Les propriétés du mot-clé s t a t ic sont définies au chapitre 8, « Les principes du concept
Objet », la section « La communication objet ».

La representation par blocs dii programme (voir figure 6-4) montre que la variable valeur est
visible tout au long du programme.

Figure 6-4 Une variable déclarée en dehors de toute fonction est appelée variable de classe.

Puisque lu variable v a le u r est déclarée à l’extérieur des fonctions m ain {) et modi f i e r (),
elle est définie comme étant une variable de la classe VariableDeClasse. La variable
valeur existe tout le temps de l ’exécution du programme, et les fonctions définies à rintérieur
de la classe peuvent l ’utiliser et modifier son contenu.

<D

>-LU
KOrHOfN
@
JZ
CT'k—>-Q.O
U

174

Résultat de l'exécution
U exécution du programme a pour résultat :

Valeur = 2 avant modifieri)
Valeur = 3 dans modifier()
Valeur = 3 apres modifier{)

© Éditions Eyrolles

chapHre 1° 6 foncQons, nouons avancées

La variable v a l e u r étant une variable de dusse, l ’ordinateur ne créé qu’un seul emplacement
mémoire. Le tableau d’évolution de 1a variable est le suivant :

Variable de classe valeur
valeur = 2 n dans la fonction main() 2

valeur = 3 // dans la fonction modifier() 3
valeur = 3 n dans la fonction main() 3

Puisqu’ il n’existe qu’une seule case mémoire nommée v a le u r , celle-ci est commune à toutes
les fonctions du programme, qui peuvent y déposer une valeur. Lorsque la fonction m o d if ie r ()
place 3 dans la case mémoire v a le u r , elle écrase la valeur 2 , que la fonction m ain () avait
précédemment placée.

En utilisant le concept de variable de classe, nous pouvons écrire une fonction qui modifie le
contenu d’une variable définie en dehors de la fonction.

Quelques précisions sur les variables de classe
Puisque les variables locales ne sont pas modifiables depuis d’autres fonctions et que, à
l’ inverse, le.s variables de classe sont vues depuis toutes les fonctions du programme, le
programmeur débutant aura tendance, pour se simplifier la vie, à n’utiliser que des variables
de classe.

Or, Putilisation abusive de ce type de variables comporte plusieurs inconvénients, que nous
détaillons ci-dessous.

Déclarer plusieurs variables portant le même nom
L’emploi systématique des variables de classe peut être source d’erreurs, surtout lorsqu’on
prend l’habitude de déclarer des variables portant le même nom. Observons le programme
suivant :

>-LU
T~{
OfN
@
JZCT'k—>-Q.OU

public class MemeHom
i

> Éditions Eyrolles

// déclaration de variables de classe
static int valeur ;
public static void main(String [] paramétré)

valeur = 2 !

System.out.println("Valeur = " + valeur + " avant raodifierO ");
modifier[);

175

la r tle B° 2 Initiation à la Drrarammaiion otiHitee oblet

System,out.println["Valeur = " + valeur + " apres modifier()
} // fin de main()

public static void modifier {)
{

I SystQTi.out.println(valeur + " dans modifier!) avant la declaration");
// Déclaration de variables locales
int valeur ;
valeur = 3 ;
System.out.println(valeur + " dans modifier!) apres la declaration");

I } // fin de modifier
} //fin de class MemeNom

Dans ce programme, la variable valeur est déclarée deux fois, une fois conmie variable de
classe et une autre fois comme variable locale à la fonction modifier ().

Remarque Rien n ’interdit de déclarer plusieurs fois une variable portant le m êm e nom dans des blocs
d'instructions différents.

ifi

Le fait de déclarer deux fois la même variable n’est cependant pas sans conséquence sur le
résultat du programme.
Dans la fonction m o d i f ie r (), les deux variables v a le u r coexistent et représentent deux
cases mémoire distinctes. Lorsque rinstmetion v a le u r = 3 e.st exécutée, l ’interpréteur Java
ne peut placer la valeur numérique 3 dans les deux cases mémoire à la fois. 11 est obligé de
choisir. Dans un tel cas, la règle veut que ce soit la variable locale qui soit prise en compte et
non la variable de classe.
Le résultat final du programme est le suivant :

Valeur = 2 avant m o d i f i e r ()
2 dans modifier!) avant la déclaration
3 dans modifier!) après la déclaration
Valeur = 2 après modifier!)

La modification n’est valable que localeniem. Lorsque le programme retourne à la fonction
m ain (), la variable locale n’existe plus. Le programme affiche le contenu de la viviable de
classe, soit 2.

>-LU
LOtHO
fN

@
JZ
CT
>-D.OU

176

Le véritable nom d’une variable de classe
Une variable de classe se différencie des variables locales par son nom. Lorsqu’une variable
de classe est déclarée, rordinateur lui donne un nom, qui lui permet de la distinguer des autres
variables.

© Éditions Eyrotles

chapitre n° 6 Fonctions, notions avancées

Ce nom est constitué du nom de la classe, suivi d’un point puis du nom de la variable déclarée.
Pour l’exemple suivant, la variable de classe valeur s’appelle en fait Veritable-
Nom. valeur. Le programme peut s’écrire de la fa<;on suivante ;

public class VeritableNom
I <

I l Déclaration de variables de classe
static int valeur ;
public static void main(String [] paramètre)
{
VeritzdsleNom.valeur = 2 ;
System, out .println (VeritableKom.valeur + ■' avant modifierO ") ;
modifier();
System.out.println(VerltableNom.valeur + " apres modifier() ");
) // fin de m a i n ()

ûj
Ôl_>LU
rHOfN
@
4-1sz.en
>.Q.OU

Remamue

public static void modifier {)
{
System.out.println("Variable de classe
// Déclaration de variables locales
int valeur = 3 ;
System.o u t .println("Variable locale :
Veritableïlom, valeur = 3 j
System.out.println("Variable de classe

) I l fin de modifier
] //fin de class veritableNom

+ VeritableNcan. valeur) ;

+ valeur) ;

+ VeritableNom.valeur);

En écrivant la variable de classe par son nom véritable, l’ambiguïté sur l ’emploi de la variable
de classe ou de la variable locale est levée, et l’exécution du programme a le résultat suivant :

2 avant m o d i f i e r O
Variable de classe : 2
Variable locale : 3
Variable de classe : 3
3 après modifier!}

Pour éviter toute m éprise, il est recom m andé d’utiliser les variables de classe avec parcimonie
et chaque fois avec leur nom complet. En pratique, seules les variables qui présentent un intérêt
générai pour le program m e sont à déclarer com m e variables de classe.

> Éditions Eymltes 177

Dame B° 2 iniflation à la Drogrammaaon otiHiiée iriiiet

De Vindépendance des fonctions
Comme nous l’avons déjà observé (voir, au chapitre précédent la section « Algorithme para­
métré >0, Line fonction est avant tout un sous-programme indépendant, capable d’être exécuté
autant de fois que nécessaire et traitant des données différentes.
En construisant des fonctions qui utilisent des variables de classe, nous créons des fonctions
qui ne sont plus des modules de programmes indépendants mais des extraits de programmes
travailiunt tous sur le même jeu de variables.
Cette dépendance aux variables de classe nuit au programme, car il est nécessaire, pour réuti­
liser de telles fonctions, de modifier tous les noms des variables de classe de façon à les rendre
compatibles avec les nouveaux programmes.
En cas de développement de logiciels importants, comportant des centaines de milliers
d’instructions, la transformation et l’amélioration des fonctionnalités du programme se trouvent
fortement compromises. L’ensemble du code doit être examiné précisément afin de déterminer
où se trouve la variable de classe coucemée par la transformation envisagée.
Dans ce cadre, il convient de prendre les règles .suivantes :
• Utiliser les viuiables de classe en nombre limité, le choix de ce type de variable s’effec­

tuant en fonction de l’ importance de la variable dans le programme. Une variable est
considérée comme une variable de classe lorsqu’elle est conmtune à un grand nombre de
fonctions.

• Écrire uti programme de façon modulaire, chaque fonction travaillant de façon indépen­
dante. à partir de valeurs transmises à l ’aide des techniques étudiées à la section suivante.

Les fonctions communiquent

L’emploi systématique des variables de classe peut être, comme nous venons de le voir, source
d’eireurs. Pour limiter leur utilisation, il existe des techniques .simples, qui font que deux fonc­
tions communiquent le contenu d’une case mémoire locale de l’une des fonctions à une case
mémoire locale de l ’autre.
Ces techniques sont basées sur le paramétrage des fonctions et sur le retour de résultat.

Ifi<Li
is i Voir, au chapitre 5, « De l’algorithme paramétré à l’écriture de fonctions », la section « Les

différentes formes d’une fonction ».

>■LU
LOrHOr\I
@
JT
CT'k—>-ClO
U

178

Pour mieux cerner le fonctionnement de chacune de ces techniques, nous allons les étudier à
l’aide d’un programme composé de deux fonctions, main O et tripler () , et d’une variable
v a le u r , locale à la fonction main (). La fonction t r i p l e r () a pour objectif de multiplier
par trois le contenu de la variable v a le u r .

© Édftions EyroHes

chapitre n° 6 lODcUons, nouons avanc№

Le passage de param ètres par valeur
Notre contrainte est cette fois de n'utiliser que des variables locales. Nous supposons donc
que la variable valeur soit locale à la fonction maint). Pour multiplier par trois cette
valeur, la fonction tripler () doit connaître effectivement le contenu de la variable
valeur.
La fonction main () doit communiquer pour cela le contenu de la variable valeur à la fonc­
tion tripler (). Cette communication est réalisée en passiuit le contenu de la variable au
paramètre de la fonction tripler (), E\amint)ns le programme ci-dessous.

Exemple : code source complet
public class ParValeur

I {
public static void main (String [] arg)

I i
! 1 Déclaration des variables
int valeur = 2 ;
System, o u t . println ("Valeur = " + valeur + '' avant tripler!) ");
tripler(valeur);
System.o u t .println("Valeur - ” + valeur + " apres tripler!) ");
] J J fin de m a i n ()

>-LU
CO
OrN
©
sr.oi
D.OU

Remaraue

public static void tripler (int valeur)
{
System.ou t .println!"Valeur = " + valeur + " dans tripler() ");
valeur = 3 * valeur;
System.ou t .println!"Valeur = " + valeur + " dans tripler!) ");
} // fin de tripler

) //fin de class ParValeur

Dans ce programme, deux variables valeurs sont déclarées. La première est locale à la fonc­
tion main (), tandis que la seconde esl locale à la fonction tripler (). Cependant, comme
la seconde est déclarée dans l’en-têle de la fonction, elle est considérée conune variable locale
à la fonction et surtout, comme paramètre formel de la fonction tripler ().

Les param ètres formels sont définis au chapitre 5, « De l'algorithme param étré à l’écriture de
fonctions », la section « Définir une fonction ».

© Editions Eyrolles 179

partie a° 2 Initiation à la programination orientée oblet

De cette façon, lorsque la fonction t r i p l e r () est appelée depuis la fonction main (), avec
comme valeur de paramètre, le contenu de v a l e u r soit 2, la variable v a l e u r locale de
t r i p l e r () prend la valeur 2 (voir Figure 6-5).

Figure 6-5 Grâce au paramètre: le contenu d'une variable locale à la fonction appelante, main(),
est transmis à ¡a fonction appelée, triplerf).

Ensuite, la variable v a l e u r locale à la fonction t r i p l e r <) est multipliée par trois grâce à
l ’instruction v a l e u r = 3 * v a l e u r ; . La variable v a l e u r vaut donc 6 dans la fonction
t r i p l e r (). Lorsque le programme sort de la fonction t r i p l e r () et retourne à la fonc­
tion main () , il détruit la variable locale de la fonction t r i p l e r () et affiche le contenu de
la variable v a l e u r locale à la fonction main () , soit encore 2.

Résultat de rexécution

ifi

><LU
LOrHOrvl
®

Ol'k_
Q.
O
U

180

V a le u r = 2 a van t t r i p l e r {)
V a le u r = 2 dans t r i p l e r (}
V a le u r = 6 dans t r i p l e r (}
V a le u r = 2 a p re s t r i p l e r ()

Grâce au paramètre de la fonction t r i p l e r t), le contenu de la variable v a l e u r locale à
la fonction main () est transmis à la fonction t r i p l e r (). Une fois la fonction exécutée,
nous constatons que la variable v a l e u r de la fonction main() n'est pas modifiée pour
autant.

En effet, la valeur passée en paramètre est copiée dans la case mémoire associée au paramètre.
Même si le paramètre porte le même nom que la variable, il s’agit de deux cases mémoire
distinctes. La modification reste donc locale à la fonction.

© Éditions Eyrofles

chapitre n° 6 Fonctions, notions avancées

Remaraue Lorsqu’une fonction comm unique le contenu d ’une variable à une autre fonction par l’in term é­
diaire d'un param ètre, on dit que le paramètre est passé par valeur. Ce type de transmission
de données ne perm et pas de modifier, dans la fonction appelante, le contenu de la variable
passée en param ètre.

Le résultat d ’une fonction
Pour garder le ré.<îii]tat de la modification du contenu d’une variable en sortie de fonction,
une technique consiste à retourner la valeur calculée par rintemiédiaire de l’instruction
re tu rn .
Examinons le programme ci-dessous, qui utilise cette technique.

Exemple : code source complet
I p u b lic c la s s R ésu lta tI {

p u b lic s t a t i c vo id main (S tr in g [] arg)

I // D éclara tion des v a r ia b le s
i n t v a le u r = 2 ;
System .o u t .p r in t ln (" V a le u r = " + v a le u r +
valeur = tripler(v a le u r);

II System. out .p r in t ln ("Valeur = " -r v a le u r +
] // f i n de m ain{)

avant t r i p l e r () ");

apres t r i p l e r ()

<u

LU
UDtHOfN
@
jT01'k_
Q.
O
U

p u b lic s t a t i c int tripler (in t v)
{
System. o u t . p r i n t ln {"v = " + v -l " dans t r i p l e r !)
i n t r é s u l t a t = 3*v ;
System. o u t . p r i n t ln { "R ésultat = " -l r é s u l t a t

+ " dans t r i p l e r [) “);
return résultat ;

} // f i n de t r i p l e r
} //fin de c la s s R ésu lta t

Ici, le contenu de la variable v a le u r est passé au paramètre v de la fonction t r i p l e r ().
Puisque le paramètre formel (v) correspond à une case mémoire distincte de la variable effec­
tivement passée (v a le u r) , il est plus judicieux de le déclarer sous un autre nom d’appel que

© Éditions Eyrol/es 181

DaiHc B° 2 Intoation I la Drogrammanon orientée oblel

celui de la variable, de façon à ne pas les confondre. En général, et tant que cela reste possible,
nous avons pour convention de donnei comme nom d’appel du paramètre formel la première
lettre du paramètre réel. Pour notre exemple, v a l e u r est le paramètre réel. Le paramètre
formel s’appelle donc V.

Une fois le calcul réalisé à l’ intérieur de la fonction t r i p l e r (), la valeur résultante placée
dans la variable r é s u l t a t est transmise à la fonction m ainO qui a appelé la fonction
t r i p l e r (). Cette transmission est réalisée grâce à l’ instruction r e t u r n r é s u l t a t ; . Le
contenu du résultat est alors placé dans la variable v a le u r grâce au signe d’affectation =,
conmie l ’illustre la figure 6-6.

Figure 6 - 6 G râce au retour de résultat, le contenu d ’une variable locale à la fonction appelée
triplerQ e s t transmis à la fonction appelante main().

if)

Ôi_>LU
LO1—H
OÎN
@
JZgi
>.Q.OU

182

Résultat de Inexécution
V aleur = 2 avant t r i p l e r ()
V = 2 dans t r i p l e r 0
R ésu lta t = 6 dans t r i p l e r ()
V aleur = 6 après t r i p l e r ()

Grâce à la technique du retour de résultat et du passage de paramètre par valeur, les fonctions
peuvent échanger les contenus de variables. Les variables locales sont donc exploitables aussi
facilement que les variables de classe, tout en évitant les inconvénients liés à ces dernières.

© Editions Eyrotles

chapitre 1° 6 Fonctions, notions avancées

Lorsqu’il y a plusieurs résultats à retourner
Une difficulté subsiste : le retour de résultat ne peut se réaliser que sur une seule valeur. Il n'est
pas possible de retourner plusieurs valeurs à la fois. Si l ’on souhaite écrire l'algorithirie qui
échange le contenu de deux vaiiables sous forme de fonction, nous nous trouvons confronté au
problème décrit dans l’exemple ci-dessous.

Ш ш b c b Sur l’échange de valeurs reportez-vous, au chapitre 1, « Stocker une information », à la
section « Échanger les valeurs de deux variables ».

Exemple : code source complet
import j a v a . u t i l ;
public class PlusieursResultats

I {
public static void main (String [] arg)
1

int a , b ;
Scanner lectureClavier = new Scanner(System.in);
System.out.print("Entrer une valeur pour a
a = leOtureClavier.nextInt();
System.out.print("Entrer une valeur pour b
fa = lectureClavier.nextInt();
System. out .println {" a = "^-a+" b = ”+b) ;
échange (a^b);
System.out.print{"Apres échangé,
System.out.println{"a = "+a+" b = "+b);

) ;

) ;

(U

public static void échange(int x, int y)
1

int tmp = x;
X = y;
y = tmp;

>
LU
LOrH
O
(N

@
JZ
CT'k->-D.OU

}

La fonclion échange (} réalise théoriquement l'échange du contenu des deux variables
passées en paramètres. Si a prend la valeur 1 et qtie b vaut 2, après exéeution de la fonction
échange () a doit prendre la valeur de b, soit 2, et b k valeur de a, soit 1.

© Editions Eyrolles 183

partie B° 2 miflallan à la Drwgrammaiion otiHilée obiei

Quel est le résultat du program m e P lu s ie u r s R e s u l t a t s , en supposant que l’utilisateur
entre au clavier les valeurs 1 puis 2 ?

E ntrer une v a le u r pour a : i
E ntrer une v a le u r pour b : 2
a = 1 b = 2
Apres échangé,
a = 1 b = 2

En effet, les valeurs de a et b sont copiées dans les param ètres x et y. L’échange des valeurs
n’est donc réalisé que pour les variables x et y locales à la fonction échange () . Lorsque la
fonction échange () a fini d’être exécutée, a et b n’ont pas été modifiées.

Nous le constatons à l’exécution : aucun échange n’a été réalisé. Il n’y a rien d’étonnant à cela,
puisque le passage des paramètres est un passage par valeur et qu’il ne modifie pas le contenu
des paramètres réels a et b passés à la fonction échange ().
La solution qui consiste à retourner le résultat est impossible. En effet, il serait nécessaire de
retourner les deux VEU-iables échangées, et il n’est piis possible d'écrire r e t u r n x , y ; , la
syntaxe de cette instruction n’étant pas valide

niillliiilK*l^liïï^jïïiïi^ Voir, au chapitre 5, « De l’algorithm e param étré à l’écriture de fonctions ». la section « Les
différentes formes d ’une fonction ».

Dans l ’étal actuel de nos connaissances, nous ne sommes pas à même de récupérer différentes
valeurs modifiées au sein d’une fonction. En réalité, seul le concept d’objet permet de réaliser
un tel exploit. Nous l ’étudions au chapitre suivant.

ifi

><LU
KOrHOfN
@
JCCT'k—>-ClO
U

184 © Éditions Eyrotles

chapitre a° 6 foDcdons, iwaons avanc№

Résumé

i/i<D

>-
LU

T~i
OfN
@

CT
' l .>-
C lO
U

Un programme Java est structuré selon les trois principes fondamentaux suivants :
• Un program m e contient :

• une fonction principale, appelée fonction main () ;
• un ensemble de fonctions définies par le programmeur ;
• des instructions de déclaration de variables.

• Les fonctions contiennent :
• des instructions de déclaration de variables ;
• des instructions élémentaires (affectation, test, répétition, etc.) ;
• des appels à des fonctions, prédéfinies ou non.
Chaque fonction est comparable à une boîte noire, dont le contenu n’est pas visible en dehors
de la fonction.

De ces trois propriétés découlent les notions suivantes :
• Visibilité : toute variable déclarée à l’intérieur d’une fonction n’est visible que dans cette fonction

et ne peut être utilisée dans une autre fonction.
• Variable locale : toute variable déclarée à l'intérieur d’une fonction est une variable locale à

cette fonction. Ces variables n’existent que le temps de l’exécution de la fonction, et elles ne
sont pas modifiables depuis une autre fonction.

• Variable de classe ; les variables déclarées en dehors de toute fonction sont appelées des
variables de classe. Ces variables sont définies pour l’ensemble du programme, et elles sont
visibles et modifiables par toutes les fonctions de la classe.

Lorsqu’une variable de classe et une variable locale portant le même nom coexistent à l’intérieur
d'une tonction, la règle veut que ce soit la variable locale qui soit prise en compte et non la
variable de classe.
Les fonctions sont des blocs d’instructions distinctes. Pour communiquer le contenu d’une case
mémoire (variable) locale de l'une à une case mémoire locale de l’autre fonction, il est nécessaire
d'utiliser les techniques suivantes :
m Les paramètres des fonctions : lorsqu’une fonction communique le contenu d’une variable à

une autre fonction par l’intermédiaire d’un paramètre, on dit que le paramètre est passé par
valeur. Ce type de transmission de données ne permet pas de modifier, dans la fonction
appelante, le contenu de la variable passée en paramètre.

• Le retour de résultat : pour garder en résultat la modification du contenu d’une variable en
sortie de fonction, une technique consiste à retourner la valeur calculée par l’intermédiaire de
l’instruction return.

Ces deux modes de communication ne permettent pas de récupérer plusieurs données modifiées
à l'intérieur d’une fonction. Seul le concept d’objet, étudié au chapitre suivant, permet de réaliser
cette opération.

> Éditions Eyrolles 185

Darde B° 2 iniflation à la Drogrammaaon otiHilée oblet

Exercices

Repérer les variables locales e t les variables de classe

6.1 En observant ie prograinme suivant :

O
Oi_>
LU

T~{
OfN
@

import java,u t i l ;
public class Calculette
{
public static double résultat ;

public static void. main(String [] argument)
{
int a, b;
Scanner lectureClavier = new Scanner (System, in)
menu () ;
System.out.println("Entrer la premiere valeur ")
a = lectureClavier, ngîctint 0 ;
System.out.println("Entrer la seconde valeur
b = lectureClavier,nextint();
calculer ();
afficher [);

]

public static void calculer!)
{
char opération ;
switch (opération)
{
case '+’ : résultat = a 4 b ;

break ;
case : résultat = a - b ;

breali ;
case : résultat = a / b ;

brealt :
case : résultat = a * b ;

break ;
}

Ol'k_
Q.
O
U

186 © Éditions Eyroties

chapitre n° 6 foocOons, nouons avancMs

public static void afficher!)
{
char opération. ;
System.out.print(a + "

}
+opération + " + résultat);

public static void menu !)
(
char opération ;
Scanner lectureClavier = new Scanner(System.in);
System.out.println("Je sais compter, entrez l'operation, choisie")
System.out.println{" + pour additionner
System.out.printIn(" - pour soustraire '
System.out.println {"
System.out.printIn{"
Eys tem.out.pr in tIn{"

')

* pour multiplier
! pour diviser ")
(+, -, *, /) ? :

)

)
opération = lectureClavier,next().cbarAt(0);

]

a. Recherchez les différentes fonctions définies dans la classe C a l c u le t t e .
b. Dessinez le programme sous forme de schéma, en représentant les fonctions à l'aide de blocs.

Placez les variables dans les blocs où elles sont déclarées.
c. À l’aide du schéma, déterminez les variables locales à chacune des fonctions, ainsi que les variables

de classe.
d. Après exécution de la fonction menu () et lecture des deux valeurs numériques a et b , la fonction

c a l c u l e r () peut-elle réaliser l’opération demandée ? Pourquoi ?
e. Môme question pour la fonction afficher {},

Communiquer des valeurs à l ’appel d’une fonction

<D

>-
Ш
vOrH
O
rs|

@
S I

’lI>.Q.OU

[к и т я т а 6.2 Pour corriger le programme Calculette, nous supposons que les variables résultat et
opération sont déclarées en tant que variables de classe et non plus localement aux fonctions
af ficher () et menu ().
a. Modifiez le schéma réalisé en 1 .b, en tenant compte de ces nouvelles déclarations.
b. Quelle technique doit-on utiliser pour que les fonctions calculer () et afficher ()

connaissent le contenu des variables a et b, afin d’effectuer ensuite les instructions qui les
composent ?

c. Écrivez les fonctions en utilisant cette technique.

© Éditions Eyrolles 187

partie B° 2 Initiation à la programmation orientée oblet

n an sm em e ua résuHai à la tonciion appelante

6.3 Nous supposons que le programme C a lc u le t t e ne contienne plus de variables de classe. Les varia­
bles r é s u lt a t et o p é ra t io n sont maintenant déclarées localement aux fonctions qui les utilisent.
a. Quelles sont les conséquences de cette nouvelle hypothèse sur le résultat du programme ?
b. Comment la fonction c a lc u le r {) peut-elle connaître l’opérateur choisi par l’utilisateur dans la

fonction menu () ?
c. Transformez la fonction menu () de sorte que l’opérateur soit transmis à la fonction m ain {) .
d. Modifiez la fonction c a lc u le r () de façon à lui transmettre l’opérateur fourni par la fonction

menu(}.
e. Comment la fonction a f f ic h e r {) peut-elle connaître le résultat de la fonction c a lc u le r () ?
f. Transformez la fonction c a lc u le r () de sorte que le résultat soit transmis à la fonction m ain () .
g. Modifiez la fonction a f f ic h e r () de façon à lui transmettre le résultat fourni par la fonction

c a lc u le r () .

Le proiet ; Gestion d’un cempte Pancaire

Au diiipitre précédent, nous avons construit trois fonctions, a lA id e (), s o r t i r O et
menuPr i n c i p a l (), qui améliorent la lisibilité du programme. Ces fonctions eoncement
surtout l ’affichage de messages de dialogue de l’application vers rutilisateur (menu, aide,
etc.). Elles réalisent l ’interfaee entre Tutilisateur et l ’application sans transformer les données
propres à chiiqiie compte bancaire.
Pour réaliser íes opérations de création et d’affichage d’un compte (options 1 et 2 du menu),
nous allons ici construire des fonctions qui modifient, transforment les données d’un compte.

Comprendre la visibilité des variables
La fonction a f f i c h e r C p t e () réalise l’option 2 du menu principal de notre application.
Cette fonction affiche l ’ensemble des caractéristiques d’un compte, soit son numéro, son type,
son taux, s’il s’agit d'un compte d'épargne, et sa valeur courante. Nous supposons, que
l’ensemble de ces valeurs aient été préalablement saisies en option 1.

t/>
(U

LU
va•rH
Ors|
@
x:Ol
>Q.O
U

188

I^s variables locales
Une première solution pourrait s'écrire ;

F p u b lic s t a t ic v o id aff ic h e rC p te ()
{

long num ;
char type ;
double taux

© Editions Eyrolles

chapitre n° 6 foDchons, neilons av an cé

double val ;
System.out.print("Le compte n" : " + num + " est un compte ");
if (type == 'C') System.out.println(" courant “);
else if (type == 'J') System.out.println(" joint ");
else if (type == 'E')
{

I l affiche le taux dans le cas d'un compte d'épargne.
System.ou t .println[" épargné dont le taux est " + taux);

}
System.out.println{" v a le u r initiale : " + val);
1

Quelles valeurs sont affichées par cette fonction ? Pourquoi ?

Les variables de classe
Pour corriger la fonction précédente, il est nécessaire que la fonction ait accès aux valeurs
stockées lors de l’option 1.
Une première solution consiste à définir les variables à afficher comme variables de classe.

a. Transformez votre programme, et déclarez les variables num, ty p e , ta u x et v a l
comme variables de classe.

b. Retirez les déclarations des variables num, ty p e , ta u x et v a l dans la fonction
a f f ic h e rC p te () de façon à éviter qu’elles .soient encore utilisées par l’interpréteur
comme variables locales.

c. Exécutez votre programme et vérifiez que la fonction affiche correctement les valeurs.

Le passage de paramètres par valeur
Une seconde solution revient à déclarer les variables num, type, ta u x et v a l en paramètres
de ta fonction d’affichage, de façon à transmettre les valeurs saisies depuis la fonction
m ain () {option 1) à la fonction a f f icherCpte ().

a. Décrivez l ’en-tête de la fonction a f f icherCpte () , en prenant soin de déclarer en
paramètre une variable pour chaque caractéristique du compte à transmettre à la fonction.

b. Déterminez les instructions composant cette fonction, et placez-les dans le corps de la
fonction.

ifi<D

>■LU
KOrHOfN
@

01'k_>-Q.OU

Les lim ites du retour de résultat
La fonction c r é e r C p te (} rassemble les instructions de l ’option 1 , soit l ’affichage de
messages et la saisie au clavier des valeurs caractéristiques d’un compte.

a. Recherchez quel doit être le résultut de la fonction à transmettre à la fonction m ain ().
b. Pour décrire l ’en-tête de la fonction c r é e r C p te (}, est-il possible de déterminer le type

à placer dans l ’en-tête de la fonction ? Poui-quoi ?

> Editions Eyrolles 189

inй)

:>■ш
iûTH
ОrN
@

Ol
>■Q.
OU

Chapitre 7

Les desses el les obléis

L’étude du chapitre 6, « Fonctions, notions avancées », montre que, si une fonction fournit
plusieurs résultats, ceux-ci ne peuvent pas être transmis au programme appelant. Pour contourner
cette difficulté, il est nécessaire d’utiliser des objets, au sens de la programmation objet.

Pour comprendre les principes fondamentaux de la notion d’objet, nous étudions (section « La
classe String, une approche vers la notion d’objet »), comment définir et gérer des objets de
type s t r in g . Ce type permet la représentation des mots en tant que suites de caractères. A
partir de cette étude, nous analysons les instructions qui font appel aux objets s t r i n g afin
d’en comprendre les principes de notation et d'utilisation.

Nous examinons ensuite (section « Construire et utiliser ses propres classes ») comment
définir de nouveaux types de données. Pour cela, nous détenninons les caractéristiques
syntaxiques d’iine classe et observons comment manipuler des objets à l’intérieur d'une appli­
cation et comment utiliser les méthodes qui leur sont associées.

i/iCJ
ôL_>
LU

tHOfN
@
0-1

CT’k_>-Q.OU

La classe Sirbig, une approche de la notion d’objet

La classe String est une classe prédéfinie du langage Java. Elle permet de définir des
« variables » contenant des suites de caractères, autrement dit des mots, ou, dans le jargon
informatique, des chaînes d e caractères. Nous étudions comment définir ces « variables » à
la section ci-après.

© Éditions EyroUes 191

partie B° 2 Initiation à la Drogrammailon orfenlée oblel

Lu dusse S t r i n g est un type de données composé d’un grund nombre d'outils, ou méthodes,
qui facilitent l’utilisation des chaînes de caractères (voir la section « Les différentes méthodes de la
classe S t r i n g »).

Manipuler des mots en programmation
L'utilisation des chaînes de caractères apporte beaucoup à la convivialité des programmes
informatiques. Tl .serait impensable aujourd’hui de créer un logiciel de gestion du
personnel sans pouvoir définir le nom et le prénom de chaque employé. Dans le même
ordre d’idée, que serait la recherche d’ informations sur Internet sans ces fameuses chaînes
de caractères ?
Grâce aux chaînes de caractères, nous oublions le langage binaire, et il devient aisé de communi­
quer avec l ’ordinateur dans notre propre langue. Pourtant, rulilisation de ces fameuses chaînes
a longtemps été source de difficultés.

Les mots nécessitent un type de données particulier, du fait qu’un mot possède par nature, un
nombre quelconque de caractères. A la différence des formats int, d o u b le ou char, les
chaînes de caractères ne peuvent a priori, être représentées par un nombre fixe de cases mémoire.

<D

><
LU
KOrHOfN
@
JZ
CT'k—>-Q.O
U

192

Déclaration d^iine chaîne de caractères

Tout comme nous déclarons des variables pour stocker des valeurs entières ou réelles, nous
devons déclarer une variable pour mémoriser la suite des caractères d’un mot ou d’une phrase.
Le type de cette variable est le type S t r in g .

Le type S t r i n g n’est pas un type simple, puisqu’il permet de regrouper sous un seul nom de
variable plusieurs données, c’est-à-dire l ’ensemble des caractères d'un mot.

Pour éviter les difficultés liées à la variation du nombre de caractères dans un mot, le langage
Java lixe la longueur du mol en fonction de sa déelaj'ation. Cela fait, le contenu du mot ne peut
plus être modifié. En déclarant un objet de type S t r in g , il est possible, en même temps, de
l’ initiali.ser en lui affectant des caractères placés entre guillemets.

La déclaration suivante permet de créer un objet appelé mot, qui contient la chaîne de caractères
"exemple" :

String mot = "exemple";

Notons que la variable mot n’est pas un ensemble de sept cases mémoire contenant les sept
caractères du mot exem ple. Lors de la déclaration de la variable mot, l’ interpréteur Java crée
une case qui contient l ’adresse de la ease où se trouve le premier caractère du mot exem ple
(voir figure 7 - 1).

Lorsque l’ordinateur souhaite afficher la variable mot, il va rechercher l’information se situant
à l’adresse stockée dans la ca.se mémoire mot. On dit alors que la variable mot pointe sur la
case qui contient la suite de caractères.

© Éditions Eyrolles

chapitre n° 7 les classes et les omets

Remaraue Les variables de type s t r i n g ne contiennent pas directement l’information qui les caractérise
mais seulement l’adresse où trouver cette information. Dès lors, ces variables ne s’appellent
plus des variables mais des objets.

Les objets, au sens de la programmation objet, ne sont pas des « variables » de type simple
(in t , lo n g , d o u b le , c h a r , etc.). Ils correspondent à un type qui permet de regrouper
plusieurs données sous une même adresse.

Figure 7-1 Seul un objet de type String contenant le mot “exemple“ existe, mot
et second font tous deux référence à cet objet unique.

Lorsqu'un objet second est déclaré comme ci-dessous, il contient la même adresse (référence)
que l’objet mot.

I String second = mot ;

Si le programme mtxiifie le contenu de l’objet mot en lui affectant par exemple, une nouvelle
tliaîne, l ’inteipréteur ne modifie pas la case pointée par mot, dans la mesure où par définition,
le contenu d’un mot ne peut être modifié.

I mot = "nouveau";

II crée en réalité une nouvelle adresse et lui associe la nouvelle cbaîne de caractères. Pour
notre e.xemple, l’objet mot est associé à la chaîne de caractères "nouveau”, et secon d reste
associé à " exem ple ".

O
O1_>■
LU
KOrH0 ÎN
@
u-t
JZ01
ClO
U

m o t

0 x 7 0 7 0 7 0 7 0 --------------------> ■" n o u v e a u "

s e c o n d

0 x 2 2 0 2 2 0 2 2 ■" e x e m p l e "F

Figure 7-2 La modification de mot entraîne la création d ’une nouvelle chaîne de caractères
et d'une nouvelle référence, automatiquement attribuées à mot.

Lobjet second conserve la précédente référence.

i Editions Eyroües 193

partie B° 2 Initiation à la Drrarammaiion orientée lAlet

le s différentes méthodes de fa classe String
Uiitilisation des mots dans an programme esL auj{)urd’hai incontournable. Tl ne s’agit certes
pas simplement d’afficher des mots mais de les traiter de la façon la plus intelligente possible.
Ces traitements sont par exemple, le tri alphabétique ou encore la recherche de mots partieuliers
dans un texte.

Pour réaliser ces opérations, le langage Java propose un ensemble de méthodes prédé­
finies.

Remarque Les méthodes d’une classe sont comparables aux fonctions, mais la terminologie « objet » les
appelle méthodes.

Ces méthodes oTfrent la possibilité de traiter rapidement et simplement rint'ormation
textuelle. Nous décrivons ci-dessous, regroupées par thème, une grande partie des méthodes
définies dans la classe S t r in g . Nous donnons en exemple, pour chaque thème, un
programme qui utilise ces méthodes.

Recherche de mots et de caractères

O
Oi_>
LU
yO
tH
0 rs|
@
x:01
C lO
U

Opération Fonction Java

Recherche si le mot se termine par le ou les caractères passés en
paramètres.

endswich{)

Recherche si le mot commence par ie ou les caractères passés en
paramètres.

s ta rtsW ith t)

Recherche ie caractère placé à la position spécifiée en paramètre.
Le premier caractère occupe la position 0 et le dernier la position
length () -1 (voir ci-dessous la description de length ()).

charA t()

Localise un caractère ou une sous-chaîne dans un mot, à partir du début
du mot. Renvoie la valeur - i si le caractère ou la chaîne recherché ne
fait pas partie du mot.

indexOf C)

Localise un caractère ou une sous-chaîne dans un mot à partir de la fin
du mot. Renvoie la valeur-i si le caractère ou la chaîne recherché ne fait
pas partie du mot.

la stIn d e xO f()

Extrait une sous-chaîne d’un mot. su b strin g ()

194 © Éditions Eyrolles

chapitre n° 7 les classes et les objets

Exemple de recherche de mots et de caractères

import java.util.* ;
public class Rechercher (
public static void m a i n (String [] argument)
{
String phrase = "Mieux vaut tard que jamais";
String soumo ="";
int place;
Scanner lectureClavier = new Scanner(System.in);
System.out-println("Vous avez dit ; " + phrase);
soumo = phrase.substring(11,15);
System.out.println ("De 11 a 15, la sous chaîne est : " + soumo);
for (int i = 0; i < 5; i++)
System, out .println (" en " + i + " , i l y a ; "-i- phrase .charAt (i))

System.out.println{"Entrez un mot : ");
soumo = lectureClavier.next{);

i f (phrase.endsWith(somao})
System.o u t .println("La phrase se termine avec : " + soumo);

else
System.out.println("La phrase ne finit pas avec : " + soumo);

if)<D

>-
LU

O
fN

@

gi'k—>-
C lO
U

place = phrase.indexOf(soumo);
if (place == -1)
System.o u t .println("Ce mot n'existe pas dans : " + phrase)

else
System, out .println (sounio+" est a la position " + place);

}

© Editions EyroUes 195

I panic B° 2 initlallan à la Drrarammaiion orienlée oblel

fp f l ï ï î ï ï l Quel est le résultat de l’exécution du programme Recherche si l’utilisateur saisit le mot
tard au clavier ?

Vous avez dit : Mieux vaut tard que jamais
De 11 a 15, la sous-chaîne est : tard
En 0,
En 1,
En 2,
En 3,
En 4,

il y a
il y a
il y a
il y a
il y a

M
i
e
U
X

tard
Entrez un mot : tard
La phrase ne finit pas avec
tard est a la position : 11
Phrase et soumo sont deux objets de type String, initialisés respectivement à "Mieux vaut
tard que jamais" et "" (mot ne comportant pas de caractère).
Linstruction soumo = phrase.substring(11,15) ; recherche la sous-chaîne située entre
les caractères 11 et 15 de l'objet phrase. Cela fait, elle place l’ensemble de ces caractères
dans l’objet soumo.
Grâce à l’instruction phrase.charAt(i), placée dans l’instruction d’affichage
System, out. print, le programme affiche les cinq premiers caractères de l’objet phrase, i
variant de 0 à 4.
Ensuite, phrase.endsWithjsoumo) permet de savoir si l’objet phrase se termine avec la
suite de caractères saisie au clavier et stockée dans l’objet soumo. Le résultat de la méthode
endsMith (] est true si la chaîne se termine par l’argument et false dans le cas contraire.
Pour notre exemple, soumo vaut "tard", et la méthode retourne false. Le programme
exécute donc l’instruction placée dans le bloc e lse associé au test
if(phrase.endsWith(soumo)).
Pour finir, l’instruction phrase. indexOf (soumo) ; recherche si l’objet soumo est contenu
dans l'objet phrase. Si tel est ie cas, elle retourne la position du premier caractère trouvé,
sinon elle retourne-1 , Ici, tard est détecté dans "mieux vaut tard que jamais" en
position 11.

Ifi

O
>

LU

T~i
OfN
@
..UJ

qi'k_>-
C lO
U

196 © Éditions Eyrolles

chapitre a° 7 les classes et les omets

Quel est le résultat de l’exécution du programme Recherche si l'utilisateur saisi le mot mais
au clavier ?.

Vous avez dit : Mieux vaut tard que jamais
De 11 a 15, la sous-chaîne est : tard
En 0, il y a : M
En 1, il y a : i
En 2, il y a : e
En 3, il y a : U
En 4, i l y a : X
Entrez un mot : mais
La phrase se termine avec : mais
mais est a la position : 22
Si l’utilisateur saisit "mais" au lieu de "tard", le test if (phrase.endsWith(soumo)) est
vrai, la méthode endsWith{) retournant true. Le programme exécute donc l’instruction
placée dans le bloc if.

ifi

Oi_>•
LU

■pH
OfN
@
JZçn'u.>-
C lOU

f W Î T l Quel est le résultat de l’exécution du programme Recherche si l’utilisateur saisi le mot OK au
clavier ?

Vous avez dit : Mieux vaut tard que jamais
De 11 a 15, la sous-chaîne est : tard
En 0, il y a M
En 1, il y a i
En 2, il y a e
En 3, il y a U
En 4, il y a X
Entrez un mot : OK
La phrase ne finit pas avec : OK
Ce mot n^existe pas dans : Mieux vaut tard que jamais
Si l’utilisateur saisit "OK" au lieu de "mais", le test if (phrase.endsWith(soumo)) est
faux, et la méthode endsWithO retourne false. Le programme exécute l'instruction placée
dans le bloc else. De plus, l’instruction phrase. indexOf (soumo) ; retourne -1 car "OK"
n'est pas détecté dans "mieux vaut tard que jamais". Le programme exécute alors le
bloc if associé.

> Éditions Eyrolfes 197

partie B° 2 Inttiatlon à la programmanon orientée objet

Comparaison de mots

Opération Fonction Java

Compare deux mots et retourne une valeur :
- Nulle si les deux mots sont identiques.
- Positive si le premier mot est plus grand (placé après) le
deuxième mot (dans le dictionnaire).
- Négative si le premier mot est plus petit (placé avant) le
deuxième mot (dans le dictionnaire).

coinpareTo ()

Compare la valeur de deux mots. Elle retourne true si les deux
chaînes sont identiques et fa ls e dans le cas contraire.

equals()

Compare la valeur de deux mots sans différencier les
majuscules des minuscules. Elle retourne true si les deux
chaînes sont identiques et fa ls e dans le cas contraire.

equalsIgnoreCase()

Détermine si deux portions de chaînes sont identiques. Dans
l’affirmative, elle renvoie tru e .

regionMatches()

Exemple de comparaison de mots

public class Contparer
{
public static void mainCString [] argument)
{
String prvbl = "Le mieux est l'ennemi du bien";
String prvb2 ="Le Mieux Est l'Ennemi du bien";

a;
ôL.
LU
VO•rH
O<N
©
JZgi'k_>'D.OU

198

System, out. println (" 1 : ’’ + prvbl);
System.ou t .p r i n t l n C 2 : " + prvb2);

System.ou t .printlnCComparons les 10 premiers caracteres : ");

System.ou t .print("En tenant compte des majuscules : ");
if (prvbl.regioiïMatches (false, 0, prvb2, 0, 10))
System.out.println("Les 10 premiers cars sont identiques");

else
System.out.println("Il y a des differences sur les 10 premiers

cars");

System.out.print("Sans tenir compte des majuscules : ");
if (prvbl.regionMatches(18, prvb2 , 18, 6))
System.out.println("Les cars de 18 a 23 sont identiques");

else
System.out.println(“Il y a des differences");

if {prvbl.coiftpareTo{prvb2) == 0)

© Éditions Eyrofles

chapitre a° 7 U s classes ei les oiUeis

System.out.println("Les deux chaînes sont identiques");
else
{
if (prvbl.compareTo(prvb2) < 0)

System.out.print(prvbl + " est avant " + prvb2);
else

System.out.print(prvbl + " est apres " + prvb2);
System.out.println("dans le dictionnaire");

I J
) ;System.out.print("Sans tenir compte des majuscules

if (prvbl.equalsIgnoreCase(prvb2))
System.out.println("Les deux chaînes sont identiques");

else
System.out.println("Les deirx chaînes sont differentes”);

}

(U

>-LU

OfN
@
JZ
CT'k->-D.O
U

Résultat de Vexécution

1 : Le mieux est 1'ennemi du bien
2 : Le Mieux Est 1'Ennemi du bien
Comparons les 10 premiers caractères :
En tenant compte des majuscules : Il y a des différences sur
les 10 premiers cars
Sans tenir compte des majuscules : Les cars de 18 a 23 sont
identiques
Le mieux est l'ennemi du bien est apres Le Mieux Est l'Ennemi
du bien dans le dictionnaire;
Sans tenir compte des majuscules : Les deux chaînes sont iden­
tiques
Les objets prvbl et pvrb2 sont initialisés respectivement à "Le
mieux est l'ennemi du bien" et "Le Mieux Est l'Ennemi du bien".

La méthixle regionMatches () s’utilise soit avec quatre paramètres, soit avec cinq paramètres.
Dans ce programme, nous donnons en exemple les deux appels possibles :
• Le premier appel à la méthode utilise cinq paramètres (regionMatches (false, 0 ,

prvb2 , 0 , 10)). Le premiei'paramètre est un booléen qui, s’ il est égal à false, permet de
réaliser la comparaison des deux mots, en tenant compte de la pré,sence des majuscules. Pour
notre ca.s, la méthode détermine si les deux portions de chaîne prvbl et pvrb2 (correspon­
dant au troisième paramètre de la méthode) sont identiques, en tenant compte des majuscules.
Cette recherche est réali.sée à partir de la valeur spécifiée par le deuxième paiamètre (soit
0, c’est-à-dire le premier caractère de p rv b l) . Le quatrième paramètre représente la posi­

© Éditions Eyrolles 199

partie B° 2 Initiation à la programmation orientée oblet

tion du premier caractère ù comparer dans l ’objet p rv b 2 . Le cincjuieme est le nombre de
caractères consécutifs à comparer. Pour notre exemple, le programme recherche s’ il y a des
similitudes entre p r v b l et p rv b 2 , à paitir du début des deux mots, et ce sur dix caractères.

• Le deuxième appel à la méthode est composé de quatre paramètres (regionMatches
{18, prvb2 , 18, 6)). En fait, ces quatre paramètres correspondent aux quatre der­
niers paramètres de l’appel décrit précédemment. Le booléen figurant dans l’appel précé­
dant n’exi.ste plus, car, par défaut, cette méthode travaille sans tenir compte des maju.scules.
Elle est donc équivalente à l’appel de la méthode suivante : p r v b l . regionMatches
(true, 18, prvb2 , 18, 5).

Ensuite, rinstruciion p r v b l . com pareTo {p rvb 2) compare les objets p r v b l et p rv b 2 et
détermine s’ils sont identiques ou placés avant ou après dans l’ordre alphabétique.
Pour finir, l’ instruction prv b l . equalsIgnoreCase (prvb2) vérifie si les deux objets
prvbl et prvb2 sont identiques ou non, sans tenir compte de la présence des majuscules.

Exemple de comparaison de mots avec switch

class ComparerAvecSwitch {

ifiO
Oi_>
LU

T~{
0 fN
@
-T01'k_
Q.OU

public static void m a i n (String [] argument) {
String quelleCouleur = "";
Scanner lectureClavier = new Scanner(System.in);
System.out.printlni"Quelle couleur choisissez - vous (rouge,0
‘•vert, orange, bleu, violet, jaune) ? : ") ;
quelleCouleur = lectureClavier.nextLine();
switch (quelleCouleur) (
case "vert" :

System.out.println{“Vous devez mélanger du bleu avec du
‘•jaune “) ;

break ;
case "violet" ;

System.out.println(“Vous devez mélanger du bleu avec du
‘•rouge “) ;

break ;
case "orange" ;

System.out.println("Vous devez mélanger du rouge avec du
‘•jaune ") ;

break ;
default ;

System.out.println{"C'est une couleur primaire !") ;
} // Fin du switch

}
1

200 © Editions Eyrotles

chapitre n° 7 Les classes et les obfeis

Grâce à la nouvelle structure s w itc h de la version 7 de Java, il devient plus facile de
comparer l’égalité de deux mots. Dans cet exemple, Tutilisatenr saisit le nom d’une couleur et
le programme afJiche la composition de la couleur correspondante. La couleur choisie par
l’utilisateur est .stockée dans lu variable quelleCouleur. Cette variable est ensuite
comparée à chacune des couleurs proposées en choix, grâce à la structure s w itc h et aux
étiquettes vert, violet, default, etc. Selon la valeur de quelleCouleur, le programme
affiche le mélange de couleurs correspondant.

Remarque Lutilisateur doit saisir le nom de la couleur selon le format précisé dans la question, à savoir,
tout en minuscule pour être sûr d’obtenir le bon résultat. Dans le cas contraire, le programme
affiche que la couleur est une couleur primaire.

Transformation déformais

Opération Fonction Java

Transforme en minuscules la chaîne sur laquelle la méthode
est appliquée.

toLowerCase()

Transforme en majuscules la chaîne sur laquelle la méthode
est appliquée.

toUpperCase()

La méthode place (concatène) îa chaîne spécifiée en
paramètre à !a suite de la chaîne sur laquelle la méthode est
appliquée.

concat()

Remplace systématiquement dans la chaîne sur laquelle la
méthode est appliquée tous les caractères donnés en premier
argument par le caraclère donné en deuxième argument.

replace()

Calcule le nombre de caractères de la chaîne sur laquelle la
méthode est appliquée.

length()

ifi

><
LU
KOrHO
(N

@
x:qi'k_>Q.O
U

Exemple de transformation de format

public class Transformer
{
public static void m a i n (String [] argument)
{
String phrase = "Qui dort ";
String verbe = "dine";
String pl = "", p2 = "", p3 = " " J p4 = "";
int nbcar;
System.out.println{"l : " + phrase);

© Éditions Eyrolles 201

partie B° 2 Initiation à la Drogrammaiion otiHilée oblet

System.out.println{"2 ; ” + verbe)
pl = phrase.toUpperCase();
System,out,println("En majuscules
p2 = phrase.toLowerCase();
System.out.println("En minuscules
p3 = phrase.concat(verbe);
nbcar = p3.length!);
System.out.print{"Apres concat() :
System.out.println(p3 +" possédé :
p4 = p 3 .replace('i ','a ');
System.out.println("Apres replace()

}

+ pl);

+ p2) ;

') ;
+ nbcar + " caracteres");

+ p3 + " devient + p4) ;

Résultat de l ’exécution

û;
Ôl_>
LU
LOrHOfN
@
JCCT'k—>-Q.O
U

1 : Qui dort
2 : dine
En majuscules :
En minuscules :
Apres concat()
Apres r e p l a c e (}

QUI DORT
qui dort
Qui dort dine possédé ;
: Qui dort dine devient

13 caracteres
Qua dort dañe

Les objets phrase et verbe sont initialisés respectivement à "Qui dort '' et "dine".
L’ instruction pl = phrase. toUpperCase {) ; transforme en majuscules le contenu de
phrase et place cette transformation dans l’objet pl.
L’ instruction p2 = p h r a s e . toLowerCase {) place dans p2 le contenu de phrase trans­
formé en minuscules. Notons que, pour chacune de ces instructions, l ’objet phrase n’est
jamais modifié.

L’ instruction p3 = phrase . concat (verbe) ; place en bout de l’objet phrase le mot
contenu dans verbe. Cela fait, le résultat de cette opération est affecté à l’objet p3. L’objet
phrase n’est pas modifié.

Ensuite, l’ instruction nbcar = p3 . length () ; calcule la longueur de l ’objet p3, c’est-à-
dire le nombre de caractères constituant l ’objet p3.
Pour finir, l ’instruction p4 = p3 . replace { ' i ' , ' a ') ; remplace tous les caractères ' i '
dep3 par des 'a' et place le résultat de cette transformation dans l ’objet p4. L'objet p3 n’est
pas modifié.

202 © Éditions Eyrotles

chapitre n° 7 Les classes et les omets

changement de format appliquer à quelleCouleur pour être sûr que le nom de la
couleur saisie soit identique à celui des étiquettes définies dans la structure switch (voir la
section précédente « Exemple de comparaison de mots avec switch ») ?

Pour améliorer la performance du programme et obtenir une réponse correcte, vous devez
insérer, juste après la saisie de la couleur, l’instruction :
I guelleCouleur= quelleCouleur.toLowerCaseO ;
De cette façon, la variable quelleCouleur ne contient plus que des minuscules, même si l’utili­
sateur a saisi un nom de couleur avec des majuscules. La comparaison de quelleCouleur
avec les étiquettes a donc plus de chances d’être valide pour ensuite obtenir un résultat correct.

Appliquer une méthode à un objet
L’observation des exemples précédents montre que l’appel d’une méthode de la classe
String ne s’écrit pas comme une simple instruction d’appel à une méthode (fonction), telle
que nous l ’avons étudiée jusqu’à présent.

Comparons l'appel à une méthode de la da.sse Math à celui d’une méthode de la classe S t r in g .

Par exemple, pour calculer la valeur absolue d’une variable x, les instructions sont les suivantes :

double X = 4, y;
y = Math.abs(x)

Pour transformer un mot en lettres majuscules, les in.structions sont :

String mot = "petit", MOT;
MOT = m o t .toUpperCase{);

{ft<ü

>•
LU
Ю•rH
OГМ
©
s :oi
a.OU

Comme nous le con.statons, dans le premier cas, la fonction M a th .a b sO s’applique à la
variable x, en passant la valeur de x en paramètre. En effet, les variables x et y ne sont pas des
objets au sens de la programmation objet. Elles sont de type d o u b le et représentent simple­
ment le nom d’une case mémoire dans laquelle l’ information est stockée. Aucune méthode,
aucun traitement ne sont as.sociés à cette information.

Dans la seconde écriture, la méthode toUpperCase () est appliquée à l ’objet mot par l ’inter­
mediaire d’un point (.), placé entre le nom de l’objet et la méthode. Les objets mot et MOT ne
peuvent être considérés connue des variables. Ils sont de type String. L’information repré­
sentée par ce type n’e.st pas simple. Elle représente (voir figure 7-3) les éléments suivants ;

• D’une part, une référence (une adresse) vers un ensemble de caractères stockés dans plusieurs
cases mémoire distinctes.

• D'autre part, un ensemble de méthodes propres qui lui sont applicables. Ces méthodes sont
l ’équivalent d'une boite à outils, qui opère uniquement sur les objets de type S t r in g .

© Editions Eyrolles 203

Darde в° 2 mtfladon à la Dnwrammaiioii otlMiiée idijei |

m

Les instructions suivantes sont-eiies valides ?
int X = X . Math., sqrt O :
String mot = toUpperCase(mot) ;

Aucune des deux instructions n’est valide. En effet, dans la première instruction la fonction
Math. sqrt () est appiiquée à x, qui n’est pas un objet, mais une variabie de type int.
Dans la seconde instruction, la méthode toUpperCase () est employée comme une simple
fonction aiors qu’eile ne peut être appelée qu’à travers un objet de type string.

InlbrmíiiÉün, donncca

Suite de caractères

Outils* méthodes

c o m p a r e T o ()
e n d s W i t h ()
t a ü p p c r C a s c ()

Figure 7 -3 La c la sse String définit l ’association d e données et de m éthodes applicables à ces données.

Remarque Quelle qu’elle soit, une classe correspond à un type, qui spécifie une association de données
(informations ou valeurs de tout type) et de méthodes (outils d’accès et de transformation des
données). Ces méthodes, définies à l’intérieur d’une classe, ne peuvent s ’appliquer qu’aux
données de cette même classe.

Grâce à cette as.sociation, une classe permet la définition de nouveaux types de données, qui
structurent rinronnation a traiter (voir, dans ce chapitre, la section « Construire et utiliser ses
propres classes »).

ifi

><Ш
ЮrHOfN
@
JZCT'k—>-Q.O
U

204

Principes de notation
À cause de cette différence fondamentale de représentation de l’information, l’emploi des
méthodes à travers les objets utilise une syntaxe particulière.
Pour un objet de type S t r in g , cette syntaxe est la suivante :

// Déclaration et initialisation
String objet = "";
/ / L a méthode s'applique à objet
objet.nomDeliaMéthode(l i s t e des p aram ètres é v e n tu e ls) ;

© Éditions EyroUes

chapitre n° 7 Les classes et les oblets

Remarque

Pour appliquer une méthcxle à un objet, il suflil de placer derrière le nom de l'objet un point
suivi du nom de la méthode et de ses paramètres.

Par convention :
- Tout nom de méthode commence par une minuscule.
- Si le nom de la méthode est composé de plusieurs mots, ceux-ci voient ieur premier caractère
passer en majuscule.
* Le nom d’une classe commence toujours par une majuscule.

Grâce à celte écriture, l’objet est associé à la méthode, de façon à pouvoir modifier Tinforma-
tion (les données) contenue dans l’objet. Cette technique permet de récupérer les différentes
données mtxli fiées localement par une méthode. Elle est le principe de base du concept
d’objet, décrit et commenté au chapitre suivant.

Construire et utiliser ses propres classes

L’élude de la classe s t r i n g montre qu’une classe correspond à un type de données. Ce type
est composé de données et de méthodes exploitant ces données. La classe s t r i n g est un
type prédéfini du langage Java.

il existe d’autres types prédéfinis (classes) dans le langage Java. Ces classes sont des outils
précieux et efficaces, qui simplifient le développement des applications. Différentes classes
sont examinées dans la troisième partie de cet ouvrage.

L’intérêt des classes réside aussi dans la possibilité de définir des types sü ucturés, propres à un
programme. Grâce à cette faculté, le programme se développe de façon plus sûre, les objets
qu’ il utilise étant définis en fonction du problème à résoudre.

Avant d’étudier réellement l’ intérêt de la programmation objet et ses conséquences sur les
modes de programmation (voir chapitre 8, « Les principes du concept d’objet »), nous exami­
nons dans les sections qui .suivent comment créer des types spécifiques et utiliser les objets
associés à ces nouveaux types.

ifiO
Ol_>
LU
LûrHOrvl
@
j::en
>•Q.OU

Définir une classe et un type
Définir une classe, c’est construire un type de données structuré. Avant de comprendre les
avantages d’une telle construction, nous abordons ici la notion de type .structuré (et donc de
classe) d’un point de vue syntaxique.

© Éditions EyroHes 205

partie D° 2 Initiation I la programmation orientée oblet

Pour définir un type, il suffil d’écrire une classe, qui, par définition, est constituée de données
et de méthodes (voir figure 7-3). La construction d’une classe est réalisée selon les deux prin­
cipes suivants :

1, Définition des données à l'aide d’instructions de déclaration de variables et/ou d’objets.
Ces variables sont de type simple, tel que nous l’avons utilisé jusqu’à présent (in t , c h a r,
etc.) ou de type composé, prédéfini ou non (S t r in g , etc.).

Ces données décrivent les informations caractéristiques de l ’objet que l'on souhaite définir.
Elles sont aussi appelées communément champ, attribut ou membre de la classe.

2. Construction des méthodes définies par le programmeur. Ce sont les méthodes associées
au.x données. Elles se construisent comme de simples fonctions, composées d’un en-tête
et d’instructions, comme nous l'avons vu aux chapitres précédents.

Ces méthodes repré,sentent tous les traitements et comportements de l ’objet que l ’on cherche
à décrire.

En définissant de nouveaux types, nous déterminons les caractéristiques propres aux objets
que l ’on souhaite programmer. Un type d’objet correspond à ГепьешЫе des données tiaitées
par le programme, regroupées par thème.

Un objet peut être une p e rso n n e , si l ’application à développer gère le personnel d’une
société, ou un l i v r e , s’ il s’agit d’une application destinée à la gestion d’une bibliothèque.
Signalons que l'objet p e rso n n e peut aussi être utilisé dans le cadre d’un logiciel pour biblio­
thèque, puisqu’un lecteur empruntant un l i v r e est aussi une p e rso n n e .

Construire un type Cercle

Examinons, sur un exemple simple, la démarche de construction d’un type structuré. Obser­
vons pour cela comment con.struire le type de données qui décrit au mieux la représentation
d’un cercle quelconque.
Cette réalisation passe par deux étapes : « Rechercher les caractéristiques propres à tout
cercle » et « Définir le comportement de tout cercle ».

ifi<D

>Ш
KOrHOfN
@
JZ
CT'k—>-Q.O
U

206

Rechercher les caractéristiques propres à tout cercle
D’une manière générale, tout cercle est défini grâce à son rayon. Si l’on souhaite afficher ce
cercle, il est en outie nécessaire de connaître sa position à l’écran. Pour simplifier, nous supposons
que la position d’un cercle est déterminée grâce aux coordonnées de son centre.
Les caractéristiques d'un cercle sont son rayon et sa position à l’écran, c’est-à-dire les coordon­
nées en X (abscisse) et en y (ordonnée) du centre du cercle. Ce.s trois données sont représentables
à l ’aide de vaieui-s numériques, que nous choisissons, pour simplifier, de type in t .
Pour déclarer les données d’un cercle, nous écrivon.s les déclarations suivantes :

■publie int X, y; // position du centre du cercle
public int r ; // rayon

© Éditions Eyrofles

chapitre n° 7 les classes et les omets

i/iCJ

>~
LU
LOrH
O<N
@
j::gi
>-D.OU

Définir le comportement de tout cercle
D’un point de vue informatique, plusieurs opérations peuvent être appliquées à un cercle. Un
cercle peut être déplacé ou agrandi (voir les méthodes d é p la c e r {) et a g r a n d ir {) dans le
code source ci-après). Ces opérations modifient la valeur du rayon ou des coordonnées du
centre du cercle à l ’écran.
C’est pourquoi il est nécessaire de définir une méthode qui affiche à l ’écran les données
(rayon, position) d’un cercle avant ou après transformation (voir la méthode a f f i c h e r ! }
dans le code source ci-après).
La méthode de calcul du périmètre d’un cercle peut également être utile (voir la méthode
p é r im è tr e () dans le code source ci-après).

La classe descriptive dn type Cercle

public class Cercle

public int X, yf // position du centre
pxiblic int r; // rayon

//Affichage des données de la classe
public void afficherO
{
System.out-println{" Cercle centre en " + x + ", " + y) ;
System.out.println(" de rayon : " + r) ;

}

// Calcul du périmètre d ’un cercle
public double périmètre(]
{
return 2 *Math,PI*r;

}

// Déplace le centre du cercle en nx, ny) . Ces coordonnées
// étant passées en paramètres de la fonction
public void déplacer(int nx, int ny)
{
X = nx;
y = ny;

3

// Augmente la valeur courante du rayon avec la valeur
// passée en paramètre
public void agrandir(int nr)
{
r = r + n r ;

)
} // Fin de la classe Cercle

© Éditions Eyrolles 207

I panic B° 2 Initiation à la Drrarammaiion oriHitee oblet

La classe C e r c le , décrite à l ’intérieur d’un (idiier appelé C e r c le , ja v a , définit un type de
données composé de trois attributs caractéristiques des cercles, à savoir la position du centre
en abscisse et ordonnée et le rayon, ainsi que quatre comportements différents. Sa description
par bkx; est représentée à la figure 7-4.

pub l i c class Cercle
{

p i o h l i c i n t 3C, y /
p u b l i c inb r;

p u b lic (double périm é tir'd (>
{

j retui rn , P I -
>

p u b l i c v o i c i a i £ £ i c h d r ()
[, ,

p u b l i c voici déplaceir (int. n x , int ny)

Figure 7-4 Les données x, y et r du type Cercle sont déclarées en dehors de toute fonction.
N'importe quelle modification de ces données est donc visible par l’ensemble des méthodes de la classe.

<ü

>•LU
LOrHOfN
©

CT
>-D.OU

Quelques observations
Suivant la description de la figure 7-4, nous constatons que les données x, y et r sont déclarées
en dehors de toute fonction. Par conséquent, chaque méthode a accès à tout moment aux
valeurs qu’elle contient, soit pour les consulter, soit pour les modifier.
Les méthodes a f f i c h e r {) et p é r im è t r e () ne font que consulter le contenu des données
X, y et r pour les afficher ou les utiliser en vue d’obtenir un nouveau résultat.
An contraire, les méthodes d é p la c e r () et a g r a n d ir () modifient le contenu des données
X, Y et r. Ces modifications, réalisées à l ’intérieur d’une méthode, sont aussi visibles depuis
les autres méthodes de la classe.
Il existe donc deux types de méthodes, les méthodes qui permettent d’aeecder aux données de
la classe et celles qui modifient ces données.

208 © Éditions Eyrolles

cliaiiKre n° 7 Us classes ei les oiMeis

Les différents types de méthodes sont décrits au chapitre 8, « Les principes du concept
d’objet », la section « Les méthodes d’accès aux données ».

Remarques En comparant les programmes construits aux chapitres précédents à celui-ci, nous constatons
les deux différences fondamentales suivantes :
- Le mot-clé s t a t i c a disparu de toutes les instructions de déclaration. Cette disparition n’est
pas sans conséquence sur le déroulement du programme. Elle permet de créer non plus de
simples variables mats des objets (voir, au chapitre 8, « Les principes du concept d’objet », la
section « Les données static »).
- Une classe définissant un type structuré ne possède pas de fonction m ain () . La définition
d’une classe n’est pas la même chose que la réalisation d’une application. Une classe est une
entité à part entière, qui définit globalement de quoi est constitué un objet et précise les opérations
qu’il est possible de lui appliquer.

Bien entendu, une classe est définie pour être utilisée dans un programme exécutable (une
application) qui contient une fonction m ain (). Nous abordons plus en détail cette opéra­
tion à la section suivante.

Définir un omet
Après avoir défini un nouveau type structuré, l ’étape suivante consiste à écrire une applica­
tion qui utilise effectivement un « objet » de ce type. Pour cela, le programmeur doit
déclarer les objets utiles à l’ application et faire en sorte que l’espace mémoire nécessaire
soit réservé.

ÇJ
ôU>
LU

T~{
OfN
@

>•
Cl
O
U

Déclarer un objet
Cette opération simple s’écrit comme une instruction de déclaration, avec cette différence que
le type de la variable n’est plus un type simple prédéfini mais un type structuré, tel que nous
l’avons construit précédemment. Ainsi, dans :

// Déclaration d'un objet chose
TypeDeL'Objet chose ;

TypeDeL ' Objet correspond à une classe définie par le programmeur. Pour notre exemple, la
déclaration d’un cercle A est réalisée par l’ instmction :

I Cercle A ;

Cette déclaration crée une case mémoire, nommée A, destinée à contenir une référence vers
l’adresse où sont stockées les informations concemani le cercle A. À ce stade, aucune adresse

© Éditions Eyrolles 209

Darde B° 2 inidallon à la Drogrammanoa orfenlée oblel

n’est encore déterminée.

A 0x11022033
0 x 1 1022033

1

Figure 7-5 La déclaration d'un objet réserve une case mémoire destinée à contenir l ’adresse mémoire
où seront stockées tes informations. L’espace mémoire et l ’adresse ne sont pas encore réservés

pour réaliser ce stockage.

ifi

><
LU
KOrHOfN
@
JZCT'k—>-Q.O
U

210

Réserver l ’espace mémoire à l ’aide de l’opérateur new

À cette étape, les informations caractérisant l’objet A ne peuvent être stockées, car l’espace
mémoire servant à ce stockage n’est pas encore réservé. C ’est l’opérateur new qui réalise cette
réservation.
L’opérateur new est un progrtunme Java, qui gère de lui-même la réservation de l ’espace
mémoire. Lorsqu’on applique cet opérateur à un objet, il détermine combien d’octets lui sont
nécessaires pour stocker l’information contenue dans la classe.
Cet opérateur s’applique en écrivant à la suite du terme new le nom du type de l ’objet déclaré,
stiivi de deux parenthèses.

I // Réserver de l'espace mémoire pour l'objet chose
chose - new TypeDeL'Objet();

Pour notre exemple, la réservation de l ’espace mémoire pour définir le cercle a s'écrit :
I A = new Cercle!) ;
Notons qu’ il est possible de déclarer et de réserver de l'espace mémoire en une seule
instruction :

I Cercle A = new Cercle!) ;

En écrivant une telle instruction, nous observons que, pour chaque objet déclaré, l’opérateur
new réserve suffisamment d’espace mémoire pour stocker les données de la cla.sse et pour
copier les méthodes associées. Il détermine aussi l ’adresse où sera stocké l ’ensemble de ces
informations (l’espace mémoire pour l ’objet A e.st illustré à la figure 7-6).
Lors de cette réservation, l ’interpréteur initialise les données de la clas.se à 0 pour les entiers,
à 0 .0 pour les réels, à ’ \ 0 ' pour les c h a r et à n u l l pour les S t r in g . Pour notre exemple,
A est un cercle de rayon nul centré en (0, 0).
Une instance est donc, en mémoire, un programme h part entière, composé de variables et de
fonctions. Sa struclure est telle qu’il ne peut s’exécuter et se transformer (c’est-à-dire modifier
ses propres données) qu’à l’ intérieur de cet espace. C ’est pourquoi il est considéré comme une
entité indépendante, ou « objet ».

© Éditions Eyrotles

chapitre n° 7 Les classes et les ohleis

Figure 7-6 Pour chaque objet créé, l'opérateur new réserve un espace mémoire suffisamment grand
pour y stocker les données et les méthodes descriptives de la classe. L'adresse est alors déterminée.

Remannie Lobjet ainsi défini est un représentant particulier de la classe, caractérisé par l’ensemble de ses
données. Dans le jargon informatique, on dit que l’objet A est une instance de la classe Cercle.
Les données qui le caractérisent, à savoir x, y et r, sont appelées des variables d ’instance.

M anipuler un objet
L’objet ainsi défini est entièrement déterminé par se,s données et ses méthodes. 11 est dès lors
possible de modifier les valeurs qui le caractérisent et d’exploiter ses méthodes.

<l>

LU
vû
OfN
@
JZ
CT
>-Q.O
U

Accéder aux données de la classe
Pour accéder à une donnée de la classe de façon à la modifier, il suffit d'écrire :

// Accéder à un membre de la classe
chos«.nomDeLaDoncee = valeur du bon type ;

en supposant que le champ nomDeLaDonnée soit défini dans la classe correspondant au type
de l’objet ch ose.
Pour notre exemple, la saisie au clavier des valeurs caractérisant le cercle A s’écrit de la façon
suivante :

Scanner lectureClavier = new Scanner(System.in);
System,out.println(" Entrez la position en x : ") ;
A.3Î = lectureClavier .nextint () ;
System.out.println(" Entrez la position en y : ") ;
A.y = lectureClavier.nextInt();
System.ou t .println{" Entrez le rayon : ");
A.r = lectureClavier.nextint();

© Éditions Eyrolles 211

partie B° 2 Initiation à la Drogrammaiion oriHilée obiet

Les eases mémoire représenlant les variables d'inslance (x, y et r) de l ’objet A sont accessibles
via l’opérateur p o in t (.).

Accéder aux méthodes de la classe
Pour appliquer une méthode de la classe à un objet particulier, la syntaxe utilise le même prin­
cipe de notation :

I // a p p liq u e r une méthode à l ' o b j e t chose
chose.nomDeLaMéthode(l i s t e des p aram ètres é v e n tu e ls) ;

en supposant que la méthode ait préalablement été définie pour le type de l'objet ch ose. Pour
notre exemple, l ’application de la méthode p é r im è t r e () à l ’objet A s’écrit :
I doub le P = A.périmètret);

Une application qui utilise des obiets Cercle
L’exemple suivant montre comment exploiter dans une application, l’ensemble des données et
des méthodes définies dans la classe C e rc le .

Exemple : code source cornplet
im port j a v a . u t i l ;
p u b lic c la s s F a ireD esC erc les
{
p u b lic s t a t i c v o id m a in (S tr in g ['
{

arg)

C e rc le A = new C e r c le () ;
Scanner le c tu r e C la v ie r = new S c a n n e r(S y s te m .in) ;
A.afficher();
System . O ut. p r i n t l n (" E ntrez l a p o s i t io n en x : "
A .x = le c t u r e C la v ie r .n e x t I n t O ;
S y s te m .o u t .p r i n t l n (" E ntrez l a p o s i t io n en y : ”
A. y = le c t u r e C la v ie r .n e x t I n t O ;
S y s te m .o u t .p r i n t l n (" E ntrez l e rayon : ");
A .r = le c t u r e C la v ie r .n e x t I n t O ;
A . a f f i c h e r () ;

ta
(U

>-
LU
LOrHOfN
@
szCT'k—>-
ClO
U

212

double P = A,périmètre O ;
S y stem ,o u t ,p r i n t l n (" V o tre c e r c le a pour p e r im e tre
A .déplacer{5, 2) ;
S y stem .out . p r i n t l n ('' A pres déplacem ent : ");
A.afficher();
A.agrandir(10};
S y stem .o u t ,p r i n t l n (" A pres agrand issem ent :
A.afficher!);

}

+ P)

© Éditions Eyrofles

chapitre п° 7 Les classes el les obfets

Compilation et exécution d ’une application multifichier
L’application F a ire D e s C e rc le s , décrite dans le fichier F a ir e D e s C e r c le s . ja v a ,
utilise le type C e rc le , défini dans le fichier C e r c le . j ava. Deux fichiers distincts sont donc
nécessaires à la définition d’un programme qui utilise des objets C e rc le ,
Bien que cela puisse paraître curieux pour un débutant, l’application F a ire D e s C e rc le s
s’exécute correctement, malgré cette séparation des fichiers. Extmiinons comment fonctionne
l’ordinateur dans un tel cas.
Nous l ’avons déjà observé (voir, au chapitre d’ introduction, « Naissance d’un programme », la
section « Exécuter un programme »), deux phases sont nécessaires pour exécuter un
programme Java: la phase de compilation et la phase d’interprétation. Si l ’application est
conçue avec piusienrs fichiers, ces deux phases sont aussi indispensables.

1Л

>-Ш
KOrHOfN
@
JZ
CT'k—>-Q.O
U

Phase de compilation
Lors de la compilation d’un programme constitué de plusieurs fichiers, la question se pose de
savoir comment compiler l’ensemble de ces fichiers.
Pour simplifier la tâche de la personne qui développe des applications, le compilateur Java est
construit de façon à ce que seul le programme qui contient la fonction m ain {) soit à compiler.

Au cours de la compilation, le compilateur constate de lui-même, au moment de la déclaration
de l'objet, que l’appticaiion utilise des objets d’un type non prédéfini par le langage Java.

À partir de ce constat, il recherche, dans le répertoire où ,se trouve l’application qu'il compile,
le fichier dont le nom correspond au nouveau type qu’il vient de détecter et dont l’extension
est j ava . Tout programme Java a pour nom le nom de la classe (du type) qu’il définit.

Pour notre exemple, en compilant l ’application F a ire D e s C e rc le s grâce à la commande :

I ja v a c F a ire D e s C e rc le s . ja v a

le compilateur détecte le type C e rc le . Tl recherche alors le fichier C e r c le , ja v a dans le
répertoire oîi se trouve l ’application.
• Si le compilateur trouve ce fichier, il le compile aussi. En fin de compilation, deux fichiers

ont été traités, F a ir e D e s C e r c le s . ja v a et C e r c l e . ja v a . Si le compilateur ne détecte
aucune erreur, le répertoire contient les fichiers correpondant au pseudo-code et qui ont
pour nom F a ir e D e s C e r c le s . c l a s s et C e r c l e . c la s s .

* S ’il ne trouve pas le fichier C e r c l e . j ava , il provtx^ue une erreur de compilation du type
Class Cercle not found.

Pour corriger cette erreur, il est possible de spécifier au compilateur où il peut trouver le fichier
recherché en délinissant une variable d’environnement CLASSPATH. Cette variable indique au
compilateur quels sont les répertoires susceptibles de contenir des programmes Java. Cette
définition se réalise de façon différente suivant le système utilisé, PC, Macintosh ou station
Unix (voir l ’annexe « Guide d’ installations », section « Installation d’un environnement de
développement »),

© Éditions Eyrolles 213

Darde D° 2 Initiation I la Drogrammation orientée objet

Phase d’interprétation

Une fois le programme compilé, l ’exécution du programme est réalisée grâce à l’ interpréteur
de la machine virtuelle Java (JVM), qui exécute le pseudo-code associé au programme conte­
nant la fonction m ain (). Pour notre exemple, la commande est :

I ja v a F a ireD esC erc les

Lorsque l ’interpréteur trouve en cours d’exécution, la déclaration d’un objet de type non
prédéfini, il recherche, par l’intermédiaire du chargeur de classe (un programme, aussi appelé
class loader, défini dans la JVM). le pseudo-code associé au type de l'objet et défini dans un
fichier dont l ’extension est . c la s s . Pour notre exemple, le chtugem’ de classe recherche le
fichier C e r c l e . c la s s . Une fois trouvé, il charge le code en mémoire pour l ’exécuter.

i/ï

>-
LU
KOrHOfN
@
JZ
CT'k—>-Q.O
U

Analyse des résultats de Inapplication

Au cours des sections précédentes, nous avons observé que tout objet déclaré contenait une
adresse correspondant à l ’adresse où sont stockées les informations relatives à cet objet. Pour
accéder aux données et méthodes de chaque objet, il suffit de passer par l’opérateur « . »,

Grâce à cette nouvelle façon de stocker l’ information, les transformations d’un objet par
l ’intermédiaire d’une méthode de la classe sont visibles pour tous les objets de la même classe.
Autrement dit. si une méthode fournit plusieurs résultats, ces modifications sont visibles en
dehors de la méthode et pour toute l ’application.

Pour mieux comprendre cette technique, examinons comment s’exécute le programme
FaireDesCercles. Les valeurs grisées correspondent aux valeurs saisies par l’utilisateur.

Cercle centre en 0,0
de rayon : 0
Entrez la position en x : iq
Entrez la position en y : q
Entrez le rayon : 5

Le,s valeurs saisies au clavier par l ’utilisateur sont directement stockée.s en A.x, A.y et A.r
grâce aux instructions A , X = lectureClavier .nextint {),...
Cercle centre en 10, 10
de rayon : 5

La méthode a f f i c h e r !) est appliquée à l’objet A (A. a f f i c h e r O). Elle consulte et
affiche les données associées à cet objet, soit 10 pour x (en réalité A . x), 10 pour y (en réalité
A . y) et 5 pour A , r .

Votre cercle a pour periirietre : 31.41592653589793

214 © Editions Eyrofles

chapitre n° 7 U s classes et les omets

De la même façon, la méthode p é r im è t r e () est appliquée à l ’objel A (A .p é r im è tr e {)).
L’expression 2 ■‘Math . P I * r, définie dans ta méthode, est donc calculée pour r (A. r) valant 5.

Après déplacement :
Cercle centre en 5, 2
de rayon : 5

L’instruction A . d é p la c e r (5 , 2) passe les nouvelles coordonnées de la position du centre
du cercle en paramètres. Les données x et y de l ’objet A sont modifiées en conséquence (voir
ligure 7-7).

Figure 7-7 Les méthodes appliquées à un objet exploitent les données relatives à cet objet.

ifiO
OU>■
LU
KO■rH
0
fN

@
u-t
JZ01'k_>-Q.O
U

Apres agrandissement :
Cercle centre en 5, 2
de rayon : 15

L’instruction A.a g r a n d ir (1 0) passe en paramètre la valeur d’accroissement du rayon du
cercle. La donnée r de l’objet A est augmentée de cette valeur (voir figure 7-7).

Â chaque appel de la méthode a f f i c h e r () appliquée à l ’objet A, les valeurs courantes des
données (x, y et r) de l ’objet A sont affichées.

Observons que, lorsque l’objet A est déplacé, les deux coordonnées x et y sont modifiées. La
méthode d é p la c e r () modifie le contenu des deux variables d’instance x et y de l’objet A.
Cette transformation est visible en dehors de l’objet lui-mêrne, puisque la méthode
a f f i c h e r () affiche à l’écran le résultat de cette modihcation.

© Éditions Eyroües 215

partie в° 2 Initiation I la orogrammaiion orteplée obiet

Résumé

<D

>-Ш
ЮrHогм
@

oi'k_
ClОU

La classe string est une classe prédéfinie du langage Java, qui définit des « variables » conte­
nant des suites de caractères (des mots ou des chaînes de caractères).
La classe String est un type de données composé de méthodes, qui permettent la recherche
de mots ou de caractères dans un texte. Les mots peuvent aussi être comparés suivant l'ordre
alphabétique ou transformés en d’autres formats.
L’étude des objets de type string montre qu’une classe est une association de données (infor­
mation ou valeur de tout type) et de méthodes (outils d'accès et de transformation des données).
Définies dans une classe, ces méthodes ne peuvent s ’appliquer qu’aux données de cette même
classe.
Le langage Java offre la possibilité au programmeur de développer ses propres classes.
Construire une classe, c’est définir un nouveau type. Pour cela, il est nécessaire de procéder de
la façon suivante :
• Déterminer les caractéristiques communes à ce que l’on souhaite décrire. Ce sont les

données, les attributs, les propriétés ou encore les membres de la classe.
• Définir toutes les opérations et traitements réalisables sur ces éléments. Ces opérations sont

aussi appelées méthodes, ou encore comportements.
Une classe définissant un type structuré n’est pas une application directement exécutable. Elle ne
contient pas de fonction m ain ().
Les types structurés sont utilisés dans les applications en déclarant des « variables », dont le type
correspond au nom de la classe définie précédemment, comme le montre l’instmction suivante :

TypeDeL'O b jet chose = new TypeDeL'O b je t () ;

Lopérateur new détermine l’adresse où stocker les informations relatives à la variable déclarée. Il
réserve l’espace mémoire nécessaire pour stocker les données et les méthodes de la classe. Les
données sont initialisées à 0 pour les entiers, à 0 .0 pour les réels, à ’ \ 0 ' pour les caractères et
à null pour tous les autres types structurés,
À cette étape, la variable est appelée un objet dans le jargon informatique. Un objet est donc un
élément particulier, qui représente une classe définissant un type structuré. On dit aussi que c’est
une instance de la classe. Les données (propriétés ou attributs) qui la définissent sont appelées
variables d’instance.
Laccès aux variables d'instance ainsi qu’aux méthodes de la classe se fait par l’intermédiaire de
l’opérateur point (.), comme le montre l'exemple suivant :

chose.ïioniDeLaDormée = v a le u r du bon typ e ;
chose.nom B eL aM ethode(liste des p a ra m ètres é v e n tu e ls) ;

en supposant que la donnée et la méthode aient été préalablement définies pour le type de l’objet
cho se .

216 © Éditions Eyrofles

chapitre n° 7 Les classes et les omets

Exercices

utiliser les omets de la classe String

7.1 Écrivez un programme qui réalise les opérations suivantes :
a. Demander la saisie d’une phrase.
b. Afficher la phrase en majuscules.
c. Compter le nombre de a dans la phrase puis, s'il y en a, transformer tous les a en *.
d. Tester si, entre le cinquième caractère et le douzième, se trouve une séquence de caractères

préalablement saisie au clavier.

[M ia t 3 r .z Écrivez un programme qui permet d’obtenir les actions suivantes :
a. Saisir des mots jusqu'à ce que l’utilisateur entre le mot F i n .

b. Afficher, parmi les mots saisis, le premier dans l’ordre alphabétique.
c. Afficher, parmi les mots saisis, le dernier dans l'ordre alphabétique.

/ ï ï IM ï ï Ï Ï Î l Le mot F i n ne doit pas être pris en compte dans la liste des mots saisis.

<D

LU

OfN
@
JZ
CT
>-D.OU

7.3 Transformez le programme donné en exemple au chapitre 3 « Faire des choix », section « Calculer le
jour d’un mois donné », de façon à ce que l’utilisateur entre le nom du mois dont il souhaite connaître
le nombre de jours plutôt que son numéro. Pour cela, vous devrez utiliser la nouvelle structure s w i t c h
de la version 7 de Java.
L’exécution du programme aura pour affichage :

De q u e l m o i s s ' a g i t - i l ? : J u i n

De q u e l l e a n n e e ? : 1 9 9 9
En 1 9 9 9 l e m o i s d e j u i n a 3 0 j o u r s

Ou :

ID e q u e l m o i s s ' a g i t - i l ? : f é v r i e r

De q u e l l e a n n e e ? : 2 0 0 0
E n 2 0 0 0 l e m o i s d e f é v r i e r a 2 9 j o u r s

O u encore :

IDe q u e l m o i s s ' a g i t - i l ? : D é c e m b r e
De q u e l l e a n n e e ? : 2 0 1 0

En 2 0 1 0 l e m o i s d e d é c e m b r e a 3 1 j o u r s

Vous devez faire attention à traiter tous les cas (accent, majuscule et minuscule) pour obtenir un
résultat cohérent, quel que soit le mois saisi par l’utilisateur.

© Éditions Eymiles 2 1 7

pâme n° 2 Initiatjon I la programmanoa orienlée oblet I

Gréer une classe d’objets

7.4 L’objectif est de définir une représentation d'un objet L iv r e .
a. Sachant qu’un livre est défini à partir de son titre, du nom et du prénom de l’auteur, d’une catégo­

rie (Policier, Roman, Junior, Philosophie, Science-fiction), d’un numéro ISBN et d’un code d’enre­
gistrement alphanumérique unique (voir exercice 7.4 ci-après), définissez ies données de la
classe L iv r e .

b. Écrivez une application B ib lio th è q u e qui utilise un objet liv r e P o c h e de type L iv r e et
qui demande la saisie au clavier du titre, des nom et prénom de l’auteur et du numéro ISBN.

GonsiMier les sarlables d’Iislance

iTmjfm 7.5 Définition des comportements d’un objet de type L iv r e
a. Dans la classe L iv r e , décrivez la méthode a f f ic h e rU n L iv re () qui affiche les caracté­

ristiques du livre concerné.
b. Modifiez l’application B ib lio th è q u e de façon à afficher les caractéristiques de l’objet

liv re P o c h e .
c. Le code d’enregistrement d'un livre est construit à partir des deux premières lettres des nom et

prénom de l'auteur, de la catégorie du livre et des deux derniers chiffres du code ISBN. Écrire la
méthode c a lc u le rL e C o d e () qui permet de calculer ce code.

Remarque Vous pouvez utiliser la méthode s u b s t r in g () pour extraire une sous-chaîne d’un mot.

d. Modifiez l’application B ib lio th è q u e de façon à calculer et afficher le code de l’objef
liv re P o c h e .

Analyser les résultats d’une application objet

<D

LU
Vû•rH
O<N
©

oi
ClO
U

[M 3 5 D Pour bien comprendre ce que réalise l’application F a ir e D e s T r ia n g le s , observez les deux pro­
grammes suivants :
La classe Triangle

i m p o r t j a v a . u t i l . * ;

p u b l i c c l a s s T r i a n g l e { / / L e f i c h i e r s ' a p p e l l e T r i a n g l e . j a v a

p u b l i c i n t x A , y A , x B , y B , x C , y C ;

2 1 8

p u b l i c v o i d c r é e r 0 {

© Éditions Eyrolles

chapitre a° 7 les classes e i les ohieis

Scanner lectureClavier = new Scanner(Systeir.in);
System,out.println("Point A :
System.out.print("Entrez 1'abscisse : ;
xA = lectureClavier.nextint{);
System,out.print("Entrez l’ordonnee : "};
yA = lectureClavier.nextint{);
System.out.println("Point B :
System.Out.print("Entrez l'abscisse :
xB = lectureClavier.nextint();
System.out.print ("Entrez 1'ordonnée :
yB = lectureClavier.nextint{);
System.out.println("Point C :
System.out.print("Entrez l'abscisse ;
xC = lectureClavier.nextint{)r
System.out.print ("Entrez 1'ordonnes ; ");
yC = lectureClavier.nextint{); }

if)

ÔL_>LU
LOT~{
0 fN
@
.m
x :01'k_>Q.OU

public void afficher() {
System.out.println("Point A : " + x A +

System,out.println{ "Point B : " + x B +

System.eut.println("Point C : " + xC +
]
public void deplacer(int nx, int ny)[

xA += nx;
yA += ny;
xB += nx;
yB += ny;
xC += nx;
yC += ny;

)
} // Fin de la classe Triangle

La classe FaireDesTriangles
public class FaireDesTriangles {
//Le fichier s'appelle Triangle.java
public static void main(String[] arge) {
Triangle T = new Triangle();

T .afficher();
T .créer();
T .afficher();
T.deplacerdOO, 0};
T .afficher(1 ;

} il fin de la classe FaireDesTriangles

+ yA)
+ yB)
+ yC)

> Éd(f/ons Eyro/tes 2 1 9

parue B° 2 intuailon à la erogrammanon orienlée oblel I

a. Quel est le programme qui correspond à l’application ?

b. Quel est le programme définissant le type T r i a n g l e ?

c. Recherchez les attributs de la classe T r i a n g l e , et donnez leur nom,

d. Combien de méthodes sont définies dans la classe T r i a n g l e ? Donnez leur nom.

e. Quels sont les objets utilisés par l’application F a i r e D e s T r i a n g l e s ? Que valent leurs données
x A , y A , x B , y B , x C et y C après exécution de l’instruction déclaration ?

f. Sur la représentation graphique ci-dessous, placez, pour l’objet T , les valeurs initiales ainsi que le

nom des méthodes.

g. À l’appel de la méthode c r é e r () , comment les valeurs sont-elles affectées aux attributs des
objets concernés ? Modifiez les cases concernées sur la représentation graphique.

h. Même question pour la méthode d é p l a c e r (} .

i. Quel est le résultat final de l’application ?

I/)
d)
OU

O
CM

©
4—»
JZgi
>-Q.O

U

ExerGice

220

7.7 En vous inspirant de la classe T r i a n g l e et de l’application F a i r e D e s T r i a n g l e s précédentes,

a. Écrire la classe R e c t a n g l e , sachant que tout rectangle est une forme géométrique possédant :

une position en X (comprise entre 0 et 8 0 0) et en Y (comprise entre 0 et 6 0 0) ;

une hauteur dont la valeur est comprise entre 0 et 6 0 0 ;

une largeur dont la valeur est comprise entre 0 et 8 0 0 ;

Une couleur couleur variant entre 0 et 1 0 ;

b. Définir la méthode c r é e r () , a f f i c h e r () et d é p l a c e r () .

c. Écrire l'application F a i r e D e s R e c t a n g l e s qui crée un rectangle R en 2 0 0 , 2 0 0 , de hau­
teur égale à 1 5 0 pixels et de largeur 1 0 0 . Lapplication affiche les coordonnées de R avant et
après un déplacement de 2 0 0 sur l'axe des Y.

7.8 Afin de vérifier que les valeurs saisies par la méthode c r é e r () , sont valides par rapport aux contrain­

tes de l’énoncé, reprendre la méthode v e r i f i e r A v e c B o r n e s () de l’exercice 5.6.d et nommez la
v é r i f i e r ().

© Editions Eyrotles

chapitre n° 7 Us classes et les obiets

Modifier la fonction de façon à ce qu’elle ne soit plus s t a t i c .

Utilisez la fonction v e r i f i e r {) à l’intérieur de la méthode c r é e r () , en choisissant pour
chacune des propriétés les bons paramètres d ’appel, de façon à ce que les valeurs saisies corres­
pondent aux contraintes énoncées.

Vérifier la bonne marche de l’application en cherchant à créer un rectangle en - 1 0 , - 5 , de couleur
égale à 2 0 , de hauteur et de largeur égales à 9 0 0 .

Les classes L iv re , C e rc le , T r ia n g le et R e c ta n g le traitées dans ce chapitre, font partie
d’une série d’exercices pour les chapitres suivants. Pour acquérir toutes les notions abordées
au cours des différents chapitres, il est conseillé de réaliser chaque exercice au fur et à mesure
de l’avancée du livre

Le profet : Gestion d’un compte bancaire

Traiter les diaîees de caractères
Le ty p e d’un compte et son miméro ne sont plus définis respectivement comme c h a r et
lo n g mais comme deux objets de type S t r in g . Le type d’un compte peut donc prendre
maintenant les thèmes c o u ra n t , j o i n t ou ép arg n e.

a. Saisissez le ty p e du compte de façon à ce que I’litilisateur entre au clavier C, J ou E. Le
programme place dans la variable ty p e les chaînes c o u ra n t , j o i n t ou é p a rg n e en
fonction de la lettre saisie.

b. Saisissez le numéro de compte sous la forme d’une chaîne de caractères.
e. Transformez tous les tests faisant appel aux variables ty p e et numéro de façon à tester

non plus sur des caractères mais sur des S t r in g .

(U

>■LU
LOrHOfN
®

01'k_>-Q.O
U

Définir le type Compte
Dans un fichier nommé Com pte. j ava, définissez la classe Compte en procédant de la façon
suivante :

a. De'terminez les données qui définissent tout compte bancaire.
b. Ecrivez les méthodes associées, par exemple :

- c ré e rC p te (), en reprenant les instructions de l’option 1, décrites au chapitre
précédent. Placez-les sous l’en-tête de la fonction qui a pt>ur forme p u b lic v o id
c ré e rC p te (). La méthode ne possède ni paramètre, ni type de retour, car elle ne fait
que modifier les données caractéristiques d’un compte déclaré en dehors.

- a f f ic h e rC p te (), en reprenant la fonction écrite au chapitre précédent et en suppri-
manl le mot-clé s t a t i c . Les variables num, ty p e , ta u x et v a l ne sont à déclarer ni

© Éditions Eyrolles 221

partie B° 2 Initiation I la orogrammanon orienlée obiel

ù l'intérieur, ni en paramètre de la méthode. Elles sont définies comme données de la
classe com pte, en dehors de la méthode.

Gonsiniire l’application Proiet
Dans un f i c h i e r n o m m é P r o j e t . j a v a , é c r i v e z l ’ a p p l i c a t i o n c o n t e n a n t l a f o n c t i o n m a i n ()
e n p r o c é d a n t d e l a f a ç o n s u i v a n t e :

a. Faites appel aux fonctions a l A i d e (), s o r t i r () et m e n u P r i n c i p a l () .

b. Créez un objet de type C o m p t e grâce à l ’inslruction de déclaration C o m p t e c = n e w

C o m p t e {) ; .

C. Dans les options appropriées du menu, appelez les méthodes de la classe C o m p t e ,

comme c . c r é e r C p t e () ou c . a f f i c h e r C p t e () ,

d. A l’exécution du programme, observez que la méthode a f f i c h e r C p t e () affiche les
différentes valeurs du compte, modifiées par la méthode c r é e r C p t e (). Une méthode
par l ’intermédiaire d’un objet peut, par conséquent, transmettre plusieurs résultats.

Définir le type UgneComptable
Dans un fichier nommé L i g n e C o m p t a b l e . j a v a , définissez la classe L i g n e C o m p t a b l e

en procédant de la façon suivante :

a. Déterminez les données qui définissent toute ligne comptable.

ii|ITin^ Voir, au chapitre introductif, « Naissance d’un programme », la définition de l’option 3 . à
la section « Le projet : Gestion d’un compte bancaire ? ».

b. Ecrivez les méthodes associées, par exemple :

- c r é e r L i g n e C o m p t a b l e O , gtii demande la saisie au clavier des valeurs correspondant
aux données de la classe L igneC om ptable.

- a f f i c h e r L i g n e {) , qui affiche les données caractéristiques d’une ligne comptable.

in(U

LU
tH
OfN
@
JZ
CT
>-D.O
U

222

Modifier le type Compte
Dans le fichier C o m p t e . j a v a :

a. Définissez une nouvelle donnée (variable d’ instance) décrivant une ligne comptable, en
écrivant la déclaration L i g n e C o m p t a b l e l i g n e ; au même niveau que t y p e ,
n u m é r o , etc.

b. Écrivez la méthode c r é e r L i g n e () qui permette les actions suivantes :

© Éditions Eyrotles

cl»iiitrei°7 Us classes et les oiileis

- créer en mémoire l'objet l ig n e grâce à rinslruction de déclaration l ig n e = new
LigneC om ptable() ;

- faire appel à la méthode créerL igneC om ptab le () par T intermédiaire de l’objet
ligne de façon à enregistrer les valeurs numériques associées à la ligne créée ;

- modifier la valeur courante du compte à partir de la valeur (débit ou crédit) saisie dans
la méthode créerL igneC om ptab le [).

c. Modifiez ta méthode a f f ic h e rC p te () de façon à afficher les informations stockées
dans l ig n e , en utilisant rinstructioii l ig n e .a f f i c h e r L ig n e () .

Modifier l’application Projet
Dans le fichier nommé P r o j e t . ja v a , modifiez l ’option 3 de l’application de façon qu’une
ligne comptable soit créée pour le compte C, défini à l ’option 1.

a. À l’exécution de l’application, que se passe-t-il si l’utilisateur ayant créé un compte affiche
ce dernier sans avoir jamais créé de ligne comptable ? Pourquoi ?

b. Comment faire pour remédier à cette situation ?

<D

LU

O
fN

@
r :oi
5-
D.OU

© Éditions Eyrolles 2 2 3

inй)

:>■
ш
iûTH
ОrN
@

Ol
>■Q.
OU

Chapitre 8

Les principes du concept ohiet

<D

>-
LU

O
fN

@

Ol
ClOU

Au cours du chapitre précédent, nous avons examiné comment mettre en place des objets à
l’ intérieur d’un programme Java. Cette étude a montré combien la structure générale des
programmes se trouvait modifiée par l ’emploi des objets.
En réalité, les objets sont beaucoup plus qu’une structure syntaxique. Ils sont régis par des
principes essentiels, qui constituent les fondements de la programmation objet. Dans ce
chapitre, nous étudions avec précision rensemble de ces principes.
Nou.s déterminons d'abord (section « La communication objet ») les caractéristiques d'une
donnée s t a t i c et évaluons leurs conséquences sur la construction des objets en mémoire.
Nous analysons également la technique du passage de paramètres par référence. Nous obser­
vons qu’ il est possible, avec la technologie objet, qu’une méthode transmette plusieurs résultats
à une autre méthode.
Nous expliquons ensuite (section « Les objets contrôlent leur fonctionnement »). le concept
d’encapsulation des données, et nous examinons pourquoi et comment les objets protègent
leurs données.
Enfin, nous définissons (section « L’héritage ») la notion d’héritage entre classes. Nous obser­
vons combien celte notion est utile puisqu'elle permet de réutiliser des programmes tout en
apportant des variations dans le comportement des objets héritants.

© Éditions Eyrolles 225

Darde B° 2 iniflaiion à la Drrarammaiion o irâ iiée objet

la communication oblet

En défînissani un type ou une dasse, le développeur crée un modèle, qui décrit les fonctionna­
lités des objets utilisés par le programme. Les objets sont créés en mémoire à partir de ce
modèle, par copie des données et des méthodes.
Cette copie est réalisée lors de la réservation des emplacements mémoire grâce à l ’opérateur
new, qui initialise les données de l’objet et fournit, en retour, l'adresse où se trouvent les infor­
mations stockées.
La question est de comprendre pourquoi l’ inteipréteur réalise cette copie en mémoire, alors
que cela lui était impossible auparavant.

le s données static
La réponse à cette interrogation se trouve dans l’observation des différents programmes
proposés dans ce manuel (voir les chapitres 6 , « Fonctions, notions avancées », et 7, « Les
classes et les objets »). Comme nous l’avons déjà constaté (voir, au chapitre précédent, la
section « Constniire et utiliser ses propres classes »), le mot-dé s t a t i c n’est plus utilisé lors de
la description d’un type, alors qu’il était présent dans tous les programmes précédant ce chapitre.
C ’est donc la présence ou l’absence de ce mot-dé qui fait que l ’ interpréteur construise ou non
des objets en mémoire.

Remarque Lorsque l’interpréteur rencontre le mot-clé s t a t i c devant une variable ou une méthode, il
réserve un seul et unique emplacement mémoire pour y stocker ta valeur ou le pseudo-code
associé. Cet espace mémoire est communément accessible pour tous les objets du même type.

Lorsque le mot-dé s t a t i c n’apparaît pas, l ’interpréteur réserve, à chaque appel de l’opérateur
n e w , un espace mémoire pour y charger les données et les pseudo-codes décrits dans la classe.

<D

LU
ViD
OfN
®
JZgi
>■
O.OU

226

Exemple : compter des cercles
Pour bien comprendre la différence entre une donnée s t a t i c et une donnée non s t a t i c ,
nous allons modifier la dasse C e r c l e , de façon qu’il soit possible de connaître le nombre
d’objets C e r c l e créés en cours d’application.
Pour ce faire, l’ idée est d’écrire une méthode c r é e r {) qui permet d’une part, de saisir des
valeurs x, y el r pour chaque cercle à créer et d’autre part, d’incrémenter un compteur de
cercles.
La variable représentant ce compteur doit être indépendante des objets créés, de sorte que sa
valeur ne soit pas réinitialisée à zéro à chaque création d’objet. Celte variable doit cependant
être accessible pour chaque objet de façon qu'elle puisse s’incrémenter de 1 à chaque appel de
la méthtMle c r é e r ().

© Éditions Eyrolles

chapitre n° a Les mliKipes du concept oblet

Pour réaliser ces contraintes, le compteur de cercle.s doit être une variable de classe, c’est-à-dire
une variable déclarée avec le mot-clé s t a t i c . Examinons tout cela dans le programme suivant.

' i m p o r t j a v a . u t i l ;
p u b l i c c l a s s C e r c l e [

p u b l i c i n t X . y , r ; // p o s i t i o n d u c e n t r e e t r a y o n
p u b l i c s t a t i c i n t nom bre; // nombre d e c e r c l e

p u b l i c v o id c r é e r () {
S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

)

S y s t e m . o u t . p r i n t (" P o s i t i o n e n x :
X = l e c t u r e C l a v i e r . n e x t I n t O ;
S y s t e m . o u t . p r i n t (" P o s i t i o n e n y :
y = l e c t u r e C l a v i e r . n e x t I n t () ;
S y s t e m . o u t . p r i n t (" R a y o n
r = l e c t u r e C l a v i e r . n e x t i n t () ;
nombre ++;

}
// e t t o u t e s l e s a u t r e s m é t h o d e s d e
// c h a p i t r e p r é c é d e n t
// F i n d e l a c l a s s e C e r c l e

") ;

l a c l a s s e C e r c l e d é f i n i e s a u

Les données définies dans la classe C e rc le sont de deux .sortes : les variables d'instance x, y et r ,
et la variable de classe nombre. Seul le mot-clé s t a t i c pemiet de différencier leur catégorie.
Grâce au mot-clé s t a t i c , la variable de clas.se nombre est un espace mémoire commun,
accessible pour tous les objets créés. Pour faire appel à cette variable, il suffit de l’appeler par
son nom véritable c'est-à-dire nombre, si elle est utilisée dans la classe C e rc le , ou
C e r c le .nom bre, si elle est utilisée en dehors de cette classe.

Voir, au chapitre 6, « Fonctions, notions avancées », la section « Variable de classe ».

ifi<D

><LU
KOrHOfN
@
JCoi'k_>-Q.O
U

Exécution de Vapplication CompterDesCercles
Pour mieux saisir la différence entre les variables d’instance (non s t a t i c) et les variables de
classe (s t a t i c) , observons comment fonctionne l’application C o m p t e r D e s C e r c l e s .

p u b l i c c l a s s C o m p te rD esC erc le s {
p u b l i c s t a t i c v o i d m a i n (S t r i n g [] a r g)

I {
C e r c l e A = n e w C e r c l e () ;
A , c r é e r () j
S y s t e m . o u t . p r i n t l n (" N o m b r e d e c e r c l e s ;

C e r c l e B = n e w C e r c l e O ;
B . c r é e r () ;
S y s t e m . o u t . p r i n t l n (" N o m b r e d e c e r c l e s

]
} i l F i n d e l a c l a s s e C o m p t e r D e s C e r c l e s

-I- C e r c le .nom bre) ;

-t- C e r c le .n o m b re) ;

> Éditions EyroHes 2 2 7

partie B° 2 Initiation à la prograniination orientée obiet

Dans ce programme, deux objets de type C e r c l e sont créés à partir du modèle défini par le
type C e r c l e . Chaque objet est un représentant particulier, ou une instance, de la classe
C e r c l e , de position et de rayon spécifiques.

Lorsque l’objet A est créé en mémoire grâce à l’opérateur n e w , les données x, y et r sont
initialisées à 0 au moment de la réservation de l’espace mémoire. La variable de classe
n o m b r e est elle aussi créée en mémoire, et sa valeur est également initialisée à 0 .

Lors de l’exécution de l'instruction A . c r é e r () ; , les valeurs des variables x, y et r de
l'instance A sont .saisies au clavierfx = l e c t u r e C l a v i e r . n e x t i n t () ,...). La variable de
classe n o m b r e est incrémentée de 1 (n o i n b r e + +) . Le nombre de cercles est alors de 1 (voir
l’objet A, décrit à la figure 8-1).

CompterDesCercles

Figure 8 - 1 L a v a r i a b l e d e c l a s s e C e r d e . n o m b r e e s t c r é é e e n m é m o i r e , a v e c l'objet A .

G r â c e a u m o t - c l é static, I l y a , n o n p a s r é s e r v a t i o n d ' u n n o u v e l e s p a c e m é m o i r e (p o u r la v a r i a b l e n o m b r e)

lors d e la c r é a t i o n d e l'objet B, m a i s p r é s e r v a t i o n d e l ' e s p a c e m é m o i r e a i n s i q u e d e la v a l e u r s t o c k é e .

De la même façon, l’objet B est créé en mémoire grâce à l ’opérateur new. Les données x, y et
r sont, elles aussi, initialisées à 0 .

(U

>-LU
LOrHOfN
@
JZ
CT'k—>-
Q.O

U
228

Pour la variable de classe nombre en revanche, cette initialisation n’est pas réalisée. La
présence du mot-clé s t a t i c fait que la variable de clas.se nombre, qui existe déjà en
mémoire, ne peut être réinitialisée directement par l’inleipréteur.

Il y a donc, non pas réservation d’un nouvel emplacement mémoire, mais préservation du
même emplacement mémoire avec conservation de la valeur calculée à l’étape précédente,
soit 1 .

© Éditions Eyrolles

chaoKre h° 8 les priiKiiKs du Goncw otiiei

Après saisie des données x. y et r de l ’instance B, I’instrucLion nombre++ fait passer la
valeur de C e r c l e . nombre à 2 (voir l’objet B décrit à la figure 8 - 1).

N'existant qu’en un seul exeniplaire, la variable de classe nombre permet le comptage du
nombre de cercles créés. L’ incrémentation de cette valeur est réalisée indépendamment de
l’objet, la variable e'tant commune à tou.s les objets créés.

Le passage de paramètres par référence
La communication des données entre les objets passe avant tout par l’ intermédiaire des varia­
bles d’instance. Nous l’avons observé à la section précédente, lorsqu’une méthode appliquée à
un objet modifie les valeurs de plusieurs données de cet objet, cette modification est visible en
dehors de la méthode et de l’objet lui-même.

Il exi.ste cependant une autre technique qui permet la modification des données d’un objet ; le
passage de paramètres par référence.

Ce procédé est utili.sé lorsqu’on passe en paramètre d’une méthode, non plus une simple
variable (de type in t , c h a r ou do u b le), mais un objet. Dans cette situation, l ’objet étant
défini par son adresse (référence), la valeur passée en paramètre n’est plus la valeur réelle de
la variable mais l’adresse de l ’objet.

Grâce à cela, les modifications apportées sur l’objet passé en paramètre et réalisées à l’intérieur de
la méthode sont visibles en dehors même de la méthode.

Echanger la position de deux cercles

Pour comprendre en pratique le mécanisme du passage de paramètres par référence, nous
allons écrire une application qui échange la position des centres de deux cercles donnés.
Pour cela, nous utilisons le mécanisme d’échange de valeurs, en l ’appliquant à la coordonnée
X puis à la coordonnée y des centres des deux cercles à échanger.

Pour en savoir plus Les mécanismes d’échange de valeurs sont définis au chapitre 1, « Stocker une information ».

Examinons l a méthode é c h a n g e r (), dont l e code ci-dessous s’ in.sère dans la clas.se C e r c l e .

f/ï<D

>•LU
tH
O<N
@
JZoi
>-Q.OU

La classe C e r c le est définie au chapitre 7, « Les classes et les objets », la section « La
classe descriptive du type Cercle ».

p u b lic v o id éch an g er(C erc le a u tre) { I l Échange l a p o s it io n d'un
in t trop; // c e r c le avec c e l l e du c e r c le donné en param ètre
tmp = x ; // Échanger l a p o s i t io n en x
X = a u t r e .x ;

© Éditions EyroUes 2 2 9

partie B° 2 Initiation à la programination orientée oblet

a u t r e , » : = t m p ;

t m p = y ;

y = a u t r e . y ;
a u t r e . y = trap;

// E c h a n g e r l a p o s i t i o n e n y

}

Pour échanger les coordonnées des centres de deux cercles, la méthode échanger {) doit
avoir accès aux valeurs des coordonnées des deux centres des cercles concernés.

Si par exemple, la méthode est appliquée au cercle B (B. échanger ()), ce sont les variables
d’instance x et y de l’objet B qui sont modifiées par les coordonnée.s du centre du cercle A. La
méthode doit donc connaître les coordonnées du cercle A. Pour ce faire, il est nécessaire de
passer ces valeurs en paramètres de la fonction.
La technique consiste à passer en paramètres, non pas les valeurs x et y du cercle avec lequel
l’échange est réalisé, mais un objet de type C e rc le . Dans notre exemple, ce paramètre
s’appelle a u tre . C’est le paramètre formel de la méthode représentant n’importe quel cercle,
et il peut donc représenter par exemple, le cercle A.
Le fait d’échanger les coordonnées des centres de deux cercles revient à échanger les coordon­
nées du couple (x, y) du cercle sur lequel on applique la méthode (B.x, B .y) avec les coor­
données (a u t r e . X, a u t r e . y) du cercle passé en paramètre de la méthode (A. x, A . y).
Examinons maintenant comment s’opère effectivement l’échange en exécutant l ’application
.suivante :

p u b l i c c l a s s E c h a n g e r D e s C e r c l e s {

p u b l i c s t a t i c v o i d m a i n (S t r i n g [] a r g) {

C e r c l e A = n e w C e r c l e () ;

A . c r é e r () ;

S y s t e m . o u t . p r i n t I n (" L e c e r c l e A :
A . a f f i c h e r () ;

C e r c l e B = n e w C e r c l e () ;

B .c r é e r () ;
S y s t e m . o u t . p r i n t I n (" L e c e r c l e B
B , a f f i c h e r (} ;

V)(U

>■LU
LOT~l
OrM
@
x :CT
'i—
>~
ClO

U
230

B .échanger(A) ;
S y s t e m . o u t . p r i n t l n (" A p r e s é c h a n g é ,

S y s t e m . o u t . p r i n t l n (" L e c e r c l e A :

A . a f f i c h e r () ;

S y s t e m . o u t . p r i n t l n (" L e c e r c l e E :

B . a f f i c h e r !) ;

")

}

© Édifions Eyrofies

chapitre a° fl Les miiKipes du concept ohlei

Exécution de Vapplication EchangerDesCercles
Nous supposons que l ’utilisateur ait saisi les valeurs suivantes, pour le cercle A :

P o s i t i o n e n X : 2
P o s i t i o n e n Y : 2

R a y o n ; 2

L e c e r c l e A :
C e n t r e e n 2 , 2
R a y o n : 2
e t p o u r l e c e r c l e B :
P o s i t i o n e n X : 5

P o s i t i o n e n y : 5

R a y o n : 5

L e c e r c l e B ;
C e n t r e e n 5 , 5
R a y o n : 5

L’instruction B . éch an g er (A) cchaiigc les coordonnces (x , y) de l’objet B avec celles de
l'objet À. C'est donc le pseudo-code de l’objet B qui est interprété, comme illustré à la figure 8-2.

ifi

>-LU
LOrH0 rsl
@
.4-1x :
01'k_
Q.O
U

Figure 8 - 2 L ’i n s t r u c t i o n B . é c h a n g e r (A) fait a p p e l à la m é t h o d e é c h a n g e r Q d e l'objet B.

L e s d o n n é e s x, y e t r ut i l isées p a r c e t t e m é t h o d e s o n t c e l l e s d e l'objet B.

Examinons le tableau d’évolution des variables déclarées pour le pseudo-code de l ’objet B.

Instruction tmp X y autre

Valëurs initiales - B 5 0x11022033

> Éditions Eyrolles 231

Darde B° 2 iniflalion à la programmalion orientée oliiet

À rentrée de la méthode, la variable tmp e.st déclarée sans être initialisée.

La méthode est appliquée a l’objet B. Les variable.s x e t y de l’instance B ont pour valeurs
respectives 5 et 5.

L’objet a u tre est simplement déclaré en paramètre de la fonction échanger (C e rc le
a u t r e) . L’opérateur new n’étant pas appliqué à cet objet, aucun espace mémoire supplé­
mentaire n'est alloué.

Comme a u tre représente un objet de type C e rc le , il ne peut contenir qu’une adresse et
non pas une simple valeur numérique. Cette adresse est celle du paramètre effectivement
passé lors de l’appel de la méthode.

Pour notre exemple, l ’objet A est passé en paramètre de la méthode (B . échanger (A)).
La case mémoire de la variable a u tre prend donc pour valeur l’adre.sse de l’objet A.

instruction T m p X autre a u tre .x
(A .X)

tittp = X ; 5 5 0x11022033 2
K = autre.X ; 5 2 0x11022033 2
autre.x = trap ; 5 2 0x11022033 5

La variable t m p prend ensuite la valeur de la coordonnée x de l’objet B, soit 5.

ifi

>-LU
KOrHOfN
@
JZgi'k—>-Q.O
U

2 3 2

F i g u r e 8 - 3 L ’o b j e t a u t r e e s t fe p a r a m è t r e f o r m e l d e ta m é t h o d e é c h a n g e r Q . E n é c r i v a n t B . é c h a n g e r (A) ,

l'objet a u t r e s t o c k e la r é f é r e n c e m é m o r i s é e e n A . D e c e t t e f a ç o n , a u t r e . x r e p r é s e n t e é g a f e m e n t A.x.

L a v a r i a b l e x d e l ' i n s t a n c e B p r e n d la v a l e u r d e A . x g r â c e à r i n s t r u c t i o n x = autre.x.

© Éditions Eyrolles

cliaiiKre 1 ° 8 les principes du c o n c w oblei

Lorscjut; rinstruction x = a u t r e .x est exécutée, la coordonnée x de l ’objet B prend la
valeur de la coordonnée x de l’objet a u t r e .x . Puisque a u t r e correspond à l'adresse
de robjel A. le fail de consulter le contenu de a u t r e . x revient en réalité, à consulter le
contenu de A . x (voir figure 8-3). La variable d'instance A . x contenant la valeur 2 ,

X (B. x) prend la valeur 2.
Pour finir l ’échange sur les abscisses, la donnée a u t r e . x prend la valeur stockée dans
t m p . Comme a u t r e et A conespondent à la même adresse, modifier a u t r e . x , c’est
aussi modifier A . x (voir figure 8-4). Une fois exécuté a u t r e . x = tmp, la variable x de
l ’instance A vaut par conséquent 5 .

F l g u r 0 8 - 4 a u t r e e t A d é f i n i s s e n t la m ê m e r é f é r e n c e , o u adresse.
C ' e s t p o u r q u o i le fait d e m o d i f i e r a u t r e . x r e v i e n t a u s s i à m o d i f i e r A. x .

Ains i , ¡'instruction a u t r e . x = t m p fait q u e A . x p r e n d la v a l e u r s t o c k é e d a n s t m p .

L’ensemble de ces opérations est ensuite réalisé sur la coordonnée y des cercles b et A v ia
a u tre .

ifi

OL .>-LU
rHOrs
@
J -t
s zDI
>•
ClO
U

instruction tmp y autre autre.y
(A .y)

tmp = y ; 5 5 0x11022033 2
y = autre.y ; 5 2 0x11022033 2
autre.y = tmp ; 5 2 0x11022033 5

Q Éditions Eyrolfes 2 3 3

parde B° 2 Initiation I la orogramination orientée lA jet

L’exécution linale du programme a pour résultat :

A p r e s é c h a n g é ,

L e c e r c l e A

C e n t r e e n 5 , 5

R a y o n : 2

L e c e r c l e B

C e n t r e e n 2 , 2

R a y o n : 5

Au final nous constatons, à l’observation des tableaux d’évolution des variables, que les
données x et y de B ont pris la valeur des données x et y de A , soit 2 pour x et 2 pour y . Paral­
lèlement, le cercle A a été transformé par P intermédiaire de la référence stockée dans a u t r e
et a pris les coordonnées x et y du cercle B , soit 5 pour x et 5 pour y .

Remarque Grâce à la technique du passage de paramètres par référence, tout objet passé en paramètre
d'une méthode voit, en sortie de la méthode, ses données transformées par la méthode. Cette
transformation est alors visible pour tous les objets de l’application.

Les objets contrôlent leur fonctionnement

<D

>LU
rHOfN
@
JZ
CT'k—>-
Q.O

U
234

L’un des objectifs de la programmation objet est de simuler, à l’aide d’un programme informa­
tique, la manipulation des objets réels par l’être humain. Les objets réels forment un tout, et
leur manipulation nécessite la plupart du temps un outil, ou une interface, de communication.

Par exemple, quand nous prenons un ascenseur, nous appuyons sur le bouton d’appel pour
ouvrir les portes ou pour nous rendre jusqu’à l’étage désiré. L’interface de communication est
ici le bouton d’appel. Nul n’aurait l’ idée de prendre la télécommande de sa télévision pour
appeler un ascenseur.

De la même façon, la préparation d’une omelette nécessite de casser des œufs. Pour briser la
coquille d’un œuf, nous pouvon.s utiliser l'outil couteau. Un marteau pourrait être également
utilisé, mais son u.sage n’est pas vraiment adapté à la situation.

Coiimie nous le constatons à travers ces exemples, les objets réels sont manipulés par l’inter­
médiaire d’interfaces appropriées. L’utilisation d’un outil inadapté fait que l’objet ne répond
pas à nos attentes ou qu’ il se brise définitivement.

Tout comme nous manipuLms les objet.s réels, les applications informatiques manipulent des
objets virtuels, définis par le programmeur. Cette manipulation nécessite des outils aussi bien
adaptés que nos outils réels. Sans contrôle sur le bien-fondé d’iine manipulation, l’application
risque de foiimir de mauvais résultats ou pire, de cesser brutalement son exécution.

© Éditions Eyrotles

cliaiiitre 1 ° R les ptiiKipes du c o tie z oUei

Remarque

La notion d’encapsuiadon
Pour réaliser l’adéquation entre un outil et la manipulation d’un objet, la prograiiiniation objet
utilise le concept d'encapsulation.

Par ce terme, il faut entendre que les données d’un objet sont protégées, tout comme le médi­
cament est protégé par la fine pellicule de sa capsule. Grâce à cette protection, il ne peut y
avoir de transformation involontaire des données de l’objet.

L’encapsulation passe par le contrôle des données et des componements de l’objet. Ce
contrôle est établi à travers la protection des données (voir la section suivante), l’accès contrôlé
aux données (voir la section « Les méthodes d'accès aux données ») ci la notion de constructeur
de classe (voir la section « Les constructeurs »).

ifi<D

>■
LU
KO1*̂
O
(N

@
j::
CT
>•
Q.OU

La protection des donpées
Le langage Java fournit les niveaux de protection suivants pour tes membres d’une classe
(données et méthinles) :
• Protection p u b lic . Les membres (données et méthodes) d’une classe déclarés p u b lic

sont aceessibles pour tous les objets de l ’application. Les données peuvent être modifiées
par une méthode de la classe, d’une autre classe ou depuis la fonction m ain (}.

• Protection p r i v a t e . Les membres de la classe déclarés p r i v a t e ne sont accessibles
que pour les méthodes de la même classe. Les données ne peuvent être initialisées ou
modifiées que par l'intermédiaire d’une méthode de la classe. Les données ou méthodes ne
peuvent être appelées par la fonction m ain ().

• Protection p r o te c te d . Tout comme les membres privés, les membres déclarés p r o ­
t e c t e d ne sont accessibles que pour les méthodes de la même classe. Ils sont aussi acces­
sibles par les fonctions membres d’une sous-classe (voir la .section « L’héritage »).

Par défaut, lorsque les données sont déclarées sans type de protection, leur protection est
p u b lic . Les données sont alors accessibles depuis toute l’application.

Protéger les données d ’un cercle
Pour protéger Ic.s données de la classe C e r c le , il suffit de remplacer le mot-clé p u b lic
précédant la déclaration des variables d’instance par le mot p r i v a t e . Obsen'ons la nouvelle
classe, C e r c le P r iv e , dont les données sont ainsi protégées.

p u b l i c c l a s s C e r c le P r iv e
;
p r i v a t e in t x , y , r ; // p o s i t io n du c e n tre e t rayon

p u b lic v o id a f f i c h e r 0 {
// v o i r l a s e c t i o n " L a c l a s s e d e s c r i p t i v e d u t y p e C e r c l e " d u c h a p i t r e
/ / " L e s c l a s s e s e t l e s o b j e t s "

I)

© Éditions Eyrolles 235

oartle в° 2 Initlalian à la programmaiion onealée iriilet

I >

p u b l i c d o u b l e p é r i r a è t r e () {

// v o i r l a s e c t i o n " L a c l a s s e d e s c r i p t i v e d u t y p e C e r c l e " d u c h a p i t r e

/ / " L e s c l a s s e s e t l e s o b j e t s "

}
p u b l i c v o i d d é p l a c e r (i n t n x , i n t n y) {

// v o i r l a s e c t i o n " L a c l a s s e d e s c r i p t i v e d u t y p e C e r c l e " d u c h a p i t r e

/ / " L e s c l a s s e s e t l e s o b j e t s "

p u b l i c v o i d a g r a n d i r (i n t nr) {
// v o i r l a s e c t i o n " L a c l a s s e d e s c r i p t i v e d u t y p e C e r c l e " d u c h a p i t r e

/ / " L e s c l a s s e s e t l e s o b j e t s "

}
} // F i n d e l a c l a s s e C e r c l e P r i v e

L e s d o n n é e s x , y e t r d e l a c l a s s e C e r c l e P r i v e so n t p r o t é g é e s g r â c e a u m o t - c l é p r i v a t e .

É t u d i o n s l e s c o n s é q u e n c e s d ’ u n e t e l l e p r o t e c t i o n s u r l a p h a s e d e c o m p i l a t i o n d e l ' a p p l i c a t i o n

F a i r e D e s C e r c l e s P r i v e s ,

i m p o r t j a v a . u t i l ;

p u b l i c c l a s s F a i r e D e s C e r c l e s P r i v e s

{
p u b l i c s t a t i c v o i d m a i n (S t r i n g [] a r g)

{
S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

C e r c l e P r i v e A = n e w C e r c l e P r i v e () ;

A . a f f i c h e r {) ;

S y s t e m . o u t . p r i n t l n (" E n t r e z l e r a y o n : ") ;

A . r = l e c t u r e C l a v i e r . n e x t I n t () ;

Il S y s t e m . o u t . p r i n t l n (" L e c e r c l e e s t d e r a y o n : " + A . r) ;

}
1

1Л(U

>-LU
LO
OГМ
@
x :oi'k_>-Q.O
U

236

Compilation de Vapplication FaireDesCerclesPrives
L e s d o n n é e s x , y e t r d e l a c l a s s e C e r c l e P r i v e so n t d é c l t u ' é e s p r i v é e s . P a r d é i i n i t i o n . c e s

d o n n é e s ne s o n t d o n c p a s a c c e s s i b l e s e n d e h o r s d e l a c l a s s e o ù e l l e s so n t d é f i n i e s .

Or, en é c r i v an t dan.s l a f onc t ion m a i n {) r i n s t r u c t i o n A . r = l e c t u r e C l a v i e r . n e x t - I n t () ; ,

l e p r o g r a m m e u r d e m a n d e d ’ a c c é d e r d e p u i s l a c l a s s e F a i r e D e s C e r c l e s P r i v e s à l a v a l e u r

d e r , d e f a ç o n à l a m o d i f i e r . C e t a c c è s e s t i m p o s s i b l e , c a r r e s t d é f i n i e n m o d e p r i v a t e d a n s

l a c l a s s e C e r c l e P r i v e e t n on d a n s l a c l a s s e F a i r e D e s C e r c l e s P r i v e s .

© Éditions Eyrofles

Girapfire 1° 8 Les pilncipes du concepi otilei

C'esl pourquoi le compilateur délecte l ’erreur V a r i a b l e r i n c l a s s C e r c l e P r i v e

n o t a c c e s s i b l e f r o m c l a s s F a i r e D e s C e r c l e s P r i v e s .

Que se passe-t-il si l'on place le te rm e p r iv a te devant la méthode a f f i c h e r !) ?

Lors de la compilation du fichier F a i r e D e s C e r c l e s P r i v é s , le message d'erreur
a f f i c h e r !) h a s p r i v a t e a c c e s s i n C e r c l e P r i v e s'affiche.
En effet, si la méthode a f f i c h e r !) est définie en p r i v a t e , elle n'est plus accessible
depuis l'extérieur de ta classe C e r c i e P r i v é . Il n'est donc pas possible de l'appeler depuis
la fonction m a i n (} définie dans la classe F a i r e D e s C e r c l e s P r i v é s ,

Les méthodes d’accès aux données
Lorsque les données sont totalement protégées, c’est-à-dire déclarées p r i v â t e à l ’intérieur
d’une classe, elles ne sont plus accessibles depuis une autre classe ou depuis la fonction
main !), Pour connaître (,)u modifier la valeur d’une donnée, il est nécessaire de créer, à l ’intérieur
de la classe, des méthodes d’accès à ces données.
Les données privées ne peuvent être consultées ou modifiées que par des méthodes de la classe
où elles sont déclarées.
De cette façon, grâce à l’accès aux données par l’ intermédiaire de méthodes appropriées,
l’objet permet, non seulement la consultation de la valeur de ses données, mais aussi l ’autori­
sation ou non, suivant ses propres critères, de leur modification.

1Л
ôL_>UJ
T—HOfN
@
л - tJCgi'k—>-ClO
U

Figure 8-5 L o r s q u e t e s d o n n é e s d 'u n o b je t s o n t p r o t é g é e s , l ’o b je t p o s s è d e s e s p r o p r e s m é t h o d e s ,
q u i p e r m e t t e n t s o i t d e c o n s u l t e r la v a le u r r é e l l e d e s e s d o n n é e s , s o i t d e m o d i f i e r l e s d o n n é e s .

L a v a l id i t é d e c e s m o d i f ic a t io n s e s t c o n t r ô l é e p a r l e s m é t h o d e s d é f i n ie s d a n s la c la s s e .

) Éditions Eyrolles 237

partie B° 2 Initiation à la Drwgraimnaiion orientée lA let

Les méthodes d’une classe réalisent les modes d'accès suivants :
- Accès en consultation. La méthode fournit la valeur de la donnée mais ne peut la modifier.
Ce type de méthode est aussi appelé accesseur en consultation.
- Accès en modification. La méthode modifie la valeur de la donnée. Cette modification est
réalisée après validation par la méthode. On parle aussi d’accesseur en modification.

Contrôler les données d ’un cercle
Dans l ’exemple suivant, nous prenons pour hypothèse que le rayon d'un cercle ne peut jamais
être négatif ni dépasser la taille de l’écran. Ces conditions doivent être vérifiées pour toutes les
méthodes qui peuvent modifier la valeur du rayon d’un cercle.
Comme nous l’avons déjà observé (voir, au chapitre 7, « Les clas.ses et les objets », la section
«Quelques observations»), les méthodes a f f i c h e r () et p é r im è t r e !) ne font que
consulter le contenu des données x, y et r .
Les méthodes d é p l a c e r (), a g r a n d ir () et c r é e r (), en revanche, modifient le contenu
des données x, y et r . La méthode d é p la c e r ! > n’ayant pas d’ influence sur la donnée r ,
seules les méthodes a g r a n d ir !) et c r é e r {) doivent contrôler lu valeur du rayon, de sorte
que cette dernière ne puisse être négative ou supérieure à la taille de l’écran. Examinons la
classe C e r c l e C o n t r o l e suivante, qui prend en compte ces nouvelles contraintes :

i m p o r t j a v a . u t i l . * ;

public class CercleControle {
p r i v a t e i n t x , y , r ; // p o s i t i o n d u c e n t r e e t r a y o n

p u b l i c v o i d c r é e r !) !

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r ! S y s t e m , i n) ;

S y s t e m . o u t . p r i n t ! " P o s i t i o n e n x : ") ;

I X = l e c t u r e C l a v i e r . n e x t I n t i) ;

S y s t e m . o u t . p r i n t ! " P o s i t i o n e n y : ") ;

y = l e c t u r e C l a v i e r . n e x t I n t i) ;

do {
S y s te m .o u t . p r i n t ! ” R ayon : ") ;

r = l e c t u r e C l a v i e r .n e x t I n t () ; > w h i le (r <
>

0 II r > 6 0 0) ;

V)(U

LU
LO1-iO
(N

@

CT'k->-
D.O

U
2 3 8

p u b l i c v o i d a f f i c h e r !) { / / A f f i c h a g e d e s d o n n é e s d e l a c l a s s e

System.o u t . p r i n t l n ! " C e n t r e e n " + x + " , " + y);
S y s t e m . o u t . p r i n t l n (" R a y o n : " + r) ;

}

p u b l i c v o i d a g r a n d i r (i n t n r) {
i£ (r + n r < 0) r = 0 ;

© Editions EyroHes

chapitre n° 8 Les prtiKipes du concept oblei

e l s e i£ (r + n r > 600) r = 6 0 0 ;
e l s e r = r + n r ;

}
} // F i n d e l a c l a s s e C e r c l e C o n t r o l e

La méthode c r é e r {) contrôle la valeur du rayon lors de sa saisie, en demandant de saisir une
valeur pour le rayon tant que la valeur saisie est négative ou plus grande que 600 (taille
supposée de l ’écran). Dès que la valeur saisie est comprise entre 0 et 600, la fonction
c r é e r () cesse son exécution, À la sortie de cette fonction, nous sommes certains que le
rayon est conipri.s entre 0 et 5 0 0 .

De la même façon, la méthode a g r a n d i r {) autorise que la valeur du rayon soit augmentée
de la valeur passée en paramètre, à condition que cette augmentation ne dépasse pas la taille de
l’ écran ou que la diminution n’entraîne pas un rayon négatif, si la valeur passée en paramètre
est négative. Dans ces deux cas, la valeur du rayon e.st forcée respectivement à la taille de
l’ écran ou à 0 .

{fi<D

LU
ViD
tH
Ors|
@
S Ioi
‘lI>•
a .O

U

Exécution de l ’application FaireDesCerclesControles

Pour vérifier que tous les objets C e r c l e contrôlent bien la valeur de leur rayon, examinons
l’ exécution de l’application suivante :

i m p o r t j a v a . u t i l , * ;

p u b l i c c l a s s F a ir e D e s C e r c le s C o n t r o le s {

p u b l i c s t a t i c v o i d m a i n (S t r i n g [] a r g) {

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

CercleControle A = new CercleControle{);
A . c r é e r () ;
A . a f f i c h e r (] ;

S y s t e m . o u t . p r i n t (" E n t r e r u n e v a l e u r d ' a g r a n d i s s e m e n t

i n t p l u s = l e c t u r e C l a v i e r . n e x t i n t {) ;

A . a g r a n d i r (p lu s) ;
S y s t e m . o u t . p r i n t l n { " A p r e s a g r a n d i s s e m e n t : ") ;

A . a f f i c h e r () ;

}
}

L’objet A est créé en mémoire grâce à l’opérateur new. La valeur du rayon est initialisée à 0. À
l’ appel de la méthode c r é e r () , les variables d’instance x et y sont saisies au clavier, comme
suit :

P o s i t i o n e n X : 5

P o s i t i o n e n Y : 5

© Éditions Eyroltes 2 3 9

Darde B° 2 iniflaiion à la Drwgrammaiion orieniée oblet

Ensuite, si l ’utilisuleur saisit pour le rayon une valeur négative :

Rayon : _ 3

ou supérieure à 600

Rayon : 5 5 4

le programme demande de nouveau de saisir une valeur pour le rayon. L’application cesse
cette répétition lorsque l’utilisateur entre une valeur comprise entre 0 et 600, comme suit :

R a y o n : 2 OO

C e n t r e e n 5 , 5

R a y o n : 2 0 0

Après affichage des données du cercle A, le programme demande :

E n t r e r u n e v a l e u r d ' a g r a n d i s s e m e n t : 4 5 0

La valeur du rayon vaut 2 0 0 -t- 450 , soit 650. Ce nouveau rayon étant .supérieur à 600, la
valeur du rayon est bloquée par le programme à 60 0 . L’affichage des données fournit

A p r e s a g r a n d i s s e m e n t :

C e n t r e 5 , 5

R a y o n ; 6 0 0

(J)d)

>-
LU
LO
OfN
@

gi
ClOU

240

Convention de nommage
En programmation objet, les conventions stipulent que le nom des méthodes d’accès doit être
donné en suivant une règle particulière :

• Les méthodes d’accès en lecture (consultation) doivent conmiencer par g e t.
■ Les méthcxles d’accès en écriture (modification) doivent commencer par s e t .

• Derrière les termes s e t ou g e t, suit obligatoirement le nom de la propriété dont la première
lettre est en majuscule.

Par exemple la méthode qui fournit la valeur du rayon s’écrit, dans la classe C e r c le :

// M é t h o d e d ' a c c è s e n l e c t u r e

p u b l i c i n t g e tR a y o n (){
r e t u r n r a y o n ;

}

La méthode qui autorise la modification du périmètre s’écrit :

// M é t h o d e d ' a c c è s e n é c r i t u r e

p u b l i c v o i d s e tR a y o n (i n t r) {

r a y o n = r ;

}

) Editions Eyrotles

chapitre n° 8 les priiKiiKs du to K S ÿ t obiet

L’accès aux données d'un cercle dans l'application F a i r e D e s C e r c le s C o n t r o le s s'écrit
alors :

// C h a n g e r l a v a l e u r d u r a y o n

A .s e tR a y o n (lO) ;
// A f f i c h e r (c o n s u l t e r) l a n o u v e l l e v a l e u r d u r a y o n

S y s t e m . o u t . p r i n t l n (" A p r e s m o d i f i c a t i o n : " + A . g e tR a y o n ()) ;

Utiliser cette convention de nommage simplifie la lecture du code. En effet, en un seul coup
d'œil, nous sommes en mesure de savoir quelle propriété de l ’objet est consultée (g e t) ou
modifiée (se t) , par simple lecture du nom de la propriété, dans le nom de la fonction.

t/ï

>-
LU
KOrHOfN
@
JZ
CT'k—>-
Q.O

U

La notion de constante

D’une manière générale en programmation objet, les variables d’instance ne sont que très rare­
ment déclarées en p u b lic . Pour des raisons de sécurité, tout objet se doit de contrôler les
transformations opérées par l ’application sur lui-même. C’est pourquoi les données d’une
classe sont le plus souvent déclarées en mode p r iv a te .

Il existe des données, appelées eunstantes qui, parce qu’elles sont importantes, doivent être
visibles par toutes les méthodes de l’application. Ces données sont déclarées en mode
p u b lic . Du fait de leur invariabilité, l’application ne peut modifier leur contenu.

Pour notre exemple, la valeur 600, correspondant à la taille (largeur et hauteur) supposée de
l’écr an, peut être considérée comme une donnée constante de l’application.

11 suffit de déclarer les variables « con.stantes » à l’aide du mot-clé f i n a l . Ainsi, la taille de
l’écran peut être définie de la façon suivante :

I p u b l i c f i n a l i n t T a i l l e E c r a n = 600 ;

Notons que la taille de l’écran est une valeur indépendante de l ’objet C e rc le . Quelle que soit
la forme à dessiner (cairé, cercle, etc.), la taille de l’écran est toujour's la même. C’est pourquoi
il est logique de déclarer la variable T a ille E c ra n comme constante de classe à l’aide du
mot-dé s t a t i c .

I p u b l i c f i n a l s t a t i c i n t T a i l l e E c r a n 600

De cette façon, la variable T a i l l e E c r a n est acce,ssible en con.sultation depuis toute l’appli­
cation, mais elle ne peut en aucun cas êfi-e modifiée, étant déclarée f i n a l .

Les méthodes c r é e r () et a g r a n d i r () s’écrivent alors de la façon suivante :

p u b l i c v o i d c r é e r () {

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

S y s t e m . o u t . p r i n t (" P o s i t i o n e n :x : ") ;

X = l e c t u r e C l a v i e r . n e x t l n t () ;

© Éditions Eyrolles 241

partie B° 2 Initiation à la prograniniaiion oriHilée obiet

S y s t e m , o u t . p r i n t (" P o s i t i o n e n y :

y = l e c t u r e C l a v i e r . n e x t l n t () ?

d o {

S y s t e m , o u t , p r i n t (" R a y o n ,

r = l e c t u r e C l a v i e r . n e x t i n t () ;

} w h i l e (r < 0 II r > T a i l l e E c r a n)
}

")

p u b l i c v o i d a g r a n d i r (i n t n r) {

i f (r + n r < 0) r = 0 ;

e l s e i f (r + n r > T a i l l e E c r a n) r = T a i l l e E c r a n
e l s e r = r + n r ;

}

ÔL.>-UJ
vO
tH
0<N
©
x :01’l_P'ClOU

242

Des méthodes invisibles

Comme nous l’avons observé précédemment, les données d’une classe sont généralement
déclarées en mode p r i v a t e . Les inétliodes, quant à elles, sont le plus souvent déclarées
p u b lic , car ce .sont elles qui permettent l ’accès aux données protégées. Dans certains cas
particuliers, il peut arriver que certaines méthodes soient définies en mode p r i v a t e . Elles
deviennent alors inaccessibles depuis les classes extérieures.

Ainsi. le contrôle systématique des données est toujours réalisé par l’objet lui-même, et non
par l ’application qui utili.se les objets. Par conséquent, les méthodes qui ont pour charge de
réaliser cette vérification peuvent être définies comme méthodes internes à la classe
puisqu’elles ne sont jamais appelées pai'l’application.

Par exemple, le contrôle de la validité de la valeur du rayon n’est pas réalisée par l’application
F a i r e D e s C e r c l e s mais correspond à une opération interne h la classe C e r c l e . Ce
contrôle est réalisé différeniinent suivant que le cercle est à créer ou à agrandir (voir les
méthodes c r é e r () et a g r a n d i r () ci-dessus).

• Soit le rayon n’est pas encore connu, et la vérification s’effectue dès la sai.sie de la valeur.
C’est ce que réalise la méthode suivante :

p r i v a t e i n t r a y o n v é r i f i é () [

i n t t m p ;

I d o {

S y s t e m . o u t . p r i n t (" R a y o n : ") ;

t m p l e c t u r e C l a v i e r . n e x t i n t () ;

} w h i l e (t m p < 0 || t m p > T a i l l e E c r a n) ;

r e t u r n t m p ;

I >

) Éditions EyroHes

chapHra n° 8 les priiKiiKs du G oncw oblei

* Soit le rayon est déjà connu, auquel ea.s îa véritiealion est réalisée à partir de la valeur passée
en paramètre de la méthode :

p r i v a t e i n t r a y o n V é r i f i é (i n t t m p) {

i f (t m p < 0) r e t u r n 0 ;

e l s e i f [t r a p > T a i l l e E c r a n) r e t u r n T a i l l e E c r a n ;

e l s e r e t u r n t m p ;

}

IK tln H Iiy i [tj Les méthodes r a y o n V é r i f i é {) sont appelées méthodes d’implémentation ou encore
méthodes « métier », car elles sont déclarées en mode privé. Leur existence n’est connue
d’aucune autre classe. Seules les méthodes de la classe C e r c l e peuvent les exploiter, et
elles ne sont pas directement exécutables par l’application. Elle sont cependant très utiles à
l’intérieur de la classe où elles sont définies (voir les sections « Les constructeurs » et
« Lhéritage »).

Notons que nous venons de définir deux méthodes ponant le nom r a y o n V é r i f i é ()
Le langage Java n’interdit pas la définition de méthodes portant le même nom.

Remamiie Dans cette situation, on dit que ces méthodes sont surchargées (voir la section « La sur­
charge de constructeurs »).

Les constructeurs
Grâce aux différents niveaux de protection et aux méthodes contrôlant l’accès aux données, il
devient possible de constniire des outils appropriés aux objets manipulés.

Cependant, la protection des données d'une classe passe aussi par la notion de constructeurs
d’objets. En effet, les constructeurs sont utilisés pour initialiser correctement les données d’un
objet au moment de la création de l ’objet en mémoire.

t/ï

>-
LU
CO
OfN
®

g i
>Q.O

U

Le constructeur par défaut

Le langage Java définit, pour chaque classe construite par le programmeur, un constructeur par
défaut. Celui-ci initialise, lors de la création d’un objet, toutes les données de cet objet à 0
pour les entiers, à 0 .0 pour les réels, à ' \0 ' pour les caractères et à n u l l pour les S t r i n g
ou autres types structurés.

Le constructeur par défaut est appelé par l ’opérateur new lors de la réservation de l’espace
mémoire. Ainsi, lorsque nous écrivons :

I C e r c l e C = n e w C e r c l e {) ;

© Éditions Eyrolles 2 4 3

I panic 11° 2 intllafloB à la ргодгаттаДоп oricnlée ohici |

nous utilisons le terme C e r c le !), qui représente en réalité le constructeur par défaut (il ne
possède pas de paramètre) de la classe C e rc le .

Un constnicteiir est une méthode, puisqu’il y a des parenthèses () derrière son nom d’appel,
qui porte le nom de la classe associée au type de l ’objet déclaré.

Définir le constructeur d ’une classe
L’utilisation du constructeur par défaut permet d’ initialiser systématiquement les données
d'une classe. L’initialisation proposée peut parfois ne pas être conforme aux valeurs demandées
par le type.

Dans ce cas, le langage Java offre la possibilité de définir un constructeur propre à la classe de
l ’objet utilisé. Cette définition est réalisée en écrivant une méthode portant le même nom que
sa classe. Les instructions qui la composent permettent d’ initialiser les données de la classe,
conformément aux valeurs demandées par le type choisi.
Par exemple, le constaicteur de la dusse C e r c le peut s’écrire de la façon suivante :

public Cercle() {
Scanner lectureClavier = new Scanner(System.in);
System.out.print(" Position en x : ");
X = lectureClavier.nextInt!),-
System.out.print{" Position en y : ");
y = lectureClavier.nextInt();
r = rayonVérifié{);

}

En observant la structure du constructeur C e r c le !), nous constatons qu’un constructeur
n’est pas typé. Aucun type de retour n’est placé dans son en-tête.

1Л

>-Ш
KOr-H
OГМ
©

oi
ClOU

iTi

244

Que se passe-t-il si i’on écrit l’en-tête du constructeur comme suit ;
, p u b l i c vola. Cercle [)
ou encore ;
■ public i n t Cercle()
Le fait de piacer un type (in t , void, ...) dans l’en-téte du constructeur a pour conséquence
de créer une méthode, qui a pour nom C e rc le (). li s ’agit bien d’une méthode et non d'un
constructeur. Elle n’est donc pas appelée par l’opérateur new.

Une fois correctement défini, le constructeur est appelé par l’opérateur new, comme pour le
constructeur par défaut. L’instruction :
I Cercle A = new Cercle();

© Éditions Eyrolles

chapitre n° a Les mliKipes du concept ohlet

l’ait appel au constructeur défini ci-dessus. Le programme exécuté demande, dès la création de
l’objet A, de saisir les données le concernant, avec une vérification concernant la valeur du
rayon grâce à la méthode r a y o n V é r i f i é (). De cette façon, l’application est sûre d’exploiter
des objets dont la valeur est valide dès leur initialisation.

Lorsqu’un constructeur est défini par le programmeur, le constructeur proposé par défaut par le
langage Java n’existe plus.
La méthode c ré e r () et le constructeur ainsi définis ont un rôle identique. La méthode
c r é e r () devient par conséquent inutile.

La surcharge de constructeurs
Le langage Java permet la définition de plusieurs constructeurs, ou méthodes, à I'intcrieur
d’une même classe, du fait que la construction des objets peut se réaliser de différentes façons.
Lorsqu'il existe plusieurs constructeurs, on dit que le constructeur est surchargé.

Dans la classe C e rc le , il est possible de définir deux constructeurs supplémentaires :

p u b l i c C e r c l e (i n t c e n t r e x , i n t c e n t r e y)
X = c e n t r e x ;
y = c e n t r e y ;

}

i

i/)(U

>-UJ
sorHOfN
@
JCgi'l-
Q.O
U

p u b l i c C e r c l e { in t c e n t r e x , i n t c e n t r e y , i n t r a y o n) {
t b i s { c e n t re x , c e n tre y) ;
r = r a y o n V é r i f i é (r a y o n) ;

}

Pour déterminer quel constructeur doit être utilisé, l’ inteipréteur Java regarde, lors de son
appel, la liste des paramètres défini.s dans chaque constructeur. La construction des trois objets
A, B et C suivants fait appel aux trois constructeurs définis précédemment :

C e rc le A = new C e r c l e {) ;
C e rc le B = new C e r c l e (10 , 1 0) ;
C e rc le C = new C e r c le i lO , 10 , 3 0) ;

Lors de la déclaration de l ’objet A, le constmeteur appelé est celui qui ne possède pas de para­
mètre (le conslrucleui par défaut, défini à la section « Définir le constructeur d’une classe »),
et les valeurs du centre et du rayon du cercle A sont celles saisies au clavier par riitilisaceur.

La création de l ’objet B fait appel au constructeur qui possède deux paramètres de type entier.
Les valeurs du centre du cercle B sont donc celles passées en paramètre du constructeur, soit
(1 0 ,1 0) pour (B. X, B . y). Aucune valeur n’étant précisée pour le rayon, B . r est automatiquement
initialisé à 0.

> Éditions Eyrolles 245

oartle B° 2 Initiation à la Drogrammaiion orienlée oblei

Le mot-clé this
La création de l ’objet C est réalisée par le constructeur qui possède trois paramètres entiers.
Ces paramètres permettent l ’ initialisation de toutes les données définies dans la classe
C e r c le .
Signalons que, grâce à l ’instruction t h i s (c e n t r e x , c e n t r e y), le constructeur possédant
deux paramètres est appelé à l’ intérieur du constructeur possédant trois paramètres.

Le mot-elé t h i s () représente fappel au second constructeur de la même classe possédant
deux paramètres entiers, puisque t h i s () est appelé avec deux paramètres entiers. Il permet
rutilisation du constructeur précédent pour initialiser les coordonnées du centre avant d’initia­
liser correctement la valeur du rayon grâce à la méthode r a y o n V é r i f i é (r a y o n) , qui est
elle-même surchargée. Comme pour les constructeurs, le compilateur choisit la méthode
r a y o n V é r i f i é (), définie avec un paramètre entier.
Pour finir, notons que le terme t h i s () doit toujours être placé comme première inslruction
du constructeur qui l’utilise.

l ’héritage

L'héritage est le dernier concept fondamental de la programmation objet étudiée dans ce
chapitre. Ce concept permet la réutilisation des fonctionnalités d’une classe, tout en apportant
certaines variations, spécifiques de l’objet héritant.
Avec l ’héritage, les méthodes définies pour un en.semble de données sont réutilisables pour des
variantes de cet ensemble. Par exemple, si nous supposons qu’une classe Forme définisse un
ensemble de comportements propres à toute forme géométrique, alors ;

• Ces comportenient.s peuvent être réutilisés par la classe C e rc le , qui est une forme géomé­
trique particulière. Cette réutilisation est effectuée sans avoir à modifier les instructions de
la classe Forme.

• Il est possible d’ajouter d’autres comportements spécifiques des objets C e rc le . Ces nou­
veaux comportements sont valides uniquement pour la classe C e r c le et non pour la
classe Forme.

(U

>LU
sOrHOfN
@
JC
CT'k—>-
Q.O

U
246

La relation « est un »
En pratique, pour déterminer si une classe B hérite d’une classe A, il suffit de savoir s’il existe
une relation « est un » entre B et A. Si tel est le cas, la syntaxe de déclaration est la suivante :
class B extends A [
// données e t méthodes de la c la s s e B
]

© Éditions EyroHes

chapitre n° 8 Les rnincipes du concept ohlet

Dans ce cas, on dit que :
• B est une sous-classe de A ou encore une classe dérivée de A.
* A est une super-classe ou encore une classe de base.

Un cercle « est une » forme géométrique
En supposant que Ja classe Forme possède des caractéristiques co.mmunes à chaque type de
forme géométrique (les coordonnées d’affichage à l ’écran, la couleur, etc.), ainsi que des
comportements communs (afficher, déplacer, etc.), la classe Forme s’écrit de la façon
suivante :

i m p o r t j a v a . u t i l . * ;

p u b l i c c l a s s F o r m e {

p r o t e c t e d I n t x , y ;

p r i v a t e c o u l e u r ;

p x i b l i c F o r m e O { / / L e c o n s t r u c t e u r d e l a c l a s s e F o r m e

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

S y s t e m . o u t . p r i n t (" P o s i t i o n e n x : ") ;

X = l e c t u r e C l a v i e r . n e x t I n t O ;

S y s t e m . o u t . p r i n t (" P o s i t i o n e n y : ' ') ;

y = l e c t u r e C l a v i e r . n e x t i n t () ;

S y s t e m . o u t . p r i n t (" C o u l e u r d e l a f o r m e : ") ;

c o u l e u r = l e c t u r e C l a v i e r . n e x t i n t (} ;

I }

p u b l i c v o id a f f i c h e r () { / / A f f i c h a g e d e s d o n n é e s d e l a c l a s s e

S y s t e m . o u t . p r i n t l n {" P o s i t i o n e n " + x + " , " + y) ;

S y s t e m . o u t . p r i n t I n {" C o u l e u r : " + c o u l e u r) ;

}

(U

>-UJ
r-H
OfN
@
J C
CT'k—>-
Q.O

U

p u b l i c v o id d é p l a c e r (i n t n x , i n t n y) { // D é p l a c e l e s c o o r d o n n é e s

X = n x ; // d e l a f o r m e e n (n x , n y) p a s s é e s e n

y = n y ; // p a r a m è t r e d e l a f o n c t i o n

}
} // F i n d e l a c l a s s e F o r m e

Sachant qu’un objet C e r c l e « est une » forme géométrique particiilièit, la classe C e r c l e

hérite de la classe F o r m e en écrivant ;

p u b l i c c l a s s C e r c l e e x te n d s F o r m e {

p r i v a t e i n t r ; // r a y o n

p u b l i c C e r c l e () { / / L e c o n s t r u c t e u r d e l a c l a s s e C e r c l e

> Éditions EyroHes 247

Darde B° 2 miflation à la pragranimaiion otiHilée oblet

S y s t e m , o u t , p r i n t (" R a y o n

r = r a y o n v é r i f i é { } ;
") ;

U1
(U

LU
<0
tHO
fN

@

CT
>-
D.OU

2 4 8

}
p r i v a t e i n t r a y o n v é r i f i é {) {

I // V o i r l a s e c t i o n " D e s m é t h o d e s i n v i s i b l e s "

}
p r i v a t e i n t r a y o n v é r i f i é (i n t t m p) {

// V o i r l a s e c t i o n " D e s m é t h o d e s i n v i s i b l e s "

1 1
p u b l i c v o id a f f i c h e r O { // A f f i c h a g e d e s d o n n é e s d e l a c l a s s e

s u p e r . a f f i c h e r [) ;

S y s t e m . o u t . p r i n t l n (" R a y o n ; " + r) ;

}
p u b l i c d o u b le p é r im è t r e O {

// v o i r l a s e c t i o n " L a c l a s s e d e s c r i p t i v e d u t y p e C e r c l e " d u

I I I c h a p i t r e " L e s c l a s s e s e t l e s o b j e t s "

}
p u b l i c v o id a g r a n d i r { in t n r) { // A u g m e n t e l a v a l e u r c o u r a n t e d u

r = r a y o n v é r i f i é [r + n r) ; // r a y o n a v e c l a v a l e u r p a s s é e e nI } // p a r a m è t r e

} // F i n d e l a c l a s s e C e r c l e

Un cercle est une forme géome'lriqiie (C e rc le e x te n d s Forme) qui possède un rayon
(p r i v a t e i n t r) et des comportements propres aux cercles, soit par exemple, le calcul du
périmètre (p é r im è tre ()) ou encore la modification de sa taille (a g ra n d ir ()). Un cercle
peut être déplacé, comme toute forme géométrique. Les méthodes de la classe Forme restent
donc opérationnelles pour les objets C e rc le .

En examinant de plus près les classes C e r c le et Forme, nous observons que :

• La notion de constmctcur existe aussi pour les classes dérivées (voir la section « Le constme-
tetir d’une clas.se héritée »).

• Les données x, y sont déclarées p r o t e c t e d (voir la section « La protection des données
héritées »).

• La fonction a f f i c h e r () existe .sous deux fomies différentes dans la classe Forme et la classe
C e rc le . Il s’agit là du concept de polymorphisme (voir la section « Le polymorphisme »).

le constructeur d’une classe héritée
Les classes dérivées possèdent leurs propres constmeteurs qui sont appelés par l’opérateur
new, comme dans ;
I C e r c l e A = n e w C e r c l e () ;

© Éditions Eyrotles

chapitre n° 8 Les miiKipes du concept oblei

Pour construire un objet dérivé, il est indispensable de construire d’abord l'objel ass(x;ié à la
classe mère. Pour construire un objet C e rc le , nous devons définir ses coordonnées et sa
couleur. Le constructeur de la classe C e r c le doit appeler le constructeur de la cliisse Forme.

HD Par défaut, s’il n’y a pas d’appel explicite au constructeur de la classe supérieure, comme c’est
le cas dans notre exemple, le compilateur recherche de lui-même le constructeur par défaut
(sans paramètre) de la classe supérieure.

En construisant l’objet A, l’ interpréteur exécute aussi le constructeur par défaut de la classe
Forme. L’ensemble des données du cercle (x, y, c o u le u r et r) est alors correctement initia­
lisé par saisie des valeurs au clavier.

I B S

Que se passe-t-il si nous remplaçons le constructeur de la classe Forme par :
/ / L e nouveau constructeur de la
// classe Forme

public Forme(int nx, int ny) {
X = nx ;
y = ny :
couleur = 0 ;

}

Lors de la construction de l’objet A, le compilateur recherche le constructeur par défaut de la
classe supérieure, soit Forme () sans paramètre. Ne le trouvant pas, il annonce une erreur du
type no constructor matching Forme() found in class Forme.

Lorsqu'il n’existe pas de constructeur par défaut dans la classe supérieure, l ’interpréteur ne
peut plus l’exécuter au moment de la construction de l’objet de la classe dérivée. Tl est néces­
saire de faire appel à l’outil su p e r <).

(U

U J
<£>r—t
O
(N

@
JZgi'k—>-Q.O
U

Le mot-clé super

Pour éviter ce type d’erreur, la solution consiste à appeler directement le constructeur de la
classe mère depuis le constnicteur de la classe :

/ / L e c o n s tru c te u r de l a c la s s e C e rc le
public Cercle(int xx, int yy) {

super(xx, yy);
System.out.print(" Rayon ;
r = rayonVérifié();

i)

De cette façon, le terme s u p e r () représentant le constructeur de la classe supérieure
possédant deux entiers en paramètres, l ’ interpréteur peut finalement construire l ’objet A

© Editions Eyrolles 249

I panic B° 2 intBaBoM à la DrogrammaBoii oricniée ohiel |

(C e rc le A = new C e r c le (5 , 5)), par appel du œnsiructeurde laclasse Forme à l’inté-
rienr du constructeur de la classe C e rc le .

Le terme su p e r est obligatoirement la première instruction du constructeur de la classe dérivée.
La liste des paramètres (deux in t) permet de préciser au compilateur quel est le constructeur
utilisé en cas de surcharge de constructeurs.

La protection des données héritées
En héritant de la classe A, la classe B hérite des données et méthodes de la classe A. Cela ne
veut pas forcément dire que la classe B ait accès à toutes les données et méthodes de la classe
A. En effet, héritage n’est pas synonyme d’accessibilité.

briitil.il I M Lorsqu'une donnée de la classe supérieure est déclarée en mode p r i v a t e , la classe dérivée
ne peut ni consulter ni modifier directement cette donnée héritée. L’accès ne peut se réaliser
qu’au travers des méthodes de la classe supérieure.

Pour notre exemple, la donnée c o u le u r étant déclarée p r i v a t e dans la classe Forme,
le constructeur suivant génère l'erreur v a r i a b l e c o u le u r in c l a s s Forme n o t
a c c e s s i b l e from c l a s s C e rc le .

{ / / L e c o n s tru c te u r de l a c la s s e
// C e rc le

public Cercle (in t x x , in t yy)
super{xx, yy);
couleur = 2 0 ;
r = 10 ;

}

Tl est possible, grâce à la protection p r o t e c t e d , d’autoriser l’accès en consultation et modi­
fication des données de la classe supérieure. Toutes les données de la classe A sont alors
accessibles depuis la clas.se B, mais pas depuis une autre classe.

Dans notre exemple, si la donnée c o u le u r est déclarée p r o t e c t e d dans la classe Forme,
alors le constructeur de la classe C e r c le peut modifier sa valeur.

{ft<ü

>•
LU
LO

OfN
@

01'k_
Q.OU

250

Le polym orphisme
La notion de polymorphisme découle directement de Phéritage. Par polymorphisme, il faut
comprendre qu'une méthode peut se comporter différemment suivant l ’objet sur lequel elle est
appliquée.
Lorsqu’une même méthode est définie à la fois dans la classe mère et dans la classe fille,
l ’exécution de la forme (méthode) choisie est réalisée en fonctitin de robjel associé à l ’appel

© Éditions Eyrotles

chapitre n° a LKnrtncipes du concept oblei

et non plus suivant le nombre et le type des paramètres, comme c’est le cas lors de la surcharge
de méthodes à l’ intérieur d’une même classe.

Pour notre exemple, la méthode afficher () est décrite dans la classe Forme et dans la
classe Cercle. Cette double définition ne correspond pas à une véritable surchaige de fonc­
tions. Ici, les deux méthodes afficher () sont définies sans aucun paramètre. Le choix de la
méthode ne peut donc s’effectuer sur la différence des paramètres. Tl est effectué par rapport à
l’objet sur lequel la méthexie est appliquée. Observons l’exécution du programme suivant :

public class FormerDesCercles {
public static void main(String [] arg) {
Cercle A = new Cercle(5, 5);
A.afficher();
Forme F = new Forme (10, 10, 3);
F.afficher();

}
}

L’appel du constructeur de l ’objet A nous demande de saisir la valeur du rayon ;

Rayon : 7

La méthode a f f i c h e r {) est appliquée à A. Puisque A est de type C e rc le , l ’affichage
correspond à celui réalisé par la méthode définie dans la classe C e r c le , soit :

Position en 5, 5
Couleur : 20
Rayon ; 7

La forme F est ensuite créée puis affichée à l'aide la méthode afficher!) de la classe
Forme, F étant de type Forme :
Position en 10, 10
Couleur : 3

Remarque Lorsqu'une méthode héritée est définie une deuxième fois dans la classe dérivée, l’héritage est
supprimé. Le fait d’écrire A. afficher () ne permet plus d'appeler directement la méthode
afficher {) de la classe Forme.

CJ

>-
LU

T~t
OfN
@
JCoi'k_>-
ClO

U

Pour appeler la méthode définie dans la classe supérieure, la solution consiste à utiliser le
terme super, qui recherche la méthode à exécuter en remontant dans la hiérarchie.
Dans notre exempte, s u p e r . a f f i c h e r () permet d’appeler la méthode a f f i c h e r () de la
classe Forme.
Grâce à cette technique, si la méthode d'affichage pour une Forme est transformée, cette
transformation est automatiquement répercutée pour un C e rc le .

© Éditions Eyrolfes 251

partie a° 2 Initiation à la programmation orientée oblet I

les interfaces

Nous l’avons vu à la section « Les objets contrôlent leur fonctionnement » de ce chapitre, les
objets de la vie réelle sont manipulés pai* une interface appropriée et les objets informatiques
proposent également une interface qui nous permet de communiquer avec eux.

Qu'est-ce qu’une interrace P
En pratique, une interface correspond par exemple à une fenêtre de contrôle ou un panneau
précisant les informations en cours de traitement. L’ interface de communication se doit d’être
suffisamment générale pour être utilisable dans le plus grand nombre de cas. tout en proposant
un modèle d’utilisation approprié à sa fonction.

Une interface correspond donc à une classe qui définit non pas un modèle d’objet (une sorte de
moule) mais un ensemble de comportements possibles, sans que ces comportements soient
réellement décrits.

Plus précisément, lorsqu’un utilisateur clique par exemple sur le bouton « Valider » d’une
application, une action doit être menée. Cette action diffère selon l ’application. Tl peut s’agir
de confirmer l’envoi d’un message électronique ou encore de supprimer un fichier.

La classe modélisant le bouton de validation doit donc proposer une méthode nommée par
exemple actionArealiser () (en anglais actionPerformed{)) sans décrire explicite­
ment le code de cette action. Seul l ’utilisateur (c’est-à-dire le programmeur d'applications) est
à même de décrire l ’action à réaliser.

Remarque Le traitement des événements et la description des actions associées sont étudiés plus préci­
sément au chapitre 11 « Dessiner des objets », section « Exemple : associer un bouton à une
action ».

Cette classe de modélisation des comportements correspond en pratique à une interface.

ifiO
Ol_>
LU

rH
Orvl
@
u-tJZCT'k—>-Q.O
U

252

Syntaxe d'une interface

Une interface, dans le langage Java, définit les noms des méthodes associées aux comporte­
ments. Elle ressemble à une classe puisqu’elle s’écrit comme suit ;

interface uneinterface {
public type raethodel() ;
public type methode2{) ;
// d’autres en-têtes de méthodes

1

© Editions Eyrotles

cliapitre n° 8 Les wiiKipes du concept oblei

Les règles cTéeriUire d"une interlace sont simples :
• une interface est définie au sein d’un fichier qui porte son nom suivi de l’extension

. j a v a ;
• le tenue i n t e r f a c e remplace le terme c l a s s ;
• les comportements proposés par l’interface sont définis à partir des en-têtes de méthodes

(signature).

y)
ôL_>
LU
LO

OfN
@
j::
?
>•
C lO
U

Principe de fonctionnements

Une fois l ’ interface définie, les méthodes sont concrètement décrites au sein des différentes
classes qui implémentent l’ interface. Pour cela, vous devez :
• placer le terme implements lors de la création de la classe ;
• décrire ce que réalise les méthodes, comme suit :

public class UneClasse implements uneinterface {
public type methodel() {
// ici sont décrites les actions à mener poui' cette méthode au sein de cette classe
}
public type methode2 () {
H Ici sont décrites les actions à mener pour cette méthode au sein de cette classe
}

}

Une seconde classe peut également implémenter la même interface et dans ce cas, le code
s’écrit :

public class UneAutreClasse implements uneinterface {
public type methodelO {
// Ici sont décrites tes actions à mener pour cette méthode au sein de cette classe
}
public type methode2 () {
H Ici sont décrites les actions à mener pour cette méthode au sein de cette classe

I 1
}

Les méthodes methodel f) et metiiode2 () ne se comportent pas de la même façon selon la
classe dans laquelle elles sont définies. Elles contiennent des instructions différentes d’une
classe à l’autre.
Les objets implémentant l’ interface u n e in t e r f a c e sont ensuite créés dans l’application de
la façon suivante :

UneClasse premier = new UneClasse();
UneAutreClasse second = new UneAutreClasse();
// appeler la methodel () de UneClasse

© Éditions Eyrolles 253

partie B° 2 Initiation à la programination orientée oblet

premier.methodel[);
H appeler la methodel() de UneAutreClasse

I second.m ethodel() ;

Remaraue Une interface modélise des comportements, et non des objets,
une instance d’interface à l’aide de l’opérateur new.

est donc impossible de créer

Avec la version 8 de Java, il est possible de créer des méthodes par défaut au sein d’une inter­
face. Pour cela, il suffit d’ajouter le terme d e f a u l t devant l’en-tête de la méthode comme
suit ;

interface uneinterface {
default public type methodel() {

System,out.print{"Je suis une méthode par défaut ! ") ;
} ;
public type methode2 {) ;
// d’autres en-têtes de méthodes

}

Utiliser les méthodes par défaut a pour avantage de permettre l’écriture d’un code réutilisable
dans le temps surtout lors de l ’ajout de nouvelles fonctionnalités. En effet, il n’est pas néces­
saire de redéfinir une méthode par défaut au sein d'une classe qui implémente une interface.
Vous pouvez ainsi utiliser la méthode par de'faut qui fonctionne comme vous le souhaitez. Et.
dans le cas d’un ajout de fonctionnalités, vous pouvez modifier la méthode par défaut au sein
d’une nouvelle classe, sans pour autant affecter le bon fonctionnement du reste de votre appli­
cation.

Calculs géométriques
L’objectif de cet exemple est de construire une interface qui permette de calculer n’ importe
quels surface et périmètre d ’une forme géométrique. Pour cela, nous allons utiliser les notions
d’héritage et d’interface étudiées au cours des deux sections précédentes.

tf)(U

>
LU
LOrM
OfN
@
.i_i
j::gi'k—5-Q.OU

254

Cahier des charges

L’application principale crée autant de formes qu’elle le souhaite (cercle ou rectangle) en utili­
sant les classes Foiune, Cercle et Rectangle.

TiUriT>̂ La classe Rectangle est réalisée en exercice, à la fin de ce chapitre.

La classe Forme implémente l ’interface C alcu lG eom etriq u e qui définit deux méthodes
surface {) et perimetre ().

© Éditions Eyroiles

chapitre n° a Les mlncipes du concept oblet

(U

>-Ш
ЮrH
OfN
@
JZCT'k—>-Q.O
U

Le calcul de la surface d’une forme au sein de la classe Forme n’est pas possible, car la forme
n’est pas encore réellement définie. Les méthodes surface () et p e r im e t r e () au sein de
cette classe retournent une valeur négative.
Les classes Cercle et Rectangle héritent toutes deux de la classe Forme, elles implémentent
par conséquent rinterface CalculGeometrique. Les méthodes surface () et
perimetre O au sein de ces différentes classes retournent la valeur du périmètre et de la
surface calculée à partir de la formule correspondant à la forme géométrique associée à la classe.

surface!) et perimetre()
Exemple : code source
L’interface CalculGeometrique définit les méthodes
comme suit :

interface CalculGeometrique {
public double surface();
public double perimetre!);

}

La classe Forme implémente l’ interface CalculGeometrique et décrit explicitement les
méthodes surface !) et perimetre !). Ces dernières retournent la valeur - 1 .

public class Forme implements CalculGeometrique {
protected int x, y, couleur ;
H Défin ition du constructeur et de la méthode afficher!)
H Description des méthodes surface!) et pterimetre!) pour la classe Forme
public double surface!) {

return -1 ;
)
public double perimetre() {

return -1 ;
]

La cla,sse Cercle hérite de la classe Forme. Par héritage, elle implémente l ’ interface
CalculGeometrique. Les méthodes perimetre!) et surf ace !) associées à la classe
Cercle retournent respectivement la valeur correspondant au calcul mathématique du péri­
mètre d’un cercle et de sa surface.

public class Cercle extends Forme!
private int r ;
public double surface!) (

return Math.PI *r*r ;
]
public double perimetre!) (

return 2*Math.PI*r ;
}

,)

> Éditions Eyroties 255

Darde B° 2 Iniflailon à la Drogrammanon orientée lAlet

L’appliciilioTi finale crée des objets de type Cercle ou Forme comme suit :
f Cercle A = new Cercle(5, 5);
A.afficher();
if (A.petimetre() >=0) {

System.ou t .println("Le périmètre de A vaut " + A.perimetret));
} else {

System.out.println("Calcul impossible");
}
Forme F = new Forme {10, 10);
F .afficher();
if (F.petimetre() >=0) {

System.out.println("Le périmètre de F vaut " + F.perimetre());
} else {

System.out.println("Calcul impossible");
}

Le périmètre d’un cercle ou d’une fornie est calculé en utilisant la méthode correspondant au
type de Lobjet utilisé.

Exemple avec tes méthodes par défaut

L’interl'ace CalculGeometrique définit les méthodes par défaut surface () et péri­
mé tre () comme suit :

<D

LU
Vû•rH
O<N
©
noi

C lOU
256

interface CalculGeometrique {
default public double surface() {

return -1 ;
}
default public double perimetret) {

return -1 ;
}
public double autremethode{);

}

La classe Forme implémente l’interface CalculGeometrique qui n’a plus besoin de
décrire explicitement les méthodes surface <) et per imetre (). Elle utilise les comporte­
ments par défaut de l’interface CalculGeometrique.
public class Forme implements CalculGeometrique {

protected int x, y, couleur ;
// Définition du constructeur et de la méthode afficherO
// Description des méthodes afficher et échanger Avec pour la classe Fonne

© Éditions Eyrolles

Gltavitra 1° 8 les principes du conçoit oUei

Résumé

La dasKe Cercle hérite de la classe Forme. Par héritage, elle implémente rinterrace
CalculGeometrigue.
public class Cercle extends Forme(

private int r ;
public double surface{) (

return Math.PI *r*r ;
}
public double perimetre() (

return 2*Math.PI*r ;
1

}

Les méthodes perimetre () et surface () associées à la classe Cercle ont un autre
comportement que celui par défaut. En les redéfinissant au sein de la classe Cercle, l ’appel
de la méthode perimetre () ou surface () par l’ intermédiaire d'un objet de type Cercle
aura pour résultat de retourner le périmètre ou la surface de l ’objet et non la valeur - 1.

iñ
ôL.>-
LU
Vû
0
fN

@
JZ01'k—>-Q.O
U

Lorsque l’interpréteur Java rencontre le mot-clé s t a t i c devant une variable {variable de
classe), il réserve un seul et unique emplacement mémoire pour cette variable. Si ce mot-clé est
absent, l’interpréteur peut construire en mémoire la variable déclarée non s t a t i c (variable
d’instance] en plusieurs exemplaires. Cette présence ou cette absence du mot-clé s t a t i c
permet de différencier les variables des objets.
Les objets sont définis en mémoire par l’intermédiaire d’une adresse (référence). Lorsqu'un objet
est passé en paramètre d’une fonction, la valeur passée au paramètre formel est l’adresse de l’objet.
De cette façon, si la méthode transforme les données du paramètre formel, elle modifie aussi les
données de l’objet effectivement passé en paramètre. Ainsi, tout objet passé en paramètre d’une
méthode voit, en sortie de la méthode, ses données transformées par la méthode. Ce mode de trans­
mission des données est appelé passage de paramètres par référence.
L’objectif principal de la programmation objet est d’écrire des programmes qui contrôlent par eux-
mêmes le bien-fondé des opérations qui leur sont appliquées. Ce contrôle est réalisé grâce au prin­
cipe d'encapsulation des données. Par ce terme, il faut comprendre que les données d’un objet
sont protégées, de la même façon qu’un médicament est protégé par la fine capsule qui l’entoure.
L’encapsulation passe par le contrôle des données et des comportements de l’objet à travers les
niveaux de protection, l’accès contrôlé aux données et la notion de constructeur de classe.
Le langage Java propose trois niveaux de protection, p u b lic , p r i v a t e et p ro te c te d .
Lorsqu’une donnée est totalement protégée (p riv a te) , elle ne peut être modifiée que par les
méthodes de la classe où la donnée est définie.

© Éditions Eyrolles 257

parue B° 2 inraatlon à la programmailon orfenlée oblel

On distingue les méthodes qui consultent la valeur d'une donnée sans pouvoir la modifier (acces-
seur en consultation) et celles qui modifient après contrôle et validation la valeur de la donnée
(accesseur en modification).
Les constructeurs sont d e s méthodes particulières, déclarées uniquement p u b l i c , qui portent le
même nom que la classe où ils sont définis. Ns permettent le contrôle et la validation des données
dès leur initialisation.
Par défaut, si aucun constructeur n'est défini dans une classe, le langage Java propose un
constructeur par défaut, qui initialise toutes les données de la classe à 0 ou à null, si les
données sont des objets. Si un constructeur est défini, le constructeur par défaut n’existe plus.
Lhéritage permet la réutilisation des objets et de leur comportement, tout en apportant de
légères variations. Il se traduit par le principe suivant : on dit qu'une classe B hérite d'une classe A
(B étant une sous-classe de a) lorsqu’il est possible de mettre la relation « est un » entre B et A.
De cette façon, toutes les méthodes, ainsi que les données déclarées public ou protected, de la
classe A sont applicables à la classe B. La syntaxe de déclaration d’une sous-classe est la suivante :
class B extends A {
// données et méthodes de la classe B
}

Le terme im pleinents est utilisé pour créer des interfaces. Une interface définit tous les types
de comportements d’un objet sans décrire explicitement le code. Avec la version 8 de Java, il est
possible de définir des méthodes par défaut au sein d’une interface, grâce au terme default.

Exercices

la protection dos doanéos
Les méthodes d ’accès en écriture

Exercice a . i Reprendre l’application B i b l i o t h è q u e et la classe L i v r e développées au cours de l'exer­
cice 7 .4 du chapitre précédent et, modifier les propriétés de la classe, de façon à les rendre privées.
Q ue se passe-t-il lors de la compilation de l’application B i b l i o t h è q u e ? Pourquoi ?

inûj
Ô1_>
LU

T~{
0 fN
@
..i-ix :01'k_>-Q.OU

8 . 2 Pour corriger l’erreur de compilation, vous devez mettre en place des m éthodes d’accès en écriture
afin de perm ettre la modification des propriétés depuis l'extérieur de la classe L i v r e .

a. En supposant que la méthode s e t T i t r e () est appelée depuis la fonction m a in (} com m e suit ;

ISystem.out.printi"Entrez le titre : ");
livrePoche.setTitre{lectureClavier,next());

insérer à l’intérieur de la classe L i v r e la m éthode s e t T i t r e () afin de pouvoir modifier la
propriété t i t r e .

258 © Éditions Eyrolles

chapitre n° 8 les priiKiiKS du conçoit oUei

b. En vous inspirant de la m éthode s e t T i t r e () . créez les m éthodes autorisant la modification
des autres propriétés d e la classe indépendam m ent les unes des autres.

c. Modifier l'application B i b l i o t h è q u e en tenant compte des nouvelles m éthodes d’accès en
écriture.

d. Est-il nécessaire de créer une m éthode s e t C o d e {) ? Pourquoi ?

Les méthodes d*accès en lecture

8 i 3 a. Pour faire en sorte que l’application B i b l i o t h è q u e puisse afficher les propriétés de la
classe L i v r e indépendam m ent les unes des autres, insérer à l’intérieur de la c lasse L i v r e les
méthodes g e t T i t r e {) , g e t N o m A u t e u r {) , g e t P r e n o m A u t e u r () , g e t C a t e g o r i e () ,
g e t i s b n () et g e t C o d e () . C es méthodes retournent au programme appelant la propriété indiquée
par le nom de la méthode.

b. M odifier l’application B i b l i o t h è q u e afin d e n'afficher que le titre et le code du livre
l i v r e P o c h e .

Les méthodes invisibles (méfier)

8.4 Pour répondre à la question 8 .2 d , renom m ez la m éthode c a l c u l e r L e C o d e () par s e t ­
C o d e () et faites en sorte que cette méthode ne soit pas accessible par aucune autre classe que la
classe L i v r e .

Les constructeurs

8.5 a, Le constructeur par défaut de la classe L i v r e perm et de saisir les données d’un livre. Écrire le
constructeur en utilisant les m éthodes d'accès en écriture réalisées en 8.2.

(U

r n 'H i iH I i iJ IH L u tilis a tio n d e s m é th o d e s d ’a c c è s e n é c ritu re a u s e in d u c o n s tru c te u r L i v r e n ’e s t p a s ré e lle ­
m e n t o b lig a to ire . M a is p lus g é n é ra le m e n t, c e la p e u t ê tre u tile p o u r s ’a s s u re r d e la v a lid ité d e s
d o n n é e s (v o ir e x e rc ic e 8 .6 , c i-a p rè s).

LU
UO
O<N
©
sr.
oi
>-Q.O
U

) Éditions Eyrolfes

b. Sans la modifier, exécutez l’application B i b l i o t h è q u e . Q u e se passe-t-il ? Pourquoi ? Trans­
form ez l’application afin d’éviter ce problème.

c. Surchargez le constructeur par défaut, en définissant un nouveau constructeur qui initialise les
propriétés d'un livre à partir des valeurs qui lui sont fournis en param ètre.

259

partie B° 2 Initiation à la Drogrammailon orfenlée objet

d. Dans l’application Bibliothèque, créez un objet unPolar initialisé dès la création aux don­
nées suivantes : "Le mystère de la chambre jaune", "Leroux", "Gaston",
"Policier" et "22 53 005495". Affichez le contenu de l’objet unPolar.

l ’héritage
En exam inant la figure 8 .6 , et en vous aidant des notions acquises au cours des exercices précé­
dents et des exercices réalisés au chapitre 7, nous allons créer les classes Cercle, Rectan­
gle et Triangle à partir de la classe Forme.

<u Figure 8 - 6 Le cercle, le rectangle et le triangle sont des formes. Les c lasses qui les définissent
héritent de la c lasse m ère Forme.

LU
UO
tH
O<N
©
s :
oi

C lO
U

260 © Éditions Eyrotles

Chapitre n° a Les rnincipes du concept oblei

La classe Forme

<D

UJ

Orsl
®

8 . 6 Sachant que toute forme géom étrique est définie par :

• U ne couleur.

• U ne position en X et en Y définissant les coordonnées du point de référence pour placer la forme
à l’écran.

Et que :

• La couleur varie entre û et IQ .

• La propriété X est comprise entre 0 et 8 0 0 ,

• La propriété Y est comprise entre 0 et 6 0 0 .

a. Définir les propriétés de la classe F o r m e en m o d e p r o t e c t e d .

b. Définir des constantes pour la largeur (8 0 0) e t la hauteur (6 0 0) de la fenêtre d'affichage ainsi
que pour ie nom bre de couleurs maximum proposé (1 0) .

c. Reprendre la m éthode v é r i f i e r !) de l’exercice 7 .7 du chapitre précédent et définissez la
com m e une méthode m étier (invisible).

La m éthode vérifie la validité des valeurs pour toutes les propriétés de la classe (c o u l e u r ,
X ...) , modifiez la nnéthode de façon à passer en paramètre un message indiquant à quelle propriété
sera attribuée la saisie. Lappei à la méthode pourra s'effectuer de la façon suivante :

I couleur = vérifier("couleur", 0, couleurMax);
ou encore

I largeur = vérifier (" L a r g e u r , 0, largeurEcran) ;
Surcharger la m éthode v e r i f i e r () en créant une m éthode vérifiant une valeur passée en
param ètre.

d. Écrire un constructeur :

* par défaut qui perm et de saisir les données d ’une forme. Les données saisies doivent être véri­
fiées en utilisant la prem ière form e de la m éthode v e r i f i e r () ;

• muni des trois param ètres perm ettant d’initialiser directement, les propriétés de la classe
F o r m e . Les données passées en param ètre doivent être vérifiées en utilisant la seconde forme
de la m éthode v e r i f i e r () .

e. Écrire la m éthode d é p l a c e r () qui déplace une forme à partir des valeurs passées en para­
mètres. Par exem ple si le point de référence de la forme est positionnée en 1 0 0 , 1 0 0 , la
m éthode d é p l a c e r (1 0 , 1 0) a pour résultat de placer le point de référence de la forme en
1 1 0 , 1 1 0 . Les nouvelles coordonnées de la form e doivent être vérifiées.

f. Écrire la méthode c o l o r i e r () qui change la couleur d'une forme en fonction de la valeur passée
en param ètre. La valeur de la nouvelle couleur doit être vérifiée.

g. Écrire la m éthode a f f i c h e r () qui affiche les propriétés de la classe F o r m e .

JZ
g i
>■O.O

U
© Éditions EyroUes 261

partie B° 2 mitlalion à la pragrammaiion orientée lAlet

La classe Rectangle

8.7 Sachant que tout rectangle est une form e géom étrique possédant une hauteur dont la valeur est com ­
prise entre 0 et 6 0 0 , et une largeur dont la valeur est comprise entre 0 et 8 0 0 :

a. Définir la classe R e c t a n g l e à partir d e la classe F o r m e .
b. Définir les propriétés d e la classe R e c t a n g l e en mode privée.
C- Écrire un constructeur :

• par défaut qui perm et de saisir la hauteur et la largeur d'un rectangle. C es valeurs doivent être
vérifiées ;

• muni de cinq param ètres perm ettant d’initialiser directement l’ensem ble des propriétés x , y ,
c o u l e u r , l a r g e u r et h a u t e u r de la classe R e c t a n g l e . Ce constructeur fait appel au
constructeur avec param ètre, de la classe F o r m e . Les données passées en param ètres
doivent être vérifiées.

d. Écrire la méthode a f f i c h e r () qui affiche les propriétés de la classe R e c t a n g l e ainsi que
celles de la classe F o r m e .

e. Écrire les m éthodes p e r i m e t r e {) et s u r f a c e () qui calculent le périmètre et la surface
d’un rectangle.

Im classe Triangle

U)d)

LU

O
rs|

@
JZ
g i
>.Q.O
U

[T m l t i n 8 . 8 Sachant que tout triangle est une forme géom étrique possédant trois som m ets dont les valeurs en X
sont comprises entre 0 et 8 0 0 et en en Y sont comprises entre 0 e t 5 0 0 :

a. Définir la classe T r i a n g l e à partir de la classe F o r m e .

b. Définir les propriétés de la classe T r i a n g l e en mode privée. Les coordonnées X et Y de la classe
F o r m e - point de référence du triangle - correspondent aux coordonnées du premier sommet.

c. Écrire un constructeur :

• par défaut qui perm et de saisir des deux som m ets restants du triangle. C es valeurs doivent être
vérifiées.

• muni de sept param ètres perm ettant d ’initialiser directement l’ensem ble des propriétés x , y ,
c o u l e u r , x l , y l , x 2 et y 2 de la classe T r i a n g l e . C e constructeur fait appel au constructeur
avec paramètre de la classe F o r m e . Les données passées en paramètres doivent être vérifiées.

d. Écrire la méthode a f f i c h e r () qui affiche les propriétés de la classe.

L’application FaireDesFormesGeometriques

Exercice

2 6 2

8.9 a. Écrire une application qui perm et la création d'un cercle, d ’un rectangle, et d ’un triangle.

b. Vérifier que les valeurs des propriétés de chaque classe ne peuvent être saisies en dehors des
limites imposées.

© Éditions EyroUes

chapitre n° 8 Les miiKipes du concept ohlei

c. Afficher les valeurs de chacune des formes.

d. Déplacer toutes les form es de 1 0 pixels en X et 2 0 en Y. Q ue se passe-t-il pour le triangle ?
Pourquoi ? C om m ent faire pour que le triangle se déplace correctem ent ?

e. Dans la classe Triangle, écrire la m éthode déplacer () afin de déplacer tous les som ­
mets du triangle à partir des valeurs passées en param ètre. La m éthode fait appel à la m éthode
déplacer () de la classe supérieure afin de déplacer le premier sommet du triangle. Ëlle vérifie
égalem ent que les nouveaux som m ets ne sortent pas de la fenêtre.

f. Afficher les périm ètres et les surfaces de tous les rectangles et les cercles créés au cours de
l’application.

Les interfaces
Dans le cadre du développement d’un jeu de plateau, nous souhaitons simuler les déplace­
ments du héros en fonction du moyen de transport qu’il utilise. Il dispo.se d’une voiture, d’un
ascenseur et d’ tine fusée.
L’objectif est de décrire les déplacement.s du personnage en utilisant le mécanisme des interfaces.

l^ m tT m 8.1D a. Définir l’interface Deplacement en décrivant les m éthodes deplacementEnX (),
deplacementEnY (} et seDeplacer().

b C réer ia classe MoyenDeTransport qui possède trois propriétés x , y et vitesse, ainsi
qu’une constante de déplacem ent vitesselnitiale valant 10.

c. Dans la classe M o y e n D e T r a n s p o r t . définir ;

les m éthodes deplacementEnX () e t deplacementEnY (). Le moyen de transport
• n’étant pas encore défini, aucune instruction ne les compose.

la m éthode seDeplacer C) qui appelle les deux m éthodes précédentes.

• la m éthode a f f i c h e r () qui affiche à l’écran la position du héros.

d. C haque moyen de transport ayant sa propre limitation de vitesse, écrire la méthode limita­
tion () qui initialise la vitesse de l’objet à l’a ide du prem ier param ètre et déterm ine si cette nou­
velle vitesse dépasse la limite fixée en second param ètre. Si tel est le cas, la vitesse de l’objet
devient la vitesse limite.

V)<u

>-
LJJ
Y)
OrN
®
s :
oi
>Q.O

U

f M ü n 8 .1 1 Le com portem ent général d’un moyen de transport étant défini, vous devez m aintenant décrire chaque
moyen de transport au sein d'une classe spécifique. Pour cela, Il convient de ;

a. Décrire la classe Voiture. Sachant qu'avec ce moyen de transport, le héros ne peut se dépla­
cer qu’avec une vitesse qui est jusqu'à dix fois plus rapide que la vitesse initiale, tout en ne dépas­
sant pas plus de 150, La classe Voiture hérite de la classe MoyenDeTransport, Une
voiture ne se déplace qu’à l'horizontal, seule la m éthode deplacementEnX () est à redéfinir,
en incrémentant la position en X de l’objet avec sa vitesse.

© Éditions EyroUes 263

partie B° 2 Initiation à la programmaBon orieniée rtilel |

b. Décrire la classe A s c e n s e u r . Sachant qu'avec ce moyen de transport, le héros ne peut se
déplacer qu’avec une vitesse qui est jusqu’à cinq fois plus rapide que la vitesse initiale, tout en ne
pouvant pas dépasser 50. La classe A s c e n s e u r hérite de ta classe M o y e n D e T r a n s p o r t .
Un ascenseur ne se déplace qu’à la verticale, seule la m éthode d e p l a c e m e n t E n Y () est à
redéfinir, en incrémentant la position en Y de l'objet avec sa vitesse.

c. Décrire la classe F u s e e . Sachant qu'avec ce moyen de transport, le héros peut se déplacer avec
une vitesse qui est jusqu’à cent fois plus rapide que la vitesse initiale, tout en ne pouvant pas
dépasser 1200. La classe F u s e e hérite de la classe M o y e n D e T r a n s p o r t . U ne fusée se
déplace à la verticale et à l’horizontale, les deux m éthodes d e p l a c e m e n t E n Y () et d e p l a -
cementEnY () sont à redéfinir.

Exercice 8 . 1 2 Écrire l’application U n H e r o s S e D e p l a c e dont la fonction m a i n () crée trois véhicules de type
V o itu re , A scen seu r et Fusee.
a. Déplacer les objets en utilisant la m éthode s e D e p l a c e r () . Vérifier que chaque objet se

déplace correctem ent en affichant leur position.

b. Avec les nouvelles fonctionnalités de Java 8, modifier l’interface D e p l a c e m e n t de façon à défi­
nir les m éthodes d e p l a c e m e n t E n X () et d e p l a c e m e n t E n Y () com m e m éthodes par
défaut.

b. Les deux m éthodes d e p l a c e m e n t E n X () et d e p l a c e m e n t E n Y {) possédant un compor­
tem ent par défaut, est-il nécessaire de définir à nouveau ces deux comportem ents dans la classe
M o y e n D e T r a n s p o r t ? Modifier la classe M o y e n D e T r a n s p o r t en conséquence.

le projet : GesUon d’un compte bancaire

ifiO
Ol_>
LU

T~{
0 fN
@
u-ix:01'k_>-Q.O
U

264

Encapsuler les données d ’un compte bancaire
La protection privée et Vaccès aux données

a. Déclarez toutes les variables d’instance des types Compte et LigneCom ptable en
mode p r iv a te . Que se passc-t-il lors de la phase de compilation de [’application P ro je t ?

Pour remédier à cette situation, la solution est de construire des méthodes d’accès aux don­
nées de la classe Compte et LigneCom ptable. Ces méthodes ont pour objectif de four­
nir au programme appelant la valeur de lu donnée recherchée. Par exemple, la fonction
quelTypeDeCorapte () suivante foimiit en retour le type du compte recherché :

public String quelTypeDeCompte() {
return typeCpte;

}
b. Écrivez, suivant le même modèle, toutes les méthodes d’accès aux données v a l_ c o u -

ra n te , taux, numéroCpte, etc.

© Éditions EyroUes

clrapKre 1° fl les principes du concon otiiet

c. Modifiez l ’appliCiitiori P r o je t etla classe Compte de (açon a pouvoir accéder aux don­
nées numéroCpte de la classe Compte et aux valeurs de la classe LigneCom ptable.

Le contrôle des données
L’encapsulation des données permet le contrôle de la validité des données saisies pour un
objet. Un compte bancaire ne peut être que de trois types : Epargne, C ourant ou J o in t . Il
est donc nécessaire, au moment de la saisie du typ e du compte, de contrôler l ’exactitude du
type entré. La méthode c o n trô leT yp e (1 suivante réalise ce contrôle :

p r iv a te S tr in g co n trô leT yp e() {
char tmpC ;
S tr in g tmpS = "Courant";
Scanner le c tu re C la v ie r = new Scan n er{S ystem .in);
do {

System ,o u t .p r in t ("Type du compte [Types p o s s ib le s : C (ou ran t),
J { o in t) , E(pargne)] : ");

tmpe = le c tu r e C la v ie r .n e x t{) . c h a rA t(0);
} w h ile (tmpC != 'C trapc != 'J ' && tmpe 1= 'E'):
sw itch (tmpe) [

case 'C' : tmpS = "Courant";
b re a k ;

case 'J ' : tmpS = "Join t" ;
break ;

case 'E' : tmpS = "Epargne";
break;

}
re tu rn tmpS;

)

À la sortie de la fonction, nous sommes certains que le type retourné correspond aux types
autorisés par le cahier des charges.

a. Dans la classe Compte, .sachant que la valeur initiale ne peut être négative à la création
d’un compte, écrivez la méthode c o n t r ô le V a l in i t {).

b. Dans la classe L igneC om ptable, écrivez les méthodes c o n tr ô le M o t i f () et
contrôleM ode (), qui vérifient respectivement le motif (S a la i r e , Loyer, A lim en­
ta t io n , D ive rs) et le mode (CB, V irem ent, Chèque) de paiement pour une ligne
comptable

>-ui
so
OrN
@
x:qi

C lOU

lîll^plT ̂ Pour contrôler la validité de la date, voir la section « Le projet : Gestion d’un compte
bancaire » du chapitre 10, « Collectionner un nombre indéterminé d'objets ».

© Éditions Eyrolles 265

partie в° 2 Initiation à la orogrammation orientée oblet

c. Modifiez les méthodes c ré e rC p te O et créerL igneC orap tab le () de façon à ce
que les données des classes Compte et LigneCom ptable soient valides.

Les constructeurs de classe

Les constructeurs Compte () et LigneCom ptable () s’ inspirent pour une grande part des
méthodes c ré e rC p te () et créerL igneC om ptab le () .

a. Remplacez directement c ré e rC p te () par Compte (). Que se passe-t-il lors de l’exé­
cution du programme ?

b. Déplacez l’appel au constructeur dans l’option 1, de façon à construire l ’objet au
moment de sa création. Que se passe-t-il en phase de compilation ? Pourquoi ?

c. Utilisez la ncrtion de surcharge de constructeur pour construire un objet C de deux
façons :

- Les valeurs initiales du compte sont passées en paramètres.

- Les valeurs initiales sont saisies au clavier, comme le fait la méthode c ré e rC p te ().

d. A l ’aide de ces deux constructeurs, modifiez l’application Projet de façon à pouvoir
l ’exécuter correctement.

1Л

>-Ш
LOrH
OfN
@
JZgi
>■O.OU

266

GomprendrB l tiéritage
Protection des données héritées

Sachant qu'un compte d’épargne est un compte bancaire ayant un taux de rémunération :

a. Écrivez la classe C pteE pargne en prenant soin de déclarer la nouvelle donnée en mode
p r i v a t e .

b. Modifiez le type Compte de façon à supprimer tout ce qui fait appel au compte d’épargne
(donnée et méthodes).

Un compte d’épargne modifie la valeur courante par le calcul des intérêts, en fonction du
taux d’épargne. Il ne pent ni modifier son numéro, ni son type.

c. Quels modes de protection doit-on appliquer aux différentes données héritées de la
classe Compte ?

Le contrôle des données d ’un compte d ’épargne

Sachant que le taux d'un compte d’épargne ne peut être négatif, écrivez la méthode
c o n t r ô le T a u x ().

© Éditions Eyroiles

chapitre n° 8 les ptliKipes du concein oUet

Le constructeur d ’une classe dérivée
En supposant que le constructeur de la classe CpteEpargne s'écrive de la façon suivante :

public CpteEpargne() [
super("Epargne");
taux = contrôleTaux();

1
a. Recherchez à quel constructeur de la classe Compte fait appel CpteEpargne ().

Pourquoi ?
b. Modifiez ce constructeur de façon à ce que la donnée typ eC p te prenne la valeui'

Epargne.

Le polymorphisme
De la méthode a f f ic h e rC p te () ;

a. Dans la classe CpteEpargne, écrivez la méthode a f f ic h e rC p te (), sachant qu’affi­
cher les données d'un compte d’épargne revient à afficher les données d’un compte,
suivies du taux d’épargne.

De l’objet C, déclaré de type Compte :
b. Dans l’application P ro je t , modifiez l ’optiDn 1, de façon à demander à rutilisateur s’ il

.souhaite créer un compte simple ou un compte d’épargne. Selon la réponse, construisez
l ’objet C en appelant le constructeur approprié.

<D

LU
Vû
tH
O<N
©
r:oi

Q.O
U

i Éditions Eyroifes 267

inй)

:>■ш
iûTH
ОrN
@

Ol
>■Q.OU

Partiell

Ouiils et techniques
orientés objet

ifi
O
>

LU

T~{
ofN
@

O l'k_>
ClOU

inй)

:>■ш
iûTH
ОrN
@

Ol
>■Q.OU

Chapitre 9

GolleGtionner
nombre fixe d’oblets

O
O
>

LU

T~{
OfN
@

01'k_
Q.O
U

Comme nous l'avons observé tout au long de eet ouvrage, l ’atoul principal de rordinateur est
sa capacité à manipuler un grand nombre de données pour en extraire de nouvelles informa­
tions. Or, les structures de stockage étudiées jusqu'ici, telles que variables ou objets, ne
permettent pas d’appliquer de traitements systématiques sur des ensembles de valeurs.
C’est pourquoi nous étudions dans ce chapitre une nouvelle .strueture de données, les tableaux,
qui permetlent le stockage d’un nombre fini de valeurs.
Dans un premier temps, nous éludions « Les tableaux à une dimension » et observons
comment les déclarer et les manipuler. Pour mieux comprendre la manipulation de ces struc­
tures, nous analysons ensuite, à la section « Quelques tecliniques utiles », différentes techniques
de programmation appliquées aux tableaux à une dimension, telles que la recherche d’une
valeur dans un tableau ou le tri d’un tableau.
Pour finir, nous examinons à la section « Les tableaux à deux dimensions », comment ctjnstruire et
manipuler des tableaux bidimensionnels à travers un exemple d’affichage de formes géométriques.

> Éditions Eyrolles 271

partie в° 3 Opffis el lecliPlaues orieiiiés muet

les tableaux à une dimension

L’étude du chapitre 1, «Stocker une information», montre que pour manipuler plusieurs
valeurs à L’intérieur d’un programme, nous devons déclarer autant de viaiables que de valeurs
à traiter. Ainsi, pour shtcker les huit notes d’un élève donné, la technique consiste à déclarer
huit variables comme suit :

I double notel, note2, note3, note4, noteS, noteé, note7, notes ;

Le fait de declarer autant de variables qu’il y a de valeurs présente les inconvénients suivants :

• Si le nombre de notes est modifié, il est nécessaire de :

- Déclarer de nouvelles variables.

- Placer ces variables dans le programme, afin de les traiter en plus des autres notes.

- Compiler à nouveau le programme pour que l’ interpréteur puisse prendre en compte ces
modifications.

• Tl faut trouver un nom de variable pour chaque valeur traitée. Imaginez déclarer
I 000 variables ponant un nom différent !

Ces inconvénients majeurs sont résolus grâce aux tableaux. En effet, les tableaux sont des
.structures de données qui regroupent sous un même nom de variable un nombre donné de
valeurs de même type. Les tableaux sont proposés par tous les langages de programmation. Ils
.sont construits pai‘ assemblage d’une suite finie de cases mémoire, comme illustré à la
figure 9-1.

Rem arauQ Chaque case représente l'espace mémoire nécessaire au stockage d’une et d’une seule
valeur. Notons que les cases sont réservées en mémoire de façon contiguë.

Declarer un tableau

1Л

>-Ш
Ф
OfN
®
szgi’C
D .O
U

272

Comme toute variable utilisée dans un programme, un tableau doit être déclaré afin de :

■ donner un nom à l’ensemble des valeure à regrouper ;

• définir la taille du tableau de façon à préciser le nombre de valeurs à regrouper ;

• déterminer le type de valeur â mémoriser.

La syntaxe de déclaration d’un tableau est la suivante ;

TypeDuTableau [] nomDuTableau ;
nortiDuTableau = new TypeDuTaJaleau [tailleDuTableau] ;

) Édifions Eyrofiss

chapitre n° 9 CoOectfoniier un nombre nxe d'obiets

En plaçant dan.s la première instruction les crochets [] entre le type et le nom de la variable,
nous indiquons au compilateur que la variable noniDuTableau représente un tableau. À cette
étape, le compilateur réserve un espace mémoire portant le nom du tableau. Cet espace
mémoire est susceptible de contenir l’adresse de la première case du tableau.
Ensuite dans la seconde instruction, ropéralcur new réserve autant de cases mémoire consé­
cutives qu’il est indiqué entre les [] situés en fin d’ instruction, soit ta i l le D u T a b le a u .
L’opérateur new détermine enfin l’adresse de la première case du tableau et la stocke grâce au
signe d’affectation, dans la case nomDuTableau créée à l ’étape précédente.

Figure 9~1 L’opérateur new rése rve le nom bre de c a se s mémoire dem andé ([8]) e t mém orise l'adresse
de la prem ière case mémoire dans la variable notes grâce au signe d'affectation.

Exemple : Déclarer un tableau de huit notes
doub le n n o te s ;
n o te s = new d o u b le ts] ;

Ces deux instructions réalisent la déclaration d’un tableau ayant pour nom n o te s . Il est
composé de 8 cases mémoire pouvant stocker des valeurs de type d o u b le (voir figure 9 - 1).

(U

>-
LU

OfN
®
x:Ol
>Q.O

U

Autres exemples de déclaration

I l déclarer un tableau de 5 entiers
int [] valeur ;
valeur = new int[5];
// déclarer un tableau de 30 réels de simple précision
float [] reel ;
reel = new float[30];
// déclarer un tableau de 80 caractères
char [] mot ;

! mot = new char[80];

© Éditions Eyrolles 273

partie a° 3 Outlis et techniaues orientés oblet

ifi

><
LU
KOrH
OfN
@
JZCT'k—
aOU

Remarques

• Le nombre de cases réserve'es correspond au nombre maximal de valeurs à traiter. Lorsque
la taille du tableau est fixée après exécution de l’opérateur new, il n’est plus possible de la
modifier en cours d’exécution du programme.

Cependant, il est possible de ne pas fixer définitivement la taille du tableau avant compilation
en plaçant une variable entre les [] au lieu d’une valeur numérique. En effet, il suffit d’écrire ;

double [] notes ;
int nbNotes ;
Scanner lectureClavier = new Scanner(System.in);
System.out.print("Combien voulez-vous saisir de notes : ");
nbNotes = lectureClavier.nextint();
notes = new double[nbUotes];

De cette façon, l’ utilisateur saisit le nombre de valeurs qu’ il souhaite traiter avant la réser­
vation effective des espaces mémoire par l ’opérateur new. Le programme peut donc voir la
taille du tableau varier d’une exécution à l’autre.

• Les tableaux sont des objets. En effet, les tableaux sont définis à l ’aide d’une adresse déter­
minée p£U’ l ’opérateur new. Les tableaux sont donc des objets, au même titre que les
String et autres objets définis aux chapitres précédents.

Les objets sont caractérisés par leurs données et les méthodes qui leur sont applicables.
Une donnée caractéristique des tableaux est leur taille, c’est-à-dire le nombre de ca.ses.
Ainsi, pour connaître la taille d’un tableau, il suffit de placer le terme . le n g th derrière le
nom du tableau. Par exemple, l'instruction suivante ;

I System.out.print ("Norobre de notes = "+ notes.length) ;

affiche à l ’écran Nombre de n o te s = 8.

• L’instruction de déclaration :

I double [] notes = new double[8];

est équivalente à la suite d’instructions :

(double [] notes ;
notes = new double[8] ;

Manipuler un tableau
Un tableau est un ensemble de cases mémoire. Chaque case constituant un élément du tableau
est identique à une variable. Tl est possible de manipuler chaque case du tableau de façon à :

• placer une valeur dans une case du tableau à l’aide de l ’affectation ;

274 © Éditions Eyrotles

chapitre n° 9 Conectfonner un nombre nxe d'oblets

• utiliser un élément du tableau dans le calcul d'une expression mathématique ;

• afficher un élément du tableau.

Accéder aux éléments d*un tableau

Sachant que nomDuTableau [0] représente la première case du tableau, l ’accès à la nième
case s’écrit nomDuTableau [n].

Figure 9 - 2 note est le nom du tableau, et les notes 10, 5, 9 sont d es valeurs placées à ¡ ’aide
du signe d'affectation dans les c a se s num érotées respectivem ent 0, 1, 7 (indices).

V)

LU
LO
O
fN

@
JZgi
>-Q.O
U

Par exemple, l’instruction :

I note[01 = 10 ;

mémorise la première note d’un étudiant dans la première case du tableau (n o te s [0]). De la
même façon, 1a deuxième note est stockée grâce à l’affectation :

I note[1] = 5 ;

Et ainsi de suite, jusqu’à stocker la huitième et dernière note à l’aide de l’ instruction :

I note[7] = 9 ;
Les valeurs placées entre les crochets [] sont appelées les indices du tableau.

iTttUihlijJirH La ptemière case du tableau est numérotée à partir de 0 et non de 1 (voir figure 9-2). Lindice
du tableau varie donc entre 0 et length-1.

Les éléments d’un tableau étant ordonné.s grâce aux indices, il est possible d’y accéder à l'aide
de constructions itératives (boucle fo r) , comme le montre l ’exemple suivant.

© Éditions Eyrolles 275

partie B° 3 Outiis et leclmiaues oriepiés oftlei |

Exemple : extrait d’un programme

Scanner lectureClavier = new Scanner(System.in);
System.out.print("Combien de notes voulez-vous saisir :
int nombre = lectureClavier. nextint () ,-
notes = new double [nombre];
for (int i = 0; i < notes.length; i++) {

System.out.print("Entrer la note n* "+ (i+l)+ " :
notes[i] = lectureClavier.nextDouble{);

}

Exemple : résultat de l'exécution

Les caractères grisés sont des valeurs choisies par ruiilisateur.

4Combien de notes voulez-vous saisir
Entrer la note n ” 1 : 14
Entrer la note n ° 2 : 10
Entrer la note n ‘ 3 : 12
Entrer la note n* 4 : 8

Une fois le nombre de notes déterminé grâce aux deux premières instmetions, le programme
entre dans une boude fo r . La variable i correspond au compleur de boude. Elle varie entre
0 et n o t e s . le n g t h - 1 (soit 3), puisque la condition de continuation préci.se que i doit être
.strictement inférieure à n o te s . le n g th (soit 4).

À chaque tour de boude, la variable i prend la valeur de l’ indice du tableau (n o te s [i]).
Les valeurs saisies au clavier sont alors placées une à une dans chaque case du tableau.

Parce qu’il n’est pas courant de compter des valeurs à partir de 0, l ’affichage demandant
d’entrer une note débute à 1, et non à 0, grâce à l’expression (i+ 1) placée dans la méthode
System . o u t .print {). Il ne s’agit là que d’un artifice de présentation, la première note
étant stockée en réalité en notes [0].

d)

>-
LU

O
fN

@
JZCT
>-D.O
U

Remarque

276

Lutilisation de la donnée length permet d’éviter tout problème de dépassement de taille. En
effet, si un tableau est composé de quatre cases, il n’est pas possible de placer une valeur
à l’indice 4 ou 5. Le fait d’écrire notes [4] génère une erreur d’exécution du type;
java . lang. ArrayIndexOutOfBoundsException, qui montre que l’interpréteur
Java a détecté que l’indice du tableau était en dehors des limites définies au moment de sa
création.

© Éditions Eyrolles

chapitre п° 9 coiiectionner un nombre пхе d'obleis

Initialiser un tableau
Lors de la déclaration d'un tableau, il est possible de l ’ initialiser directement de 1a façon
suivante :

I double [] notes = {10, 12.5, 5, 8,5, 16, 0, 13, 7} ;
Les cases mémoire sont réservées et initialisées, dans l'ordre, à l’aide des valeurs placées entre
les [} et séparées par des virgules. De cette façon, le tableau n o te s contient les valeurs
suivantes :

notes[0] vaut 10 notes[4] vaut 16
notes[1] vaut 12.5 notes[5] vaut 0
notes[2] vaut 5 notes[6] vaut 13
notes[3] vaut 8.5 notes[7] vaut 7

Signalons que la donnée n o te s . length prend automatiquement la valeur 8.

La nouvelle boucle for
Avec la version 1.5 du compilateur (jdk 1.5.0), le langage Java propose une nouvelle syntaxe
pour la boucle f o r , qui simplifie le code d’écriture des parcours des tableaux.
Ainsi le parcours du tableau notes initiali.sé précédemment, s’effectue en utilisant la syntaxe
suivante :

for (int valeur ; notes){
System.out.println(valeur);
}

La boucle for ainsi écrite n’utili.se plus de compteur de boucle ni de test de fin de boucle.
Ceux-ci sont gérés de façon tnmsparente pour le programmeur.
Le tableau n o te s est parcouni élément par élément, du premier jusqu’au dernier élément. La
valeur de chacun des éléments est enregistrée tour à tour dans la variable valeur qui est ensuite
affichée. Plus simplement, vous pouvez traduire cette nouvelle boucle for en utilisant la
fomiule suivante ;
« Pour chaque valeur du tableau notes, afficher la valeur ».

<D

Ш
vû•rH
OГМ
©
s :
oi

ClO
U

ÎTlfiiibrijjirtJ Si l’on souhaite n’examiner qu’une partie du tableau comme par exemple un élément sur deux
ou encore la première moitié du tableau, nous devons connaître la valeur du compteur de bou­
cles, il convient alors d’utiliser une boucle for classique. Dans la suite de cet ouvrage, nous
utilisons la nouvelle forme de la boucle fo r chaque fois que cela est possible.

© Éditions Eymiles 277

oartle B° 3 ouffis el technlaues orïeniés iriilet

Les tableaux et les opérations arithmétiques

La somme, la soustfaeüon, la division ou la multiplication directes de deux tableaux sont des
opérations impossibles. En effet, chaque opération doit être réalisée élément par élément,
comme le montre le tableati suivant :

Correcte Impossible

i n t [] t a i l = n e w i n t t l O]
i n t [] t a b 2 = n e w i n t [1 0] ;
i n t [] so m m e = n e w i n t t 1 0]
for {i = 0 ; i < 10 ; i++)
5omme[i] = tab1[i] + tab2{i];

i n t [] t a b l = n e w i n t [1 0]
i n t [] t a b 2 = n e w i n t (1 0] ;
i n t [] so m m e = n e w i n t [1 0]

somme

Quelques techniques utiles

Le stockage et Lutilisation des données à travers la structure des tableaux offrent de nombreux
avantages. Elles requièrent aussi certaines techniques de manipulation, qui sont développées
ci-après.

ifi

><
LU
KOrH
OfN
@
JZCT
>-D.O
U

278

La ligne de commande
Au cours du chapitre « Naissance d’un programme », vous avez dû admettre un certain
nombre de termes du langage Java et, en particulier, la syntaxe de l ’instruction suivante :

I p u b lic s t a t i c vo id m ain(S tr in g [] argument)

Cette instmction correspond à la définition de l’en-tête de la fonction m ain(). Vous êtes en
mesure maintenant de déchiffrer chacun de ses fermes pour en comprendre l’utilité :

■ Le mot-cié p u b lic précise an compilateur que la fonction m ain () est accessible depuis
l’ extérieur de la classe où elle est définie. En particulier, l ’interpréteur Java peut y accéder
pour l’exécuter.

• Le terme s t a t i c explique que la fonction m ain (} ne peut pas être copiée plusieurs fois
en mémoire. Elle ne peut pas être associée à un objet ni être instanciée, c’e,st-à-dire qu’il
n’est pas possible d’écrire unObj e t . m ain ().

• La fonction m ain () ne fournit pas de résultat, et c’est pourquoi elle est définie comme
vo id ,

• Pour finir, elle possède, entre (), un paramètre défini comme tableau de type S tr in g . Ce
paramètre est utilisé pour passer des données en ligne de commande lors du lancement de
lu commande d’exécution du programme.

© Editions Eyrotles

chapitre a° 9 Conccihumer un nombre fixe d'oUeis

Qu’est-ce qu’une ligne de commande ?

Une ligne de commande est écrite an clavier sons la forme d'nne instruction précise. C’est un
ordre transmis à l’ordimiteui' pur T utilisateur. Sous Unix, les eonunandes sont très utilisées.
Elles le sont beaucoup moins sous Windows et sont inexistantes sous Mac OS. C’est pourquoi
les utilisateurs de stations de travail Unix n’ont aucune difficulté à comprendre ce qu'est une
commande, ce qui n’est pas le cas des utilisateurs de PC (sous Windows) on de Macintosh.

Aujourd’hui grâce aux écrans graphiques, l ’utilisateur communique facilement avec l’ordina­
teur. Pour savoir ce que contient un dossier, il lui suffit d’ouvrir la fenêtre associée à ce dossier.
Les ordres passés à l’ordinateur sont essentiellement des ordres générés par la souris au travers
de fenêtres graphiques.

Les lignes de commande sont équivalentes, bien que moins conviviales, à cette communica­
tion graphique. Elles permettent surtout d’obtenir des résultats plus précis. Ainsi, les
commandes :

• I s * . j ava , dans une fenêtre de commandes Unix ;

• d i r * . j ava , dans une fenêtre « commandes MS-DOS » ;

ont poni résultat d’afficher tous les noms de fichiers finissant par . ja v a contenus dans le
répertoire courant.

Plus précisément, notons qu’une commande s’écrit toujours de la façon suivante :

I nomDeLaCommande paramètresEventuels

Le nom d’une commande correspond au nom du programme qui réalise l’action souhaitée.
Les paj'amètres sont utilisés pour affiner son résultat. Dans notre exemple, * . j a v a est un
paramètre des commandes I s ou d i r , qui permet d’expliquer à l ’ordinateur que vous
souhaitez voir s’afficher uniquement les noms de fichiers finissant par . ja v a .

(/>d)

>-
LU
MD
OfN
®

g i
>■O.O

U

Passer des paramètres à un programme Java

De la même façon, conuue expliqué à la section « Exécuter un programme » du chapitre intro­
ductif « Naissance d’un programme », l’exécution d’un programme Java en dehors d’un envi­
ronnement de travail passe aussi par une commande dont la syntaxe est :

I java nomdel'application

L’interpréteur Java autorise aussi la commande :

I java nomdel ' application pO pl p2._ pN

Dans ce cas, les valeurs pû, p l , p2, ..., pN, toute.s séparées par des espaces, sont considérées
conuue paramètres de la commande ja v a nomdel ' a p p l ic a t io n . Ces derniers sont
transmis à la fonction m ain {) par l’ intermédiaire du tableau de String défini en paramètre
de la fonction.

© Éditions Eyrolles 279

partie B° 3 Oulls et techniaues orfeatés oblel

Si l'en-tête a pour forme :
I public static void main(String [] argument)
le paramètre pO est stocké en argument [0] , pl en argument [1], ... et pN en
argument [N]. Les valeui"s ainsi passées sont mémorisées sous forme de chaînes de caractères.

Exemple : une commande qui calcule
Pour mieux comprendre cette transmission de valeurs, reprenons le corrigé de l’exercice 3 du
chapitre6, «Fonctions, notions avancées», qui simule une calculette. Transformons ce
programme de sorte qu’il puisse effectuer l’opération à partir de valeurs passées en paramètres
lors de la commande d’exécution du programme. Supposons que cette commande s’écrive :

java Calculette 1 + 2

L’ordre des paramètres ainsi passés est important. En effet, nous devons traiter les paramètres
de la fonction main () de la façon suivante ;
• Les premier et troisième paramètres doivent être interprétés comme étant les valeurs

numériques de l ’opération à calculer.

• Le deuxième paramètre doit correspondre à ropérateur

Sachant cela, le programme s’écrit de la façon suivante.

Exemple : le code source

1' import java.util ;
public class Calculette {
public static void main(string [] argument) {
int a, b;
char opérateur;
double calcul;
Scanner lectureClavier = new Scanner(System.in);
if (argument.length > 0) {
a - Xnteger.parseXnt(argument[0]);
opérât eur = argument[11.charAt(0);
b = Xnteger.parseXnt(argument[2]);

(U

>-
LU
LOrH
OfN
@
JCCT'k—>-
ClO

U
260

else {
opérateur = menu();
System.out.printI n ("Entrer la premiere valeur ");
a = lectureClavier.nextint{);
System.out.println("Entrer la seconde valeur ”);
b = lectureClavier.nextint{):

}

© Éditions Eyrofles

chaoKre h° 9 Conecilonner un nombre fixe d'oiMeis

calcul = calculer{a, b, opérateur);
afficherfa, b, opérateur, calcul);

public static double calculer {int x, int y, char o) C
// voir corrigé de l'exercice 3 du chapitre ’’Fonctions, notions
//avancées"

}

i/)(U

LU

O
(N

©
J“CT'k->-Q.O
U

public static void afficher(int x, int y, char o, double r) {
// voir corrigé de l ’exercice 3 du chapitre ”Fonctions, notions
//avancées"

]
public static char menuO {
Il voir corrigé de l ’exercice 3 du chapitre "Fonctions, notions
//avancées"

}
1

Pour iruiter les paramèlres passés en ligne de commande, il est nécessaire de délecter si des
paramètres ont été effectivement passés. Pour ce faire, l’ idée est de regarder la taille du tableau
argum ent, de la façon suivante ;

• Si celle-ci n’est pas nulle (supérieure strictement à 0). cela signifie que le tableau contient
des paramètres passés en ligne de commande. Dans ce cas. nous ü'aitons chacun des arguments
de sorte que le calcul puisse être effectué.

Les éléments argument [0] et argument [2] contiennent par hypothèse les deux
valeurs numériques. Or, celles-ci sont stockées sous forme de suites de caractères, le
tableau argument étant de type String. Les valeurs doivent donc être « traduites » en
format numérique. Comme nous souhaitons obtenir des valeurs entières, la méthode
proposée par le langage Java a pour nom Integer . p a r s e i n t (). Ainsi, les inslruction.s ;

a = Integer.parseint(argument[0]];
b = Integer.parseint(argument[2]);

permettent la traduction de la suite de caractères contenue dans argum ent [0] et
argum ent [2] en valeurs numériques et de placer ces valeurs dans les variables a et b
déclarées de type i n t . Compte tenu des paramètres passés en ligne de commande, les
variables a et b ont donc pour valeurs respectives 1 et 2.

Le caractère correspondant à l’opérateur est stocké dans argum ent [1] . Nous devons le
transformer en c h a r puisqu’un opérateur est formé d’un seul caractère. Cette transfonnation

© Éditions EyroHes 281

partie a° 3 Outlis et techniaues orientés oblet

est réalisée par une méthode de la classe S t r in g , appelée c h a rA tO , qui retourne le
caractère placé à la position spécifiée en paramètre. Ainsi, l’ instruction :

I opérateur = argument[11.charAt(0);
place dans la variable o p é ra te u r le premier caractère du mot stocké dans argum ent [1] ,
soit, pour notre exemple, le caractère +.

■ Si la taille du tableau argum ent est nulle, cela signifie qu’aucun paramètre n’a été trans­
mis. Le bloc e l s e est exécuté, et les valeurs sont saisies au clavier, comme cela était le cas
en fin de correction de l ’exercice 3 du chapitre 6.

Pour finir, lorsque les valeurs choisies sont placées dims les vimiables a, b et o p é r a te u r , à
l ’aide des paramètres ou du clavier, le calcul de l ’opération est réalisé et le résultat est affiché.
Dans l’exemple, vous obtenez :

java Calculette
1 + 2 = 3

1 + 2

Précisons en outre que cette conmiande doit être obligatoirement lancée dans le répertoire où
se trouve le fichier C a l c u l e t t e , c la s s .

й щ р о з Que se passe-t-il si l’on tape la commande :
java Calculette 1 + 2 - 3

Le programme s'exécute comme précédemment. Il affiche le résultat de la façon suivante :
ja v a C a lc u le t te 1 + 2
1 + 2 = 3

La soustraction -3 n'est pas prise en compte, puisque seuls argument [0] , argument [1] et
argument [2] sont traités et utilisés dans le code source du programme.

4Л
O
1_>Ш
ЮT~{
0 ГМ
@
.4-1-Г01'k_
Q.O

U

Que se passe-t-il si l’on tape la commande ;
java Calculette 1

Linterpréteur affiche le message d’erreur suivant : Excep tion in th read "main"
java .lang .A rraylndexO utO fBoundsExcep tion a t C a lcu le tte .m a in
En effet, le programme est appelé avec une ligne de commande qui n’utilise qu’un seul para­
mètre. De ce fait, seul argument [0] est créé en mémoire. Lorsqu’ ensuite le programme
traite argument [1] puis argument [2] , l’interpréteur indique que les indices l et 2 n’existent
pas. Le tableau argument n’ayant qu’une seule case, il ne peut accéder à d’autres cases
sans dépasser les limites de la taille du tableau.

262 © Éditions EyroUes

clrapKre H° 9 Conecilonner un nombre fixe d'obleis

Tïier un ensemble de données
L’atout principal de l'ordinateur est sa faculté à traiter un très grand nombre de données en des
temps très rapides. Ces traitements sont, par exemple, la recherche d’éléments dans un
ensemble en suivant des contraintes choisies par l’utilisateur ou encore le tri d’éléments en
fonction d’un critère déterminé.

Pour comprendre le fonctionnement interne de ces traitements, nous étudions ici l’algorithme
du « tri par extraction simple », qui utilise les techniques de recherche d’un élément dans un
ensemble de données, d’échange de valeurs et de tri.

Cahier des charges
L’objectif du programme est de réaliser le classement par moyenne d’une classe d’étudiants.
Pour cela, nous devons tout d’abord définir ce qu’est un étudiant (voir la section « La classe
Etudiant ») pour décrire ensuite une classe d’étudiants (voir la section « La classe Cursus »).
Cela fait, il devient possible de trier une classe d’étudiants selon leur moyenne (voir la section
« La méthode du tri par extraction simple »).

La classe Etudiant

Un étudiant est défini par son nom (S tr in g), son prénom (S tr in g) , un ensemble de notes
(un tableau de double) et une moyenne (double). Ces caractéristiques constituent
Penserable des données du type E tudiant,

Les comportements d’un étudiant permettent l ’initialisution et l’affichage de .ses caractéristiques,
ainsi que le calcul de sa moyenne.

Par conséquent, nous décrivons comme suit la classe E tu d ia n t :

Il import java. util. *;
public class Etudiant {
// Les données caractéristiques
private String nom, prénom;
private double [] notes, moyenne;

(J)d)

>-m
LOrHOfN
@
JZCT'k—>-Q.O
U

// Les comportements
public Etudiant() {
Scanner lectureClavier = new Scanner(Systera.in);
System.out.print("Entrer le nom de l'etudiant : ");
nom = lectureClavier.nextO;
System.out.print("Entrer le prénom de l'etudiant : "[
prénom = lectureClavier.next[);
System, out.print ("Combien de notes pour l'etudiant

> Éditions Eyroifes 283

partie B° 3 Outils et leclmlaucs orieniés ofalci |

y)
ô
L_>

LU
LOT~i
OfN
@
u-tJZCT'k—>-Q.O
U

284

System,out,print(prénom + " " + nom + " ; '
int nombre = lectureClavier.nextint();
notes = new double [nombre];
for (int i = 0; i < notes.length; i ++){
System.out.print("Entrer la note n* "+ (i
notes[i] = lectureClavier.nextDouble();

)
moyenne = calculMoyenne();

) ;

+ 1) ") ;

}
{private double calculMoyenne()

double somme = 0.0;
for(double valeurNote : notes) somme = somme + valeurNote;
return somme/notes.length;

}
public void a f f icheïïnEtudiant () {
System.out.print("Les notes de " + prénom + " " + nom

sont ") ;
notes)

+ v a l e u r N o t e)

for(double valeurNote
System.out.print("

Systern.out.println();
Systern.out.println("Sa moyenne vaut + moyenne);

}
public double quelleMoyenne() {

return moyenne;
I >
} // Fin de class Etudiant

La classe E tu d ia n t détinit les quatre méthodes suivantes ;
• E tu d ian t (). C’est le constructeur de la classe, qui permet d’initialiser l ’ensemble des

données de la classe E tu d ia n t en demandant la sai.sic au clavier des nom et prénom de
l’étudiant, ainsi que de l’ensemble de ses notes. Le nombre de notes peut varier d’un étudiant
à un autre, puisque la valeur nombre est saisie en cours d’exécution.

• calculMoyenne {). Lfne fois les données saisies, le programme calcule la moyenne à
l’ intérieur du constructeur, grâce à la méthode ca lcu lM oyenne!). Cette méthode est
déclarée en p r i v a t e car, pour des raisons de sécurité, ce calcul ne peut être réalisé qu’à
l’intérieur de la classe E tu d ian t.

• a f f ich eu n E tu d ian t (). Affiche à l’écran les caractéristiques d’un étudiant.
• quelleM oyenne (). La donnée moyenne étant protégée (p r iv a te) , la méthode

quelleM oyenne () permet l’accès en consultation, depuis l’extérieur de 1a classe, de la
valeur mémorisée.

© Éditions Eyrotles

chapitre n° 9 Gonectfonner un nombre nxe d'oblets

i/iaj

LU
LOrHO
(N

@

La classe Cursus

Une classe d’étudiants est définie par un ensemble d’étudiants, c’est-à-dire un tableau d’objets
E tu d ia n t.

Les comportements de la classe C u rsu s permettent l’ initialisation, l’affichage de ses
données, ainsi que le classement des étudiants dans l ’ordre croissant des moyennes.

La clas.se C u rsu s est décrite comme suit ;

import java.util.*;
public class Cursus {
private Etudiant [] liste;
public Classe() {
Scanner lectureClavier = new Scanner(System.in);
System.out.print("Worabre d'etudiants : ");
int nbetudiants = lectureClavier.nextint();
liste = new Etudiant[nbetudiants];
for(int i = 0; i < liste.length ; i + +) liste[i] = new Etudiant{);

I >public void afficheLesEtudianta() {
for (Etudiant e : liste) e .afficheUnEtudlant();

}
} // Fin de class Cursus

La donnée l i s t e de la classe C u rsu s est un tableau d’objets de type E tu d ia n t. Il s’agit
donc là d’un tableau pailiculier, puisque chaque case du tableau ne correspond pas à une
valeur numérique simple mais à l'ensemble des données caractéristiques d’un étudiant.

En réalité, chaque case du tableau l i s t e contient l’adresse d’un objet de type E tu d ia n t,
comme illustré à la figure 9-3. Cette opération est effectuée par le constructeur C la s s e {).

Ce dernier réalise la création du tableau en deux étapes. Ainsi, l’ instruction ;

I liste = new Etudiant[nbetudiants];
crée une case mémoire l i s t e , qui contient l ’adresse de la première case mémoire du tableau.
Ce tableau est de type E tu d ia n t. Il est donc destiné à stocker les adresses des objets de type
E tu d ia n t,

Ensuite, la boucle :

I for(int i = 0; i < liste.length; i++) liste[i] = new Etudiant!);
réalise, en faisant appel au constructeur de la classe E tu d ia n t, la création en mémoire des
objets de type E tu d ia n t, ainsi que la saisie des informations relatives à chaque étudiant.

CT'k—>-Q.O
U

© Éditfons Eyro//es 285

Darde B° 3 Oiidis et lechniaues oiiemés iriilet

Pour iinir, chaque adresse produite par l ’opérateur new clans la boucle f o r est placée dans
chacune des cases mémoire du tableau l i s t e (l i s t e [i]).

1 l i s t e 1 - J O] [1] [2]

0 ^
0 f 1 2 ^

nom
prénom
notes
moyenne
''’̂ t u d i a n

c a l c u l M o Y e n n e ())

nom
prénom.
notes
moyenne
''^tudian
calculMoy
...... 0

Ètirie 0^

t (fl
nom
prénom
notes
moyenne
'''étudiant ()^
¿alcîilMovenàe^^

Figure 9-3 Le tableau liste est un tableau d ’objets. Chaque case du tableau mémorise l'adresse
d'un objet Etudiant.

La méthode a f f ich e L e sE tu d ian ts [) permet raiïichage des informations relatives aux
étudiants en faisant appel à la méthode a f f iclreUnEtudiant () de la classe E tudiant.
Cette méthode affiche les caractéristiques d’un étudiant.

Grâce à la nouvelle syntaxe de la boucle for, il n’est plus nécessaire d’utiliser de compteur,
ni de test de fin de boucle. Le tableau d’étudiants l i s t e est parcouru élément par élément.
Chaque élément est enregistré tour à tour dans un objet e de type E tu d ia n t sur lequel la
méthode a ff ic h e U n E tu d ia n t {) est appliquée. Ainsi chaque étudiant de la liste est
affiché.

t/>
(U

UJ
v£)tH
Ors|
@
SIOl
>Q.O

U
286

La méthode du tri par extraction simple
Grâce aux classes E tu d ian t et Cursus, nous sommes en mesure de créer un ensemble
d’étudiants possédant chacun un nombre de notes et une moyenne, Notre objectif étant d’affi­
cher un classement des étudiants par ordre croissant des moyennes, examinons comment trier
l ’ensemble des moyennes d'une classe.

L’algorithme du tri par extraction simple se décrit de la façon suivante (voir figure 9-4) :

• Parcourir l ’ensemble des moyennes de la classe afin de trouver la plus petite.

© Éditions Eyrolles

chapitre n° 9 GoneciliMiHer un nombre fixe d'ohleis

• Une fois trouvée, échanger cette valeur avec celle placée au tout début du tableau, de façon
à être sûr que la moyenne la plus faible se trouve en début du tableau.

• Recommencer ce même traitement sur l ’ensemble des moyennes moins la première,
puisqu’elle vient d’être traitée.

Deux étapes sont nécessaires pour traduire cet algorithme en langage Java. Elles sont décrites
ci-après, aux sections « Recherche du plus petit élément dans une liste » et « Echange de ta
plus petite valeur avec un élément de la liste ».

Recherche du plus petit élément dans une liste
Pour trouver la plus petite valeur d’un ensemble de valeurs, il suffit de comparer chaque valeur
de la liste avec celle tout d'abord située en début de liste puis avec une plus petite, si elle
existe, dans la liste. C ’est ce que réalise la boucle suivante :

i n t inâiceDuUin = 0 ;
f o r (i n t j = 1 ; j < l i s t e . leng th ; j++}

i f [l i s t e [j] .guelleM oyennet) < l i s t e [indiceDuMin].q u e l le
Moyenne())indlceDuMin = j;

Ainsi, chaque valeur du tableau (j variant de 1 à l i s t e , len g th) est comparée avec la
première valeur du tableau (indiceDuMin valant 0 en début de boucle). Si la comparaison
montre que la valeur placée à l’ indice j est plus petite que celle placée en indiceDuMin,
alors l ’indice de cette plus petite valeur est stockée dans la variable indiceDuMin. Le lest
suivant compare la valeur suivante avec la plus petite valeur qui vient d’être détectée.

ifi<D

><
LU
KO
OfN
@
x:Oi'k_
Q.O

U

— -----
©a. 16 11 9 10 15

F ig u re 9 -4 a. Parcours àu tableau entier afin de déterminer la plus petite valeur puis échange
de cette dernière avec la valeur stockée en première position dans le tableaû b- Même traitement à partir

de la deuxième case du tableau, c. Même traitement à partir de la troisième case du tableau.

> Éditions Eyrolles 287

partie B° 3 Optus el techPlques oileniês iriilet

Grâce à cette boucle, la recherche de la plus petite valeur est réalisée sur rinlégralité du
tableau. Or, dan-s l ’algoritlime du tri présenté ci-dessus, cette recherche doit être réalisée dans
un premier temps sur rinlégralité de la liste, puis à partir du deuxième élément, ensuite à partir
du troisième élément, etc.
Cette boucle de recherche doit être placée à l’ intérieur d’une méthode, de façon à pouvoir être
exécutée plusieurs fois, chacune des exécutions variant en fonction d’un paramètre qui précise
l ’ indice où débute la recherche. La méthode ouEstLePlusPetit {), présentée ci-dessous et
à insérer dans la classe Cursus, réalise cette recherche.

private int ouEstLePlusPetit(int début) {
int indiceDuMiri - debut, j;
for(j = debut+1; j < liste.length; j++)
if (liste[j].quelleMoyenne() < liste[indiceDuMin].quelleMoyenne[))

indiceDuMin = j;
return indiceDuMin;

>
Lorsque le programme sort de la boucle f o r , indiceD uM in représente l’ indiee de la plus
petite moyenne dans le tableau l i s t e . Cette valeur e,st alors retournée à la fonction appelante,
qui l’utilise pour réaliser l’échange des valeurs.
Notez que la méthode ouEstLePlusPetit!) est déclarée en mode p r i v a t e . Cette
méthode n’est pas un comportement caractéristique d’une cla.sse d’étudiiuits rntiis un traitement
interne destiné à obtenir un classement de l’ensemble des étudiants.

i/ïO
O
>

LU

T~{
0 fN
@
0-1rr01'k—>-Û.OU

268

Échange de la plus petite valeur avec un élément de la liste
Connaissant l’indice où se trouve la plus petite moyenne, nous devons échanger cette valeur
avec celle correspondant au début de la recherche. Ce traitement est réalisé sur l’ensemble des
étudiants en faisant varier l’indice du début de recherche de la première valeur du tableau
jusqu'à la dernière. La méthode c la sse rP a rM o y e n n e (), qui s’insère dans la classe
Cursus, réalise ces opérations :

public void clasBerParMoyenno() {
int indiceDuPlusPetit ;
Etudiant tmp;
for(int i = 0; i < liste.length; i ++) {

indiceDuPlusPetit = ouEstLePlusPetit(i);
tmp = liste[i];
liste[i] = liste[indiceDuPlusPetit];
1iste[indiceDuPlusPetit] = tmp;

}
}

Grâce à la boucle fo r , le programme parcourt l’ensemble des étudiants de la classe. Ainsi,
pour chaque étudiant de la liste, la boucle réalise ;

© Éditions Eyrolles

chapitre n° 9 Coaectfonner un nombre nxe d oufeis

• la recherche de la plus petite moyenne (o u E stL eP lu sP etit ()) à partir de l ’indice i ,
correspondant à l’ indice de début de recherche ;

* l’échange dans la liste des données concernant l’étudiant ayant la plus petite moyenne
(in d ic e D u P lu sP e tit) avec les données de l’étudiant placé à l ’indice i (indice du
début de recherche).

Sans revenir sur le mécanisme d’échange des données, observez que grâce au regroupement
des données sons forme d’objets, les opérations réalisent non seulement l’échange des
moyennes des étudiants, mais aussi l’ensemble des données décrivant chaque étudiant, c’est-
à-dire ses nom, prénom et notes. En effet, ce sont ici les adresses de chaque objet
«. E tu d ian t » qui sont échangée.s, et non pas simplement les moyennes.

C f f l E E M E I i Sur l’échange de deux valeurs, voir au chapitre 1, « Stocker une information », la section
« Échanger les valeurs de deux variables »,

ÔU>•
LU

T~i
O
(N

@

01'k_
ClOU

■") ;

• ") ;

Uapplication GestionCursus
Afin de vérifier le bon fonctionnement des classes E tu d ia n t et C ursus, il est nécessaire de
construire une application qui utilise des instances de ces classes. Examinons la classe
G estionC ursus. composée d’une fonction main (), dans laquelle est déclaré un objet C de
type Cursus.
public class GestionCursus {
public static void main(String [] argument) {
Cursus C = new Cursus();
System, out .println ("------------- Recapitulatif --------
C . a££icheI>esEtudiants () ;
C .classerParMoyenne();
System, out .println ("--------------- Classement ---------
C.afficheLesEtudiants();

]
} // Fin de class GestionClasse

En appelant le constructeur C ursus (), le programme demande la saisie du nombre
d’étudiants. Puis, pour chaque étudiant, il fait appel au constructeur E tu d ian t (), qui
demande la saisie des nom, prénom et notes de l’étudiant concerné.
À la sortie du constructeur Cursus {), le programme est en mesure d’afficher, grâce à
l’instruclion C . aff icheLesEtudiants {), toutes les informations relatives à chaque
étudiant de la cla.sse C.
Ensuite, les étudiants sont classés par ordre croissant de moyenne grâce à l’appel de la
méthode classerP arM oyenne O , appliquée à la classe C. L’affichage de la liste des
étudiants permet ensuite de vérifier que le tri a été correctement réalisé.

© Éditions Eyrolles 289

Darde B° 3 Ouffis el lechniaues otlemés iriilet

O
OL->
LU

T~{
0 fN
@
<̂u-ix:01'k_>Q.O
U

Exécution de l’application : résultats

Wombre d ’ e tu d ia n ts : 4
E n tre r l e nom de l ' e t u d i a n t : M.
E n tre r l e prénom de l ' e t u d i a n t : O l i v i e r
Coifibien de n o te s pour l ' e t u d i a n t O l i v i e r M,
E n tre r l a n o te n ’ 1 : 13
E n tre r l a n o te n ‘ 2 : 15
E n tre r l e nom de l ' e t u d i a n t : B.
E n tre r l e prénom de l ' e t u d i a n t : Arnaud
Coitibien de n o te s pour l ' e t u d i a n t Arnaud B.
E n tre r l a note n ‘ 1 : 16
E n tre r l a n o te n' 2 : 18
E n tre r l e nom de l ' e t u d i a n t : R.
E n tre r l e prénom de l ' e t u d i a n t : Mathieu

Combien de n o te s pour l ' e t u d i a n t Mathieu R.
E n tre r l a note n ‘ 1 : 16
E n tre r l a note n " 2 : 16
E n tre r l e nom de 1 ' e tu d ia n t : D,
E n tre r l e prénom de l ' e t u d i a n t : J o c e ly n

Combien de n o te s pour l ' e t u d i a n t J o c e ly n D.
E n tre r l a n o te n ‘ 1 ; 10
E n tre r l a note n ’ 2 : 12
--------------- Recapitulatif -------------
Les n o te s de O l i v i e r M. so n t ; 1 3 . 0 1 5 . 0

Sa moyenne va u t 1 4 . 0
Les n o te s de Arnaud B, so n t : 1 5 . 0 1 8 , 0

Sa moyenne v a u t 1 7 , 0
Les n o te s de Mathieu R. so n t ; 1 6 . 0 1 6 . 0

Sa moyenne v a u t 1 5 . 0
Les n o te s de J o c e ly n D. so n t ; 1 0 , 0 1 2 , 0

Sa moyenne v a u t 1 1 ,
-------------------------- C lassem ent -------------------------
Les n o te s de J o c e ly n D. so n t i 1 0 . 0 1 2 . 0

2 9 0 © Éditions Eyroties

chapitre n° 9 Gonecihuiiier un nombre me d'oUeis

Sa moyenne v a u t 1 1 . 0

Les n o tes de O l i v i e r M. so n t : 1 3 . 0 1 5 . 0

Sa moyenne v a u t 1 4 . 0

Les n o tes de Mathieu R. so n t : 1 6 . 0 1 6 . 0

Sa moyenne v a u t 1 6 . 0
Les n o tes d 'E lena P. so n t : 1 6 . 0 1 8 . 0

Sa moyenne v a u t 1 7 . 0

Les tabieauK à deux dimensions

Vous venez de voir les tableaux à une seule dimension, représentés comme une liste horizon­
tale ou verticale d’éléments de même type. Il est possible avec Java, de travailler aussi avec
des tableaux de deux, trois, voire n dimensions. Pour simplifier, nous allons étudier les
tableaux à deux dimensions.

Par définition, un tableau à deux dimensions s'organise non plus sur une seule ligne mais sur
des lignes et des colonnes. Le croisement d’une ligne et d’une colonne détermine un élément
donné du tableau.

OL_>
LU
üDT—H
OrN
@
j::gi
>•Q.OU

[M Æ Îii l I l j j

D édaratlon d 'un tableau à deux dimensions
Pour déclarer un tableau à deux dimensions, la syntaxe est la suivante :

I i n t [][] donnée = new in t [3] [5] ;

La syntaxe est pratiquement identique à la déclaration d’un tableau à une dimension. La seule
différence consiste en l ’ajout de I] supplémentaires pour signifier au compilateur que le
tableau est à de deux dimensions.

Les valeurs numériques placées entre [] derrière ¡’opérateur new indiquent respectivement, le
nombre de lignes puis de colonnes.
L’instruction de déclaration décrite ci-dessus réserve en mémoire un tableau nommé donnée,
composé de 3 lignes et de 5 colonnes. Chaque élément du tableau étant un entier, l ’opérateur
new réserve 3 * 5 , soit 15 cases mémoire de la taille d’un entier.

Le nombre de lignes d’un tableau est donné par l'expression donnée. length , alors que le
nombre de colonnes est déterminé par l’expression donnée [0] . leng th , En effet, le nom­
bre de colonnes d'un tableau correspond au nombre d'éléments placés sur une ligne (voir
figure 9-5).

> Éditions Eyrolfes 291

partie B° 3 OuMs et lechplgues orleniés otilel |

donnée
0

indice j pour les eoiomies

 ̂ d o n n é e . le n g t h [0]

Iiu lke
pour le
lignes

I f o] [0] [0] [1] [0] [2] [0] [3] [0] [4]

CL
O
a
3
fÜ ' [1] [0] [1] [1] [1] [2] [1] [3] [1] [4]

1—'
fD
P

'zr [2] [0] [2] [1] [2] [2] [2] [3] [2] [4]

V

ifi<D

>
LU
KOrHOfN
©
x:Ol
C lO
U

292

F ig u re 9 -5 Un tableau s 'organise su r d e s lignes e t d e s co lon n es num érotées à partir d e [0][0],

Accéder aux élém ents d’un tableau
Pour initialiser, modifier ou consulter la valeur d’un élément d'un tableau, il convient
d’utiliser deux indices : un indice pour les lignes et un indice pour les colonnes. Chaque indice
étant contrôlé par tine boude f o r , la technique consiste à imbriquer deux boucles de la façon
suivante :

f o r (i n t i = Or i < d o n n é e . l e n g t h ; i++)

for (int j = 0 ; j ■; donnée [0] .length; j + +)
// d o n n é e [i] [j] = u n e V a l e u r ;

La boucle j est imbriquée dans la boucle i . Les variables i et j sont les compteurs de boucles
qui contrôlent respectivement les lignes et colonnes du tableau donnée.

Pour mieux comprendre les mécanismes de manipulation des tableaux et en particulier, le
déroulement des valeurs des indices à Lintérieur des boucles f o r , examinons l ’exemple
suivant.

Exemple : dessiner un sapin
Les tableaux à deux dimensions sont très souvent utilisés pour stocker les images. En effet,
une image affichée à l ’écran correspond en réalité à une surface découpée en lignes et

© Éditions Eyrolles

chapitre n° 9 CoHectioniier un nombre nxe d'oblets

colonnes. La donnée numérique se situant à la croisée de ces lignes et cok)nne.s représente un
point de l’ image et a pour valeur la couleur d’affichage à l’écran.

Cahier des charges

L’objectif de eet exemple est de dessiner à l’écran un sapin de Noël décoré, comme l ’illustre la
figure suivante :

%.%,
Pour simplifier à l’extrême la lisibilité du programme, nous n’utilisons que de simples carac­
tères alphanumcriqucs pour afficher notre sapin. C ’est pourquoi son afficlurge reste assez
sommaire.

BÎ2IÏHDEI3Ï 1113 sapins plus élaborés, reportez-vous au chapitre 11, «Dessiner des
objets ».

Créer et afficher un triangle composé de trois lignes

Fidèles au principe de décomposition d’un problème, nous allons chercher dans un premier
temps à afficher la forme .suivante ;

</)üj
Ô
L_>

LU
LOT~{
OfN
@0-1JTCT'k—>-Q.O
U

L’affichage de cette forme correspond à un triangle. Sa structure interne est définie en
mémoire à ¡’aide d’un tableau à deux dimensions. Il s’agit d’un tableau composé de 3 lignes et
de 5 colonnes, comme l’ illustre le tableau suivant :

00100
01110
m i l

Ce tableau est constitué de valeurs numériques placées de telle façon que le programme
dessine un triangle en affichant un point lorsque la valeur du tableau vaut 1 et sinon une
espace.

Pour réaliser a.stucieusenient l’ initialisation de ce tableau, examinons l’emplacement des
valeurs par rapport aux indices du tableau. Sachant qu'un tableau est toujours initialisé à 0 lors

> Éditions Eyroifes 293

partie B° 3 outlis et techniaues orientés obiet

de sa création en mémoire par Topéraleur new, observons uniquement les indices correspondant
aux valeurs égales à 1.

Ligne (j)\ Colonne(j) [0] [1] [2] [3] [4]
[0] 0 0 1 0 0
[1] 0 1 1 1 0
[2] 1 1 1 1 1

Signalons, à la colonne [2], que toutes les valeurs sont initialisées à 1. Cette colonne coiTes-
pond en réalité à la colonne du milieu du tableau. En supposant que Tensemble des valeurs soit
stocké dans un tableau nommé sa p in , l’ indice de cette colonne est obtenu grâce à l’instruction :

in t [] n sa p in = new i n t [3] [5] ;
in t m ilie u = s a p in [0] . le n g th / 2 ;

L’expression s a p in [0] . le n g th correspondant au nombre de colonnes, soit 5, la variable
m ilie u prend pour valeur 5/2, soit 2 en entier.

Ensuite, les valeurs situées de part et d’autre de cette colonne sont elles aussi, initialisées à 1.
Pour la ligne numéro [1], seul un élément à droite et à gauche du m ilie u , est initialisé à 1. Pour
la ligne numéro [2] , deux éléments à droite et à gauche, valent 1.

n y a dt)nc coiTélation entre le nombre de valeurs à initialiser et le numéro de la ligne sur laquelle
rinitialisation est effectuée. C’e.st pourquoi le traitement .se réalise de la façon suivante :

f o r (i u t i = 0 ; i < s a p in . le n g th ; i++) {
f o r (i n t] = - i ; j <= i ; j++) {

s a p in [i] [m i l i e u + j] = 1 ;

I I
1

La variable i ptu-tant de 0 jmsqu’à s a p in , le n g th (soit 3) examine toutes les lignes du
tableau. Pour chaque ligne, grâce à la seconde boucle en j , les valeurs du tableau sont initiali­
sées à 1, de paît et d’autre du m ilie u . Pour mieux comprendre le déroulement des opérations,
examinez le tableau d’évolution des variables.

d)

LU

OfN
@
JZCT'l-
O.OU

294

i i milieu sapin[i][milieu+j]
0 0 2 sapin[0] [0 t- 2] = 1

0 1 2 // sortie de boucle
1 -1 2 sapin[1] [- 1 + 2] = 1

1 0 2 s a p in [l] [0 + 2] = 1

1 1 2 sapin[1] [1 + 2] = 1

© Éditions Eyrotles

chapitre n° 9 Goliectioniier un nombre fixe d'oiMeis

i i milieu sapin[i][milieu+j]
1 2 2 // sortie de boucle
2 ~2 2 sapin[2] [-2 + 2] = 1
2 -1 2 sapin[2][-1 + 2] = 1
2 0 2 sapin[2] [0 + 2] =1
2 1 2 sapin[2] [1 + 2] =1
2 2 2 sapin[2][2 + 2] =1
2 3 2 // sortie de boucle
3 2 // sortie de boucle

Une fois le tableau créé et initialisé en mémoire, l ’affichage du dessin s’effectue en testant la
valeur de chaque point du tableau. Si la valeur est nulle, une espace est affichée, sinon, un
point est afficlié. Traduite en Java, cette marche à suivre .s’écrit à l’aide de deux boucles imbriquées,
comme suit :

for (int 1 = 0; i < sapin,length; i-i-+) {
for (lut j = 0; j < sapin[0].length; j++) {

i £ (sapin[i][j] == 0) {
System.out.print{" ");

else
System.out.print

}
System.out.println{};

)

L’indice i représente les lignes, tandis que j représente les colonnes. Grâce aux boucles
imbriquées, chaque intersection des lignes et colonnes est consultée, de façon à afficher le
caractère correspondant à la valeur stockée. Lorsque la boucle j est terminée, cela signifie que
tous les éléments (colonnes) de la ligne i ont été affichés, et il est nécessaire de passer à la
ligne suivante de l’écran, grâce à l’ instruction S y s te m . o u t . p r i n t l n {).

<D

LU

O
fN

@

Ol
D.O
U

Créer un triangle composé de n lignes
Nous avons créé un triangle à 3 lignes composé de 5 colonnes. Si nous souhaitons ajouter une
nouvelle ligne, nous devons obligatoirement ajouter deux colonnes supplémentaires. La relation
entre le nombre de lignes et de colonnes s’exprime selon l ’équation :

Nombre de colonnes - 2 * Nombre de lignes - 1
Pour un triangle possédant 3 lignes, vous obtenez 2 * 3 - 1 = 5 colonnes. Pour un
triangle compo.sé de 4 lignes, vous obtenez 2 * 4 - 1 = 7 colonnes. L'équation reste valide
pour un triangle à une ligne, puisque le nombre de colonnes vaut 2 * 1 - 1 = 1.

© Éditions Eyrolies 295

Darde B° 3 outils et technnues oheutés oblet

Les instructions suivantes permettent de créer un triangle dont le nombre de lignes est déter­
miné par l’utilisateur ;

import java.util.*;
public class Sapin {
public static void main(String [] arg) t
Scanner lectureClavier = new S c a n n e r (System.in);
System.out.print("Nombre de lignes ; ");
int ni = lectureClavier.nextint();
if (ni 0) {
System.out.println(“Le nombre de lignes doit être

supérieur a 0 ");
System.exit(0);

}
int ne = 2*nl-l;
int [][] sapin = new int[ni][ne];
int milieu = sapin[0].length/2;
for (int i = 0 ; i < ni ; i++) {
for (int j = -i; j <= i; j++) {

sapln[i][milieu+j] = 1;
}

1
} // Fin de la fonction main()

] // Fin de la classe Sapin

if)<ü

>•
LU
LOrHOfN
@
JZCT'k—>-aO
U

296

Placer des décorations au hasard
Cela fait, nous sommes en mesure d’afficher le sapin sans décoration puisque, pour chaque
clément du tableau valant i , un point est affiché. Pour ajouter quelques décorations, l’ idée est
de placer au hasard d’autres valeurs que 1. Ainsi, l ’affichage peut être modulé en fonction de
la valeur rencontrée.
Pour placer dans notre sapin de nouvelles valeurs au hasard, comprises entre 1 et 6 , par
exemple, il suffit de modifier l ’initialisation du tableau de la façon suivante :

for (int i = 0 ; i < ni ; i++) {
for (int j = -i; j <= i; j++) [
sapin[i] [milieu -i- j 1 = (int) (5 * Math.randomt) + 1);

L’affichage du sapin se déroule ensuite comme suit ;

for [int i = 0; i < sapin.length; i++) {
for (int j = 0; j < sapin[0],length; j++) {
switch (sapinti][j]) {
case 0 : System.out.print("
break;

© Éditions Eyrolles

chapitre H° 9 Canccthuiner un nombre fixe d'oiileis

case 2 : System.out.print{"%");
break;
default : System.out.p r i n t ;

}
System.out.printIn[);

Siiiviint lit valeur contenue en s a p in [i] [j], le programme affiche une espace, un point ou
un %. Observez que les valeurs 1 , 3, 4 et 5 affichent toutes un point. Seule la valeur 2 permet
l’affichage d’une guirlande. Ce choix a pour effet d ’afficher volontairement plus de points que
de guirlandes de façon à obtenir un sapin qui ne .soit pas trop surchargé.

Commsnt placer une nouvelle décoration à ce sapin ?

Il suffit d’ajouter une nouvelle option de traitement, comme par exemple :
c a se 5 : Sy s t em. o u t . p r i n t (" ! ") ;
b re a k ;

Attention aux boucles imbriquées
Pour manipuler des tableaux à deux dimensions, le programmeur utilise deux boucles f o r
imbriquées. Dans ce cas. une boucle f o r e.st placée à l’ intérieur d’une première boucle
fo r . Ce type d’écriture nécessite attention, car certaines eneurs peuvent empêcher te bon
deroulement du programme.

Une erreur d’inattention commi.se, en particulier, à cause des facilités du copier-coller peut
aboutir à programmer deux boucles imbriquées qui utilisent la même variable comme compteur de
boucles. Ainsi, en écrivant :

oi'k—>-Q.O
U

BOUCLES IMBRIQUÉES
(i EST COMPTEUR DE BOUCLES)

VARIATION DE LA VARIABLE i

int i ; Boucle f ; i = 1, i <= 3
i/iCJ for(i = 1; i <= 3 ; i= i + 1) { Boucle 2 : i = 1 , i 4

ô // Boucle 1 Boucle 2 : i = 2, i <= 4
>-

LU for{i =1; 1 <= 4; i= i+1) { Boucle 2 : i = 3, i <= 4
// Boucle 2 Boucle 2 : i = 4, i <= 4Orvl } Boucle 2 : i = 5, i > 4

®
4-1

} Boucle 1 : i = 6, i > 3

> Éditions EyroUes 297

paiHc ii° a outils et lechiilqucs orieoiés ofalel |

Le compteur de boucles i est déclaré à Textérieur des boucles. Les deux boucles utilisent la
même case mémoire pour stocker les variations de la valeur de i.
En entrant dans la boucle 1 , i prend la valeur 1, de même qu’en entrant dans la boucle 2. Puis
i est incrémenté de 1 à chaque tour de la boucle 2, jusqu’à ce que i dépasse la valeur 4. La
b o u c le 2 est alors terminée, i vaut par conséquent 5. On entre à nouveau dans la boucle 1,
i est incrémenté de 1 (i vaut 6) puis testé. 6 étant supérieur à 3, la boucle 1 e.st terminée.
La boucle 1 n’est donc parcourue qu’une seule fois au lieu de trois.

n - t i i f ï ï ï ï |T ia Si le compteur de boudes est déclarée à l’intérieur de la boucle, comme suit :
for(lut i = 1; i <= 3; i= i+1) (
// Boucle 1

for(int i = 1; i <= 4; i= i+1) {
// Boucle 2
)

}
alors, le compilateur détecte une erreur du type ; Variable ' i ' is already defined
in this method. En effet, le fait de déclarer un compteur de boucles portant le même nom,
dans chaque boucle, revient à déclarer, dans un même bloc de programme, deux variables
portant le même nom.
Lécriture de deux boucles non imbriquées utilisant la même variable comme compteur de
boucles n’est pas une erreur.
for(int i = 1; i <= 3 ; i= i+1) {

// Premier for, 3 tours
}
for(int i = 1; i <= 6; i= i+1) {

// Deuxième for, 6 tours
}

L’emploi d’une même variable de compteur pour deux boucles disjointes est correct. En effet, la
variable i est déclarée dans la boucle. Elle n’existe en mémoire que le temps d’utilisation de la
boucle. Lorsque i est à nouveau déclarée dans la deuxième boucle, la variable i précédente
n'existe déjà plus. Cette manière de programmer est courante, car elle facilite la lecture des
boucles.Très souvent, les compteurs de boucles ont pour nom i , j ou k.

<D

LU
Vû•rH
O<N
©

oi
P'
C lO
U

298 © Éditions Eyrotles

chapitre a° 9 Gonccthuiner un nombre fixe d'obleis

Résumé

ifi<U

>-
LU
KOrHOfN
@
JZCT'k—>-
C lO
U

Les tableaux sont utilisés pour regrouper sous un même nom de variable un nombre donné de
valeurs de même type. Un tableau est défini par :
• un nom ;
■ un type ;
• le nombre de dimensions ;
• une tailie pour chacune des dimensions.
Déclaration d’un tableau
Comme toute variable, un tableau doit être déclaré. La syntaxe est la suivante :
• Pour un tableau à une dimension ;

float [] donnée = new float [5] ;
Cette instruction déclare un tableau composé de nombres réels de simple précision, appelé
donnée. L’opérateur new réserve 5 cases mémoire de 4 octets chacune.

• Pour un tableau à deux dimensions ;
int [][] valeur = new int [3][2] ;

Cette instruction déclare un tableau à deux dimensions, composé de nombres entiers, appelé
valeur. Lopérateur new réserve 3 * 2 = 6 cases mémoire de 4 octets chacune.
La taille d'un tableau est une valeur entière définie soit à l’intérieur du programme, soit saisie au
clavier lors de l'exécution du programme. Une fois la taille fixée par l’opérateur new, il n’est plus
possible de la modifier en cours d’exécution.
Un tableau n'est pas nécessairement de type simple (in t , d o u b le , etc.). Il peut être de type
structuré (s t r in g OU type défini par le programmeur, etc.). Dans ce cas, le tableau est un
tableau d’objets stockant dans chacune de ses cases l’adresse d’un objet à mémoriser.
Pour accéder à une case (élément) du tableau, il suffit de placer, derrière le nom du tableau, le
numéro de la case (indice) entre [] . Chaque indice est une expression entière. La première
valeur d’un tableau est stockée à l’indice 0 du tableau et non à l’indice 1.

fo r (i n t i = 0 ; i < donnée. le n g th ; i++)
System.out.println(" " + donnee[i]);

Ainsi, la boucle for ci-dessus permet d'accéder à chaque élément du tableau. Pour ne pas
dépasser la tailie du tableau, il est conseillé d’utiliser la donnée length, qui correspond à la
longueur du tableau. Le programme dépasse la taille du tableau lorsque la valeur de l’indice est
supérieure à la taille déclarée du tableau. L'interpréteur détecte alors une erreur du type :
java.lang.ArraylndexOutOfBoundsException.
La version 1.5 du langage Java offre une version simplifiée de la boucle f o r pour parcourir un
tableau de bout en bout. La nouvelle syntaxe s’écrit sous la forme suivante ;
for (int valeur : tableau)

System . o u t . println(” " + valeur);

© Éditions Eyrolles 299

partie B° 3 Outils et lechpluucs oriepiés ofalcl |

Exercices

Les tableaux à une dimension

9.1 Qu'affiche le programme suivant ?

int i ;
int [] valeiir = new int [6] ;

Il valeur [0] = 1 ;

£or (i - 1; i < valeur.length; i++)
valeur[i] - valeur[i-1]+2 ;
for (i =0; i < valeur.length; i++)

System.out.print("valeur["+i+"] = " + valeurfi]);
for (int v : valeur)
System.out.print("valeur = " + v);

Quelles différences constatez-vous dans l'utilfsation des deux dernières boucles ? Quelle instruction

faudrait-i! ajouter pour obtenir exactemenl le même affichage ?

9.2 Écrivez un programme qui :

a. Stocke dans un tableau des valeurs entières passées en paramètres de la ligne de commande,

b. Calcule la somme de ces valeurs.

c. Calcule la moyenne de ces valeurs.

d. Recherche la plus grande valeur du tableau.

e. Détermine la position de la plus grande valeur.

f. Affiche le nombre de valeurs supérieures à la moyenne.

<u

LU
UOtH
O<N
©
s:oi
C lO
U

9.3 Dans la classe Triangle réalisée au cours de l’exercice 8.8 du chapitre précèdent ;

a. Définir les sommets d'un triangle à l’aide de deux tableaux de 3 entiers. Le premier tableau

nommé xPoints stocke les coordonnées en X des trois sommets du triangle, le second nommé
yPoints stocke les coordonnées en Y.

b. Modifier les deux constructeurs de façon à enregistrer les coordonnées des sommets dans les
deux tableaux. Lindice 0 de chacun des deux tableaux contient les coordonnées du point de réfé­
rence défini dans la classe F o r m e , l'indice 1 les coordonnées du deuxième sommet et l’indice 2
les coordonnées du troisième sommet.

c. Modifier les méthode afficher () et déplacer {) en tenant compte de la nouvelle repré­

sentation des propriétés.

300 © Éditions Eyrotles

cliapitre n° 9 CoHecifonner un nombre rue d'oiileis

Les tableaux d’obiets

9.4 En reprenant la classe C e r c l e définie au chapitre 8 « Les principes du concept d’objet » . écrivez un
programme qui :

a. Crée un tabieau de type C e r c l e , dont la taille est choisie par l’utilisateur. Si le nombre de cer­
cles créés est inférieur à 4, le programme initialise par défaut la taille du tableau à 4.

b. Initialise les données de chaque tableau à l’aide du constructeur par défaut de la classe C e r c l e .

c. Déplace le cercle n ' 1 en 20, 20.

d. Agrandit le cercle n‘ 2 de 50.

e. Échange le cercle n* 0 avec le n ' 3.

f. Permute les cercles, de façon à ce que le cercle 0 soit stocké en 1, le cercle 1 en 2... et le cercle 3
en 0.

Les tableaux à deux dimensions

9.5 Écrivez un programme qui :

a. À l'aide de boucles imbriquées, initialise la matrice 7 * 7 aux valeurs suivantes :

1 0 0 1 0 0 1
0 1 0 1 0 1 0
0 0 1 1 1 0 0
1 1 1 1 1 1 1
0 0 1 1 1 0 0
0 1 0 1 0 1 0
1 0 0 1 0 0 1

b. Affiche à l’écran le tableau, en remplaçant les valeurs :

0 par un espace (" ") ;

1 par un astéxrisque {"*").

Remarque Les compteurs de boucles seront astucieusennent choisis afin d'initiaiiser automatiquement ie
tabieau.t/><D

O

UDrH
O
(N

@
r :oi
C lO
U

© Éditions Eymites 301

oanie B° 3 Oudls el lechnlaues oileiiies idilet

Pour mieux com niondre le mécanisme des boucles Im briquées fo r-fo r

9.6 Afin d’exécuter le programme suivant ;
import j a v a . u t i l . * ;
p u b lic c la s s E xercices {

p u b lic s t a t i c v o id main (S tr in g [] paramétré) f
l u t i , j , N = 5 ;
char C;
Scanner le c tu r e C la v i s r = new Scanner(S y s te m .in) ;
System .o u t . p r i n t ("Entrer un c a ra c tè re
C = l e c t u r e C l a v i e r .n e x t {) . c h a rA t{0);
f o r (i = 1 ; i < N; i++) {

fo r (j = 1 ; j < N; j++) [
i f (i < j) System .o u t . p r i n t (C) ;
e l s e System .o u t . p r i n t (" ");

1
}

}
a. Examinez le code source, repérez les instructions concernées par les deux boucles répétitives, et

déterminez les instructions de début et de fin de boucle,
b. Quelles sont les instructions qui permettent de modifier le résultat du test de sortie de boucle ?
c. En supposant que l’utilisateur entre la valeur « ! », exécutez le programme suivant à la main

(pour vous aider, construisez le tableau d’évolution de chaque variable déclarée).
d. Quel est le résultat affiché à l’écran ?

9.7 En construisant le tableau d’évolution de la variable i , que constatez-vous lors de l’exécution de ces
boucles ?

f o r [i = 1 ; i <= 5 ; i = i-i-1}

V)<u

LU
Ub
tH
O<N
©

01
>-
C lOU

302

f o r (i = 1 ; i <= 2; i= i+1)
{

System .o u t . p r i n t ("i = "+i);

© Éditions Eyrotles

chapitre n° 9 Gonectionner un nombre nxe d'oufets

Le projet : Gestion d’un compte bancaire

Traiter dix lignes com ptables
L’objectif est de traiter, non plus une seule ligne comptable, mais dix lignes comptables. Pour
cela, vous devez, dans un premier temps, modifier la déclaration de la donnée l ig n e , dans la
classe Compte, comme suit ;

I p r i v a t e LlgneComptable 11 l ig n e ;

Comme le nombre de lignes comptables est fixé dans le cahier des charges, il est possible de
définir une constante comme suit :

I p u b lic s t a t i c f i n a l in t NBLigne = 1 0 ;

NBLigne représente le nombre maximal de lignes comptables à traiter. Les lignes comptables
étant créées au fur et à mesure des opérations réalisées par Tutilisateur, il est nécessaire de
définir une variable (nbLigneRéel), qui compte le nombre de lignes comptables effective­
ment créées en cours d’exécution du programme.
La gestion des lignes comptables entraîne la modification des méthodes Compte O,
c r é e r L ig n e () et a f f ic h e rC o m p te {).

Transformer les constructeurs Compte()
Dans chaque constructeur ;

a. À l ’aide de l’opérateur new, créer en mémoire la donnée l ig n e , sous fomie d’un
tableau de dix lignes comptables.

b. Initialiser la variable nbLigneRéel à - 1 , piiisqu’aucune ligne n’a encore été saisie.

t/ï

>-
LU
KOrHOfN
@
JZgi'k—>-Q.O
U

Transformer la méthode créerLigneQ
Lorsque le nombre de lignes comptables traité est supérieur à 10, le programme doit effacer la
première ligne traitée, de façon à décaler les suivantes (la deuxième allant en première posi­
tion, la troi.sième en deuxième position, etc.) afin de pouvoir stocker la nouvelle ligne en
dernière position du tableau l ig n e .
La méthode c ré e rL ig n e () réalise ce traitement de la façon suivante :

a. Tncréinente nbLigneRéel de 1.
b. Si le nombre de lignes créées esl inférieur à NBLigne, crée en mémoire une ligne comp­

table grâce au constructeur de la classe L igneC om p tab le et stocke eu mémoire .son
adresse dans le tableau l ig n e .

c. Si le nombre de lignes esl supérieur il NBLigne, décale toutes les lignes vers le haut,
grâce à la méthode d é c a le rL e sL ig n e s () décrite ci-des.soiis, et .stocke la nouvelle
ligne comptable en dernière position (NBLigne - 1) du tableau l ig n e .

© Éditions EyroHes 303

partie B° 3 Outlis et technlflues oileniés iriilet

J private void décalerLesLignes{) {
for(int i = 1 ; i < NBLigne ; i-t-+)

ligneIi-1] = ligne[i];
}
d. Modifie la valeur courante du compte en fonction du crédit ou débit réalisé par la nou­

velle ligne comptable.

Transformer la méthode affkherCompte()
Modifier la méthode a f fic h e rC o m p te () de façon à afficher l’ensemble des lignes saisies
en cours d’exécution du programme.

<D

>-
LU

O
fN

@

gi'i—>-Q.O
U

304 © Éditions Eyrolles

Chapitre 10

Collectionner nn nombre
indéterminé d’oblets

Comme nous l’avons vu au cours du chapitre précédent, les tableaux permettent la manipulation
rapide et efficace d'un ensemble de données. Cependant, leur principal inconvénient est d’être
de taille fixe. Ainsi, l’ajout d’un élément dans un tableau demande une gestion rigoureuse des
indices afin d’éviter que ces derniers ne prennent une valeur supérieure à la taille du tableau.
Pour pal lier cette difficulté majeure pour un grand nombre de programmes, le langage J ava pn>pt>se
plusieurs outils de manipulation des données en mémoire vive, au fur et à mesure des besoins de
l’application. Ces outils sont présentés et analysés à la section « La progranunation dynamique ».
En outre, lorsqu’un programme utilise des collections importantes de données, il doit les
archiver de façon à ne pas les voir disparaître après l ’arrêt de l’application ou de l’ordinateur.
Le langage Java offre différentes méthodes pour réaliser ce stockage de données. Elles sont
étudiées à la section « L’archivage de donnée.s ».

<D

>-
LU
KO
tHOfN
@
JZgi'k_
Q.O

U

la programmation dynamique

À la différence de la programmation .statique, dans laquelle le nombre de données géré par
l’applicalion est fixé une fois pour toutes lors de l’exécution du programme, la programmation
dynamique offre l’avantage de gérer un nombre indéterminé d'objets, en réservant des
espaces mémoire, au fur et à mesure des besoins de F utilisateur.

© Éditions Eyrolles 305

Darde в° 3 Ouffis el tecliDlaues oileniés odiet

CeUe technique se montre très utile lorsque le nombre d’objets à traiter n'est pas connu ni défi­
nissable avant l’exécution du programme. Par exemple, tous les logiciels de gestion, et c’est
une grande part des programmes informatiques, se doivent de gérer les données qu’ils traitent
de façon dynamique.

En effet, sans programmation dynamique, vous pourriez voir une bibliothèque refuser de
nouveaux lecteurs sous prétexte que le logiciel qu'elle utilise ne serait pas en mesure de traiter
plus de 50 000 inscriptions, ou encore voir un logiciel de traitement de texte s’interrompre
parce qu’ il lui serait impossible de gérer la saisie et l’affichage de plus 10 000 caractères.

Pour éviter de telles situations, le langage Java propose différents outils qui gèrent dynamiquement
les données d’un programme. En particulier, il existe des objets de type ArrayList, dont
nous analysons les caractéristiques à la section « Les listes ». Les objets de type HashMap,
étudiés à la section « Les dictionnaires », offrent aussi l ’avantage de gérer les données de
façon dynamique, tout en organisant l ’ information de façon à faciliter son exploitation.

Les lis tes
Les listes sont des objets de type A r r a y L is t , un type prédéfini du langage Java. La gestion
des listes est assez similaire à la gestion d’un tableau puisque le programme crée une liste par
ajout de données au fur et à mesure des besoins de l ’utilisateur. Les données sont enregistrées
dans leur oidre d’arrivée. Un indice géré par l’ inteipréteur permet de retrouver rinformation.

Les données enregistrées dans une A r r a y L is t sont en réalité rangées dans un tableau interne
créé par l’ interpréteur. La taille du tableau interne est gérée automatiquement par Java. Ainsi,
lorsque la liste des éléments à ajouter dépasse la taille du tableau interne, un nouveau tableau
est créé et les anciennes valeurs y sont copiées.

Manipulation d̂ iine liste
Pour utiliser une liste, il est nécessaire de la déclarer de la façon suivante ;

I ArrayListliste = new ArrayList () ;
Ainsi déclaré, l i s t e est un objet de type A r r a y L i s t , auquel on peut appliquer des
méthodes de la classe ArrayList. Ces méthodes, décrites dans le tableau ci-après, permettent
l’ajout, la suppression ou la modification d’une donnée dans la liste.

Remarque
1Л

>-Ш
KOrHOfN
@
JZCT'k—>-Q.O
U

306

Il est possible de construire une liste en précisant la capacité de stockage du tableau interne.
De cette façon, on évite la répétition des opérations de création de tableaux internes et de
recopie de valeurs qui sont des opérations coûteuses en temps d’exécution. La création d’une
liste de taille connue s ’effectue en indiquant au constructeur le nombre estimé d’éléments
contenus dans liste :
int capacitéinitiale = 20 ;
ArrayList liste = new ArrayList(capacitéinitiale);

© Éditions EyroUes

cliaiiitre 1 ° 10 Goflectlonner un nombre indéicrminé ti'ohleis

Opération Fonction Java

Ajoute un élément o b j e t en fin de liste. a d d (o b j e t)

Insère un élément o b j e t dans la liste, à l’ i n d i c e spécifié
en paramètre.

a d d (i n d i c e , o b j e t)

Retourne l’élément stocké à l’ i n d i c e spécifié en
paramètre.

g e t f i n d i c e)

Supprime tous les éléments de la liste. c l e a r ()

Retourne l’indice dans la liste du premier o b j e t donné en
paramètre, ou - 1 si o b j e t n’existe pas dans la liste.

i n d e x O f (o b j e t)

Retourne l’indice dans la liste du dernier o b j e t donné en
paramètre, ou - l si o b j e t n'existe pas dans la liste.

l a s t I n d e x O f ()

Supprime l ' o b j e t dont l’ i n d i c e est spécifié en
paramètre.

r e m o v e (i n d i c e)

Supprime tous les éléments compris entre les indices i
(valeur comprise) et j (valeur non comprise).

r e m o v e R a n g e (i , j)

Remplace l’élément situé en position i par l’o b j e t
spécifié en paramètre.

s e t (o b j e t , i)

Retourne le nombre d’éléments placés dans la liste. s i z e ()

Exemple : créer un nombre indéterminé d’étudiants

Pour mieux comprendre l ’utilisation des listes, reprenons l'exemple de la classe d’étudiants,
de façon à ce que le programme traite, non plus un nombre fixe d’étudiants, mais un nombre
indéterminé.

ll]|il IKi Sur les classes Etudiant et Cursus, voir au chapitre 9, « Coiiectionner un nombre fixe
d’objets », la section « Trier un ensembie de données ».

[fi
S I
ôU>-
LU

T~{
OfN
@
u-tJZgi'k—
Q.O

U

La classe E tu d ia n t n’est pas à modiiier, puisque l’objectif est de transformer uniquement la
gestion en mémoire des étudiants. La conection porte donc sur la classe C u rsu s, où la
l i s t e d’étudiants doit être déclarée de type A r r a y L is t au lieu d’être déclarée sous forme
de tableau. Examinons la nouvelle classe C u rsus ;

in®>ort ja .v a .,u t i l .
public class Cursus {
private ArrayList liste;

© Éditions EyroHes 307

partie B° 3 OutHs et techpiaues oheptés oblel

public Cursus() {
I liste = new ArrayList ();

* public void ajouteUnEtudiant{) {
liste.add{new Etudiant());I }

public void affichebesEtudiants() {
int nbEtudiants = liste.size();
if (nbEtudiants >0) {

Etudiant tmp;
for (int i = 0; i < nbEtudiants; i ++) {

tmp = (Etudiant) liste.get(i);
tmp.af ficheUnEtudiant();

}
}
else System.out.println("Il n'y a pas d'etudiant dans cette

liste");
}

} // Pin de Cursus

Remarque La boucle f o r permettant l’affichage des étudiants contenus dans la liste peut s ’écrire plus
simplement en utilisant la nouvelle syntaxe de la version 1.5 du JDK. Elle nécessite cependant
l’utilisation de type « génériques » qui sont également une nouvelle fonctionnalité de la der­
nière version du compilateur. Pour plus de détails reportez-vous en section « Les types
génériques » plus bas dans ce chapitre.

t/ï

>-
LU

OfN
®

gi
>■O.O

U
308

Les outils comme A rrayL istso n t proposés par le langage Java. Ils sont définis à l’intérieur
de classes, qui ne sont pas, par défaut, directement accessibles par le compilateur. C'est pour­
quoi le programmeur doit préciser au eompllatcur où sc situe la bibliothèque du langage Java
défini-ssant l'outil utilisé (package). Pour ce faire, il doit placer une instruction im port en
première ligne du fichier qui utilise l’outil souhaité,
La classe A r ra y L is t étant définie dans le package j a v a . u t i l , il convient de placer
rinstruction im port j a v a . u t i l . * *; en tête du fichier. En etîei, si cette instruction fait
défaut, le compilateur détecte une erreur du type : C la ss A r ra y L is t not found.
Cela fait, la donnée l i s t e , déclarée de type A rra y L is t , doit être manipulée en tant que
telle dans chaque méthode de la classe. Les trois méthodes suivantes sont définies à l’ intérieur
de celle-ci :
• Le constructeur Cursus (), qui fait appel au constructeur de la classe A rra y L is t afin de

déterminer l’adresse du premier élément de la l i s t e .
• La méthode a jo u teU n E tu d ian t () , qui place un élément dans la l i s t e grâce à la

méthode ad d (). L’élément ajouté à la liste est un objet de type E tu d ian t, créé par

© Éditions Eyrolles

clrapKre n° 10 Colecilonflw un nombre fndéiermlné d'obieis

l'intermédiaire du constructeur E tud ian t (), qui demande la saisie au clavier des données
caractéristiques de l’étudiant à construire.
La méthode a f fic h e L e s E tu d ia n ts {) parcoinl l’ensemble de la liste grâce à la
incth(xle g e t (), qui fournit en résultat rélément stocké à la position spécifiée en paramètre,
soit i . Ce résultat, pour êü’e consultable, doit obligatoirement être « casté » en E tu d ian t.

Pour en savoir Plus Sur le mécanisme du cast, voir au chapitre 1, « Stocker une information », la section « La
transformation de types »>.

• En effet, une liste a la capacité de mémoi'iser n’importe quel type d’objet, pi'édéfini ou non,
11 est donc nécessaire d’indiquer au compilateur à quel type correspond l’objet extrait.
L’indice i , variant de 0 Jusqu’à la taille effective {nbE tudiants - 1) de la l i s t e ,
l ’ensemble des étudiants contenus dans la l i s t e est affiché.

(TidiiHIiyilfl Lajout d’un élément dans une liste n'est possible que si l’élément est un objet. Il n’est en effet,
pas possible d’ajouter une valeur de type simple telle que in t , f lo a t ou double.

iLiütl Les types « génériques » sont détaillés plus bas, dans ce chapitre, section « Les types
génériques ».

l/><D

LU
ViD
tH
OfN
@

gi
>-Cl
OU

Exemple : Vapplication GestionCursus
Observons l’application G estion C u rsu s, qui définit et utilise un objet Cursus.
f iiriEiort j a v a . u t i l . * ;

p u b lic c la s s G estionCursus {
p u b lic s t a t i c vo id m ain (S trin g [] argument) {
b yte choix = 0 ;
Scanner le c tu re C la v ie r = new S can n e r(S y stem .in);
C u rs u s C = new C u r s u s () ;
do {

System .o u t . p r i n t l n ("1, A joute un e tu d ia n t”);
S y s te m .o u t .p r in t ln {"2. A ff ic h e la l i s t e des e le v e s ") ;
S y s te m .o u t .p r in t ln {"3. Pour s o r t i r ") ;
S ystem .o u t. p r i n t ("Votre choix : ");
choix = le c tu re C la v ie r .n e x tB y te () ;
sw itch (choix) {

case 1 C .ajouteU nE tudiant() ;
break ;

case 2 : C .a ffic lieL esE tu d ian ts (} ;
break ;

© Éditions EyroUes 309

partie B° 3 OutHs et techniaues orientés oblet

i/)
(U

LU
<£>T~i
OfN
@
x:Oi'k_>Q.O
U

case 3 ; System,exit(0);
default : System.out.println("Cette option n'existe pas ");

}
} while [choix != 3);

310

}
I }
Le nombre d’étudiants à traiter n’est pas déterminé à l ’avance. C ’est pourquoi l ’application
G estionC ursus réalise, grâce à la mise en place d’une boude do...while, la saisie des
données au fur et à mesure des besoins de ruiilisateur. Le programme laisse le ch o ix à l’utili­
sateur de saisir de nouveaux étudiants ou d’afficher ceux effectivement saisis. L’exécution de
cette application a pour résultat à l’écran :

1 . A jo u te un e tu d ia n t
2. A f f i c h e l a l i s t e des e le v e s
3. Pour s o r t i r

V o tre cho ix : 2
I l n ' y a pas d 'e t u d ia n t dans c e t t e l i s t e
1 . A jo u te un e tu d ia n t
2. A f f i c h e l a l i s t e des e le v e s
3. Pour s o r t i r

V o tre ch o ix : 1

E n tre r l e nom de 1 ' e tu d ia n t : V.

E n tre r l e prénom de 1 ' e tu d ia n t : L aurent

Combien de n o te s pour l ' e t u d i a n t L auren t V, : 2

E n tre r l a n o te n" 1 : 15

E n tre r l a n o te n' 2 : 13

1 . A jo u te un e tu d ia n t
2. A f f i c h e l a l i s t e des e le v e s
3. Pour s o r t i r

V o tre ch o ix : 1
E n tre r l e nom de 1 ’ e tu d ia n t : S é b a s t ie n

E n tre r l e prénom de l ' e t u d i a n t : V.
Combien de n o tes pour l ' e t u d i a n t S é b a s t ie n V. : 2

E n tre r l a n o te n" 1 : 12

E n tre r l a n o te n ” 2 : 15

© Éditions Eyrotles

chapitre n° 10 Colectlonner un nombre Indéterminé d'oblets

1. Ajoute un etudiant
2. Affiche la liste des eleves
3 . Pour s o r t i r

V o tre ch o ix : 2

Les n o te s de L aurent V. so n t ; 1 5 . 0 1 3 . 0

Sa moyenne v a u t 1 4 . 0

Les n o te s de S é b a s t ie n V. so n t : 1 2 . 0 1 6 . 0

Sa moyenne v a u t 1 4 . 0

1. Ajoute un etudiant
2. A f f i c h e l a l i s t e des e l e v e s

3. Pour s o r t i r

V o tre ch o ix : 3

L’utilisation d’objets du type A r ra y L is te s t souple et facilite amplement la vie du program­
meur lorsque ce dernier souhaite écrire une application qui gère des données de façon dyna­
mique. Les méthodes de la classe A rrayL istpem ietten t aussi la recherche ou l’ insertion de
nouveaux éléments grâce, en particulier, à la méthode in d exO f (o b j e t) , qui retrouve
l’ indice de l ’objet spécifié en paramètre dans la liste.

Cependant, lorsque la liste mémorise des objets complexes, tels que les données caractéristi­
ques d’un étudiant, la recherche d’un étudiant particulier n’est pas simple. En effet, il est
nécessaire de fournir au programme toutes les données de l’étudiant (nom, prénom, n o te s et
moyenne), de façon à être sûr de le retrouver' dans la liste. La méthode in dexO f (ob j e t) ne
retrouve l ’objet spécifié en paramètre qu’à la seule condition qu’il soit totalement identique à
celui stocké dams la l i s t e .

d)

>-
LU
LO
O
CM

©
s :oi
ClO
U

Remarque

Les d ictionnaires
Pour améliorer la recherche d’éléments complexes dans une liste, la technique consiste à orga­
niser les données, non plus par rapport à un indice, mais par rapport à une clé explicite. De
cette façon, la recherche d’un objet dans la liste s'effectue, non plus sur l’ensemble des
données qui le composent, mais sur une clé unique qui lui est associée.

L’organisation de données, par association d’une clé à un ensemble de données, est appelée un
dictionnaire.

Dans un dictionnaire, chaque définition est associée au mot qu'elle définit et non pas à sa position
(numérique) dans le dictionnaire.

© Éditions Eyrolles 311

Darde B° 3 ODflts ei lechnlaues orieiiiés oUet

Manipulation d’un dictionnaire
Le type HashMap proposé par le langage Java permet de réaliser simplement l’association clé-
élément. Les méthodes associées à ce type sont la création, la suppression, la consultation ou
la modification d’une association.

Pour utiliser un dictionnaire, il est nécessaire de le déclarer de la façon suivante :

I HashMap listeClassee = new HashMapt) ;
Ainsi déclaré, listeClassee est un objet de type HashMap, sur lequel on peut appliquer
des méthodes de la classe HashMap. Les méthodes les plus couramment utilisées sont décrites
au tableau ci-après.

Opération Fonction Java

Place dans le dictionnaire l’association c i e - o b j e t . p u t (d e , o b j e t)

Retourne l’objet associé à la d e spécitiée en paramètre. g e t (d e)

Supprime dans is dictionnaire l’association d e - o t o j e t à partir
de la d e spécifiés en paramètre.

r e m o v e (d e)

Retourne le nombre d’associations définies dans ie
dictionnaire.

s i z e ()

Exemple : créer un dictionnaire d ’étudiants
Pour mieux comprendre rutilisation de tels objets, modifions le programme de gestion d’un
ensemble d’etudiants de façon à organiser les données à partir d’une clé définie parle programme.

O
O
i_>

LU

T~{
OfN
@
u-tJZCT'k—>-Q.OU

312

Définir une clé d’association

En supposant qu’un étudiant soit totalement identifiable par son nom et son prénom, la elé
d’association des données est définie comme étant une chaîne de caractères majuscules, dont
le premier caractère coïncide avec le premier caractère du prénom de l ’étudiant et dont le.s
caractères suivants correspondent au nom de l’étudiant.

De cette façon, chaque clé est déteirninée par programme, indépendamment de Futilisateur, en
fonction des informations fournies par ce dernier.

La traduction de cet algorithme en langage Java est la suivante ;

p r i v a t e S t r i n g d r e e r t l n e C l e (E t u d i a n t e) {

String tmp;
tmp = {s . quelPrenomi)) . charAt (0) + e . quelNom.() ;
return tmp.toUpperCase();

I ï

© Éditions Eyrolles

chapitre a° 10 Goflectlonner un nombre fnüéiermlné d'oNeis

À partir des données d’un étudiant e passées en paramètres, la méthode creerU n eC le ()
retourne une chaîne de caractères majuscules (tmp. coUpperCase ()), composée du premier
caractère du prénom de réludiant ((e . quelPreoom ()) . ch arA t (0)), suivi de son nom
(e . quelNom(}).

Les données n o m et p r é n o m de la classe E t u d i a n t sont privées. Il est donc nécessaire
d’utiliser les méthodes d’accès en consultation q u e l P r e n o m () et q u . e l N o m () pour connaître
le contenu de ces données.

Ces méthodes, à insérer dans le fichier E tu d ia n t . ja v a , sont décrites comme .suit :

p u b l i c S t r i n g quelWomO {
r e t u r n n o m ;

}
p u b l i c S t r i n g (luelPrenom() {

r e t u r n p r é n o m ;

J

«ÜJ
Ôi_>
LLI
KOrH0 ÎN
@
..i-i-T01'k_
Q.O

U

La création d’une clé peut également être réalisée simplement à partir des nom et prénom de
l’étudiant, stockés non pas dans un objet Etudiant, mais dans deux String distincts.
Comment surcharger la méthode creerUneCle [) de façon à traiter cette alternative ?

La méthode est surchargée de la façon suivante :
p r i v a t e s t r i n g creerUneCle (S t r i n g p . S t r i n g n) {

S t r in g t m p ;

t m p = P . c h a r A t (0)+ n ;

r e t u r n t m p . t o U p p e r C a s e {) ;

}

Les deux méthodes creerU n eC le () à insérer dans la classe Cursus, sont déclarées en
modo p r i v a t e cîtr elles constituent un traitement interne propre au mode de stockage de
rinformation. L’application et l’utilisateur n’ont nullement besoin d’en connaître l’existence
pour créer la liste des étudiants d’un cursus.

Création du dictionnaire
Pour créer le dictionnaire d’un ensemble d’étudiants, nous devons tout d’abord définir un objet
de type HashMap puis stocker dans cet objet les étudiants, en les associant à leur clé. Ces deux
opérations sont réalisées dans le programme suivant :

inyport java.util.*;
p u b l i c c l a s s C u r s u s [

p r i v a t e H a s h M a p l i s t e C l a s s e e ;

p u b l i c C u r s u s () {

© Éditions Eyrolfes 313

oartle в° 3 omis et techniaues orfentés oblei

l i s t e C l a s s e e = n e w H a s h M a p O ;

)
p u b l i c v o i d a j o u t e U n E t u d i a n t () {

E t u d i a n t n o u v e a u = n e w E t u d i a n t () ;

S t r i n g c l e = c r e e r U n e C l e (n o u v e a u) ;

I i f (l i s t e C l a s s e e . g e t (c l e) = = n u l l) l i s t e C l a s s e e . p u t (c l e , n o u v e a u) ;

e l s e S y s t e m . o u t . p r i n t l n (" C e t e t u d i a n t a d é j à e t e s a i s i ! ") ;

}
)

C e p r o g r a m m e e s t c o n s l i t u é d e s d e u x m é t h o d e s s u i v a n t e s :

• L e c o n s t r u c t e u r C u r s u s {) , q u i f a i t a p p e l a u c o n s t r u c t e u r d e l a c l a s s e H a s h M a p a f in d e

d é t e r m i n e r l ’ a d r e s s e d u p r e m i e r é l é m e n t d e l a l i s t e C l a s s e e .

• a j o u t e U n E t u d i a n t {) , q u i p l a c e u n é l é m e n t d a n s le d i c t i o n n a i r e g r â c e à l a m é t h o d e

p u t (c l e , n o u v e a u) , q u i a j o u t e l ’ a s s o c i a t i o n c l e - n o u v e a u d a n s l e d i c t i o n n a i r e

l i s t e C l a s s e e . L ’ o b j e t n o u v e a u e s t d e t y p e E t u d i a n t . Il e s t c r é é p a r l ’ i n t e r m é d i a i r e

d u c o n s t r u c t e u r E t u d i a n t () e t c l e e s t a u s s i u n o b j e t d e t y p e S t r i n g c a l c u l é à p a r t i r d e

l a m é t h o d e c r e e r U n e C l e () .

L ' a j o u t s u c c e s s i f d e d e u x a s s o c i a t i o n s a y a n t l a m ê m e c l e a p o u r r é s u l t a t d e d é t r u i r e l a

p r e m i è r e a s s o c i a t i o n . C ’ e s t p o u r q u o i i l c o n v i e n t d e t e s t e r , a v a n t d e p l a c e r l e n o u v e l é t u d i a n t

d a n s l e d i c t i o n n a i r e , s i c e d e r n i e r n ' e s t p a s d é j à d é f i n i d a n s l a l i s t e C l a s s e e . C ’ e s t c e q u e

r é a l i s e l e te.st s u iv a n t :

I i f (l i s t e C l a s s e e . g e t (c l e) == n u l l) l i s t e C l a s s e e . p u t (c l e , n o u v e a u) ;

E n e f f e t , e n t e s t a n t l e r é s u l t a t d e l a m é t h o d e g e t (c l e) , l e p r o g r a m m e r e c h e r c h e d a n s le

d i c t i o n n a i r e .s’ i l e x i s t e u n é t u d i a n t a s s o c i é à l a c l e c a l c u l é e , c o r r e s p o n d a n t à l ’ é t u d i a n t q u e

l ’ o n s o u h a i t e i n s é r e r d a n s l a l i s t e (n o u v e a u) . S i c e t t e a s s o c i a t i o n n ’ e x i s t e p a s , l ’ é l é m e n t

r e t o u r n é p a r l a m é t h o d e e s t n u l l , e t l ’ i n t e r p r é t e u r a j o u t e l a n o u v e l l e a s s o c i a t i o n c l e -

n o u v e a u d a n s l e d i c t io n n a i r e . D a n s le c a s c o n t r a i r e , l e p r o g r a m m e a f f i c l i c un m e s s a g e p r é c i s a n t

q u e l ’é t u d i a n t e x i s t e d é j à .

1Л(U

>-Ш
T~{
Ors
@
x:oi
>Q.O

U
314

Rechercher et supprimer un élément du dictionnaire
Une fois le dictionnaire réalisé, les opérations permettant la recherche ou la suppression d’un
étudiant sont décrites par les méthodes suivantes, à insérer dans le fichier Cursus . ja v a :

p u b l i c v o i d r e c h e r c h e i T n E t u d i a i i t i S t r i n g p . S t r i n g n) [

S t r i n g c l e - c r e e r U n e C l e (p , n) ;

E t u d i a n t e C l a s s e = (E t u d i a n t) l i E t e C l a s s e e . g e t (c l e) ;

i f (e C l a s s e != n u l l) e C l a s s é . a f f i c h e t l i i E t u d i a n t () ;

e l s e S y s t e m . o u t . p r i n t l n (p + " " + n + " e s t i n c o n n u ") ;
}
p u b l i c v o i d supprimetlnEtudiant (S t r i n g p , s t r i n g n) {

© Éditions Eyrolles

chapitre n° 10 Colectlonner un nombre Indéterminé d'obfets

I

s t r i n g c l e = c r e e r U n e C l e (p , n) ;

E t u d i a n t e C l a s s e = (E t u d i a n t) listeClassee.get(de) ;

i f (e C l a s s e ! = n u l l) {

listeClassee.remove(cle);
S y s t e m . o u t . p r i n t l n (p + " " + n + " a e t e s u p p r i m e ")

]
e l s e S y s t e m . o u t . p r i n t l n (p + ' + n + e s t i n c o n n u

}
) ;

C e s m e ' th o d e s f o n c t i o n n e n t t o u t e s d e u x s u r le m ê m e m o d è l e . L e s n o m e t p r é n o m d e l ’ é t u d i a n t

à t r a i t e r s o n t f o u r n i s e n p a r a m è t r e s d e s m é t h o d e s a f in d e c a l c u l e r l a c l é d ’ a s s o c i a t i o n . E n s u i t e ,

l ’ é t u d i a n t e s t r e c h e r c h é d a n s l a l i s t e à p a r t i r d e c e t t e c l é (g e t (c l e)) .

S ’ i l e s t t r o u v é , i l e s t s o i t a f f i c h é (e C l a s s e . a f f i c h e U n E t u d i a n t () , p o u r l a m é t h o d e

r e c h e r c h e U n E t u d i a n t ()) , s o i t s u p p r i m é (l i s t e C l a s s e e . r e m o v e (c l e)) . p o u r l a

m é t h o d e s u p p r i m e U n E t u d i a n t ()).

ifi

><Ш
ЮT~{
OГМ
@

oi'k_
Q.OU

.Afficher un dictionnaire
P o u r a f f i c h e r to u s l e s é l é m e n t s d ’ u n d i c t i o n n a i r e , n o u s d e v o n s l e p a r c o u r i r é l é m e n t p a i ’

é l é m e n t . Il e x i s t e d i f f é r e n t e s t e c h n i q u e s p o u r r é a l i s e r c e p a r c o u r s . N o u s v o u s e n p r o p o s o n s

u n e , q u i u t i l i s e u n o u t i l d u l a n g a g e J a v a , d é f in i p a r l a c l a s s e C o l l e c t i o n .

Une collection est un outil du package j a v a . u t i l , qui facilite le parcours de listes de
données, quelles qu’elles soient. Ainsi, pour le parcours dans une collection d’objets,
s’effectue par l’intermédiaire d'un objet de type I t e r a t o r que l’on applique à la collection.
La classe i t e r a t o r contient les méthodes hasN ext () et n ex t (). La première méthode
détermine s’ il existe encore des éléments dans la collection sur laquelle est appliquée l’itérateur,
tandis que la .seconde permet l’accès à l’élément suivant dans la collection.
L a m é t h o d e a f f i c h e L e s E t u d i a n t s () u t i l i s e c e t t e t e c h n i q u e p o u r r é a l i s e r l a p a r c o u r s d e

l a l i s t e C l a s s e e .

p u b l i c v o i d a f f i c h e L e s E t u d i a n t s () {
i f (l i s t e C l a s s e e . s i z e {) 1= 0) {

C o lle c tio n c = l is te C la s s e e .v a lu e s 0 ;
f o r (I t e r a t o r i = c . i t e r a t o r () ; i . l i a s N e x t () ;) {

E t u d i a n t e = (E t u d i a n t) i . n e x t O ;
e . a f f i c h e U n E t u d i a n t () ;

}
}
else

System.out.println("Il n'y a pas d'etudiant dans cette liste");
1

L a c o l l e c t i o n e s t i n i t i a l i s é e g r â c e à l a m é t h o d e v a l u e s () d e l a c l a s s e H a s h M a p , q u i r e n v o i e

s o u s f o r m e d e c o l l e c t i o n l a l i s t e d e s a s s o c i a t i o n s c l é - v a l e u r e f f e c t i v e m e n t s t t x 'k é e s . L e

p a r c o u r s d e c e l t e c o l l e c t i o n e s t e n s u i t e r é a l i s é à l ’ a i d e d ’ u n e b o u c l e f o r e t d ’ un i t é r a t e u r

> Éditions Eyrolles 315

partie a° 3 Oulls et techniflues oileniés iriilet

asscH;ié à la collettion (i t e r a t o r i = c . i t e r a t o r ()). La boucle leste s’il existe encore
des clés dans la liste (i . h a s N e x t ()) . Si tel est le cas, le programme passe à l’élément
suivant dans la liste (i . n e x t ()) et raffiche (e . a f f i c h e t l n E t u d i a n t ()).

t/ï

>-
LU
KO
OfN
@
x :oi'k_>'
ClO
U

316

Les types génériques

L e s t y p e s g é n é r i q u e s o n t é t é m i s e n p l a c e a v e c l a n o u v e l l e v e r s i o n d u c o m p i l a t e u r p o u r o f f r i r

e n t o u t p r e m i e r l i e u l a p o s s i b i l i t é d e d é c r i r e d e s c o m p o r t e m e n t s i d e n t i q u e s i n d é p e n d a m m e n t

d u t y p e d e d o n n é e s . L ’ a p p o r t d e s « g é n é r i q u e s » p e r m e t é g a l e m e n t d e r e n d r e l e c o d e p lu s

r o b u s t e e t s i m p l i f i e g r a n d e m e n t l a p r o g r a m m a t i o n .

N o t re o b j e c t i f n ’ e s t p a s ic i d e d é c r i r e t o u t e s l e s f o n c t i o n n a l i t é s d e s t y p e s g é n é r i q u e s , m a i s

d ’ e x a m i n e r c o m m e n t c e s d e r n i e r s s i m p l i f i e n t la m a n i p u l a t i o n d e s c o l l e c t i o n s d ’ o b j e t s

(A r r a y L i s t e t H a s h M a p) e t p e r m e t t e n t d ’ é v i t e r d e s c i r e u r s lo r s d e l ’ e x é c u t io n d e s a p p l i c a t io n s

m a n i p u l a n t d e s c o l l e c t i o n s d e d o n n é e s .

Le.s collections stockent tout type d ’olijets
C o m m e n o u s a v o n s p u l e c o n s t a t e r a u c o u r s d e l a s e c t i o n « L e s l i s t e s » l ’ a j o u t d e v a l e u r s à

l ’ i n t é r i e u r d ’ u n e l i s t e o u d ’ u n d i c t i o n n a i r e n e p e u t s ’ e f f e c t u e r q u ’ a u t r a v e r s d ’ o b j e t s . Il e s t

i m p o s s i b l e d ’ i n s é r e r u n s i m p l e e n t i e r d a n s u n e l i s t e c o m m e p a r e x e m p l e :

I A r r a y L i s t l i s t e V a l e u r = n e w A r r a y L i s t O ;

l i s t e V a l e u r . a d d (l O O) ;

I c i , l ’ a jo u t d e l a v a l e u r n u m é r i q u e 1 0 0 p r o v o q u e u n e e r r e u r d e c o m p i l a t i o n a y a n t p o u r

m e s s a g e « T h e m e t h o d a d d (i n t , O b j e c t) i n t h e t y p e A r r a y L i s t i s n o t

a p p l i c a b l e f o r t h e a r g u m e n t s (i n t) » .

P o u r i n s é r e r u n e v a l e u r n u m é r i q u e , il c o n v i e n t d e f o r c e r l e t y p e s i m p l e { i n t , c h a r , d o u b l e ,

e t c .) à d e v e n i r u n o b je t c o m m e l e m o n t r e l ’ i n s t r u c t i o n s u iv a n t e :

I l i s t e V a l e u r . a d d (n e w I n t e g e r (1 0 0)) ;

D a n s c e t t e s i t u a t io n , l a v a l e u r n u m é r i q u e 1 0 0 e s t t r a n s f o r m é e e n un « o b j e t » c o n t e n a n t l a

v a l e u r 1 0 0 . C e t t e d e r n i è r e p e u t a l o r s ê t r e i n s é r é e d a n s u n e l i s t e d e t y p e A r r a y L i s t .

C e l a f a i t , r i e n n e n o u s i n t e r d i t d ’ i n s é r e r d a n s l a m e m e l i s t e l i s t e V a l e u r u n e n o u v e l l e

v a l e u r c o m m e s u i t :

I l i s t e V a l e u r . a d d (" 2 2 ") ;

L a c h a î n e d e c a r a c t è r e s " 2 2 " n ’ e s t p a s u n n o m b r e m a i s u n o b j e t d e t y p e S t r i n g . 11 p e u t d o n c

ê t r e i n s é r é d a n s l a l i s t e 1 i s t e V a l e u s a n s q u ’ a u c u n e e r r e u r n e s o i t d é t e c t é e l o r s d e l a c o m p i ­

l a t i o n . L a l i s t e c o n i i e n l d e u x o b j e t s d e t y p e s d i f f é r e n t s .

C e p e n d a n t , u n p r o b l è m e .se p o s e lo r s d e l a c o n s u l t a t i o n d e l a l i s t e . E n e f f e t , p o u r c o n n a î t r e l a

v a l e u r e n r e g i s t r é e d a n s u n e l i s t e il c o n v i e n t d e c o n n a î t r e so n t y p e . P o u r r é c u p é r e r l a v a l e u r

10 0 n o u s d e v o n s é c r i r e :

I I n t e g e r v a l e u r l = (I n t e g e r) l i s t e V a l e u r . g e t (0) ;

© £d/f/ons Eyrofles

chapitre n° 10 Gooectlonnef un nombre indéiermlné d'obleis

M a i s i l n ' e s t p a s p o s s i b l e d e r é c u p é r e r l a v a l e u r " 2 2 " d e l a m ê m e f a ç o n . E n e f f e t , é c r i r e

I Integer valeur2 = (Integer) listeValeur.get(1);
p r o v o q u e u n e e r r e u r d ' e x é c u t i o n a y a n t p o u r m e s s a g e : « Exception in thread "main"
java.lang.ClassCastException: java. lang. String ». L ’ i n t e r p r é t e u r n e p e u t

t r a n s f o r m e r u n e c h a î n e d e c a r a c t è r e s e n un e n t i e r . L a s o l u t io n c o n s i s t a n t à t r a n s f o r m e r l a

v a l e u r " 22 " e n String e s t v a l i d e . M a i s e l l e o b l i g e à c o n n a î t r e a v a n t c o n s u l t a t i o n , l e t y p e d e

c h a q u e d o n n é e e n r e g i s t r é e , p o u r c h a q u e i n d i c e . C e q u i p e u t d e v e n i r t r è s v i t e c o m p l e x e à g é r e r .

Les générics forcent le contrôle du type de données

P o u r é v i t e r c e t y p e d ' e r r e u r , l a s o lu t io n c o n s i s t e f o r c e r l e t y p e d e l a l i s t e à u n e .seu le f o r m e d e

d o n n é e s e n u t i l i s a n t l e s t y p e s g é n é r i q u e s . G r â c e à c e t t e n o u v e l l e s t r u c t u r e , l e s l i s t e s o u e n c o r e

l e s d i c t i o n n a i r e s s o n t d é c l a r é s c o m m e é t a n t d e s l i s t e s d ’ e n t i e r s o u d e c h a î n e s d e c a r a c t è r e s o u

e n c o r e d ’é tu d ia n t s . I l s n e p e u v e n t c o n t e n i r a u c u n e a u t r e f o r m e d e d o n n é e s q u e c e l l e s s p é c i f i é e s

lo r s d e l a d é c l a i ' a t io n .

L a s t n i c t u r e d e d é c l a r a t i o n d ’ u n e l i s t e u t i l i s a n l d e s t y p e s g é n é r i q u e s s ’ é c r i t :

I A r r a y L i s t < i n t e g e r > l i s t e V a l e u r = n e w A r r a y L i s t < i n t e g e r > () ;

s i l a l i s t e t r a i t é e n e d o i t c o n t e n i r q u e d e s e n t i e r s , o u e n c o r e :

I ArrayList<Etudiant> listeEtudiant = new ArrayList<Etudiant>();

p o u r d é f i n i r u n e l i s t e n e c o n t e n a n t q u e d e s o b j e t s d e t y p e Etudiant.
L e t e r m e <type> p e r m e t d ’ i n d i q u e r a u c o m p i l a t e u r q u e l t y p e d e d o n n é e s p e u t ê t r e t r a i t é p a r

l a l i s t e a i n s i c r é é e . I l s e t r a d u i t e n l ï i u i ç a i s ptm « l ’ o b j e t l i s t e V a le u r e s t u n e l i s t e n e c o n t e ­

n a n t q u e d e s e n t i e r s » o u e n c o r e « l ’ o b j e t l i s t e E tu d ia n t e s t u n e l i s t e n e c o n t e n a n t q u e d e s

é t u d i a n t s » .

D e c e t t e f a ç o n , u n e in s t r u c t io n d u t y p e ;

I listeValeur.a d d ("22");

entraîne une erreur décelable dès la phase de compilation. E n effet, l i s t e V a le u r grâce a u

générique < ln teger> ne peut contenir que des entiers et "22" est de type S tr in g . L ' a m b i ­

guïté est levée bien avant l a phase d’exécution.

ifiO
ôU
LU
KOrHOfN
@
j::

>•
Q.O

U

Remarque Pour déclarer un dictionnaire d’étudiants à i’aide des types génériques, il convient d’écrire ;

H a s h M a p < S t r i n g , E t u d i a n t > l i s t e C l a s s e e =

n e w H a s h M a p < S t r i n g , E t u d i a n t > {] ;

Le premier terme, placé entre < >, indique que la clé d’association est de type s t r in g , alors
que le second définit le type des données (élément) enregistrées dans le dictionnaire.

> Éditions EyroHes 317

oartle B° 3 Ouffis el technlaues oiienies olilet

Les générics simplifient le parcours des listes
G r â c e a u x t y p e s g e 'n é r i q i i e s e t à l a n o u v e l l e s y n t a x e d e l a b o u c l e f o r , T a f f i c h a g e d e s é l é m e n t s

d ’ u n e l i s t e o u d ’ un d i c t i o n n a i r e e s t s i m p l i f i é . A i n s i a v a n t l a v e r s i o n 1 .5 d u c o m p i l a t e u r n o u s

d e v i o n s p o u r p a r c o u r i r u n e l i s t e d ' é t u d i a n t s , é c r i r e l e s i n s t r u c t i o n s s u i v a n t e s :

E t u d i a n t t m p ;
0 for (int i = 0; i < nbEtudiants; i + +) [
Q t m p = (E t u d i a n t) l i s t e . g e t (i) ?
t m p . a f f i c h e U n E t u d i a n t () ;

1

O L a b o u d e f o r u l i l i s e u n c o m p t e u r , p e r m e t t a n t l e p a r c o u r s d e l a l i s t e é l é m e n t p a r é l é m e n t ,

à p a r t i r d e l e u r i n d i c e d ’ e n r e g i s t r e m e n t .

O L o r s d e l a c o n s u l t a t i o n d e l a l i s t e , i l e s t o b l i g a t o i r e d ’ u t i l i s e r l e s m é c a n i s m e s d u « c a s t »

p o u r s ’ a s s u r e r q u e l ’ o b j e t e x t r a i t à l ’ a i d e d e l a m é t h o d e g e t () s o i t d u t y p e a t t e n d u .

A v e c l e s t y p e s g é n é r i q u e s il n ’ e s t p lu s b e s o in d ’ u t i l i s e r l e m é c a n i s m e d u « c a s t » , e t l a b o u d e

f o r s ’ é c r i t b e a u c o u p p l u s s i m p l e m e n t c o m m e l e m o n t r e l e s i n s t r u c t i o n s c i - a p r è s ;

A r r a y L i s t < E t u d i a n t > l i s t e E t u d i a n t = n e w A r r a y L i s t < E t u d i a n t > () ;

f o r { E t u d i a n t e ; l i s t e E t u d i a n t) e . a f f i c h e U n E t u d i a n t {) ;

L a b o u c l e f o r s e t r a d u i t l i t t é r a l e m e n t d e l a f a ç o n s u i v a n t e : « p o u r c h a q u e é t u d i a n t e c o n t e n u

d a n s l a l i s t e l i s t e E t u d i a n t , a f f i c h e r s o n c o n t e n u » .

D e l a m ê m e f a ç o n , i l n ’ e s t p l u s b e s o i n d ’ u t i l i s e r u n i t e r a t o r p o u r p a r c o u r i r u n d i c t i o n n a i r e .
A i n s i , a v e c l e s i n s t r u c t i o n s ;

0 H a s h M a p < S t r i r g , E t u d i a n t > d i c o = n e w H a s h M a p < S t r i n g , E t u d i a n t > () ;

Q C o l l e c t i o n < E t u d i a n t > l e = d i c o . v a l u e s {) ;

O f o r (E t u d i a n t e : l e) e . a f f i c h e U n E t u d i a n t () ;

L e p a r c o u r s d u d i c t i o n n a i r e s ’e f f e c t u e à p a r t i r d ’ u n e c o l l e c t i o n d ’ é t u d i a n t s (O) g r â c e à T u t i l i -

s a t i o n d u t y p e g é n é r i q u e < E t u d i a n t > . C e t t e o p é r a t i o n e s t v a l i d e , l ’ o b j e t d i c o n e c o n t e n a n t

q u e d e s o b j e t s d e t y p e E t u d i a n t e t d e s c l é s d ’ a s s o c i a t i o n d e t y p e S t r i n g (Q) .

P o u r f in ir , l a b o u c l e f o r (©) s e t r a d u i t p a r l ’ e x p r e . s s io n : « p o u r c h a q u e é t u d i a n t e c o n t e n u

d a n s l a c o l l e c t i o n l e , a f h c h e r s o n c o n t e n u » .

Ôl_>
LU

T~{
0 fN
@
..i-i
x :01'k_>-Q.O
U

318

Exemple : ^application GestionCursus

L ’ e m p l o i d e s t y p e s g é n é r i q u e s t r a n s f o r m e q u e l q u e p e u l a c l a s s e C u r s u s . L a d é c l a r a t i o n d e l a

p r o p r i é t é l i s t e C l a s s e e e t l e c o n s t n i c t e u r d e l a c l a s s e s ' é c r i v e n t à l ' a i d e d e s i n s t m e t i o n s :

p r i v a t e H a s h M a p < S t r i n g , E t u d i a n t > l i s t e C l a s s e e ;

p u b l i c C u r s u s () {
l i s t e C l a s s e e = n e w H a s h M a p < S t r i n g , E t u d l a n t > () ;

I }

© Éditions Eyrofles

chapitre n° 10 GaOectlonner un nombre indéterminé d'Dideis

>-
LU

OfN
@
JZCT'k—>-
Q.OU

L a m é t h o d e permeLLant V a f f i c h a g e d e l a l i s t e d e s é t u d i a n t s s ’ é c r i t :

p u b l i c v o i d a f f i c h e L e s E t u d i a n t s O (

if [l i s t e C l a s s e e . size () 1= 0] {

C o l l e c t i o n < E t u d i a n t > c = l i s t e C l a s s e e . v a l u e s () ;

f o r (E t u d i a n t e : c) e . a f f i c h e U n E t u d i a n t () ;

Il ê l s e

S y s t e m , o u t . p r i n t l n (" I l n ' y a p a s d ' e t u d i a n t d a n s c e t t e l i s t e ' ') ;

}

C e s t r a n s f o r m a t io n s so n t à i n s é r e r d a n s le f i c h i e r C u r s u s , j a v a .

E n s u i t e , l a g e s t i o n d e s é t u d i a n t s d ’ u n e c l a s s e e s t t o t a l e m e n t a c h e v é e e n é c r i v a n t l ’ a p p l i c a t i o n

G e s t i o n C u r s u s c o m m e s u i t :

i m p o r t j a v a . u t i l ;

p u b l i c c l a s s G e s t i o n C u r s u s {

p u b l i c s t a t i c v o i d m a i n (S t r i n g [] a r g x j m e n t) [

b y t e c h o i x = 0 ;

C u r s u s C = n e w C u r s u s O ;

S t r i n g p r é n o m , n o m ;

S c a n n e r l e c t u r e C l a v i e r =

d o [

S y s t e m . o u t . p r i n t l n { " 1 .

Il S y s t e m . o u t . p r i n t l n {" 2 ,

S y s t e m . o u t . p r i n t l n (" 3 .

S y s t e m . o u t . p r i n t l n ('' 4 .
S y s t e m . o u t . p r i n t l n (" 5 .

S y s t e m . o u t . p r i n t l n () ;

S y s t e m . o u t . p r i n t { " V o t r e c h o i x : ") ;

c h o i x = l e c t u r e C l a v i e r . n e x t B y t e () ;

s w i t c h (c h o i x) {

c a s e 1 : C . a j o u t e U n E t u d i a n t () ;

b r e a k ;

c a s e 2 ;

S y s t e m . o u t . p r i n t (" E n t r e r l e p r é n o m d e l ' e t u d i a n t : ") ;

p r é n o m = l e c t u r e C l a v i e r . n e x t {) ;

S y s t e m . o u t . p r i n t (" E n t r e r l e n o m d e l ' e t u d i a n t : ") ;

n o m = l e c t u r e C l a v i e r . n e x t () ;

c . s u p p r i m e D n E t u d i a n t (p r é n o m , n o m) ;

b r e a k ;

c a s e 3 : C . a f f i c h e L e s E t u d i a n t s {) ;

b r e a k ;

n e w S c a n n e r (S y s t e m . i n) ;

A j o u t e u n e t u d i a n t ") ;

S u p p r i m e u n e t u d i a n t ") ;

Affiche la liste des eleves");
A f f i c h e u n e t u d i a n t ") ;

S o r t i r ") ;

© Éditions Eyrolfes 319

partie B° 3 Outils et techniaues orientés oblel

c a s e 4 :

S y s t e m . o u t . p r i n t (" E n t r e r l e p r é n o m d e l ’ e t u d i a n t

p r é n o m = l e c t u r e d a v i e r . n e x t () ;

S y s t e m . o u t . p r i n t (" E n t r e r l e n o m d e l ' e t u d i a n t :

n o m = l e c t u r e C l a v i e r . n e x t O ;

C . r e c h e r c h e U n E t u d i a n t (p r é n o m , n o m) ;

b r e a k ;

c a s e 5

d e f a u l t

) ;

) ;

S y s t e m . e x i t (0) ;

S y s t e m . o u t . p r i n t l n (" C e t t e o p t i o n n ' e x i s t e p a s ") ;

}
} w h i l e [c h o i x != 5) ;

}

(U

UJ
IP
o
fN

@

gi
>-
Q.Ou

Sylvain
Sylvain R.

3 2 0

C h a q u e o p t io n d u m e n u u t i l i s e u n e m é t h o d e d e l a c l a s s e C u r s u s . C e s o p t io n s o f f r e n t l a p o s s i ­

b i l i t é d ’ a jo u te r , d e s u p p r i m e r e t d e c o n s u l t e r t o u t o u p a r t i e d u d i c t i o n n a i r e , f o r m é a u f u r e t à

m e s u r e d e s c h o i x d e l ’ u t i l i s a t e u r . L ’ e x é c u t i o n d e c e t t e a p p l i c a t i o n p e u t a v o i r , p a r e x e m p l e ,

p o u r r é s u l t a t à l ’ é c r a n ;

1 . A j o u t e u n e t u d i a n t

2 . S u p p r i m e u n e t u d i a n t

3 . A f f i c h e l a l i s t e d e s e l e v e s

4 . A f f i c h e u n e t u d i a n t

5. S o r t i r
V o t r e c h o i x : 1

E n t r e r l e n o m d e l ' e t u d i a n t ; R .

E n t r e r l e p r é n o m d e 1 ' e t u d i a n t :

C o m b i e n d e n o t e s p o u r 1 ' e t u d i a n t

E n t r e r l a n o t e n * 1 : 1 5

E n t r e r l a n o t e n ' 2 : 1 4

1 . A j o u t e u n e t u d i a n t

2 . S u p p r i m e u n e t u d i a n t

3 . A f f i c h e l a l i s t e d e s e l e v e s

4 . A f f i c h e u n e t u d i a n t

5 . S o r t i r

V o t r e c h o i x : 1

E n t r e r l e n o m d e l ' e t u d i a n t ; C .

E n t r e r l e p r é n o m d e l ' e t u d i a n t : G a e l l e

C o m b i e n d e n o t e s p o u r l ' e t u d i a n t G a e l l e C .

E n t r e r l a n o t e n " 1 : 1 6

E n t r e r l a n o t e n ’ 2 : 1 2

© Éditions EyroUes

chapitre n'' 10 Golectionner un nombre indéterminé d obtets

<D

><
LU
KOrH
OfN
@
x :CT'k—>-
Q.O

U

1 . A j o u t e u n e t u d i a n t

2 . S u p p r i m e u n e t u d i a n t

3 . A f f i c h e l a l i s t e d e s e l e v e s

4 . A f f i c h e u n e t u d i a n t

5 . S o r t i r

V o t r e c h o i x : 4

E n t r e r l e p r é n o m d e l ' é t u d i a n t r e c h e r c h e : C .

E n t r e r l e n o m d e l ' é t u d i a n t r e c h e r c h e : G a e l l e

C . G a e l l e e s t i n c o n n u !

1 . A j o u t e u n e t u d i a n t

2 . S u p p r i m e u n e t u d i a n t

3 . A f f i c h e l a l i s t e d e s e l e v e s

4 . A f f i c h e u n e t u d i a n t

5 . S o r t i r

V o t r e c h o i x : 4

E n t r e r l e p r é n o m d e l ' é t u d i a n t r e c h e r c h e : G a e l l e

E n t r e r l e n o m d e l ' é t u d i a n t r e c h e r c h e : C .

L e s n o t e s d e G a e l l e C . s o n t : 1 5 . 0 1 2 . 0

S a m o y e n n e v a u t 1 4 . 0

1 . A j o u t e u n e t u d i a n t

2 . S u p p r i m e u n e t u d i a n t

3 . A f f i c h e l a l i s t e d e s e l e v e s

4 . A f f i c h e u n e t u d i a n t

5 . S o r t i r

V o t r e c h o i x : 5

L o r s d u p r e m i e r c h o i x 4 , T u t i l i s a t e u r a i n v e r s é l e s n o m e t p r é n o m d e l ’ é t u d i a n t e . L a c l é q u i e n

d é c o u l e n ’ e x i s t e p a s d a n s le d i c t i o n n a i r e . L e p r o g r a m m e n e p e u t d o n c p a s r e t r o u v e r l e s i n f o r ­

m a t i o n s c o n c e r n a n t c e t t e é t u d i a n t e .

A i n s i , g r â c e a u x o b j e t s d e t y p e H a s h M a p , i l e s t p o s s i b l e d 'o r g a n i s e r , s a n s b e a u c o u p d ’ e f fo r t s

d e p r o g r a m m a t i o n , d e s d o n n é e s d e f a ç o n à p o u v o i r r e c h e r c h e r , m o d i f i e r o u s u p p r i m e r un

é l é m e n t d a n s u n e l i s te .

P o u r t a n t , r a p p l i c a t i o i i G e s t i o n C u r s u s p o s s è d e e n c o r e un i n c o n v é n i e n t m a j e u r ; e l l e p e rd

l a m é m o i r e . . . E n e f f e t , à c h a q u e e x é c u t i o n , l e s d o n n é e s d o iv e n t d e n o u v e a u ê t r e s a i s i e s a u

c l a v i e r . L e s d o n n ée .s s t o c k é e s d a n s l a m é m o i r e v i v e d e l ’ o r d i n a t e u r s e p e r d e n t à l ’ a r r ê t d u

p r o g r a m m e . P o t i r c o r r i g e r c e d é f a u t , l e p r o g r a m m e d o i t p o u v o i r e n r e g i s t r e r l e s i n f o r m a t io n s

t r a i t é e s d a n s un f i c h i e r s u r l e d i s q u e d u r . C e t e n r e g i s t r e m e n t d e s d o n n é e s e s t a u s s i a p p e l é

a r c h iv a g e d e d o n n é e s .

© Éditions Eyrolles 321

parue B° 3 outlis et techniaues orientés obiet

Les stream s et les expressions lambda
A v e c l a v e r s i o n 8 d e J a v a , a p p a r a i s s e n t d e n o u v e l l e s f o n c t i o n n a l i t é s t e l l e s q u e l e s s t r e a m s et

l e s e x p r e s s i o n s l a m b d a . Il s ’ a g i t d ’ a m é l i o r a t i o n s t r è s a t t e n d u e s p u i s q u ’ e l l e s a p p o r t e n t s i m p l i ­

f i c a t io n e t p u i s s a n c e d a n s l ’ é c r i t u r e d e s a p p l i c a t i o n s J a v a .

Les streams

L e s s t r e a m s s o n t u t i l i s é s p o u r e f f e c t u e r d e s s u i t e s d e t r a i t e m e n t s à l a v o l é e , s u r d e s é l é m e n t s

a p p a r t e n a n t à u n e c o l l e c t i o n d e d o n n é e s . L e s t r a i t e m e n t s p e u v e n t ê t r e d e s t r i s , r e c h e r c h e s

d ’ é l é m e n t s , c h a n g e m e n t s d e f o r m a t s , f i l t r e s . . .

m ^ ilH liiJliq Le terme stream signifie flux. Il s ’agit là de transformer les collections de données sous forme
de flux de données, afin qu’il soit traité rapidement, sans écriture de boucles. Attention à ne
pas confondre avec les In p u t s tre am ou O u tp u ts tream qui correspondent à des flux
d’entrée ou de sortie (voir section « L’archivage de données » ci-après).

CJ
ÔL_>LU
LOT~{
0 fN
@
4̂-1x :01'k_>-Q.OU

322

L a t e c h n i q u e l a p l u s s i m p l e p o u r c r é e r u n s t r e a m à p a r t i r d ’ u n e c o l l e c t i o n d e d o n n é e s e s t

d ’ a p p l i q u e r l a m é t h o d e s t r e a m () à u n e l i s t e c o m m e s u i t :

A r r a y L i s t < E t u d i a n t > liste;
l i s t e = n e w A r r a y L i s t < E t u d i a n t > () ;

l i s t e , s t r e a u n f) ;

L ’ in s t r u c t io n l i s t e . s t r e a m () a p o u r s e u l e f f e t d e t r a n s f é r e r l e s d o n n é e s c o n t e n u e s d a n s l a

l i s t e v e r s u n l l u x d e d o n n é e s q u i p o u r r a e n s u i t e ê t r e t r a i t é p a r u n e n s e m b l e d ’ o p é r a t i o n s . C e t t e

i n s t r u c t i o n é c r i t e d e c e t t e f a ç o n e s t i n u t i l e , p u i s q u ’ un f lu x n e sUK’k e n i n e m i x l i f i e l e s d o n n é e s

d e l a s o u r c e (i c i l i s t e) .

P o u r ê t r e v a l i d e e t e f f e c t u e r u n e s u i t e d e t r a i t e m e n t s i n t e r m é d i a i r e s , i l c o n v i e n t d ’ a p p l i q u e r a u

f lu x l i s t e , s t r e a m !) , u n e s u i t e d e m é t h o d e s c o r r e s p o n d a n t à d e s t r a i t e m e n t s s p é c i f i q u e s .

L e s t r a i t e m e n t s p o s s i b l e s s o n t , p a r e x e m p l e :

• f i l t e r () q u i f i l t r e l e s d o n n é e s s e lo n u n o u p l u s i e u r s c r i t è r e s f o u r n i s e n p a r a m è t r e ;

• m a p () q u i m o d i f i e l e s d o n n é e s à l a v o l é e ;

• s o r t e d () q u i t r i e l e s d o n n é e s e n f o n c t io n d e c r i t è r e s p a s s é s e n p a r a m è t r e .

C e s t r a i t e m e n t s s o n t c o n s i d é r é s c o m m e d e s o p é r a t i o n s i n t e r m é d i a i r e s a u x q u e l l e s u n e m é t h o d e

f in a l e d o i t ê t r e a p p l i q u é e p o u r t e r m i n e r l ’ e n s e m b l e d e s o p é r a l i o n s . N o u s p o u v o n s , p a r

e x e m p l e , u t i l i s e r :

• f o r e a c h () p o u r r é p é t e r u n e o p é r a t i o n d ’ a f f i c h a g e d e s r é s u l t a t s i s s u s d u t r a i t e m e n t ;

• m i n () o u m a x () p o u r r é c u p é r e r l a p lu s p e t i t e o u l a p l u s g r a n d e v a l e u r ;

■ f i n d A n y O DU findFirstO p o u r t r o u v e r u n é l é m e n t c o r r e s p o n d a n t à d e s c r i t è r e s

p a s s é s e n p a r a m è t r e .

© Édfftons Eyrof/es

chapitre n° 10 Colectionner un nombre Indéterminé d'oblets

L e s i n s t r u c t i o n s p e r m e t t a n t l ' e n c h a î n e m e n t d e s t r a i t e m e n t s o n t é t é p e n s é e s p o u r ê t r e u t i l i s é e s

a v e c d e s e x p r e s s i o n s l a m b d a q u e n o u s é t u d io n s c i - a p r è s .

i/ï

>-
LU

O
fN

@

CT'k->-
D.O
U

Les expressions lambda

L e s e x p r e s s i o n s l a m b d a f o n t p tu t i e d e s p lu s g r a n d e s n o u v e a u t é s d e J a v a 8 . E l l e s a p p o r t e n t u n e

t r è s g r a n d e p u i s s a n c e d e p r o g r a m m a t i o n f o n c t io n n e l l e e n s i m p l i f i a n t à l ’ e x t r ê m e l ’ e n c h a î n e -

m e n t d e s i n s t r u c t i o n s .

L a s y n t a x e d ’ é c r i t u r e d e s e x p r e s s i o n s l a m b d a e s t l a s u i v a n t e :

I (p a r a m è t r e s) - > i n s t r u c t i o n s

ou

I (p a r a m è t r e s) - > { i n s t r u c t i o n s } q u a n d i l y a p l u s i e u r s in s t r u c t i o n s .

U n e e x p r e s s i o n l a m b d a p e u t ê t r e c o n s i d é r é e c o m m e u n e f o n c t io n a n o n y m e q u i a a c c è s a u x

v a r i a b l e s l o c a l e s o u d ’ i n s t a n c e s d u c o d e a p p e l a n t . L ’ e x p r e s s i o n m é m o r i s e l e s d o n n é e s d a n s le s

p a r a m è t r e s . U n e in s t r u c t i t m o u s u i t e d ' i n s t r u c t i o n s e s t e n s u i t e a p p l i q u é e a u x p a r a m è ­

t r e s . P o u r m i e u x c o m p r e n d r e l e f o n c t i o n n e m e n t d e s e x p r e s s i o n s l a m b d a , e x a m i n o n s

l ’ e x t r a i t d e c o d e s u iv a n t :

A r r a y L i s t < ; E t u d i a n t > l i s t e = n e w A r r a y L i s t < E t u d i a n t > () ;

// [n strac t ions p en n e i ta n t la sa is ie des do nn ées re la t ives à p lu s ieu rs é tud ian ts

// . . .

// Création d ’ un flux e t tra itements

1 iste. stream (].filter(e -> e.quelNoiaO . startsWith("A"))
,£orEacli(e -> e .afficheUnEtudiant ()) ;

U n e f o i s l e f lu x d e d o n n é e s c r é é à p a r t i r d e l a l i s t e d e s é t u d i a n t s (l i s t e . s t r e a m ()) , u n e

s u i t e d e t r a i t e m e n t s e s t e f f e c t u é e d a n s l ’ o r d r e s u iv a n t .

• U n f i l t r e e s t a p p l i q u é a u f lu x à l ’ a i d e d ’ u n e e x p r e s s i o n l a m b d a (f i l t e r < e - >)). C e t t e

d e r n i è r e r é c u p è r e d a n s u n e b o u d e i t é r a t i v e p r o p r e a u f lu x d e d o n n é e s , c h a q u e é tu d i a n t ,

p o u r l e p l a c e r d a n s u n o b je t t e m p o r a i r e n o m m é i c i e .

• L e c o d e e x é c u t é (e . q u e l N o m O . s t a r t s W i d t h (" A ")) e s t a p p l i q u é a u p a r a m è t r e e

d é f in i a u s e i n d u f i l t r e . 11 p e r m e t i c i d e r é c u p é r e r l ’ é t u d i a n t d o n t le n o m c o m m e n c e p a r un

A . C e c o d e e s t e x é c u t é p o u r c h a q u e é t u d i a n t d e l a l i s t e .

• P o u r f in i r , l a b o u c l e f o r e a c h () r é c u p è r e e t p a r c o u r t l a l i s t e d e s é t u d i a n t s i s s u e d u p r é c é ­

d e n t t r a i t e m e n t , c ’ e s t - à - d i r e t o u s l e s é t u d i a n t s d o n t l e n o m c o m m e n c e p a r u n A , p o u r

a f f i c h e r l e u r n o m , p r é n o m e t n o t e s (e . a f f i c h e U n E t u d i a n t ()).

L e s s t r e a m s e t e x p r e s s i o n s l a m b d a a p p o r t e n t u n e t r è s g r a n d e p u i s s a n c e d e t r a i t e m e n t d e s

d o n n é e s , à p a r t i r d ’ u n c o d e J a v a m i n i m a l i s t e . I l s r e s t e n t c e p e n d a n t d i f f i c i l e s d ' a c c è s p o u r le

l e c t e u r d é b u t a n t , d u f a i t d e l e u r é c r i t u r e t r è s c o n d e n s é e .

© Editions EyroUes 323

partie B° 3 Outils et techniaues oheutés obiei

l ’archivage de données

L a n o t io n d ’ a i c h i v a g e d e d o n n é e s e s t t r è s i m p o r t a n t e p u i s q u e , g r â c e à e l l e , l e s i n f o r m a t i o n s

t r a i t é e s s o n t s t o c k é e s s o u s f o r m e d e t i c h i e r s s u r l e d i s q u e d u r . L e s i n f o r m a t i o n s a i n s i s t o c k é e s

p e r d e n t l e u r v o l a t i l i t é e t p e u v e n t ê t r e r é u t i l i s é e s a p r è s un a r r ê t m o m e n t a n é d u p r o g r a m m e ou

d e l ’ o r d in a t e u r . P o u r a r c h i v e r d e s d o n n é e s , l e l a n g a g e . l a v a u t i l i s e le c o n c e p t d e f lu x o u en

a n g l a i s , s t r e a m .

la notion de flux
L o r s q u e n o u s c o m m u n i q u o n s d e s i n f o r m a t i o n s à l ’ o r d in a t e u r , n o u s e f f e c t u o n s u n e o p é r a t i o n

d ’ e n t r é e .

Sur les opérations d’entrée et de sortie, voir le chapitre 2, « Communiquer une information ».

t/ï

>-
LU
KOrHOfN
@
JZgi'k—>-
Q.O

U

C e t t e c o m m u n i c a t i o n u t i l i s e u n f lu x e n t r a n t , q u i e s t e n q u e l q u e s o r t e l a c o n c r é t i s a t i o n i n f o r m a ­

t i q u e d u c o u r a n t é l e c t r i q u e p a s s a n t d u c l a v i e r à l a m é m o i r e v i v e d e l ’ o r d in a t e u r . S y m é t r i q u e ­

m e n t , i l e x i s t e un f lu x s o r t a n t , p e r m e t t a n t d e f a i r e p a s s e r u n e i n f o r m a t i o n . s to ckée e n m é m o i r e

v i v e à l ’ é c r a n d e l ’ o r d in a t e u r .

D a n s l e j a r g o n i n f o r m a t i q u e , on d i t q u e l e s f lu x r e l i a n t l a m é m o i r e v i v e à l ’ é c r a n o u a u c l a v i e r

u t i l i s e n t d e s f lu x s t a n d a r d s d ’ e n t r é e - s o r t i e . D e f a ç o n s i m i l a i r e , i l e x i s t e d ’ a u t r e s t y p e s d e f lu x ,

q u i r e l i e n t l a m é m o i r e v iv e , n on p lu s à l ’ é c r a n o u a u c l a v i e r , m a i s a u d i s q u e d u r d e l ’ o rd in a te u r .

C e so n t l e s f lu x d e f i c h ie r s .

C e s f lu x s o n t a u s s i c a r a c t é r i s é s p a r l e u r d i r e c t i o n , e n t r a n t e o u s o r t a n te . U n f lu x d e f i c h ie r

s o r t a n t e s t u n f lu x d ’ é c r i t u r e q u i r é a l i s e l a c r é a t i o n e t l ’ e n r e g i s t r e m e n t d e d o n n é e s d a n s un

f ic h ie r . S y m é t r i q u e m e n t , un f lu x d e f i c h i e r e n t r a n t e s t un f lu x d e l e c t u r e q u i p e r m e t l ’ i n i t i a l i s a ­

t io n d e s v a r i a b l e s o u o b j e t s d u p r o g r a m m e e n m é m o i r e v i v e , g r â c e a u x v a l e u r s p r é c é d e m m e n t

e n r e g i s t r é e s s u r l e d i s q u e d u r .

C e s f lu x so n t d é f i n i s à t r a v e r e d e s o b j e t s p r é d é f i n i s d u l a n g a g e J a v a (p a c k a g e j a v a . i o) . I l e n

e x i s t e un t r è s g r a n d n o m b r e , o f f r a n t to u s d e s o u t i l s p e r m e t t a n t l e s t o c k a g e e t l e t r a i t e m e n t d e

d o n n é e s .sous d i v e r s e s f o r m e s .

N o t r e o b j e c t i f n ’ s s t p a s d e l e s d é c r i r e t o u s , m ê m e s u c c i n c t e m e n t , m a i s d e p r é s e n t e r c o n c r è t e ­

m e n t d e u x t e c h n i q u e s d ’ a r c h i v a g e a f in d ’ e n c o m p r e n d r e l e s d i f f é r e n t s m é c a n i s m e s . C ’ e s t

p o u r q u o i n o t r e é t u d e p o r t e s u r l e s f i c i t i e r s s t o c k a n t l ’ i n f o r m a t io n .sous l a f o r m e d e c a r a c t è r e s

(v o i r , c i - a p r è s , l a s e c t i o n « L e s f i c h i e r s t e x t e s ») , a i n s i q u e s u r l e s f i c h i e r s s t iK 'k an t d e s o b j e t s

(v o i r l a s e c d o n « L e s f i c h i e r s d ’ o b j e t s ») .

324 © Editions Eyrotles

chapitre n° 10 Colectlonner un numflre iBdéieriiilné d'obieis

Les fich ie rs textes
P u i s q u ’ i l e x i s t e d e u x f a ç o n s d ' a c c é d e r à u n f i c h ie r (l e c tu r e o u é c r i t u r e) , l e s o u t i l s p r o p o s é s p a i ' l e

l a n g a g e J a v a r e p r o d u i s e n t c e s d e u x m o d e s d ’ a c c è s . P o u r m a n i p u l e r d e s f ic h ie r s , n o u s d e v o n s

d o n c d é c h i r e r d e u x o b je t s d i f f é r e n t s , q u i v o n t n o u s p e n n e t t r e d e l i r e o u d ’ é c r i r e d a n s u n f ic h ie r .

A i n s i , l a d é c l a r a t i o n :

I B u f f e r e d W r i t e r f W ;

d é f in i t u n o b j e t fW d e t y p e B u f f e r e d W r i t e r , u t i l i s é p o u r é c r i r e (W r i t e r) , c ’ e s t - k - d i r c

e n r e g i s t r e r d e s d o n n é e s d a n s u n f ic h ie r . P a r c o n t r e , l a d é c l a r a t i o n :

B u f f e r e d R e a d e r f R ;

d é f in i t u n o b j e t f R d e t y p e B u f f e r e d R e a d e r , u t i l i s é p o u r l i r e (R e a d e r) l e s d o n n é e s c o n t e ­

n u e s d a n s un f i c h i e r a f in d e l e s p l a c e r d a n s d e s v a r i a b l e s (e n m é m o i r e v i v e) . C e s o b j e t s e t l e s

m é t h o d e s a s . s o c i é e s s o n t d é f i n i s d a n s l e p a c k a g e j a v a . i o . Tl c o n v i e n t d o n c d e p l a c e r

l ’ i n s t m c t i o n i m p o r t j a v a . i o . * ; e n e n - t ê t e d e s c l a s s e s q u i f o n t a p p e l à c e s o u t i l s .

Exemple : une classe pour lire et écrire du texte

L ’ o b j e c t i f d e c e t e x e m p l e e s t d e c r é e r u n e c l a s s e F i c h i e r c o m p o s é e d ’ o u t i l s s i m p l i f i a n t l a

m a n i p u l a t i o n d e s f i c h i e r s e n l e c t u r e e t e n é c r i t u r e . L e s d o n n é e s d e c e t t e c la . s s e d é f i n i s s e n t d e u x

o b j e t s d e t y p e B u f f e r e d W r i t e r e t B u f f e r e d R e a d e r e t d ’ u n e v a r i a b l e d e t y p e c h a r , q u i

m é m o r i s e l e m o d e d e t r a i t e m e n t u t i l i s é (l e c t u r e o u é c r i t u r e) .

import j ava.io.* j
p u b l i c c l a s s F i c h i e r {

p r i v a t e BufferedWriter fW ;

p r i v a t e BufferedReader f R ;

p r i v a t e c h a r m o d e ;

}

D ’ u n e f a ç o n g é n é r a l e , l e s t r a i t e m e n t s s u r f i c h i e r s s e d é r o u l e n t e n t r o i s t e m p s ; o u v e r t u r e d u

i l u x , p u i s t r a i t e m e n t d e s d o n n é e s p a r c o u r a n t l e f lu x e t , p o u r f in ir , f e r m e t u r e d u f lu x . C h a c u n e

d e c e s é t a p e s e s t d é c r i t e a u c o u r s d e s s e c t i o n s s u iv a n t e s .

if)(U

LU
vP
tH
O<N
©
r :oi
C lO
U

Ouverture du flux
P o u r é c r i r e o u l i r e d a n s u n f i c h ie r , il n é c e s s a i r e , a v a n t to u t , d ’ o u v r i r le f l u x e n i n d i q u a n t s i c e

Hux e s t e n t r a n t (l e c t u r e) o u s o r t a n t (é c r i t u r e) . L a m é t h o d e o u v r i r !) d é c r i t e c i - d e s s o u s

r é a l i s e c e t t e o p é r a t i o n . E l l e d o i t ê t r e i n s é r é e d a n s l a c l a s s e F i c h i e r .

p u b l i c v o i d ouvrir (S t r i n g n o m D u F i c h i e r , S t r i n g s)

throws lOException {
mode = (s . t o U p p e r C a s e ()) . c h a r A t (0) ;

i f (m o d e == ' R ' I l m o d e == ' L ')

© Éditions Eymiles 325

oanie B° 3 Ouffis el teclinlaues oiienies olilet

£r = new BufferedReader(new FileReader{new File(nomDuFichier)));
else if [mode 'W' [| mode == ’E ’)
fW = n e w BufferedWriter (n e w FiLeWriter (n e w File (n o r a D u F i c h i e r))) ;

}

L e s d e u x p o in t s im p o r t a n t s s u iv a n t s so n t à o b s e r v e r d a n s l ’ e n - t ê t e d e l a m é t h o d e o u v r i r () :

• L e p r e m i e r c o n c e r n e l e t e r m e t h r o w s l O E x c e p t i o n , d o n t l a p r é s e n c e e s t o b l i g a t o i r e

p o u r to u te s l e s m é t h o d e s q u i m a n i p u l e n t d e s o p é r a t i o n s d ’ e n t r é e - s o r t i e . S u c c i n c t e m e n t ,

c e t t e c l a u s e i n d i q u e a u c o m p i l a t e u r q u e l a m é t h o d e a in s i d é f i n i e e s t s u s c e p t ib l e d e t r a i t e r

o u d e p r o p a g e r u n e é v e n t u e l l e e r r e u r , d u t y p e l O E x c e p t i o n , q u i p o u r r a i t a p p a r a î t r e en
c o u r s d ’ e x é c u t i o n .

Pour plus de précisions sur la notion d’exception, voir la section « Gérer les exceptions »,
en fin de chapitre. •

ifi<D

>
LU
KOrHOfN
@
JZCT'k—>-
Q.O

U
326

• L e s e c o n d p o in t im p o r t a n t e s t r e l a t i f a u x i n f o r m a t i o n s t r a n s m i s e s à l a m é t h o d e

o u v r i r () . L e p r e m i e r p a r a m è t r e s p é c i f i e l e n o m d u f i c h i e r a u q u e l e s t a s . so c ié le f l u x , t a n ­

d i s q u e l e s e c o n d i n d i q u e i e m o d e d ’ o u v e r t u r e d u f lu x (e n t r a n t o u s o r t a n t) . C e p a r a m è t r e

p e u t p r e n d r e d i f f é r e n t e s v a l e u r s , t e l l e s q u e " E c r i t u r e " . " E " , " W r i t e " o u e n c o r e "W " ,

p o u r l e m o d e s o r t a n t , e t " L e c t u r e " , " L " , " R e a d " o u e n c o r e " R " , p o u r le m o d e e n t r a n t .

C e s m o i s p e u v e n t ê t r e é c r i t s i n d i f f é r e m m e n t e n m a j u s c u l e s o u e n m i n u s c u l e s . E n e f f e t , l a

v a r i a b l e d ’ i n s t a n c e m o d e e s t i n i t i a l i . s é e à p a r t i r d u p r e m i e r c a r a c t è r e (c h a r A t (O)) d u

p a r a m è t r e s e t e s t a u t o m a t i q u e m e n t t r a n s f o r m é e e n m a j u s c u l e s (s . t o U p p e r C a s e ()) .

C e l a f a i t , l e f l u x e s t o u v e r t e n l e c t u r e o u e n é c r i t u r e e n f o n c t io n d e l a v a r i a b l e d ’ i n s t a n c e m o d e .
A in s i :

■ S i m o d e v a u t L o u R, l ’ o u v e r t u r e d u f i c h ie r e s t r é a l i s é e e n l e c t u r e g r â c e à l ’ i n s t r u c t i o n :

I fH = new Buf feredReader (new FileReader (new File (noitiDuFichier))) ;
C e l t e i n s t r u c t i o n r e l a t i v e m e n t d é c o n c e r t a n t e p o u r l e p r o g r a m m e u r d é b u t a n t r é a l i s e p l u ­

s i e u r s o p é r a t i o n s a f in d e d é t e r m i n e r o ù s e s i t u e le d é b u t d u f i c h i e r s p é c i f i é e n p a r a m è t r e .

L a p r e m i è r e o p é r a t i o n n e w F i l e (n o m D u F i c h i e r) p e r m e t d ’ o b t e n i r u n e r e p r é s e n t a t io n

l o g i q u e d u f i c h i e r (e x i s t e - t - i l o u n o n s u r l e d i s q u e d u r ?) . E n s u i t e , l ’ a p p e l a u c o n s t r u c t e u r

F i l e R e a d e r () p e r m e t l ’ o u v e r t u r e d u f i c h i e r e n l e c t u r e c a r a c t è r e p a r c a r a c t è r e . I l f o u r n i t

e n r e t o u r l ’ ad re ,s s e d u d é b u t d u f ic h ie r .

C e p e n d a n t , c e m o d e d e l e c t u r e n ’ a u t o r i s e p a s l a l e c t u r e d e p l u s i e u r s c a r a c t è r e s à l a f o i s .

C ’ e s t p o u r q u o i i l e s t n é c e s s a i r e d e f a i r e a p p e l à u n t r o i s i è m e c o n s t m e t e u r , B u f f e r e -

d R e a d e r () , q u i p e r m e t l a l e c t u r e d u f i c h i e r l i g n e p a r l i g n e . L ’ a d r e s s e d u d é b u t d u f i c h ie r

e s t a l o r s m é m o r i s é e , g i ' â c e au s i g n e d ’ a f f e c t a t io n , d a n s l ’ o b j e t f R .

• S i m o d e v a u t E o u W, l ’ o u v e r t u r e d u f i c h i e r e s t r é a l i s é e e n é c r i t u r e g r â c e à l ’ i n s t r u c t i o n :

I fW = new BufferedWriter(new FileWriter(new File(nomDuFichier)));

© £d/f/ons Eyrofles

chapitre a° 10 Gosectlonner un nombre Indéterminé d obléis

Les opérations réalisées sont équivalentes à celles décrites ci-dessus, en remplaçant le mode
lecture par le mode écriture. Cependant,
• Si le fichier spécifié en paiainctre n’existe pas, et :

- Si le chemin d’accès à ce fichier dans l’arborescence du disque est valide, alors le fichier
est créé, et l’adresse du début du fichier est stockée dans l’objet fw.

- Si le chemin d’accès n’est pas valide, le fichier n’est pas créé, et une erreur du type
FileN otF oundE xception est détectée.

• Si le fichier existe, il est ouvert, et son contenu est totalement effacé. L’adresse du début du
fichier est alors stockée dans l’objet fW.

Traitement du fichier
Une fois le fichier ouvert, les traitements réalisables sur lui sont l’écriture et la lecture de
données dans le fichier.
• L’écriture dans un fichier est réalisée par la méthode .suivante :

I p u b l i c v o i d écrire (i n t t m p) t h r o w s l O E x c e p t i o n {
S t r i n g c h a i n e = ” " ;

c h a î n e = S t r i n g . v a l u e O £ (t m p) ;

i f (c h a î n e '.= n u l l) {

fw.write(chaine,O,chaine.length());
fW.newLineO ;

}

(U

>-
LU
LOrHOfN
@
JZCT'k—>-
Q.O

U
> Éditions Eyrolles

L a m é t h o d e é c r i r e () p r e n d e n p a r a m è t r e l a v a l e u r à e n r e g i s t r e r d a n s le f ic h ie r . C o m m e

i l s ’ a g i t d ’ un e n t i e r e t q u e l e f i c h i e r e s t un f i c h ie r t e x te , la v a l e u r s t o c k é e d a n s t m p e s t c o n v e r ­

t ie e n S t r i n g g r â c e à l ’ i n s t r u c l i o n c h a i n e = S t r i n g . v a i u e O f (t m p) .

E n s u i t e , l ’ é c r i t u r e d e c e t t e c h a î n e d a n s l e f i c h i e r e s t r é a l i s é e p a r l ’ i n s t r u c t i o n

f W . w r i t e (c h a i n e , 0 , c h a i n e . l e n g t h () } . L a m é t h o d e w r i t e () e n v o i e d a n s l e

f lu x f w la c h a î n e s p é c i f i é e e n p r e m i e r p a r a m è t r e . L e s d e u x i è m e e t t r o i s i è m e p a r a m è t r e s

p r é c i s e n t r e s p e c t i v e m e n t à ptm tir d e q u e l c a r a c t è r e (0) c o m m e n c e l ’ é c r i t u r e d a n s le f i c h i e r

e t c o m b i e n d e c a r a c t è r e s (c h a i n e . l e n g t h ()) so n t é c r i t s . P o u r n o t r e e x e m p l e , l ’ i n t é g r a ­

l i t é d e l a c h a i n e e s t é c r i t e d a n s le f ic h ie r .

P o u r f in ir , l a m é t h o d e n e w L i n e () e n v o ie d a n s l e f lu x f W un c a r a c t è r e p e r m e t t a n t d e p a s s e r à

l a l i g n e s u iv a n t e d u f i c h i e r

L a l e c t u r e d a n s u n f i c h i e r e s t d é c r i t e p a r l a m é t h o d e :

p u b l i c S t r i n g l i r e O t h r o w s l O E x c e p t i o n {

S t r i n g c h a i n e = f R . r e a d L i n e f) ;

r e t u r n c h a i n e ;

1

327

I panie B° 3 omis ei techniaues oheotés oblet

L ’ o p é r a t i o n d e l e c t u r e e s t r é a l i s é e p a r l a m é t h o d e r e a d L i n e () , q u i e n v o i e tou t d ’ a b o r d l a

l i g n e l u e s u r le f l u x f R p u i s p a s s e a u t o m a t i q u e m e n t à l a l i g n e s u i v a n t e d a n s l e f i c h ie r . L a

c h a î n e d e c a r a c t è r e s c h a î n e r é c u p è r e a l o r s l a s u i t e d e s c a r a c t è r e s l u s . P o u r f in ir , l a c h a î n e

e s t r e t o u r n é e à l a m é t h o d e a p p e l a n t e .

Fermeture du flux
U n e f o i s q u e to u s l e s t r a i t e m e n t s o n t é t é r é a l i s é s , l e f lu x p e u t ê t r e n a t u r e l l e m e n t f e r m é g r â c e à

l a m é t h o d e :

p u b l i c v o i d f e r r a e r O t h r o w s l O E x c e p t i o n {

i f { m o d e == ' R ' || m o d e == ' L ') f R . c l o s e t) ;

e l s e i f { m o d e == ' W || m o d e == ' E ') f W . c l o s e () ;

1

S u i v a n t l e m o d e d ’ o u v e r t u r e s p é c i f i é p a r l a v a r i a b l e d ’ i n s t a n c e m o d e (i n i t i a l i s é e lo r s d e

l ’ e x é c u t i o n d e l a m é t h o d e o u v r i r {)) , l e f lu x f R o u f w e s t f e r m é g r â c e à l a m éth tK le

c l o s e () .

Exemple : l ’application GestionFichier

L ’ a p p l i c a t i o n s u i v a n t e u t i l i s e l e s m é t h o d e s d é c r i t e s c i - d e s s u s p o u r c r é e r e t m a n i p u l e r un

f i c h i e r d o n t l e n o m e s t s a i s i a u c l a v i e r :

I i m p o r t j a v a . u t i l . * ;

* p u b l i c c l a s s G e s t i o n F i c h i e r {

p u b l i c s t a t i c v o i d m a i n (S t r i n g [] a r g) t h r o w s l O E x c e p t i o n {

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

Fichier f = new Fichier();
S y s t e m . o u t . p r i n t (" E n t r e r l e n o m d u f i c h i e r : " > ;

S t r i n g n o m F i c h i e r = l e c t u r e C l a v i e r . n e x t O ;

f.ouvrir (n o m F i c h i e r , " E c r i t u r e ") ;

f o r (i n t i = 0 ; i < 5 ; i + +) f.ecrire(i);
f .fermer();

V)(U

>■
UJ
Ib
OfN
@
JCCT'k—
Q.O

U
328

f . o u v r i r (n o m F i c h i e r , " L e c t u r e ") ;

S t r i n g c h a î n e

d o {

c h a î n e = f.lire();
i f [c h a î n e 1 - n u l l) S y s t e m . o u t . p r i n t I n (c h a î n e) ;

} w h i l e [c h a î n e ! - n u l l) ;

£.fermer();
}

© Éditions Eyrofles

chapitre n° 10 Goffectionner un nombre indéiermlné d’obleis

L’inslniction f . o u v r i r (nom Fichier, " E critu re") ouvre le fichier noiriF ichier en
écriture afin d’y écrire une suite de valeurs entières (f . é c r i r e (i)) comprises entre O et 4.
Le fichier est fermé (f . fe rm er ()) après exécution de la boucle fo r .
Pour vérifier que les opérations d’écriture se sont bien déroulées, le fichier est ouvert en
lecture (f . o u v r i r (nom Fichier, "Lecture")) et, grâce à une boucle do...while,
chaque ligne du fichier est lue par f . l i r e () et mémorisée dans une variable ch a in e afin
d’être affichée. La lecture de ce fichier prend fin lorsqu’une chaîne n u l l est détectée (w h ile
{ch a in e ! = n u l 1)). Le fichier peut alors être fermé (f . fe rm er (}).
L’exécution de cette application a pour résultat à l’écran ;

E n t r e r l e n o m d u f i c h i e r : V a l e u r s . t x t

0
1
2
3

4

Remarque Le fichier V a le u rs . t x t est créé dans le même répertoire que celui où se trouve l’application
G e s t io n F ic h ie r . c la s s . Comme il s ’agit d’un fichier texte, il peut être ouvert par n’importe
quel éditeur de texte (Bloc-notes sous Windows, vi sous Unix ou encore TextEdit sous Mac OS).
C ’est là un des intérêts des fichiers textes.

O b s e r v e z , c e p e n d a n t , q u e l e s d o n n é e s m a n i p u l é e s p a r u n p r o g r a m m e n e s e r é s u m e n l g é n é r a l e ­

m e n t p a s à d e s i m p l e s v a l e u r s e n t i è r e s . L e p l u s s o u v e n t , u n e a p p l i c a t i o n t r a v a i l l e a v e c d e s

o b j e t s c o m p l e x e s , m ê l a n t p l u s i e u r s t y p e s d e d o n n é e s . C ’ e s t p o u r q u o i il e s t i n t é r e s s a n t d e

p o u v o i r a r c h iv e r , n o n p a s l a s u i t e d e s d o n n é e s r e l a t i v e s à u n o b j e t , l i g n e p a r l i g n e , m a i s l ’ o b j e t

l u i - m ê m e e n t a n t q u e t e l . C e t t e t e c h n i q u e e s t e x a m i n é e à l a s e c t i o n s u iv a n t e .

Les fich ie rs d ’ohlets
L e l a n g a g e J a v a p r o p o s e de .s o u t i l s p e r m e t t a n t î e s t o c k a g e a i n s i q u e l a l e c t u r e d ’ o b j e t s

d a n s un f i c h i e r . C e s o u t i l s f o n t a p p e l à d e s m é c a n i s m e s a p p e l é s m é c a n i s m e s d e s é r i a l i s a -

t io n . I l s u t i l i s e n t d e s f lu x s p é c i f i q u e s , d é f i n i s p a r l e s c l a s s e s O bjectO utputstream et

Obj e c t l n p u t s t r e a m , d u p a d e a g e j a v a . i o .

O
O
>

LU

T~{
OfN
@
JZ
en

>•
O.O

U

Im sérialisation des objets

U n o b j e t e s t s é r i a l i s é a f in d e p o u v o i r ê t r e t r a n s p o r t é s u r un f lu x d e f i c h i e r , e n t r a n t o u so r t a n t .

G r â c e à e e l t e t e c h n i q u e , un o b je t p e u t ê t r e d i r e c t e m e n t s t o c k é d a n s un f i c h i e r (é c r i t u r e) o u

r e c o n s t m i t à l ’ i d e n t iq u e e n m é m o i r e v i v e p a r l e c t u r e d u f ic h ie r .

L e s m é c a n i s m e s d e s é r i a l i s a t i o n - d é s é r i a l i s a t i o n so n t f o u r n i s p a r l ’ i n t e r m é d i a i r e d e s c l a s s e s

O bjectO utputstream e t O b jec tin p u tstre am , g r â c e a u x m é t h o d e s w rite O b je c t()

© Éditions Eyrolfes 329

partie B° 3 Outils et techniaues orientés oblei

(s é r i a l i s a t i o n) e t r e a d O b j e c t O (d é s é r i a l i s a l io T i) . C e s o u t i l s so n t a p p l i c a b l e s à t o u s l e s

o b j e t s p r é d é f i n i s d u l a n g a g e J a v a , t e l s q u e l e s S t r i n g , l e s l i s t e s (A r r a y L i s t) o u e n c o r e

l e s d i c t i o n n a i r e s (H a s h M a p) .

L o r s q u e v o u s s o u h a i t e z s é r i a l i s e r u n o b j e t d o n t l e t y p e e s t d é f in i p a r l e p r o g r a m m e u r , i l e s t

n é c e s s a i r e d e r e n d r e c e t o b j e t s é r i a l i s a b l e . P o u r c e l a , i l s u f f i t d ’ i n d i q u e r a u c o m p i l a t e u r q u e l a

c l a s s e a u t o r i s e l a s é r i a l i s a t i o n , e n u t i l i s a n t l a s y n t a x e s u i v a n t e :

p u b l i c c l a s s E x e m p l e implements âerlalizable {
// D o n n é e s e t m é t h o d e s

}

D e c e t t e fai^on, t o u s l e s o b j e t s d é c k u ’é s d e t y p e E x e m p l e p e u v e n t ê t r e l u s o u é c r i t s d a n s d e s

f i c h ie r s d ’ o b j e t s .

Remamue Lobjectif de la sérialisation est de placer, dans un flux, toutes les informations relatives à un
objet. Par conséquent, seules les variables d’instance sont prises en compte lors d’une sériali­
sation.

fT ifaTTnTI Les variables de classe peuvent-elles être sérialisées ?

m m Les variables de classes (définies en s t a t ic) ne peuvent être sérialisées. En effet, une varia­
ble de classe est commune à tous les objets de l’application et non pas spécifique à un seul
objet. Elles ne peuvent donc être placées dans un flux relatif à un seul objet.

Exemple : archiver une classe d*étudiants

P o u r b ie n c o m p r e n d r e c o m m e n t u t i l i s e r c e s o u t i l s d ’ a r c h i v a g e d ' o b j e t s , m o d i f i o n s l ’ a p p l i c a ­

t io n G e s t i o n C u r s u s d e s o r t e q u ’ e l l e p u i s s e l i r e e t s t o c k e r a u t o m a t i q u e m e n t l ’ e n . s e m b le d e s

d o n n é e s du d i c t i o n n a i r e l i s t e C l a s s é e d a n s u n f i c h ie r , p o r t a n t i e n o m d e C u r s u s . d a t .

N o u s d evo n .s to u t d ’ a b o r d r e n d r e s é r i a l i s a b l e l e s o b j e t s q u e n o u s s o u h a i t o n s s a u v e g a r d e r . C ’ e s t

p o u r q u o i i l c o n v i e n t d e m o d i f i e r l e s e n - l ê l e s d e s c l a s s e s E t u d i a n t e t C u r s u s d e l a f a ç o n

s u i v a n t e :

{fi

>-
LU

T~{
Ors
@
JZoi
C lO
U

330

p u b l i c c l a s s E t u d i a n t implements Serializable {
I l v o i r l a s e c t i o n " L e s d i c t i o n n a i r e s "

}
p u b l i c c l a s s C u r s u s implements Serializable {
// v o i r l a s e c t i o n " L e s d i c t i o n n a i r e s "

]

À défaut, vous obtenez une erreur d’exécution du type N o tS e r ia liz a b le E x c e p tio n ,
indiquant que l’objet de type E tu d ia n t ou Cursus ne peut être .sérialisé.

© Éditions Eyrotles

clrapKre n° 10 Goffectlonnef un nombre indéterminé d'ohleis

E n s u i t e , l e s o p é r a t i o n s d ’ a r e h i v a g e d ’ o b j e t s u t i l i s e n t l e s m ê m e s c o n c e p t s q u e c e u x d é c r i t s à l a

s e c t i o n p r é c é d e n t e , à s a v o i r o u v e r t u r e d u f i c h ie r , p u i s l e c t u r e o u é c r i t u r e d e s o b j e t s e t , p o u r

f in ir , f e r m e t u r e d u f ic h ie r . C ’ e s t p o u r q u o i n o u s a l l o n s m o d i f i e r l a c l a s s e F i c h i e r p o u r y

m a n i p u l e r , n o n p l u s d e s f i c h ie r s t e x t e s , m a i s d e s f i c h i e r s d ’ o b je t s .

i m p o r t j a v a , i o , * ;

p u b l i c c l a s s FichierEtudiant {
p r i v a t e ObjectOutputstream o f W ;

p r i v a t e Objectlnputstream o f R ;

p r i v a t e String nomDuFichier = "Cursus.dat";
p r i v a t e c h a r m o d e ;

)

L e s d o n n é e s d e l a c l a s s e F i c h i e r E t u d i a n t s o n t d e u x o b j e t s r e p r é s e n t a n t d e s f lu x d ’ é c r i ­

tu re (o f W) , d e l e c t u r e (o f R) d ’ o b j e t s , a i n s i q u ’ u n c a r a c t è r e (m o d e) r e p r é s e n t i u i t l e t y p e

d ’ o u v e r t u r e d u f i c h i e r e t u n e c h a î n e d e c a r a c t è r e s (n o r a D u F i c h i e r) , o ù s e t r o u v e m é m o r i s é

l e n o m d e f i c h i e r d e s a u v e g a r d e d e s d o n n é e s (C u r s u s . d a t) .

Ouverture du flux (entrant ou sortant)

p u b l i c v o i d o u v r i r (S t r i n g s) t h r o w s l O E x c e p t i o n {

m o d e = (s . t o U p p e r C a s e ()) , c h a r A t { 0) ;

i f (m o d e == ' R ' || m o d e == ' L ' }

o f R = n e w O b j e c t l n p u t s t r e a m (n e w F l l e l n p u t s t r e a m (n o m D u F i c h i e r)) ;

e l s e i f (m o d e == ' W || m o d e == ' E ')

o fW = n e w O b j e c t O u t p u t s t r e a m (n e w F i l e O u t p u t s t r e a m (n o m D u F i c h i e r)) ;

3

L ’ o u v e r t u r e d u f i c h i e r C u r s u s . d a t e n l e c t u r e e s t r é a l i s é e g r â c e a u x c o n s t r u c t e u r s d e s c l a s s e s

F i l e i n p u t s t r e a m e t O b j e c t l n p u t s t r e a m , a l o r s q u e l ’ o u v e r t u r e e n é c r i t u r e e s t e f f e c ­

t u é e p a r l e s c o n s t r u c t e u r s O b j e c t O u t p u t s t r e a m () e t F i l e O u t p u t s t r e a m () . E n

r é s u l t a t , l e s f lu x o f W e t o f R c o n t i e n n e n t le.s a d r e s s e s d e d é b u t d e f ic h ie r .

in(D

>-
LU
LOtHOfN
@
x :Oi'k_>-Q.O
U

Traitement du fichier
L 'o b j e c t i f e s t d ' a r c h i v e r l ’ e n s e m b l e d e s d o n n é e s r e l a t i v e s à u n e c l a s s e d ’ é t u d i a n t s . L a

m é t h o d e é c r i r e () p r e n d e n p a r a m è t r e u n o b j e t t m p d e t y p e C u r s u s , d e s o r t e q u e l ’ i n f o r -

m a t i o u l u i s o i t t r a n s m i s e d e p u i s l ’ a p p l i c a t i o n G e s t i o n C u r s u s . L ’ o b j e t t r a n s m i s e s t a l o r s

a r c h iv é g r â c e à l a m é t h o d e w r i t e O b j e c t (t m p) .

p u b l i c v o i d é c r i r e [C u r s u s t m p) t h r o w s l O E x c e p t i o n {

i f (t m p n u l l) û f W . w r i t e O b j e c t (t m p) ;

3

I n v e r s e m e n t , l a m é t h o d e l i r e () l i t l ’ o b j e t s t o c k é d a n s l e f i c h i e r C u r s u s . d a t e t l e t r a n s m e t

e n r e t o u r à l ’ a p p l i c a t i o n G e s t i o n C u r s u s s o u s f o r m e d ’ o b j e t d e t y p e C u r s u s . L ’ e n - t ê t e d e

© Éditions EyroHes 331

partie в° 3 Outils et techniaues orieiités oblei

l a m é t h o d e a p o u r t y p e l e t y p e C u r s u s . L ’ o b j e t r e t o u r n é e s t l u g r â c e à l a m é t h o d e

r e a d O b j e c t () .

p u b l i c C u r s u s l i r e O t h r o w s l O E x c e p t i o n , C l a s s N o t F o u n d E x c e p t i o n {

C u r s u s t m p = (C u r s u s) o f R . r e a d O b j e c t () ;

r e t u r n t m p ;

}

O b s e r v o n s q u e :

• L a méthode l i r e () traite obligatoirement un nouveau type d’exception
ClassN otFoundException. E n effet, la méthode re a d O b je c t() transmet ce type
d’exception lorsque le fichier lu ne contient pas d’objet mais tout autre chose.

TQ Pour plus de précisions sur la gestion des exceptions, voir la section « Gérer les exceptions »,
en fin de chapitre.

L a m é t h o d e r e a d O b j e c t () l i t s u r l e f lu x u n o b j e t , q u e l q u e s o i t so n t y p e . Tl e s t d o n c

n é c e s s a i r e d e s p é c i f i e r , p a r l ’ i n t e r m é d i a i r e d ’ u n c a s t , l e f o r m a t d e l ’ o b j e t lu . P o u r n o t r e

e x e m p l e , l ’ o b j e t lu e s t t r a n s m i s à l ’ o b j e t t m p p t u l ’ i n t e r m é d i a i r e d ’ u n c a s t (C u r s u s) , q u i

r é a l i s e l a t r a n s f o r m a t io n d e l ’ o b j e t a u b o n f o r m a t .

ÎQ Sur le mécanisme du cast, voir au chapitre 1, « Stocker une information », la section « La
transformation de types ».

Fermeture du flux
L a f e r m e t u r e d ’ u n f lu x e s t r é a l i s é e p a r l a m é t h o d e c l o s e () . d e l a m ê m e f a ç o n q u ’ u n f lu x d e

f i c h i e r t e x te .

p u b l i c v o i d f e r m e r () t h r o w s l O E x c e p t i o n {

i f (m o d e == ' R ' I l m o d e == ' L ') o f R . c l o s e () ;

e l s e i f (m o d e == ' W || m o d e == ' E ') o f W . c l o s e () ;

]

V)(U

>■Ш
ip
OfN
@
jT01'k_
Q.O

U
332

Exemple : l ’application GestionCiirsiis

L’application G estion C u rsu s a pour contrainte de réaliser les actions suivantes :
• Une îecture automatique du fichier C u rsu s .d a t dès l’ouverture du programme afin

d’initialiser l’objet C (type Cursus) à la liste d’etudiants saisie lors d’une précédente exé­
cution.

• Une sauvegarde automatique dans le fichier C ursus , d a t lorsque l’atilisateur choisit de
sortir du programme.

Ces deux contrainte.s sont réalisées par l ’application .suivante ;

© Éditions Eyrofles

chapitre n° 10 Colectionner un nombre indéiermlné d'oblets

(D

>-
UJ

T~{
OfN
@
JZCT'k—>-
Q.O
U

i m p o r t j a v a , i o . * ;

i m p o r t j a v a . u t i l ;

p u b l i c c l a s s G e s t i o n C u r s u s {

p u b l i c s t a t i c v o i d m a i n (S t r i n g [] a r g u m e n t)

throws lOException, ClassNotFoundException {
b y t e c h o i x = 0 ;

S c a n n e r l e c t u r e C l a v i e r = n e w S c a n n e r (S y s t e m . i n) ;

C u r s u s C - n e w C u r s u s (1 ;

FichierEtudiant F = new FichierEtudiant();
F .ouvrir("Lecture");
C = F.lireO ;
F .fermer();
S t r i n g p r é n o m , n o m ;

d o [

S y s t e m . o u t . p r i n t l n [" 1 . A j o u t e u n e t u d i a n t ") ;

S y s t e m . o u t . p r i n t l n [" 2 , S u p p r i m e u n e t u d i a n t ") ;

S y s t e m . o u t . p r i n t l n (" 3 . A f f i c h e l a l i s t e d e s s i e v e s ") ;

S y s t e m . o u t . p r i n t l n [" 4 . A f f i c h e u n e t u d i a n t ") ;

S y s t e m . o u t . p r i n t l n [" 5 . S o r t i r ") ;

S y s t e m . o u t , p r i n t l n [) ;

S y s t e m . o u t . p r i n t { " V o t r e c h o i x : ") ;

c h o i x = l e c t u r e C l a v i e r . n e x t B y t e () ;

s w i t c h (c h o i x) {

// p o u r l e s o p t i o n s 1 , 2 , 3 , 4 v o i r

// E x e m p l e : C r é e r u n d i c t i o n n a i r e d ' é t u d i a n t s

// A j o u t e u n e t u d i a n t

// S u p p r i m e u n e t u d i a n t

// A f f i c h e l e s e t u d i a n t s

// A f f i c h e u n e t u d i a n t

c a s e 1

c a s e 2

c a s e 3

c a s e 4

c a s e 5
S y s t e m . o u t . p r i n t l n (" S a u v e g a r d e d e s d o n n é e s d a n s C u r s u s . d a t ") ;

F . o u v r i r { " E c r i t u r e ") ;

P.écrire(C);
F.femer() ;
S y s t e m , e x i t (0) ;

b r e a k ;

d e f a u l t ; S y s t e m . o u t . p r i n t l n { " C e t t e o p t i o n n ' e x i s t e p a s ") ;

}
} w h i l e (c h o i x != 5) ;

}
} // F i n d e l a c l a s s e G e s t i o n C u r s u s

> Éditions Eyrolles 333

Darde D° 3 Ouffis el lechnlaues oileaiés iriijet

L ’ e x é c u t i o n d e c e t t e a p p l i c a t i o n m o n t r e q u ' u n e d i iT ic u l t é s u b s i s t e . E n e f f e t , l o r s d e l a to u te

p r e m i è r e e x é c u t i o n d u p r o g r a m m e , l ’ i n t e r p r é t e u r a f f i c h e l e m e s s a g e s u iv a n t :

j a v a . i o . F i l e N o t F o u n d E x c e p t i o n :

C u r s u s . d a t { L e f i c h i e r s p é c i f i é e s t i n t r o u v a b l e)

a t j a v a . i o . F i l e i n p u t s t r e a m . o p e n (N a t i v e M e t h o d)

a t j a v a . i o . F i l e I n p u t s t r e a m . < i n i t > (F i l e i n p u t s t r e a m . j a v a : 6 8)

a t F i c h i e r E t u d i a n t . o u v r i r (F i c h i e r E t u d i a n t . j a v a : 1 4)

a t G e s t i o n C u r s u s . m a i n (C o m p i l e d C o d e)

L ' e r r e u r F i l e N o t F o u n d E x c e p t i o n e s t t r a n s m i s e à l a m é t h o d e m a i n () v i a l a m é t h o d e

F i l e i n p u t s t r e a i n . o p e n () g r â c e à l a c l a u s e t h r o w s l O E x c e p t i o n .

E n e f f e t , le f i c h i e r C u rs u s . d a t n ’ e x i s t e p a s e n c o r e , p u i s q u e c ’ e s t la p r e m i è r e f o i s q u e le

p r o g r a m m e e s t e x é c u t é . L ’ o p t io n 5 n ’ a p u ê t r e e x é c u t é e , e t a u c u n e s a u v e g a r d e n ’ a d o n c é t é

r é a l i s é e . T a n t q u e l e p r o g r a m m e n e p e u t ê t r e e x é c u t é d a n s s o n i n t é g r a l i t é , a u c u n f i c h i e r d e

s a u v e g a r d e n e p e u t ê t r e c r é é .

P o u r c o n t o u r n e r c e t o b s t a c l e , l a . so lu t io n c o n .s i s t e h e m p ê c h e r l e s e n -e u r s d e r e m o n t e r d ’ u n e

m é t h o d e à l ’ a u t r e g r â c e à l a c l a u s e t h r o w s , lo u t e n g é r a n t d e f a ç o n e x p l i c i t e c h a q u e e r r e u r
qui pouiTait s u r v e n i r . C e t t e s o lu t io n e s t e x a m i n é e à l a s e c t i o n s u iv a n t e .

<u

>~
LU
LOrHOfN
@

gi
>■
O.O
U

334

Gérer les exceptions
U n e e x c e p t io n e s t g é n é r é e p a r l ’ i n t e r p r é t e u r J a v a l o r s q u ’ un é v é n e m e n t a n o n n a l o u i n a t t e n d u

s u r v i e n t . L e s e x c e p t i o n s s o n t d é f i n i e s p a r l e s c l a s s e s :

• j a v a . l a n g . E r r o r , p o u r d e s e r r e u r s g r a v e s , q u i c o n d u i s e n t à l ’ a r r ê t d u p r o g r a m m e ;

• j a v a . l a n g . E x c e p t i o n , p o u r d e s é v é n e m e n t s q u i p e u v e n t ê t r e t r a i t é s s a n s p r o v o q u e r
l ’ a r r ê t d u p r o g r a m m e .

L o r s q u ’ u n e e x c e p t io n e.st l a n c é e , e l l e s e p r o p a g e e t p e u t ê t r e c a p t u r é e o n n o n p a r le

p r o g r a m m e .

L o r s q u e la c l a u s e t h r o w s e s t u t i l i s é e , l ’ e x c e p t io n s e p r o p a g e j u s q u ’ à c e q u e le p r o g r a m m e s e

t e r m i n e . L ’ i n t e r p r é t e u r r e t o u r n e a l o r s e n r é s u l t a t lu l i s t e d e s m é t h o d e s t r a v e r s é e s p a r l ’ e x c e p ­

t io n . L ’ e r r e u r n ’ e.st p a s c a p t u r é e p a r le p r o g r a m m e .

P o u r c a p t u r e r u n e e x c e p t io n , l e l a n g a g e J a v a p r o p o s e d e s o u t i l s d e c a p t u r e d ' e iT c u r s a f in d e l e s

t r a i t e r d i r e c t e m e n t à l ’ i n t é r i e u r d e s m é t h o d e s s u s c e p t i b l e s d e l e s d é t e c t e r . C e t t e c a p t u r e e s t

r é a l i s é e p a r l ’ i n t e r m é d i a i r e d e s i n s t r u c t i o n s t r y . . . c a t c h . C e s o u t i l s d e c a p t u r e d ’ e i r e u r s n e

s o n t p a s s p é c i f i q u e s à l a g e s t i o n d e s f lu x , f i s p e u v e n t é g a l e m e n t ê t r e u t i l i s é s p o u r t r a i t e r d e s

e r r e u r s d u e s à l a g e s t i o n d e s é v é n e m e n t s a s s o c i é s à u n e a p p l i c a t i o n g r a p h i q u e .

Pour connaître d’autres types d’exception , voir la section « De l’AWT à Swing ». du
chapitre 11.

© Éditions Eyrolles

chapitre h° 10 Goffectlonncf un nombre fnüéierminé d'obleis

<u

>-
LU
LOrHOr\I
@
szCT'k—>-
ClO

U

La méthode ouvrirQ

E x a m i n o n s l e m é c a n i s m e d e s i n s t r u c t i o n s t r y . . . c a t c h s u r l a m é t h o d e o u v r i r {) , p r o p o s é e

à l a s e c t i o n p r é c é d e n t e . C o m m e o b s e r v é p r é c é d e m m e n t , c e t t e m é t h o d e p o s e p r o b l è m e ,

p u i s q u ’ e l l e p r o p a g e T e r r e u r F i l e N o t F o u n d E x c e p t i o n l o r s d e la t o u te p r e m i è r e e x é c u t i o n

d e l ’ a p p l i c a t i o n G e s t i o n C u r s u s . P o u r é v i t e r c e t t e p r o p a g a t io n , l ’ i d é e e s t d e p l a c e r te

c o u p l e d ’ i n s t r u c t i o n s t r y . . . c a t c h d e l a f a ç o n s u i v a n t e :

p u b l i c boolean ouvrir (S t r i n g s) {

try {
m o d e - [s . t o U p p e r C a s e ()) . c h a r A t (0) ;

i f (m o d e == ' R ' || m o d e == ' L ')

I o f R = n e w O b j e c t I n p u t s t r e a m (n e w F i l e l n p u t s t r e a m (n o m D u F i c h i e r)) ;

e l s e i f (m o d e == ' W || m o d e == ' E ')

o fW = n e w O b j e c t O u t p u t s t r e a m (n e w F i l e O u t p u t s t r e a m (n o m D u F i c h i e r)) ;

return true;
}
catch (lOException e } f

return false;
}

1

L a m é t h o d e s ’ e x é c u t e a l o r s d e l a f a ç o n s u i v a n t e ;

L e s i n s t r u c t i o n s q u i c o m p o s e n t l e b lo c t r y (e n f r a n ç a i s e s s a y e r) so n t e x é c u t é e s .

• S i a u c u n e e r r e u r n ’ e s t t r a n s m i s e p a r l e s d i f f é r e n t s e o n s t r u e t e u r s q u i r é a l i s e n t T o u v e r t u r e d u

f i c h ie r , l e p r o g r a m m e s o r t d e l a m é t h o d e o u v r i r () e n r e t o u r n a n t un b o o l é e n d e v a l e u r

é g a l e à t r u e .

• S i l in e e r r e u r e s t p r o p a g é e p a r T u n d e s c o n s t r u c t e u r s , l e s i n s t i n c t i o n s p l a c é e s d a n s le b lo c

c a t c h (c a p t u r e) so n t e x é c u t é e s , à c o n d i t io n q u e T e r r e u r d é t e c t é e so i t d u m ê m e t y p e q u e c e lu i

p l a c é e n t r e p a r e n t l i è s e s d e r r i è r e l e t e r m e c a t c h . L ’ e i r e u r F i l e N o t F o u n d E x c e p t i o n é t a n t

d u t y p e l O E x c e p t i o n , l e p r o g r a m m e s o r t d e l a m é t h o d e o u v r i r () , e n r e t o u r n a n t un

b o o l é e n d e v a l e u r é g a l e à f a l s e . A u c u n f i c h i e r n ’ e s t d o n c o u v e r t .

P u i s q u e l a m é t h o d e o u v r i r () c a p t u r e e t t r a i t e e l l e - m ê m e l e s e r r e u r s é v e n t u e l l e s , l a p r é s e n c e

d e l a c l a u s e t h r o w s d e v i e n t i n u t i l e , e t e l l e n ’ a p p a r a î t p lu s d a n s T e n - t ê t e d e l a m é t h o d e .

G r â c e a u t r a i t e m e n t de.s e r r e u r s e n i n t e r n e , l e s i n s t r u c t i o n s r e l a t i v e s à T o u v e r t u r e d u f i c h i e r en

l e c t u r e d a n s l ’ a p p l i c a t i o n G e s t i o n C u r s u s p e u v e n t ê t r e m o d i f i é e s d e l a f a ç o n s u iv a n t e ;

F i c h i e r E t u d i a n t F = n e w F i c h i e r E t u d i a n t () ;

if {F.ouvrir("L”)) {
C = F . l i r e d ;

F . f e r m e r () ;

>

> Éditions Eyrolfes 335

oarüe B° 3 Ouffis ei lechnlaues oiieniés oUet

L e f i c h ie r e s t o u v e r t g r ü c e à l ’ i n s t r u c t i o n F . o u v r i r {) . S i l e r é s u l t a t d e l a m é t h o d e v a u t

t r u e , c e l a s i g n i f i e q u e l e f i c h i e r C u r s u s . d a t e x i s t e e t e s t o u v e r t . L e s I n s t r u c t io n s d e l e c t u r e

d u f i c h i e r s i t u é e s d a n s l e b lo c i f p e u v e n t ê t r e e x é c u t é e s . A l ’ i n v e r s e , s i l e r é s u l t a t v a u t f a l s e ,

a u c u n e in s t r u c t i o n n ’ e s t e x é c u t é e . L e m e n u p e r m e t t a n t l a s a i s i e d e n o u v e a u x é t u d i a n t s p e u t

a l o r s ê t r e a f f i c h é .

¡M méthode lire()

L a m é t h o d e l i r e O e s t s u s c e p t ib l e d e l e v e r p l u s i e u r s t y p e s d ’ e x c e p t i o n , v i a l a m é t h o d e

r e a d O b j e c t () . E n e f f e t , c e t t e d e r n i è r e e s t s u s c e p t ib l e d e d é t e c t e r d e s e r r e u r s d u t y p e

l O E x c e p t i o n o u C l a s s N o t F o u n d E x c e p t i o n .

L a c a p t u r e d e c e s e x c e p t i o n s e s t r é a l i s é e e n d é f i n i s s a n t a u t a n t d e b lo c s c a t c h q u ’ i l y a

d ' e m e u r s d é t e c t é e s . L a m é t h o d e l i r e () t r a i t e c e s e r r e u r s d e l a f a ç o n s u i v a n t e :

p u b l i c C u r s u s lireO {
try {

C u r s u s t m p = (C u r s u s) o f R . r e a d O b j e c t {) ;

r e t u r n t m p ;

}
catch (lOException e) {

S y s t e m , o u t . p r i n t l n (n o i t i D u F i c h i e r + " : E r r e u r d e l e c t u r e ") ;

}
catch (ClassNotFoundException e) {

S y s t e m . o u t . p r i n t l n [n o r a D u F i c h i e r + " n ' e s t p a s d u b o n f o r m a t ") ;

}
r e t u r n n u l l ;

1

rrjM ÏÏ[7 i]T1Tl Il est possible de définir deux blocs c a t c h successifs, paramétrés en fonction des types
d’erreurs susceptibles d’être détectés. Le programme réagit alors différemment suivant l’erreur
capturée.

ifiO
O1_>
LU
vû
tH
0 <N
©
x:01
ClO
U

336 © Éditions Eyrotles

chapitre n° 10 Colectionner un nombre indéiermlné d'obleis

Résumé

ifi<D

>-
LU
KOrHOfN
@
JZoi'¡Z
ClO
U

La programmation dynamique permet la gestion d’un nombre indéterminé d’objets, en réservant
des espaces mémoire au fur et à mesure des besoins de l’utilisateur.
Pour ce faire, le langage Java propose différents outils, tels que les objets de type A r r a y L i s t ou
encore de type HashMap.
Les objets de type A r r a y L i s t autorisent la création d’une liste, par ajout de données au fur et à
mesure des besoins de l’utilisateur. Les données sont, en général, enregistrées dans leur ordre
d’arrivée. Un indice géré par l’interpréteur permet de retrouver [’information.
Pour utiliser une liste, il est nécessaire de la déclarer de la façon suivante ;

ArrayList liste = new ArrayList() ;
Pour ajouter un objet à la liste, il suffit d’écrire l i s t e . a d d (o b j e t) , Il n’est pas possible
d'ajouter une valeur autre qu’un objet {telle que les variables de type i n t , par exemple). Lorsque
l’objet est inséré dans la liste, la taille de cette dernière est augmentée de un. La méthode s i z e ()

calcule le nombre d’éléments dans la liste, et la méthode g e t (i n d i c e) permet de retrouver
l’objet stocké à l’ i n d i c e spécifié en paramètre.
La classe A r r a y L i s t étant définie dans le package j a v a .u t i l , Il convient de placer rinstruction
i m p o r t , j a v a . n t i l . * ; en tête du fichier. En effet, si cette instruction fait défaut, le compilateur
délecte une erreur du type C l a s s A r r a y L i s t n o t f o u n d .

La recherche d’éléments complexes dans une liste est plus rapide lorsque les données sont orga­
nisées, non plus par rapport à un indice, mais par rapport à une clé explicite. Les objets de type
H a sh M a p proposent ce type d’organisation des données. Pour cela, Il suffit de déclarer une liste
comme ;
HashtMap liste = new Hashmap O ;

Les méthodes p u t (d e , o b j e t) et g e t (d e) permettent respectivement de placer dans la liste
(dictionnaire) l’association d e - o b j e t et de retrouver l’objet associé à la d e spécifiée en para­
mètre.
Les types génériques permettent de forcer les listes ou les dictionnaires à n’enregistrer que des
données du type spécifié entre les deux signes < et >. Ainsi la déclaration :

ArrayList<String> liste = new ArrayList<String>{) ;

crée une liste ne pouvant contenir que des objets de type S tr in g .

> Éditions Eyrolles 337

I nanle B° 3 autHs et lechniaues oheotés oblei

Grâce aux streams et expressions lambda, il devient plus facile de traiter rapidement les collec­
tions de données, en utilisant des instructions sous forme condensée :

l i s t e . s t r e a m () .filter(e -> e.<3uelNcsin() .startsWith("A"))
.£orEa.ch(e -> e,a.££îcheUn£:tuâiant (}) ,-

Pour éviter que les données stockées en mémoire vive de l'ordinateur ne se perdent à l’arrêt de
l’application, il est nécessaire de les archiver sous forme de fichiers sur le disque dur. Pour cela,
le langage Java utilise le concept de flux de fichier (en anglais stream), qui est, en quelque sorte,
la concrétisation informatique du courant électrique passant de la mémoire vive au disque dur de
l’ordinateur.
Il existe différents types de flux de fichiers :
• D’une part, les fiux entrant, pour lire les données sur le disque dur et les placer en mémoire

vive, et les flux sortant, qui écrivent les données de la mémoire vive sur le disque dur,
• D’autre part, les fichiers de type texte (B u ffe re d W rite r, Bu fferedR eader), qui ne font que

manipuler des données de type S tr in g , et les fichiers d’objets (O bjectO utputstream ,
O b jectln p utstream), qui manipulent tout type d’objet.

D’une façon générale, les traitements sur fichiers se déroulent en trois temps : ouverture du flux,
traitement des données parcourant le flux, puis fermeture du flux. Lorsqu’un fichier est ouvert en
écriture :
• Si le fichier n’existe pas, et :

• Si le chemin d'accès à ce fichier dans l’arborescence du disque est valide, alors le fichier est
créé.

• Si le chemin d’accès n'est pas valide, alors le fichier n’est pas créé et une erreur du type
F i l e N o t F o u n d E x c e p t i o n est détectée.

• S i l e f i d i i e r e x i s t e , i î e s t o u v e r t , e t s o n c o n t e n u e s t totalement effacé.
Lorsqu’une erreur est détectée par les méthodes associées au flux, le couple d'instructions
t r y ...catch permet la capture de l’exception afin de lui associer un traitement spécifique.

if)<u

LU
<£>rHOfN
@
JZen'C>-aO
U

338) Éditions Eyrofles

chaiiitre i ° 10 GoOectlonnef un nombre indéierminé d obléis

Exercices

Conprendre les lis tes

1 0 . 1 L o b je c tif e s t d e s to c k e r le s n o te s d ’un é tu d ia n t s o u s !a fo rm e d ’u n e liste.

a . D é fin is s e z un o b je t n o t e d e ty p e A r r a y L i s t c o m m e v a r ia b le d ’ in s ta n c e d e la c la s s e
E t u d i a n t . L a lis te n o t e n e p e u t c o n te n ir q u e d e s v a le u rs d e ty p e D o u b l e .

b. M o d if ie z le c o n s tru c te u r d e la c la s s e E t u d i a n t a fin d e s a is ir les n o te s e t d e le s p la c e r d a n s la
lis te .

P r e n e z g a rd e q u e se u l un o b je t p e u t ê tre s to c k é d a n s u n e lis te . U rte n o te , é ta n t d e ty p e d o u b l e
(ty p e s im p le), n e p e u t p a s ê tre d ire c te m e n t p la c é e d a n s la lis te . Il e s t n é c e s s a ire d e la tra n s fo rm e r
e n o b je t d e ty p e D o u b l e . L a p p e l a u c o n s tru c te u r d e la c la s s e D o u b l e p e rm e t c e tte tra n s fo r­
m a tio n .

Remarque Linstruction n e w D o u b l e (l e c t u r e C l a v i e r . n e x t D o u b l e () } permet la transformation
directe d’une valeur d o u b l e saisie au davier en un objet de type D o u b l e .

c . L a m é th o d e c a l c u l M o y e n n e () do it c a ic u ie r la m o y e n n e d e s n o te s à p a rt ir d e s n o te s s a is ie s
d a n s le c o n s tru c te u r. L e p ro g ra m m e d o it, p a r c o n s é q u e n t, p a rc o u rir l 'e n s e m b le d e la lis te n o t e
a fin d ’en c a lc u le r la s o m m e . V o u s u tilis e re z p o u r c e la , la n o u v e lle s y n ta x e d e la b o u c le f o r .

d . D a n s la m é th o d e a f f i c h e U n E t u d i a n t {) , m o d if ie z l’a ff ic h a g e d e s n o te s e n p a rc o u ra n t,
n o n p lus le ta b le a u , m a is la lis te n o t e , e t c e e n u tilis a n t la n o u v e lle s y n ta x e d e la b o u c le f o r .

1 0 . 2 R e p re n d re l’ap p lica tio n F a i r e D e s F o r m e s G e o m e t r i q u e s e t les c la s s e s F o r m e , T r i a n g l e e t
R e c t a n g l e d é v e lo p p é e s a u c o u rs d e s e x e rc ic e s 8 . 6 à 8 . 8 du c h a p itre 8 , « L e s p rin c ip e s d u
c o n c e p t d 'o b je t a in s i q u e la c la s s e C e r c l e , d é c r ite a u c o u rs d e c e m ê m e c h a p itre .

t/ïCJ
O
>

LU

rHOrvl
@
u-t
JZgi
>-
C lO
U

Pour vous faciliter la tâche, vous trouverez dans le répertoire S o u r c e / E x e r c i c e s /
C h a p i t r e l O / S u p p o r t P o u r R e a l i s e r L e s E x e r c i c e s / F o r m e sur l’extension Web de
l’ouvrage, tous les fichiers nécessaires à la réalisation de cette application.

L o b je c tif e s t d e c ré e r u n e lis te d e F o r m e à l’a id e d e la c la s s e L i s t e D e F o r m e s . C e tte d e r ­
n iè re e s t c o m p o s é e :

a . D ’u n e p ro p r ié té 1 i s t e F o r m e s d e ty p e A r r a y L i s t . E n u tilis a n t les ty p e s g é n é r iq u e s , fa ite s
e n s o rte q u e la liste n e p u is s e c o n te n ir q u e d e s o b je ts d e ty p e F o r m e .

b. D ’un c o n s tru c te u r in itia lisan t la p ro p r ié té l i s t e F o r m e s .

© Éditions Eyrolles 339

oarOe B° 3 oaflts el lechnlaues oiienies iriijet

c . D 'u n e m é th o d e a j o u t e r U n e F o r m e () q u i p e rm e t l’a jo u t d ’ un c e rc le , d 'u n re c ta n g le ou
d 'u r t r ia n g le d a n s la lis te s u iv a n t la v a le u r fo u rn ie e n p a r a m è tr e d e la m é th o d e . P a r e x e m p le ,
a j o u t e U n e F o r m e (' C ' } a p o u r ré s u lta t d e c r é e r e t d ’in s é r e r un c e rc le d a n s la lis te
l i s t e P o r m e s .

d . D 'u n e m é th o d e a f f i c h e r L e s F o r m e s () qu i a ff ic h e le s o b je ts d e la l i s t e F o r m e s en
p a rc o u ra n t à l’a id e d 'u n e b o u c le f o r l 'e n s e m b le d e la lis te . E st-il b e s o in d e p ré c is e r le ty p e d e
l'o b je t à a ffic h e r (C e r c l e , T r i a n g l e ou R e c t a n g l e) ? P o u rq u o i ?

e . C ré e r l’a p p lic a tio n F a i r e D e s L i s t e s D e F o r m e s q u i ré a lis e les o p é ra t io n s p ro p o s é e s p a r le
m e n u s u iv a n t :

1 . A j o u t e r u n c e r c l e

2 . A j o u t e r u n t r i a n g l e

1 . A j o u t e r u n r e c t a n g l e

4 . A f f i c h e r l a l i s t e

5 . P o u r s o r t i r

■Votre choix :

1 0 . 3 L’o b je c tit e s t d ’é c r ire u n e m é th o d e qu i a ffic h e la lis te d e to u s le s é tu d ia n ts p o rta n t le m ê m e p ré n o m , en
u tilisan t le s s tre a m s e l e x p re s s io n s la m b d a , L a m é th o d e a p o u r n o m m e m e P r e n o m {) ,

a . D a n s la c la s s e E t u d i a n t é c r ire la m é th o d e q u e l P r e n o m () q u i re to u rn e le p ré n o m d e l’é tu ­
d ia n t.

b. D a n s la c la s s e C u r s u s é c r ire la m é th o d e m e m e P r e n o m () qu i a ffic h e la lis te d e s é tu d ia n ts
p o rta n t le p ré n o m p a s s é e n p a ra m è tre d e la m é th o d e . P o u r c e la , v o u s p o u v e z v o u s in s p ire r du
c o d e fo u rn i e n e x e m p le d u c o u rs .

c . D a n s l’a p p lic a tio n G e s t i o n C u r s u s a jo u te r u n e q u a tr iè m e op tio n a u m e n u qui p e rm e t d e sa is ir
au c la v ie r le p ré n o m re c h e rc h é e t d ’a p p e le r la m é th o d e m e m e P r e n o m () s u r la liste d e s é tu d ian ts .

<u

>~
LU
LO
rHOrvl
@
j::
g i
>•
Cl
O
U

I W t m 1 0 . 4 L’o b je c tif e s t d ’é c r ire u n e m é th o d e q u i a ff ic h e le m a jo r d e la p ro m o tio n e n u tilisan t les s tre a m s e t
e x p re s s io n s la m b d a . L a m é th o d e a p o u r n o m r e c h e r c h e L e M a j o r {) .

a . D a n s la c la s s e E t u d i a n t é c r ire la m é th o d e q u e l l e M o y e n n e () q u i re to u rn e la m o y e n n e
d e l’é tu d ia n t.

b. D a n s la c la s s e C u r s u s é c r ire la m é th o d e r e c h e r c h e L e M a j o r () qu i re to u rn e l'é tu d ia n t
qu i a la m e ille u re m o y e n n e d e la p ro m o tio n . P o u r in fo rm a tio n , l’e x p re s s io n la m b d a qui c a lc u le la
p lu s g ra n d e v a le u r d 'u n e lis te d e n o m b re s s ’é c rit c o m m e su it :

l i s t e . s t r e a m () . i n a x { (a , b) - > (a . q u e l l e V a l e u r ()
b . q u e l l e V a l e u r ()))

L’e x p re s s io n g e t () a p p liq u é e e n s u ite à l'e x p re s s io n m a x () p e rm e t d e ré c u p é re r la p lus g ra n d e
v a le u r tro u v é e p a r m a x () .

c . D a n s l’a p p lic a tio n G e s t i o n C u r s u s a jo u te r u n e c in q u iè m e op tio n a u m e n u qu i p e rm e t d ’a ffi­
c h e r l’é tu d ia n t m a jo r d e la p ro m o tio n ,

340 © Édfftons Eyrof/es

chapitre n° 10 Colectionner un nombre indéterminé d'obfets

Comprendre les d ictiennaires

E s Ë E a Ki-s L’objectif est d’écrire une méthode modif ieUnEtudiant () qui modifie les notes d’un étudiant
stocké dans un dictionnaire. Cette méthode fonctionne dans l’ensemble comme la méthode
a jouteUnEtudiant {) (voir la section « Les dictionnaires » de ce chapitre).
a. Cependant, la méthode doit connaître les nom et prénom de l’étudiant à modifier. Ces données

lui sont transmises par paramètre.
b. Ensuite, connaissant les nom et prénom, le programme calcule la d e et vérifie si l’étudiant

existe dans la liste.
c. S’il existe, la modification consiste à lui donner de nouvelles notes. Pour cela, l'idée est d’écrire

un deuxième constructeur Etudiant () , dont les paramètres sont les nom et prénom de
l’étudiant. Le corps du constructeur ne fait ensuite que stocker dans les variables d’instance
appropriées les nom et prénom passés en paramètres, sans avoir à les ressaisir, puis saisir les
nouvelles notes et enfin calculer la moyenne.

d. Modifiez l'application G e s tio n C u rsu s de façon à intégrer au menu cette nouvelle option.

10 .6 Reprendre l'application Bibliothèque et la classe Livre développées au cours des exercices
8.1 à 8.5 du chapitre 8, ■< Les principes du concept d’objet ».

Pour vous faciliter la tâche, vous trouverez dans le répertoire Source/Exercices/
ChapitrelO/SupportPourRealiserLesExercices/Livre sur l’extension Web de
l’ouvrage, tous les fichiers nécessaires à la réalisation de cette application.

(U

a .

Lobjectif est de créer un dictionnaire composé de L iv r e à l'aide de la classe L is t e D e L iv r e s .
Cette dernière est composée :
D’une propriété l i s t e de type H ash llap . En utilisant les types génériques, faites en sorte que
le dictionnaire ne puisse contenir que des objets de type L i v r e .

b. D'un constructeur initialisant la propriété l i s t e .
c. D’une méthode a j o u te rU n L iv re {) qui permet l’ajout d'un livre dans le dictionnaire. La clé

d'association est calculée grâce à la méthode g e t C o d e () définie dans la classe L i v r e .

d. D'une méthode rechercherUnLivre () qui affiche le livre dont le nom, le prénom de
l’auteur, la catégorie et le numéro ISBN sont fournis en paramètre de la méthode.

>-LU
LO
T~{
OfN
@
JZgi'k_
Q.OU

mLlViHl j^l H Le calcul de la clé s'effectue en créant un livre temporaire grâce au constructeur de la classe
L iv r e . Le calcul du code d’un livre ne nécessite pas de connaître son titre, vous pouvez pas­
ser en paramètre du constructeur la valeur n u l l , en lieu et place du paramètre représentant le
titre du livre.

© Éditions Eyrolles 341

I panic B° 3 Ouffis el lechnlaues oilenies idilet

Si le livre est retrouvé dans la l i s t e , la méthode r e c h e r c h e r U n L i v r e () affiche les infor­
mations le concernant.

e. D'une méthode s u p p r i m e r U n L i v r e () qui supprime le livre dont le nom, le prénom de
l’auteur, la catégorie et le numéro ISBN sont fournis en paramètre de la méthode.
• Le calcul de la clé s’effectue selon la méthode décrite au point d.
• Si le livre est retrouvé dans la l i s t e , la méthode s u p p r i m e r U n L i v r e () supprime le

livre de la l i s t e .

f. D’une méthode a f f i c h e r L e s L i v r e s () qui affiche les objets de la l i s t e en parcourant,
à l’aide d’une boucle fo r , l’ensemble du dictionnaire.

g. Créer l’application B i b l i o t h è q u e qui réalise les opérations proposées par le menu suivant :
1 . A j o u t e r u n l i v r e

2 . S u p p r i m e r u n l i v r e

3 . A f f i c h e r l a l i s t e d e s l i v r e s

4 . A f f i c h e r u n l i v r e

5 . S o r t i r

Remaitiue Les options 2 et 4 demandent la saisie des nom et prénom de l’auteur, de la catégorie du livre
ainsi que du numéro ISBN pour obtenir la clé d'association et effectuer les recherches dans la
liste, Vous pouvez simplifier la tâche de l’utilisateur en lui proposant de ne saisir que les 2 derniers
chiffres du numéro ISBN.

Créer des fich ie rs textes

<D

LU
Vû
tH
O<N
©
JZoi
ClO
U

l№ T m 10.7 L'objectif est de créer un fichier Form es . t x t contenant les données relatives à chaque forme géo­
métrique enregistrée dans la liste lis te F o rm e s créée au cours de l'exercice 10.2.
Le fichier possède autant de lignes qu’il y a d'objets placés dans la liste. Chaque forme est représentée
par une chaîne de caractères spécifique ;
• Un cercle est représenté p a r C ; c o u l e u r ; x ; y ; r a y o n .

• U n re c ta n g le par R ; c o u l e u r ; x ; y ; l a r g e u r ; h a u t e u r .

• Un triangle par T ; c o u l e u r ; x ; y ; x l ; y 1 ; x 2 ; y 2 ; .

a. Examinez la méthode g e t i n f o s () de la classe F o r m e ci-après et donnez la structure de la
chaîne retournée par la méthode.

I public String getInfosO {
return couleur+";”+x+";"+y;

» Pour chacune des classes fille (T r i a n g l e , C e r c l e , ...) , écrire une méthode g e t i n f os ()
en faisant appel à la méthode g e t i n f os () de la classe mère.

• Faites en sorte que chacune des chaînes résultantes corresponde au format demandé.

342 © Éditions Eyrolles

chapHre »° 10 Gooectionner un nombre fnüéiermlné d'ohleis

b. P o u r e n re g is tre r d a n s le f ic h ie r F o r m e s . t x t , le s d o n n é e s re la t iv e s à c h a q u e fo rm e g é o m é ­
tr iq u e , la te c h n iq u e c o n s is te à d é f in ir d a n s la c la s s e L i s t e D e F o r m e s , u n e m é th o d e
e n r e g i s t r e r L e s F o r m e s { F i c h i e r f } q u i :

• p a rc o u rt la lis te l i s t e F o r m e s e t ré c u p è re g râ c e à la m é th o d e la m é th o d e g e t i n f o s <)
le s in fo rm a tio n s s o u s la fo rm e d ’u n e c h a în e d e c a ra c tè re s :

• e n re g is tre la c h a în e e n u tilis a n t la m é th o d e é c r i r e (> d e la c la s s e F i c h i e r p ro p o s é e e n
s e c tio n « L e s fic h ie rs te x te s » .

c . L’e n re g is tre m e n t e s t e ffec tif, lo rs q u e la m é th o d e e n r e g i s t r e r L e s F o r m e s () e s t a p p e lé e
d e p u is l'a p p lic a tio n F a i r e D e s L i s t e s D e F o r m e s . P o u r c e la :

• créez un objet F de type F i c h i e r ;

• a p p e le z la m é th o d e e n r e g i s t r e r L e s F o r m e s () lo rs q u e l’u tilis a te u r c h o is it d e s o rt ir d e
l’a p p lic a tio n , e n l’a p p liq u a n t s u r l’o b je t L d F e t, e n p a s s a n t e n p a ra m è tre l’o b je t F .

d . P o u r lire les in fo rm a tio n s e n re g is tré e s d a n s le f ic h ie r F o r m e s . t x t , il c o n v ie n t d e m e ttre e n
p la c e u n m é c a n is m e d e d é c o u p a g e d e c h a q u e lig n e lu e , d e fa ç o n à ré c u p é re r le s in fo rm a tio n s
c o m m e la p o s itio n e n x , y . le ty p e d e la f o r m e , . . .

P o u r c e la , v o u s d e v e z m o d ifie r le m é th o d e l i r e () d e la c la s s e F i c h i e r c o m m e suit ;

• La méthode lit une ligne du fichier à la fois et l'enregistre dans la chaîne de caractère 1 ig n é .
• L a c h a în e l i g n e e s t d é c o u p é e e n u tilisan t u n o b je t S t r i n g T o k e n i z e r c o m m e su it :

i m p o r t j a v a . u t i l ;
S t r i n g T o k e n i z e r s t = n e w S t r i n g T o k e n i z e r (l i g n e , s é p a r a t e u r) ;
i n t i = 0 ;
S t r i n g m o t [] = n e w S t r i n g [s t . c o u n t T o k e n s ()] ;
w h i l e (s t . h a s M o r e T o k e n s ()) {

m o t [i] = S t . n e x t T o k e n () ;
i + + ;

}

La classe S t r in g T o k e n iz e r est une classe du paquetage j a v a .u t i l , dans laquelle est
défini un ensemble de méthodes permettant l’extraction de mots dans une chaîne de caractè­
res. Chaque mot doit être séparé par un caractère donné {ici, vous prendrez le séparateur " ; ").

V)
ô
>

LU
KO
tH
O
(N

@

'lI>-
ClO
U

> Éditions Eyrolles

Lexécution de ces instructions a pour résultat de placer dans mot [0] le caractère correspon­
dant au cercle (C), au rectangle (R) ou au triangle (T), dans mot [1] la couleur, dans mot [2]
la position en x , etc.
La méthode l i r e {) retourne en résultat le tableau m ot.

e. Pour lire l’ensemble du fichier, définissez dans la classe L is te D e F o rm e s , la méthode
lire L e s F o rm e s (F ic h ie r f) .Cette méthode :
• Parcourt le fichier jusqu’à obtention d’une ligne n u l l .
• Récupère, pour chaque ligne lue grâce à la méthode l i r e { } , un tableau dont le premier élé­

ment est testé et s’il contient le caractère ' C ’ , la méthode crée un cercle à l’aide du constructeur
C e rc le {) en passant en paramètre les valeurs contenues dans la suite du tableau,

• Construit de ia même taçon un rectangle si le caractère est un ' R ' , un triangle si c’est un ' T ’ .
• Les objets crées sont ajoutés à ia liste lis te F o rm e s .

343

I narfle B° 3 Ouffis el teclinlaues olientes oUet

D a n s l’a p p lic a tio n F a i r e D e s L i s t G s D e F o r m e s , te s te r d è s le d é b u t d e l’a p p lic a tio n , l’o u v e r­
tu re e n le c tu re du fic h ie r F o r m e s . t x t . S i l’o u v e r tu re s 'e x é c u te c o rre c te m e n t, lire le f ic h ie r e t
s to c k e r les o b je ts lus d a n s l’o b je t L d F à l’a id e d e la m é th o d e l i r e L e s F o r m e s .

Remarque Pour vérifier que l’ouverture du fichier texte s ’est bien déroulée, vous devez modifier la
méthode o u v r i r () de la classe F i c h i e r , en vous inspirant de celle présentée en section

Gérer les exceptions - La méthode ouvrir() î> de ce chapitre.

C rie r des nch icrs ifo lile is

1 0 . 8 L’o b je c tit e s t d e c ré e r un fic h ie r B i b l i o t h è q u e . d a t c o n te n a n t la liste d e s liv re s e n re g is tré s d a n s
la lis te l i s t e c ré é e a u c o u rs d e l’e x e rc ic e 1 0 .4 .

a . R e p re n d re la c la s s e F i c h i e r E t u d i a n t cons tru ite e n sec tio n « L e s fich iers d ’ob je ts - E x e m p le :
a rc h iv e r u n e c la s s e d 'é tu d ia n ts » , n o m m e r la F i c h i e r D e L i v r e s . M o d ifie z c e tte d e rn iè re , d e
fa ç o n à ;

• n o m m e r le f ic h ie r d 'e n re g is tre m e n t d e s o b je ts . B i b l i o t h è q u e . d a t .

• lire o u e n re g is tre r d e s o b je ts d e ty p e L i s t e D e L i v r e s .

b. M o d if ie z l’a p p lic a tio n B i b l i o t h è q u e e t c r é e z u n o b je t F d e ty p e F i c h i e r D e L i v r e s .

c . T e s te z d è s le d é b u t d e l’a p p lic a tio n , l’o u v e rtu re e n le c tu re du f ic h ie r F i c h i e r D e L i v r e s . S i
l’o u v e r tu re s ’e x é c u te c o rre c te m e n t, lire le f ic h ie r e t s to c k e r le s o b je ts lus d a n s l’o b je t L d L à l’a id e
d e la m é th o d e l i r e {) d e la c la s s e F i c h i e r D e L i v r e s .

d . P o u r s a u v e g a rd e r les o b je ts c ré é s p a r l’u tilis a te u r lo rs q u e c e d e rn ie r c h o is it d e so rtir d e l’a p p lic a ­
tio n , o u v rir le f ic h ie r e n é c r itu re e t e n re g is tre r le s in fo rm a tio n s g râ c e à la m é th o d e é c r i r e () d e
la c la s s e F i c h i e r D e L i v r e s ,

Gérer les erreurs

ifiO
OL->
LU

T~{
0 fN
@
x :01
>
C lO
U

[M a t 0 1 0 . 9 L o b je c t if e s t d e c a p tu re r to u te s le s e r re u rs (l O E x c e p t i o n j p o s s ib le s d a n s la c la s s e
F i c h i e r E t u d i a n t d é c r ite a u c o u rs d e c e c h a p itre .

a . R e p re n e z la c la s s e F i c h i e r E t u d i a n t , e t g é re z la d é te c tio n d e s e rre u rs p o u r le s m é th o d e
f e r m e r () e t é c r i r e () , en d é fin is s a n t d e s b lo cs c a t c h e t t r y a p p ro p r ié s .

b. L o rs q u e to u te s le s m é th o d e s d e la c la s s e F i c h i e r E t u d i a n t g è re n t le s e x c e p tio n s , p lus
a u c u n e c la u s e t h r o w s n e d o it a p p a ra ître s u r l’e n - tê te d e s m é th o d e s , y c o m p ris p o u r la m é th o d e

d e l’a p p lic a tio n G e s t i o n C u r s u s . M o d if ie z l'a p p lic a tio n G e s t i o n C u r s u s en
te n a n t c o m p te d e c e t te re m a rq u e .

[M ^ 1 0 . 1 0 R e p re n d re la c la s s e E n c o d a g e P a r D e f a u t d o n n é e e n e x e m p le a u c h a p itre 2 , « C o m m u n iq u e r
u n e in fo rm a tio n » , à la s e c tio n « L e s c a ra c tè re s s p é c ia u x ».

344 © Editions Eyrotles

chapitre n° 10 Colectlonner un nombre Indéterminé d'obfeis

S a c h a n t q u e l’e n c o d a g e d 'u n e c h a în e d e c a ra c tè re s p e u t e n tra în e r u n e e rre u r d u ty p e Unsupported
EncodingException, é c r ire un b lo c try e l un b loc catch ré a lis a n t la c a p tu re d e c e tte
e x c e p tio n .

a . L e b loc try e s t u tilisé p o u r ré a lis e r l’e n c o d a g e d e la c h a în e proverbe.
b. L e b loc c a t c h a ff ic h e u n m e s s a g e in d iq u a n t q u e le c o d a g e p a r d é fa u t n ’e s t p a s s u p p o rté p a r

l’ in te rp ré te u r J a v a .

Le nroiet : GesHon d’nn compte bancaire

Les comptes sous form e de d ictionnaire
La classe ListeCompte
En reprenant la classe Cursus, présentée au cours de ce chapitre, écrire la classe
ListeCompte dont la donnée est une liste de type HashMap. La classe ListeCompte est
composée des méthodes suivantes :

a. ListeCompte () qui fait appel au constructeur de la classe HashMap.
b. ajouteUnCompte (String t) qui permet la création d’un compte courant, joint ou

d’épargne. Alin de faire appel au constructeur approprié (Compte () ou CpteEpargne ()),
faire passer en paramètre de la méthode a j outeUnCompte {) une chaîne de caractères
spécifiant le type du compte à créer. Par exemple, lorsque le paramètre de la méthode
vaut "E", un compte d’épargne est créé, alors que s’il vaut "A" (comme Autre), un
compte ordinaire est créé.
Lorsque le compte est créé, insérez-le dans le dictionnaire, en prenant comme clé
d’association son numéro de compte.

c. ajouteUneLigne (), qui ajoute une ligne au compte dont le numéro est spécifié en
paramètre de la méthode. Pour cela, faites appel à la méthode créerLigne {) de la
classe Compte.

d. Les méthodes rechercheU nCom pte (), supprimeUnCompte () et a f f i c h e
LesComptes {) sont à écrire en s’inspirant des méthodes équivalentes de la classe Cursus.

>-
LU
LOrHOfN
@
szoi'k_>•
ClO

U

application Projet
Dans l’application p r o je t , déclarer l’objet C comme étant du type ListeCom pte. Puis :

a. Dans chaque option du menu, faire appel aux méthodes de la classe ListeCompte.
b. Lors de l’ajout d’un compte, ne pas omettre de spécifier en paramètre le type du compte

("A", O U "E").
c. Ajouter l ’option de suppression d'un compte (option 5) et l’affichage de la liste de tous

les comptes (option 3). MtKÜfier I’aflichage du menu el le sw itc h de façon a tenir

> Éditions EyroUes 345

I panic B° 3 Ouffis el lechniaues oilenies iriiiet

compte de ces nouvelles options. Notons qu'il n'est plus besoin de tester l ’existence du
compte avant de l’afficher ou de le supprimer, puisque ce sont les méthodes de la classe
ListeCompte qui s’en chargent directement,

La sauvegarde des comptes bancaires
La classe FichierCompte
Pour sauvegarder les données saisies pour chaque compte, reprendre la classe
FichierEtudiant décrite dans ce chapitre :

a. Modifier le nom de la classe par FichierCompte, et remplacer le nom du fichier de
sauvegarde par C o m p t e . dat.

b. Dans les méthodes l i r e () et é c r i r e (), remplacer Pobjet lu ou écrit par un objet de
type ListeCom pte.

c. Ne pas oublier de rendre serialisable l’ensemble des classes nécessaires à la construction
de la liste des comptes.

L’application Projet
Modifier l'application, de façon à :

a. tire le fichier Co m p t e . dat avant de proposer l ’ajout, la suppression ou l'affiehage des
comptes ;

b. réaliser une sauvegarde automatique à la sortie du programme (option 6).

ifi<D

>
LU
KOrHOfN
@
JZCT'k—>-Q.OU

346

La mise en piace des dates dans les lignes comptables
Chaque ligne comptable est définie par un ensemble de données, dont la date de réalisation de
l’opération. Pour l ’instant, cette date est saisie sous forme d’un String, sans aucun contrôle
sur le format réellement saisi (Joui7mois/an). L’objectif est d’écrire une mélhtxle qui vérifie si
les valeurs saisies correspondent au format demandé.

Rechercher des méthodes dans les différents packages
Pour effectuer ce contrôle, le langage Java propose un certain nombre d’outils définis dans les
packages du .TDK. En particulier, il existe des outils qui transforment une chaîne de caractères
en objet Date. Cette transformation est réalisée à partir d’un format défini pai' le prograiiuiieur.
Pour trouver ces différents outils, les deux solutions suivantes sont possibles :

a. Soit rechercher dans l’arborescence du J DK fourni sur rextension Web de l’ouvrage
(voir l’annexe « Guide d’installations », section « Installer la documentation en ligne »)
tous les fichiers contenant le mot Date afin de déterminer les dilTérenls packages

© Éditions Eyrofles

chapitre n° 10 Colectionner un nombre Indéierminé d'oblets

concernés par ce type d’information. Puis, pour tous les fichiers trouvés, examiner les
différentes méthodes proposées, de façon à trouver celle susceptible de répondre à votre
attente.

b. Soit se connecter sur Internet, par exemple à l’adresse http://forum .java.sun.com , de façon
à y rechercher des exemples utilisant des objets de type Date.

Ecrire la méthode contrôleDate()
L’algorithme pennettant le contrôle du format de la date est le suivant ;

a. Saisir une date comme une suite de caractères (string).
b. Traduire cette chaîne en objet Date grâce aux méthodes trouvées à l’étape précédente.
c. Capturer les erreurs propagées par cette méthode afin d’incrémenter un compteur d’essai

de saisie de la date.
d. Répéter ces deux derniers points tant que la date n'est pas correctement traduite (l’objet

date restant égal à null). Au bout de trois essais, la date est initialisée à la date
courante du système de l’ordinateur.

e. En sortie de boucle, la date correspond au format demandé. Elle peut être traduite
en type String, pour être ensuite stockée dans la donnée date, de la classe
LigneComptable.

\fi

LU
kO
OfN
@
JZgi
ClO
U

© Éditions Eyrolles 347

http://forum.java.sun.com

inй)

:>■ш
iûTH
ОrN
@

Ol
>■Q.
OU

Chapitre 11

Dessiner des ohjets

Le langage Java s’est surtout fait connaître en proposant pour Internet des outils de dévelop­
pement d’applications graphiques multi-plates-formes, c’est-à-dire fonctionnant sur des
ordinateurs de tout type. Ces programmes sont exécutés à travers un navigateur Web de
façon transparente pour l’ internaute, que l’ordinateur utilisé soit un Mac, un PC ou une station
Unix.

Ces applications utilisent des composants graphiques définis dans la bibliothèque graphique
AWT (A h stro c i W ind ow in g T oolk it). Dans ce chapitre, nous étudions d’abord, à la section
« La bibliothèque AWT », comment utiliser les outils de ce package. Nous abordons ensuite, à
la section « Les événements », la gestion des événements en analysant conuiient associer une
action, ou un comportement, à un composant graphique. Pour finir, nous examinerons à la section
«. De P AWT à Swing » comment fonctionnent les compo.sants graphiques de la bibliothèque
Swing.

kfiO
La bitiotiiÈaae AWT

LU

rHOrs
@
JZgi'k_s-Q.O
U

La bibliothèque AWT est un package du JDK {./ov¿г D ev e lo p m en t K it), qui propose un
ensemble d’outils de création d’applications graphiques, c’est-à-dire d’applications dont le
mode de communication avec l’utilisateur s’établit à travers des éléments graphiques, tels que
boutons, menus, fenêtres, etc.

> Éditions EyroHes 349

partie B° 3 Outils et lechnlgucs oriepiés oblel |

Remarque Notre objectif n’est pas de décrire l’intégralité de la bibliothèque AWT mais de présenter au lec­
teur un certain nombre d’exemples afin de lui donner une bonne vision de l’utilisation de ces
outils, ainsi qu’une certaine méthodologie.

Pour cela, nous reprenons l’exemple du sapin de Noël décoré, décrit à la section « Les
tableaux à deux dimensions » du chapitre 9 , « Collectionner un nombre fixe d’objets ». Cette
fois, le sapin n’est plus affiché à l’aide de simples caractères mais avec des composants
graphiques utilisant les méthodes prédéfinies de la bibliothèque AWT.

Les fenêtres
L’affichage d’un outil graphique quel qu’il soit (bouton, menu, etc.) est toujours réalisé dans
une fenêtre. Toute application graphique s’exécute à l ’intérieur d’une zone délimitée, appelée
fenêtre principale, dans laquelle sont placés barres d’outils, menus et zones de texte ou de
dessin.

Cette fenêtre délimite le cadre d’exécution du programme, et tout élément se situant en dehors
de la fenêtre fuit partie d’une autre application. La fenêtre possède un bord et une barre de
titre, dans laquelle se situent des boutons de femieture et de mise en icône ou d’agrandisse­
ment, conune illustré à la figure 11-1. Elle peut être déplacée ou agrandie stms que le progranuueur
ait à gérer lui-même ces actions.

En langage Java, la fenêtre principale est définie grâce à la classe Frame. Observons le
programme .suivant, qui décrit comment définir et afficher une Frame.

O
O
i_>

LU

T~{
OfN
@

oi'k_>-Q.OU

Exemple : une fenêtre
in^ort java.awt.*;
public class Fenetre {
public final static int HT = 300;
public final static int LG = 300;
public static void main(String [] arg) {
Frame F = new Frame();
F.setTitle{"Une fenetre!"); // met le titre
F.aetSizo(LG, HT); // taille de la fenêtre
F .setBackground(Color.gray);
F.setVisible(true); // affiche la fenêtre

350 © Editions Eyrotles

chapitre n° 11 Dessiner des oideis

Nous constatons tout d’abord que la toute première instruction d’un programme qui utilise des
objets graphiques est obligatoirement une instruction d’import du package de la bibliothèque
AWT (im port ja v a . a w t. * ;). En effet, comme pour les vecteurs et les dictionnaires, les
outils de la bibliothèque graphique ne sont pas directement connus du compilateur.

«Une fenêtre I HlilE?

F ig u re 11-1 La fenêtre principale délimite le lieu d ’exécution du program m e.
E lle e s t constituée d ’une bordure et d'une barre de titre.

<ü

>■
UJ

tH
O<N
@
JZCT'k->-D.OU

Après avoir défini deux constantes, HT et LG, pour la hauteur et la largeur de la fenêtre, la
fonction main () déclare et construit un objet F de type Frame (Frame F = new
Frame () ;). Comme toute classe, la classe Frame propose un ensemble de méthodes qui
permettent la transformation de ses caractéristiques, notamment les suivantes :
• setTitle (), qui place la chaîne de caractères spécifiée en paramètre dans la barre de

litre de la fenêtre.
• s e t s i 2e (), qui définit la hauteur et la largeur de la fenêtre.
• setB ackground (), qui donne une couleur de fond à la fenêtre.
Cela fait, la fenêtre est définie en mémoire mais n’est pas encore affichée à l'écran. Pour
réaliser cet affichage, la méthode setvisible (), définie par la classe Frame, est appliquée
à l ’objet F. La fenêtre F est visible lorsque le partunètie de la méthode setvisible () vaut
true.
Pour connaître en détail l’ensemble des fonctionnalités de la classe Frame, reportez-vous au
fichier C: \ jd k l . 5 \docs\api\java\aw tV Fram e.htm l, après installation du JDK et de
sa documentation.

Exemple : résultat de Vexécution

Lors de l’exécution de ce programme, la fenêtre ayant pour titre Une fenetre ! apparaît à
l’écran, comme illustré à la figure I l - l .

© Éditions Eyrolles 351

partie B° 3 OutHs et techniaues oheptés objet

Le dessin
Une fois affichée, la fenêtre n'est pas encore directement fonctionnelle, et il n’est pas possible
d’y aflicher un dessin ou d'y écrire un texte. Il n’est pas non plus possible de fermer la fenêtre
en cliquant sur le bouton de fermeture situé dans la barre de titre.

En effet, l'affichage d'un dessin ne peut être réalisé que par l’ intermédiaire d’un objet de type
Canvas.
En outre, pour feniier la fenêtre d’un simple clic sur le bouton approprié, le programme doit
être capable « d’entendre » les clics de la souris. Nous étudions ce concept à la section « Les
événements », en fin de chapitre.

Exemple : dessiner un sapin de Noël
L’objectif de cet exemple est de réaliser I’affichagc d’un sapin décoré en mode graphique.
Fidèles à la méthode de travail qui consiste à découper un problème en plusieurs tâches indé­
pendantes, nous alloti-s réaliser l ’affichage du sapin de Noël étape par étape.

Prenons pour hypothèse qu’un sapin est forme de triangles, disposés à l’écran de façon à ce
que leur juxtaposition réalise une forme de sapin. Nous placerons ensuite la décoration du
sapin en modifiant la couleur de certains triangles.

Nous devons concevoir dans un premier temps, un programme qui dessine un simple triangle
de couleur verte.

(U

UJ
vatH
O<N
©
s :oi
ClO
U

352

Dessiner un triangle

Pour cela, nous défini.ssons une clas.se Dessin qui hérite de la cla.sse Canvas (class
Dessin extends Canvas). De cette façon, un objet de type Dessin correspond à une
zone d’affichage où. il est possible de de.ssiner des formes géométriques (point, droite,
rectangle, etc.). Examinons attentivement cette classe ;

import j ava.awt.* ;
public class Dessin extends Canvas {
public Dessin() {
setBackground(Color.white);
setForeground(Color.green);
setCursor(new Cursor(Cursor.CROSSHAIR_CURSOR));

}
public void paint (Graphics g) {
new Triangle(g);

}
}

) Éditions Eyroffes

chapitre n° 11 Dessiner des objets

La classe D essin est composée des deux méthodes suivantes ;
• Le constnicteur Dessin (), qui initialise une partie des caractéristiques d\in objet Canvas,

à savoir :
- La couleur de fond. La méthode s etB ackground (C olor .w h ite) place la couleur

blanche en fond de la zone de dessin (Canvas).
- La couleur d’avant-plan. La méthode setForeground(Color.green) assigne la

couleur verte aux formes géométriques dessinées dans la zone de dessin.
- Le curseur. La méthode setCursor (new Cursor (Cursor. CROSSHAIR_CURSOR))

affiche un curseur en forme de croix lorsque le curseur de la souris se situe dans la
zone de dessin.

• La méthode paint(), qui est une méthode prédéfinie de la cla-sse Canvas. Cette méthode
est appelée par l’ interpréteur dès qu’il lui est nécessaire d’afficher un objet graphique. Elle
est appelée lors de l’affichage de la fenêtre principale ou lorsque cette dernière réapptuait,
après avoir été partiellement ou totalement cachée par une autre fenêtre.

La méthode paint () utilise en paramètre un objet g de type Graphics de façon à obtenir
des informations sur le contexte graphique défini par l'application.

Remarque Le contexte graphique est l’ensemble des informations utiles à l’affichage d’un objet. Par exem­
ple, la couleur et la forme des caractères (fonte) font partie du contexte graphique.

iJ)

>-
LU

T~{
OfN
@
JZgi'k_
Q.OU

Ainsi, lorsque l’iiiteipréteur affiche une fenêtre, il transmet à la méthode p a in t (), par
l’ intermédiaire du paramètre g, toutes les caractéristiques de l’affichage. En particulier, il lui
transmet sa couleur d’avant-plan, initialisée à c o lo r .g r e e n dans le constructeur
De s s i n ().
Pour finir, l’exécution de la méthode p a in t () réalise l’affichage du triangle grâce à l’appel
du constructeur de la classe T r ia n g le (new T ria n g le (g)), dont voici la description :

import java.awt.*;
public class Triangle {
private int centrex = Fenetre.LG/2;
private int centreY = Fenetre.HT/2;
private int [] xPoints = [centreX, centreX + 10, centreX - 10);
private int [] yPoints = {centreY - 10, centreY -i- 10, centreY +

10] ;
int nPoints = 3 ;
public Triangle(Graphics g) {
g.fillPolygon(»Points, yPoints, nPoints);

}
]

© Éditions Eyrolles 353

partie B° 3 Ousts el lechnlaues orteatés oblel

Les données de la dasse T r ia n g le correspondent à deux tableaux d’entiers définissant les
sommets d’un triangle centré, comme illustré à la figure 11-2 .

Un triangle №iIE3|

F igure 1 1 - 2 Le triangte est construit à partir d es som m ets A, B e t c, dont les coordonnées
sont calculées p a r rapport à l ’origine de la zone de dessin située en haut et à gauche.

Le sommet A est défini par le couple de coordonnées (x P o in ts [0] , y p o in ts [0]). le
sommet B par (xPoints [1] , yPoints [1]) et C par (xPoints [2] , yPoints [2]).
Les tableaux définissent ainsi les sommets d’un polygone (tnangle), centré par rapport à la fenêtre
principale de rapplication.

Remarque Les coordonnées des sommets sont définies par rapport à l’origine de l’objet canvas, laquelle
est située par détaul dans le coin supérieur gauche de cet objet.

L'affichage du triangle est réalisé grâce à la méthode f illPolygon (xPoints, yPoints,
nPoints) , qui remplit de couleur le polygone spécifié en paramètre. La couleur de remplis­
sage est déterminée par rintcrraédiairc de l’objet g sur lequel la méthode est appliquée.

<D

LU
VûtH
O<N
©
s :oi
ClO
U

354

L’application Fendre
Sans modification de l’application Fenetre, telle que définie à la section précédente de ce
chapitre (voir « Les fenêtres »), aucun triangle n’apparaît. En effet, avant d’exécuter le
programme, nous devons ajouter à la fenêtre le composant Dessin, de sorte que l’application
puisse associer l ’objet de type Canvas à la Frame F. Pour cela, il suffit d'ajouter l’instniction
F . add (new Dessin ()), connue l’illustre l’extrait de programme suivant :

public class Fenetre {
//...
Frame F = new Frame();
F.setTitle("Un triangle");

© Éditions Eyrolles

cliaiiitre 1° 11 Dessiner des oideis

if)(U

LU
v£itH
O<N
@
JZgi
'l.>■
ClOU

//...
F .add(new Dessin());
F .setvisible(true); // affiche la fenêtre

}
}

La méthode add () ajoute un composant graphique à la fenêtre principale. Ce composant est
défini par la classe Dessin. Une fois F affichée, grâce à la méthode setvisible (), la
méthode paint () est exécutée automatiquement, et le triangle s’affiche.

La construction du sapin
Sachant maintenant afficher un simple triangle, nous pouvons construire le sapin par juxtapo­
sition d’un ensemble de triangles. Pour réaliser le bon positionnement des triangles, utilisons
la technique développée à la section «Les tableaux à deux dimensions» du chapitre9 ,
« Collectionner un nombre fixe d’objets ». Analysons la classe Arbre, qui reprend ce
procédé ;

import java.awt.* ;
public class Arbre {
private Int [][] sapin ;
private Color décoration;
public Arbre(int ni, Color c) {
int ne = 2*nl-l;
décoration = c;
sapin = new int[nlj [ne];
int milieu = sapin[0].length/2 ;
for (int j = 0 ; j c ni ; j++)

for (int i = -j ; i <= j ; i++)
Il sapin! j] [milieu+i] = (int] (5*Math.random()+l) ;

}
{

{

public void dessine(Graphics g)
Color Vert = Color.green,■
for (int i = 0 ; i < sapin.length; i++) {

for [int j = 0 ; j < sapin[0].length; j++)
switch(sapin[i][j]) {

case 1 : new Triangle(i, j, g, décoration);
break;

2 : Vert = Vert.brighter();
new Triangle(i, j, g. Vert);
break;

3 : Vert = Vert.darker 0 ;
new Triangle(i, j, g. Vert);
break ;

case

case

© Éditions EyroUes 355

partie B° 3 Outils el techPiaues oiiepiés lAlet

case 4 ; Vert = Vert.brighter[);
new Triangle{i, j, g, Vert);
break;

case 5 : Vert = Vert.darker();
new Triangle{i, j, g. Vert);
break;

)

La classe Arbre est çompose'e de deux données, le tableau d’entiers à deux dimensions
sa p in et la couleur d é c o ra tio n . Elle comporte en outre les deux méthodes .suivantes :
• Le constructeur Arbre (), qui initialise la couleur de la d é c o ra tio n , et le tableau

sap in , qui utilise la même technique que le sapin affiché en caractères graphiques. Les
paramètres du constructeur rendent possible la création de sapins de taille et de couleur
différentes,

m La méthode dessine () qui, eu parcourant le tableau sapin, crée un triangle à l’aide du
constructeur de la classe Triangle pour toute valeur sapin [i] [j] différente de 0 .
Grâce aux paramètres du nouveau constructeur Triangle (), le triangle est affiché à
l’écran eu fonction de sa position dans le tableau (indices i et j) et de la valeur du tableau
(s a p in l i] [j]).

Les méthodes darker () et b rig h ter () , permettent de foncer ou d’éclaircir la couleur sur
laquelle la méthode est appliquée. Grâce à ces méthodes, le sapin n’apparaît pas d’un vert
uniforme.

O
O
l_>

LU

T~{
0 fN
@
.1-1x:01'k_>Q.OU

356

Les paramètres du constructeur de la classe Triangle sont donc modifiés de façon à ne plus
afficher un seul triangle vert au centre de la fenêtre mais un triangle d’une couleur et d’une
position données. Pour réaliser cela, te constructeur est défini avec un ensemble de paramètres
caractérisant la position en x et y à l’écran, ain.si que la couleur d’affichage du triangle.
Examinons cette modification dans la classe Triangle ci-dessous :

iffiport j ava, awt. * ;
public class Triangle {
private int pX - Fenetre.LG/2-50;
private int pY = Fenetre.HT/2-50;
private int [] xPoints = (0, 10, -10);
private int [] yPoints = {-10, 10, 10};
private int nPoints = S.-
public Triangle[int lig, int col, Graphics g. Color c) {

© Éditions Eyrofles

chaoHre я° 11 Dessiner des oideis

for (int i = 0; i < nPoints; i++) {
xPoints[i] = xPoints[i]+(5*col) + pX;
yPoints[i] = yPoints[i]+ (15*lig) + pY;

}
g .setColor(c);
g.fillPolygon(xPoints, yPoints, nPoints);

}

Chaque triangle uffiehé ne se trouve plus au centre de la fenêtre niais à une position spécifiée
en paramètre. Cette position est détemiinée par les éléments suivants :
* un point de référence (pX, pY) délini en fonction de la taille de la fenêtre ;
• la position (i , j) du triangle dans le tableau sapin.
Ces valeurs sont transmises au constructeur grâce aux paramètres c o l et lig. Ces valeurs
étant connues, les sommets du polygone sont calculés de façon à afficher ce dernier au bon
endroit à l’écran. Comme tous les triangles prennent un certain espace en hauteur et en largeur,
il est nécessaire d’appliquer un coefficient (5 et 10) aux indices lig et c o l pour que chaque
triangle ne se supeipose pas trop à ses voisins.

(¡Й Щ И

R é p o n d

Que se passe-t-il si l'on initialise les variables p x et py à 0 ?

L’affichage d’un élément graphique est réalisé par rapport à un point d’origine placé conven­
tionnellement en haut à gauche de la fenêtre. Le point de référence (pX, pY) permet de
déplacer cette origine au centre de la fenêtre. En les initialisant à 0, le sapin ne s ’affiche plus
au centre, mais dans le coin supérieur gauche de la fenêtre.

ifi

><Ш
Юr-H
OГМ
@

oi’k_
ClO

U

Le dessin du sapin
Pour que le sapin construit en mémoire .s’affiche, ce dernier doit être placé dans la fenêtre de
dessin. C’est ce que réalise la classe Dessin suivante :

import java.awt.* ;
public class Dessin extends Canvas {
private Color couleur = Color .green
public final static Color couleurFond = Color.white;
private Arbre A;
public Dessin() {
setBackgroundlcouleurFond);
setForeground(couleur) ;

setCursor[new Cursor(Cursor.CROSSHAIR_CURSOR));
A = new ArbrefS, Color.yellow);

I 1

> Editions EyroHes 357

Darde B° 3 Ouffis el lechnlaues oiieniés olilet

public void pa-int {Graphics g) {
A.dessine(g);

I , ’

Cette elitsse reprend en grande partie raiehitecture de la classe Dessin, décrite à la section
« Dessiner un triangle », au début de ce chapitre. Pour remplacer le triangle par un sapin, le
constructeur Dessin () crée en mémoire un objet A de type Arbre. La méthode paint ()
appelle ensuite la méthode dessine () par l’intermédiaire de l ’objet A pour l’afficher à l’écran.

Le (ichier correspondant à l’application Fenetre n’a pas besoin d’être modifié. Lorsque l’appli­
cation est exécutée, une fenêtre s ’affiche avec son composant de type Dessin. Ce dernier crée
en mémoire un objet A de type Arbre, puis la méthode paintO est automatiquement appelée
par l'interpréteur. Le sapin est alors affiché.

G E S n i lO i Pourquoi placer l'instruction A = new Arbre (8, Color .yellow)
Dessin 0 et non dans la méthode paint () ?

dans le constructeur

Linstruction A - new Arbre (8, Color .yellow) ; créé en mémoire les données numéri­
ques qui vont être ensuite utilisées pour être affichées. Il est donc logique de réaliser la créa­
tion en mémoire de valeurs numériques dans un construcieur.
En outre, si l’instruction A - new Arbre (8, Color .yellow) ; est placée dans la méthode
P a in t () , de nouvelles données sont créées à chaque fois que la fenêtre doit être affichée.
Ainsi, déplacer la fenêtre oblige l’interpréteur à afficher la fenêtre à l’endroit désigné. Un sapin
différent du précédent s ’affiche puisque de nouvelles valeurs ont été créées. Ce nouvel affi­
chage est Incorrect puisque le déplacement d’une fenêtre n’entraîne jamais la modification de
son contenu.

U)O
O
1_>

LU

1—IOfN
@
j::gi
>•Q.O
U

358

Les élém ents de com m unication graphique
Outre les composants d’affichage tels que les Frame et les Canvas, la bibliothèque AWT
propose des outils de communication graphique, comme les boutons et les menus.
Ces outils offrent la possibilité d’écrire des applications munies d'une interface graphique
réellement interactive. L’utilisateur manipule directement les objets proposés par l’interface,
et cette dernière réagit en fonction des actions de l’utilisateur. Puisqu’il n’est pas possible de
savoir à l ’avance quel objet va être manipulé, chaque composant doit être programme de façon
à réagir directement aux manipulations de Tutilisateur. Chaque manipulation est considérée
comme un événement, auquel est associé un traitement, c’est-à-dire une action.
Afin d’étudier ces différents concepts, nous allons améliorer l’applicalion du sapin de Noël en
y insérant deux boutons : un premier bouton pour afficher un sapin avec de nouvelles décorations
et un second pour quitter l ’application.

© Éditions EyroHes

clmiHra 1° 11 Dessiner des oWeis

Les boutons
Les boutons sont les composants de conuiuiiiication les plus utilisés pour créer des interfaces
graphiques. Grâce à eux, par un simple clic, l ’utilisateur valide son souhait de voir réaliser le
traitement proposé par le bouton.
Les boutons sont définis dans lu bibliothèque AWT par la classe Button. Pour afficher un
bouton, il suffit de l’ajouter à une fenêtre, comme nous l’avons déjà fait pour dessiner un objet
Canvas. Examinons la classe F en etre , dans laquelle nous allons insérer deux boutons :

import java.awt.*;
public class Fenetre {
public final static int HT = 300;
public final static int LG = 300;
public static void m a i n (String [] arg) {
Frame F = new Frame();

I / / ...
F,add(new Dassin(});
F.addfnew Button!"Nouveau"));
F.add(new Button("Quitter"));
F .setvisible(t r u e);

II ^}
Dans cet exemple, deux boutons, portant les noms "Q uitter" et "Nouveau", sont ajoutés à
la fenêtre F grâce à la méthode ad d {}. Lorsque le programme est exécuté, l’affichage résultant
esl celui illustré à la figure 11-3 .
Chaque composant (Canvas et B utton) est ajouté à la fenêtre, sans que soient spécifiés ni sa
position, ni sa taille. Dans cette situation, l’ interpréteur affiche les composants en les superpo­
sant dans leur ordre d’arrivée. Le dernier bouton, " Q uitter" , cache par conséquent le
composant D essin ainsi que le bouton Nouveau.

<D

LU
Vû
tH
O<N
©

oi
ClO
U

F ig u re 11-3 Les com posants graphiques s'affichent en s e superposant les uns aux autres.
C'est pourquoi le dernier bouton cache les autres composants.

© Éditions Eyrolles 359

partie B° 3 Oufs et leclmlgues orleniés oblel |

Les conteneurs
Pour corriger celle erreur, il convient, lorsque vous souhaitez afficher plusieurs composants
graphiques, de placer ces derniers à l'intérieur d’un conteneur (en anglais c o n ta in e r) .

rÜHilHIi'iJlld Un conteneur est une sorte de boîte qui contient tous les éléments de communication utilisés
dans l’application. La plupart des boîtes à outils proposées dans les logiciels récents sont des
conteneurs. Notez que seules les Frame ne peuvent être placées dans un conteneur.

Un conteneur est défini par la classe Panel du package java.awt. Examinons comment
VutÜiser dan.s le programme suivant :

import java.awt.*;
public class DesBoutons extends Psinel {
public DesBoutons() {
// initialisation
setBackground(Color.lightGray);
// Les boutons
Button bNouveau = new Button ("Nouveau");
t h i s . add<bHouveau);
Button toQuitter = new Button ("Quitter");

I this.add(bQuitter);

}

La clas.se DesBoutons est délinie comme classe héritant de la classe Panel (DesBoutons
extends Panel) . Elle est composée d’un constructeur qui crée en mémoire deux boutons
bNouveau et bQuitter, et les ajoute ensuite au conteneur grâce à la méthode add(). Par
défaut, les boutons sont affichés au centre du Panel par ordre d’arrivée.

Remamue

d)

L’application du terme th is aux méthodes add() est facultatif. Ce terme indique à l’interpré­
teur qu'il doit ajouter ces objets (les boutons) à l’objet qu’il est en train de construire, c’est-à-
dire au Panel nommé DesBoutons. L’expression th is représente l’objet qui se construit en
mémoire.

LJJ

tH
O<N
©

01
ClO
U

360

Une fois défini, le conteneur doit être ajouté à la fenêtre. Pour éviter toute superposition du
conteneur à l’objet Canvas, il est possible d’indiquer à l’interpréteur comment afficher les
éléments les uns par rapport aux autres. Utilisons à cette fin les termes "South", "North",
"Center", "East" el "West " en paramètre de la méthode add ().

© Éditions Eyrolles

chaiiHfe n° 11 Dessiner des oideis

Le programme F en etre d -dessous utilise celte technique pour al'licher correctement les deux
boutons :

I import j av a .awt.* ;
public class Fenetre{

// . .

public static void main(String [] arg) {
Frame F = new Frame();
// . .

F.addinew Dessin(), "Center");
F .add(new DesBoutons(), "South"};
F .setvisible(true) ;

}
)

Grâce aux paramètres "Center" et "South", les composants s’affichent correctement dans
la fenêtre de dessin, au-dessus de la boite à boutons, comme illustré à la iigure 11-4 .

Notre application possède maintenant deux boutons. Pourtant, lorsque riitilisateur clique sur
run ou l'autre de ces boutons, rien ne se passe; l’affichage de nouveaux sapins n’est pas
effectué, et il n’est pas non plu.s possible de quitter l’application en cliquant sur le bouton
"Q u itte r" .

C’est qu’il ne suffit pas d’afficher un bouton avec un texte eorrespondant à l’action souhaitée
pour voir cette action se réaliser. La classe Button ne fait que définir les attributs graphiques
des boutons. Pour associer un bouton à une action, il faut encore gérer les événements.

ifiO
O
>

LU

1— IOfN
@
j : :
g i
>•ClOU

F ig u re 11-4 Une fois la position des com posants définie p a r rapport aux Pords de la fenêtre principale,
chaque com posant s'affiche correctement.

) Éditions Eyrolles 361

Darde B° 3 ODflts ei tecliDlaues orieniés iriiiet

les événements
En langage Java, la gestion des événements est réalisée par T intermédiaire d’objets spécifi­
ques, appelés écouteurs (en anglais l i s t e n e r) . De façon simplifiée, on peut dire que, lorsque
rutilisateur clique sur un bouton ou sur une commande de menu, le composant concerné émet
un événement à l’attention de l’écouteur.
Le traitement de cet événement est réalisé par l’écouteur d’événement (Event l i s t e n e r) et
non pas par le composant lui-même. Le langage Java gère les événements en suivant un
modèle dit « par délégation » (en anglais d e l e g a t i o n m o d e l) , le traitement de l ’événement étant
délégué à un autre composant que celui qui l’a perçu.

Les types d’événements
Chaque composant graphique émet un événement propre à sa classe, et il existe donc plusieurs
types d’événements. On distingue les « événements de bas niveau » et les « événements de
haut niveau ».

Événements de bas niveau
Les événements de bas niveau sont les événements créés à partir de la souris, du clavier ou
d’une fenêtre. Le tableau suivant résume les types d’événements de bas niveau les plus utilisés.

i/id)

>-
LU
CO
O
fN

@

CT'k->-D.O
U

É c o u te u r C o m p o rte m e n t à p ro g ra m m e r

m o u s e P r e s s e d (M o u s e E v e n t) A p p e lé lo rs d ’u n e
p re s s io n s u r un b o u to n d e
la so u ris .

M o u s e L i s t e n e r

m o u s e R e 1 e a s e d (M o u s e E v e n t) A p p e lé lo rs q u ’un b o u to n
d e la s o u ris e s t re lâ c h é .

é c o u te le s é v é n e m e n ts
liés à la so u ris .

m o u s e E x i t e d (M o u s e E v e n t) A p p e lé lo rs q u e la s o u ris
s o rt d e la fe n ê tre .

m o u s e E n t e r e d (M o u s e E v e n t) A p p e lé lo rs q u e la s o u ris
e n tre d a n s la fe n ê tre .

m o u s e C l i c k e d (M o u s e E v e n t) A p p e lé lo rs d ’u n s im p le
c lic d e so u ris .

M o u s e M o t i o n L i s t e n e r
é c o u te les é v é n e m e n ts liés

m o u s e D r a g g e d (M o u s e E v e n t) A p p e lé lo rs q u e la s o u ris
e s t d é p la c é e , b o u to n
e n fo n c é .

à la s o u ris lo rs q u ’e lle s e
d é p la c e .

m o u s e M o v e d (M o u s e E v e n t) A p p e lé lo rs q u e la so u ris
e s t d é p la c é e , b o u to n
re lâ c h é .

362 © Editions EyroUes

clrapKre H° 11 Dessiner des oideis

IfJ i ndo wL i s t e ne r
écoute les événements
liés à la fenêtre.

windowclosing(WindowEvent) Appelé lorsque la fenêtre
est en train de se fermer.

windowClosed(WindowEvent) Appelé lorsque la fenêtre
est fermée.

windowOpened(WindowEvent) Appelé lors de l’ouverture
de la fenêtre.

windowiconified(WindowEvent) Appelé lorsque la fenêtre
est mise sous forme
d’icône.

windowDeiconified(WindowEvent1 Appelé lorsque ficône est
agrandie à la taille de la
fenêtre.

windowActived(WindowEvent) Appelé lorsque la fenêtre
est activée et reçoit les
événements du clavier.

windowDeactived(WindowEvent) Appelé lorsque la fenêtre
est désactivée et perd les
événements du davier.

PDur gérer un événement lié à la souris, par exemple, il convient de définir un écouteur de type
M ouseListener et de décrire le comportement de l’application pour chaque méthode associée à
cet écouteur.

Événements de haut niveau

Les événements de haut niveau sort liés, non plus aux comportements du compo.sant
graphique, mais à ses actions possibles. Ainsi, un clic de souris sur un bouton ne génère plus
un événement spécifique du composant mais un comportement défini par le programmeur.

Écouteur Comportement à programmer

A ctionListener
écoute les événements
d’action.

actionPerform ed(ActionEvent) Appelé lorsqu’une
action est émise.

(D

>-
LU
KOrHOfN
@
jT01
ClO
U

Ainsi, une action est associée à un bouton en définissant un écouteur d’action qui, par l’inter­
médiaire de la méthode a c tio n P e rfo rm e d (), réalise l’action souhaitée.

Exemple ; associer un bouton à une action
Lorsque l’utilisateur clique sur les boutons "Nouveau" ou "Quitter" de l’application
développée dans ce chapitre, il souhaite voir se réaliser deux actions distinctes ; soit l’affi­
chage d’un nouveau sapin, soit la fermeture de la fenêtre.

© Éditions EyroUes 363

partie B° 3 Outils ei lechniaues oiieniés lAlet

Chaque die de souris sur un bouton est associé à une action spécifique, qui utilise un événe­
ment de liant niveau. Par conséquent, chaque bouton doit être muni d’iiii écouteur d’action.
Cela est réalisé dans la classe DesBoutons, coitmie ci-dessous :

import java,awt,* ;
import j a.va. awt. event .* f
public class DesBoutons extends Panel {
public DesBoutons[Dessin d) {

//...
Button bNouveau = new Button ("Nouveau");
Button bQuitter - new Button ("Quitter");
bNouveau. aââActionliistener(neiw GestionAction(1, d)) ;
this.a d d [bWouveau);
bQuitter.adâActionliistenertnew GestionAction{2, d]);

I this,a d d (bQuitter);
}

)

Remarque Linstruction d'import (import java.awt.event.*;) indique au compilateur le package où
sont définies les méthodes de gestion des événements utilisées dans la classe.

ifiO
O
l_>

LU
KOrHOfN
@
u-t
JZCT'k—>-Q.OU

364

La mise en place des écouteurs d’actions est réalisée grâce à la méthode addAction
Listener().
Le constructeur GestionAction{), placé en paramètre de la méthode addAction
Listener (), permet de préciser quel comportement doit adopter rapplicalion en fonction
du bouton qui émet l ’événement. En effet, les paramètres de ce constructeur transmettent à la
fois une valeur entière différente (1 ou 2) suivant le bouton émetteur (bNouveau ou
bQuitter) et l’adresse de l’objet (d) sur lequel est dessiné le sapin. Examinons conimcnt
sont gérés ces paramètres dans la classe GestionAction :
import java.awt.*;
import java.awt.e v e n t ;
public class GestionAction implements ActionListener {
private int n;
private Dessin d;
public GestionAction! int n, Dessin d) (
this.n = n;
this.d = d;

}
public void actionPerformed(ActionEvent e){
switch (n) {

case 1 : d.nouveau!);

© Éditions Eyrotles

chapitre n° 11 Dessiner des oblets

break ;
case 2 : System.exit(0);

break ;

ô
>

LU
LOr-H
0 fN
@
sz01'k_>-Q.OU

}

La classe GestionAction fait appel à plusieurs notions importantes, développées dans les
sections qui suivent.

Le terme implements
La classe GestionAction implémente la classe ActionListener (GestionAction
implements ActionListener) ; elle n'en hérite pas.
Comme nous avons pu l’observer a la section « Les interfaces » du chapitre 8 « Les principes
du concept objet », les méthodes définies par un l i s t e n e r ne peuvent pas être prédéfinies
par le langage Java. Une action, c’est-à-dire un comportement associé à un bouton, ne peut
être décrite que par le programmeur, selon la façon dont il conçoit son application. On dit alors
que la clas.se ActionListener, ainsi que tous les autres l i s t e n e r , est une interface qui
définit simplement les différents modes de comportement.
Lorsqu’une classe dérive d’une interface, le terme im plem ents doit être utilisé au lieu du
terme extend s.
De plus, lorsqu’une classe implémente une interface, le compilateur Java exige de décrire
l’ intégralité des méthodes définies par l’interface. En effet, dans le cas où l’une des méthodes
n’est pas définie, le compilateur indique une erreur en précisant le nom de la méthode manquante.
Dans notre exemple, l’ interfaee A c t io n L is te n e r ne définit qu’une .seule méthode
(actio n P erfo rm ed [)). Nous n’avons donc aucune difficulté à décrire l’intégralité des
méthodes proptrsées par cette interface.

Le terme this
La classe G e s tio n A c tio n possède deux variables d’instance n et d, de façon à mémoriser la
valeur respective transmise par les boutons, ainsi que l’adresse de la zone graphique où le
sapin est dessiné. Ces valeurs sont initialisées pai’ l’intermédiaire des ptuamètres du constructeur
GestionAction {} qui sont également nommés n et d.
Pour éviter toute confusion entre les données de la classe et les paramètres du constructeur, il
est nécessaire d’employer le terme th is . Ce terme appliqué à n et d, précise au compilateur
qu’il s’agit de.s variables de l’instance qui se construit. Sans th is , les mêmes noms de variables
correspondraient aux paramètres du constructeur.

> Editions Eyrolles 365

Darde B° 3 Ouffis el lechniaues oileniés iriilet

La méthode actionPerformedO
Une fois les données initialisées, la méthcfde actionPerformed(} est automatiquement
exécutée par l ’interpréteur, lorsqu’une action est émise par l’un des boutons suite à un clic de
rutilisateur. Cette dernière réalise alors, suivant la valeur iraiiLsraise au constructeur (1 ou 2),
soit la sortie du programme, soit l'affichage d’un nouveau sapin, grâce à la me'thode
nouveau () (à insérer dans la classe Dessin) décrite ci-dessous :

public void nouveau!) {
A = new Arbre(6 , Color.red);

I repaint();
}

A l’exécution de cette méthode, l’objet A est recalculé à l’aide du constructeur Arbre ().
Ensuite, la méthode repaint () efface automatiquement la zone d’affichage d sur laquelle la
méthode e.st appliquée et appelle la méthode paint {) définie dans la classe Dessin.

<u

>-LU
tHOfN
@
szCT
' lI

ClO
U

366

La donnée Dessin d
Le bouton bNouveau a une incidence sur la zone de dessin puisqu’un nouveau sapin doit être
affiché dims cette zone suite à un clic sur le bouton. Cet effet est réîüisé ptu le biais de la méthode
nouveau {), appliquée à l ’objet dde type Dessin dans la tnéthode actionPerf ormedf).
L’objet d est déclaré comme variable d’instance de la classe GestionAction. Tl contient
l’adresse de la zone d’affichage créée dans l’application Fenetre, conune l’ illustre l’extrait
de programme suivant ;

public class Fenetre {
//...
public static void main(String [] arg) {
Frame F = new Frame();
//...
Dessin page = new Dessinf);
F.addlpage, "Center");
F.addfnew DesBoutons(page), "South");

}
)

La constmelion de l’objet page a pour résultat de stocker en mémoire l’adresse du composant
graphique de type Canvas. Une fois cette adresse transmise au constructeur de la classe
DesBoutons, ce dernier peut transmettre à son tour l'adresse de l ’objet page au constructeur
de la classe GestionAction par l’ intermédiaire du paramètre formel d de type Dessin.
Grâce à la transmission de l’adresse de la zone graphique en paramètre des constructeurs, les
nouveaux sapins s’affichent dans le composant graphique approprié.

© Éditions Eyrolles

cliaiiKra n° 11 Dessiner des oideis

Exemple : ferm er une fenêtre
Paur feimer une fenêtre en cliquant directement sur l’icône de fermeture de la fenêtre située
dans la barre de litre, révénenriem « clic sur le boulon de fermeture de la fenêtre » doit être
associé à l ’instmction qui permet de stopper l'exécution du programme. Comme 1e précise le
tableau de description des écouteurs, l ’événement « clic sur le bouton de fermeture de la
fenêtre » est un événement de bas niveau, géré par l’écouteur W indow Listener.
En effet, lorscjue Tutilisateur ferme la fenêtre par Tintermédiaire de Ticône appropriée, ce dernier
émet un événement de fermeture de fenêtre. En recevant cet événement, l’écouteurdes événements
de fenêtre (W indowListener) exécute automatiquement la mélbodc w indow closing {).
Par conséquent, le programme qui réalise la fermeture d’une fenêtre doit effectuer les deux
opérations suivantes :
• placer un écouteur d’cvcnenient de fenêtre dans le composant graphique autorisé à être

fermé de la sorte ;
• programmer la méthode w indow closing [> en y insérant P instruction System , e x i t (0 >

de façon à .sortir de l’application.

Placer un écouteur d’événement de fenêtre
Le premier point est réalisé dans la classe Fenetre de la façon suivante :

import java.awt.*;
public class Fenetre {

// . .

public static void main(String [] arg) {
Frame F = new Frame () -,

! ! ...
F .addWindowListener(new G estio n F en etre ()) ;
F . s e t v i s i b l e (t r u e);

}
}

Une fois la méthexie addW indowListener () appliquée à la fenêtre F, cette dernière est à
même d’écouter les événements émis par ses propres composants.

l/><D

HJ

tHOfN
©
rroi
>Q.OU

Programmer la méthode windowClosingO
Le second point est résolu grâce à l ’appel du constructeur GestionFenetre () en paramètre
de la méthode addWindowListener (), ce dernier définissant le comportement adopté en
face de l’événement entendu. Examinons plus attentivement la classe GestionFenetre ;
import j av a .aw t .event.* ;
public class GestionFenetre extends WindowAdapter{
public void windowClosing(WindowEvent e){

© Editions Eyroltes 367

partie B° 3 Optits et lechnlaues orieniés idilet

System,exit(0);

Remarque La classe GestionFenetre hérite de la classe WindowAdapter au lieu d’implémenter l’inter­
face WindowListener.

En effet, l ’écouteur W indow L istener possède sept comportements spécifiques (voir précé­
demment le tableau des événements de bas niveau). Si nous implémentons directement cette
interface, comme nous l’avons fait pour A c tio n L is te n e r , nous sommes contraints par le
compilateur Java à définir l’ensenible des sept comportements.
Or, pour fermer la fenêtre, un seul contportement est à retenir ; celui défini par la méthode
windowClosing(), En utilisant un Adapter, plutôt qu’un Listener, nous n’avons plus
l’obligation de définir l ’intégralité des sept comportements mais uniquement la ou les
méthodes de notre choix. Pour notre exemple, seule la méthode vrindowClosing () nous
intére.sse. C’est pourquoi elle seule e.st décrite dans la clas.se GestionFenetre.
Ainsi, lorsque l'utilisateur clique .sur l'icône de fermeture de la fenêtre, un événement de ferme­
ture de fenêtre est émis. L’événement est capté et traité par l’écouteur WindowListener, qui
exécute automatiquement la méthode windowClosing {). Celle-ci termine rexéculion de
l ’application grâce à rinstriiction System. exit (0).

<D

>•
LU
KOrHOfN
@
sz

>.Q.O
U

Quelques principes
L’analyse des exemples précédents montre que la gestion d’un événement quel qu’il soit passe
par les troi.s étapes suivantes :
• Déterminer le composant qui émet l’événement et lui associer un écouteur. Cette asscKÎation

est réalisée par une méthode ayant pour nom addxxxListener (), où xxx représente le
composant émetteur (Window, Mouse, etc.),

• Créer une classe gestionDelEvenement qui implémente l’interface xxxListener
(implements) ou dérive de la classe xxxAdapter (extends), selon que vous souhaitiez
traiter tout ou partie des méthodes proposées par l’écouteur.

• Développer les méthodes souhaitées, c’est-â-dire décrire les in.structions composant les
méthodes définies par l'interface utilisée.

De l’AWT à Swing

368

La bibliothèque graphique Swing a été introduite à partir de la version 1.2 du JDK. Les
composants de cette bibliothèque diffèrent légèrement des composants de la bibliothèque

© Editions Eyrolles

chapHre n° 11 Dessiner des oideis

AWT. Ils ont l’avantage d’être écrits, pour la plus grande part, en langage Java et non à l’aide
des fonctions internes de Fordinateur. Cette particularité fait que l’on peut, par exemple, créer
ses propres boutons ou modifier le style de Finterlace, sans avoir à redémarrer le programme.

En effet, lorsqu’un bouton de la bibliothèque Swing est afbché à l’écran, il est entièrement
dessiné par l’interpréteur Java et non par le système de l’ordinateur. Par conséquent, un
programme fonctionnant sur une station Unix peut dessiner un bouton à la façon Macintosh en
utilisant la méthode Java appropriée.

Par ailleurs, les composants graphiques de la bibliothèque Swing utilisent très peu de place
mémoire. Ils sont appelés composants légers. À l’opposé, il existe des composants lourds
développés à l’aide des fonctions du système dont ils dépendent. Ces composants sont
incontournables puisque in f i n e , un programme doit bien communiquer avec le système de
Fordinateur. Avec la bibliothèque Swing, le nombre de ces composants lourds est très réduit.
Ce sont les fenêtres du type JFrame, JApplet, JDialog et tlWindow.

Remamue Par convention, les objets de la bibliothèque Siving portent le même nom que leurs homolo­
gues de la bibliothèque AWT, précédés de la lettre J, Ainsi l’objet Frame du package AWT
devient JFrame dans le package Swing.

La première fenêtre affichée est un composant qui dépend du système. Elle correspond
toujours à un composant lourd. En revanche, les composants graphiques tels que les boutons,
les menus ou les sous-fenêtres contenus dans cette fenêtre n'ont pas besoin de communiquer
avec le système, il leur suffit de communiquer avec la fenêtre initiale. C’est pourquoi la plus
grande partie des composants utilisés pour construire une interface graphique sont des composants
légers.

Un sapin en Swing
Pour comprendre comment utiliser les composants de la bibliothèque Swing, transformons
tous les objets graphiques de la classe F e n e tre décrite à La section « Exemple : Dessiner un
sapin de Noël » en leur équivalent, dans la bibliothèque Swing.

Ф
O
>Ш
Ю
T~{
0 ГМ
@
Д-1x:01'k_>-Q.O
U

Im classe FenetreSwing
Examinons la nouvelle classe, F enetreSw ing :

in^ort: j avax. swing. * ;

public class FenetreSwing {
public final static int HT = 300 ;
public final static int LG = 300 ;
public static void m a i n (string [] arg) {

> Éditions Eyrolles 369

partie a° 3 Outils et techniaues oheutés obiet

jFrame F = new JPrame("Une Eenetre en Swing") ;
F.setSize(HT, LG) ; // taille de la fenêtre
F.setVisible(true);

}
}

En premier lieu, nous notons la nouvelle instruction d’import du package Swing (im port
ja v a x .s w in g , *;). Sans cette instruction, le compilateur Java ne peut pas comprendre la
déclaration des objets définis par cette bibliothèque.

Remarque Le package Swing a porté plusieurs noms en fonction des différentes versions du JD K. Certai­
nes versions bêta de Java ont porté le nom de java.awt.swing. Aujourd’hui, la convention
adoptée par Sun fait que la bibliothèque Swing est considérée comme une extension au lan­
gage Java, d’où le ’x' {comme extension) de javax, swing.

Ensuite, la fenêtre principale est construite en mémoire grâce à la déclaration de l’objet F de
type JFrame (JFrame F = new JFrame ("Une fenetre en Swing") ;). Le para­
mètre du constructeur JFrame () donne un titre à la fenêtre qui s’affiche à l’appel de la
méthode setVisible, en dernière ligne du programme (F . setVisible (true) ;).
La fenêtre ainsi affichée se présente sous la forme d’une fenêtre classique telle que nous
l’avons déjà vu en section <c Les fenêtres » de ce chapitre.
Cependant, il s’agit d’une JFrame considérée en Swing comme un conteneur de composants
graphiques, c’est-à-dire un objet qui peut contenir d’autres objets graphiques.
Afin d’organiser au mieux les composants qu’elle contient, une JFrame est décomposée en
deux entités : la barre de menus (Menu Bar) et le panneau de contenus (C ontent Pane),
ainsi que le montre la ligure 11,5 .

ifi<D

>-
LU

O
fN

@
JZCT
>-D.O
U

F ig u re 1 1 -5

370

U n e JF ram e e s t co m p o sée d ’une Fram e qui $e d éco m p o se à son tour en une barre
de m en u s (M enu Bar) e t panneau de contenu (Content Pane).

© Editions Eyrotles

chapitre n° i l Dessiner des omets

Une JFrame est donc considérée comme un conteneur de haut niveau se situant à la racine du
panneau de contenus et de la barre de menu, comme le montre la figure 11-6 .

La classe SapinSwing
Uaffichage du sapin s’effectue à Tintérieur du panneau de contenus, comme le montre le code
source suivant :
I' import javax . swing . * ;

public class SapinSwing [
public final static int HT = 300 ;
public final static int LG = 300 ;
public static void m a i n (String [] arg) {
JFrame F = new JFrame("Un sapin Swing") ;
F .setSize (HT, LG) ; // taille de la fenêtre
F.getContentPane().aâd(new DessinSwing(}) ;
F .setVisible(true) ; // affiche la fenêtre

}

Pour afficher le .sapin, nous devons appeler le constructeur de la classe DessinSwing afin de
le créer dans le panneau de contenu de la JFrame. Pour ce faire, nous faisons appel à la
méthode getContentPane {), qui a pour rôle :

• de déterminer les éléments déjà définis dans le panneau de contenus ;

• puis d’ajouter rélément placé en paramètre (new DessinSwing ()) dans le panneau de
contenus.

De cette façon, aucun composant ne peut être omis, ni placé de façon incorrecte.

c l a s s S a p i n S w i n g

JFraKie

I

(U

>Ш
Ю
tHOГч1
@
JC01
ClO
U

1
Conten! Pane Menu Bar

I
c l a s s D & s s i n S w i n g

JPanel

Figure 1 1 - 6 Dan$ Ш hiérarchie des com posants graphiques, ie com posant Jp an el est p lacé dans
le panneau de contenu (Content Pane) grâce à ta méthode getContentPane().add(new DessinSwingQ .

© Éditions Eyrolles 371

parde R° 3 OutHs et techniaues otleetés oblel

La classe DessinSwing
Examinons à présent la classe DessinSwing qui permet de dessiner le sapin dans le panneau
de contenu.

;■ import java.awt.* ;
import javax.swing.* ;
public class DessinSwing extends JPanel {
private Color couleur = Color.green ;
public final static Color couleurFond = Color.white ;
private Arbre A ;
public Dessin() {
setBackground(couleurFond) ;
setForeground(couleur) ;
setCursor(new Cursor(Cursor.CROSSHAIR_CtrRSOR)) ;
A = new Arbre(8 , Color.yellow) ;

{
}
public void paintComponent (Graphics g)
super.paintConiponent (g) ;
A.dessine(g) ;

}
}

La classe DessinSwing hérite de la classe JPanel qui remplace entre autres, la structure
Canvas de la bibliothèque AWT. JPanel est un composant graphique qui a pour avantage de
correspondre à un composant léger. Le JPanel est utilisé pour contenir la plus grande ptutie
des composants graphiques tels que les boutons, tes cases à cocher, etc. 11 a été conçu pour
faciliter le positionnement des composants graphiques qu’il contient.

Remarque La méthode d’affichage du composant n’est plus la méthode paint () utilisée dans la classe
Dessin décrite plus haut au paragraphe « Le dessin du sapin ». En effet, les objets de type
JPanel sont dessinés par la méthode paintComponent ().

Cette méthode fait obligatoirement appel au constructeur de la classe supérieure par l’intermé­
diaire de l’instruction su p er .paintCom ponent (), afin d’afficher les autres composants
éventuellement placés dans le panneau de contenu.

</)<u

LU
LOrH
OfN
@
x:Oi'k_
Q.OU

372

M odifier le modèle de présentation de rin te rfa ce
Nous l'avons écrit au tour début de cette section, l ’intérêt de la bibliothèque Swing est qu’elle
est écrite en Java. La plus grande partie des composants graphiques sont donc affichés par
l'interpréteur Java. Il devient ainsi facile de modifier l’appru-ence (en anglais LwjJt a n d F eet)
d’un bouton ou d’un menu, en cours d’exécution du programme.

© Éditions Eyrotles

chapitre n° 11 Dessiner des omets

se passe-t-il si le constructeur de la classe supérieure super .paintComponent () n’est
. appelé lors de l’affichage du composant Jpanel ?

Ш En omettant l’appel du constructeur de la classe supérieure, l’interpréteur n’est pas à même
de gérer correctement l’affichage du panneau de contenu. En effet, il ne peut savoir quels
composants graphiques ont pu être placés dans la structure ContentPane, en amont ou en
aval de l’appel de la méthode paintComponent ().

Examinons comment réaliser cela, à travers l’exemple suivant :
Tl s’agit d’ajouter un bouton à l’interface créée au paragraphe « Exemple : Associer un bouton
à une action ». Ce nouveau bouton a pour rôle de modifier l’apparence des boutons de l’appli­
cation lorsque Гоп clique dessus.
Pour réaliser cela. nou,s devons :
• Ajouter un nouveau bouton (voir section « La classe DesBoutonsSwing »).
• Associer une action au bouton (voir section « La classe GestionAction »).
• AlTicher les boulons dans la fenêtre principale (voir section « La classe SapinSwing »).

4Л

>-Ш
vû•rH
OГМ
©
JZCT'k->-D.O
U

La classe DesBoutonsSwing
import java.awt.* ;
import j avax. ¡swing. * ;
import java.awt.event.* ;
public class DesBoutonsSwing extends JPanel {

public DesBoutons (Dessin d, JFraitie j) {
setBackground(Color.lightGray) ;
// Les boutons
JButton bPelndre = new JButton ("Nouveau") ;
taPeindre.addActionListener(new GestionAction(1, d, j
this.add(bPeindre) ;
JButton bModèle = new JButton ("Modèle") ;
bModèle.addActionListener(new GestionAction(3, d, j)
this.add(bModèle) ;
JButton taQuitter = new JButton ("Quitter") ;
bQuitter.addActionListener(new GestionAction(2, d, j
this.ad d (bQuitter) ;

) i

)) ;

I }
1

Afin d’afficher les trois boulons en bas de la fenêtre principale, nous allons les placer dans un
conteneur de type JPanel (public class DesBoutonsSwing extends JPanel). De
cette façon, nous n’aurons qu’à placer ensuite ce conteneur dans le panneau de contenu en

© Éditions Eyrolles 373

partie B° 3 Opflts et lechnlaues oiieniés idilet

dessous du conteneur qui alïiche le sapin (voir la classe SapinSw ing ci-dessous et
figure 11.7).

JFrame

F ig u re 1 1 -7 Les trois boutons Nouveau (bPeindre), M odèle (bModèle) et Quitter (bOuitter)
sont p lacés dans un conteneur de type JP anet situé au m êm e niveau que le conteneur qui affiche la

sapin. Ces deux JP an el sont p lacés respectivem ent au sud e t au centre, dans te panneau de contenu.

En Swing, les boutons ne s’appellent plus Button mais JButton,. Ils Ibnctionnent cepen­
dant de la même façon. L’instruction JButton bModèle = new JButton ("Modele") ;
crée en mémoire un bouton portant le nom bModèle.
Une fois créé, il est nécessaire d’associer au bouton un événement grâce à l ’instruction
bModèle . a d d A c tio n L is te n e r (new G e stio n A c tio n {3 , d, j)) ; qui fait appel
au constructeur de la classe G estio n A ctio n .

<u

LU
ua•rH
O<N
@

01
ClO
U

374

Ixi classe GestionAction
La classe définissant toutes les actions as,sociées aux différents boutons doit décrire de quelle façon
l ’apparence des boutons doit être modifiée. Examinons la méthode gestionModèle () qui
est appelée lorsqu’on clique sur le bouton Modèle ;

import java.awt.* ;
import java.awt.event.* ;
import javax.swing.* ;
import j avax.swing.event.* ;
public class GestionAction implements Actionpistener {
private int n ;
private Dessin d ;
private static int modèle = 0 ;
private JFrame j ;
public GestionAction(int n. Dessin d, JFrame j) {
this.n = n ;

© Éditions Eyrolles

chamtre H° 11 Dessiner des oideis

this.d = d ;
this.j = j !

}

OJ
ôL->
LU

T~{
0 fN
@
u-ix :01
>Q.O
U

© Éditions EyroUes

public void actionPerformed(ActionEvent e) {
switch (n) {

case 1 ; d.nouveau() ;
break ;
case 2 ; System.exit(0) ;
break ;
case 3 : gestionModèle() ;
break ;

)
]
private void gestionModèle{) {
String IiAndF = "com.sun.java.swing.piaf.motif.HotifLookAndFeel" ;
try {
switch(modèle) {
case 0 ;
LAndF = "com.sun.java.swing.piaf.motif.MotifLookAndFeel" ;
System.out.println(" Modele Motif ") ;

break ;
case 1 ;
LAndF = "javax.swing.piaf.metal.MetalLookAndFeel" ;
System,out.println(" Modele Metal ") ;

break ;
case 2 ;
LAndF = "javaK.swing.plaf.mac.MacLookAndFeel" ;
System.out.println(" Modele Mac ") ;

break ;
case 3 :
LAndF = “com.sun.java.swing.piaf.windows.WindowsLookAndPeel" ;
System.out.println(" Modele Windows ") ;

break ;
}
UIManager.setLookAndFeel(LAndF) ;
Swingütilities.updateComponentTreeUI(j) ;

]
catch (UnsupportadLookAndFeelElKception ex) {
System.out,println{"Exception ; Modele non disponible") ;

}
catch(IllegalAccessEKception ex) {
System.o u t .println{"Exception ; Modele non accessible") ;

}

375

oartle в° 3 ouffis el leclmiaues oileniés iriilet

catch [classHotFoundEstception ex) {
System.out.println("Exception : Modèle non trouve") ;

}
catch[InstantiationException ex) {
System.out.println("Exception : Modèle non instanciable") ;

}
catch [Eütception ex) [
System.out.println("Exception : Erreur d'execution ") ;

}
modèle+4 ;
modèle = modèle % 4 ;

Il ^
Lorsque Tulilisateur clique sur le bouton Modèle, l ’application affiche l’ensemble de ses
boutons avec une nouvelle apparence.

ЕЙШШШВ Il existe différentes apparences prédéfinies dans le package Swing que l’on trouve dans le
répertoire corn.sun. swing .piaf. Le terme piaf correspond aux initiales de l'expression p lu g ­
g a b le lo o k a n d fe e /qui peut se traduire littéralement par « apparence et sensation en prise
directe » . Ce qui veut dire en français que l’apparence d’un bouton et la sensation réalisée par
la modification de son apparence lors d’un clic sont modifiables « en direct », c’est-à-dire sans
avoir à arrêter l’exécution du programme.

Ainsi, la méthode gestionModèle () mémorise selon la valeur de la variable modèle
remplacement du modèle que l’on souhaite afficher.
Ensuite, rinstriîction UIManager. setLookAndFeel (LAndF) ; fait appel à la méthode
setLookAndFeel () de la classe UIManager afin de modifier le modèle de représentation
des trois boutons. Cette modification est enfin pri.se en compte et affichée grâce à l ’instruction
SwingUtilities.updateComponentTreeUI(j)

nt j i iMi j J l f t j La classe UIManager correspond, comme son nom l’indique, à la classe du gestionnaire des
interfaces utilisateur. Elle regroupe l'ensemble des méthodes de gestion de la présentation
(Look and Feel) des éléments d’une interface graphique.

>-Ш
KOrHOfN
@
JZCT'k—>-Q.OU

376

La modification de l’apparence des boutons peut générer différentes erreurs qui sont détec­
tées et gérées grâce aux mécanismes des instructions try ... ca tch (voir au chapitre 10,
« Collectionner un nombre indéterminé d’objets, la section « Les fichiers d’objets, gérer les
exceptions »}.

© Éditions Eyrolles

chapitre a° i l Dessiner des obléis

La classe SapinSwing
Pour finir, les boutons sont ajoutés à la fenêtre principale comme suit :

import java.awt.* ;
import j avax.swing.* ;

I import java.aw t .event.* ;
public class SapinSwing {
public final static int HT = 300 ;
public final static int LG = 300 ;
public final static int X = 150 ;
public final static int Y = 200 ;

public static void main(String [] arg) {
JFrame F = new JFrame("Un sapin de Noel en Swing") ;

DessinSwing page = new DessinSwing() ;
I F.setBounds(X, Y, HT, LG) ;

F .setBackground(Color.darkGray) ;
F .addWindowListener(new GestionFenetre()) ;
F .getContentPane().add(page, "Center") ;
F.getContentPane().add(new DesBoutonsSwing(page, F), "South")
F.setVisible(true) ;

J

}

Comme pour la bibliothèque AWT, la méthode add() peut posséder deux arguments. Le
premier correspond au composant à ajouter, le second à la place que ce dernier doit prendre
dans le panneau de contenus. Ici, le panneau d'affichage du dessin est placé au centre
(C en te r) alors que les boutons sont affichés en bas (South).

ifi

O
>LU
VûrH
0 (N
@
JZ01
Cl
O
U

Résultat de Vexécution
L’exécution du programme SapinSwing a pour résultat l’affichage de la fenêtre représentée
à la figure 11-8a. L’apparence correspond au piaf par défaut c’est-à-dire le Look and Feel
Metal.
En cliquant sur le bouton Models, la variable modèle est initialisée à 0 et le piaf est mis à
jour et prend l’apparence Motif (voir figure 1 l - 8c).

Le p i a f représenté à la figure 1 l - 8 b correspond au Look and Feel Windows.
Ob.servez que .seule l'apparence des boutons est modifiée, le sapin n’est pas reconstruit.
Il garde le même aspect.

© Éditions Eym iles 377

oartle в° 3 Oiiffls el lechniaues onemes idiiet

|U n s-apin de No e I ад |х]

I Mnri

Figure 11~8b Look and Feel Windows

[Л
оL_>Ш
T~{
0 гм
@
-Г01'k_>ClОU

378 © Editions EyroHes

chaiiitre i° 11 Dessiner des oiifeis

Résumé

L’essentiel des composants graphiques développés par le langage Java est défini dans la biblio­
thèque A W T (A b s tra c t W in d o w in g Toolkit).

Le support principal d ’affichage d ’une application graphique est la Fraitie. Cette dernière est
com posée des élém ents suivants ;

• une barre de titre possédant des boutons pour la ferm eture, l’agrandissem ent et la mise en
icône de la fenêtre ;

• des bords délimitant la zone d’exécution de l’application.

Pour dessiner ou afficher du texte dans une Frame, il convient d’utiliser des objets de type Canvas
ou TextArea. Le contexte graphique définissant les attributs d’affichage, tels que la couleur, le
type de fonte, etc., est géré par la classe Graphics.
Les interfaces graphiques sont construites à l’aide des élém ents de communication graphique
suivants :

• composants graphiques tels que boutons (Button) et m enus ;

• événem ents associant par exemple, un clic de souris sur un bouton à une action.

On distingue les événem ents de haut niveau (un clic est associé à une action) et les événem ents
de bas niveau (un clic sur un composant ém et un événem ent propre à ce composant).

Depuis la version 1.2 du JDK , la bibliothèque Swing est proposée com m e une extension
graphique du langage Java. Les composants Swing ont l’avantage d’être écrits en Java, ce qui les
rend plus légers en term e de mém oire. De plus, cette particularité fait que l'on peut modifier le
style de l’interface sans avoir à redém arrer le program me. Ce m écanism e est réalisé à travers le
concept du piaf {p lu g g a b le l o o k a n d te e l) .

Par convention, les objets de la bibliothèque Swing portent le m êm e nom que leurs homologues
de la bibliothèque AWT, précédés de la lettre J . Ainsi l’objet Frame du package A W T devient
JFrame dans le package Swing.

Ifi

>-LU
KOrHOfN
@
JZCT'k—>-ClOU

> Éditions Eyrolles 379

partie B° 3 ouils et techniaues orfentés objet

Exercices

L’objectif des exercices 11.1 à 11.4 est d’améliorer le programme réalisé tout au long de ce
chapitre. L'interface graphique à construire propose une case à cocher (en anglais check box)
pemiettant de répttndre aux conditions suivantes :
• Si la case T a i l i e f ix e est cochée, les nouveaux sapins de taille constante sont dessinés

avec une guirlande formée de cercles de différentes couleurs.
• Si la ca.se n’est pas cochée, les nouveaux sapins sont également dessinés mais avec une

taille variable.

s a p in de N d c I W i» i p 3 j [^ U n s a p in de N o ë l H O I 3 I

' mé
» y . -
' / /. ..'̂

r~ Ta ille Fk s II r tëa ffm ij.j | Sg itie t] P " .^ a ille Fi*e O uaie i] j

Figure 1 1 - 9 L’application propose une ca se à cocher pour déterm iner si la taille
des nouveaux sapins doit être fixe ou non.

Pour construire cette application, nous vous proposons de suivre les différentes étapes décrites
ci-dessous.

Comprendre les techniaues d 'affichage graphique

O
Oi_>LU
T~{
0 iN
©
s :01
Cl
O
U

fîiiHiHÜKd 11.1 Pour afficher un sapin de taille différente chaque fois que l’utilisateur clique sur le bouton Nouveau :
a. Recherchez dans l’ensemble des classes de l’application F e n e tre , la méthode associée au clic

sur le boulon N ouveau.
b. Modifiez cette méthode de façon à ce que l’arbre se construise avec une taille aléatoire, variant

entre 3 et 10. par exemple.
c. Une fois ces modifications réalisées, compilez l'application, et vérifiez le bon fonctionnement du

bouton Nouveau.

380 © Éditions Eyrolles

chaoKre h° 11 Dessiner des oideis

11.Z Pour dessiner une guirlande de cercles de couleurs différentes :
a. Avant d'afficher une guirlande, modifiez les classes T r ia n g le et A rb re de sorte que le sapin

ne soit affiché qu’à l’aide de triangles verts. Vérifiez l’exécution du programme.
b. Pour afficher une guirlande de couleur rouge, créez une classe B o u le en vous inspirant de la

classe T r ia n g le .
c. Modifiez ensuite la méthode d e s s in e () de la classe A rb re , de façon à construire et à affi­

cher par-dessus le sapin des objets B o u le lorsque le tableau s a p in vaut 1.
Compilez et exécutez le programme afin de vérifier le bon affichage de la guirlande.

d. Pour afficher une guirlande de couleurs diftérenfes, définissez dans la classe B o u le un tableau
de plusieurs couleurs, comme suit ;

I Color [] couleur = {Color.red, Color.blue. Color.yellow.
Color.cyan. Color.magenta};

Le choix de la couleur est ensuite effectué dans le constructeur de la classe B o u le en tirant au
hasard une valeur comprise entre 0 et 4. Cette valeur est utilisée comme indice du tableau de cou­
leurs pour initialiser la couleur d’affichage (s e tC o lo r {)) à la couleur du tableau correspondant à
l’indice tiré au hasard.

Remarque Notez que la m éthode fillOval (x, y, 1, h) perm et l’affichage de cercles remplis. Elle
s’applique à un objet Graphics, com m e la m éthode f illPoLygon {) . Les param ètres x et y
représentent la position à l’écran du coin supérieur gauche du rectangle englobant le cercle, 1
et h représentant la largeur et la hauteur de ce m êm e rectangle.

Apprendre à gérer les événements

i^mfftn 11.3 Placer une case à cocher dans la boîte à boutons :
a. Sachant que la classe décrivant les cases à cocher a pour nom C heckbo x, ajoutez un objet de

ce type dans la boîte à boutons de l’application F e n e tre . Le texte (" T a i l l e f ix e ") suivant
la case à cocher est placé en paramètre du constructeur de la classe,

b, L’écouteur d'événement associé aux objets de type C heckbo x s’appelant Ite m L is te n e r ,
ajoutez cet écouteur à la case à cocher.

in<u

LU
LO
OfN
@

oi
Cl
O
U

fîttîîffin 11.4 Associer l’événement à l’action. Lorsque la case est cochée, les nouveaux sapins affichés par le bou­
ton N ouveau sont de taille fixe. Inversement, lorsque la case n'est pas cochée, les sapins sont de
taille aléatoire. Létat de la case à cocher a donc une influence sur l'affichage du sapin géré par le bou­
ton N ouveau. C’est pourquoi il est logique de gérer récouleur Ite m L is te n e r dans la même
classe q u 'A c t io n L is te n e r .

© Éditions Eyrolles 381

oartle B° 3 Oiiffls el lechnlaues ûHemés iriilet

a. Sachant que l’interface ItemListener ne définit qu’un seui comportement itemState
Changed () , modifiez l’en-tête de la classe GestionAction de façon à ce qu’elle implé­
mente les deux interfaces ActionListener et ItemListener en séparant les deux
termes par une virgule.

b. Analysez la méthode itemStateChanged () décrite ci-dessous, et déterminez comment
déclarer la variable OK pour qu’elle puisse être également visible de l’objet bNouveau.

p u b lic vo id item StateC hanged(Item Event e) {
i f (e . getStateC hange() == Item Even t. SELECTED)

OK = fa ls e ;
I e ls e OK = tru e ;
I }

c. Sachant que les sapins de taille aléatoire sont affichés par l’intermédiaire de la méthode
nouveau () (classe Dessin), modifiez la méthode de façon que la taille du sapin soit fixe ou
aléatoire, en fonction de la valeur de la variable OK.

m m i 11.5 L’objectif de cet exercice est de réaliser une application qui :
affiche des formes géométriques lues à partir du fichier Formes . txt créé au cours de l'exer­
cice 10 5 du chapitre précédent ;
propose à l’utilisateur deux boutons interactifs placés en bas de la fenêtre, comme le montre la
figure suivante :

û;
ÔL->LU
Vû•rH
0 rM
©
s:01
Cl
O
U

382

Jn lx j

écart —

Point de
référence

x ,y
défini
dans la
classe
Forme

Figure 11-10 Lapplication affiche les form es enregistrées dans le fichier Formes.txt
ainsi que deux boutons « À gauche / scèn e » e t « À gauche / form es ».

© Editions Eyrolles

chapitre n° 11 Dessiner des obléis

Lorsque l’utilisateur clique sur le bouton << A gauche / scène, les formes géométriques se déplacent
toutes sur le bord gauche de la scène, comme le montre la figure 11.11.

à phktlr 4e FormeMxt F igure 1 1 - 1 1 Lorsque l'utilisaleur clique
sur le bouton « À g a u ch e/ scèn e », les formes
s e déplacent su r le bord gauche de la fenêtre.

Lorsque |■utilisaleur clique sur le bouton « À gauche / formes », les formes géométriques s’alignent sur
la forme la plus à gauche de la scène, comme le montre la figure 11.12.

i/i<D

>•LU
KOrHOfN
@
JZgi'k—
a.OU

m a s ^ i< i F igure 1 1 - 1 2 Lorsque rutillsaieur clique
sur le bouton « A gauche / form es », les form es

s'alignent sur le triangle qui se situe le plus
à gauche de la scène.

> Éditions Eyrolles 383

I naiHe B° 3 Ouffis el lechnlaues oilenies olilet

Pour vous faciliter la tâche, vous trouverez dans le répertoire S o u rce /Exe rc ice s/
C h a p itre ll/S u p p o rtP o u rR e a lise rL e sE xe rc ic e s sur l’extension Web de l’ouvrage, tous
les fichiers nécessaires à ta réalisation de cette application.

<D

>-LU
UD
OrN
@
x :Ol'k_>ClOU

384

a. Examinez l’ensemble des fichiers contenus dans le répertoire S o u rc e / E x e rc ic e s /
C h a p it r e ll/ S u p p o r tP o u rR e a lis e r L e s E x e r c ic e s et déterminez les classes
que vous aurez à modifier ainsi que le rôle de chacune d’entre-elles,

b. Dans la classe L is te D e F o rm e s , examinez et expliquez ce que réalise la méthode
d e s s in e rL e sF o rm e s () . Quelle est l'instruction qui permet de créer les 2 boutons « À gau­
che / scène » et “ À gauche / formes ».

c. Examinez la classe D esB o u to ns et expliquez comment les boutons sont associés aux actions
qu’ils doivent réaliser,

d. Si l’on suppose que le déplacement des formes s’effectue dans la classe D e ss in F o rm e s, à
f’aide de deux méthodes nommées d e p la ce rG a u ch e S ce n e () et d e p la ce rG a u ch e
Form es () , quelles instructions placeriez-vous dans la classe G e s t io n A c t io n pour que les
boutons réalisent les actions demandées.

6. Pour déplacer les formes géométriques sur le bord gauche de la fenêtre, la technique consiste à
calculer la distance (é c a r t) qui sépare la coordonnée x de la forme avec le bord gauche de la
scène et de déplacer la forme géométrique de - é c a r t en utilisant la méthode d é p la c e r {)
propre à la forme (voir figure 11-10).
Dans la classe D e ssin Fo rm e s, écrire la méthode d e p la ce rG a u ch e S ce n e () en utilisant
cette technique.
Testez le bouton « À gauche / scène >• et vérifiez que toutes les formes se déplacent correctement.
Que se passe-t-il pour les formes triangulaires ? Pourquoi ?
Pour déplacer un triangle,
Ecrire, dans la classe T r ia n g le , une méthode recherchant le sommet se situant le plus à
gauche.
Calculer alors la distance (e c a r tT r) qui sépare la coordonnée x de ce sommet avec le bord
gauche de la scène
Déplacer le triangle de - e c a r t T r en utilisant la méthode d é p la c e r () de la classe
T r ia n g le .

g. Pour aligner les formes sur la forme géométrique se situant le plus à gauche, vous devez :
Rechercher le point le plus à gauche pour toutes les formes, y compris pour le triangle - c'est-à-
dire rechercher la plus petite coordonnée en x , parmi toutes les coordonnées en x .
Pour chaque forme, calculez la distance entre son point de référence et la plus petite coordonnée
en X et déplacez la forme de cette distance.
Dans la classe D e ssin Fo rm e s, écrire la méthode d ep lace rG au ch eFo rm e () en utilisant
cette marche à suivre.

© Editions Eyrolles

chapitre n° 11 Dessiner des oitleis

Le pteiet : Gestion d’ un compte bancaire

L’objectif est de réaliser des statistiques sur les comptes bancaires enregistres dans les fichiers
créés au chapitre précédent. Le résultat de ces statistiques est affiché dans une fenêtre, comme
illustre à la figure 11-13.

Coinpten* 2552

Crédit Débit

Figure 1 1 - 1 3 Histogramme empilé du compte n ’ 2 5 5 2

Calcul de statistiques

Les classes ListeCompte et Compte
En reprenant la fonction p o u rc e n ta g e {) réalisée en exercice à la fin du chapitre 5, « De
l’algorithme paramétré à l’écriture de fonctions », et sachant que l’objectif est de calculer en
pourcentage les dépenses réalisées en fonction du motif de la dépense :

a. Déterminer toutes les données, définies dans les classes Compte et LigneComptable,
nécessaires aux calculs des statistiques d’un compte.

b. Vérifier que ces données soient accessibles depuis l'extérieur de la classe. Si tel n’est pas
le cas, écrire les méthodes d’accès en comsultation pour chacune d’entre elles.

c. Après modifications, compiler et exécuter le programme de façon à créer un fichier de
comptes (Com pte, d a t).

U)

>LU
KOrHOfN
@
JZgi'k—>-Q.O
U

Im méthode statParMotif()
a. En reprenant l’algorithme de calcul de statistiques proposé en exemple du chapitre I,

« Stocker une information », écrire la méthode statParMotif (> qui calcule le pour­
centage des dépenses en fonction du motif enregistré.

b. Sachant que cette méthode est définie à l'iiitérieLir d’une classe appelée S t a t , déterminer
les variables d’instance de cette classe.

© Éd/i/ons Eyroiies 385

name B° 3 Outls et techniaues orientés oblei

C. Avant de passer à ra l’liehage graphique, écrire une application qui :
- lise le fichier Compte. dat créé à l’étape précédente ;
- utilise la méthode statParM otif () pour calculer et afficher à l’écran les statistiques

d’un compte donné.
d. Vérifier la validité des calculs réalisés.

l'in te rface graphique
Pour calculer les statistiques d’un compte, ¡’utilisateur doit fournir le numéro du compte
choisi. Après lecture du fichier Compte.dat, et connaissant ce numéro, rapplication vérifie
s’il existe en mémoire. Si tel est le cas, elle affiche dans une fenêtre le résultat sous forme
d’histogrammes empilés. Dans le cas contraire, elle affiche un message indiquant que ce
compte n’est pas connu et attend la saisie d'un nouveau numéro.
Deux étapes sont donc à léaliscr, la saisie d’un numéro de compte et l’affichage de l ’histogramme.

1/ï

>-LU
KOrHOfN
@
JZCT'k—>-Q.O
U

3B6

Vaffichage de rhistogramme
Pour afficher rhistogramme empilé, il est nécessaire de connaître les pourcentages de
dépenses en fonction des motifs déclarés. Ces valeurs sont calculées dans la classe Stat,
construite précédemment.

a. Eu s’inspirant de la méthode d e s s in e () présentée en exemple an cours de ce chapitre,
écrire dans la classe Stat la méthode d e s s in e () de façon à afficher :
- un premier rectangle de hauteur 10 0 et de largeur 50 représentant l ’unité de crédit

(1 00) ;
- des rectangles de couleur et de hauteur différente,s suivant les pourcentages calculés

par la méthode statParMotif ().
Noter que l’affichage d’un rectangle rempli s’effectue par l’ intermédiaire de la méthode
fillRect(x, y, 1, ht , où X et y représentent la position à l’écran du coin supérieur
gauche du rectangle, et 1 et h sa largeur et sa hauteur. L’affichage d’un texte est réalisé par
la méthode drawstring (texte, x, y) , où texte est un objet de type String dans
lequel sont placés le.s caractères à afficher, x et y définissant la position de ce texte à
l’ écran.
h. Définir une fenêtre composée d’une zone de dessin et d’un bouton Quitter,
c. L'affichage de l ’iiistogramme étant réalisé dans la zone de dessin,

- Le constructeur de la fenêtre doit prendre en paramètre un objet de type S t a t de
façon à le transmettre au constructeur de la zone de dessin.

- La méthode paint () définie dans la classe représentant la zone de dessin fait appel à la
méthode s , d e s s in e (), où s est un objet de type Stat, initialisé dans le constructeur
de la zone de dessin.

© Éditions Eyrolles

cliaiiitre n° 11 Dessiner des oideis

d. L e bouton Quitter et l’icône de iermeture située dans la barre de titre de la fenêtre
ayant la m ê m e fonctionnalité (quitter l’application et fermer la fenêtre) :
- Créer une classe GestionQuitter qui implémente récoutcur ActionListener

et dénve de la classe WindowAdapter,
- Définir les tnéthodes correspondant au comportement de fermeture d’application.

La saisie d’un numéro de compte
La classe Saisie décrite ci-dessous permet la saisie d’une chaîne de caractères par l'intermé­
diaire d’une fenêtre de saisie :
import java.awt,*;
import java . awt. event. ;
public clasÈ Saisie implements ActionListener {

TextField réponse;
public Saisie () {

Frame F = new Frame ("Saisie de valeurs:");
F .setSize(300, 50);
F ,setBackground(Color.white);
F .setLayout(new BorderLayout());
F.add (new Label("Valeur "West");
réponse = new TextField(lO);
F .a d d [réponse, "East");
réponse,addActionListener(this);
F .setVislble(true);

}
public void actionPerformed(ActionEvent evt) {

String numéro = réponse.getText();
System.o u t .println(numéro);

]
}

if)(U

Observer et analyser cette classe et transformer la méthode actionPerf ormed () de façon
à calculer puis à afficher rhistograrrme cumulé si le numéro de compte lu dans la fenêtre de
saisie correspond à un compte enregistré dans le fichier Compte . dat.

>-UJ
sorHOfN
@
JtCT'i—
Q.OU

> Éditions Eyrolfes 387

inй)

:>■ш
iûTH
ОrN
@

Ol
>■Q.
OU

Chapitre 12

Gréer une interface graphique

Nous l ’avons vu au cours du chapitre précédent, créer des fenêtres, dessiner des objets et
définir des interactions entre tous ces éléments demande un certain savoir-faire et une bonne
connaissance des bibliothèques graphiques comme l’AWT, Swing ou encore SWT,
Pour simplifier le développement d’applications graphiques, des outils d’aide à la création
d’interfaces graphiques ont été développés par des sociétés telles que Sun ou IBM.
Nous présentons, à la section « Un outil d’aide à la création d’interfaces graphiques », l’appli­
cation NetBeans utilisée pour développer des interfaces Java. Il s’agit d’un environnement de
développement distribué sous licence Open Source.
Puis, au cours des deux sections suivantes, « Gestion de bulletins de notes » et « Un éditeur
pour dessiner », nous présentons pas à pas comment utiliser ce logiciel pour construire des
interfaces graphiques. La première application a pour objectif de faciliter la création et l’édition
de bulletins de notes. La seconde application, plus classique, montre comment construire les
ba.ses d’un éditeur graphique.

4Л<D

>-Ш

OOJ
©

oi
D.O
U

Un outil d’aide à ia création d’ interfaces graphiques

Les outils d’aide à la création d’interfaces graphiques sont appelés dans le monde informatique,
des IDE (Integrated D evelopm ent Environm ent) que Гоп traduit en français par Environne­
ment de développement intégré (EDT).

© Éditions Eyroltes 389

partie B° 3 Opffis et lechnMues oiieniés olilet

Qu’est qu’un EDI P
Un environnement de développement intégré est un programme cm encore une application qui
propose, dans un même système de fenêtrage (environnement), des outils facilitant la vie dn
développeur. Ces outils sont, au minimum :
• un e'diteur de texte qni colorie automatiquement les mots-clés et les éléments syntaxiques

importants du langage ;
• un système automatique de correction syntaxit]ue des erreurs les plus communes (auto-

complétion) ;
• une fenêtre de cojupilation où s’aflidient les éventuelles eireurs de compilation ;
• une fenêtre d’exécution qui permet de visualiser les résultats de l’application en cours de

développement.
Certains EDI sont dédiés à un seul langage (Visual Basic, Delphi, etc.), d’autres supportent
plusieurs langages, comme Eclipse avec lequel il est po.ssible de développer en Java, C++,
ActionScript 3, etc.
Les EDI proposent egalement des outils graphiques très performants qui pennettent de
construire graphiquement l ’interface d’une application en plaçant, à la souris, les éléments
de communication (fenêtre de saisie, bouton de validation, zone de de.s.sin. liste de choix, etc.).
Pour le langage Java, il existe plusieurs EDI, dont :
• J Builder (Bordland) ;
• JCreutor (Xinox Software) ;
• Eclipse (Eclipse Foundation - IBM) ;
• NetBeans (Sun),
NetBeans a l’avantage d’être distribue en Open Source et d’être entièrement gratuit. Pour cette
raison et pour sa facilité d’installation et d’usage, nous avons choisi de vous le présenter en
détail.

Les bases de NetBeans
NetBeans est un environnemenl de développement intégré pour Java, créé par la société Sun,
Il supporte plusieurs langages de programmation comme C, C++, Java ou encore Python.
La dernière version NetBeans 8.1 présentée ici est disponible sur tout type de plate-forme
(Windows, Linux et Mac).

V)(U

>LU
KO
OfN
@

0 B I E B E I [[0 Toutes les informations nécessaires à l’installation de NetBeans sur votre machine (Windows,
Mac OS ou Linux) sont fournies dans l’annexe « Guide d’installations », section « Installation
d’un environnement de développement ».

szgi'k—>-ClO
U

390 © Éditions Eyroties

chapitre n° 12 Créer une Inieitace graphique

Présentation générale
NelBeans est constitué d’une fenêtre d’édition du code avec coloration syntaxique et surtout
d'un éditeur graphique d’interfaces et de pages Web (voir figure 12-1). Grâce à l ’éditeur
graphique, le développeur d’applications dispose visuellement, d’une boîte à outils (palette)
constitué des éléments graphiques de la bibliothèque Swing.

-S Q y i % I"X % M I» ff|i' Y la ►t»-®'
lï'i
i ~ÿ~c*rx-i»* ié iourLC Packagii V ̂ cercle

A Curclt.i»i• U»■ a Libraries ̂il Teirühranei ÿ OecumeMEdrrnr ^ r*nelrêMVKi ÿ G4SElonCUstÊ ÿ PnmlerPraJet

« • ' Cefx:l«tMMng.javAs I Sun Page > CerclC’.jav’a i
Quich Shvch 0

•©©
a s i Il a

paehep« cexcle;
d* -ava .—

tu I -UU.e inpotrt lava.util.*; tu publier oJ-«»e Ceret» tpublid acatic void Mia(String || arpumen̂t { doubla uaRayoA, Ie?exiMti:erScatutax lectuceClavltr • ScAQA»rCSy*ta&.lAU STrcam.out.pciAt(>;HBieayon • laccsraClavtar rpautdooblai) r lePeri»etr* • 2 • Math.Pi ’ anttayon;oat.priatt - * onRayofi)!dyatam.ouc.priatinl * laPariiaatra)iîl I >
li ^

depa>̂ art ^ lia''B lag la ixun-axnyieil Valeur du rayon i :10'La ctrele da rayon lOiU a pour partaacra P̂ILD SUCCBSPrUL | total tliwï 9 aeeonda» é2,BJ18&lB71795«6

Figure 12-1 NetBeans 8.1

Pour en savoir plus Les principaux élém ents de la bibliothèque Swing sont présentés au chapitre 11, ■■ Dessi­
ner des objets », section « De l’A W T à Swing ».

<D

>-
LU

O<N
@
r :oi'C>-Q.O
U

L’éditeur graphique de NetBeans est un éditeur WYSIWYG {W hut You See Is W hat You G el),
ce qui signifie en français que ce que l’on place (W hat You See) dans la fenêtre d’édition
graphique est ce que l ’on obtient (Is W hai You G et) en cours d’exécution de l’application.
Grâce à cela, il devient très facile d’intégrer graphiquement les éléments d’interactions avec
l’utilisateur (boîte de dialogue, cases à cocher, menu, etc.) dans l ’application en cours de déve­
loppement. Cette intégration s’effectue par un simple glisser-déposer des éléments de la
bibliothèque vers la fenêtre de développement.

Développer une interface graphique en mode projet
Sous NetBeans, la création et l'exécution d’une application s’effectuent dans le cadre d’un projet
au sein duquel sont regroupées toutes les classes nécessaires à la bonne marche de l ’application.

© Éditions EyroUes 391

partie D° 3 Optits el lechnlaues oileniés olilet

Pour créer un projet vous devez, une fois NetBeans lancé, sélectiimner Pitem Nouveau Projet
du menu Fichier.

Cl Mduvîîu ptcyet
étapes________
1. Sétectioniter un ptrojel2.

Sélectionner un projet

Categories:
Java

Projets:

'^ d ________________________
^ Java Desktop Application

Bisliotheque de dasses Java
Projet Java avec des sou’ces existantes
JavaFree-Forin Pr^ect

Descnpbon:
Crée une appbeabon Jav a SE dans le projet standard de riDE. ù̂us pouvez âiASt oèriérer ŵ e

prmdpale dans le projet. Les projets starcWds utAsent un script Ant poir constnire, larK:er
et debugger votre projet.

< precedent [Suivant > ^ Aftitiier Aide

Figure 12-2 La boîte de dialogue Nouveau Projet

i/iCJ

>LU
LO
OfN
@
JTCT'k—>-ClO
U

392

Dans la boîte de dialogue qui apparaît (vo ir figure 12-2), choisir la catégorie Java et comme
type de projet Application Java. Cliquez ensuite sur le boulon Suivant.

Une nouvelle boîte de dialogue apparaît, nommée Nouveau Application Java (voir figure 12-3).
Td, vous devez :

• Entrer le nom du projet en première ligne.

• Indiquer le lieu d’enregislremenl du projet en cliquant sur le bouton Parcourir..., ou garder
les valeurs par défaut proposées par NetBean.s.

• Désélectionner la case Créer une classe principale. Pour les applications de type « inter­
face graphique », le point d’entrée de l’exécution de l’application est défini à l ’étape
suivante.

• Finir renregistrement du projet, en cliquant sur le bouton Terminer.

Une fois le projet eréé el enregistré, NetBeans affiche à l’écran (voir figure 12-4) un ensemble
de panneaux vides, à l ’exception du panneau Projets qui indirpie que le projet PremierPro jet
a bien été créé.

© Édifions Eyrolles

cliaiiitre 1° 12 Giéer Die inietiace graphique

o
oi_>LU
T~{
0fN
@
x:01'k_
Q.OU

Figure 12-3 La boîte de dialogue Nouveau Application Java.
Attention à bien désélectionner la c a se C réer une c lasse principale.

« «4
> ^ DoiiiirnriuEd itor ̂ÿ Fen«lr«5wing
▼ ̂ PremltrProjii

w ̂ Sourt« PAc(ug«ï ̂ ► Ud Te&r Packages ' P lîi Libraries
*■ ûi Test Libraries

t̂opector a « '■
_l

f̂ ipui s x\

> Éditions Eyrolles

Figure 12-4 Le panneau Projets

393

partie B° 3 Outils et techniaues orfentés obiei

Développer en mode graphique
La dernière étape pour construire une application à l’aide de l’éditeur graphique consiste à
ajouter au projet une fenêtre de type JFram e. Pour cela :
• cliquer droit sur l ’item PremierProjet situé dans le panneau Projets ;
• sélectionner les items Nouveau puis JFrame Form comme le montre la figure 12-5.

(frofetM I
► ® Ctrd«

ÿ ̂ ^ DocumcniEcmar
► ^ FenetreSwing
► ^ CtiiionClasse
T

» ^ Soured
► hfl Test F
» A Ubrar
 ̂A Test

fOutput-

Build
Clean and Build
Clean
Generate Javadoc
Run
Debug
Profile
Test "F6
Set Cortfiggration
Set as Main Project
Open Required Projects
Close
Rename...
Move...
Copy...
Delete
Find... n f
V e r s io n in g
Local History
Properties

B JFrame Form..
UjPanel Form...
S Java Class...
Sjava Package...
S Java Interface...
S Entity Class...
B Emily Classes from Database...
ft Web Service Client...
e Other...

Figure 12-5 Créer une fenêtre graphique

U)(U
Les objets de type JFrame sont présentés au chapitre 11 ,« Dessiner des objets » section
« De l’AWT à Swing ».

>■LU
LOrHOfN
@
JZCT'l—>-Q.O
U

394

La boîte de dialogue Nouveau JFrame Form apparaît (voir figure I2-6). Tl convient d’indi­
quer ici le nom de classe dans le ehamp Class Name ainsi que le nom du package au sein
duquel vous souhaitez enregistrer les classes utilisées par l’application en cours de
construction.

© Éditions Eyrolles

chapitre a° 12 Giéer uae Inietiace graphlaue

V 1s S'
il ► Ctt»1 ► {̂ DgcuiTwnrtdPor ̂̂ r̂ veSumçi

» GhshonClas&e

i)

Figure 1 2 - 6 La boîte de dialogue Nouveau JFram e Form

Pour notre exemple, nous avons choisi C e rc le S w in g comme nom de classe et in c ro d u c t io n
comme nom de package.

m ^ iim itll[il Définir un package pour notre application revient à définir le point d’entrée d’une arbores­
cence de répertoires au sein de laquelle sont stockées les classes utilisées par l’application.
Pour notre exemple, le point d’entrée pour l’enregistrement des classes Java est le répertoire
PremierProjet/src/Introduction.

CJ

>-LU
vûrH
OiN
@
JZgi
Cl
O
U

Cela fait, nous obtenons un environnement de travail composé de plusieurs panneaux ayant
chacun un rôle particulier (voir figure 12-7). Nous présentons ci-après, les panneaux les plus
utiles pour concevoir des interfaces graphiques.

L'organisation du système de fichiers créé par NetBeans est décrite dans l’annexe « Guide
d’installations •>, section « Utilisation des outils de développement ».

© Éditions Eyrolles 395

Dartie в° 3 Ouffls el techniaues orientés oblel

£8 ^ Й '9 c i" Y ‘fâ ►
* ► ̂ C«f<ie V ̂ ̂ DocumeniEclicor » Ш r«netr«Swving

> ̂ CesOonOâise
▼ ^ PrefnicfProjct ▼ Source Pack«Qc5 ▼ S biirûduction^̂CerdeSMnng.java

P tiÎ TcstPackaoes
P Ü Ubraries
P U l TestUtraries

f Inspector
6i Form CercleSwingP Other Components lIFrafTW]

fOuIput

• «I » t CefcteSwnç.jeva * »
Source Desipn ^ e - i 2 £ P Ï « M « »#

• ê“ê 0 â î elctt« _
' ' * JÜUWi

HS. Button

I 4»

liflK Topg!e ButC|iiviM.swin9JButton j
A ‘push* bumn. ; I

M- Check Box

A- Radio Sutton

ButtOft Croup

a i Combo Box

ttS LtsI

Cli Text Fteld

Text Area

Ш Scroll Bar

Slider

— Progress Bar

(S Formatted Field

Password Field

tS.

Figure 12-7 L’éditeur graphique de NetBeans

Le panaeau Design
Le panneau central appelé panneau Design est le panneau principal pour concevoir une appli­
cation graphique (voir figure 12-8). U représente le fond de votre application, votre page
blanche sur laquelle vous allez placer tous les éléments d’interactions (boutons, zone de
texte, ...). Grâce à ce panneau, vous allez concevoir visuellement l’interface graphique de
votre application.

Le panneau Design peut être vu d’une façon plus « écrite » en cliquant sur l’onglet Source
situé à gauche de l ’onglet Design.

Ф

>-
Ш
ЮrH
O
(N

@
jT01'k_>-Q.OU

Bemaroue

396

Le panneau Source
Le panneau Source (voir figure 12-9) est la représentation programmée du panneau
On peut y voir toutes les instructions nécessaires à l’affichage de l’ interface graphique.

Pour passer d'une représentation graphique à une représentation « codée », il suffit de cliquer
sur i’onglet correspondant {Design ou Source).

© Éditions Eyrolles

Figure 12-8 Le panneau Design (Conception)

ifi

OL->LU
T~{
0 fN
@
-T01'k_>ClOU

^ X

I Source Oesign I I® I
H l ï IS ®

1
2
3
4
5
ï
7
e
9

10
11
12
13
14
15
16
n
IS
19

R
To change ctils te jtp lace, choose Tools Tetiriaoeï
and open Lhe peciplata in ihe edüop *

/*
• CercleSwing,Javà

• C r e a p e d o n S j - a u i 2 0 1 1 , 0 3 : 2 3 : 4 1• J
package Incroduccion:

g /-*

■ »author Ar.net
p u b lic class CercleSwing extends javax.sw ing.JFrane

E l Creates r.ew fom i te rc leS vin g ••
20 0 public CercleSwingO {
21 initCorcponents () ;
22 L }

Figure 1 2 -9 Le panneau Source

> Éditions Eyrolles 397

oarüe в° 3 Ouffis el teclinlaues orïeniés idiiet

Le a>de source de rapplication construite visuellemeni par vos soins est autogénéré par
NetBeans. La plus grande partie des instructions est masquée afin de rendre la lecture du code
plus aisée. Il est cependant possible de le visualiser en entier en cliquant sur les signes + situés
en marge gauche du ctxle.

Le panneau Palette
Le panneau Palette (voir figure 12-10) est très utile puisqu’il contient tous les composants
proposés par la bibliothèque Swing, comme les composants JButton et JPanel que nous avons
étudiés au cours du chapitre précédent « Dessiner des objets », section « De l'AWT à Swing ».

Palette В X ml
Swrin<> Containers TS

□ Panel QlabbedPane I E Spit Pane ft
У Saos Pane QT Tool Bat ^OwfctopPane

П Interral frafftc I5J Layered Pane
В Swñn ̂controls
uta Label IttJ Button Ifiaj Toggle Button

в- Oiectc вок • - Radio Button Sutton Group

Lia Combo Box gust LJT ex t Field

[^Tfixt Area SK ScrciBar

Со Process 8ar Formatted field [»J Password Field

Dij 5füriri«r ;— 1 Separator [r]TeJti Psoe

[5]EdlPf Pane g T r e e Table
G Svrii«9 Menus
1£и. Мету 5аг 'Menu £

[—jMentj Item Menu Item (СЬесШох

Метц Item/RadaButtem ^ Popup Menu

1 j Separator
6 SiNing Windows
ft^CtaoQ 1 Frame Q C okir Chooser

f*^FfaChoo5gr [l^Opbcn Pane
G Svfing- RUers

I » HcnHmtslGlue M Mort»nt»l Strut

Area
S AWT

$ verHiza d̂ue Ц Vertical strut

A Label ^ Button SîE Text field Ш Text Area

|7 ChetktoK ^ d x m ü § ust ItlScretMr J

Figure 1 2 - 1 0 Le panneau
Palette

ПЭ scroB Pane □ Panel
Щ Papupf̂ lenu

□ Canvas ЦЗмепибаг

ifiФ
Oi_>Ш
ЮT~{
OfN
@
л-tJZCT'k—>-Q.OU

398

Pour placer un composant sur le panneau Design, il suffit de le sélectionner dans le panneau
Palette puis de le glisser vers le panneau Design. Le positionnement du composant au sein de
la fenêtre s’effectue ensuite visuellement, en le déplaçant avec la souris.

Le panneau Propriétés
Le panneau Propriétés (voir figure 12-11) est un panneau contextuel qui permet de visualiser l’inté­
gralité des propriétés du composant sélectionné. Par exemple, .sur la figure 12-11, nous ptiuvons
vt)ir les propriétés du fond (JFrame) de la fenêtre de l ’application en cours de construclitm.

© Éditions Eyrofles

chapitre n° 12 Créer une inieitace graphique

; [JFrame] - Propriétés K
[Propriétés 1 Binding Événements Code
S Propriétés
defaultCloseOpe ration ¡EXITjCJN̂ aOSE
title ICalcuter \t eénmètre (fun cercle Q
B Autres proprietes
alwaysOnTop Qava.Ianq.Strinq) title Q¡C
alwaysOnTopSupported
autoRequ estF o cus H Q!
background □ [240.240.2401 Q1
bounds <Non définiCe)> Q
cursor ¡Curseur par défaut - U
enabled m □
extendedState 0 Q
focusCydcRoot m □
to cusTraversa Pokey I<paf défeut>
tocusTraversaPokeyProvider n Q
toeusable m 0
foaisabieWindovvState m □
font null □
title
(java.lang.String) tille

&

Figure 12-11 Le panneau Propriétés

Pour modifier l’une des propriétés du composant, il suffit de la sélectionner et d’ indiquer la
nouvelle valeur dans la colonne correspondante. Par exemple, sur la figure 12-11, nous avons
donne comme titre à la fenêtre de base de l’application ; « Calculer le périmètre d’un cercle ».

panneau Inspecteur
Pour finir, avec le panneau Inspecteur (voir figure 12-12) nous visualisons les composants
utilisés par l’application. Ici le seul composant utilisé est un JFram e,

: CercleSwing - Naviga... ; Inspecteur ■a *

"ô
>LU
LO
O(N
@
u-tJ-gi
>-ClOU

S FortmiaÉre CerdeSwing
1$ Q Autres composants
ffl-n (rramel

Figure 12-12 Le panneau Inspecteur

© Éditions EyroUes 399

oartle B° 3 flutVs el techniaues orfentes oblel

Grâce au panneau inspecteur, nous pourrons nommer les composants et modifier leur hiérar­
chie s'il se trouve qu’un composant contienne d’autres composants.

Vous vous familiariserez rapidement avec l'utilisation de ces panneaux et en eernerez l'impor­
tance dès la mise en place du premier exemple présenté à la section suivante, « Une première
application avec NetBeans ».

Une prem ière application avec NetBeans
La création d’une application Java munie d’une interface de communication graphique
s’effectue en deux étapes.

1. Choisir, placer et nommer à l’écran les objets permettant l’interaction avec rutiJisateur.
fl s’agit, par exemple, de définir s’ il est préférable de proposer à l ’utilisateur un choix
d’option.s sous la forme d’un menu ou d’ un ensemble de cases ù cocher.

2 . Écrire, pour chaque élément d’interaction choisi, les actions à mener. Pîu- exemple, si l’appli­
cation affiche un bouton Quitter, il convient d’écrire en Java, I’instruction System. exit {0)
à l’ intérieur de la fonction qui traite ce bouton.

Examinons sur un exemple simple et « bien connu », à savoir « calculer le périmètre d'un
cercle », comment réaliser chacune de ces étapes.

Cahier des charges
L’objectif est de créer et d’ufficher la fenêtre représentée à la figure 12-13.

f t O O Calculer le périmètre d’un cercle

ifiO
Of_>LU
T~{
0 fN
@
sz01'k_
Cl
O
U

400

Ravcin ;saypi
0

O10 Périm èire ; 62.831...

ô

a Calculer
--------------^

A

Figure 12-13 Calculer le périmètre d ’un cercle

La fenêtre est composée de plusieurs éléments graphiques :

■ un champ de saisie (voir figure 12-13-0) 4 tii permet à l ’utilisateur de transmettre à l ’appli­
cation la valeur du rayon du cercle dont il souhaite connaître le périmètre ;

• un bouton pour valider la saisie d’ ime valeur pour le rayon puis, calculer le périmètre
du cercle (voir figure 12- 13-Q) :

© Éditions Eyrolles

chapitre n° 12 Gréer une Interface graphique

* deux zones de texte (voir figure 12-13 -0) pour placer une information spécifique
(« Rayon : » et « Périmètre : »). Ces textes resteront identiques tout au long de l’exécution
de l’application ;

• une zone (voir figure 12-13-©) pour afficher le périmètre du cercle après validation. La
valeur sera modifiée à chaque fois que rutilisateur saisira une nouvelle valeur.

Mise en place des éléments graphiques

La mise en place des composants graphiques dans la fenêtre d’application s’effectue par un
simple glisser-déposer des composants du panneau Palette vers le fond de la fenêtre (JFrame)
visible sur le panneau Design.

Les champs de texte
Dans le panneau Palette, les champs de texte sont représentés par le composant Label
(JL a b e l) . Les éléments sont placés dans la fenêtre de l’application, comme le montre la
figure 12-14-0,

<D

LU
Vû
tH
O<N
©

oi
Cl
O
U

(Q CerdeSwmg.java * lè ©@ (pjlettc J
Source Design @ b J A H I a H «P

¡Labell jUbelZ -iU^I3

finspecrot
S Farm CercleSwIng
>■ C] Orher Components

n Utranre]
JUbell UL̂ bel)

a» jUbelZ (JLabel]

▼ Swing Coatfliners
O Panel
Q Tabbed Pane
3t Split Pane

Scroll Pane
in Tool Ear
^ Desktop Pane
r" Internal Frame
I* Layered Pane
▼ Swing Controls

I Label
U£j Button
bn Toggle Button
a— Cheek Box
•- Radio Button
S- Button Croup
ŒÎ Combo Box

Figure 12-14 Les champs de texte sont des composants de type Label.

Observez que pour chaque champ de texte ajouté, le nom du composant ajouté s’affiche dans
le panneau Inspecteur (voir figure 12 -14-0).

© Éditions EyroHes 401

partie в° 3 Opffis el lechnlaues orieniés iriilet

Le noTTi des objets pkeés dans la Îenêlre porte, par défaut, le nom du composant qu’il repré­
sente suivi d’un chiffre qui correspond à son iruméro d’ordre de création. Ce nom est porté
deux fois par le composant, dans la fenêtre Inspecteur et dans la fenêtre Design :
• Dans le panneau Inspecteur, ce nom représente le nom de l’objet utilisé par le code source

autogénéré. Pour rendre ce code plus lisible et faciliter la programmation ultérieure, vous
devez modifier ces noms.
Ainsi, nous appelons jLabell, rayonLabel, jLabel2, perimetreLabel, jLabel3
et resultatLabel les objets utilisés dans ce premier exemple. Pour cela, vous devez,
dans le panneau Inspecteur, cliquer deux fois .sur chaque élément jLabell, jLabel2,
etc., en laissant un petit temps d’attente entre les deux elles. Cela fait, le nom du compo­
sant sélectionné est surligné en bleu et vous pouvez alors modifier son nom. Le compo.sant
change définitivement de nom après validation par Sa touche Entrée du clavier (voir
figure 12-14-©).

4 P h [< d e t a u lt c o n H . . .) M ^ S í * ' < 3

fPr'Oj«Ct&
> £> Cercle
y ^ Docum«nt£dt<or
► ^ FenetreSw ing
 ̂ ^ Ĝ BtionCUsse
▼ PrentitrPrejet

P 01 Source Packages
► ^ TesiPackages
p liB Libraries
P Test Ubrarles

[Inspector
^ Form Ce relé Swing
P Й Other Compone r>i5
▼ H UFramel

ííw rayonLabe l t lLabe ll
p e rim etreLabe l U U b e ll

. su ni FerietreSwinglrneifiee.java и y Bol... ̂ * ®©@ I Palpite
Source Design S С ^ « Л Х П 1| К <a>

R ayon . I p é r im è t r e FL _ r ^ ¡Labels
su я i

resultatLabel tJLabel)

▼ Swing Containers

I 1 Panel

Q Tabbed Pane
Split Pane

H Scroll Pane
[У. Tool Bar
^ D e sk to p Pane

Q Internal Frame
Layered Pane

▼ Swing Controls

™ Labe l

e Button
Щ| Toggle Button
a- Check Box
p- Radio Button
S- Bunon Croup

1Л
Figure 12-15 Nommer les composants dans le panneau Inspector f© j

et modifier le texte à afficher dans le panneau Design (Q)

LU
t£)
•rH
O
ГМ

@
x:Ol
Cl
O
U

402

Dans le panneau Design, ce nom représente le texte affiché par le composant lors de l ’exé­
cution du programme (voir figure 12-15-©). Vous devez remplacer ces noms par du texte
correspondant à ce que vous souhaitez obtenir comme informalion. Ainsi, tels qu’ ils sont
situés dans le panneau, le texte jLabell doit être remplacé par Rayon ; , jLabel2 par
Périmètre : et jLabelS par 0.

© Éditions Eyrolles

chapitre n° 12 Gréer une interface graphique

Le champ r e s u l t a t L a b e l affiche le résultat de l ’opération qui consiste à calculer le
périmètre d’un cercle. La première fois que l'application est lancée, la valeur du rayon
n’esi pa.s encore donnée. C ’est pourquoi, nous affichon.s comme valeur par defaut 0.

Lorsque vous modifiez le nom d'un com posant par l’intermédiaire du panneau Inspecteur,
NetBeans se charge alors de modifier le nom de toutes les occurrences de ce com posant qui
pourraient se trouver dans le code source associé.

Le champ de saisie

Les champs de saisie sont représentés, dans le panneau Palette, par le composant Text Field
(JTextField). Le champ de saisie est placé dans la fenêtre de l’application, juste après le
champ de texte ra y o n L a b e l, comme le montre la figure 12- IS-Q.

Dans le panneau Inspecteur, nous nommons le champ de saisie jTextFieldl, saisie
Rayon et plaçons comme valeur d’affichage par défaut, la valeur 0.
Les composants J T e x t F ie ld et jL a b e l ont par défaut un alignement horizontal à gauche
(texte ferré à gauche). Pour modifier cette propriété, il suffit d’ouvrir le panneau Propriétés en
cliquant droit sur le composant à modifier et en sélectionn;uit l’ilem Propriétés du menu
contextuel qui apparaît alors.

Dans le panneau Propriétés (voir figure 12-16), sélectionnez la propriété horizontalAlignmenl
sur la colonne de gauche et choisissez la valeur Right dans la menu qui apparaît, lorsque l’on
clique sur Ja colonne de droite.

>
Ш
ЮrHOfN
@
szoi
Cl
O
U

i u i ï i e Rayon [JTcieFialdl - P ro pnétài ■ « 1

[Propriété 1 Binding É’/érvernerfts Code

-P ropn él«
bflckgrotind □ PS5.2S5Z55] Q
oohjinns 0
dccument I<par d éb u ts .F
çdJtebie 1V| ü
font TahoiTkâ 11 Simple Q c :
forM̂ rounct ■ [0.0.0] U
hortzom«iAlignment
text TRACWG h
tdorripText FWGHT 7 i

Autres propnélés LEFT J
ül LEADMG Q

CEMTER Q
edion □
slçniTWfttX 0,5 Q
shgnmenlY 0,5 Q

m g
be^eiineResiie^ette'trior ¡CBírER_OFFSET J - j, » n

Figure 12-16 Modifier la propriété horizontalAligninent du champ de saisie saisieRayon

© Éditions Eyrolies 403

I parte B° 3 Ouffis el lechniaues orfentés oblel

Le bouton
Pour finir, plaçons le bouton tJe validation dans la fenêtre d’application, comme le montre la
figure 12-13-0-
Les boutons sont représentés, dans le panneau Palette, par le composant Button (JButton).
Dans le panneau Inspecteur, nous nommons le bouton jButtonl, calculerBtn et plaçons
comme texte d’affichage Calculer.
Ainsi, lorsque tous les composants sont placés dans la fenêtre d’application, nous obtenons le
panneau Inspecteur présenté en figure 12-17.

Navigat«ur ' Inspecteur «8 II
^ FormUare CerdeSwing
$ ^ Autres composants

â - n [JFfame]

ütai rayomatjei [JLabel]

pernnetreLafael [JLabel]

l o resuHatLabd [JLabeG

|£] u lo ie rS tn [jeuMon]
□ saseRayon [JTcirtField]

Figure 12-17 Le panneau Inspecteur de l ’application CercieSwing.java

inÛJ
ÔL_>LU
LOT~{
OfN
@
u-tJZCTU>■O.OU

404

Ajustement et po.sitinnnement des composants
Afin de rendre l ’interface plus agréable à l’œil, faisons en sorte que tous les composants .soient
de même largeur. Pour cela, il suffit de :

• Sélectionner les composants soit dans le panneau Inspecteur, soit directement dans le pan­
neau Design en maintenant la louche Maj enfoncée, à chaque sélection pouj' réaliser une
sélection multiple.

• Cliquer droit sur la sélection et clujisir l ’item Même Taille puis Même Largeur (voir
hgure 12-18).

Le menu contextuel apparaissant au clic droit, sur un ou plusieurs composants de l ’applica­
tion, permet de modifier la taille et la position des éléments les uns par rapport aux autres ou
par rapport au fond de la fenêtre (item Ancre).

Enfin, pour modifier la taille de la fenêtre de votre application, placez le curseur de la souris en
bas à droite de la zone grise représentant le fond de votre interl'ace. Lorsque apparaît un
curseur en forme d'angle droit, vous pouvez procéder de deux façons différentes :

1. Cliquer et lirer l’angle pour augmenter ou diminuer la taille de la fenêtre.

2. Double-cliquer sur l'angle. Une boîte de dialogue appai'aît affichant la largeur et la hauteur de
la fenêtre de l’application. Vous pouvez modifier directement ces valeurs.

© Éditions Eyrolles

chapitre n° 12 Créer une Interface graphique

Caioier [Lditer le tccte
Changer le nom de la variable..
Btnd

ÉvénernefHs
Aligner

Ancre

Redimensionnement automatique

Mérne taille

Défrnir la taille par défaut

Espace âtitout du composant..

Figure 1 2 - 1 8 Ajuster la taille des com posants

Même largeur

Même hauteur

Com m ent centrer le bouton Calculer dans la fenêtre d ’application ?

Pour centrer ie bouton Calculer :
1, Sélectionnez l’intégralité des composants de l’application puis cliquez droit sur la sélection.
2. Choisissez l’item Aligner puis C enter to Colum n.

if)flj
Ô
>LU
rH
ofN
@
..UJx:gi'k—>-aou

Définir le comportement des objets graphiques
Tous les éléments graphiques .sont maintenant en place, mais l’application ne réalise pas
encore de calcul. Pour cela, nous allon,«; devoir « entrer » dans le code de l’application afin d ’y
insérer les instructions qui vont permettre de calculer puis d’afficher le périmètre du cercle.

Le code autogénéré par NetBeans
Dans un premiei temps, examinons le code construit par NetBeans (voir figure 12-19) dans le
panneau Source.
Le code, tel qu’il se présente lorsqu’on clique sur l ’onglet Source, semble relativement simple.
En réalité, il est plus complexe qu’ il n’y paraît. Une grande partie du code est cachée. Pour le
visualiser, il vous suffit de cliquer sur les signes + se trouvant en marge gauche de l ’éditeur.
Sans entrer dans le détail du code généré par NetBeans, nous allons décomposer sa .structure
(voir figure 12-19-0 ̂ P^^r mieux comprendre son fonctionnement.

O LtiS composants graphiques créés par simple glisser-déposer de la bibliothèque vers le fond
de l'application sont déclarés comme propriété de l ’application, à la fin de la définition de
la classe C e rc le S w in g . Nous retrouvons ici les noms c a lc u lB tn , p e r im e tre L a b e l,
etc., que nous avons pris soin de définir dans le panneau Inspector à l’étape précédente
(voir la section « Mise en place des éléments graphiques »).

> Éditions Eyroiles 405

partie в° 3 OMUs et leclmlgues orientés objet |

O La Fonction m ain () est. comme nous en avons pris Fhabilude tout au long de ce livre, le
point d’entrée du programme. Ici, les instructions qui la composent sont cependant un peu
plus complexes. Nous allons tenter de les rendre compréhensibles en les examinant plus
précisément.

La fonction main () utilise deux outils dont nous n’avons pas encore parlé ;
in v o k e L a te r (} et Runnable.
Ces deux outils font référence à la notion de th read que l’on traduit en français pai' « unités
de traitement ».

Source Design @ £ iS J • Ш Si шА
1
Z
3
4
56
7
8
9
IQ
U
IZU
14
15
16
17
16
1920
ai
92
83
84
95
96
96
99
90
91
эг
93
94
95
96
97
98
99

100101 102

pacJca9e Introduction;
public class cercl«Swi&9 extends javax.swing.JFraioe {

p u b l i c С а г с 1и8н 1а9{) (
iRitCcmponents j) ;

}

eSuppr«s3̂ Wamings(K V [Generatea co<ÿe1

 ̂ public static void a8ifl(String ärgst)) (
t java.awt.£ventQueue.invoJcdlaccr(new Rurmabie() (

p u b l i c v o i d r u n () {
)

nev CercleSvingC) .aetviaib le(true);

// Variaol-i?̂ -ict--! »iat iCri - do not
private javax^swing.JButton calculerBtn;
private javextswing.JLAbel perimetretebei;
private javax.swing.JLabel rayonLabel; private javax.swing.JLabel resultatLabe); private j avax. swing. JTextFxeld saia ieRayon;
' f or vat flsles :i.-n

4Л<U Figure 12̂ 19 Code source de rapplication CerdeSwing généré par NetBeans

>-Ш
to
оfN
@

Un thread est une portion de code, un traitem ent spécifique capable de s ’exécuter en m êm e
tem ps que d’autres traitements.

JZCT'l—>-Q.O
U

406 © Éditions Eyrolles

Ghaiiitre n° 12 Gréer une Interface graphique

Les applications construites à l'aide d'interfaces graphiques utilisent la notion de thread
puisqu’elles exécutent plusieurs traitements en même temps et ce, de façon indépendante.
Ces traitements sont, par exemple, la saisie d’ une valeur dans un champ de saisie en
même temps que l’affichage d’une aide contextuelle dans une fenêtre dédiée.
Pour exécuter les différents thread, la bibliothèque graphique Swing utilise une pile d’évé­
nements afin de répartir dans le temps leur traitement. La bibliothèque Swing propose
également plusieurs méthodes pour traiter cette pile, ici, par exemple, la méthode utili­
sée est invokeLater (), laquelle permet de traiter les événements de façon asynchrone
pour éviter de bktquer les éventuels autres threads en attente,
La méthode invokeLaterO demande, en paramètre, la portion de code à traiter de
façon asynchrone. C ’e,st ce qui est réalisé par la suite d’instructions :

new Runnable() {
public void run{) t

new CercleSwing().setVisible(true);
}

}

Runnable est une classe abstraite, une interface dont le mode de comportement défini
par le programmeur doit être écrit au sein de la méthode ru n ().

Les notions de classe abstraite et d’interface sont décrites au chapitre 9, « Dessiner des
objets », section « Les événements »,

t/ï

>-LU
KOrHOfN
@
JZCT'k—>-Q.O
U

) Éditions Eyrolles

Pour notre application, le comportement à exécuter en mode asynclirone consiste à appeler
le constructeur CercleSwing (}. La classe CercleSwing héritant des qualités et métho­
des de la classe JFraitie (extends j avax . sw in g . JFramG), l’objet issu du constructeur
est une fenêtre qui devient visible grâce à l'appel de la méthrxle setVisible (true).
Plus classiquement, nous aurions pu écrire la fonction m ain () comme suit :

public static void m a i n (String args[]) (
// Définition du thread et de son comportement
Runnable traitement = new Runnable() {

public void run() C
I l Création d'une fenêtre définie par la classe
! ! CercleSwing
CercleSwing fenetre = new CercleSwing();
// Rendre visible la fenêtre
fenetre.setVisible(true);

} ;
} ;
// Traiter le thread traitement en mode asynchrone
java.awt.EventQueue.invokehater(traitement);

407

partie B° 3 Outils et techniaues orientés oblel

}

0 Le constructeur CercleSwing () appelle la méthode initComponents (), laquelle
est enticrcmcnt générée par NctBeans.

O La méthode initComponents {) n’est pas directement visible lorsqu’on clique sur
l ’onglet Source. Pour examiner l’intégralité du code, cliquez sur le signe + situé en marge
gauche, à la hauteur du texte Generated Code.
№tus ne nous attarderons pas sur ce code. Tl est long, fastidieux et ce .seul chapitre ne suffirait
pas à le décrire entièrement. Pour simplifier, il suffit juste de comprendre que l’ensemble
des instnictions qui le composent permet le placement et l'affichage des composants tels
que vous les avez souhaités dans le panneau De.sign,

Associer une action à un bouton
Une fois compris le code autogénéré par NetBeans, examinons comment réaliser le calcul du
périmètre d’un cercle. Celui-ci s’effectue lorsqu’on clique sur le bouton Calculer. Pour asso­
cier Faction de calcul au clic sur le bouton, nous devons ajouter un gestionnaire d’événements
au bouton Calculer (nommé calculerBtn).

tn La notion d’événements est traitée à la section « L e s événem ents» du chapitre 9,
« Dessiner des objets ». * •

Sous NetBeans, l’ajout d’un gestionnaire sur un composant graphique .s’effectue comme suit
(voir figure 12-20).
• Dans le panneau Design, sélectionnez le bouton Calculer.
• Cliquez droit sur le composant.
• Sélectiomiez l ’item Événements, puis Action, puis actionPerformed, dmis l’encluûnement de

menu et sous menus qui apparaissent.

Cdlaier

L J

r-H
0 rs
@
sz01
>-Q.OU

408

Éditer le texte
Changer le nom de la variable...
Bind
Événements Action I actkxiPertormed [calculerBtnActionPerformed]

Figure 12-20 Associer un événement au bouton Calculer

La fenêtre Source s’affiche et laisse apparaître une nouvelle méthode ;
private void calculerBt.nActlonPer£ornieâ (java.awt.event.ActionEvent
evt) {

I l TODO add your handling code here:
, }

© Éd/f/ons Eyrotles

chapitre и° 12 Créer nee inietlace graphique

Les insiruclions qui réaiiseni le calcul du périmètre d’un cercle sont à insérer dans la méthode
calculerBtnActionPerformed () créée par NetBeans. Ces instructions sont au nombre
de trois ;
O Récupérer la valeur du rayon saisie dans le champ de saisie sa is ieR ay o n .
O Calculer le périmètre.
0 Afficher le périmètre dans le champ de texte re s u lta tL a b e l .

Ces instructions s’écrivent en Java :
'/ O Récupérer la valeur du rayon saisie dans le champ de saisie
// saisieRayon
double rayon = Double.parseDouble{saisieRayon.getText());
! 1 0 Calculer le périmètre
double perimetre = 2* Math.PI* rayon;

Il // 0 Afficher le périmètre dans le champ de texte resultatLabel
Il resultatLabel. setText (Double. toString (perimetre)) ;
Les deux principales méthodes à retenir sont : getText () et setText ().
La méthcKle getText () retourne, sous forme de chaîne de caractères, la valeur saisie ptu:
rutilisateur dans le champ de sai.sie sur lequel est appliquée la méthode. Ici, il s'agit du champ
saisieRayon. La valeur retournée par la méthode est de type String alors que le rayon est
une valeur numérique de type double. L’utilisation de la méthixle parseDouble () permet
lu iran.sformution d’une chaîne de caractères en valeur de type double.
À l’inverse, la méthode se tT e x t () affiche le texte placé en paramètre dans le champ de texte
sur lequel est appliqué la méthode. Ici, il s’agit du texte correspondant à la valeur calculée du
périmètre. Cette valeur est numérique, la méthode to S t r in g () transforme cette valeur en
une chaîne de caractères.

r3i|llittliK’̂ i’|i*T̂ pTl]̂ La méthode toString () est également étudiée à la section « Rechercher le code Uni­
code d’un caractère donné » du chapitre 4, « Faire des répétitions ».

Ф
O
1_>Ш
Ю1—IOfN
@
Л-»
SZ.CT'k—>-Q.O
U

Les trois lignes de code présentées ci-avant sont à insérer dans la fonction c a lc u le rB tn
ActionPerformed () comme suit :
private void calculerBtnActionPerformed{java,awt.event.ActionEvent

evt) [
// Récupérer la valeur du rayon saisie dans le champ de saisie
// saisieRayon
double rayon = Double.parseDouble(saisieRayon.getText());
I l Calculer le périmètre
double perimetre = 2 * Math.PI * rayon;
// Afficher le périmètre dans le champ de texte resultatLabel
resultatLabel.setText(Double,toString{perimetre));

}

> Éditions ByroWes 409

DarUe в° 3 Ouffis el lechnlaues otiemés iNiiet

Remarque La méthode calculerBtnActionPerformed {) est Une méthode particulière que l'on
nomme dans le jargon de la programmation événementielle, un gestionnaire d’événements.

Exécuter ̂ application
Pour voir enfin s'afficher l’application CercleSwing, vous devez lancer l’exécution du
programme. Pour cela, cliquez sur le petit triangle vert situé au centre de la barre d’outils de
NetBeans ou appuyez sur la touche F6 de votre clavier.
Si aucune erreur de compilation ou d’exécution n’est détectée, vous devez voir apparaître la
fenêtre avec un rayon et un périmètre égaux à 0 (voir figure 12-21 O)- Après saisie d’une
valeur pour le rayon et validation en cliquant sur le bouton Calculer, le résultat s’affiche à la
.suite du label « Périmètre : » (voir figure 12-21-0).

^ Calculer le périmètre d'un cercle

Rayon : J) Périmètre: 0

(Calculer) O
^ et Calculer le périmètre d'un cercle

Rayon 10 Périmètre : 62.8318...

.1̂ Calculer^'
T

Figure 12-21 Exécution de l'application C ercleSw ingJava

ifi Gesdon de billetlns de noies
>-Ш
CO
O
fN

@
JZCT
>-D.OU

410

Pour parfaire nos connaissances en construction d’applications Java munies d’interfaces
graphiques conviviales, nous vous proposons de créer une application permettant la création et
la gestion de bulletins de notes d’étudiants.

© Éditions Eyrolles

chapitre n° 12 Créer une interface graphique

Remaraue Pour comprendre la façon dont l’application traite les données (création d’un étudiant, sauve­
garde dans un fichier d’objets, etc.), il est conseillé d’étudier le chapitre 10, « Collectionner un
nombre indéterminé d’objets », avant de vous lancer dans la lecture de cette section.

Cahier des charges
L’objectif est d’écrire une application qui permet d’éditer le bulletin de notes d’un étudiant
donné.
Au lancement de l’application, une première fenêtre s’affiche à l’écran (voir figure 12-22) et
permet à l’utilisateur de :
0 saisir le nom et le prénom de l’étudiant dont on souhaite enregistrer les notes ;
Q choisir le semestre pour lequel les notes sont validées ;
O rechercher sur l ’ordinateur la photo de l’étudiant concerné ;
O une zone Info située en bas de la fenêtre fournit une aide à l’utilisateur.

Ensuite, l’utilisateur peut valider la saisie ou quitter l’application.

« n n Gestion des étudiants

Nom .

Prénom :

Étudiant

T.

Eléna

O
LU
yD1—1OfN
@
MJ
JZgi'u.>•
ClO
U

Période

Pfioto ,

Semestre 1

Rechercher

ID

Valider

9

(Quitter

Info. Photo rechofchéo -> /Users/AnnoT/Photos/Eiena.jpg

Figure 1 2 -2 2 Panneau de saisie des informations relatives à un étudiant

> Éditions Eyrolles 4 1 1

oarüe B° 3 Outlts ei leclmlaues orientés oblei

0 si Tudlisaleur dique sur k boutun Quitter {voir figure 12-22-0), rapplieution cesse son
exécution et la fenêtre disparaît.

0 s’ il clique sur le bouton Valider (voir figure 12-22-0), une seconde fenêtre apparaît (voir
figure 12-23), 11 s’agit de la fenêtre d'édition du bulletin de notes.

Ifi

>-
LU
vûrH
0 rs
@
sz01
>-Q.O
U

412

Le bulletin de notes affiche la photo, les nom et prénom de l'étudiant ainsi que le semestre
concerné (voir figure 12-23-Q). Il affiche également les matières correspondant au semestre
choisi (voir figure 12-23-0). Pour chaque matière, un champ de saisie de la note obtenue est
proposé (voir figure 12-23-0).
La moyenne générale de l'étudiant est calculée lorsque l’utilisateur clique sur le bouton
« Moyenne ? » (voir figure 12-23-0). Le bouton Enregi.strer (voir figure 12-23-0) permet de
sauvegarder l’intégralité des données dans un fichier d’objets. Le bulletin de notes disparaît
lorsque rutilisateur clique sur le bouton Fermer (voir figure 12-23-0). Il est alors possible de
créer un bulletin de notes pour un nouvel étudiant.

© Editions Eyrolles

cliaiiitre 1° 12 Créer uie Iniciiace graphique

Mise en place des élém ents graphiques
Les fenêtres Gestion des étudiants (voir figure 12-22) et Bulletin de notes (voir figure 12-23)
sont construites à partir des classes CursusSwing et BulletinNote. Fdles contiennent des
composants graphiques de type différents. Examinons pour chacune des classes associées, leur
organisation ainsi que leur propriété.

(M E D TO Toutes les classes développées pour réaliser l’application CursusSwing sont enregistrées au
sein du projet GestionClasseExemple, dans le package introduction.

La classe CursusSwing

La classe CursusSwing affiche la première fenêtre demandant la saisie du nom et du prénom
de l’étudiant. Elle est le point d’entrée de notre application et contient la fonction main (}.

Structure
La fenêtre de l’application CursusSwing . ja v a est con.stniite à partir du composant
JFrame. Ce composant contient tous les éléments graphiques (label, texte de saisie, bouton,
etc.) qui permettent d’obtenir une fenêtre telle que celle présentée en figure 12-22.
La fenêtre Inspecteur (voir figure 12-24) de NetBeans résume assez bien la structure et le
nombre de composants utilisés.

<D

>•
LU
KOrHOfN
@
jT01'k_
Q.O
U

Navigateur ■ Inspecteur H
^ Formulaire CtaiseSwing

l£i Q Autres composants

b q
labetntre [JLatKl]

h I—I separationTitre [JSeparator]

t - HUI labelMoiri [JLabeQ

- I I notoA sa i* [JTexFietd]

■Am labePrETiDm [X a b d]

□ prenomAsaiar (JTextFtelcfl

uM labelPeriade [X a b ^
[H chootPenode [JComboSox]

uta labePhoto IX a b d]

; 5ms] rediercherBbi [Æutton]
■ iam Info [Xabefl

(iüj validerBtr [JButton]
■ ¡üiïS fermerBtn [JButton]

Figure 12 -2 4 Structure de ta fenêtre associée à la c lasse CursusSwing

© Éditions Eyrolfes 413

parue B° 3 Outlis et techniques orientés oblet

Le composant JFrame
La classe CursusSwing est construite à partir du composant JFrame dont les proprie'tés
sont les suivantes (voir figure 12-25) :

; [J F ra m e] - P ro p r ié té s H N S
Propriétés! Bindng Evénements Code

B Propnélé»
d e fa u ltC lo se O p e ra t io n

title Gestion des É ludlsTts □
B Autres propriétés

ahwaysOnTop S Q
alwaysOnTopSuppofted □
autoReauestFocus SI
d e fa u ltC lo se O p e ra t io n

(fit) The frame’s default dose operatxxt.
&

Figure 12-25 Propriétés du com posant JF ram e (CursusSw ing.java)

Le titre de la fenêtre est défini à l ’aide de l’altribut t i t l e . Dans la fenêtre Propriétés associé
au composant JFrame, nous modifions le champ t i t l e pour l’initialiser à «Gestion des
étudiants
Le champ d e f a u l t C l o s e O p e r a t i o n est initialisé à EXIT_ON_CLOSE. De cette façon,
rappHcation finit son exécution lorsque l’utilisateur clique sur le bouton de fermeture de la
fenêtre.

Les composants JLabel
Les composants JL a b e l de la fenêtre Gestion des étudiants sont au nombre de six.
Le premier JL a b e l (voir figure 12-26) est utilisé pour afficher le titre « Etudiant » dans la
partie supérieure du panneau. Nous le nommons la b e lT i t r e , dans la fenêtre Inspecteur et
insérons le texte E tu d ian t dans le champ te x t du composant.

1/i<D

>-
LU
LOrHOÎN
@
JZCT'k—>-ClO
U

414

Figure 12-26 L e com posant labelTitre

© Éditions Eyrolles

cliaiiitre 1° 12 Créer une inierface graphique

Les quatre JLabel suivants (voir figure 12-27) se situent graphiquement sur les mêmes lignes
que les champs de saisie auxquels ils sont logiquement associés. Par exemple, le composant
JLabel nommé labelNomet dont le champ text est « Nom : » se situe sur la même ligne
que le champ de saisie qui sera utilisé pour saisir le nom de l’étudiant. Les autres JLabel sont
nommés respectivement label Prénom, labelPeriode et labelPhoto. Ils contiennent
dans l'ordre les textes « Prénom : », « Période ; » et « Photo ; ».

Figure 1 2 -2 7 Les com posants labeINom, tabetPrenom, labelPeriode et labelPhoto

Le dernier JLabel (voir figure 12-28) concerne la zone Info. Nous le nommons in fo et insé­
rons le texte « Info : » dans le champ te x t du composant.

ifi

><
L U

UD
tH
OfN
@
x:Oi'k_>-Q.O
U

i n f o
J L a b e l)

Info : Photo œchsfcriée -> fUsetixiAntieT/Photos/Elena.ipg j

Figure 1 2 -2 8 Le com posant Info

Pour différencier Paide contextuelle du reste de l’ interface, nous modifions les propriétés
background, foreground et font dans la fenêtre Propriétés associée au composant. Les
valeurs choisies sont celles décrites en ligure 12-29.

> Éditions Eyrolfes 415

I partie и° 3 outHs et techniaues orientés obiei

F igure 1 2 -2 9 Propriétés du com posant JL abel Info (BulletinNotes.java)

Les composants JTextField
Les composants JTextField sont au nombre de deux. Ils permettent la saisie du nom et du
prénom de l’étudiant. Nous les avons nommés par l'intermédiaire du panneau Inspecteur,
n o ia A sa is ir et p ren om A saisir.
Ils sont placés respectivement sur la même ligne que les composants nommés labelNom et
labelPrenom .

Le composant JComboBox
Une JComboBox est une liste déroulante d'items. L'affichage par défaut ne présente qu’un
seul item (voir ligure 12-30-0)-
Lorsque l’utilisateur clique sur le composant (voir figure 12-3Ü-0), la liste se déroule et il
peut alors visualiser et sélectionner l’ilem de son choix en cliquant dessus.

P ério d e (Q u e l s e m e st re 7 t f |

1̂
Photo ■ R e c h e rch e r ^

{ V a lid e r) Q u itte r)

1Л
(U

Ш
SO
O
rN

@

gi'i->-Q.OU
416

P ério d e

Photo

•r Q u e l s e ro e ît re ?
S e m e stre 1
S e m e s tre Z
S e m e stre 3 ”
S e m e stre 4

(V a lid e r) * t j IH U f t j

Figure 1 2 -3 0 La JComboBox

© Éditions Eyrotiss

chapitre n° 12 Gréer une inieitace graphique

Pour insérer le nom des items à l'intérieur de la JComboBox, il vous sut’fiL de modi lier le
champ model, dans la fenêtre Propriétés associée an composant (voir ligiirel2-31). Ici nous
avons choisi d’insérer les 5 items Quel semestre ?, Semestre 1, Semestre 2,
Semestre 3, Semestre 4.
L’item affiché par défaut, lorsque la JComboBox n’est pas encore déroulée, ne correspond pas
nécessairement au premier item défini dans le champ model.

Le champ s e le c te d in d e x (voir figure 12-31) permet de spécifier l ’indice de l’item à afficher
en premier. Cet indice varie de 0 au nombre d’items moins un, défini sur la liste construite à
l’étape précédente.

î c h o ix P e n o d e [J C o m b o B o *] - P ro p r ié té s e M RTS9L
* 1

i
g d'g
y
g

ft3

[P ro p r ié té ^ Bindhg

p i Propriétés

background
editabie

font

foreground

maxmumRowCount
m o d e l

selectedindex

Événements Code

selecteditem

tooiTipText

□ i255.2S5.2S5t

□
Tohemo 11 Simple
■ iO.Q.O]
S

Quel sem esée ? , Seotesée 1, Sem esée 2, Seme-stie 3, Sem esée ■é Q

IQ
Quel sem estre ? Q

g
s e le c te d in d e x

Ont) Ttie item at n dex o selected.
Q

F ig u re 1 2 -3 1 Propriétés de la JCom boBox

Pour finir, nous nommons le composant JComboBox, choixPeriode par l’ intermédiaire du
panneau Inspecteur.

<D

UJ

O
fN

@
JZoi
Cl
O
U

Les composants JButton

La fenêtre Gestion des étudiants possède deux boutons (JButton), nommés dans le panneau
Inspecteur validerBtn et ferrmerBtn. Le champ text associé à chaque bouton est
respectivement Valider et Quitter.

Les actions réalisées p;ir les deux boutons seront décrites à la section « Définir le comportement
des objets graphiques » de ce chapitre.

La classe BulletinNotes

La classe BulletinNotes crée la fenêtre d’édition du bulletin de notes. Elle ne s’affiche que
lorsque l’utilisateur clique sur le btiulon Valider de la fenêtre Gestion des étudiants.

© Éditions Eyrolles 417

Darde B° 3 Oudts el lechnlaues oileniés idilet

Structure
La fenêtre de l’application BulletinNotes. java est construite à partir du composant
JFrame. Ce composant contient tous les éléments graphiques {label, texte de saisie, bouton,
etc.) qui permettent d’obtenir une fenêtre telle que celle présentée en figure 12-23.

La fenêtre Inspecteur (voir figure 12-32) de NetBeans résume assez bien la structure et le
nombre de composants utilisés.

' Navî steur : In sp e cte u r

El Fornuiare BületrMotes
Q @ Autres CQ>Tpo»nts
0- Q [tframe)

0 ' Q Baiteinfes [JPanef]
- tt« IsbelNann tJtabel]

a u labHPrenorn [la b e l]
aei labePeriode [Xabel]
«SI nomEtudiant [JLabd]
«H prenomEtudlant [label]

|- üM semestre [JLabeij
«SI pSotoEtixtant [JLaberj

B LJ Bott̂ otes [JPaneQ
«M mabereUrel [label]
«sr iTiatiereLLje2 [label]
«>■ matereLuei [label]

materetueA [label]
«» matiereLLjeS [label]

■ □ moyenne 1 [JTestfiekf]
■ □ moyemeî [JTestFieki]
■ □ moyenne3 [JTestFiekfJ
: □ moyemeA [JTeïlHelcf]
....□ moyennes [JTestHekf]
■ I—I unTrait [rseparator]
■ «« labeMoyenne [JLabeî)

I ' Ufa« moyermeCenerale [Xabel]
B LJ BoiteBoutona [JPanel]

yU calojlerStn [SButton]
lâU enregistrerBIn [JButtnn]
làti fertnerBIn [Sutton]

F igure 1 2 -3 2 Structure graphique de la c lasse BulletinNotes

<ü

>•
LU

T~i
O<N
©
s :oi
Cl
O
U

418

Pour simplifier la mise en place de tous ces compo.sants, nous avons choisi de les insérer au
sein de conteneurs spécifiques, les JP an e l.
Ainsi tous les composants, situés en haut de la fenêtre, fournissent les informations relatives à
l'étudiant en cours de traitement. Nous tes plaçons à l’intérieur d’un composant JPanel
nommé Boitelnf os.
Les composants placés au centre de la fenêtre, permettent la saisie des notes de l'étudiant. Ils
sont placés dans un composant JP a n e l nommé B oiteN otes.

© Editions EyroUes

chapitre n° 12 Créer une interface graphique

Enfin, les boutons situés en bas de la fenêtre sont placés à rintérieur d’un composant jPanel
nommé BoiteBoutons.

Q Les composants de type JP a n e l sont présentés au chapitre 11, « Dessiner des objets »,
section « De l’AWT à Swing ».

Le composant JFrame

La classe BulletinNotes est construite à partir du composant JFrame dont les propriétés
sont les suivantes {voir figure 12-33) :

O
O
i_>LU

T~{
OfN
@
u-tJZCT'k—>-Q.O
U

! I J F r e m e] - P r o p r ié t é s B i l ü l
1 Propriétés 1 Binding Événem en ts Code -O

Qlrt.
h i Propriété» n
d e f s u i t e t o s e O p e r» tion

et id e BuHetn d e rw tes □
0 A utre» propriétés

s lw sy s O n T o p O □
1
5.-
2s i w a ysO oTo pSuppo rted 1^

s iftû R sriu sstF 00 O» m g -

d e f a u lt C lo s e O p e ra t io n e
(mt) T h e fra n e 's default d o se opération.

Figure 12 -3 3 Propriétés du com posant JFram e (BulletinNotes.java)

Le champ t i t l e est initialisé à « Bulletin de notes :■>. Le champ d e fa u ltC lo se O p e ra tio n
est quant ti lui initialisé à DISPOSE. De cette façon, l’application continue (au lieu de cesser)
son exécution lorsque l’utilisaleur clique sur le bouton de fermeture de la fenêtre. La fenêtre
Bulletin de notes s’effiice, alors que la fenêtre Gestion des étudiants reste active. L'utilisateur
peut créer un nouvel étudiant.

IjCS composants .TTvabel

Les composants JL a b e l de la fenêtre Bulletin de notes sont au nombre de quatorze. Nous ne
les détaillerons pas ici mais observons que certains d’entre eux restent constants alors que
d’autres sont modifiés par l’application.

Les composants qui contiennent des textes qui ne seront jamais modifiés par rapplicalion
sont, par exemple, des composants contenant les textes « Nom : » ou encore « Période ; ».

> Éditions EyroHes 419

partie a° 3 OutHs et techniaues oheotés oblei

Les composants mixlifiés par l'application sont, par exemple, les composants contenant les
différentes matières associées au semestre concerné ou encore la moyenne générale obtenue à
partir des notes saisies pour chaque matière.

Pour améliorer la lisibilité du ctxle source tcssocié, nous avons choisi la convention de nommage
suivante :

• les composants restant fixes commencent par label suivi d’un mot qui caractérise ce à
quoi il sert. Par exemple, le composant contenant « Nom : » est nommé labelNom, celui
contenant « Période : » est appelé labelPeriode ;

• les composants dont le contenu est modifié par l'application portent un nom qui les carac­
térise. Par exemple, le composant contenant « Nom de l’étudiant » est appelé nomEtudiant,
celui contenant « Total » est nonutié moyenneGenerale.

La figure 12-32 présente l'ensemble des noms des composants.

Les composants JTextField

Les composants JTextField sont au nombre de cinq. Ils pennettent la saisie des cinq notes
de l’étudiant. Nous les avons nommés moyennel, moyenne2, moyennes, moyenne4 et
moyennes dans le panneau Inspecteur.

Ils sont placés respectivement sur la même ligne que les composants nommés matiereLuel,
matiereL-ue2, matiereLue3, matiereLue4 et matiereLueS.

Les composants JButton

La fenêtre Bulletin de notes possède trois boulons, nonuités calculerBtn, enregistrerBtn
et fermerBtn dans le panneau inspecteur. Le champ text associé à chaque bouton e.st
respectivement « Moyenne ? », « Enregistrer » et « Fermer ».

Les actions réalisées par les trois boutons sont décrites à la section suivante « Définir le
comportement des objets graphiques ».

ifiO
O
l_>LU

T~{
0 fN
@
.4-1-T01'k_
Q.O

U
420

Définir le Gomportement des objets graphiques
Les fenêtres Gestion des étudiants et Bulletin de notes s’affichent correctement. Il convient
maintenant de « donner vie » aux composants afin de les voir « réagir » aux actions de I’utili-
sateur.

La classe CursusSwing
Plusieurs actions sont à mener pour créer un étudiant et saisir ses notes. Nous devons tout
d’abord saisir toutes les informations qui le concernent (nom, prénom, photo). Ces traitements
sont examinés aux sections suivantes « Mémoriser le nom et le prénom de l'étudiant » et
« Rechercher la photo d’un étudiant ».

© Éditions Eyrotles

C la ire n° 12 Créer uee inteHace graphique

Ensuite, la période d'enseignemenl pour laquel les notes sont validées doit être définie.
L’opération est réalisée en sélectionnant l'item approprié dans la JComboBox. Son traitement
sera étudié à la section suivante « Choisir la période d’enseignement »■.
La zone Info est une aide contextuelle qui renseigne l ’utilisateur sur ce qu'il doit faire en fonc­
tion de la position du curseur de la souris. La réalisation de l’aide contextuelle est traitée à la
section suivante « La zone Info ».
Lorsque l’utilisateur a saisi tous les champs proposés par l’ interface, le bulletin de notes est
affiché en cliquant sur le bouton Valider. Les instructions réalisant cette action, seront exami­
nées à la section suivante « Afficher le bulletin de notes ».
Pour finir, à la section «Quitter l’application», nous montrerons comment interrompre
rexécution de l’application, lorsque l’utilisateur clique sur le bouton Quitter.

>-
LU
KOrHOr\I
@
x:oi'k_>-Q.OU

Mémoriser le nom et le prénom de l’étudiant
Le nom et le prénom d’un étudiant sont enregistrés dans des objets de type String, grâce à la
méthode getText () appliquée aux composants nomAsaisir et prenomAsaisir comme
suit :
String nom = nomAsaisir.getText();
String prénom = prenomAsaisir.getText();

La mémorisation de ces valeurs n’est à effectuer que lorsque Lutilisateur clique sur le bouton
Valider. Ces instructions sont donc à insérer dans la m éthtxlevaliderBtnActionPer formed (),
décrite à section suivante « Afficher le bulletin de notes » de ce chapitre.

Rechercher la photo d ’un étudiant
La recherche d’une photo et la mémorisation du chemin d’accès menant à celle-ci nécessite
Putilisation d’un composant de la bibliothèque Swing nommé JFileChooser.
L’emploi de ce composant facilite la vie du développeur puisqu’il permet, avec très peu
d’instructions, d’afficher une boîte de dialogue proposant à l’utilisateur de parcourir l’arbores­
cence de son système de fichiers (voir figure 12-34) et de sélectionner un fichier de son choix.
Les instructions ci-après montrent comment l’utiliser :
// Gestionnaire d'événements associé au bouton rechercherBtn
private void rechercherB tnActionPerform edtjava.awt.event.ActionEvent

evt) {
// Création d'un objet de type File
File f1chierPhotO ;
// Création d'un composant JFileChooser
JFileChooser fichierArechercher= new JFileChooser{);
// O Ouvrir une boîte de dialogue qui permet la recherche d'un
// fichier
int etatRetour = fichierArechercher.showOpenDialog(

CursusSwing.this);

© Éditions Eyrol/es 4 2 1

partie B° 3 Outlis et techniaues oheptés oblei

0 si l'utilisateur a sélectionné un fichier
if (etatRetour == JFileChooser.APPROVE_OPTION) {

// 0 Récupérer le fichier sélectionné
fichierPhoto = fichierArechercher.getSelectedFile();
// O Stocker le chemin d'accès au fichier dans urlPhoto
urlPhoto = fichierPhoto.toString();

}

1 jt»f O uvrir

Rechercher dans :

Q Anne.ipg
D Elena-jpg
D Lamy.jpg'
D Nicoiasjpg

Photos üü â a DO'DO

Nom du fichier: Lamyjpg

Fichiers de^pe: T o u s le s f ic h ie r s

O u v rir Annuler

Figure 1 2 -3 4 Le com posant JF ileC hooser

iri

UJ
vO
O
fN

@
r :oi
Cl
O
U

422

0 L’ouverture d’une boîte de dialogue permettant à l’utilisateur de rechercher un fichier sur
son disque dur est réalisée par la méthode showOpenDialog (). Cette méthode doit être
appliquée à l'objet f ic h ie rA re c h e rc h e r de type JF ile C h o o se r.
L’argument spécifié en paramètre de la métliode showOpenDialog () indique à la machine
virtuelle Java, le nom de la fenêtre à laquelle la boîte de dialogue doit être attachée.
En utilisant le paramètre C ursusSw ing. th is , nous attachons la boîte de dialogue à la
fenêtre (JFrame) créée par l’application en cours d’exécution, c’est-à-dire la fenêtre Ges­
tion des étudiants. De cette façon, la boîte de dialogue s'affiche obligatoirement au-dessus
de la fenêtre à laquelle il est attaché.

La boîte de dialogue affiche par défaut tous ies fichiers et répertoires contenus dans le réper­
toire personnel de l’utilisateur.

© Éditions Eyrolles

chapitre n° 12 Gréer une Interface graphique

Après avoir parcouru l'arborescence de son choix et sélectionné le fichier souhaité,
l’utilisateur valide son choix en cliquant sur le bouton Ouvrir. Cela fait, la méthode
showOpenDialog () retourne une valeur qui indique au programme que le fichier a bien
été sélectionné.

0 Si un fichier est sélectionné, la valeur retournée par la métliode showOpenDialog {) corres­
pond à une constante prédéfinie de la classe JF ileC h o o ser, JF i leC h o o ser. APPROVE_
OPTION,

0 Dans ce cas, le fichier sélectionné est récupéré grâce à la méthode g e tS e le c te d F ile ()
appliquée à l’objet f ic h ie rA re c h e rc h e r . L’adresse du fichier est mémorisée dans un
objet de type F i le et nommé f ic h ie rP h o to .

O Le chemin d’accès au fichier est enregistré dans la chaîne de caractères u r lP h o to en
appliquant la méthode t o S t r in g () à l’objet f ic h ie rP h o to .
La boîte de dialogue s’ouvre seulement lorsque rutilisateur clique sur le bouton
re ch erch e rB tn . L’ensemble des instructions est donc placé au sein du gestionnaire
d’événements rechercherBtnActionPerf ormed ().
Pour cela vous devez :
• dans le panneau Design, sélectionner le bouton re c h e rc h e rB tn (JB utton) ;
• cliquer droit sur le composant ;
• sélectionner l ’item Événements, puis Action, puis actionPerformed, dans l’enchaîne­

ment de menus et de sous-menus qui apparaissent ;
• la fenêtre Source s’affiche, insérer les instructions précédentes dans la méthode

re c h e rc h e rB tn A c tio n P e rf ormed C) qui apparaît.
Le chemin d’accès au fichier photo doit être connu lorsque l’utilisateur a fini de renseigner
tous les champs de la fenêtre Ge.stion des étudiants et surtout lorsqu’il clique sur le bouton
v a lid e rB tn . 11 convient donc de déchu'er l’objet u rlP h o to en dehors de toute fonction,
comme suit :
I private String urlPhoto=”/Users/VotreKom/Photos/Inconnu.jpg";
La variable u rlP h o to est définie comme variable d’instance de la classe CursusSwing.
Elle e.st ainsi consultable par le ge.stionnaire d’événements du bouton v a lid e rB tn .

if)(U

>■
LU
LOrHOfN
@
JCCT'k—>-aOU

Il fid Les variables d’instance sont étudiées au chapitre 7, « Les classes et les objets », section
« Construire et utiliser ses propres classes ».

Nous avons volontairement initialisé la variable urlPhoto au chemin d’accès vers le
fichier Inconnu, jpg. Ce fichier représentant une simple silhouette s’affiche par défaut
si aucune photo n’existe pour un étudiant donné.

© Éditions Eyrolles 423

[parúe B° 3 Ouffis el techniques oiíeniés iriiiet

(U

>
UJ
lí)
tH
OrN
@
-COI'lI
ClOu

424

Choisir la période d ’enseignement
Pour sélectionner la période d’enseignement depuis la JComboBox, \mus devez écrire le
gestionnaire d’événements suivant :

// Gestionnaire d'événements associé à la JCoraboBox nommée choixPeriode
private void choixPeriodeActionPerfoimed{java.aw t .event.ActionEvent

evt) {
/ / O Récupérer le semestre sélectionné
période = (String) choixPeriode.getSelectedItem();
// O Rechercher la liste des matières en fonction du semestre

I rechercherMatiere(période);
}

O Le choix du semestre est réalisé par l'intermédiaire de l’objet c h o ix P e r io d e
(JComboBox), au sein du gestionnaire d’événements associé, c h o ix P e rio d e A c tio n
Perform ed () . La récupération de l’iteni sélectionné s’effectue par l ’inteiTnédiaire de la
méthode g e tS e le c te d I te m () appliquée à l'objet ch o ix P erio d e .

O Chaque période d’enseignement possède son propre lot de matières. Au premier semestre,
les matières sont, par exemple, la communication, l’anglais, ralgorithmie, la programma-
tion et les mathématiques. Au second semestre, le multimédia remplace l ’algorithmie,
l ’étude des ré.seaux se substitue aux mathématiques.
La description par matière des quatre semestres est stockée dans le fichier texte R essources
. txt dont le contenu est le suivant :

Semestre 1 ; Communication;Anglais;Algorithmie; Programmation;
Mathématiques ;
Semestre 2 ; Communication; Anglais .-Multimédia; Programmation;
Réseau ;
Semestre 3 ; Communication;Marketing;Conduite de projet;Vidéo;

I Multimédia;
Semestre 4 ; Communication;Management ; Multimédia ; Stage;Proj et ;

Chaque ligne définit le contenu d’un semestre et les intitulés de matière sont séparés par
des points-virgules (;). Le premier champ indique à quel semestre correspond lu ligne.
Pour lire ce type de fichier et en extraire le contenu, nous utilisons la méthode décrite au
chapitre 10, « Collectionner un nombre indéterminé d’objets », section « Exercice ». La
méthode rechercherMatiere {) reprend le code donné en correction de l’exer­
cice 10.5. Les instructions qui la composent sont le.s ,suivante.s ;

private void rechercherMatiere(String quelSemestre) {
Fichier fichierTxt = new Fichier();
listeMatieres = new String [5];
String [] tousLesmots = new string[6];

I if [fichierTxt.ouvrir("/Users/VotreNom/Ressources/
Ressources.txt", "R")) {

) Édfiions Eyrof/es

Gliaiiftre n° 12 Gréer une Inierface graphique

do {
tousLesmots = fichierTxt.lire{);
if (tousLesmots[0].equalsIgnoreCaseCquelSemestre)) {

for {int i=l; i < tousLesmots. length; i-i-+) [
listeMatieres[i-1] = tousLesmots[i];

}
break;

>
} while (tousLesmots[0]1= nulL);

fichierTxt.fermer();
}

IT u rh .-L i]ifi7 ^ Vous trouverez les explications, ligne par ligne, du code dans le fichier Corriges.pdf sur
l’extension Web de l’ouvrage.

La méthode rechercherMatiere () lit le fichier Ressources. txt pour en extraire la
liste des matières, en fonction du semestre passé en paiamètre. Cette liste est stockée dans un
tableau nommé listeMatieres, lequel est déclaré en dehors de toute fonction, comme suit :
I private string [] listeMatieres;
Le tableau listeMatieres est défini comme variable d’instance de la classe CursusSwing.
I I est consultable par le gestionnaire d’événements associé au bouton Valider.

t/ï

>-
LU
KOrHOfN
@
JZ
DI'k_>Q.O
U

La zone Info
La zone Info est une aide contextuelle qui affiche un message différent selon la position du
curseur de la souris. Par défaut, le message affiché dans la zone Info, est « Info : Tous les
champs doivent être renseignés ! ».
Si le curseur de la souris se trouve :
• sur le champ de saisie du nom de l’étudiant, le message affiché dans la zone Info est

« Info : Saisir le nom de l’étudiant » ;
• sur le champ de saisie du prénom de l’étudiant, le message affiché dans la zone Info est

« Info : Saisir le prénom de l’étudiant » ;
• sur le bouton Rechercher, le message affiché dans la zone Info est « Info : Rechercher la

photo de l’étudiant » ;
• sur le bouton Valider, le message affiche dans la zone Info est « Info : Afficher le bulletin

de notes de l’étudiant » ;
• sur le bouton Quitter, le message affiché dans la zone Info est « Info : Quitter l’application ».
Le texte s’affiche dans la zone Info lorsque le curseur de la souris survole un composant et non
suite à un clic de souris. La mise en place d’un gestionnaire d’événements lié au surs'ol de la
souris s’effectue de la fa<;on suivante (voir figure 12-35).

© Éditions Eyrol/es 4 2 5

partie в° 3 Optits el lechnlaues orieiiiés idilet

Dans îe panneau Design, sélectionnez, par exemple, le composant nommé noitiAsaisir
(JTextField).
Cliquez droit sur le composant.
Sélectionnez Fitem Événements, puis Mouse, puis mouseEntered, dans l’encliaînement de
menus et de sous-menus qui apparaissent.

<U

>-
Ш

ФirHO
f N

@

CT
>-D.O
U

P h o to :

I v»ii

- G e g r t o w C It B i e E iTgn i p l
t :5-:az:
a t i n i ; p z a p a z t y f i l ! • v.«d diit C:\ETBazv; ACftd filz: C:\.Uaar«;

1 A O U .c c « f i ;
p i l e .

É d it e r 1e t e x te

C h a n g e r le n o m d e la v a r ia b le , . ,

B in d

E v é n e m e n t s

A l ig n e r

A n c r e

Redimeminniiement automatique
M i m e T a i l la

D é f in i r l a t a i l le p a r d é f a u t

E s p a c e a u t o u r d u c o m p o s a r r i . . .

E f i c 1 o » - ln

D ^ ig n P a r e n t

D é p la c e r v e n le f iA u t

D é p la c e r v e r s le b a s

C o u p e r

C o p ie r

D u p l iq u e r

S u p p r im e r

lA ct io r»

A n c e s t o r

C a r e t

C o m p o n e n t

C o n t a in e r

F d c u s

H ie r a r c h y

H ie r a r c h y B o u n d s

In p u t U e t h o t f

Ktf
M o u s e

M o u s e M o t io r i

M o u $ e № ic e t

P r o p e r t y C h a n g e

m o u s e C l id t e d

m o u s e E n t e r e d E n o m A u i s i r M o u f e E n t e r e d]

r n ü u s e E i i t H i

m c u s e P r e s s e d

V e t o a b le C h a n g e _̂_____ m o u s e R e l e a s e d ____________________

t

bceiqpleSCb«piE,xel3NUet,B«an9P.roj«C3«\Ge9«J.oaCloA9eSxe0ple\buJ.lz

426

F igure 1 2 -3 5 Création d'un gestionnaire de type m ouseEntered

Le panneau Source s’affiche et laisse apparaître une nouvelle méthode ;

private void ncïmAsaisirMouseEntered(j ava. awt. event. ActionEvent evt) {
i l Insérer ici le code qui affiche un texte dans la zone Info
}

Cette opération est à réaliser pour tous les composants concernés par le survol de la souris.
Nous obtenons au final, le code source des ge.stionnaires d'événements suivant :

I l Survol du champ de saisie nomAsaisir
private void nomAsaisirMouseEnteredtjava.aw t .event.MouseEvent evt) {

Info.setText("Info : Saisir le nom de l'étudiant");
I }
// Survol du champ de saisie prenomAsaisir
private void pren.oniAsaisirMouseEntered{ java . awt. event .MouseEvent

evt) {
Info.setText(“ Info : Saisir le prénom de l'étudiant");

}

© Editions Eyrolles

chapitre n° 12 Gréer uee inietlace graphique

// Survol du bouton rechercherBtn
private void rechercherBtnMouseEntered(java.awt.event.MouseEvent

evt) {
Info.setText{” Info : Rechercher la photo de l'étudiant");

}
// Survol du bouton validerBtn
private void validerBtnMouseEntered(java.awt.event.MouseEvent evt) {

Info.setText("Info : Afficher le bulletin de notes de L'étudiant”);
P // Survol du bouton guitterBtn
private void fermerBtnMouseEntered(java.awt.event.MouseEvent evt) {

Info.setText("Info : Quitter l'application");
}

Pour faire en sorte que la zone Info affiche par défaut le message « Info : Tous les champs
doivent être renseignés ! », il suffit de placer un gestionnaire de type mouseEntered sur le
fond de la fenêtre, .soit le composant JFrame.
Le code source du gestionnaire d’événements s'écrit alors comme suit :

private void formMouseEntered(java.awt.event.MouseEvent evt) (
Info.setText("Info : Tous les champs doivent être renseignés !");

)

>-
LU
SOT-l
O<N
@

CT
>~Q.O
U

Atticher le bulletin de notes
Loi’sque l’utilisateur a renseigné tous les champs de la fenêtre Gestion des étudiants, il peut
enfin cliquer sur le bouton Valider afin de visualiser le bulletin de notes de l ’élève concerné.
L’affichage du bulletin de notes est donc réalisé par le gestionnaire validerBtnAction
Performed {). Les instructions qui le composent sont les suivantes :
private void validerBtnActionPerforraed(java.awt.event.ActionEvent

evt) {
! ! O Enregistrer les nom et prénom de l'étudiant
String nom = noiriAsaisir .getText () ;
String prénom = prenomAsaisir.getText();
// Créer et initialiser à 0 le tableau des moyennes
double n moyenne = new double[listeMatieres.length];
for (int 1 = 0 ; i < moyenne.length ; i++) moyenne[i]=0 ;
/ / O Créer un étudiant
Etudiant eleve = new Etudiant(nom, prénom, urlPhoto,

listeMatieres, période, moyenne);
// O Créer un bulletin de notes
BulletinNotes bn = new BulletinWotes(eleve);

}

> Éd/ï/ons EyroWes 427

panic B° 3 opffis el lechplaues onemes iriilet

Toutes les données nécessaires à la construction du bulletin de notes sont maintenant en place.
O Le nom et le prénom sont initialisés au nom et au prénom saisis par T intermédiaire des

champs de saisie. Un tableau des moyennes est créé puis initialisé à 0.
0 Les données relatives à l’étudiant en cours de traitement sont rassemblées dans un seul

objet nommé e le v e . Elles sont enregistrées par l ’intermédiaire du constructeur de la
classe Etudiant.

Q 2 H S 5 m La classe Etudiant utilisée ici, reprend en grande partie le code de la classe Etudiant
décrite en section « Trier un ensemble de données » du chapitre 9, « Collectionner un nom­
bre fixe d’objets ». Pour plus de précisions sur les modifications, reportez-vous au fichier
Etudiant. java se trouvant dans le répertoire Source/Exemples/Chapitrel2/
NetBeans/BulletinDeNotes sur l’extension Web de l’ouvrage.

O Le bulletin de notes est ensuite affiché grâce au constructeur de la classe Bulletin
Notes. Toutes les informations nécessaires à l'affichage des données de l'étudiant sont
pa.ssées en paramètres du constructeur, par rintermédiaire de l'objet eleve.

Nous étudions la classe BulletinNotes à la section « La classe BulletinNotes » ci-après.

Quitter l’application
Pour quitter l’application, Putilisateur clique sur le bouton Quitter. Le gestionnaire d’événements
associé à ce bouton s’écrit tout simplement comme suit ;

private void (juitterBtnActioiiPerfoniiecL(java, awt. event .ActionEvent
evt) {

System,exit(0);
}

<D

>•
L U

T~{
OfN
®
x:oi'k_>-Q.O
U

428

La classe BulletinNotes
La création d’un bulletin de notes a pour résultat d’afficher une fenêtre contenant toutes les
informations relatives à un étudiant donné. Ces informations sont transmises de l’application
ClassSwing au hulletin de noies par rintermédiaire du constructeur BulletinNotes ().
Les instructions qui le composent seront étudiées à la section suivante « Afficher le nom, le
prénom et la photo de l’étudiant ».
L’étude de la section « Saisir les notes et calculer la moyenne » vous montrera comment récu­
pérer les notes et calculer la moyenne lorsque l’utilisateur clique sur le bouton Moyenne ?
Le bouton Enregistrer permet de sauvegarder les données dims un fichier d’objets. La réalisa­
tion de cette sauvegarde sera traitée à la section « Enregistrer les informations ».
Pour finir, à la section « Fermer la fenêtre », nous expliquerons coniment fermer une fenêtre
sans interrompre l’exécution de l’application.

© Éditions Eyrolles

clrapHrc 1° 12 Créer uee inietiace graphique

<D

>-
LU

orN
@
s :oi
Q.Ou

Allicher le nom, le prénom et la photo de Pétudiant
Les données saisies dans la fenêtre Gestion des étudiants sont transmises au bulletin de notes
par l’ intermédiaire de l’objet de type Etudiant passé en paramètre du constructeur.
Le constructeur BulletinNotes () est composé des instructions suivantes :
public BulletinNotes (Etudiant titip) {

// Rendre le panneau visible
this.setVisible(true);
// Mettre en place les composants créés dans le panneau Design
initComponents();
// Définir la position et la taille du panneau, à l'écran
this.setBounds(100, 100,522, 669);
// O Initialiser la propriété etudiant a l'étudiant passé
.'/ en paramètre
etudiant = tmp;
.'/ Q Afficher les nom et prénom de l'étudiant
nomEtudiant.setText(etudiant.getNom());
prenomEtudiant.setText(etudiant.getPrenom());
// Afficher le semestre d'enseignement
semestre.setText(etudiant.getSemestre());
// Récupérer la liste des matières
String [] listeMatieres = etudiant.getMatieres();
// O Afficher chaque matière dans le composant gui lui
/ correspond

matiereLuel.setText(listeMatieres[0]);
matiereLue2.setText(listeMatieres[1]);
matiereLuel.setText(listeMatieres[2]);
matiereLueé,setText(listeMatieres[3]);
matiereLueS.setText(listeMatieres[4]);
/ / O Récupérer la moyenne de l'étudiant pour chaque matière
// La première fois, la moyenne est forcément nulle
double [] listeMoyenne = etudiant.getMoyenne();
!] Afficher chaque moyenne dans le composant qui lui correspond
tnoyennel.setText(Double.toString(listeMoyenne[0]));
moyenne2.setText(Double.toString(listeMoyenne[1]));
moyennes.setText(Double.toString(listeMoyenne[2]));
moyenneé.setText(Double.toString(listeMoyenne[3]));
moyennes.setText(Double.toString(listeMoyenne[4]));
// © Afficher la photo de l'étudiant
Imagelcon iconPhoto = new Imagelcon(etudiant.getPhoto());
photoEtudiant.seticon(iconPhoto);

}

© Éditions Eyrolles 429

В° 3 Ouffis el leclinlaues otiemés iriiiet

Les trois premières instructions du constructeur ont pour ток d’al'ficher le bulletin de notes
avec les composants que nous avons créés dans le panneau Design de rinlerface NetBeans.

O Les données concernant l'étudiant dont on affiche le bulletin de notes sont transmises au
constructeur pai' riiitermédiaire du paramètre tmp. Nous stockons ces données dans un
objet nommé etudiant, déclaré comme variable d'instance de la classe Bulletin
Notes, comme suit ;

I private Etudiant etudiant;

Nous pourrons ainsi consulter ou modifier ses données ii tout moment.

Q L’affichage des nom et prénom de l’étudiant est réalisé par la inétliode setText () appli­
quée aux labels nomEtudiant et prenomEtudiant. La récupération du nom et du pré­
nom est quant à elle effectuée en appelant les méthodes d’accès en consultation
getNomt } et getPrenomi) définies dans la classe Etudiant.

Les méthodes d’accès (get ou set) sont étudiées au chapitre 8, « Les principes du concept
objet », section « Les méthodes d’accès aux données ». La classe Etudiant se trouve dans
le répertoire Source/Exemples/Chapitrel2/NetBeans/Bulletin DeNotes sur
l’extension Web de cet ouvrage,

0 De la même façon, les différentes matières sont affichées dans les labels matiereLuel
à matiereLueS. L’intitulé des matières est extrait de l’objet etudiant grâce à la
méthode d’accès en consultation getMatieres ().

Q La moyenne d’un étudiant, par matière, vaut initialement 0. Cette valeur sera ensuite modi­
fiée lorsque l’utilisateur saisira de nouvelles valeurs dans les champs de saisie appropriés.

Remaraue Même si récupérer des moyennes nulles semble être inutile à cette étape de la conception,
cette information vous sera utile pour réaliser l’exercice 12-4 dont l’objectif est de modifier le
bulletin de notes d’un étudiant déjà enregistré.

ifi

><Ш
KOrH
OГМ
@
x:oi'k_>-Q.O
U

430

0 Pour afficher une photo, nous utilisons le label photoEtudiant créé à l’aide du panneau
Design. L’insertion d’une image (fichier au format JPEG) dans un composant JLabel est
réalisée en créant un objet de type Iniagelcon grâce à l’ instruction suivante :

I Imagelcon iconPhoto = new imageicon(etudiant.getPhoto());

Le constructeur im agelcon () demande en paramètre le chemin d’accès au fichier image. Ce
chemin est fourni par la méthode d’accès en consultation getP h oto ().

Une fois ricône iconPhoto créée, elle est placée dans le label photoEtudiant grâce à la
méthode seticon ().

© Editions Eyrolles

chapitre n° 12 Créer nee Interface graphique

<u

>~
LU
LOT~{
OfN
@
JTCT'k—>-Q.OU

Saisir les notes et calculer la moyenne
L’utilisateur transmet les moyennes par matière grâce aux champs de saisie moyennel à
moyennes. La moyenne est calculée lorsqu’il clique sur le bouton calculerBtn.
L’affichage des différentes moyennes est donc réalisé par le gestionnaire calculerBtn
ActionPerformed (). Les instructions qui le composent sont les suivantes :
private void calculerBtnActionPerformed < j ava.awt.event.ActionEvent

evt] {
// Récupérer la première moyenne
String moyenneTxt = moyennel.getText();
// Transformer la chaîne de caractères en valeur numérique
float ml = Float.parseFloat(moyenneTxt);
I l Mémoriser la nouvelle moyenne de l'étudiant en cours
I l de traitement
etudiant.setMoyenne(ml, 0);
// Récupérer la deuxième moyenne
moyenneTxt = moyenne2.getText (} ;
! ! Transformer la chaîne de caractères en valeur numérique
float m2 = Float.parseFloat(moyenneTxt);
! ! Mémoriser la nouvelle moyenne de l'étudiant en cours
! ! de traitement
etudiant.setMoyenne(m2,1);
// Récupérer la troisième moyenne
moyenneTxt = moyenne!.getText();
// Transformer la chaîne de caractères en valeur numérique
float m3 = Float.parseFloat(moyenneTxt);
// Mémoriser la nouvelle moyenne de l'étudiant en cours
// de traitement
etudiant.setMoyenne(m3, 2);
// Récupérer la quatrième moyenne
moyenneTxt = moyenne4.getText();
// Transformer la chaîne de caractères en valeur numérique
float m4 - Float.parseFloat(moyenneTxt);
I l Mémoriser la nouvelle moyenne de l'étudiant en cours
// de traitement
etudiant.setMoyenne(m4, 3);
// Récupérer la cinquième moyenne
moyenneTxt = moyennes.getText{);
// Transformer la chaîne de caractères en valeur numérique
float mS = Float.parseFloat(moyennes.getText());
l ! Mémoriser la nouvelle moyenne de l'étudiant en cours
/ / d e traitement

> Éditions Eyrol/es 431

I panic B° 3 Outlis el techniaues orfentes oblel

ifiO
OL->LU
T~{
0fN
@
-T01'k_
Q.OU

etudiant.setMoyenne(m5, 4);
// Calculer la moyenne générale
float résultat = {ml + m2 + m3 + m4 + m5)/5;
// Afficher le résultat dans le composant moyenneGenerale
moyenneGenerale.setText(Float.toString(résultat));

}

432

Les instructions de récupération et d’affichage de données vous sont maintenant familières,
nous ne les commenterons pas plus avant.
Remarquons simplement que pourcalculer une moyenne, nous devons travailler avec des données
numériques et non textuelles. Pour cela, il convient de transformer les valeurs saisies dans les
champs de saisie (JTextField) en valeur numérique. La méthode F l o a t . parseFloat ()
réalise cette opération.

À l ’ inverse la méthode F l o a t . toString () transforme une valeur numérique en
chaîne de caractères. Nous rutili.sons pour afficher la moyenne générale dans le label
moyenneGenerale.

Enregistrer les iiiforniations
Pour enregistrer les données, l'utilisateur clique sur le bouton Enregistrer. Le gestionnaire
d’événements associé à ce bouton s’écrit comme suit :

private void enregistrerBtnActionPerformed(java.awt.event.ActionËvent
evt) {

// Créer une classe d'étudiants
Cursus promo = new Cursus();
// Créer un fichier d'étudiants
FichierEtudlant F = new FichierEtudiant();
// Si le fichier s'ouvre en lecture
if {F.ouvrir("L")) {

// Lire les données et les mémoriser dans l'objet
promo = F.1 ire();
// Fermer le fichier
F .fermer{);

}
// Ajouter l'étudiant en cours de traitement à la promo
promo.ajouteUnEtudiant(etudiant.getWom(), etudiant.getPrenom(),

etudiant.getPhoto{), etudiant.getMatieres(),
etudiant.getSemestre(), etudiant.moyenne);

// Ouvrir le fichier en écriture
F. ouvrir (" W) ;
// Enregistrer la promo avec l'étudiant supplémentaire

© Éditions Eyrofles

chapitre n° 12 Créer une interface graphique

P ,écrire(promo);
// Fermer le fichier
F ,fermer();

}
Le code d’enregistrement des données dans un fichier d’objets reprend les classes Cursus et
FichierEtudiant étudiées au chapitre 10, «Collectionner un nombre indéterminé
d’objets ». Pour plus de précisions sur sa mise en place et son fonctionnement, reportez-vous
à la section « Les fichiers d’objets - Exemple : archiver une classe d’étudiants ».

Remarque Pour que l’application Cursus Swing soit compilable et s ’exécute correctement, il est néces­
saire d'insérer les classes Cursus et FichierEtudiant au sein du projet Gestion
ClasseExemple.

Fermer la fenêtre
Pour fermer le bulletin de notes, rutilisateur clique sur le bouton Fermer. Le gestionnaire
d’événements associé à ce bouton s’écrit comme suit :
private void fermerBtnActionPerformed(java.awt.event.ActionEvent

evt) {
this.dispose();

)
La méthode d is p o se () ferme la fenêtre sur laquelle la méthode est appliquée. Elle libère
toutes les ressources mémoire associées sans pour autant cesser l ’exécution de l’application.
Ici, la méthode est appliquée à t h is , c’est-à-dire à la fenêtre en cours de traitement, soit
Bulletin de notes.

Un édheur pour dessiner
Cette section aborde, à travers un exemple classique, les différentes techniques d’affichage
d’éléments graphiques à l’aide de la bibliothèque Swing et de NetBeans.

0
V)(U

>-
U J

rH
OfN
@

gi
>-
C lO
U

iiil[g Pour comprendre la façon dont sont traitées les données (création de formes graphiques,
création d’une liste d’affichage, sauvegarde dans un fichier texte), il est conseillé d’étudier le
chapitre 10, « Collectionner un nombre indéterminé d’objets », ainsi que le chapitre 11, « Des­
siner des objets ».

L’objectif est ici d’écrire un éditeur graphique qui offre à l ’utilisateur la possibilité de dessiner
des cercles ou des rectangles de la couleur de son choix.

© Éditions Eyrolles 433

partie B° 3 Outils et techniaues orientés obiet

Cahier des charges
Au lancement de l'application, la fenêtre Editeur graphique s ’affiche à l’écran sous la forme
suivante (vo ir figure 12-36).

; « ^ rs éditeur gr̂ iphique
Fichier Aide

O - i K » » *

Figure 1 2 -3 6 La fenêtre Éditeur graphique

U1(U

UJ
v£)
tH
O<N
©

01
Cl
O
U

434

La fenêtre de l'éditeur se divise en trois zones :
• La zone de dessin (vo ir figure 12-36-0) la feuille blanche du dessinateur. Ce dernier

dessine des formes en cliquant puis en déplaçant le curseur de la souris. La forme .se des­
sine sur la page lorsque l ’utilisateur relâche le bouton de la souris. Les algorithmes permet­
tant le dessin d’une forme à l’ aide de la souris ainsi que les méthodes d’affichage de la
bibliothèque Swing, .seront étudiés à la section « Créer une feuille de dessins ».

• La boîte à outils (vo ir figure 12-36-0) constituée de plusieurs icônes, chacune propo­
sant une fonctionnalité particulière comme dessiner un cercle ou un rectangle, choisir une
couleur de dessin ou encore effacer tout ou la dernière forme réalisée. La mise en place
de la boîte à outils et ses fonctionnalités seront traitées à la section « Créer une boîte à
outils »,

• Le menu (vo ir figure 12-36-0) e.st composé de deux items : Fichier et Aide. Le menu
Fichier est utile pour ouvrir, enregistrer ou créer un dessin. Il permet aussi de quitter
l ’ application. Le menu Aide affiche la fenêtre intitulée A propos. La mi.se en œuvre du
menu sera expliquée à la section « Créer un menu ».

© Editions Eyrolles

chapKra H° 12 Créer nee Interface graphique

Structure de ^application
L’application est créée sous la forme d’un projet NetBeans nommé EditeurExemple. Ce
dernier est constitué des classes suivantes ;

La mise en place d’un projet sous NetBeans est expliquée à la section « Les bases de Net­
Beans - Développer une interface graphique en mode projet » au début de ce chapitre.

• La classe Main, qui contient, comme son nom l’indique, la fonction mainO. Elle est
construite à partir du composant JFrame et comprend tous les éléments graphiques
(menu, barre d’outils, feuille de dessins, etc.) qui permettent d'obtenir une fenêtre telle que
celle présentée en figure 12-36.

• La classe FeuilleDeDessins, qui est une description de la zone de dessin. Elle
regroupe en son sein tous les comportements liés à l’affichage des objets, eonmie récupérer
les coordonnées de la souris au moment du clic ou encore dessiner un cercle.

• Les classes Forme, Cercle, Rectangle, ListeDeFormes et Fichier. Ces classes
sont celles étudiées et construites tout au long de ce livre. Nous utilisons leur version
finale, écrite au chapitre 10, « Collectionner un nombre indéterminé d’objets », section
« Exercices ».

Le panneau Inspecteur (voir figure 12-37) de la classe Main permet d’avoir une vue
d’ensemble de la stnicture ainsi que du nombre de composants utilisés. Son examen vous four­
nira le nom et le type de chacun d’entre eux.

La structure générale de la fenêtre associée à la classe Main se divise en trois composants :
barreMenu (JMenubar), boiteDessin (JPanel) et boiteOutils (JTooiBar). La
mise en place de ces composants est émdiée ci-après.

Créer une feu ille de dessins
La feuille de dessins est décrite par une classe à part entière, la classe F eu illeD eD essin s .
C'est par son intemnédiaire que les coordonnées de la souris sont récupérées ou que l’objet à
dessiner est affiché sur la zone créée à cet effet, et non sur la boîte à outils par exemple.

Ifi(D

>-
LU
KOrHOr\I
@
JZCT
' l .>-
ClOU

Mise en place des éléments graphiques
Pour créer l ’éditeur graphique, il convient de savoir dessiner et afficher des formes géométri­
ques telles qu’un cercle ou un rectangle mais plus encore, nous devons définir une « structure
des données » associées aux différentes formes à dessiner sitr la feuille.

Sans cette structure, nous ne pourrons pas enregistrer le dessin et le voir réapparaître en
ouvrant le fichier d’enregistrement. Il nous sera également impossible d’effacer la dernière
forme affichée (action « undo »).

© Éditions Eyrolles 435

partie B° 3 OutHs et techpiaues orieptés oblet

Inspecteur

^ Fo rm u la ire M ain
► C 3 A u tre s c o m p o sa n ts
T nnBW ÎW l

▼ iiS . b a rre M e n u UM enuBar]

|“ | item N o uveau (JM enultem)
P i item O uvrir |jM enultem |

P i iie m S a u v e r [jM en u liem]
P I item Q uitter [jM en uiiem]

[=] m ertuAide UM enu)

b o iie O u tils U Too iB ar] |
Të^Î ^oqglëBîmônl̂ ^*

[») rectan g le U Tog g leB u no n]
□ se p a re U n [S ep ara to r]

u n d o [JButton]
ta il e ffa c e r U Bunon]
Q separeDeux [Separator]
ta il rouge U Tog g leB u no n]

v e rt U Tog g leB u no n]
b leu U Tog g leB u no n]

laei b lan c U Tog g leB uno n]
noir U Tog g leB u no n]

Figure 1 2 - 3 7 Structure de ta fenêtre associée à la c lasse Main

U)ÛJ
Ô
L_>

L U

cOT~{
0 fN
@
4—1
s :01
Cl
O
U

436

La structure de la liste d’a№ctiage
La structure des données reprend celle décrite à l’exercice 10-2 du chapitre 10, «Collec­
tionner un nombre indéterminé d’objets », Il s’agit d’enregistrer chaque forme dessinée au
sein d’une liste de type A rra y L is t .
La classe ListeD eForm es utilise cette structure. Elle contient toutes les méthodes dont nous
avons besoin, à savoir ;
• Ajouter une fonne à la liste. La fonction qui réalise l’ajout d’un cercle ou d’un rectangle à

la liste des formes s’écrit comme suit :

public void ajouterUneForme{Forme f) {
// Si la forme passée en paramètre est un Cercle,
if {f instanceof Cercle) {

// l'ajouter à la liste comme forme de type Cercle
listeFormes.a d d {(Cercle) f);

}
// Si la forme passée en paramètre est un Rectangle,
else if (f instanceof Rectangle) {

) Éditions Eyrolles

cliairitre 1° 12 Créer nee Intenace graphlaue

// l'ajouter à la liste comme forme de type Rectangle
listeFormes.add{(Rectangle) f);

rnTïïiÏÏI7i]TÏÏ> L'Objet listeFormes est déclaré comme propriété de la classe ListeDeFormes comme
étant de type ArrayLiS t <Forme>.

Ф
O
t_>Ш
ЮT—1
OfN
@
л - tJCCT'k—>-Q.OU

Supprimer toutes les formes. La suppre.ssion de toutes les formes de la liste s’effectue très
simplement comme suit :

public void supprimerLesFormesO{
// La méthode clear() vide la liste de son contenu
listeFormes.clear();

}

Afficher le contenu de la liste. La méthode qui consiste à afficher le contenu de la liste sous
forme de texte n’est pas nécessairement utile lorsque l’on souhaite dessiner des fonmes
graphiquement. Cependant, elle a l’avantage d’aider le développeur lors de la construction
de l’application. Elle lui permet, par exemple, d’afficher le contenu de la liste lorsqu’une
action ne se réalise pas comme il le faut. La méthode s’écrit comme suit ;

I public void afficherLesFormes() {
I int nbFormes = listeForroes.size();

Sys tem.out.printlnC--------------------------------------");
if (nbFormes > 0) {

// Pour toutes les formes de la liste, afficher son
// contenu. La méthode afficher{) utilisée est soit celle
// de la classe Cercle, soit celle de la classe Rectangle,
// selon le type de la forme.
for (Forme tmp : listeFormes) tmp,afficher{);

}
else {

System.o u t .println{"La liste des formes est vide"};
1

}

Enregistrer la liste des formes dans un fichier texte. La sauvegarde des données est réalisée
par la méthode enregistrerLesFormes (). La liste des formes est enregistrée dans un
fichier nommé Formes. txt qui possède autant de lignes qu’ii y a d’objets placés dans la
liste. Chaque forme est représentée par une chaîne de caractères spécifique :
• un cercle est représenté par la chaîne C; c o u le u r ;x; y ; ra yo n ;
• un rectangle parla chaîne R; couleur; x;y ; largeur ; hauteur.

> Éditions EyroUes 437

partie B° 3 Outils et techniaues orfentés oblet

• Extraire la liste des formes depuis un fichier texte. L’extraction des données et la mise sous
forme de liste est réalisée par la méthode lireLesFonnes (). Pour chaque ligne du
fichier Formes. txt, la méthode extrait le premier caractère et crée un cercle ou un rec­
tangle selon sa valeur. L’objet créé est ensuite ajouté à la liste listeFormes.

Il Pour plus de précisions sur les méthodes enregistrerLesFormes () et lireLes
Formes (>, reportez-vous au fichier Corriges.pdf situé sur l'extension Web de cet
ouvrage, section « Exercices 10-2 et 10-5: Comprendre les listes et créer des fichiers
textes ».

<D

LU
Vû
tH
O<N
©

oi
Cl
O
U

438

La classe FeiiilleDeDessins
Une fois la structure des données mise en place, examinons comment réaliser l’affichage des
données associées sur la feuille de dessins.
La feuille de dessins s’ajoute au projet EditeurExemple en cliquant droit sur l ’item
EditeurExempIe de la fenêtre Projets et en sélectionnant les items Nouveau puis JPanel
Form, De cette façon, la feuille de dessin, décrite par la classe FeuilleDeDessins, hérite
des comportements de la classe JP an e l.
En effet, comme nous avons pu l’observer au chapitre 11, « Dessiner des objets », un JP a n e l
est un panneau de contenus. Il contient toutes les méthodes de base pour récupérer, par
exemple, la position de la souris ou encore afficher un contenu graphique.
La classe FeuilleDeDessins et son constructeur s’écrivent, dans la fenêtre Source, comme
suit ;

public class FeuilleDeDessins extends javax,swing.JPanel {
// La propriété principale de la classe ; la liste d'affichage
// listeAdessiner
private ListeDeFormes listeAdessiner;
// Le constructeur prend en paramètre la liste des formes créée
// par 1'application Main
public FeuilleDeDessins (ListeDeFormes Idf) {

// Initialiser la liste d'affichage à la liste des objets
// passée en paramètre du constructeur
listeAdessiner = Idf;
// Afficher les composants et leurs gestionnaires
// d'événements créés dans le panneau Design
initComponents{};
// Rendre visible la feuille de dessins
setVisible(true);
// Donner une position et une taille à la feuille de dessins
setBounds(0, 0,500, 500);
// Modifier le curseur de la souris lorsqu'il se trouve sur

© Éditions EyroUes

chapitre n° 12 Gréer une interface graphique

// la feuille de dessins
setCursor{new Cursor{Cursor.CROSSHAIR_CURSOR));

}

La définition des comportements et des actions à mener par la feuille de dessins est décrite
ci-après.

Définir le comportement des objets graphiques
Plusieurs comportements sont à définir pour la feuille de dessins. Le premier consiste à décrire
la façon dont la feuille de dessins doit « se peindre ». Les autres comportements sont ceux liés
aux actions de l’utilisateur avec la souris.

<D

LU
LO
OfN
@
JZCT'k->-D.OU

Qu’entend-t-on par « peindre » une feuille de dessins ?
Une fenêtre, et en particulier la feuille de dessins de l’éditeur, voit son contenu se modifier en
fonction des actions de rutilisateur. Ainsi, le contenu de la feuille de dessins change lorsque
rulitisaleur dessine une nouvelle forme ou s’il décide d’effacer son dessin.
Lorsqu’une nouvelle fenêtre s’ouvre et se place sur l’éditeur graphique, le contenu de la feuille
de dessins est effacé, Lorsque la fenêtre se ferme pour laisser réapparaître l ’éditeur graphique,
le contenu de la feuille de dessins doit à nouveau être réaffiché et la fenêtre doit être repeinte.
Pour afficher (peindre) la feuille de dessins, il convient « d ’expliquer» à cette dernière
comment le faire. Cette « explication » est réalisée grâce à la méthode paintComponent {).
La métlnxle paintCoraponent {} est appelée à chaque fois que cela est nécessaire, soit par
le système lorsque la fenêtre a été cachée et réapparaît, soit lorsque l ’utilisateur crée de
nouvelles formes. Dans ce dernier cas, la méthode qui dessine la forme souhaitée {par
exemple, un cercle) fait appel à la fonction repaint (), qui elle-même appelle la méthode
paintComponent(),
Examinons plus attentivement la méthode paintComponent () :
public void paintComponent (Graphics g) {

// L'appel à la méthode paintComponent() de la classe mère (super)
// permet l'affichage des éventuels autres composants placés
// dans le panneau de contenu
super.paintComponent(g);

I l ! Récupérer toutes les formes placées dans la listeAdessiner
ArrayList<Forme> tmpListe = listeAdessiner,getListeFormes{);
int nbFormes = tmpListe. size () ,-
if {nbFormes > 0) {
// Pour chaque forme contenue dans la liste,
for (Forme f : tmpListe) {
// dessiner la forme en utilisant la méthode dessiner() de
// la classe Cercle ou Rectangle, selon son type

© Éditions Eyroltes 439

parde B° 3 omis et techniaues orientés oblet

}

f .dessiner(g);
}

} else {
System.out.print("Il n'y a pas de forme dans cette liste");

}

La méthode dessiner () est définie à deux reprises : une fois dans la classe Cercle et une
seconde fois dans la classe Rectangle. Les instructions qui composent ces deux méthodes
diffèrent puisque le dessin d’un rectangle est réalisé par la méthode f illRect () alors que
celui d’un cercle est effectué par la méthode f illOval {).

ifi

><LU
KOrHOfN
®

Dessiner sur un clic
Une forme se dessine à la souris : l’utilisateur clique sur la feuille à l’endroit où il souhaite
commencer son dessin et lorsqu'il relâche le bouton de la souris, le tracé de la forme apparaît.
Pour dessiner une forme, il suffit donc d’enregistrer les coordonnées de la souris au moment
du clic et au moment du relâchement du bouton de la souris.
Ces deux opérations sont réalisées par les deux gestionnaires d’événements suivants :

j' // Détecter lorsque l'utilisateur clique sur la feuille de dessins
private void formMousePressedijava.awt.event.MouseEvent evt) {

// Enregistrer les coordonnées de la souris au moment du clic
debutX - evt.getX();
debutY = evt.getY();

)
// Détecter lorsque l'utilisateur relâche le bouton de la souris
private void fomiMouseReleasedfjava.awt,event.MouseEvent evt) {

// Enregistrer la distance parcourue par la souris, en X et
// en Y, entre le moment du clic et celui du relâchement
deltaX = evt.getXO- debutX;
deltaY = evt.getYO- debutY;
// Si la forme est un cercle, le dessiner
if [forme.equals{"cercle")) [

dessinerUnCercle();
}
// Si la forme est un rectangle, le dessiner
if (forme.equals{"rectangle"}) {

dessinerUnRectangle{);
}

CT'k—
Q.OU

440 © Éditions Eyrofles

cliaiiitre H° 12 Gréer nee Inteilace graphlaue

Les variables debutX, debutY, del taX, deltaY el forme sont définies eomme propriétés de
la classe FeullleDeDessins. Elles sont déclarées en dehors de toutes fonctions, comme suit :
private lut debutx, debutY, deltaX, deltaY;
private String forme="cercle";

La variable forme est initialisée à "cercle". De cette façon, l’utilisateur dessine par défaut
des cercles, à moins qu’il ne clique sur l’outil Rectangle. Dans ce cas, la propriété forme
prend la valeur "rectangle" et le dessin de reetaugles remplace celui de cercles. Le chan­
gement de la valeur forme est réalisé par les gestionnaires d’événements des boutons
cercle et rectangle (voir la section suivante « Dessiner la bonne forme »).

Dessiner un cercle à la souris

Tl existe quatre façons de tracer un cercle à la souris. Chacune de ces méthodes est représentée
sur la ligure 12-38.

ifi

><LU
KOrHOfN
@
x:oi'k_
Q.O

U

Figure 12-38 Les différentes façons de dessiner un cercle (voir les puces O- 0- O O du code ci-après)

O La première méthode, la plus classique, consiste à cliquer sur la feuille, puis à déplacer
le curseur de la souris vers la droite et vers le bas. 11 s’agit du cas le plus simple, puisque
la fonction f i l l O v a l () demande en paramètres les coordonnées qui correspondent

© Éditions EyroUes 4 4 1

partie a° 3 omis et techniaues orfentés obiet

exactement à celles de la boîte (carrée) qui englobe le cercle à tracer, c’est-à-dire les
valeurs debutX, debutY, deltaX ou deltaY.

Remaraue L’éditeur graphique propose de dessiner des cercles et non des ellipses. La boîte « englo­
bante » est donc nécessairement carrée. La valeur prise par la hauteur et la largeur de la boîte
doit être deltax ou deltaY. La valeur de deltax est choisie lorsqu’elle est plus grande que
celle de deltaY. La valeur ainsi choisie est stockée dans une variable locale nommée delta
(voir le code source de la méthode dessinerUnCercle <) ci-après).

(U

>LU
LO
T*H
OfN
@
JZgi'k_
D.O

U

0 Avec la deuxième méthode, le tracé du cercle s’effectue de droite à gauche et de haut en
bas. La valeur deltaX est négative et correspond au diamètre du cercle à tracer. Nous
devons la rendre positive. Il est également nécessaire de faire en .sorte que le point initial
du tracé corresponde au coin supérieur gauche de la boîte englobante. Pour cela, nous uti­
lisons une variable nommée decalageX afin de déplacer l’origine de la boîte englobante
au coin supérieur gauche du tracé. Ce décalage vaut ici -deltax.

0 Ici, le tracé du cercle est réalisé de gauche à droite et de bas en haut. La valeur deltaY est
négative, nous devons de la meme façon la rendre positive et faire en sorte que le point ini-
ticil du tracé corresponde au coin supérieur gauche de la boîte englobante. Pour cela, nous
utilisons une variable nommée decalageY afin de déplacer l’origine de la boîte englo­
bante au coin supéi'ieur gauche du tracé. Ce décalage vaut ici -deltaY.

0 Pour finir, il est aussi possible de tracer un cercle de droite à gauche et de bus en haut.
Selon que deltaX est plus grand ou plus petit que deltaY, le déplacement de la boîte
englobante vers le coin supérieur gauche du tracé s’effectue soit sur l’axe des X. soit sur
l’axe des Y.
La méthode dessinerUnCercle {) ci-après décrit en langage Java comment tracer un
cercle quelle que soit la méthode de sélection utilisée,

private void dessinerUnCercle() {
int delta=0 ;
int decalageX = 0 ;
int decalageY = 0;
// Si la largeur de la boîte englobante est supérieure
// à sa hauteur,
if (Math.abs(deltax) > Math.abs(deltaY)) {

// 0 stocker la largeur de la boîte englobante
delta = deltaX;
// Si le tracé de la boîte a été effectué de droite
// à gauche,
if (delta < 0) {

// 0 placer l'origine de la boîte englobante au coin
// supérieur gauche du tracé
decalageX = delta;

442 © Éditions Eyrotles

chapitre n° 12 Gréer uee Inteilace graphique

/ / e t rendre positif le diamètre
delta = -delta;

}
// si le tracé de la boîte a été effectué de gauche
// à droite, il n'Y a pas de décalage
else decalageX = 0 ;

}
// Si la hauteur de la boîte englobante est supérieure
// à sa largeur,
if (Math.abs(deltaY) > Math.abs(deltaX) } {

// O stocker la hauteur de la boîte englobante
delta = deltaY;
// Si le tracé de la boîte a été effectué de bas en haut,
if (delta < 0) {

// O placer l'origine de la boîte englobante au
// coin supérieur gauche du tracé
decalageY = delta;
delta = -delta;

}
// Si le tracé de la boîte a été effectué de haut en bas,
// il n'y a pas de décalage
else decalageY = 0;

}
// O Créer un cercle avec les valeurs de saisie
Cercle c = new Cercle(debutX + decalageX,

debutY + decalageY, delta, couleur);
// 0 Ajouter le cercle à la liste d'affichage
listeAdessiner.ajouterUneForme(c) ;
'•'/ 0 Repeindre la fenêtre qui a pour effet d'appeler
// la méthode paintComponent()
repaint();

}

i/iCJ

>~lU
•PrH
OfN

.1-1JZ
g i'k—>ClO
U

0 À l’issue des tests, les valeurs decalageX, decalageY, et delta sont initialisées aux
valeurs qui correspondent au mode de tracer du cercle. Un cercle est créé à l’aide du construc­
teur de la classe Cercle avec en paiamètres la position et la taille qui lui conviennent.

0 L’objet créé est ensuite ajouté à la liste d’affichage listeAdessiner.
0 Pour finir, l’objet est dessiné sur la feuille par T intermédiaire de la méthode repaint ()

qui fait appel à la méthode paintComponent () décrite à la section précédente
« Q u ’entend-l-on par « peindre » une feuille de dessins ? ».

© Éditions EyroUes 443

partie a° 3 OutHs et techniaues otleotés oblel

Relier la feuille de dessins à la fenêtre principale
La feuille de dessins est créée par l’application M ain comme suit :

public class Main extends javax.swing.JFrame {
// Définition des propriétés :
// - la liste d'affichage liste
private ListeDeFormes liste;
// 0 - la feuille de dessins page
private FeuilleDeDessins page;
I l Constructeur de la classe M a i n ()
public Main() {

I l Définition de la taille de la fenêtre de l'éditeur
setBounds(100, 100,600, 600);
I l Afficher les composants et leurs gestionnaires
// d'événements créés dans le panneau Design
initComponents();
// Créer une liste d'affichage vide
liste = new ListeDeFormes!);
/ / 0 Créer une feuille de dessins
page = new FeuilleDeDessins(liste);
1 1 Q Insérer la page dans le composant boiteDessin créé
//dans le panneau Design
boiteDessin.add(page);

}
! ! Définitions de la boîte à outils et des gestionnaires
I l d'événements, voir section ci-après

]

y)û;
ôL.>LU
T~{
OfN
@
j::çn
>•
Q.O
U

Remainue

444

O La feuille de dessins est une propriété de la classe Main, nommée page.
0 L’objet page est créé par le constructeur de la classe Main en prenant en paramètre la

liste des objets à afficher. Au lancement de l’application, la liste est vide, la feuille de
dessins reste blanche.

O La feuille de dessins est placée sur le panneau d’affichage de l’application principale
grâce au composant boiteDessin. Ce composant est un JPanel que nous avons pris
soin de placer sous la boîte à outils, par l’intermédiaire du panneau Design.

Il est nécessaire de créer la liste d’affichage au sein de la classe Main car même si les objets
sont créés paria classe FeuilleDeDessins, ils peuvent être supprimés de la liste avec des
outils {Effacer, Créer une nouvelle feuille, etc.) définis dans la classe M ain . La liste d’affichage
est « connue » de la feuille de dessins lorsqu’elle est passée en paramètre du constructeur
FeuilleDeDessins{).

© Éditions Eyrolles

cliaiiitre n° 12 Gréer nee Inteilace graphique

Créer une boîte à ou tils
La boîte à outils propose, comme son nom l’indique, un ensemble d'outils pour tracer des
formes circulaires ou rectangulaires, choisir une couleur ou encore effacer tout ou partie de la
feuille de dessins.

Mise en place des éléments graphiques

Les éléments de la boîte à outils sont regroupés par thème au sein d’un composant de type
JT oolB ar.
La mise en place d’une JT oolB ar se fait par un simple glisser-déposer du composant, depuis
le panneau Palette vers le panneau Design. Le composant est placé au-dessus du composant
b o ite D e s s in s et nommé b o ite O u ti ls .
La boîte à outils est composée à son tour de composants de type bouton, séparateur ou encore
bouton à bascule. L’ajout d’un composant au sein de b o ite O u t i ls se fait tout aussi simple­
ment, par un simple glisser-déposer du composant, depuis le panneau Palette vers la JT oolBar.
Nous détaillons ci-après les composants de la b o ite O u t i ls , par thème.

[fi

><LU
KOrHOfN
@
JZCT'k—>-Q.OU

Le thème « Choisir une forme »
La création du thème « Choisir une forme » passe par l’utilisation des composants JT oggle
B utton et ButtonGroup.
En effet, le choix de la forme à dessiner s’effectue en cliquimt sur l’outil Cercle ou sur l’outil
Rectangle. Lorsque l’utili.sateur sélectionne l’un de ces deux outils, le bouton cliqué reste
sélectionné et visiblement enfoncé tant que l’autre outil n’est pas sélectionné.
Dans le cas de la sélection d’un outil, l’emploi du JT o g g leB u tto n est utile pour montrer
à l’utilisateur quel est l’outil de tracé en cours de fonctionnement. En effet, le composant
JT ogg leB utton ne réagit pas comme un simple bouton mais comme un bouton à bascule,
un bouton à deux états. Pour passer d’un étal h un autre, PutilisateuT doit cliquer dessus.
Pour notre exemple, nous utilisons deux JT ogg leB utton nommés c e r c le et re c ta n g le
qui .sont programmés de sorte que lorsque c e r c le est sélectionné, re c ta n g le ne l'est pas.
La désélection d’un outil est réalisée par la sélection de l’autre outil. Ces deux actions sont
traitées par l’utilisation du composant ButtonGroup.
Le composant ButtonGroup est un composant non graphique qui va, lorsqu’on le place sur
la scène de la fenêtre Design, se ranger directement dans la hiérarchie Olher Components de la
fenêtre Inspecteur (voir figure 12-39). Nommons groupeForme le groupe des boutons asso­
ciés au thème « Choisir une forme ».

La mise en place d’un ensemble de boutons au sein d’un même ButtonGroup signifie qu’un
seul des boutons du groupe peut être sélectionné ii la fois. Ainsi, placer le.s boulons c e r c le et
r e c ta n g le au sein du groupe groupeForme à pour conséquence que seule une des deux
formes peut être sélectionnée à la fois.

© Editions Eyrolfes 445

partie B° 3 Outils et techniaues orientés oblet

Inspecteur
s Form ulaire Main
▼ G 3 Autres com posants

groupeCouleur [BunoctCroup]
___ 8 ^ groupe Form e [BunonCroup)

▼ □ nnfTHi
P Ë s barreM enu [JMenuBar]
I I boiteO essin UFanei]

► C l boiteOutils ÜTooiBarl

Figure 12-39 Le panneau Inspector de la c lasse Main

L’ajout des boutons cercle et rectangle au sein du groupe groupeForme s’écrit :
I l Ajouter le bouton cercle au groupe groupeForme
groupeForme.ad d (cercle);
// Ajouter le bouton rectangle au groupe groupeForme
groupeForme.ad d (rectangle);
I l Le bouton cercle est affiché comme sélectionné
cercle.setSelected(true);

Ensuite, les boutons cercle et rectangle sont affichés sous la forme d’icônes. Un dessin
remplace le texte qu’ils contiennent. Ce dessin est enregistré dans un ficliier au format PNG.
L’insertion d’une image dans un composant JToggleButton est réalisée en créant un objet
de type imagelcon grâce aux instructions :

I lmagelcon iconPhoto - new Imagelcon(url+"cercle.png");
cercle.seticon{iconPhoto);

IM U u rl est initialisé à "Ressources/", Le répertoire Ressources est créé dans le réper­
toire associé au projet EditeurExemple. Lorganisation du systèm e de fichiers créé par
NetBeans est décrite dans l’annexe « Guide d’installations », section « Utilisation des outils
de développement ».

O
l_>LU
T—H
OfN
@
JCgi'l.>-D.OU

446

Pour simplifier la mise en place du groupe de boutons « Choisir une forme >i, nous in,sérons
l’ensemble des instmetions qui le crée dans la fonction creerThemeForme () comme suit :
private void creerThemeForme() {

// Insérer les cercle et rectangle dans le groupe de boutons
// groupeForme

! groupeForme.a d d (cercle);

© ÉdiUons Eyrolles

G réer une in ie ita c e graphique

groupeForme,add(rectangle);
// L'outil cercle est sélectionné par défaut
cercle.setSelected(true);
// Placer l'image cercle.png sur le bouton cercle
Imagelcon iconPhoto = new Imageicon(url+"cercle.png");
// Afficher une infobulle au survol du bouton cercle
cercle . setToolTipText ("Dessiner des cercles"),-
cercle.seticon(iconPhoto);
// Placer l'image rectangle.png sur le bouton rectangle
iconPhoto = new Imagelcon(url+"rectangle.png");
// Afficher une infobulle au survol du bouton rectangle
rectangle.setToolTipText("Dessiner des rectangles");
rectangle.seticon(iconPhoto);

}

La fonction est ensuite appelée par le constructeur de la classe Main.

La méthode setToolTipText {) est utilisée pour afficher automatiquement une infobulle au
survol du composant sur lequel est appliqué la méthode. Ici, par exemple, au survol de l'icône
représentant un cercle, une infobulle contenant le texte « Dessiner des cercles » s ’affichera.

«(U

>LU
LOtH
OfN

JZ□n'k_5-Q.OU

Le thème « Choisir une couleur »
La gestion des outils de coloriage s’écrit de la même façon que pour les outils Cercle et
Rectangle. La fonction creerThemeForme () qui affiche les cinq choix de couleur sous
forme de boutons, s’écrit comme suit :
private void creerThemeCouleur() {

// Insérer les boutons rouge, vert, bleu, etc., dans le groupe
// de boutons groupeCouleur
groupeCouleur.add(rouge);
groupeCouleur.add(vert);
groupeCouleur.add(bleu);
groupeCouleur.add(blanc);
groupeCouleur.add(noir);
// La couleur noire est sélectionnée par défaut
noir.setSelected(true);
! ! Placer l'image rouge.png sur le bouton rouge
Imagelcon iconPhoto = new Imagelcon(url+"rouge.png");
rouge,seticon(iconPhoto);
rouge.setToolTipText(”Peindre en rouge");
// Placer l'image vert.png sur le bouton vert
iconPhoto = new Imagelcon (url-L"vert .png") ;

© Editions Eyroltes 447

partie B° 3 Outils et techpiaues orientés oblel

vert,seticon(iconPhoto);
vert.setToolTipText("Peindre en vert");
// Placer l'image bleu.png sur le bouton bleu
iconPhoto = new ImageIcon(url+"bleu.png");
bleu.setToolTipText("Peindre en bleu");
bleu.seticon(iconPhoto);
// Placer l'image blanc.png sur le bouton blanc
iconPhoto = new Imagelcon(url+"blanc.png");
blanc.setToolTipText("Peindre en blanc");
blanc.seticon(iconPhoto);
// Placer l'image noir.png sur le bouton noir
iconPhoto = new ImageIcon(url+"noir.png");
noir.setToolTipText("Peindre en noir");
noir.seticon(iconPhoto);

Le thème « Effacer »
Les outils qui permettent d’effacer l’intégralité de la feuille de dessins ou la dernière fomie
tracée sont de simples boutons, indépendants les uns des autres. Il est inutile de créer un groupe
de boutons. Leur affichage est réalisé par la fonction creerThemeE£facer () suivante :

p r i v a t e v o i d c r e e r T h e m e E f f a c e r {) {

I I I Placer l'image poubelle.png sur le bouton effacer
Imagelcon iconPhoto = new Imagelcon(url+"poubelle.png");

I l Afficher une infobulle au survol du bouton effacer
effacer.setToolTipText("Tout effacer");
effacer.seticon(iconPhoto);
I l Placer l'image undo.png sur le bouton undo
iconPhoto = new Imagelcon(url+"undo.png");
I l Afficher une infobulle au survol du bouton undo
undo.SetToolTipText("Effacer le dernier");
undo.seticon(iconPhoto);

}

V)û;
Ô
1_>LU

T~{
OfN
@
u-tJZCT'k—>-Q.OU

448

Définir le comportement des objets graphiques
Une fois affichée la barre d’outils et les boutons qui la composent, il nous reste à décrire les
actions menées par chacun d’entre eux.

Dessiner la bonne forme
Cliquer sur le bouton cercle ou rectangle revienl à sélectionner la forme à dessiner. Pour
cela, nous devons indiquer à l’objet page quelle forme doit être tracée, en fonction du bouton
sélectionné.

© Éditions Eyrolles

chapitre n° 12 Créer une Interface graphique

Ces actions sont décrites par les gestionnaires d’événements associés aux boutons cercle ou
rectangle, comme suit :

private void rectangleActionPerformed(j ava.aw t .event.ActionEvent
evt) {

// Initialiser la propriété forme de la classe FeuilleDeDessins
I I à "rectangle"
page.setForme(“rectangle");

}

private void cercleActionPerformed(java.awt.event,ActionEvent evt) {
I l Initialiser la propriété forme de la classe FeuilleDeDessins
// à "cercle"
page.setForme("cercle");

}

Les deux gestionnaires rectangleActionPerformed () et rectangleAction
Performed!) initialisent la propriété forme de l’objet page à la valeur ("cercle" ou
" rectangle ") qui lui correspond. Cette initialisation est réalisée par la méthode d’accès en
écriture setForme () définie dans la classe FeuilleDeDessins.
De celte façon, lorsque l'utilisateur clique sur la feuille de dessins, le gestionnaire form
MouseReleased() « sait », en testant le contenu de la propriété forme, quelle forme doit
être dessinée (voir la section précédente « Dessiner sur un clic »).

Remarque Par défaut, le bouton cercle est sélectionné. Au lancement de l’application, l’utilisateur trace
des cercles, s ’il ne clique pas sur le bouton rectangle. La propriété forme doit être initiali­
sée dès sa création à " cercle" dans la classe FeuilleDeDessins.

V)flj
Ô
L_>

LU
LOrHOfN
®

Colorier avec la bonne couleur

Lorsque l’utilisateur souhaite tracer une forme rouge, il clique sur le bouton de peinture rouge.
S’il veut changer de couleur, il clique sur le bouton de la couleur de son choix.
Le choix de la couleur de coloriage est donc réalisé par les gestionnaires d’événements asso­
ciés aux boutons rouge, vert, bleu, blanc et noir, comme suit :

private void rougeActionPerformedfjava,awt.event.ActionEvent evt) {
i l Initialiser la propriété couleur de la classe FeuilleDeDessins
¡ 1 à Forme.ROUGE
page.setCouleur(Forme.ROUGE);

}

CT'k_
aOU

© Éditions EyroHes 449

partie B° 3 Outils et techniaues orientés olilet

(private void vertActionPerformed(java.awt.event.ActionËvent evt) {
I I I Initialiser la propriété couleur de la classe FeuilleDeDessins

I l à Forme.VERT
page.setCouleur(Forme.VERT);

î
private void bleiiActionPerformedtjava.awt,event.ActionEvent evt) {

I l Initialiser la propriété couleur de la classe FeuilleDeDessins
I l à Forme.BLEU
page.setCouleur(Forme.BLEU) ;

}
private void blancAetionPer£onned{java.awt.event.ActionEvent evt) {

I l Initialiser la propriété couleur de la classe FeuilleDeDessins
// à Forme.BLANC
page.setCouleur(Forme.BLANC);

}
private void noirActionPer£ormed{java.awt.event.ActionEvent evt) {

I l Initialiser la propriété couleur de la classe FeuilleDeDessins
I l à Forme.N01R
page.setCouleur(Forme.NOIR);

I,)
Les gestionnaires associés aux boutons de coloriage initialisent la propriété couleur de
l’objet page à la valeur (Forme. ROUGE, Forme . BLEU, etc.) qui lui correspond. Cette initia­
lisation est réalisée par la méthode d'accès en écriture setCouleur (), définie dans la classe
FeuilleDeDessins.
Ensuite, la couleur d’affichage est transmise à l’objet Cercle ou Rectangle créé, par
rintermédiaire de son constructeur (voir la section précédente «Dessiner un cercle à la
souris »).
Par défaut, le bouton de couleur noire est sélectionné. Au lancement de l’application, l’utilisa­
teur trace des cercles de couleur noire, s’il ne sélectionne pas une autre couleur. La propriété
couleur est donc initialisée, dès sa création, à Forme.Hoir dans la classe FeuilleDe
Dessins.

CJ
Ô
L .>

LU
LÛtH
0 fN
@
4̂-1x:01'k_>-Q.OU

H ÎTn T iÏÏiîïïiïl Les constantes F o r m e . HOIR, F o r m e . ROUGE, etc., sont définies comme variables statiques
dans la classe Forme. Ce sont des valeurs numériques qui, pour chacune, correspondent à
l’indice de la couleur associée, définie dans ie tableau couleurDessin. Ce dernier est lui-
même également déclaré comme propriété statique de la classe Forme.

Effacer la page
Pour effacer les formes tracées sur la feuille de dessins, l'utilisateur clique sur le bouton repré­
sentant une poubelle, le bouton effacer.

450 © Éditions EyroUes

cliaiiitre 1° 12 Créer nee Inteilace graphique

La suppression des objets de la leLiille de dessins est réalisée par le gestionnaire d’événements
associé au bouton effacer suivant :
private void effacerActionPerfonnedtjava.awt.event.ActionEvent evt)
{

)

liste.supprimerLesFormes{);
page.dessinerLesFormes(liste);

L’cffaccmcnt du dessin s’effectue en deux temps :
• Supprimer les objets de la liste d’affichage, grâce à la méthode supprimerLes

Formes () de la classe ListeDeFormes.
• Repeindre la page avec une liste d’affichage vide, par simple appel à la méthode

dessinerLesFormes () de la classe FeuilleDeDessins.

L’opération qui consiste à supprimer la dernière forme dessinée (undo) est traitée en exer­
cice (voir la section « Exercices - Léditeur graphique version 2 » à la fin de ce chapitre).

Créer un menu
Le menu se décompose en deux items :
• ritem Fichier qui propose très classiquement de créer une nouvelle feuille de dessins,

d’ouvrir une feuille existante, d’enregistrer un dessin et de quitter l’application ;
• ritem Aide qui est utilisé pour afficher une fenêtre A propos.

<D

LU
ViD
tH
Ors|
@
x:Ol
C lO
U

Mise en place des éléments graphiques
Les items du menu sont regroupés au sein d’un composant de type JMenuBar.
La mise en place d’une JMenuBar se fait par un simple glisser-déposer du composant, depuis
le panneau Palette vers le panneau Design. Le composant est placé par NetBeans à l’origine de
la fenêtre d’application. Nous nommons ce composant barreMenu.
Par défaut, la JMenuBar est composée de deux jMenu avec comme noms d’item File et Edit.
Pour modifier ces noms, il suffit de double-cliquer lentement sur les JMenu et d’en modifier
les champs de texte. Nous vous proposons de remplacer le terme File par « Fichier » et Edit
par « Aide ».

T.es composants .TMenuTtem
Le menu Fichier est constitué de composants de type JMenuItem. L’ajout d’un composant au
sein de l’objet barreMenu se fait par un simple glisser-déposer du composant, depuis le
panneau Palette vers le JMenu souhaité (voir figure 12-40-0)-

© Éditions EyroUes 451

partie a° 3 oudis et techniaues orientés obiet

Sourt» I ̂o«ign~̂ Й Э

Fi(|hier ' Aiaë~
t ------ Ita m

Fichier Aide ______________
' iNouveaulT |

F igure 1 2 -4 0 C réer les items d'une barre de m enus

Nous modifions ensuite le texte du nouvel item, en double-cliquant lentement dessus (voir
figure 12-40-0).
Tl est aussi possible de définir des raccourcis clavier pour chaque item du menu. Cette fonc­
tionnalité se réalise très simplement en double-cliquant sur le terme « shortcut » situé juste à
côté du nom de Titem, ce qui a pour effet d’ouvrir la fenêtre représentée à la figure 12-41.

F ich ie r A id e

N ou veau C tri+ N

O u vrir C t r l+ 0

E n re a irtrtr C t r i* S

O A cce le ra to r

Set it e m S a u v e r s a c c e k r s t o r property using; К у stroke edtor

I C h o o s e th e m a n n e r fo r sp ec ify in g th e pro perty v a lu e |

Vrtual Key; WC_S

Key Stroke; Ctri+S

g J C t r l Q A i t i g s h i f t □ Meta (M aconly)

[Л
Ô
L_>Ш
cOT~{
0 гм

.4-1jr01'k_>Cl
ОU

452

OK Rebxjr aux valetas par défaut Г Annuler

Figure 1 2 - 4 1 La tenétre Accelerator

L’ajout du raccourci se fait en sélectionnant le champ Key Stroke, puis en appuyant sur les
touches du clavier que l’on souhaite utiliser comme raccourci. Après validation via le bouton
OK, le raccourci clavier est automatiquement relié au gestionnaire d’événements associé à
l’item du menu sélectionné.

© Editions EyroUes

clrap K re n ° 12 Gréer uee inietiace graphique

Définir le comportement des objets graphiques
Une fois affichée la barre de menus et les items qui la composent, nous devons décrire les
actions menées par chacun d'entre eux.

Créer une nouvelle page
La création d’une nouvelle page est réalisée par Je gestionnaire de ritem Nouveau. Les
instructions qui le composent sont :
private void iteniHouveauActionPerfonnedtjava.awt.event.ActionEvent

evt) {
if (liste != null) liste.supprimerLesFormes();
page.dessinerLesFormes(1iste);

}
Créer une nouvelle feuille de dessins revient à effacer le contenu de la liste des formes en
cours puis à repeindre la page avec une liste d’affichage vide, par simple appel à la méthode
dessinerLesForines () de la classe FeuilleDeDessins,
Si la liste est vide, il n’est pas nécessaire d’en supprimer les éléments puisqu’il n’y en a pas.

Enregistrer uu dessin
L’enregistrement sous forme de fichier texte de votre dessin est réalisé par le gestionnaire de
l’item Enregistrei'. Les instructions qui le composent sont :
private void itemSauverActionPerformedijava.awt.event.ActionEvent

evt) {
Fichier f = new Fichier();
f .ouvrir{"Formes.txt", "W");
if (liste != null) liste.enregistrerLesFormes(f);
f .fermer () ;

]

Le gestionnaire item Sau verA ction P erfo rm ed () utilise la classe F ic h ie r développée
au chapitre 10, « Collectionner un nombre indéterminé d’objets ». section « Exercices - Créer
des fichier texte ».
À l’appel du gestionnaire associé à l’objet itemSauver. un objet de type Fichier est créé
puis ouvert en écriture. Le fichier a obligatoirement pour nom ; " Formes . txt ".

<D

LU

L’opération qui consiste à « Enregistrer so us... » et permet à l’utilisateur de donner le nom
qu’il souhaite à son dessin est traitée en exercice (voir la section « Exercices - L’éditeur
graphique version 2 » à la fin de ce chapitre).

Ors|
©
x:Ol
Q.OU © Éditions Eyrolles 453

parde R° 3 Outils et techniaues otleniés lAlet

Ensuite, si la liste cl’affiehage n’est pas vide, le contenu de la liste est enregistré dans le
fichier texte par l’intermédiaire de la méthode enregistrerLesFormes ().
Vous pouvez consulter son contenu en éditant le fichier Formes. txt à l’aide de Bloc-notes
ou TextEdit. Le fichier est enregistré dans le répertoire EditeurExemple du système de
fichiers créé par NetBeans.

PEïïïï j3 Lorganisation du système de fichiers créé par NetBeans est décrite dans i’annexe « Guide
d’instailation », section « Utilisation des outiisde développement ».

if)<ü

>•
UJ
UO
•rH
O(N
@
MJszCT
O.OU

Ouvrir une page dessinée

Lorsque l'utilisateur sélectionne l’item Ouvrir, les formes enregistrées dans le fichier
Formes , txt sont tracées sur la feuille de dessins. Elles remplacent le dessin éventuellement
présent sur la feuille.
L’ouverture du fichier Formes.txt est réalisée par le gestionnaire de Fitem Ouvrir. Les
instructions qui le composent sont les suivantes :

private void itemOuvrirActionPerformed(java.awt.event.ActionEvent
evt) {

if (liste != null) liste. supprimerLesForm.es () ;
Fichier f = new Fichier();
if (f .ouvrir("Formes,txt", "R")) {

liste.lireLesFormes(f);
f .fermer{);

I page.dessinerLesFormes(liste);
}

}

454

Si la liste d’affichage en cours de traitement n’est pas vide, en d’autres termes, si un dessin est
présent sur la feuille de dessins, on supprime les objets présents dans la liste, ce qui a pour
conséquence d’effacer le dessin éventuellement présent.
Le fichier Fonnes.txt est ensuite ouvert en lecture afin d’en extraire les formes et de les
enregistrer dans l’objet liste. C ’est ce que réalise la méthode lireLesFormes ().
Une fois la liste remplie des formes enregistrées dans le fichier texte, le dessin associé est
affiché sur la page par l’intermédiaire de la méthode dessinerLesFormes ().

Quitter l ’application

Pour quitter l’application, l’utilisateur sélectionne l’item Quitter ou utilise le raccourci clavier
Ctrl + Q. Le gestionnaire d’événements associé à l’objet itemQuitter s'écrit tout
simplement comme suit :

© Editions Eyrotles

chapHre н° 12 Créer nee Interlace graphlQue

private voiii i teiciQuift er Act ionPer formed (java. awt .event .Act ionEv en t
evt) [

System.exit(0) ;

)

Résumé

Uutilisation d’un EDI tel que NetBeans simplifie grandement ia conception d’applications munies
d'interfaces graphiques conviviales. NetBeans est un environnement de développement, déve­
loppé par Sun et distribué en Open Source.
NetBeans propose un outil basé sur deux représentations d'une même application :
• la représentation graphique visible sur le panneau Design ;
• la représentation te)ftuelle du code, visible dans le panneau Source.
Pour passer d’une représentation graphique à une représentation « codée », il suffit de cliquer sur
l’onglet correspondant, à savoir Design ou Source.
La fabrication d’interfaces graphiques passe ensuite par deux étapes distinctes :
• La mise en place des éléments graphiques. Cette étape s’effectue très simplement en sélec­

tionnant le composant de son choix dans la palette de composants basés sur la bibliothèque
Swing. Il suffit de faire glisser le composant jusqu’au panneau Design.

• La définition du comportement des objets graphiques. Une fois placés et nommés, les compo­
sants prennent « vie » en insérant les instructions décrivant les actions à réaliser, au sein de
fonctions spécifiques. En programmation événementielle, ces fonctions sont appelées des
gestionnaires d’événements.

• Avec NetBeans, il suffit de double-cliquer sur le composant souhaité pour créer son gestion­
naire d’événements. L’interface se place d’elle-même sur le panneau Source, à l’intérieur de la
fonction correspondant au gestionnaire concerné.

Exercices
[ЛÜJ

>■Ш
KOrHOfN
@
JZoi'k_>ClO
U

S’in itie r à NetBeans
L’t)bjectif est ici de construire une application relativemenl simple qui convertit des mètres en
centimètres, des litres en décilitres et des heures en secondes.
L'application se présente sous la Гоппе suivante (voir ligure 12-42) :

> Editions Eyrolfes 455

name B° 3 Outlis et techniaues oileatés oblel

F ig u re 1 2 -4 2 Le convertisseur de m esure

Mise en place des éléments graphiques

12.1 a .

b.

c.

À l’a id e d e l’in te rfa c e N e tB e a n s , c r é e z u n p ro je t n o m m é Exercice 12_1 a u q u e l v o u s a jo u te re z
e n s u ite u n e c la s s e Main b a s é e s u r le c o m p o s a n t JFrame.
D a n s le p a n n e a u D e s ig n d e la c la s s e Main, p la c e z le s c o m p o s a n ts d e fa ç o n à o b te n ir le v is u e l
p ré s e n té à f ig u re 1 2 -4 2 . L e s c o m p o s a n ts a u tilis e r s o n t : JRadioButton, JSeparator, JText
F i e l d , J L a b e l , JButton et ButtonGroup.
M o d if ie z le s n o m s d e s c o m p o s a n ts e t le u r c o n te n u d e fa ç o n à o b te n ir u n p a n n e a u In s p e c te u r te!
q u e c e lu i p ré s e n té à la f ig u re 1 2 -4 3 .

V)

LU
UO•rH
O
(N

@
JZCT
>-Q.O

U
456

' N a v iy a te u r : In s p e c t e u r 41 M
S j Formulaire Main

H Q Autres com posants

B n [JFram e]

B-U outIChoix [JPaneD

I- * — m etreStn [JRadioButton]

• a - ttreBtn [JRadtÆ utton]

! e - heureBtn [IRadraButton]

 ̂ I— I jS e p a ra to r l [JSeparator]

B Q O u tiD o m e e s [JPanef]

i □ combien [JTextFïefcri

i résu ltat [JLabel]

h ut» u n t e ln t [JLabeQ

 ̂ la a um teFinal [X ^ ie Q

@ caku leretn [JButton]

F ig u re 1 2 -4 3 Le pann eau Inspecteur associé au convertisseur

© Éditions Eyrolles

chapHre »° 12 Créer nee Inteilace graphique

d . M o d if ie z le s c h a m p s t e x t d e s c o m p o s a n ts d e ty p e JLabel, JButton e t JRadioButton afin
d 'o b te n ir u n e fe n ê tre te lle q u e c e lle p ré s e n té e à la f ig u re 1 2 -4 2 .

Définir le comportement des composants

n i l T i ï ï î n 1 2 . 2 L e c h o ix d u ty p e d e m e s u re à c o n v e rt ir e s t ré a lis é p a r le g ro u p e d e b o u to n s g r o u p e R a d i o B t n .

a . A jo u te z le s b o u to n s raetreBtn, litreBtn e t heureBtn a u g ro u p e d e b o u to n s groupeRadio
Btn.

b. F a ite s e n s o r te q u e le b o u to n rad io metreBtn so it s é le c t io n n é p a r d é fa u t.

L o rs q u e l’u tilis a te u r s é le c t io n n e l’u n e d e s tro is u n ité s d e m e s u re , le c o n te n u te x tu e l d e s la b e ls
u n i t e F i n a l e t u n i t e l n i t e s t m o d ifié . A in s i, " M è t r e (s) " e s t re m p la c é p a r " L i t r e (s > " o u
" H e u r e (s) ” e t " C e n t i m è t r e (s) " e s t re m p la c é p a r " D é c i l i t r e (s) " o u " S e c o n d e (s) ".

c . É c r iv e z le s g e s tio n n a ire s d 'é v é n e m e n ts d e s b o u to n s m e t r e B t n , l i t r e B t n e t h e u r e B t n qui
ré a lis e n t c e s m o d ific a tio n s .

d . D a n s la c la s s e M a i n , c ré e z u n e p ro p r ié té choixAction in it ia lis é e à la c h a în e d e c a ra c tè re s
"Métré". F a ite s e n s o r te q u e la p ro p r ié té choixAction p re n n e la v a le u r :

• "Litre" q u a n d l'u tilis a te u r s é le c t io n n e le b o u to n litreBtn ;
• "Heure" q u a n d l’u tilis a te u r s é le c t io n n e le b o u to n heureBtn.

12i3 L a c o n v e rs io n d ’u n e v a le u r e s t a f f ic h é e lo rs q u e l’u tilis a te u r c liq u e s u r le b o u to n c a l c u l e r B t n .

a . A jo u te z u n g e s tio n n a ire d 'é v é n e m e n ts a u b o u to n calculerBtn d a n s le q u e l v o u s ré c u p é re re z la
v a le u r s a is ie d a n s le c h a m p d e s a is ie combien.

b. F a ite s e n s o r te q u e la c o n v e rs io n so it c a lc u lé e e n fo n c tio n d e l’u n ité d e m e s u re c h o is ie . P o u r c e la ,
é c r iv e z tro is fo n c tio n s convertirMetre () , convertirHeureO e t convertirLitrej) qu i
p re n n e n t e n p a ra m è tre la v a le u r s a is ie e t re to u rn e n t e n ré s u lta t u n e c h a în e d e c a ra c tè re s c o rre s ­
p o n d a n t à la v a le u r c o n v e rtie d a n s l’u n ité d e m e s u re c o rre s p o n d a n te .

c . A ff ic h e z le ré s u lta t o b te n u d a n s le la b e l r é s u l t a t .

V)
û;
ÔL->LU
KOrHOrN
@
x:
>.aO
U

Le gestionnaire d ’étudiants version 2
L’objectif de cet exercice est d’améliorer le gestionnaire d’étudiants présenté ati cours de ce
chapitre.

Les options Créer, Modifier, Supprimer
L’application présente maintenant trois nouvelles options : Créer, Modifier et Supprimer (voir
figure 12-44).

© Éditions Eyrolles 457

Darde B° 3 O iidts e i le ch n la u e s o ile n ié s ir iile t

, « o _ o G e st io n d e s étu d ian ts

É tu d ia n t

ô C réer O M odifier 0 Su p p rim er

R diti ; 1 1

prénom : 1 :

Péried e : 1 Q u e l se m e stre ? Œ)
Photo : (R e ch e rch e r)

V^hder ̂ f Fe rm er

Créer Tous fes cham ps doivent être renseignés !

FigurÉ 12-44 Les nouvelles options du gestionnaire d ’étudiants

U)

ôU>-LU
T~{
OfN
@
j::
en'u.>•ClOU

RTïïTî T?̂ 12.4 L e s tro is o p tio n s C ré e r , M o d ifie r e t S u p p r im e r s e p ré s e n te n t s o u s la fo rm e d ’un g ro u p e d e tro is b o u ­
to n s radio.

a . Dans l’ in te rfa c e N e tB e a n s , re p re n n e z le p ro je t GestionClasseExeitiple d é v e lo p p é a u c o u rs d e
c e c h a p itre . F a ife s -e n u n e c o p ie q u e v o u s n o m m e re z GestionClasseExercice.

b. M o d if ie z la fe n ê tre G e s tio n d e s é tu d ia n ts e n y a jo u ta n t les tro is b o u to n s rad io q u e vous n o m m e re z
creerRadioBtn, modif ierRadioBtn e t supprimerRadioBtn. A jo u te z é g a le m e n t un g ro u p e
d e b o u to n s q u e v o u s n o m m e re z groupeEtn.

c. Ajoutez le s b o u to n s creerRadioBtn. modifierRadioBtn e t supprimerRadioBtn au
g ro u p e d e b o u to n s groupeBtn. F a ite s e n s o r te q u e le b o u to n creerRadioBtn so it s é le c t io n n é
p a r d é fa u t.

d . D a n s la c la s s e CursusSwing, c r é e z u n e p ro p r ié té choixAction d e ty p e String e t In it ia lis e z -
la à "Créer".

e . É c r iv e z le s in s tru c tio n s qu i font q u e la v a r ia b le choixAction e s t in it ia lis é e re s p e c tiv e m e n t à
"Créer", "Modifier" o u "Supprimer" a u se in d e s g e s tio n n a ire s creerRadioBtnAction
PerformedO, modifierRadioBtnActionPerformed() o u supprimerRadioBtnAction
Performed().

458 © Éditions Eyrolles

chapitre a° 12 Giéer uae Interlace graphique

t. M o d if ie z ie c o d e d u g e s tio n n a ire v a l i d e r B t n A c t i o n P e r f o r n i e d O e n y in s é ra n t ies te s ts su i­
va n ts :

String nom = nomAsaisir.getText();
String prénom = prenoniAsalsir. getText () ;
if (cboi»Act:ion.e<Tuel3("Creer'')) {

I creerUnEtudiant(nom, prénom);
I }

e l s e if (ciioixAction, equals ("Modifier"}) {
lïiodiÊierUnEtudiant [nom, prénom) ;

I)
e l s e If <choixActlon.equals("Suprimer")) {

supprimerUnEtudiant(nom, prénom);
}

g. É c r iv e z le s fo n c tio n s creerUnEtudiant (), inodifierUnEtudiant O et supprimerUn
Etudiant () e n v o u s in s p ira n t d e s c o d e s fo u rn is a u c h a p itre 10 , « C o ile c tio n n e r un n o m b re in d é ­
te rm in é d 'o b je ts » , s e c tio n s « L e s d ic tio n n a ire s » et « L e s fic h ie rs d ’o b je ts ».

Vaide contextuelle

[Ttnffiin 12.5 L o rs q u e ie c u rs e u r d e la s o u r is s u rv o ie :

• c r e e r R a d i o B t n , le m e s s a g e a ff ic h é d a n s la z o n e In fo e s t « C r é e r un n o u v e l é tu d ia n t >> ;

• modif ierRadioBtn, le m e s s a g e a ffic h é d a n s la z o n e In fo e s t « M o d ifie r u n é tu d ia n t, vo u s d e v e z
c o n n a ître s o n n o m e t s o n p ré n o m » :

• s u p p r i m e r R a d i o B t n , le m e s s a g e a ffic h é d a n s la z o n e In fo e s t « S u p p r im e r u n é tu d ia n t, v o u s
d e v e z c o n n a ître s o n n o m e t s o n p ré n o m ».

É c r iv e z les g e s tio n n a ire s d ’é v é n e m e n ts a s s o c ié s q u i ré a lis e n t c e s d iffé re n ts a ffic h a g e s .

If)(U

>-
LU
LOrHOrvl
@
j::
g i
>•Q.O

U

i^ m îîî^ 12.6 L e su rv o l d e la J C o m b o B o x c h o i x P e r i o d e n e p e rm e t p a s d ’a ff ic h e r c o rre c te m e n t un m e s s a g e d a n s
la z o n e Info. E n e ffe t, lo rs q u e la lis te d e s p é r io d e s e s t d é ro u lé e , le m e s s a g e a ffic h é d a n s la z o n e In fo
p e u t ê tre e rro n é . P a r e x e m p le , le su rv o l d e l'item S e m e s tre 4 a ffic h e le m e s s a g e « In fo : Q u itte r l’a p p li­
c a tio n » . C e c i s ’e x p liq u e p a r le fa it q u e la lis te d é ro u la n te s ’a ff ic h e a u -d e s s u s du b o u lo n Q u itte r . L e
su rv o l d e la so u ris e s t c a p tu ré p a r c e d e rn ie r . P o u r c o rr ig e r c e d é fa u t d ’a ffic h a g e , la m a rc h e à s u iv re
e s t la s u iv a n te :

a . D é c la re z u n d ra p e a u etatComboBox c o m m e p ro p r ié té d e la c la s s e CursusSwing e t in itia lis e z -
le à f a l s e . L’é ta t false c o rre s p o n d à u n e JComboBox fe rm é e , l’é ta l true à u n e JComboBox
d é ro u lé e .

b. A jo u te z le g e s tio n n a ire d 'é v é n e m e n ts PopupWillBecoraeVisible à la JComboBox choix
Période. D a n s c e g e s tio n n a ire , in itia lis e z le d ra p e a u etatComboBox à true. A ffic h e z é g a le ­
m e n t le m e s s a g e « In fo : C h o is ir la p é r io d e d e v a lid a tio n d e s n o te s » d a n s la z o n e Info.

© Éditions Eyrolles 459

Darde B° 3 ODflts ei tecliDlaues oileniés iriilet

c . A jo u te z le g e s tio n n a ire d ’é v é n e m e n ts PopupWillBecomeInvisible à la JComboBox choix
Periods. D a n s c e g e s tio n n a ire , in it ia lis e z le d ra p e a u etatComboBox à false. A ffic h e z é g a le ­
m e n t le m e s s a g e « In fo : T o u s les c h a m p s d o iv e n t ê tre re n s e ig n é s ! >» d a n s la z o n e Info.

d . D a n s le s g e s tio n n a ire s d e ty p e M o u s e E n t e r e d , v é r if ie z l'é ta t d u d ra p e a u e t a tC o m b o B o x . S ’il
e s t à t r u e , a ffic h e z d a n s la z o n e Info le m e s s a g e « In fo : C h o is ir la p é r io d e d e v a lid a tio n d e s
n o te s » s in o n , a ffic h e z le m e s s a g e re la tif a u c o m p o s a n t c o n c e rn é .

Une boîte Message

itïïtm i 12.7 L o rs q u ’un é tu d ia n t e s t a jo u té o u s u p p r im é a u f ic h ie r d ’o b je ts , lo rs q u ’il e s t m o d ifié ou e n c o re s’ il n ’e s f
p as p o s s ib le d e le m o d ifie r, u n e a le r te d o it s 'a ffic h e r à l’é c ra n . E lle s e p ré s e n te s o u s la fo rm e s u iv a n te
(fig u re 1 2 -4 5) :

O Message

a U
L'étudiant(e)

B •
Y. Nicolas

Ü h" est Inconnu(e) !

fh O Message

L'étudiant(e)

Nicolas T.

a été enregistrô<e)

F ig u re 12 -4 5 Un m essa g e e s t affiché pour indiquer le bon ou le m auvais déroulem ent du programme.

O
O
>LU

T~{
0 fN
@
..i- i
x :01'k_>-ClO
U

a . A jo u te z a u p ro je t GestionExempleExercice u n e c la s s e n o m m é e Message b a s é e s u r u n e
JFrame.

b. D a n s le p a n n e a u D e s ig n , a jo u te z tro is JLabel e t u n JButton q u e v o u s n o m m e re z re s p e c tiv e ­
m e n t hautLabel, centreLabel, b a s L a b e l e t okBtn.

c . L e c o n s tru c te u r M e s s a g e {) p re n d e n p a ra m è tre tro is c h a în e s d e c a ra c tè re s . P la c e z c h a c u n e
d ’e n tre e lle s a u s e in d e s c o m p o s a n ts hautLabel, centreLabel e t basLabel

d . É c r iv e z le g e s tio n n a ire du b o u to n o k B t n d e fa ç o n à c e q u ’ il fe rm e la fe n ê tre s a n s q u itte r l’a p p lic a ­
tio n .

e . M o d if ie z l’a p p lic a tio n CursusSwing p o u r y a jo u te r l’a ff ic h a g e d ’ u n e a le r te lo rs q u ’u n é tu d ia n t a
é té e n re g is tré , m o d ifié , s u p p rim é o u s ’il e s t in co n n u .

460 © Éditions Eyrolles

cliaiiitre 1° 12 Créer nee Inteilace graphique

L’éditeur graphique version 2
L'objectif de cet exercice est d’améliorer et d’ajouter de nouvelles fonctionnalités à l’éditeur
graphique présenté au cours de ce chapitre.

Dessiner un rectangle à la souris

1 2 . 8 R e p re n n e z l'a lgorithnne d e t ra c é d ’un c e rc le d é c rit à la s e c tio n « D e s s in e r un c e rc le à la s o u ris » d e c e
c h a p itre .

a . À l'e x a m e n d e s q u a tre c a s p o s s ib le s d e t ra c é d ’un re c ta n g le , é c r iv e z d a n s la c la s s e Feuille
DeDessins la fo n c tio n dessinerUnRectangle ().

b. M o d if ie z le g e s tio n n a ire formMouseReleased d e m a n iè re à c e q u ’un re c ta n g le soit d e s s in é
lo rs q u e l'u tilis a te u r s é le c t io n n e le b o u to n rectangle.

Effacer la dernière forme dessinée

rT T M ïn 12.9 P o u r e ffa c e r la d e rn iè re fo rm e tra c é e , d e u x a c tio n s s o n t à ré a lis e r :

* s u p p rim e r d e la lis te d ’a ff ic h a g e la d e rn iè re fo rm e a jo u té e ;

• d e s s in e r la liste d 'a f f ic h a g e o b te n u e a p rè s s u p p re s s io n d u d e rn ie r é lé m e n t .

a . D a n s la c la s s e ListeDeFormes, in s é re z la m é th o d e supprimerLaDerniereForme () qu i
c a lc u le la lo n g u e u r d e la lis te d ’a ff ic h a g e e t si c e tte d e r r iè r e e s t no n nu lle , s u p p rim e le d e rn ie r é lé ­
m e n t d e la lis te .

Pourensavoirpius Les outils de gestion des ArrayList sont étudiés au chapitre 10, « Collectionner un nom­
bre indéterminé d’objets », section « Les listes ».

b. D a n s la c la s s e M a i n , c r é e z le g e s tio n n a ire d ’é v é n e m e n ts a s s o c ié a u b o u to n u n d o . P la c e z -y les
in s tru c tio n s q u i s u p p rim e n t la d e rn iè re fo rm e tra c é e e t qu i a ff ic h e n t e n s u ite la lis te s u r la fe u ille d e
d e s s in s e n co u rs .

Ouvrir et enregistrer sous

<D

>-
LU
LO
yHOrs|
@
JZ
g i
>•Q.O

U

№ 1 3 3 « - 1 0 L o rs q u e l’u tilis a te u r s é le c t io n n e l'ite m E n re g is tre r s o u s . . . d u m e n u F ic h ie r, u n e b o îte d e d ia lo g u e
s ’o u v re e t l’in v ite à s p é c ifie r le ré p e r to ire e t le n o m du fic h ie r d ’e n re g is tre m e n t d e s d o n n é e s .

a . In s é re z un c o m p o s a n t JMenuItem a u m e n u F ic h ie r, n o m m e z - le itemSauverSous d a n s le p a n ­
n e a u In s p e c te u r e t p la c e z -y le te x te « E n re g is tre r s o u s . . . ».

b. A jo u te z e n s u ite le g e s tio n n a ire d 'é v é n e m e n ts iteraSauverSousActionPerformed () d e s o rte
q u e ;

• un o b je t d e ty p e J P i l e C h o o s e r so it c ré é ;

© Éditions EyroUes 461

partie B ° 3 O utils e t tech p iau es o rien tés obiet

• u n e b o îte d e d ia lo g u e d e ty p e showSaveDialog {) s ’a ffic h e e t re to u rn e le n o m d u fic h ie r
d ’e n re g is tre m e n t d a n s u n e v a r ia b le n o m m é e nomDuFichier ;

• le f ic h ie r p o rta n t le n o m cho is i s ’o u v re e t le s d o n n é e s s ’e n re g is tre n t à l’in té rieu r.

1 2 . 1 1 L o rs q u e l’u tilis a te u r s é le c t io n n e l’ite m O u v r ir d u m e n u F ic h ie r, u n e b o îte d e d ia lo g u e s ’o u v re e t l’inv ite
à re c h e rc h e r d a n s le s y s tè m e d e fich ie rs , le n o m du fic h ie r o ù s o n t e n re g is tré e s les d o n n é e s .

P o u r ré a lis e r c e s d iffé re n te s a c tio n s , v o u s d e v e z m o d ifie r le g e s tio n n a ire d ’é v é n e m e n ts itemOuvrir
ActionPerf ormed () d é v e lo p p é a u c o u rs d e c e c h a p itre d e fa ç o n à :

• c ré e r un o b je t d e ty p e Jf ileChooser ;

• a ff ic h e r u n e b o îte d e d ia lo g u e d e ty p e showOpenDialog () ;

• ré c u p é re r le n o m du f ic h ie r à o u v rir d a n s u n e v a r ia b le n o m m é e nomDuFichier ;
• o u v r ir le f ic h ie r s é le c t io n n é e t le lire p o u r e n e x tra ire les d o n n é e s ;

• s to c k e r le s d o n n é e s s o u s fo rm e d e lis te d ’a f f ic h a g e e t d e s s in e r le s o b je ts d e la lis te s u r la fe u ille d e
d e s s in s .

La fenêtre À propos

[M 3 3 3 12-12 L a fe n ê tre À p ro p o s (v o ir f ig u re 1 2 -4 6) s ’a ffic h e lo rs q u e l’u tilis a te u r s é le c t io n n e l’ite m À p ro p o s du
m e n u A id e .

n À P r o p o s

Le livre de Java premier langage

Anne Tasso

Chapitre 12. Un éditeur graphique

(o î l J

Figure 1 2 -4 6 La fenêtre À propos

ifi

>LU
KOrHOfN
@
JZCT'k—>-ClO
U

a . P o u r a ff ic h e r la fe n ê tre A p ro p o s , re p re n n e z la c la s s e M e s s a g e d é v e lo p p é e au c o u rs d e l’e x e r ­
c ic e 1 2 -7 .

Pour copier une classe d’un projet à un autre, reportez-vous à la section « Utilisation des
outils de développement » de l’annexe « Guide d’installations ».

462 © Éditions Eyrolles

cltapitre n° 12 Créer une Inieitace graphique

b.

c.

R e v e n e z à la c la s s e Main p o u r y in s é re r le c o m p o s a n t JMenuItem a u s e in d e l’ite m A id e . N o m -
m e z - le itemApropos d a n s le p a n n e a u In s p e c te u r e t p la c e z -y le te x te « À p ro p o s ».

A jo u te z e n s u ite le g e s tio n n a ire d ’é v é n e m e n ts itemAproposActionPerformed () d e fa ç o n à
c e q u 'il a ffic h e la fe n ê tre « À p ro p o s » a v e c les m e s s a g e s te ls q u e c e u x qu i s o n t a ffic h é s s u r la
f ig u re 1 2 -4 6 .

Le pniiet ! Gestion de comptes bancaires

L’objectif est de transformer l’application de gestion de comptes bancaires en mode
commande, en une application basée sur une interface de communication conviviale. Plusieurs
étapes sont nécessaires à cette transformation.
La gestion des entrées (saisie du numéro de compte, du type, etc.) se fait par l’intermédiaire de
formuiaires construits à l’aide du panneau Design de NetBeans. L’affichage des données d’un
compte est également réalisé dans une fenêtre constmite en partie par l’application.
Pour réaliser lotîtes ces transformations, il convient donc de modifier une grande partie t’appli-
eatioii. Pour rester compréhensible et faire en sorte que le projet soit réalisable en un temps
relativement raisonnable, nous avons choisi de vous foumir une partie des fonmiilaires et du
code.

Vous trouverez tous les fichiers nécessaires à la réalisation de cette application dans le
répertoire Source / Pro j et/Chapitrel2 / SupportPourRealiserLePro j et sur
l’extension Web de cet ouvrage.

L/>d)

UJ
vO
r-H
Orsi
@
x:Ol
>Q.OU

Cahier des charges
L’interface entre l’utilisateur et l’application de gestion de comptes bancaires utili.se trois
formulaires de saisie, représentés à la figure 12-47.
Le premier panneau présente les trois actions de gestion d’un compte bancaire : la création, la
mise à jour et l’édition d’un compte dont le numéro est saisi par l’utilisateur (voir figure 12-47).
Lorsque rutilisateur choisit de créer un compte, la fenêtre présentée à la figure 12-48 appaiaît
après validation du numéro de compte.
Pour créer un compte, il suffit de sélectionner son type en cochant la case Compte Courant ou
Compte Entrepri.se et d’indiquer le montant déposé à l’ouverture du compte. La fenêtre se
ferme automatiquement après validation.

© Editions Eyrolles 463

oartle B° 3 O iiffls e l le ch n ia u e s o tiem es ir iiie t

1 ^ 0
Fichier

C o m p te s

N u m é ro :

« O

Gestion de com ptes trancaires

© C ré e r

O A jo u te r u n e lig n e c o m p ta b le

O É d ite r

1 1 1 - 2 2 2 - Î 3 (O K

Créer un compte bancaire

So ld e SOO E u ro s C | C »

F ig u re 1 2 -4 7 La fenêtre
d ’accueil de l’application

C o m p te n ' : 1 1 1 - 2 2 2 - 3 3 3

M C o m p te C o u ra n t Q C o rn p te E rttre p risé

ifi

0
i_>LU
T~ic?fN
@
<̂u-iSC.01'k_
ClO

U
464

J Figure 12-43
Création d ’un compte

© Éditions Eyrolles

chap Kra H° 12 C réer nee In te ila c e graphique

L’utilisateur revient alors à la fenêtre initiale où il peut choisir de créer des lignes comptables
ou d’éditer le contenu d’un compte dont il a saisi le numéro (voir figure 12-47).
S’il choisit de créer des lignes comptables, la fenêtre représentée à la figure 12-49 apparaît.

i&far un̂ îgnçcon̂

Compte Courdot n* 111-222-533 S00.{1 Euros.
-■à Crtgir une Sim torrmrifti

Tavfl* *TiK«
Divers

Valeur. 100.0 Euros Valeur 1 100.0 Euros

MOTif . / Choisir Motif : [Énergie
Salaire

Transaction : Loyer 1
Alimenution [Trafisaction • 1 Chèque

Compte Courent r” 111-222-33Î S00.0 Euros

{ Débit l)

Frgure 1 2 -4 $ Formulaire de saisie d'une ligne comptable

Le formulaire de saisie d’une ligne comptable permet à l’utilisateur de fournir le montant de la
transaction ainsi que son motif et son type. Pour ces deux derniers items, le choix est effectué
à partir de listes déroulantes. La fenêtre se ferme automatiquement lorsque Tutilisateur clique
sur l’un des deux boutons Débit ou Crédit.
L’utilisateur revient alors à la fenêtre initiale où il peut maintenant choisir d’éditer le compte
dont il vient de saisir les données. Cette fenêtre n’est pas un formulaire de saisie, elle affiche
simplement les données d’un compte bancaire (voir figure 12-50).

a)<u

Structure de l ’application
L’application se décompose en plusieurs classes Java. On distingue deux types de classes :
celles reliées aux données traitées par l’application et celles permellanl la création des formu­
laires.

UJ
so
OfN
@
JZgi
>•ClO
U

Classes de traitement des données
Les classes Compte, LigneCom ptable et F ichierC om pte sont les trois classes de base
qui vont nous permettre de traiter les données associées à un compte bancaire. Ces classes ont
été, pour une grande part, écrites au cours des chapitres précédents.

© Éditions EyroHes 465

partie B° 3 O pflts e t le ch n lflu e s o rie n iê s iM ilel

« O Édition de comptes bancaires

Compte Courant n" 1 1 1 -2 2 2 -3 3 3 .1 1 7 0 .0 Euros
Motif Transaction Valeur

Énergie Chèque -10 0 ,0
Salaire Virement 1000.0
Alimentation c.e. -5 0 .0
Taxes Virement -ISOO

Solde : 1170.0 Euros

QK)

i) ù

F ig u re 1 2 -5 0 Fenêtre d'édition d ’un compte bancaire

<D

><
LU

T~{
O
fN

@
x:Oi'k_>-Q.O
U

466

Pour simplifier la mise en œuvre de l’application, nous avons choisi de manipuler les comptes
et leurs données associées en enregistrant chaque compte créé dans un fichier objet.
Ainsi, lorsque Putilisateur crée un compte, un fichier objet portant le numéro du compte suivi
de l’extension . dat est automatiquement créé après validation du formulaire Créer un compte.
Lorsque l’utilisateur souhaite ajouter une ligne comptable ou éditer le contenu d’un compte,
l’application ouvre le fichier associé et stocke en mémoire le contenu dans un objet de type
Compte. Si Putilisateur ajoute des lignes comptables, celles-ci sont ensuite enregistrées dans
le fichier associé, lorsque l’utilisateur clique sur tes boutons Débit ou Crédit.
Les lignes comptables sont, quant à elles, traitées comme des listes de type ArrayList.
Vous trouverez tes troi.s classes Compte, LigneComptable et FichierCompte dans le
rcpertoire Source/Projet/Chapitrel2/SupportPourRealiserLeProjet sur l’exten­
sion Web de l’ouvrage. Celles-ci ont été légèrement modifiées par rapport aux chapitres précé­
dents. La lecture des commentaires vous permettra de mieux comprendre leur fonctionnement.

© Éditions Eyrolles

clrapKre H° 12 Créer une Inieitace graphique

Classes de création de formulaires
Les classes Main, CompteDialogue, CompteEdit, LigneDialogue et LigneEdit
sont les cinq classes qui vont vous permettre de construire les fomiulaires et leurs interactions.
Pour construire graphiquement chacune de ces classes, reportez-vous aux diffe'rentes fenêtres
représentées par les figures 12-47 à I2-50 et aux panneaux Inspecteur associés à chacune des
cinq classes, présentées ci-après.

Mise en place des éléments graphiques
La classe Main
La clas.se Main hérite des fonctionnalités d’une JFrame. Elle contient la fonction main {) et
propose trois boutons radio (creerRdBtn, modif ierRdBtn et editerRdBtn) qui permet­
tent à Lutilisateur de choisir entre créer, ajouter une ligne comptable et éditer un compte. Ces
trois boutons sont placés au sein du groupe de boutons nommé compteGrp (figure I2-51).

Irïpecteur
Fo rm ulatri № ln
C5 Autres composants
_ S- groupeBtn [ButtonGroupI

t l l DFram e)
▼ E " barreM enu UMenuBar]

▼ Ë D m enuM ichier UMenu)
i-l q u in er UMenuliem)

^ BorderLayout
IA* photoFond U U b e l]

▼ Q grandeBoite LIPanel]
▼ Q boiteM enu [JPanel]

• - creerRdBtn UBadioBunon)
* - m o d ife rR d B in ÜRadioButton]
r editerRdBtn t|RadioButton]

^ D boiteSaisie UPanel)
□ n um eroA saisir (jTextFie ld l

btnOK t)BuRon)

U)<u

nj
va
tH
O<N
©

oi
5-D.OU

Figure 1 2 -5 1 Structure de la classe M ain

Le numéro du compte est fourni à l’application par l’intermédiaire d’un champ de saisie
nommé numeroAsaisir. Le bouton btnOK est utilisé pour valider la saisie du numéro du
compte bancaire et afficher l’une des trois fenêtres décrites ci-après.
Pour finir, le panneau ttssocié à la classe Main contient une bimrc de menus contenant un en­
tête menuFichier, composé d’un seul item nommé quitter.

© Éditions Eyrolles 467

o artle B° 3 O uffis e l le ch n la u e s o iie n ie s iriile t

La classe CompteDialogue
La classe CompteDialogue hérite des fonctionnalités d’une JFrame. Elle ne contient pas
de fonction main () et s’affiche à l’aide de son constructeur qui est appelé par la classe Main
(figure 12-52).

ln̂ P«Ct«Ljr O
Forrmjtalre CompMD1ak>gi>e

▼ E] Autres composants
8̂ compteCrp ¡BunonCroup]

T t i Uffame]
* Q boiteMenu UPanel]

« courant üCSeckBoxl
a- entreprise UCheckBoxl
□ valeurAsaisir tfTexiField)
bu btnOK U Button]
a» labelSoide UUbed
<•» labelEuros ULabelj

«• prioioFond UUbel]

Figure 12-52 Structure de la c lasse CompteDialogue

La classe CompteDialogue est utilisée pour saisir les données néces.saires à la création d’un
compte bancaire. Le choix du type du compte est réalisé grâce aux deux cases à cocher
co u ra n t et e n t r e p r is e placées au sein d’un groupe de boutons nonuué compteGrp. La
valeur du montant déposé à l’ouverture du compte est fournie par le champ de saisie valeur
A s a is i r .

iri
(U

UJ
t£)
tH
OfN
@
JZCTU>-Q.O
U

468

La classe LigneDialogiie
La classe L igneD ialogue he'rite des fonctionnalités d’une JFrame. Elle ne contient pas de
fonction m aint) et s’affiche à l ’aide de son constructeur qui est appelé par la clas.se Main
(figure 12-53).

La classe L igneD ialogue est utilisée pour saisir les données nécessaires à la création d’une
ligne comptable.
La valeur de la transaction est fournie par le champ de saisie valeurAsaisir. Le choix du
motif et du mode de l’opération comptable est réalisé grâce aux deux listes déroulantes
ch o ix M o tif et c h o ix T ra n sa c tio n .

Les boutons c re d itB tn et d e b it tB tn sont utilisés pour valider les valeurs saisies. Si
l'utilisateur clique sur c re d itB tn , la valeur saisie par I’intermeditiire du champ v a le u r
A s a i s i r reste positive. S’il clique sur d e b ittB tn , la valeur devient négative.

© Éditions Eyrolles

chapitre n° 12 Créer uae Inictiace graphique

I n s p e c t e u r

s FOfitiutaire UgneDiiloeiue
Ç] Autres composants

T Q [I^ 5 B]* ^ boiteMenu Ufanel)
□ valeurAsiisir UTextField]

debitBtn UBunob]
ata tabeiSotd« UUbeiJ

[ibetEuros [Jl-abel|
creditBui UBunon]

[J*j cbotxMotif [JComboBox]
[Iz] cboxTrensactlon [JComboBox]
lai iabcrrrinuaiim ULabeQ

labeiModf [JLabcIl
aa pbotgFond UUbel)

F ig u re 1 2 -5 3 Structure de la classe LigneDialogue

La classe CompteEdit
La classe CompteEdit hérite des fonctionnalités d’une JFrame. Elle ne contient pas de
fonction main() et s’affiche à l'aide de son constructeur qui est appelé ptir la classe Main
(figure 12-54).

Inspecteur
^ Formulatre CompteEdn

® Autres composants
T Q IÏÏ3B1CT

BhotoFond ULabel]
- □ emete [JPanefl

^ CndlAyoiit
lâbelMûüf Uubei]
l̂ beiTfinsaciton LlUbel)
lAbetSoidel UUbel]

▼ b o i l e b ^ i e (J P a n e l)
^ CndLayoul

ifiii bcnOK UBution]
DM labeiSofde Uubet]
j : jSeparatdrl USeparator)

soldeValeur ÜUbell
A labeiEuros ULabel]

Si.
O
>LU
VûrH
O<N
@
4-rJZCT't—>-Q.O
U

F ig u re 1 2 -5 4 Structure de la classe Com pteEdit

La classe CompteEdit est utilisée pour afficher toutes les informations relatives à un compte.
Elle contient deux Jpanel : entete et boiteLigne. La boîte entete est le chapeau de la

© Éditions EyroUes 469

Darde B° 3 Ouflts ei techDlques oileaiés iriijet

lenêtre d’édition du compte. Il contient pour chaque colonne, le nom des rubriques (Motif,
Transaction et Valeur). La boîte boiteLigne est vide, mais elle se remplira par programme,
d’autant de lignes comptables (LigneEdit) qu’il y a de lignes comptables enregistrées dans
le fichier associé au compte bancaire.
Au-dessous des lignes comptables se trouve le label nommé la b e lS o ld e qui contient le
solde du compte en cours d’édition.

La classe LineEdit

La classe L ig n eE d it hérite des fonctionnalités d’un JP a n e l. Son contenu ne s’affiche
pas dans une fenêtre mais dans un panneau rectangulaire représentant le fond d’une ligne
comptable (figure 12-55).

Inspecteur
W Formulaire Ligr̂ Edii

£3 Autres com posants
□ llM ll

^ cndUvout
xw labelMotirULaben

laberrransaction [ILabel]
№ labelvaleur ULabei]

Figure 12-55 Structure de la classe LigneEdit

Les objets de type L in eE d it sont créés et affichés au sein de la classe CompteEdit au
moment de l’affichage des lignes comptables.

(U

>LU
LOrHOCvl
@
JZCT'k—>-Q.O
U

470

D éfinition des com portem ents
Chaque panneau contient ses pn>pres comportements qu'il convient de décrire au .sein de chacune
des classes Main, CompteDialogue, CompteEdit, L igneD ialogue et L igneE dit.

Im classe Main

La classe Main définit deux propriétés ; c h o ix A c tio n et nuraeroCompte.

• La propriété c h o ix A c tio n est initialisée dans les geslionnaires d’événements associés
au trois boutons radio creerR dB tn, m odif ierR dB tn et ed iterR d B tn . Les valeurs
d’initialisation sont respectivement "Creer", "M odifier" ou "E diter" .

© Éditions Eyrolles

chaiiitre i ° 12 Gréer une interface graphique

* Le numéro du compte est récupéré pur l’intermédiaire du champ de saisie numero
A s á is i r , dans le gestionnaire d’événements associé au bouton btnOK. Dans ce même
gestionnaire, la variable c h o i x A c t i o n est testée et selon sa valeur les différentes actions
sont menées.
• Si c h o ix A c t io n est égale à " C r e e r " , la boîte de dialogue C om p teD ialo g u e est affi­
chée pai' simple appel à son constructeur, avec le numéro du compte passé en paramètre.

• Si c h o i x A c t i o n est égale à "Modifier", le fichier associé au compte e.st ouvert en
lecture. Un objet de type Compte e.st créé et initialisé aux données enregi.strées dans le
fichier. La boîte de dialogue L i g n e o i a l o g u e est affichée par simple appel à son
constructeur, avec le compte passé en paramètre.

• Si c h o i x A c t i o n est égale à " E d i t e r " , le fichier associé au compte est ouvert en lec­
ture. Un objet de type Compte est créé et initialisé aux données enregistrées dans le
fichier. La fenêtne d’édition C o m p teE d it est affichée par simple appel à son constructeur,
avec le compte pa.ssé en paramètre.

Pour Unir, l’action de quitter l’application est insérée dans le gestionnaire de l’ilcm quitter.

La gestion des erreurs
Pour éviter des erreurs de lecture de ficliiers, vous pouvez, lors de l’ouverture des fichiers
associés aux comptes, vérifier que celle-ci s’est bien déroulée. Dans le cas contraire, créez un
message d’alerte en utilisant la classe M essag e développée à l’exercice 12-7 de ce chapitre.

O
O
l_>
LU
UDrHOfN
@
SI
qi'k_>-Q.O
U

La classe CompteDialogue
Le constructeur de la classe C o m p teD ialo g u e affiche la b o iteM en u avec un style
B o r d e r T i t r e . Le titre contient le numéro du compte. Le style d’encadrement est réalisé par
les instructions suivantes :

B o rd e r c a d re = B o r d e r F a c to r y . c r e a t e T i t l e d B o r d e r (" Compte n ' : " +

cpt + " ");
boiteMenu.setBorder(cadre);

ou la variable c p t coirespond au numéro du compte passé en paramètre du constructeur
C o m p te D ia lo g u e () .

La classe C o m p teD ialo g u e définit deux propriétés : ty p eC o m p te et num eroCom pte.

* La propriété typ eC om p te est initialisée dans les gestionnaires d’événements associés aux
cases à cocher c o u r a n t et e n t r e p r i s e aux valeurs "C o u ra n t" ou " E n t r e p r i s e " ,
respectivement.

• La propriété num eroCom pte est initialisée dans le constructeur, à la valeur passée en
paramètre de ce dernier.

© Éditions Eyroifes 471

Darde B° 3 Oudts e i lecliDlaues o n en ié s iriiiet

Le gestionnaire d'événements du bouton btnOk réalise les actions suivantes :

• Récupérer la valeur du montant déposé à l'ouverture du compte par rintermédiaire du
champ de saisie valeurAsaisir. Stocker cette valeur dans une viuiable nommée valeur
Initiale.

• Créer un objet de type Compte à l’ aide de .son constructeur. Les trois données type
Compte. numeroCompte et valeurinitiale sont fournies en paramètres de ce
dernier.

• Enregistrer le compte dans un fichier objet dont le nom porte le numéro du compte suivi de
l’extension ,d a t.

• Fermer la fenêtre en cours sans quitter l’application.

ifi

><LU
KOrHOfN
@
JZCT'k—>-Q.O
U

472

La classe LigneDialogue
Le constructeur de la classe L ig n eD ia lo g u e affiche la boiteM enu avec un style
B o rd er T it r e . Le titre contient le type du compte ainsi que le solde en cours. Toutes ces
valeurs sont récupérées par rintermédiaire du compte passé en paramètre du constructeur.
Les instructions réalisant l’affichage du cadre sont similaires à celles présentées à la
section précédente.

La classe CompteDialogue définit trois propriétés : m o tif, t r a n s a c t io n et compte.

• Les propriétés m o tif et t r a n s a c t io n sont initialisées dans les gestionnaires d’événe­
ments associés aux listes déroulantes ch o ix M o tif et c h o ix T ra n sa c tio n aux valeurs
sélectionnées par l’utilisateur.

• La propriété compte est initialisée dans le constructeur, à la valeur passée en paramètre de
ce dernier.

Les gestionnaires d’événements des boutons d e b itB tn et c re d itB tn sont quasi identi­
ques. Ils réalisent les actions suivantes :

• Récupérer la valeur du montant de la transaction par l'intermédiaire du champ de saisie
v a ie u r A s a is i r . Stocker cette valeur dans une variable nommée v a le u r .

• Dans le gestionnaire du bouton debitBtn., rendre cette valeur négative.

• Créer un objet de type LigneCom ptable à l ’aide de son constructeur. Les trois données
v a le u r , m o tif et t r a n s a c t io n sont fournies en paramètres de ce dernier.

• Modifier la propriété l ig n e du compte en cours de traitement en utilisant la méthode
d’accès en écriture se tL ig n e () définie au sein de la classe Compte.

• Enregistrer le compte dans un fichier objet dont le nom porte le numéro du compte suivi de
l’extension ,d a t.

• Fermer la fenêtre en cours sans quitter l’application.

© Éditions Eyrolles

chapitre n° 12 Créer uee inietlace graphique

La classe CompteEdit
La classe CompteEdit ne fait qu’afficher le contenu du compte passé en paramètre du
constructeur.

La seule interaction est celle définie par le gestionnaire du bouton btnOK qui a pour action de
fermer la fenêtre en cours sans quitter l’application.

Le constructeur de la classe CompteEdit affiche :
• La boîte e n te te avec un style B o rd e rT itre . Le titre contient le type du compte ainsi

que le solde en cours. Toutes ces valeurs sont récupérées par l’intermédiaire du compte
passé en paramètre du constructeur. Les instructions réalisant l’affichage du cadre sont
similaires à celles présentées à la section précédente.

• Toutes les lignes comptables .stockées dans le compte passé en paramètre. Le contenu des
lignes comptables est récupéré en utilisant la méthode d’accès en lecture g etL ig n eO
définie au sein de la classe Compte, Pour chaque ligne récupérée, un objet de type
L igneE dit est créé et ajouté au conteneur b o ite L ig n e . L’objet est créé en passant en
paramètre la ligne comptable en cours de traitement.

• Le solde du compte est récupéré en utilisant la méthode d’accès en lecture g e tS o ld e ()
définie au sein de la classe Compte. Si le solde est négatif, sa valeur est affichée en rouge
en bas de la fenêtre d’édition du compte.

Im classe LigneEdit
La classe L ign eE d it ne fait qu’afficher le contenu de la ligne comptable passée en para­
mètre du constructeur.
Le constructeur de la classe CompteEdit affiche les données en modifiant les trois labels
la b e lM o tif, la b e lT ra n s a c t io n et la b e lV a le u r . Les valeurs aiïichées sont récupérées
en utilisant les méthodes d’accès en lecmre g e tM o tif (), getMode () et g e tV a le u r (}
définies au sein de la classe LigneComptable.

ifiO
O1_>LU
T~{
OfN
@
j::en
>•Q.OU

Le fond des fenêtres

Toutes les fenêtres de l’application présentent une image d’arrière-plan qui les caractérise. Ces
images sont enregistrées dans un répertoire nommé R essources. Elles ont pour nom Fond
Compte. png, FondEdi t . png, FondLigne. png et FondMain . png.
L’affichage des images est réalisé comme suit :
I Im agelcon ico n P h o to = new Im a g e Ico n ("R e sso u rce s /n o m J7 n a g e .p n g '') ;

p h o to F o n d . s e t i c o n (i c o n P h o t o) ;

Ces insiruclions sont placées au sein des constructeurs de chacune des classes affichant une
fenêtre. L’objet photoFond est un composant de type JL ab e l, placé en bas de chacune des
fenêtres.

> Éditions Eyrolfes 473

inй)

:>■ш
iûTH
ОrN
@

Ol
>■Q.
OU

Chapitre 1 3

Développer
appllcaflop Android

La création d’applications pour mobiles et tablettes tactiles est aujourd’hui incomoiirnable sur
le marché du développement inibimatiquc. Ces appareils sont en effet dotés de systèmes
d’exploitation peifonnants qui permettent le développement d’interfaces utilisateur conviviales.
Le système d'exploitation mobile Android, en plein es.sor, utilise la technologie Java pour le
développement de ses applications. Il existe également des environnements de développement
adaptés qui sinipliiient leur création.
L’objectif de ce chapitre est de vous initier à la programmation d’applications Android et non
de faire de vous un « expert ». ear ce seul manuel ne suffirait pas.
Ptrur cela, nous vous proposons à la .section « Comment développer une application mobile ? »
de développer, avec l’interface de programmation Android Studio, une première application
Android trè.s simple. Nous étudierons également la structure de base d’une telle application.
Dans la section « L’application Liste de courses », nous présenterons pas à pas comment cons­
truire une application conviviale qui propose à Tutilisatcur d’éditer sur son mobile sa propre
liste des courses.
Pour finir, nous présenterons à la section « Publier une application Android » les différentes
étapes qui vous permettront de déposer votre application sur un serveur dédié aux applications
pour mobile Android.

Comment développer une application mobile P

Ôl_>■LU
KO■pHOfN
©
MJJZai
>.Q.O
U

Une application mobile est un logiciel, un programme, que vous devez télécharger depuis
Internet, puis installer sur votre mobile. Le téléchargement s’effectue soit à partir de votre
mobile, soit depuis votre ordinateur.

© Editions Eyrolles 475

partie B° 3 Outils et techniaues oheptés oblet

Remarque Dans ce chapitre, les termes « applications mobiles » recouvrent par extension les applications
pour téléphones mobiles et tablettes tactiles. Le mode de programmation de ces deux appa­
reils est quasi identique, seul le système d’exploitation importe dans le choix du largage de
programmation.

Les mobiles basés sur un .système d’exploitation de type Android (HTC, Sam.sung, Sony) utili­
sent des langages de progranunation tels que Java ou AS3-Air. alors que ceux basés sur un
système d’exploitation de type iOS (iPhone, iPad) utilisent des langages de programmation
tels que Objective C ou également AS3-Air.
Ainsi, le développement d’une application Android requiert Tulilisation d’un environnement
de développement spécifique. Dans cet ouvrage, nous avons choisi de présenter TIDE Android
Studio proposé par Google. Pour installer cet environnement, reportez-vous à l’annexe
« Guide d’installations », section « Développer des applications Android avec Android
Studio ».
Il existe aussi d’autres plug-ins Android notamment pour Eclipse, IntelliJ ou encore l’environ­
nement de développement AIDE (pour Android Java IDE) qui a la particuhu'ité de s’instidler
directement sur une tablette Android.

Bonjour le monde : votre prem ière application mobile
L’objectif est de créer une toute première application Android afin de se familiariser avec les
outils de développement, de compilation, d’exécution et comprendre la structure générale
d’une telle application.

Vous trouverez tous les codes de cette première application dans le répertoire S o u rc e s /
E xem p le/ C h ap itre l3 /AndroidStudio/BonjourLeM onde.

ifi

><LU
KOrHOfN
@
JZCT'k—>-Q.O
U

476

Création d*un projet Android
La création et l’exécution d’une application Android s’effectuent dans le cadre d’un projet
Android Studio au sein duquel sont regroupées toutes les ressources néccs.saires à la bonne
marche de l’application.
Pour créer un projet Android, une l'oi.s l’TDE Android Studio installée et lancée, vous devez
cliquer sur la nibrique « Start a new Android Studio project » (figure 13-1) sur le panneau
d’accueil ou sélectionner riteiu Nouveau projet du menu Fichier, si d’autres projets sont déjà
ouverts.

© Éditions Eyrotles

ch ao K re i ° 13 Dévelooper une anUtoadon Android

^ Android Studio Setup Wizard Lg-ij

m Welcome to Android Studio

R«c«nt Projects Quick suit

s W Start a new Android Studio project

Open «n existing Android Studio project

No Project Open Yet vcs Checkout prqjectfrsm Version Control

Impoit project (Eclipse ADT, Gradle, etc.)

S i ImpfiTt an Android code sample

0̂ ^ Configure

| |^ ? t>ocs and How-Tos

AjvjroO LS.Ï Suiia Chacà̂ uodaw now

F ig u re 13-1 L e p a n neau d'accueil de ¡'application Android Studio

Dans la boîte de dialogue Create New Project qui apparaît (figure 13-2), vous devez :
1. Saisir le nom de Papplieation (iei. Bon j ourLeMonde).
2. Définir le nom du paekage (ici, a n d ro id . P re m ierP ro je t) .
3. Si le dossier d’enregistrement du projet indiqué par défaut ne vous convient pas, spécifier

un autre emplacement en cliquant sur le bouton «... » de la aibrique Project location.
4. Valider l’enregistrement du projet en cliquant sur le bouton Next.

<D

>-
LU
kO
O
CM

j : :ai'l->•
C lO
U

Toutes les informations nécessaires à l’installation de Android Studio sur votre machine
(Windows, Mac OS ou Linux) sont fournies dans l’annexe « Contenu et exploitation du CD-
Rom >>, section « Installation d’un environnement de développement ».

Vous devez ensuite choisir (ligure 13-3) la version de l’interface de programmation (API,
Application Programming Interface) sur laquelle vous souhaitez exécuter la simulation - ici,
API 8.0 Android 2.2 (Froyo). Le choix de la version de TAPI se fait en fonction de la cible que
vous souhaitez atteindre. Plus la version est récente, plus le nombre de « clienLs » potentiels
diminue. Cliquez ensuite sur Next en ne cochant pas les autres options (TV, Wear...).

> Éditions Eyroües 477

I panic B° 3 omtls el lechnlaues oiíeniés idilei

» 0 0 Create New Project

N e w P ro je c t
Android Studio

Configure your new project

Application name: BonjourLeMonde

Company Domain; androli¿premic||||g t̂

Package name: premierprojet.android.bonjouriemonde tdit

Project location: /Users/AnneT/AndroidStudioProjects/BonJourLeMonde

Cancel Previous |> Next J Finish

F ig u re 13-2 L e pan neau Create N ew Project, étape N ew P ro ject

9 . 0 B Create New Project

Target Android Devices

Lf)<D

>-
LU

O
rs|

@
JZCT'u.>•
C l
o
u

Select the form factors your app will run on

Different platforms may require separate SDKs

'Z Phone and Tablet

Minimum SDK API 8: Android 2.2 (Froyo) ü

Lower API levels target more devices, but have fewer features availab le .
By targeting API 8 and later, your app will run on approximately
100,0% of the devices
that are active on the Coogle Ptoy Store.
Help me choose

Wear

Minimum SDK API 21: Android 5.0 (Lollipop)__ ^

^TV
Minimum SDK API 21: Android 5.0 (lollipop)__ i

Android Auto

Class

Minimum SDK Glass Development Kit Preview i

478

Cancel Previous Nexi F=rj Finish

F ig u re 13-3 L e panneau Create N ew Project, étape Target Android D evices

© Éditions Eyrolles

chapitre n° 13 Développer une appllcailon flndroM

Le panneau suivant (figure 13-4) vous demande de sélectionner un modèle de présentation
pour votre application (Template). Sélectionnez Empty Activity puis cliquez sur Next.

« O fi Create New Project

Add an activity to Mobile

Add No Activity

Blank Activity

Empty Activity Fullicreen Activity

Cartcel] (Previous j [— Next — ̂ Finish

F ig u re 13-4 L e panneau C reate N ew Project, é tape A d d an activity to Mobile

[A

ÔL_>tu
toT~{
ofN

Le dernier écran de personnalisation de votre application (figure 13-5) apparaît, modifiez les
noms de l’activité (ici. Activity Name : Main) et celui des ressources (ici. Layout Name :
main), puis cliquez sur Finish.
La génération du projet Android entraîne la création d’une application basique « Hello
World » qtii contient des fichiers par défaut, organisés selon une arborescence assez complexe.
Examinons plus précisément le contenu de cette arborescence (figure 13-6).

oi'k_>ClO
U

© Éditions Eyrolles 479

I panic B° 3 omits el technlaues oiienies milet

© A O Create New Project

C u s to m iz e th e A c t iv it y

Creates a new empty activity

Activity Name: Main

V Generate Layout File

Layout Name: [main

Empty Activity

The name of the iayout to create for the activity

Cancel Previous Next I Finish i

F ig u re 13-5 L e panneau Create N ew Project, étape Custom ize the Activity

© O B Mainjava - OonjourLeMonde - [-/AndroidStudioProjects/BonjourLeMonde]

(U

>-
LU
COrHOrvl
@
j::cn'u.>•
C l
o
u

Ul 0 V- ^
SonlourLeMonde
’ Android •

■t- i;
. app

*a
lava prem№rpro)et

► i : ' Cl IS i I*, a -i ?
android " bcnjourlemonde >c Main

© 4= J-
I. ’ ' *pp
u V D manifests @

SAndraidManlfest.xml
▼ Djava

X ^ E3 premierprQieLandroid.bonjourlemonde
£ Fialn O
¿ I F ETpremierprojet.androld.bonJourletnonde (and f* '
^ -e r = res Q
 ̂ £] drawable
g ▼ & layout
b ^ maln.xmii/iKi ̂ £|mipmap
V ▼ S3 values

B colors.xml
> & dime ns. xml <Z)
Bstrings.xml
B style s.xinr

 ̂ Cradle Scripts

i*-

' mam .xml x c Mainjava x
pac kage p ren ie rp ro j e t . and ro id . bon j ou rlemonde:

' import . . .

p ub lic cI b ss Main extends AppCoinpatActivity {

^ e r r i d e
protected void o rC reate(Bund le saved ln stan ceSta te) {

super. cm C reate (saved ln stan cesta te);
setContentV ie iv IR . layout «auun);

>

Android Monitor i .

F ig u re 13-6 L e panneau Create N ew Project, étape Custom ize the Activity

480 © Éditions Eyrotles

chapitre a° 13 Développer une appllcaDon Android

Arborescence du projet Android
Quelle C|Lie soit l’interface de développement utilisée, un projet de type Android possède une
structure bien définie. Grâce à cette hiérarchie, les ressources et les codes sources sont facile­
ment repérables, et le projet devient plus lisible puisque bien organisé.
L’arborescence automatiquement générée par Android Studio se présente sous la forme
suivante (figure 13-6, repères O ̂©)■
O Le répertoire Ja v a contient toutes les classes Java nécessaires au bon fonctionnement de

l’application, La classe principale, créée en même temps que le projet, est visible en dou­
ble-cliquant sur la ressource Main située dans l’arborescence du projet. Nou,s examine­
rons ce fichier plus en détail à la section « Les classes Java ».

O Le répertoire res contient des sous-répertoires dans lesquels sont enregistrées toutes les res­
sources utiles à l’application comme des images {clmwabk) ou des fichiers descriptifs des
composants d’affichage utilisés par l’application (layout). Jl contient également des valeurs
textuelles (values). Ces éléments seront détaillés à la section « Les fichiers descriptifs ».

Q Le répertoire m anif e s t s contient des fichiers importants dont A n d ro id M an ifest. xml
dans lequel sont définis les activités et services proposés par l’application. Nous examine­
rons son utilité dans la section « L’application Liste de courses » à la lin de ce chapitre.

Compilation et exécution de projet
Une fois le projet compilé en cliquant sur le triangle vert proposé par l’interface. Android
Studio lance l’exéciition de l’application en ouvrant l’émulateur Android défini lors de la créa­
tion du projet {voir section « Développer des applications Android avec Android Studio -
Créer un émulateur Android », dans l’annexe Guide d’installations en fin d’ouvrage).
Une fois ouvert, le téléphone affiche l’application Bonj ourLeMonde (figure 13-7).

EkmjourL«MQfide

ifi

><LU
KOrHOfN
@
JZoi
>-ClO
U

F ig u re 13-7
L ’ûppUcaîion

Bon jourLeM onde
s ’affiche après
chargem ent de

l’émulateur.

© Éditions Eyrolles 481

pâme p° 3 Outils et techniaues oheutés obiet

Remarque Il n’est pas nécessaire de fermer le simulateur Android à chaque nouvelle exécution, car il met
du temps à se lancer. Il charge l’application modifiée par vos soins, à chaque fois que vous lan­
cez une compilation.

L’application s’intitule BonjourLeMonde et affiche le texte H ello W orld! sur un écran
blanc. Ces valeurs ont été créées par défaut lors de la construction du projet. Elles sont modi­
fiables grâce aux fichiers ressources, que nous allons à présent détailler.

I^s fichiers ressources

Le.s fichiers ressources sont utilisés pour .stocker les différents méditis employés par l’applica­
tion. Tl peut s'agir de photos, de sons ou de vidéos. Mieux encore, il est possible de définir la
façon dont vous souhaitez agencer les composants graphiques de votre application en décri­
vant leur organisation à l’aide d’une stmcturc XML.

XML en quelques mots

L’utilisation d’un fichier au format XML permet de simplifier la façon d’agencer les compo­
sants au sein d'une application Android.
En effet, le formai XML (eXtemihIe Markup Language) est un langage de description de
données. Grâce à sa structure, il permet d’organiser les données en les nommant et en les ordon­
nant scion une hiérarcliic qui décrit l’agencement des composants au sein de l’application.
La syntaxe du langage XML est assez proche de celle du langage HTML, composée de balises
et d’attributs dont le nom reflète le composimt graphique utilisé ptu' l’application. Ainsi, les
lignes suivantes :

<Buttoii
a n d ro id :layout_w idth= "f i l l _ p a r e n t "
android : layou t_h eig h t= "w ra p _ c o n te n t"
a n d ro id ;text="OK"

ifi

><LU
Or-H
OfN
@

01'k_
Q.OU

4B2

I />

ont pour résultat de créer un bouton, grâce à la balise prédéfinie <Button>, qui aura une
forme particulière décrite par les attributs a n d ro id : la y o u t_ w id th et
a n d ro id : la y o u t_ h e ig h t. La valeur f i l l _ p a r e n t indique au ge.stionnaire d’affichage
que le bouton a la même taille que son parent soit, le plus souvent, celle de l’écran du télé­
phone. La valeur w rap _con ten t indique, quant à elle, que le bouton s’adapte à son contenu.
Ici, l ’attribut layouC _w idth recevant la valeur f i l l_ p a r e n t , la largeur du bouton corres­
pond à celle de l’écran du téléphone (figure 13-8, repère O)- L’attribut la y o u t_ h e ig h t
ayant pour valeur w rap_conten t, la hauteur du bouton s'adapte à son contenu, c’est-à-dire
à la hauteur du texte OK, puisque la balise a n d ro id ; t e x t prend la valeur OK.

© Editions Eyrotles

pâme p° 3 Outils et techniaues oheutés obiet

Remarque Il n’est pas nécessaire de fermer le simulateur Android à chaque nouvelle exécution, car il met
du temps à se lancer. Il charge l’application modifiée par vos soins, à chaque fois que vous lan­
cez une compilation.

L’application s’intitule BonjourLeMonde et affiche le texte H ello W orld! sur un écran
blanc. Ces valeurs ont été créées par défaut lors de la construction du projet. Elles sont modi­
fiables grâce aux fichiers ressources, que nous allons à présent détailler.

I^s fichiers ressources

Le.s fichiers ressources sont utilisés pour .stocker les différents méditis employés par l’applica­
tion. Tl peut s'agir de photos, de sons ou de vidéos. Mieux encore, il est possible de définir la
façon dont vous souhaitez agencer les composants graphiques de votre application en décri­
vant leur organisation à l’aide d’une stmcturc XML.

XML en quelques mots

L’utilisation d’un fichier au format XML permet de simplifier la façon d’agencer les compo­
sants au sein d'une application Android.
En effet, le formai XML (eXtemihIe Markup Language) est un langage de description de
données. Grâce à sa structure, il permet d’organiser les données en les nommant et en les ordon­
nant scion une hiérarcliic qui décrit l’agencement des composants au sein de l’application.
La syntaxe du langage XML est assez proche de celle du langage HTML, composée de balises
et d’attributs dont le nom reflète le composimt graphique utilisé ptu' l’application. Ainsi, les
lignes suivantes :

<Buttoii
a n d ro id :layout_w idth= "f i l l _ p a r e n t "
android : layou t_h eig h t= "w ra p _ c o n te n t"
a n d ro id ;text="OK"

ifi

><LU
Or-H
OfN
@

01'k_
Q.OU

4B2

I />

ont pour résultat de créer un bouton, grâce à la balise prédéfinie <Button>, qui aura une
forme particulière décrite par les attributs a n d ro id : la y o u t_ w id th et
a n d ro id : la y o u t_ h e ig h t. La valeur f i l l _ p a r e n t indique au ge.stionnaire d’affichage
que le bouton a la même taille que son parent soit, le plus souvent, celle de l’écran du télé­
phone. La valeur w rap _con ten t indique, quant à elle, que le bouton s’adapte à son contenu.
Ici, l ’attribut layouC _w idth recevant la valeur f i l l_ p a r e n t , la largeur du bouton corres­
pond à celle de l’écran du téléphone (figure 13-8, repère O)- L’attribut la y o u t_ h e ig h t
ayant pour valeur w rap_conten t, la hauteur du bouton s'adapte à son contenu, c’est-à-dire
à la hauteur du texte OK, puisque la balise a n d ro id ; t e x t prend la valeur OK.

© Editions Eyrotles

cliaiiitre H° 13 Développer une appllcaffim AndraU

OK

OK @

F ig u re 13-8 Lattribut layout^width e s t utilisé p o u r m odifier la largeur d ’un bouton

En revanche, initialiser l’attribut android: layout_width à la valeur wrap_content
comme suit ;

<Button
android : layout_w idth= " w ra p _ c o n te n t"
android : layou t_h eig h t= "w rap_content"
android : text-"OK"

/ >

a pour conséquence de créer un bouton de largeur plus petite, qui sera ainsi adaptée à la taille
de la chaîne de Cciractères OK (figure 13-8, repère ©).

Les ressources layout
Les ressources relatives à l’agencement des composants graphiques utilisés par votre applica­
tion sont stockées au sein de fichiers XML, dans le répertoire layout.

Remaroue Le nom d’un fichier ressource a pour extension .x m l. Ce nom est ensuite utilisé par Android
Studio pour générer des fichiers nécessaires à la bonne marche de l’application. Il ne doit com­
porter ni majuscule, ni espace, sous peine de créer des erreurs de syntaxe et donc de rendre
impossible l’exécution de l’application.

>-LU
tH
OfN
@
JZCT'k—>-Q.O
U

Examinons plus attentivement le fichier main. xml, construit par défaut par Studio Android à
la création du pi'ojet ;

<?xml v e r s io n - "1.0" encoding-" u tf-8 "?>

< R elativeL ayou t

xralns;an d ro id= http ;/ /schémas.android.com /apk/res/android
a n d ro id :paddingBottom="15dp"

andró i d ;paddi ngLe f t= "16 dp"
a n d ro id :paddingRight="16dp"
a n d ro id ;paddingTop="16dp"
a n d ro id ; layout_width="m atch_parent"

> Éditions Eyrolles 483

partie B° 3 OutHs et techniaues oheptés obiet

a n d ro id ;layou t_h eig h t= "m atch_parent"
>

<Textview
android : layout_width= "wraio p aren t "
a n d ro id :layout_height="wrap_content"
a n d ro id :tex t-" H e llo World, Main"

/>
</Re1 a t iveLayou t >

Grâce aux informalions sttickées dans ce fichier, nous observons que l’application construite
par défaut utilise un gestionnaire d’affichage de type R e la tiv e L a y o u t qui contient un
composant de type Text View.
Un gestionnaire d’affichage (layout en anglais) peut être vu comme un conteneur de compo­
sants régi par des règles d’affichage qui lui sont spécifiques. Ainsi, lorsque nous utilisons un
R e la tiv e L a y o u t, nous demandons à l ’application d’afficher les composants qu’il contient,
relativement aux autres, ou à leur parent.
La balise R e la tiv e L a y o u t est composée ici de cinq attributs ;

1. xmlns : a n d ro id (traduire xmlns par XML name s p a c e ou «espace de nom XML »)
permet de certifier que tous les noms de balises et leurs attributs utilisés dans ce fichier
sont régis par les spécifications Android ;

2. a n d ro id : paddingBottom définit le remplissage à appliquer en bas du composant ;
3. andró id ; paddingTop définit le remplissage à appliquer en haut du composant ;
4. andró id ; paddingL ef t définit le remplissage à appliquer à gauche du composant ;
5. a n d ro id :paddingR ight définit le remplissage à appliquer à droite du composimt.

Remarque La valeur 16dp attribuée par défaut aux balises padding... est définie dans le fichier
dim ens. xml du répertoire v a lu e s .

(J)

>-LU
KOrHOrvl
@
x:oi'k_>-Q.O
U

Remarque

484

R e la tiv e L a y o u t ne contient ici qu’un seul et unique composant. Il s’agit d’un composant
TextView, utilisé pour afficher une zone de texte dont la largeur et la hauteur sont définies
par les attributs la y o u t_ w id th et la y o u t_ h e ig h t, respectivement. Le texte affiché est
initialisé à la valeur transmise à l ’attribut a n d ro id : te x t , soit ici H ello W orld !. Vous
pouvez dès à présent modifier le texte. Ecrivez, par exemple, Une to u te p rem ière
a p p lic a t io n A ndroid (voir figure 13-9) pour voir votre première application afficher uti
texte plus original.

Il existe d’autres types de layouts, comme L inearL ayout, qui propose de placer les élé­
ments qu’il contient les uns après les autres, dans l'ordre de définition des balises. Ses attributs
sont, par exemple, a n d ro id : o r ie n t a t io n .

© Éditions Eyroties

chapitre n° 13 Développer une application AndroM

Les ressources values
Le répertoire v a lu e s contient des fichiers XML qui décrivent les variables utilisées par
l’application. Les variables de type S t r in g sont définies dans un fichier nommé
s t r i n g s . xml, et les tableaux dans un fichier nommé a r r a y .xml.
Le fichier s t r i n g s , xml, créé par Android Studio, contient les lignes suivantes :

<?xml v e rs io n = " 1 .0 “ encodings" u t f-8 "?>
<resources>

< strin g name="app_name">BonjourLeMonde</string>
</resources>

Il existe par défaut une chaîne de caractères nommée app_name qui contient le nom de l’appli­
cation. r s'agit du nom affiché (Bonj ourLeMonde) en titre de l’application. Pour modifier ce
titre (voir figure 13-8), il suffit donc de changer la valeur de app_name comme suit :
I < strin g name= "app_name">BonjourIjeMonde<./string>

&SS4 ja

m Une toute premièfe application Andfoid

F ig u re 13-9 Le texte et le titre de l ’application sont modifiables grâce aux fichiers ressources

V)<a

Il est possible de déclarer d’autres chaînes de caractères dans le fichier str in gs .xml. Pour
cela, il suffit d’écrire par exemple :

<resources>
< strin g name="app_name">Bonj ourLeMonde</strin g >
^ str in g name-"uneCouleur">rouge</string>

</resources5-

La variable ressource u n e C o u le u r ainsi définie est de type S t r i n g et contient la chaîne de
caractères ro u g e .

LU
SO
OfN
@

CT
't->-D.OU

Les ressources draw able
Les ressources stwkées dans le répertoire drawable correspondent à des photos et des
graphiques utilisés par votre application. Pour insérer tous les médias nécessaires au bon fonc­
tionnement de votre application dans le répertoire drawable, il vous suffit de sélectionner les

© Éditions EyroUes 485

partie a° 3 opffis et lechniaues orieniés iriilet

fichiers images ou vidéo dans une fenêtre de votre système d'exploitation et de les glisser-
déposer dans le répeitoire drawable d’TDE (figure 13-10).

Recherche

__ banane.png
■i_ cerise.png

fraise.png
fruit.png

\Qj icon.png
__ kiwi, png
'S legume.png

C3 BonjourLeMonde ; C3 app f src main r

2 d' Android T O T

3 ▼ Cjapp
u T t l manifests
A AndroidManifest.xml

▼ Cl java
▼ E3 premierprojet.android.bonjourlemon

(£) 1i Main
premierprojet.android.bonjourlefnon

ApplicationTest
res

fl^ivout
3 main.xml

► r mipmap
▼ Û values

F ig u re 13-10 insérer des m édias dans le répertoire drawable p a r gUsser-déposer

Les classes Java
Outre les fichiers ressources, un projet Android comprend des fichiers Java qui font que votre
application va réagir aux actions de Tutilisatcur. Ces fichiers contiennent les lignes de code
Java qui indiquent à l’application quelle action réaliser lorsque Tutilisateur clique sur un
composant ou le déplace.

(U

LU
VP
tH
O<N
©

01
C lO
U

486

Le Jichier Mainjava
La classe Main, ja v a est créée en même temps que le projet et porte le nom de l’activité que
vous avez spécifié à l’étape4 de la création du projet (section précédente «Création d’un
projet Android »).
La classe Main, constitue le point d’entrée de votre application ; elle est composée des lignes
suivantes :

package prem ierP roj e t . a n d ro id .bonj ourLeMonde;
import ...;
// O La c la s s e Main h é r i te de la c la s s e AppCom patActivity
p u b lic c la s s Main extends AppCom patActivity {

&Override
/ / Q La méthode onC reate() e s t appelée à la c réa tio n
/ /de l'a p p lic a t io n

© Éditions Eyrolles

chapitre h° 13 Développer une appllcailon AndroM

p u b lic vo id o n c re a te (Bundle saved In stan ceS ta te) {
su p e r. o n C rea te (sa v ed In s ta n ce S ta te);
// O A ff ic h e r le la y o u t d é f in i au se in du f i c h ie r main.xml
& etC o n ten tV iew (R .l a y o u t .m a in) ;

J
}

O Après avoir importé toutes les bibliothèques utiles à la bonne marche de l’applica­
tion, la classe Main est définie comme héritant des comportements de la classe
A ppC om patA ctivity. Cette dernière est une classe prédéfinie du langage Java
pour Android ; elle comporte tous les outils nécessaires à la fabrication et à l’affi­
chage de votre application mobile.

0 Au lancement de l’application, la toute première méthode appelée est la méthode
o n C reate (). Elle est définie dans la classe A ppC om patA ctivity et peut être vue
« plus simplement » comme l’équivalent d’un constructeur. Elle comporte toutes les
instructions d’initialisation demandées au lancement d’une application Android. Il
n’est pas utile, dans cet ouvrage, d’entrer dans le détail de ces instructions. Les
concepteurs Java ne le souhaitent pas non plus et nous autorisent à « redéfinir » la
méthode o n C reate () en plaçant, juste avant sa définition, le terme o v e rr id e .

G M IIilIIB Le terme o v e rr id e est utilisé à chaque fois que nous « redéfinissons » une méthode déjà définie
au sein d’une classe héritée. Il ne s’agit pas d’une surcharge de méthode puisque les deux métho­
des utilisées comportent chacune les mêmes paramètres en type et en nombre (voir chapitre 8,
« Les principes de la programmation objet », section « Les méthodes d’accès aux données »).

i/ï
ô
>•HJ
T~{
Orvl
@

gi'lI>-ClO
U

Les téléphones mobiles Android sont multitâches. Il est ain.si possible de consulter ses
courriels tout en écoutant de la musique. Chaque application (lire ses courriels, écouter
de la musique) est une tâche qui doit être capable de gérer son fonctionnement, même si
elle n’est pas affichée à l ’écran. Le paramètre Bundle s a v e in s ta n c e S ta te est uti­
lisé pour réaliser la sauvegarde de l’environnement d’exécution d’une application. Grâce
à lui, l’application est capable de mémoriser et de retrouver son état lorsque l’utilisateur
passe d’une application à une autre.

O Après exécution des instructions de la méthode o n C rea te () définie tlans la classe
héritée (su p e r.o n C re a te ()), la méthode se tC o n te n tv ie w () est enfin exécu­
tée. Comme son nom l’indique, elle met à jour le contenu de la « vue » à afficher,
c’csl-à-dire celui de l’interface graphique de votre application. Ce contenu est acces­
sible grâce à la valeur R. la y o u t .m ain passée en paramètre.

d D E iE I im ilI® Les notions d’activités et de vues sont examinées plus attentivement à la section « Cycle
de vie d'une application Android » ci-après.

© Éditions Eyrolles 487

oartle n° 3 ouffis el lechniaues oiienies iriilet

Le paramètre R. layout, ma in est constniii par Android Studio à partir des répertoires el des
fichiers du pmjet. Ainsi, les tenues la y o u t et main indiquent à la méthode setC onten t
View {) qu’il lui faut aiïieher les eompusants décrits dans le lidiier m ain. xml stocké dans le réper­
toire layout du projet, soit ici le texte Une toute prem ière a p p lic a t io n android.

i/i<D

>•LU
kOrHOr\I
@
JZCT'k—>-ClO
U

Le fichier R.java
Une fois les fichiers ressources créés et lorsque l’application est « compilée-exécutée »,
Android Studio génère un fichier Java nommé R.java (R comme Ressources). Ce fichier,
généré par l'TDE, est editable mais non modifiable. Examinons son contenu :

public final class R {
public sta tic final class attr {
]
public sta tic final class layout f

public sta tic final int main-0x7f020000 ;
]
public sta tic final class string {

public sta tic final int app_name=0x7f 030000;
1

}

468

La classe R .java définit des classes internes s ta t ic (la y o u t, string) au sein desquelles
.sont créées des variables s ta t ic nommées respectivement main et app_name.
Le nom des classes et des variables est à mettre en correspondance directe avec celui des
répertoires et des fichiers qui se situent dans l’arborescence du projet :
• main car il existe un fichier m ain . xml dans le répertoire la y o u t ;
• app_name parce que cette variable est définie dans le fichier string.xm l du répertoire

values.
Les données main et app_main sont créées par Android Studio afin d’établir une coiTespon-
dance entre les re,ssources décrites dans l’arborescence du projet et le code Java de l’applica­
tion. Ces données sont en réalité des constantes (s ta tic final). À chaque constante est
attribuée une valeur hexadécimale calculée par Android Studio, chacune correspondant à un
identifiant unique qu’il sera pos.sible de récupérer au sein du code Java.
Pour accéder aux ressources, comme nous le verrons dans les deux exemples ci-après, il suffit
d’utiliser dans le code Java les variables en indiquant leur chemin d’accès au package, soit :
R . layout .main et R. s t r in g . app_name.

Cycle de vie d*une application Android
L’exécution d’une application Android passe par la création d’une activité qui contrôle son
affichage par l’intermédiaire d’une vue. Au lancement de l’applicatioii, une première activité
est créée. Tout au long de son exécution, l'activité va modifier son affichage en fonction des
actions de l’ulili,sateur.

© Éditions Eyrofles

c lia iiitre 1° 13 Développer une mpiicanon Android

Ce pareourH d’exéeudtm est appelé « cycle de vie ». il se présente de la façon suivante
(figure I3-11).

L a n c e m e n t d 'u n e a c t iv ité

i

i'üitifsiifeur revient
à f'OCtt\/it€

Le processus
est tué

D'aurres a a iv iré s
d fm a n d e r) d e .

la m ém oire

l
onStartf) <r-

onfidsimie O

onRestart(]

L activité en
phcéeen avant

nE x é c u tio n d e l'a c tiv ité

Une autre activité est placée en Gi/anr
onPauaâ ()

L'tacnViie-nVsî visible

I
onStop{̂

L'activité eif
placée en avant

ifi

Oi_>LU
T~{
O
(N
@

ooDestroy(3

A rrê t d e l'a c tiv ité

F ig u re 13-11 C y cle d e vie d'une appüceiian Android

oi'k_>ClO
U

> Éditions Eyrolles 489

partie B° 3 Outils ei technlaues oileniés olilet

Les activités (Activity) et les vues (View)
Une aclivilé (A c t iv i ty) est la premiere eouehe d’une application Android. C’est elle qui gère
son cycle de vie et les événements qui lui sont associés. A ta création d’une activité, ses compo­
sants graphiques sont affichés par l’intennédiaire de la méthode onC reate {),
Les vues (view) sont le support graphique d’une activité ; elles affichent les composants
graphiques définis par l’intermédiaire du fichier m ain . xml. Toute activité possède donc des
vues qui s’affichent selon les règles spécifiées par le gestionnaire d’affichage.
Lorsqu’une seconde activité est lancée en parallèle, elle possède à son tour des vues avec des
règles d’affichage. Elle gère également son propre cycle de vie. Lors de son lancement, la
première activité émet iin événement onPause. puis onStop, alors que la seconde émet
l’événement o n C rea te et devient visible en passant au premier plan.
Ainsi, par exemple, pour écrire un texto, vous lancez l’activité correspondant à l’écriture de
SMS. Une fois ouverte, elle se place en haut de la liste des activités en cours, pour être visible.
Les composants graphiques sont placés dans un système de vues, associé à l’activité Texto,
selon un ordre prédéfini par le gestionnaire d’affichage, soit, par exemple, la liste des précé­
dents messages envoyés et reçus piu le contact, un champ de texte de saisie du texto en cours
et un bouton Envoyer pour transmettre le message. Cette activité est au premier plan ; vous
pouvez l’utiliser et agir directement sur ces composants.
Si vous écoutez de la musique en même temps, l’application qui gère les médias de votre télé­
phone est exécutée au travers d’une activité présente en mémoire, mais qui n’est pas visible,
Elle est placée sous l’activité T exto dans la liste. Dans ce cas, l’activité est considérée ct>mme
mise en pause (onPause). Vu qu’elle est située en dessous d’une autre activité, il n’est pas
possible d’interagir avec directement. Si vous soulraitez passer au morceau suivant de votre
playlist, vous devez la rendre visible en la plaçant au premier plan.

lapp liG ation Liste de courses
Afin d’examiner plus précisément les concepts de vues et de gestionnaires d’affichage, cons­
truisons une application Liste de courses qui offre à rutilisateur la possibilité de sélectionner
des articles dans une liste organisée de produits.

Vous trouverez tous les codes de cette application dans le répertoire Sources/Exemple/
C h ap itre lS / A n d ro id S tu d io / L isteD eC o u rses.

(/>d)

>-LU
LO
OfN
®
JZgi
>■O.O
U

490 © Éditions Eyrolles

chapitre ii° 13 Déuelotmer une application AndroM

Cahier des charges
À son lancement, l’application Liste de courses affiche une liste de rubriques sous la forme de
boutons cliquables (figure 13-12). Les rubriques représentent les différents types de produits que
Tutilisateur est susceptible d’acheter comme des fniits, des légumes, des produits laitiers...

Laitiers

Boulangerie

Poissonnerie

Boucherie

Charcuterie

Entretien

6:06 PM
Choisir un pr

F ig u re 13-12 L ’application L iste d e co u rse s F ig u re 13-13 La rubrique Fruits

</)ÇJ
Ôi_>LU
T~{
OfN
@
~LJJTCT'k—>-ClO
U

Lorsque Lutilisateiir sélectionne une rubrique en appuyant sur le bouton associé, un message
indique quelle nibrique a été sélectionnée. L’application présente aussi un nouveau panneau,
correspondant à la liste des produits de la rubrique sélectionnée (figure 13-13). Il a pour titre
« Choisir un produit : ».
L’utilisateur sélectionne ensuite le(s) prrxiuit(s) de son choix en cochant la ou les cases asso­
ciées. Ses choix sont mémorisés lorsqu’il appuie sur le bouton Enregistrer. L’application
affiche alors un message indiquant les produits sélectionnés (figure 13-14) et revient à la
première vue, soit la liste des rubriques par type de produit.

I Éditions Eyrolles 491

Darde B° 3 Outiis et technioues orientés oblet

Si Tutilisaieur retourne sur une rubrique où il a déjà sélectionné des produits lors d’une étape
précédente, la vue correspondant à la liste des produits s’affiche avec les cases des produits
sélectionnés cochées.

^ 1 1 ^ 4 : 4 8 PM
Choisir un produit ;

U n
fT

m

S à S .

! Enregistrer J

F ig u re 13-14 Les items Fraise e t Cerise sont 5é/ecf/o/inés

ifi<D

LU
LOrHOfN
@
JZCT'k—>-Q.O
U

492

Mise en place des éléments graphiques
La première vue affiche une série de boutons correspondant aux différents types de produits de
la liste de courses. Ces boutons sont définis au sein du fichier a c c u e i l .xm l, dan.s le réper­
toire R e s o u r c e / l a y o u t du projet, qui est structuré de la façon suivante :

<L in e a rL a y o u t
xralns: android= "http ;/ /schem as.android. com/apk/res/android"

a n d ro id ;o r ie n ta tio n = " v e rt ic a l "
a n d ro id :la y o u t_ w id th -"f i l l _ p a r e n t "
an d ro id :la yo u t_ h e ig h t= "f i l l _ p a r e n t "

0 an d ro id !b ack g ro u n d = "# F F F F F F F F "
a n d r o id :id = " & + id /a c c u e i l"

© Éditions Eyroties

chapHre n° 13 Développer une appllcaDon Android

<Button
android : layout_w idth= "w rap_content"
android r layout_height= "wrap_content ''
a n d ro id :b acltg ro u n d = "ed raw ab ley f r u i t "
a n d r o i d :i d = " 0 + i d / f r u i t "
android ; layout_marginTop="2px"

/>
<Button

andro i d ; 1 ayou t_wi dth="f i 1 l_pa r en t "
android ; 1 ayou t_h eigh th "w rap_content"
a n d r o id : b ack g ro u n d = "© d raw ab le/leg u m e”
android ; id= "ë+id/legume"
android ; layout_marginTop="2px"

/>
<Button

android ; layout_width= f i l l_ p a r e n t "
android ; layout_heig lit= " wrap_content "

Q a n d r o i d : t e x t s " L a i t i e r s "
android : id= ''@ + id/laitier "

android : layout_marginTop="2px"
/>

(U

>-
LU

T~{
ofN
@
JZCT'k—>-
ClOU

II </LinearLayout>

La liste ties rubritjues est définie par une série de boutons gérée par un gestionnaire d’affichage
linéaire (L inearL ayout) qui privilégie l’affichage vertical (an d ro id : o r ie n ta t io n) et
fait en sorte d’adapter les cléments qu’il contient à la taille de l'écran (android: layout_
w id th et a n d ro id : lay o u t^ h e ig h t).

Q D e nouveaux attributs, a n d ro id ¡background et a n d ro id : id , apparaissent au
sein des balises L in earL ayo u t et <Btitton>.

L’attribut background est utilisé pour colorier le fond de l’objet qui l’utilise, Tci,
l’application a un fond blanc, puisque l’attribut background de la balise L in e a r -
Layout est initialisé à Pour les deux premiers boutons, le fond est
occupé par une image stockée dans le répertoire draw ab le et non rempli par une
couleur. Ici, deux fichiers images nommés f r u i t .png et legume .png sont stockés
dans le répertoire R esource/draw able du projet. Le premier bouton est repré­
senté par une image de fruits, alors que le second l’est avec une image de légumes.
L’attribut id est très utile puisqu’il permet de différencier et d’identifier chaque
composant défini au sein du fichier XML. Cet identifiant est ensuite utilisé dans le
code Java de l’application, où les actions à réaliser seront différentes selon que
Tutilisateur appuie sur le bouton dont l’ id est f r u i t ou legume.

> Éditions EyroHes 493

partie B° 3 Outils et techniaues oheptés oblei

O Un bouton peut ne pas être colorié ou occupé par une image. Dans ce cas, il convient
de lui donner un label afin d’expliquer à Tutilisateur sa fonction. La balise
a n d ro id : t e x t permet d’écrire un texte sur le bouton. Pour notre exemple, le texte
L a i t i e r s indique à l’utilisateur qu’en cliquant sur ce bouton, il accède à la liste des
produits laitiers.

ifi

Oi_>LU
T~{
0 fN

.4-1-T01'k_>ClOU
494

Mise en place des interactions
Après avoir créés et disposés les différents composants de l’application via le fichier
accueil .xml, nous devons décrire, en langage Java, les actions à réaliser lorsque l’utilisa­
teur sélectionne une rubrique en appuyant sur le bouton correspondant.
Les instructions décrivant ces comportements sont à in.sérer dans la classe Main comme suit :

p u b lic c la s s Main extends AppCom patActivity im plem ents
O n C lic k L is te n e r {

// O D é fin ir des co n stan tes pour d is tin g u e r le s ru briques
p r iv a te s t a t i c f i n a l in t FRUIT-0;
p r iv a te s t a t i c f in a l in t LEGUME=1;
p r iv a te s t a t i c f in a l in t LAITIBR=2;
p r iv a te s t a t i c f in a l in t B0ULANGERIE=3;
p r iv a te s t a t i c f in a l in t POISSONNERIE-4;
p r iv a te s t a t i c f in a l in t BOUCHERIE=5;
p r iv a te s t a t i c f i n a l in t CHARCUTERIE=6;
p r iv a te s t a t i c f in a l in t ENTRETIEN=7;

/ / 0 Les boutons sont sto ck és dans un tab leau
p u b lic Button [] lis teB o u to n s = new B u tto n [8];
// À l a c ré a tio n de l 'a p p l ic a t io n ;
©Override
p u b lic vo id onCre a te (Bundle sa ve d ln sta n ce S ta te) {

su p e r,o n C re a te (sa v e d ln s ta n c e S ta te) ;
// O A ff ic h e r le s composants graphiques d é f in is dans le
// f i c h ie r a ccu e il.x m l
setC ontentV iew (R .la y o u t . a c c u e i l) ;
/’/ O Stocker le s boutons dans le tab leau en fo n ctio n de
// l ' i d d é f in i dans le f i c h ie r a ccu e il.x m l
listeBoutons[FRU IT]=

((B u tto n) th is . findV iew B yid(R .i d . f r u i t));
listeBoutons[LEGUME]=

((B u tto n) th is . findViewById(R.id .leg u m e));
listeBoutons[LAITIER]=

((B u tto n) th is . findV iew B yld(R .i d . l a i t i e r));
lis teB o u to n s [BOULANGERIE]

((B u tto n) th is .£indViewByld(R.i d . b o u la n g e rie));

© Éditions Eyrotles

chapitre n° 13 Développer une applteaDon Androu

U1(U

LU
v£i
tH
O<N
©
s :oi
Q.OU

listeBoutOns[POISSONNERIE]=
((B u tto n) th is . findView ById(R.i d . p o is s o n n e r ie));

listeBoutOns[BOUCHERIE]=
((B u tto n) th is . fin dview B yld (R .i d . b o u c h erie)) ;

listeBoutOns[CHARCUTERIE]=
((B u tto n) th is . findV iew B yld(R .i d . c h a rc u te r ie)) ;

listeBoutOns[ENTRETIEN]=
((B u tto n) th is . findViewById(R.i d . e n t r e t ie n)) ;

I l 0 Chaque bouton écoute l'événem ent onC lick
fo r (in t i= 0; i < listeB o u tO n s. len g th ; i++) {

lis te B o u tO n s[i] . se tO n C lick L is ten er(t h i s) ;
}

}
i l A ction à r é a l i s e r lo rsq u 'u n événement onC lick e s t entendu

p u b lic vo id o n C lic k (View v) {
S tr in g msg="’';
in t activite^FR U iT ;
// 0 T e s te r l ' id e n t i f i a n t de l 'o b je t ayant cap tu rer
// l'événement onClick e t a g ir en conséquence
sw itch (v .g e t l d O) {

case R .i d . f r u i t :
msg=”C h o is ir d es f r u i t s " ;
activite= FR U lT ;
break ;

case R . i d . legum e :
m sg = "C h o is ir d es lé g u m e s" ;
activité^LEGUME ;
b re a k ;

case R .i d . l a i t i e r :
m sg = "C h o is ir d e s p r o d u its l a i t i e r s ” ;
activite=LAITIER;
break ;

case R .i d . b o u la n g e r ie :
m sg = "C h o is ir dans l a b o u la n g e r ie " ;
activite=BOULANGERIE;
break;

case R .i d . p o is s o n n e r ie :
m sg = "C h o is ir dans l a p o i s s o n n e r i e " ;
activite=POISSONNERIE;
b re a k ;

case R .i d . b o u c h e rie ;
m sg = "C h o is ir dans l a b o u c h e r ie " ;
activite=BOUCHERIE;
break ;

) Éditions Eyrolles 495

partie B° 3 OutHs et techniaues orientés oblel

case R ,i d . c h a r c u t e r i e :
m sg = "C h o iB ir d an s l a c h a r c u t e r i e " ;
activite=CHARCUTERIE;
break;

case R .i d . e n t r e t i e n i
m sg = "C h o is ir d e s p r o d u its d 'e n t r e t i e n " ;
activite=ENTRETIEN;
break;

1
// Q A ff ic h e r l e message correspondant au bouton sé lectio n n é
Toast msgT = Toast.m akeText(th is , msg, Toast.LENGTH_SHORT);
msgT. show();

}

(U

m
U)
tH
O<N
©

CT
>-D.O
U

4 9 6

La classe Main est l’activité (exten d s AppCompatActivity) principale de l’application.
Elle est capable de traiter des événements de type o n C lick (iinpleinents O n C lickL is-
ten er).

O À chaque rubrique est associé un numéro mémorisé grâce à une constante de type
f i n a l s t a t i c in t . Chaque constante porte le nom de sa rubrique afin de faciliter
la lecture du code et d’éviter des erreurs d’élourderie comme celle d’associer un
numéro à un bouton avec une autre action. Il y a huit rubriques différentes, numéro­
tées de 0 à 7.

0Pour simplifier le code, les boutons sont stockés dans un tableau composé de huit
cases.

O La première instruction importante pour notre application consiste à afficher les
composants définis au sein du fichier a c c e u i l .xml. L’accès à ce fichier s’effectue
par l’intermédiaire de la variable R, la y o u t .a c c e u i l générée par Android Studio
au moment de la compilation.

©Nous avons vu à la section précédente, « Mise en place des éléments graphiques »,
que chaque bouton est identifié par un id défini par l’attribut a n d ro id :id . La
méthode f indV iew B yld() est utilisée pour récupérer le composant correspondant
k celui passé en paramètre. Ainsi, en pa.ssant le paramètre R. id . f r u i t à la
méthode f indView Byid (), l’application récupère l’adresse du bouton qui traite la
rubrique des fruits.

©Lorsque le tableau l is te B o u to n s est complet et que toutes les adresses des rubri­
ques sont associées aux indices correspondants, il est temps de parcourir l’intégra­
lité du tableau et de mettre en place un écouteur d’événements pour chaque bouton,
via la méthode s e tO n C lic k L is te n e r ()qui est appliquée à chaque bouton du
tableau l is te B o u to n s grâce à la boucle fo r . Ainsi, lorsque Eutilisateur appuie sur
un des huit boutons de l’application, un événement o n c lic k est émis et la méthode
o n C lick O est exécutée.

© Editions Eyrolles

chapitre n° 13 Développer une mpllcaffiin Android

0 La méthode on C lick {} est exécutée quel que soit le bouton sélectionné. Pour réali­
ser Taction adéquate, il est nécessaire de déterminer quel bouton a été choisi. Cette
vérification est réalisée grâce à l’objet v de type v ie w passé en paramètre de la
méthode o n C lic k O . En effet, lorsqu’un événement est émis, la méthode
o n C lic k () est capable de connaître l’objet qui a capturé Tévénement, en utilisant
l’expression v .g e t id O . Cette expression contient l’identifiant de l’objet sélec­
tionné, celui défini dans le fichier a c c u e i l .xml.

Connaissant l’identifiant du composant .sélectionné, la structure sw itc h case
permet d’indiquer à Tapplication quelle action mener. Suivant la valeur obtenue par
Texpres.sion v .g e tld (), le programme mémorise deux valeurs au .sein des varia­
bles msg et a c tiv ité . La première contient le message à afficher conlinmanl à
Tutilisateur que la rubrique qu’il a sélectionnée est bien celle qui correspond au
bouton sur lequel il a appuyé. La seconde stocke la constante associée à la rubrique
sélectionnée. Elle sera utilisée pour afficher la liste des produits associée à la rubri­
que (voir section « Créer une seconde activité » ci-après).

O La classe T oast est à utiliser lorsque vous souhaitez afficher un message éphémère
sur l’écran de votre application (figure 13-12, message «Choisir des fruits »). La
création du texte et de la bulle qui l’entoure est réalisée par la fonction make-
Text () . Cette méthode demande en premier paramètre une valeur correspondant au
contexte de Tapplication (ici th is , c’est-à-dire Tapplication elle-même). Le
message à afficher est placé en deuxième paramètre. Le troisième paramètre indique
combien de temps ce message doit rester affiché (puisqu’il est éphémère). Deux
valeurs sont po.ssibles : T o a s t . LENGTH_SH0RT ou T o a s t . LEWGTH_LONG.

ifi<D

>>LU
KOrHOrvl
@
j::
g i
>•Q.O
U

Bemarnue

Créer une seconde activité
Une fois la rubrique sélectionnée, un nouveau panneau s’affiche présentant la liste des
produits correspondant à la rubrique choisie. Ce panneau est en réalité une nouvelle activité
créée à partir de ¡’activité principale.
La création de cette nouvelle activité s’effectue en trois étapes.

1. Mise en place des composcints graphiques (voir section suivante «Les éléments
graphiques »).

2. Écriture d’une activité au sein d’une nouvelle classe (voir section suivante «L’activité
RubriqueFruit »).

3. Lancement de la nouvelle activité à partir de Tactivité principale (voir section suivante
« Lancer une seconde activité »).

Vous réaliserez la rubrique « Légumes » en vous reportant à la section « Exercices >> située à
la fin de ce chapitre.

> Éditions Eyrolles 497

I panic B° 3 Ouffis el lechnlaues olientes oUet

Les éléments graphiques
Les composants graphiques et leur agencement sont définis au sein du fichier f r u i t s . xml que
vous trouverez dans le idpertoire R esource/ layout, La disposition des composants est un
peu plus complexe que celle des exemples précédents, car elle nécessite d’imbriquer les layouts.
Examinons plus précisément l ’extrait du fichier f r u i t s .xml suivant :

<L in e a rL a y o u t O
xm lns: android="h t t p :/ /schemas.android.com /apk/res/android"
a n d r o id : o r i e n t â t i o n = " v e r t i c a l "
an d ro id :layou t_w id th = "£ ill_p aren t"
an d ro id :la yo u t_ h e ig h t= "f i l l _ p a r e n t "
andro i d :background="# FFFFFFFF"

>
< L in e a rL a y o u t Q

a n d r o i d : l a y o u t „ w i d t h = " f i l l _ p a r e n t "

android : layo u t_h eig h t= "w rap_content"
a n d r o id : o r i e n t a t i o n = " h o r i z o n t a l "
android :background="#FFFFFFFF"

>
<ImageView

android : layout_w idth= "w rap_content"
android ;layout_heigh t= "w rap_conten t"
a n d r o id : s rc= "© d ra w a b le / f r a i s e "
a n d ro id !la y o u t_ m a rg in T o p = " 3px"

/>
<CheckBox

android ;layout_heigh t= "w rap_conten t"
android ; id= " @ + i d /f r a i s e "
andro i d : 1 ayout_wi d th="wrap_con t e n t "
a n d ro id :la y o u t_ g ra v ity -"r i g h t "
android : layout_marginTop="3px"

/ >
< /L i nea rL a y o u t> Q

V)(U

>-
LU
lO
tH
ofN
@

CT'k->-D.Ou
498

< L ln e a rL a y o u t ©
an d ro id ;layou t_w id th = "f i l l _ p a r e n t "
a n d ro id : layou t_h eig h t= "w rap_content"
a n d ro id :o rie n ta tio n = " h o riz o n ta l"
android:background="#f f f f f f f f "

>
<ImageView

an d ro id :layou t_w id th = "w rap_content"

© Éditions Eyrotles

http://schemas.android.com/apk/res/android

Gliaiiitre 1° 13 Développer une appiicaffiin Android

«
O
>

LU
LO
tH
0 fN
@
U-Ijn01 'lI
Q.OU

an d roid :layout_heigh t= "w rap_conten t"
a n d ro id :s rc = "O d raw ab le /b an an e"
a n d ro id : layout_marginTop="3px"

/>
<CheckBox

a n d ro id : layou t_h eig h t= "w rap_content"
android:id="@+id/banane”
a n d ro id : layout_width="wrap_content"
a n d ro id : la y o u t_ g ra v ity = "r ig h t "
a n d ro id : layout_marginTop="3px"

! >

< /L in e a rL a y o u t> Q

© Éditions Eyrolfes

android : layout_w idth= "f i l l _ p a r e n t "
android : layou t_h eig h t= “w rap_content“
android : te x t= “E n re g is tre r"
android : id="0+id/Save"
android : layout_marginTop="lOpx"

/ >
</LlnearLayout> ^

0 Le premier layout (figure 13-14, repère Q) gère l’affichage des composants qu’il
contient de façon verticale (android:orientation= "vertical"). Tl est consti­
tué de cinq élénieiits ; quatre layouts (dans l’extrait, deux sont présentés) et un
bouton, qui sont donc placés le.s uns après les autres dans le sens de la hauteur. Ce
layout englobe ces cinq composants car la balise fermante </LinearLayout>
correspondant à la balise de création du layout se situe en toute fin du fichier (voir
les deux repères Q l’extrait de code).

O Le deuxième layout (figure 13-14, repère ©) gère l’affichage des composants qu’il
contient de façon horizontale (a n d ro id :o r ie n ta t io n = " h o r i2 on.tal''). 11 est
constitué de deux éléments : imageView et CheckBox qui sont placés l’un à la suite
de l’autre dans le sens de la largeur. Ce layout est imbriqué dans le premier layout
car la balise ferniame </LinearLayout> correspondant à la balise de création du
layout se situe juste après la définition des composants qu’il contient (voir les deux
repères 0 de l’extrait de code).

O Le troisième layout (figure 13-15, repère ©) gère également raffichage des compo­
sants qu’il contient de façon horizontale (a n d ro id :o r ie n ta t io n ^ " h o r iz o n ­
ta l") . Il est également constitué de deux éléments : ImageView et CheckBox.

499

partie B° 3 Outils et techniaues oheutés obiei

Remarque Le composant im ageview est utilisé pour afficher une image alors que CheckBox est un
composant à deux états dont on peut vérifier par programme s'il est sélectionné ou non.

Les layouts 0 et © sont identiques dans leur agencement et leurs composants graphiques.
Seul le contenu des ImageVlew (an d ro id : src= " @ draw able/fraise" et
a n d ro id : src="0draw able/banane") et l’ identifiant (an d ro id : id= "@+id/
f r a i s e " et a n d ro id : src="0+id/banane") permettent de les différencier.

L a y o u t h o r iz o n ta l

L a y o u t h o r iz o n ta l e

L a y o u t h o r iz o n ta l

L a y o u t h o r iz o n ta l

E nreg is trer

F ig u re 13-15 Imbrication de layouts

U)d)

>-LU

OfN
@
JZCT
>-D.OU

500

L’activité RubriqueFruits
Après avoir « dessiné » l ’activité correspondant à la rubrique « Fruits », nous devons créer la
classe R u b riq u e F ru its associée de la façon suivante :

p u b lic c la s s R u b riçfu e F ru its e x te n d s AppCompatA c tiv ity -
implements V iew .O nC lickListener{

p u b lic vo id o n C reate(Bundle saved In stan ceS ta te) C
su p e r. o n C rea te (sa v ed In sta n ce S ta te);
setC ontentV iew (R .la y o u t . f r u i t s);

}
}

L’activité R u b riq u eF ru its est pour l’instant très simple. Elle contient, comme toute acti­
vité, la méthode on C reate () qui appelle la fonction se tC o n ten tV iew (). Cette méthode
affiche les composants graphiques définis au sein du fichier dont le nom est passé en para­
mètre, c’est-à-dire ici le fichier f r u i t s . xml.

© Éditions Eyrotles

chapitre n° 13 Développer une anpllcaDon Android

CJ
ôL .>LU
LOT~{
OfN
@
~LJJTgi
>-Q.OU

Lancer une seconde activité
Le panneau contenant la liste des fruits s’affiche lorsque l’utilisateur appuie sur le bouton
Fruits de l’activité principale Main. L’activité R u b r i q u e F r u i t s est donc lancée à partir de
la méthode o n C l i c k i) , immédiatement après raffichage du message indiquant quelle
rubrique a été sélectionnée.

p u b lic v o id o n C lick [V iew v) {
I l Code id e n tiq u e à c e l u i p r é s e n té à la s e c t i o n « M ise en p la c e
/1 des i n t e r a c t i o n s »
Toast msgT = Toast.m akeText(th is , msg, Toast.LENGTH_SHORT);
msgT, show(];
. '/ O C ré e r une n o u v e lle a c t i v i t é en f o n c t io n de l a ru b riq u e
/ / s é l e c t i o n n é e
c r e e r A c t i v i t e (a c t i v i t é) ;

}
/ / C ré e r une a c t i v i t é en f o n c t io n de l a v a le u r p a s s é e en p a ra m è tre
p u b lic v o id c r e e r A c t i v i t e (i n t tmp) {

I n te n t n v A c t i v i t e ;
s w itc h (tmp) {

c a s e FRUIT :
/ / © C ré a tio n de 1 ' I n te n t

n v A c t iv i te = new I n t e n t (M a in .t h i s , R u b r i q u e F r u i t s .c l a s s) ;
s t a r t A c t i v i t y F o r R e s u l t (n v A c t i v i t e , FR U IT);

I b r e a k ;
}

}

O Pour simplifier la lecture du code, nous insérons à la fin de la méthode o n C lick ()
l’appel à une nouvelle fonction c r e e r A c t i v i t e () qui a pour rôle (comme son
nom l’indique) de créer une nouvelle activité. L'activité produite est différente selon
la valeur foumie en paramètre.

© À l’appel de la fonction c r e e r A c t i v i t e (), un objet n v A c t iv i t e est créé de type
In te n t. Les I n te n t ont c'té conçus pour faciliter la vie du développeur d'applica­
tions Android. Ils offrent la possibilité de lancer un programme (avec ou sans inter­
face graphique) à partir d’un premier programme, tout en gardant un canal de
coniinunication entre les deux.
Le type de l’activité est créé en fonction de la valeur passée en paramètre. Cette valeur
fait l’objet d’un test au sein d’une structure switch case. Dans le cas où le paramè­
tre correspond à la constante FRUIT, la création de T in te n t s’effectue alors grùce à
l’instruction new In te n t (Main, t h i s , R u b riq u e F ru its . c la s s) . Les paramè­
tres du constructeur In te n t indiquent quels programmes sont à mettre en relation. Le
second paramètre précise le programme à lancer (ici, R u b riq u e F ru its . class).

Attention, la création d’un I n te n t ne suffit pas au bon fonctionnement de votre application.
Vous devez obligatoirement déclarer la nouvelle activité R u b r iq u e F r u i ts dans le fichier

© Éditions Eyrol/es 501

Darde B° 3 ODflts el lechDlaues orieiiiés iriilet

A n d ro id M an ifest. xml. En cas d’oubli, vous obtiendrez une erreur de compilation. Cette
déclaration s’effectue comme suit :

j' < m a n i fe s t x m ln s : a n d ro id = " h t t p : / / sch ém a s.a n d ro id .c o m / a p k / re s / a n d ro id "
p a c k a g e ^ " c o m .L is te D e C o u rs e s "
a n d r o i d ; v e r s io n C o d e = "1"
a n d r o i d : v e rs io n N a m e = " 1 . 0">
< ap p lica tio n a n d ro id :label-"®string/app_naine">

< a c t iv i ty android : naine= "Main "
a n d ro id ;label="®string/app_nam e">
<in t e n t - f i l t e r >

< action android:narrie="android. in t e n t . a c t io n .MAIN" />
<categ o ry a n d ro id :name=" a n d ro id .in te n t. c a te g o ry . LAUNCHER" />

</in t e n t - f i l t e r >
< / activ ity>
< a c t i v i t y

a n d ro id :n a m e = " .R u b rig u e F ru its "
a n d r o i d :l a b e l = " C h o i s i r un p r o d u it

/ >
</application>

</raanifest>

L’attribut android :nam e indique le nom de la nouvelle activité à prendre en compte, tandis
que a n d ro id : la b e l précise le titre à afficher pour cette nouvelle activité.

Remarque Le fichier A n d ro id M an ifest .xml se trouve dans le répertoire m a n ife s ts de l’arbores­
cence de tout projet Android Studio. * •

(U

UJ
VO
OCM
@
r :Ol
>-Q.O
U

502

Quelques outils incontournables

L’activité « C h o is ir un p ro d u it : » s’affiche à présent lorsque l’utilisateur sélectit)nne
une des rubriques présentées par l ’activité L is te de co u rse s (figure 13-13). L’objectif est
maintenant d’écrire le cœur de métier de la seconde activité à savoir :
• afficher un message indiquant quels produits ont été sélectionnés (voir section suivante

« Les cases à cocher ») ;
• mémoriser ces produits afin de connaître à tout moment quel produit a été coché (voir .sec­

tion suivante « Stocker le.s données dans un fichier texte ») ;
• effacer l’activité « C h o is ir un p ro d u it : » lorsque l’utilisateur a enregistré ses pro­

duits et revenir à l’activité principale (voir section suivante « Effacer l ’activité en cours ») ;
• si Lutilisateur retourne à une rubrique où des produits ont déjà été sélectionnés, les cases

correspondantes doivent être cochées (voir sections « Lire des données depuis un fichier
texte » et « Extraire des données à partir d’une chaîne de caractères »).

© Éditions Eyrotles

chaoKre n° 13 Développer une appllcaffiiii AndraU

Les cases à cocher
Pour vérifier l’état des cases à cocher, nous devons créer des objets de type CheckBox en les
déclarant comme variables de classe comme suit :

p u b lic c la s s R u b riq u e F ru its extends AppCom patActivity
im plem ents V ie w .O n C lic k L is te n e r [

I l D éc la ra tio n d 'o b je ts de type CheckBox comme v a r ia b le s de c la s s e
p r iv a te CheckBox chkB anane, c h k C e r is e , c h k F r a is e , chkK iw l;
p r iv a te B u tto n b tn S a v e ;

<u

>-
UJ
so
O
fN

@
JCoi
>-
C lOU

chkKiwi =
btnSave =

p u b lic vo id o n C reate(Bundle saved In stan ceS ta te) {
su p e r. o n C rea te (sa v ed In sta n ce S ta te);
setC ontentV iew (R .la y o u t . f r u i t s) ;
// O A sso c ie r le s CheckBox d é f in ie s dans le f i c h ie r
// fr u its .x m l avec le s v a r ia b le s de c la s s e
ChkBanane = (CheckBox) findV iew B yld(R .id .banane);
chkC erise = (CheckBox) f in d V ie w B y ld (R .id .c e ris e) ;
chkF raise = (CheckBox) findV iew B yld(R .i d . f r a i s e) ;

(CheckBox) findV iew B yld(R .i d . k iw i) ;
(Button) findV iew B yld(R .i d . S a v e) ;

/ / O M ettre en p lac e un écouteur d'événem ents su r le bouton
// E n re g is tre r
b tn S a v e ,se tO n C lic k L isten e r(t h i s) ;

}
// Lorsqu'on c liq u e su r l e bouton E n re g is tre r
p u b lic vo id onC lick(View v) {

Toast to a s te r ;
S tr in g msg="";

/ / 0 T r a ite r l ' é t a t des CheckBox
i f (ch kF raise .isC h eck ed ())

msg+="fx a is e + ";
i f (chkBanane, isC hecked())

msg+="banane*";
i f (ch kC erise . isC hecked())

msg+="cerise*";
i f (chkKiwi. isC hecked())

msg+="kiwi+";
// O A ff ic h e r un message éphémère s ' i l n 'e s t pas v id e
i f (!msg.e q u a ls ("")) {

S tr in g msgToast = m sg.rep lace
to a s te r = Toast.m akeText(t h i s .g e tA p p lica tio n C o n te x t(),

msgToast, T o ast.LENGTH_LONG);
t o a s t e r . show();

}
}

© Éditions EyroHes 503

Dante в° 3 Outiis et techniaues orientés oblet

O Lii méthode f indViewByid () permet ici d'associer les cases à cocher et le bouton
definis au sein du fichier fruits .xml avec les objets (chkBanane, chkCerise,
btnSave) déclarés et utilisés par la classe RubriqueFruits. ja v a . Observez que
pour récupérer correctement l’adresse de l’objet, vous devez spécifier son type à
l ’aide d’un cast (CheckBox) ou (Button).

O Afin de mémoriser ses choix, l ’iitilisateur appuie sur le bouton Enregistrer. Un écou­
teur d’événements est donc ajouté à l’objet btnSave. La classe RubriqueFruits
doit également implémenter OnClickListener.

0 La vérification de l’état des cases à cocher ne peut s’effectuer que lorsque rutilisa-
teur a appuyé sur le bouton Enregistrer. Ainsi, nous devons placer quatre tests i f
dans la méthode onClick (), pour vérifier si les quatre cases à cocher sont sélec­
tionnées ou non. Ces tests utilisent l ’expression o b je t . isCheckedO, car la
méthode isCheckedl) appliquée à un objet de type CheckBox retourne le
booléen true lorsque la case est effectivement cochée.

Lorsqu’une case est cochée, la variable msg .s’ incrémente du terme correspondant au
produit sélectionné, suivi du signe -i-. Par exemple, lorsque les cases « fraise » et
« banane » sont cochées, la variable msg contient le texte fra ise + b a n a n e -ь,

O Le signe + sera utilisé lors de l’extraction des données à partir du fichier texte (voir
section suivante « Lire des données depuis un fichier texte »). 11 nuit à la bonne
lecture du message éphémère, c’est pourquoi le message msgToast affiché par le
Toast est modifié. Tous les signes + contenus dans msg sont remplacés par des
espaces (re p la c e , " ")).

Stocker les données dans un fichier texte
Il existe plusieurs techniques pour stocker les données à partir d’une application mobile. 11 est
ainsi possible de sauvegarder les données sous forme de Préférences (SharedPrefe-
rences), d’utiliser une base de données de type SQLite, ou encore de recourir au stockage
interne sous forme de fichiers standards. Nous avons choisi ici de vous présenter cette dernière
technique, car elle est sensiblement plus proche de celle présentée au chapitre 10, « Collec­
tionner un nombre indéterminé d’objets », section « Les fichiers textes ».

(Л
(U

Ш
soгН
Огм
@
JZст*L_>•Q.ОU

ÎTtfiliH liiJIÎ^ l Les capacités de stockage d'un téléphone mobile restent limitées. Il convient de ne pas en abuser
et de restreindre ce mode de conservation de l’information à des données « légères » comme du
texte.

L’écriture des pnxluiLs sélectionnés s’effectue immédiatement après l’affichage du message éphé­
mère décrit à la section precedente « Les cases à cocher ». Les instructions sont les suivantes :

public void onClick{view v) {
// Créer et afficher le message dans un toast (voir section
// précédente)

504) Éditions Eyrofles

ch ap itre n ° 13 Développer une appllcaffiiii Android

t o a s t e r , show();
.// Mémoriser les fruits sélectionnés
ecrireListeFruits(msg);

}
La niétliode ecrireListeFruits {) est appelée pour stocker le message passé en para­
mètre dans un fichier texte. Les instructions composant cette l'onction sont les suivantes :

public void ecrireListeFruits(String tmp) {
FileOutputstreaJ» fos ;
try {

fos = openFileOutput{"Fruits.txt", Context.MODE_PRIVATE);
Log.i("----------- Fichier
fos.write(tmp.getBytes()) ;
fos , close();

J
catch (rOException ex){

Log.ii"----------- Fichier
}

getFilesDir().toString());

"Erreur d ’écriture

)
Un objet de type FileOutputstream est déclaré, puis créé au sein d’une structure try
c a tc h afin d’éviter les erreurs d’entrée-sortie en cours d’exécution. L’ouverture en écriture
du fichier est réalisée par l ’intermédiaire de la fonction openFileOutput () qui prend en
paramètres deux valeurs. Le premier paramètre définit le nom du fichier de sauvegarde (ici,
Fruits . txt) alors que le second précise le mttde d’accès au fichier (ici, m o d e_ p r i v a t e).
Grâce au mode piivé, le contenu du fichier est effacé si le fichier existe déjà et les autres appli­
cations n’ont pas accès aux données contenues dans le fichier.
Le message, traduit sous forme d’octets, est passé en paramètre de la métltode
f o s . write () pour être ensuite écrit dans le fichier associé à l’objet fo s .

Linstruction Log. i () est utilisée pour afficher des commentaires et/ou le contenu de certains
objets dans une fenêtre d’exécution appelée Log window ou LogCat. Elle apparaît lorsque
l’on sélectionne l'onglet Android Monitor en bas à gauche de TIDE. L’instruction l o g . i () ,
placée dans le bloc t r y de notre exemple, affiche le nom du répertoire où est écrit le fichier
F r u i t s . t x t .

in<u

>~in
so
Orsi
@
JZgi
>•Q.OU

Effacer l ’activité en cours
Lorsque l’utilisateur appuie sur le boulon Enregistrer, les données sont stockées dans un
fichier texte et l’activité « c h o i s i r un p ro d u it : » s’efface. L’activité initiale Liste de
c o u rse s réapparaît ; f utilisateur peut alors sélectionner une nouvelle rubrique. La fermeture
d’une activité en cours d’exécution s’effectue tout simplement par l’intermédiaire de la
méthode f i n i s h (), comme suit.

© Éditions EyroUes 505

partie B° 3 Oulls et techniaues orientés oblet

irt
(U

LU

O<N
©
s :oi
ClO
U

p u b lic vo id onClick(View v) {
Il // Mémoriser le s f r u i t s sé le c tio n n é s {v o ir s e c tio n précédente)

E c rire L is te F ru it{m sg);
i l Fermer l ' a c t i v i t é en cours
f ermerliesFruits () ;

)
p u b lic vo id fe rra e rL ea F ru its()[

t h i s . finish() ;
}

La méthode f e rm e rL ssF ru its () est appelée aussitôt après avoir enregistré les données
dans le fichier F r u i t s . t x t . Elle contient une seule instiniction t h i s . f i n i s h () qui ferme
l’activité en cours.

Lire des données depuis un fichier texte
Si riitiüsateur retourne sur une rubrique, les cases correspondant aux produits qu’il a sélec­
tionnés doivent apparaître cochées. Pour réaliser cette opération, nous utilisons les données
stockées dan.s le fichier F r u i t s . t x t , afin de cocher par programme les cases correspondant
aux fruits mémorisés.
La première étape consiste à récupérer le texte stocké dans le fichiei' F r u i t s . t x t , comme
suit :

p u b lic S tr in g l i r e L i s t e F r u i t s {) [
F i le InputS t ream f i s ;
S tr in g data="";
t r y {

fis= openFilelnput{ " F ru its . t x t ");
char[] charLus = new c h a r[255];
Inputstream Reader i s r = new in p u tstrea m R ea d er(fls) ;
i s r . re a d (charL us);
d ata = new s tr in g (c h a rL u s) ;

}
catch (lOException e x) {

L o g .i(" ------------------ F ic h ie r
}
return, data;

'E rreur de le c tu re . . .")

I }

506

Un objet de type F ile in p u ts tre a m est déclaré, puis créé au sein d’une structure t r y
c a tc h afin d’éviter les erreurs d’entrée-sorlie. L’ouverture en lecture du fichier est réalisée
par rintermédiaire de la fonction o p e n F ile ln p u t () qui prend en paramètre le nom du
fichier à lire (ici. F r u i t s . tx t) . Après ouverture, le fichier est lu par rintermédiaire d’un Ilux

© Editions Eyrolles

clrapKre n° 13 Développer une mpiicaDon AndroM

de lecture (inputstreamReader). Les données lues (charLus) sont ensuite converties en
chaîne de caractères (data).
La méthode LireListeFruits () est appelée dès la création de l’iictivité Rubrique
Fruits, comme suit :

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.fruits);
String listeFruits = lireListeFruits();
// Création et initialisation des CheckBox {voir le code de la
// section « Les cases à cocher », repère Q)

À l’appel de la méthode, le fichier est lu et le message extrait est placé en retour dans la chaîne
listeFruits.
Extraire des données à partir d’une chaîne de caractères
Une fois que le message est lu, nous devons extraire les ternies correspondant aux noms
des produits sélectionnés. Cette extraction passe par I’utilisation de la classe prédéfinie
StringTokenizer.

Il Iki L’extraction de données d’un fichier texte est étudiée à la section « Exercices - Créer des
fichiers textes - Exercice 10,5 » du chapitre 10, ■' Collectionner un nombre indéterminé
d’objets »,

«
ÔL->
U J

T~{OfN
@
0-1JZCT'k—>-Q.OU

Grâce aux outils de la classe StringTokenizer, il est possible d’extraire des mots d’un
message si ce dernier est constitué de mots séparés par un caractère spécifique appelé sépara­
teur, Dans notre exemple, chaque mot (représentant un produit) est séparé par un signe +.
L’extraction des produits enregistrés et la mise à jour des cases à cocher correspondantes
s’effectuent alors, comme suit :

public void majCheckBost(String tmp) {
// Créer un objet st qui détecte des champs de mots et des
// séparateurs "+"
StringTokenizer st = new S t r i n g T o k e n i z e r (t m p , ;
int i=0;
// Créer un tableau dont la longueur correspond au nombre de
// champs séparés par des "+"

I String mot[] = new String[st.countTokens()];
// Tant qu'il Y a des champs séparés par des "+"
while (st.hasMoreTokens()) {
// Enregistrer le champ courant dans le tableau mot à l'indice i
m o t [i] = s t .nextToken();
if (mot[i].equals("banane")) {

// Si mot[i] vaut "banane", cocher la case correspondante
chkBanane.setChecked(true);

}

I Éditions Eyrolles 507

Darde a° 3 OutHs et techniaues oheotés oblet

else if (mot[i].equals["fraise")) {
il Si mot[i] vaut "fraise", cocher la case correspondante
chkFraise.5etChecked(true);

}
else if (mot[i].equals["cerise")) {

// Si motli] vaut "cerise", cocher la case correspondante
chkCerise.3âtChecked(true);

}
else if (mot[i].equals("kiwi")){

// Si mot[i] vaut “kiwi", cocher la case correspondante
chkKiwi.setChecfced(true);

}
i++ ;

}
}

La méthode majCheckEoxi) parcourt Lensemble du message passé en paramètre et extrait
chaque terme se situant après le séparateur +, Une fois les termes extraits, elle vérifie s’ ils
correspondent à un nom de produit. Si te! est le cas, elle modifie l’état de la ease à cocher
(s 0 tChecked (t ru e)) de façon à ce qu’elle apparaisse effectivement cochée.
La méthode ma jCheckBox () esl appelée après la création des cases à cocher, comme suit :

public void onCreatefBundle savedInstanceState) C
// ...
String listeFruits = lireListeFruits();
// Création et initialisation des CheckBox (voir le code de la
// section « Les cases à cocher », repère Q)
chkBanane = (CheckBox) findViewById(R.id.banane);
// . . .

' majCheckBox(listeFruits);
Le message traité par la méthode maj CheckBox () est celui extrait du fichier Fruits, xml,
récupéré en résultat de la fonction lireListeFruits ().

Publier une applicatlen Android
<D

LU
Vû
tHO<N
@
jT01'k_
Q.OU 508

Une fois votre application correctement développée, il est nécessaire de vérifier son bon fonc­
tionnement directement sur votre mobile. Ceci est d’autant plus important qu'il est impossible
sur l’émulateur de traiter le mulii-touch ou de délecter l’inclinaison du mobile. A la lecture de
la section « Tester votre application sur un mobile Android », vous apprendrez à tester vos
applications en cours de développement, directement sur votre téléphone.

© Éditions Eyrolles

cte m tre H° 13 Développer une mpiicaDon Android

T~{OfN
@

Une fois votre application Andn>id développée, vous souhaiterez sans doute la distribuer sur
Internet, en la vendant ou en en faisant don. Pour cela, vous devez la publier sur des serveurs
dédiés. La plate-forme oflicielle du niiu-ché d’applications Android est l’Android Market, tout
récemment renommée Google Play. Reportez-vous à la section « Déposer une applicatit)n
Android sur un serveur dédié » pour découvrir toutes les étapes de publication d’une application.

Tester votre application sur un mobile Android
Pour tester votre application nouvellement développée, vous devez tout d’abord configurer
votre mobile comme suit.

1. Allumez votre portable et appuyez sur Picône Paramètres sur l’écran général. Le panneau
propo.se plusieurs rubriques, celles qui nous intéressent ici sont Sécurité et Options de
développement (figure 13-16).

© Paramètres

B sécurité

Figure 13-16 Le panneau Paramètres

Options de développemert

2. Appuyez sur la lubrique Options de développement afin d’ouvrir le panneau correspon­
dant. Différentes options sont disponibles ; activez l’option Débogage USB (figure 13-17).

ir>(U
O
L_>

Figure 13-17 Le panneau Options
de développement

Options de développement

Débogage USB
l e mode débogage se lance lors de la
connexion d'Ufi périphérique USB

jTCT'k_
ClO
U

© Éditions Eyrolies 509

partie B° 3 OuMs et lechnlgucs orleniés obicl |

Avec la version 4.3 d’Android, l’accès aux Options de développement n’apparaît que lorsque
vous avez, avant tout, affiché la page « À propos de l’appareil » de la rubrique Paramètres,
onglet Plus. Sur l’écran « À propos de l'appareil », descendez à la ligne Numéro de version.
Tapez sept fois sur cette ligne. L’option Options de développement s ’affiche maintenant dans
l’onglet Plus de vos Paramètres,

3. Un panneau de confirmation apparaît. Appuyez sur OK pour confirmer l’activation de
cette option (figure 13-18).

Options d e - •Moj/peru&f-

D é b o g a g e U S B

Â A ut. d é b o g a g e U SB ?

Le débogage U SB est
uniquement destiné au
développement. Vous pouvez
l'utiliser pour copier des données
entre votre ordinateur et votre
périphérique, insta ller des
applications su r votre
périphérique sa n s recevoir de
notification et lire des données
de journal

F ig u re 1 3 -18 Confirm er l'autorisation
de débogage

4. Revenez au panneau Ptu-amèlres et appuyez sur la rubrique Sécurité (figure 13-16). Dans
le panneau Sécurité, activez l'option Sources inconnues (figure 13-19).

Sécurité

V)
(U

F ig u re 13-19 Le panneau Sécurité

>■LU
VP
r*H0 rN
@
sz01
>aO
U

Sources Inconnues
Autoriser l'iristalldüon d’applications
non Market

510 © Éditions Eyrotles

chaoKre n ° 13 Développer une m p llc a ffiin A ndrou

5. Un panneau cl'alerte apparaît, indiquant que vous êtes responsable du bon ou mauvais
fonctionnement des applications que vous développez. Appuyez sur OK pour confirmer le
choix de celte option (figure 13-20).

F ig u re 13-20 Confirmer l’autorisation
d’utiliser des applications non signées

V o tre a p p a re il e t v o s d o n n é e s
p e rs o n n e lle s s o n t p lus
v u ln é ra b le s a u x a tta q u e s
d ’a p p lic a t io n s de s o u rc e s
in c o n n u e s . V o u s re c o n n a is s e z
q u e v o u s ê te s s e u l{e)
re s p o n s a b le d e to u t d o m m a g e
s u b i p a r v o tre a p p a re il o u de
to u te p e rte d e d o n n é e s
d é c o u la n t d e l’u tilis a tio n d e ces
a p p lic a t io n s

Votre téléphone est configuré, il ne vous reste plus qu'à le brancher à votre ordinateur via le
port USB.
Retournez sous Android Studio pour exécuter le projet relatif à l’application que vous
souhaitez tester. Le panneau Device Chooser apptu'aît ; sélectionnez la ligne correspondant à
votre portable et cliquez sur OK (figure 13-21). Votre application s’affiche sur votre mobile ;
vous n’avez plus qu’à tester son bon fonctionnement.

» ̂O Device Chooser

0 Choose a running device
Device _ _ _ _ _

m E m u la to r T h e N e x u s S A F I 2 3 A n d ro id 6 .0 , API 2 3 O n line

State Com patib le Serial N um ber

Y e s

E Samsung SM-C9Z0F Android 5.1.1, API 22
e m u la t o r - 5 5 5 4

06157df6d5c6.

i/i
O
i_>LU
üDrH
orvl
@
u-tJZgi'k_
ClO
U

O Launch emulator

Android virtual device: The Nexus S API 23

Q Use same device for future launches

(T) C ancel] [OK ^

Figure 13-21 Le panneau Device Chooser

© Éditions Eyrolles 511

partie B° 3 Ouffis et lechnlaues orieniés idiiet

Déposer une application Android sur un serveur d ^ ié
Pour mettre u disposition votre application sur Internet, vous devez réaliser un certain nombre
d’opérations. Commencez par vous inscrire sur la plate-forme Android {voir section suivante
« Créer un compte développeur »), puis transformez votre projet Android Studio en applica­
tion Android à part entière (voir section suivante « Passer du projet à l’application »). Une foi s
cela effectué, vous pourrez déposer l’application sur le site Google Play (voir section suivante
« Déposer une application »),

Créer un compte développeur
Pour créer un compte développeur, rendez-vous sur le site httpJ/piay.googie.com/apps/pubUsh,
en vous connectant obligatoirement avec votre adresse Cmail.
Pour créer votre profil développeur, vous devez compléter le formulaire de la page d’accueil
(figure 13-22). Une fois les champs correctement remplis, cliquez sur Poursuivre et payer.

^ Google play Developer Console

CoeiTWî -voiift à votre compte GfDOfile. №giB£ V09 fret« d'Inicrlptlort Indiquez irtto» «ur votre
compte

VOUS ÊTES CONNECTÉ EN TANT QUE...

Ce compte Google oero associé à votre corroie développeur
St vous souhaitas usMIser un auire compta, vous pouvez c ^ s l r parmi les propositions d'dassous. SI vous
représehtez une organis&ttOn, vous pouvez eswlsager d'ertrsgisiror urt nouveau compte GOOgte, plüidi que d'ulülse^
un caxTtpts personnel.

3e cor necter avec un autre compte Créer un compie Oooglo

AVANT DE POURSUIVRE..

œ
Uâez et acceptez le contrat celalii a ta dtalrlhutlan Pieporlez-vouâ a la liste das pays dans lesquels vous pouvezSur Oooele Ptey [pourtesdévBlopiMiJrs},

/J'accepte et J'aLrtorisa Qoogle à associer ce
compte au <»nlra1 rulatll à la dtetributlon sur
Googte Play (pour lesdéveloopeuns^-

dtetiibijer et vend te dos âppflOelKinâ.
Si vous envisagez de vendre des apFrilcatlons ou des produits
ntégrés à l'application. vérlKez que vous pouvez créer un compte
merchand dans voire pays.

¡$25
Préparez votre carte de paiemenl pour
régler lee trais dlnscrtption de 25 USD à la
prochane étape.

iJ)O»

PourauEvre «1 payer

>*
LU
KOrHOfN
@

F ig u re 13-22 Page d'accueil de création d'un covnpfe développeur

JZCT'k—>-a.OU
512 © Éditions EyroUes

cliaiiHre й° 13 Développer une otpllcaUon Android

À la page suivante (figure ¡3-23), acceptez le contrat après avoir lu ses termes, puis cliquez sur
« J’accepte. Continuer ».

^ G o o gle p lay Developer Console

4 Ti«jB5l.5appta<»0M DES MODIFICATIONS ONT ÉTÉ APPORTÉES AU CONTRAT RELATIF À LA DISTRIBUTION SUR GOOGLE PLAY (POUR LES

DÉVELOPPEURS)

>« («tadr â lodlstnte|lQr«UFGo<3ÿ« PPd]̂[p(Hirl««4ÿv9ioppaur$) |
M Servtoeo do roux

Ê— RBf̂]pdB. BiWKÎ«n
1̂ Pomrnimee
1̂ AmonoM

^ Google play

C o n t ra t r e la t if à la d is t r ib u t io n s u r G o o g le P la y (p o u r le s d é v e lo p p e u r s)

Damièr« madificstion ; 25 septembre 2014 (efficher la version archlfrée)
Définitions
OpiérsMur UMplieéiiquo agrM opdratouf ds ràeaeu mobitô ulortM à fseturor don 1Уа1в de diBirtbiilion pour fee PfodOUs uendu« sus utlkeaioura tfAppaf««is енгвопгвмаи.
SIgneedfelkictIfe nom cotrimofciaux, marquH, nwqMM nomededomalrwfl. «t aulraseigneedtelinctdsappartensrd respodfwernonr A chacune dn
poim, hrfs Qiju détenue (du accordés tous Hcance) par unü partie é uirMmont donné,

“Mveleppour" ou "Уоив’гпёспв“ loiite рсгэопем phyatoue ou глотаю Irwontert-eutonsée perle Plor' Stored ÈetrJbuer des Produits oonforméirieri aum Dondiécwe du présent
CenlraL

Cempie tUvsloppour : cooipta de publication atlréHJé aux Déwetoppourv qui perniat te distribution de Produite vId ЮРЮу Store
Cenielé dévelepeour consoto ■ou autio outil en ligne fourni par QoogfeeiwdévebppeurB afin de gérer la dlslrtejtton de Produits et de fencUcmedrhnîgtnitlvee uwcléee

Apparall tout аррагеЗ qui permet d’accéder au Play Store, toi que déSni dam te préeenl document
Google Ooogli Inc., sodété du Oelauwedonl le &4ége principal estéis à l'adresse 1600 AmphftlieeËrB Padiway, Mountain VWw, CA В404Э. ËCaleAJnie ; Google Irelend Limited,
eoctétéfeiluée en-Irlande dont leeièeepnrKipaleelets à Gordon Houea. Banrow Street. СЭиЫл4, Irtarda . Oocigle Commère» bmitod. soedU «tuèeen Irtartde dont te sidge
nriiwMd M l «}« e Плй>«пп u<4>u ЙЯ11>ш13||>ми n.ihKnJ l>U»(iHe «ri fSnvwvW. Л«,« Djh**ir СЧ* (irnüMt

liD Jeocecte Ю Cortral гоШ1 a ь distrdutior put Google Play (pour Юе dévetoppeurs).

А£̂ врСеГ et eccéder à la conaofe

Figure 13-23 Contrat pour tes développeurs

1ЛШ

>-
Ш
vo
T-HO<N
@
JZCT'k_
Q.O

U
> Éditions Eyroifes 513

parfle B° 3 Ousts el lechnlaues oiienies oliiet

L’inscription à un compte développeur Android est payante. Les frais s’élèvent à 25 dollars
américains (environ 20€). Ils ne sont demandés qu’une seule fois et vous donnent le droit
d’accéder à la plate-forme de publication de vos applications. Pour régler ces frais d’inscrip­
tion, il vous suffit de cliquer sur le bouton Accepter et continuer (figure 13-24) après avoir
rempli le formulaire précisant vos coordonnées bancaires.

NOM E T A D R E S S E P E R S O N N E LLE

i l F rance (FR) t

Nom

A d r e s s e p o s ta le

Code postal

Ville

CEDEX

MODE D E PAIEM ENT

C a r t e d e p a ie m e n t

N u m é ro d e c a r te

Date d'expiration

MM / A A

C o d e d e s é c u r i t é

co... Q

Adresse de facturation

L 'a d r e s s e d e facturation co rre sp o n d a u nom et à l’a d r e s s e

p e rso n n e lle .

J e s o u h a ite re ce v o ir le s o ffres s p é c ia le s et le s n e w sle tte rs

co n ce rn a n t G o o g le W allet, a in s i q u e d e s invitations m e

perm ettant d e d o n n e r m on a v is s u r le produit.

i/i(U
O
L_>

J'a co e p ta le s C o n d itio n s d'utilisation e t l'A vis d e con fidentia lité d e G o o g le W a lle t

Annuler A ccep ter et continuer

lOT~{OfN Figure 13-24 Frais d'inscription

oi'k_>ClO
U

514 © Éditions Eyrofles

chapitre я° 13 Développer une appllcaffiiii Android

Après paiement et après validation de vos données par les services de Google, vous arrivez sur
la page qui vous permet de publier vos applications (figure 13-25).

I P » C o o g k p i a y Developer Con so le

T O U T E S L E S A P P L IC A T IO N S

Dàcoiviaxion Q

+ A|oui»r ШМ rtotmli« ippllcÉtíon

O
▲
□

Filtrar ▼

NOM De L'APPLICATION

P ae^1 s u r i

INSTALLATIONS
ACTUELLES/TOTAL

Ю̂TEMO¥./
NOMBRE TOTAL

PLANTAGES ET DERNIERE MISE ÉTAT
AMR k. AJOLIR

F ig u re 13-25 Console de pubiicetion des applications Android

U)<D

>-
Ш
Ю
O
ГМ

@
JZgi'k_>-Q.O
U

Passer du projeté Vapplication
Les applications Android ont été développées et exécutées sous forme de projeLs Android
Studio. Pour que ces projets deviennent des applications à part entière, il faut les transformer
en application.s de type n o m A p p lica tio n . apk (apk pour andmidpackage).

Cette transformation s’effectue en plusieurs étapes décrites ci-après.

Définir une icône pour Tapplication

Toute application Android possède une icône qui l’identifie. Présente sur l’écran de votre
mobile, elle permet de lancer l’application lorsque vous appuyez dessus.

Par défaut, toutes les applications développées par Android Studio possèdent une icône repré­
sentant le petit andro’ide vert caractéristique des systèmes Android. Pour donner une identité
visuelle à vos applications, il e.st conseillé de leur a.ssoder une icône spécifique. La marche à
suivre est la suivante.

1. Créez l’ icône au format PNG. La taille de l’ icône est de 96 X 96 pixels en moyenne réso­
lution. Le plus souvent, cette image sera nommée icon .p ng . Placez le fichier dans le
répertoire re s/ d ra w ab le du projet Android Studio.

2. Dans le fichier A n d ro id M an ifest.xm l, insérez la ligne suivante :

<raanifest xmlns:android="http://schemas.android.com/apk/reE/android"
package="corn.ListeDeCourses"
android:versiQnCode="1"
android:versionName="1.0">

© Éditions Eyrolles 515

http://schemas.android.com/apk/reE/android

paiHc B° 3 oiitlis ei techniaues oheotés oblei I

<uses-sdk android :minSdk.Version= " 8 " />
< ap p lica tio n

android:label="& string/app_nam e"
androids icon="9drawable/icon"

>
< a c t iv i ty android:name="Main"

</application>
</m anifest>

3. Vérifiez la présence de la nouvelle icône en lançant l’application directement sur votre
mobile via le port USB. L’icône doit être visible dans la liste des applications de votre
mobile.

Créer une signature
Toute application publiée sur Google Play doit être certifiée afin de garantir son bon usage et
éviter la propagation de programmes malveillants. La signature d’une application passe par la
création d’une clé ;

1. Sélectionnez l’item Generate Signed APK... du menu Build (figure 13-26).

B îW IB B R u n T o o ls V C S W in d o w H

M a k e P ro je c t 3§ f 9
M a k e

C le a n P ro je c t
R e b u ild P ro je c t

E d it B u ild T y p e s .. .
E d it F la v o rs .. .
E d it L ib ra r ie s a n d D e p e n d e n c ie s . . .
S e le c t B u ild V a r ia n t . . .

B u ild A P K
Generate Signed APK..
D e p lo y M o d u le t o A p p E n g in e . . .

F ig u re 13 -26 Exporter et signer une application

LT>or
ÔL.>-
LU
lO
ofN
@
j-t
JZ
g i
>-Q.Ou

516 © Editions EyroUes

clrapH re 1 ° 13 Développer une application AndroM

2. Le panneau Generate Signed APK apparaît (ligure I3-27, 0)< t-’liquez sur Next. Cliquez
ensuite sur le bouton Create new... (figure 13-27, ©).

9Mmi
O G en erate Sig ned APK

Mule: I Cjepp

(?) i C an ce l I

O G enerate Signed APK

^ I Key store path: / lis ers / A n n eT/A n d no id /

C re a te n e w ... C h o o s e e x is t in g , . . J

Key store passw o rd : |

Key a lia s :

Key passw o rd :

Rem em ber passw o rd s

Previous t Next j I ? C an ce l

□

Previous N ext

Figure 13-27 Le panneau Generate Signed APK

Le panneau New Key Store s’affiche (figure 13-28).
1. Dans le champ Key store path, saisissez le chemin d’accès du répertoire où sera stocké le

certificat ou cliquez sur le bouton ... pour le localiser sur votre ordinateur.

» O O

ifi
O
i_>

LU

T-HOfN

01'k_>
C lO

U

N ew K e y Sto re

Key s to re path : /U s e rs / A n n e T / A n d ro id / □
P assw o rd :

Key

A lia s ;

P a ssw o rd ;

T e s tA lia s

V a lid ity (years): IZ i

C e r t i f i c a t e ----------------------

F irs t a n d L a s t N am e: A n n e T

O rg a n iz a t io n a l U n it : H ere

O rg a n iz a t io n : T h ere

C ity o r Lo ca lity : Paris

: S tate o r P ro vin ce :

j C o u n try C o d e (XX): ^FR

C o n firm :

C o n firm :

C a n c e l I ^ O K - n (

Figure 13-28 Ajouter une nouvelle clé

> Éditions Eyrolles 517

parue B° 3 Outls et techniaues oilentés oblel

2. Entrez votre mot de passe dans le champ Password et saisissez-le une seconde fois dans
le champ Confirm pour le valider. Veillez à bien mémoriser les mots de passe car ils
vous seront demandé.s à chaque nouvelle version de votre application.

3. Saisissez un nom d’Alias ainsi qu’un mot de passe.
4. Pour finir, entrez toutes les informations demandées pour le certificat (Nom, Prénom...),

Ces informations sont nécessaires à la création de la clé, puis cliquez sur le bouton OK.
5. Le panneau Generate Signed APR réapparaît avec tous les champs remplis (figure 13-29),

cliquez sur Next.

« O ft G e n e ra te S ig n e d A P K

Key s to r e p ath : /U se rs/A n neT/A nd raid I

C re a te n e w ...

K ey s to r e p a s s w o rd : • • • • • • • •

K ey a l ia s : T e s t A l ia s

Key p a s s w o rd ; • • • • • • • •

[] R em em ber p assw o rd s

7 C a n c e l

C h o o se e x is t in g .. .

L J

1 P re v io u s i - N e x t -1

Figure 13-29 La clé est créée.

6. La dernière étape consiste à indiquer l’emplacement de l’application finale (figure 13-30),
c’est-à-dire celle que nous allons ensuite déposer sur le serveur Google Play. Cliquez sur
Finish pour valider la création de l’APK. Le projet e.sl compile et devient une application
autonome.

<D

>
LU

rMOfN
@
SC.oi
>-Q.O

U
5 1 8

R Generate Signed APK

Note: Proguard settings are specified u sing the Project Structure Dialog

APK Destination Folder; /Users/AnneT/AndroidStudloProjects/ListeDeCourses/app

releaseBuild Type:

Flavors:
No product flavors defined

Cancel Previous F i n i s h

Q Generate Signed APK
^ APK(s) generated successfully.

Reveal in Finder

Figure 13-30 Déterminer l'emplacement final de ¡’APK

© Éditions Eyrolles

chapitre a° 13 Développer une appllcaffiin Android

Déposer une application
Le dépôt d'une application s’effectue sur la plate-forme Google Play, après création de votre
compte développeur et d’une clé pour l’application (voir section précédente « Création d’un
compte développeur »). La démarche de publication est la suivante ;

1. Sur la page de votre compte développeur Android, cliquez sur le bouton Ajouter une nou­
velle application (figure 13-25).

2. Un formulaire apparaît vous proposant de nommer votre application, d’importer le fichier
APK de votre application (figure 13-31, repère O) de préparer la hche d’informations
relative à votre application (hgure 13-31, repère Q). Les deux opérations peuvent s’effec­
tuer dans n’importe quel ordre. Le formulaire vous demande également de choisir la lan­
gue ptu défaut de votre application. Attention, choisissez la bonne langue, cette donnée ne
pourra plus être miMÜfiée par la suite.

A J O U T E R U N E N O U V E L L E A P P L IC A T IO N

Langue par défaut *

Français - fr-FR J
Titre'

Shopping List 1.2
17 caractère(s) sur 30

Par quoi souhaitez-vous commencer ?
“à A

Importer un fichier APK i Prépar«' la fiche Google Piay Store Annuler

(U

Figure 13-31 Donner un nom à votre application

>-UJ
rHO(N
@
JZoi
ClO
U

© Éditions EyroHes 519

I panic B° 3 Outils et lechniuucs orientés ofalel |

3. En cliquant sur le bouton Importer un fichier APK. une nouvelle page s’affiche constituée
de lubriques permettant la navigation entre l’iniport de l’application (figure 13-32,
repère 0) et la définition des données la concernant (figure 13-32, repère 0) . Si vous cli­
quez sur le bouton Importer votre premier fichier APK.. un panneau apparaît (figure 13-32,
repère 0) . Il vous permet soit de glisser-déposer votre applieation, soit de la rechercher
sur votre ordinateur en parcourant votre système de fichiers.

□ S H O P P IN G L IS T 1 .1

Fichiers APK

Ficha Google Play Store

Catégorie de contanu

Taiits et diEpohitillitè

Produits in lég iésé rappileatton

Services et API

Conseils d'optimisallon

FICHIERS APK

PRODUCTION
Publiez votre application
sur Google Play.

ÎÏ4

TESTS BÊTA
Configurez des tests bêla
pour votre application.

TESTS ALPHA
Configurer ’ ’ Uis
p̂ha pGu: - ’»re

iifififf iilQn

IMPORTER UN NOUVEAU FICHIER APK EN VERSION PRODUCTION

Oâposez votre tIcHer APK lof, ou eéiectioaiez un fichier.
application

jie. ou si elle propose la
npie). obtenez votre

j Im porter votre prem ier fïchier A P K en version production

Avez-voua besoin d'une clé de licence pour votre application 7

Obtenir la c lé de licence

Figure 13-32 Importer des captures d'écran

ifiO
O
1_>

LU

T~{0 fN
@
a-i-T01'k_>-Q.O
U

520

4. Une fois l ’application importée, vous devez remplir les fiche.s Google Play Store et Tarifs
et disponibilité en cliquant sur les onglets appropriés (figure 13-32, repère ©). La fiche
Google Play Store vous demande de saisir un grand nombre d’informations (figure 1 3-
33). telles que :

• le titre ;

• une description courte ;

• une description complète ;

© Éditions Eyroffes

ch ap itre a ° 13 Développer une M ip llcaao n AndroM

ifi<D

plusieurs captures d’écran dont les lormaLs sont explicitement décrits sur le formulaire ;
une classification décrivant le type de contenu ;
vos coordoonnées de contact pour les futurs utilisateurs de l’application ;
accepter les différentes règles de confidentialité liées à la publication et à l’export de
contenus.

Q S H O P P IN G L IS T 1.1 • «m2ûi5 UstoDeCoiiTi«
/ Broüilkin

Rchkif3 APK S

Fiche Google Play fitora ^

Catâgena de contenu O

Tarife et {hspordbinié O
Produite infegrte à I'apphcahon

SeMcas si APt

Conseils {fopdmisalion

FICHE GOOGIÊ PLAY STORE

INFORMATIONS SUR LE PRODUIT
FrançaisGérar 1m traductions v

Titre'
Ffançsis • lr>FR

DescripUon courts'
Frsnçïliil ir-FR

Shopping List 1.1
17 caracl6ra(6) sur 3D

Usfede courses

18 cafaettt®(s) sur 80

>-UJ
LO
ofN
@
JZgi'i—
ClOU

> Editions Eyrolles

521

parde B° 3 OiitUs et lechnMues onenies idilet

La fiche Tarifs et dispimihilité concerne les options de publication (figure 13-34). Elle per­
met également de choisir les modalités de vente (gratuit ou payant). Dans le cas d’une
application payante, vous devez ouvrir un compte marchand en cliquant sur le lien corres­
pondant. Vous devrez également cocher en bas de page les cases pour signaler votre
accord concernant les consignes relatives aux contenus et à l ’export aux États-Unis.

LISTEDECOURSES ^ Bre’uHkin

Fichiers APK

Fiche Google Pla/ Store

Catégorie de conienu

I Tarifaetdiaponibilité

Produits intégrée à fapplicstiort

Services et API

Corsalls d'apii[Tii8a,tjQ^

9 TARIFS ET DISPONIBILITÉ

e Cette appllcetion est Pjyontr Greturte
^ das «pifaos payuntes. «us dewi »n#Bu«, „„Cùnfî jrw urt ooripie merefwid OU Én s*«w *J6

DISTRIBUER LAPPLtCATION DANS LES PAYS SUIVANTS
V a u t ri'Bvesr séloctionné aucun pays.

. SÉLECTIONNER TOUS LES PAYS
QAntigua^.Barbuda

Anbles néerland̂tes
Arabia Saoudite
' Argentine
' Armérne

ACCORD
Désactiver la conuTrtrcialVaaUoh t** Vapptieation

Consignes relstives ou conttnu *

Lois des Èta№Uni$ en matière
ifexpoTiation *

. Rnools Play 8l sur les ptKtute Google w «S*« ̂ i™“
JO comptwds guo toute mKHtcattoP
pour pfôndro efteL ‘tes optione
 ̂Codô oeUt̂ estooafe.meou.oons.an««̂ »“™^"*’^„0, ..r ---- - ne nèaf desaeseiipilont d'eppltotorts eoolon̂e optiooeP̂ vantonda-tneMssoseenŝ rt do «tre appi.=-l.

doapoMtan, s auxlosiclola disposant de .

depuis les Eiats-Unls coolorménwot A csa IoIe Ëd eeuolr plus

ifi<U

>*LU
LO
tHOfN
@
JZCT't—>-Q.O
U

5 2 2

t votre appkrat™ sur Am*oid WearSi votre app«<aiioa

F ig u re 13-34
-wvio vvear En uvoit plu»

Tarifs et disponibilité

© Éditions Eyrolles

chapitre n° 13 Développer une appllcailon Android

6. Après avoir rempli l ’ensemble des formulaires et lorsque les rubriques Fichiers APK,
Fiche Google Play Store et Tarifs et disponiblitè sont signalées par une puce veite, vous
pouvez cliquez sur le boulon Prête à être publiée - Publier cette application (ligure 13-35).

Shopping List 1.2
com201 B. android HBlodocokireda

PRÊTE A ÊTRE PUBLIEE , ,
Flcmart APK
nciw Google Piey store

contanu

Teciip eidiPporiAiliie

Produira intégra à l'actplicatkiti

apf)llehtiafl «st GfPtuite

Pour pubtidr dp» ppplieatlons piyantee» vous dev« contigurpr urt compte mEuChand.
Conngut-er un compto marchand ou Ert savoir pl'UB

QISTRfBÜER LAPPÜCATIOK DANS LES PAYS SUIVANTS

Figure 13-35 Publier l'application

La publication de l’application n’est effective que lorsque Google Play affiche la liste de vos
applications publiées (figure 13-36).

Filtrer
NOM DE L'APPLICATION PRIX INSTALLATTONS

ACTUELLÊSftOTAL
NOTEMOY.y
NOMBRE TOTAL

PLANTAGES ET
ANH

DERNIERE MISE A
JOUR

Etat

ShopfJiitg Liât 1.D Qfatufta - - - ajuil. 2012 Publié«

Shopping List 1.1 1.0 Qratuits - - - lOjanv. 2015 Publiée

Shopping List 1.0 Grfitufte - - - llja n v 2016 Publiés

Résumé

Figure 13-36 Votre application est publiée !

U)O
O
i_>LU
T~{OTN
@
u-tJZCT't—>-ClO
U

Android Studio est une interface de développement adaptée au développement d’applications
Android. La création et l’exécution s’effectuent dans le cadre d’un projet structuré selon une
arborescence très précise :
• Le répertoire app contient les classes Java nécessaires au bon fonctionnement de [’appli­

cation.
• Le répertoire r e s contient une arborescence de répertoires dan.s le.sqiiels sont enregistrés

tous les fichiers re.ssources de l’application. Le répertoire d raw ab le est utilisé pour sUk’-

© Éditions Eyrolles 523

oarüe B° 3 Ouffis el leclmlaues orieiiiés oUet

ifi<D

LU
vû
O(N
©

ker les images et le répertoire la y o u t comprend tous les fichiers XML descriptifs des
composants graphiques nécessaires à la construction de l’interface utilisateur.

Les composants graphiques de l’interface utilisateur sont créés à partir de balises XML spéci­
fiques au composant utilisé. Ainsi, un boulon est défini par les balises suivantes ;

I <ButCon
android; layout_width= " f ill_paretit "
android:layout_height="wrap_content"
android:text="OK"
android :id="@+id/okBtn"

/>
Pour les attributs a n d ro id : layout_v/idth et android : layout_heigh.t, la valeur
f i l l _ p a r e n t indique au gestionnaire d’alhehage que le bouton a la même taille que son
parent, soit le plus souvent la taille de l’écran du téléphone. La valeur wrap_content
indique, quant à elle, que le boulon s’adapte à son contenu, soit un texte initialisé à OK grâce
à l ’attribut text.
L’attribut id est le plus important puisqu’il permet d’identifier chaque composant. La
méthode £indViewByld() est ensuite utilisée dans les classes Java pour récupérer le
composant défini au sein du fichier XML. Ainsi, l ’instruction :

I Button unBouton = (Button) findViewByld(R,id,okBtn);
permet d’associer le bouton défini an sein du fichier ressource XML (répeiloire res/
la y o u t) et identifié avec l’attribut id égal à okBtn avec un objet Java de type Button. Le
terme R .id .oX B tn coirespond à une variable statique déclarée dans le fichier R. ja v a
généré directemenl par Android Studio.

-Toi
>Q.O
U

524 © Éditions Eyrolles

chapitre n° 13 Déuelotwer une application Android

Exercices

Comprendra b seuctu ra d 'un p ro je i Android
L’objectif est ici de construire une application relativement simple afin de mieux appréhender,
dans un projet Android, les relations entre les fichiers ressources et le code Java. Cette applica­
tion reprend l’exemple décrit maintes fois dans cet ouvrage : calculer le périmètre d’un cercle.
L’application se pré.sente sous la forme suivante.

 ̂Exercice Un Exercice Un

Calculer le périmètre d'un cercle Calculer le périmètre d'un cercle

Perimetre: 62.831852

Figure 13-37 Calculer le périmètre d’un cercle

L’application E xerciceU n propose à I’utilisateur de saisir une valeur pour le rayon. Par
défaut, cette valeur est de 0 (figure 13-38, repère O). Une fois la valeur saisie, l ’utilisateur
appuie sur le bouton Calculer. Le résultat s’affiche alors juste en dessous (figure 13-38,
repère ©) avec le message « Perimetre : 62.831852 » si la valeur entrée du rayon vaut 10.

Mise en place des éléments graphiques (layout/main.xml)

r tM ffO 13.1

<D

LU
Vû
tHO
CM

©
oi
>-
ClO

U
© Éditions Eyrolles

a . À l 'a id e d e l’in te rfa c e A n d ro id S tu d io , c r é e z un p ro je t E x e rc ic e l3 _ l, d e ty p e Android.
b. D a n s le f ic h ie r re s/ v a lu e s/ s b r in g s . xml, m o d ifie z le t itre d e l’a p p lic a tio n e n E x e rc i­

ceUn au lieu d e Main.
c . D a n s le f ic h ie r res/ layo u t/ m ain .xm l, m o d ifie z le c o m p o s a n t TextView d e m a n iè re à

a ffic h e r le te x te « C a lc u le r le p é rim è tre d 'u n c e rc le : » . P o u r a jo u te r un e s p a c e e n tre le titre e t le c o n ­
te n u d u c o m p o s a n t TextView, u tilis e z l’a ttr ib u t a n d ro id : layout_m arginT op. In itia li­
s e z c e t a ttr ib u t à 2 Opx.

525

parue B° 3 outiis et techniaues oheptés obiei

d . L e s c o m p o s a n ts TextView e t E ditT ext, u tilisés p o u r a ffic h e r le m e s s a g e « R a y o n : « su iv i
d 'u n c h a m p d e s a is ie , s o n t p ré s e n té s h o r iz o n ta le m e n t. In s é re z c e s d e u x c o m p o s a n ts d a n s un
L in earL ayou t d ’o rie n ta tio n h o r izo n ta le , s é p a ré s d e 20 p ixe ls p a r ra p p o rt au te x te p ré c é d e n t.
In it ia lis e z l'a ttr ib u t a n d ro id : layout_m arginT op du L in earL ayo u t h o rizo n ta l à
20px.

e . L e c h a m p d e s a is ie e s t d é fin i a v e c u n e la rg e u r (layou t_w id th) f ix é e à 140dp.

c a n n U TQ Uunité de mesure dp (densité de pixels indépendants) est une unité abstraite calculée sur la
densité physique de l’écran, alors que l’unité px (pixels) correspond aux pixels réels de l'écran.
Il est conseillé d’utiliser les dp plutôt que les px pour obtenir des affichages sensiblement équi­
valents d’un appareil à l’autre.

f. A jo u te z un b o u to n d o n t la ta ille s ’a d a p te à so n c o n te n u ta n t e n la rg e u r q u 'e n h a u te u r e t d o n t le
te x te e s t C a lc u le r », P o u r c e n tre r le b o u to n , u tilis e z l'a ttr ib u t a n d ro id : la y o u t_ g r a v i ty
e n l'in itia lis a n t à c e n te r .

g . P o u r a ff ic h e r le ré s u lta t fin a l, c r é e z un d e rn ie r c o m p o s a n t T e x t V i e w qu i s 'a d a p te à s o n c o n te n u
ta n t e n la rg e u r q u 'e n h a u te u r . C e c o m p o s a n t n e p o s s è d e in ilia le m e n t p a s d e te x te . Il e s t s é p a ré
d e 2 0 p ix e ls p a r ra p p o rt a u b o u to n C a lc u le r .

h. T ro is c o m p o s a n ts d o iv e n t p o s s é d e r d e s id e n tifia n ts p u is q u ’ils s e ro n t u tilisés d a n s la c la s s e M a i n .

- E ditT ext (id ; va leu r), c a r vo u s a u re z beso in d e ré c u p é re r la v a le u r sa is ie p a r l’utilisateur.

- B utton (id : c a lc u le r) p o u r d é te c te r q u e l’u tilis a te u r a a p p u y é d e s s u s .

- TextView (id : r é s u l ta t) p o u r a ffic h e r le ré s u lta t.

Définir le comportement du bouton Calculer

13.2

O
O
>HJ
üD
T—IOfN
®
u-tJZCT'k—
O.O
U

526

b.

c.

e .

L e p é r im è tre e s t c a lc u lé lo rs q u e l’u tilis a te u r a p p u ie s u r le b o u to n C a lc u le r , t a c t iv ité p r in c ip a le do it
d o n c ê tre e n m e s u re d 'é c o u te r d e s é v é n e m e n ts d e clic. L a c la s s e Main im p lé m e n te l’é c o u te u r
o n c lic k L is te n e r ,
D a n s la m é th o d e o n C rea te () , c ré e z un b o u to n c a lc u le rB tn e t a s s o c ie z - le a u b o u to n
C a lc u le r d é fin i d a n s te f ic h ie r main. xml. P o u r c e la , u tilis e r la m é th o d e f indViewById() ,
A jo u te z un é c o u te u r d ’é v é n e m e n ts s u r le b o u to n c a lc u le rB tn .

d . D a n s la m é th o d e o n C lic k [) , c r é e z un te x te d e s a is ie (E ditT ext te x te in) e t a s s o c ie z -
le a u c h a m p d e te x te v a le u r d é fin i d a n s le f ic h ie r m a i n . x r a l .

L’in s tru c tio n qu i p e rm e t d e ré c u p é re r la v a le u r s a is ie p a r l’u tilis a te u r e s t :

I S t r in g t e x te = t e x t e i n . g e tT e x t() . t o S t r i n g () ;

T ra n s fo rm e z te fe x te en v a le u r d e ty p e d o u b le e t c a lc u le z le p é r im è tre a v e c la v a le u r s a is ie . S to c ­
k e z te ré s u lta t d a n s u n e v a r ia b le n o m m é e p e r im e tre d e ty p e d o u b le .

© Éditions Eyroties

chapitre n° 13 Développer une application Android

f. T o u jo u rs d a n s la m é th o d e o n C lick (> , c ré e z un te x te d ’a ff ic h a g e (TextView r é s u l t a t
Text) e t a s s o c ie z - le a u te x te d 'a ff ic h a g e r é s u l t a t d é fin i d a n s le f ic h ie r m ain. xml.

g. A ffic h e z la v a le u r d u p é r im è tre e n a p p liq u a n t la m é th o d e se tT e x t () à l’o b je t r é s u l t a t
Text a v e c e n p a ra m è tre l'e x p re s s io n " P e rim e tre : " + p e rim e tre .

La lis te des courses - Version 2
Poursuivons ici le développement de l’application L is te de co u rse s en écrivant le code
du bouton Choisir des légumes.
L'application se présente sous la forme suivante.

Liste decourses Choisir un produit :

Figure 13-38 La version 2
de l’application propose

une liste de légumes

U)d)

>-LU
CO
OfN
@
JZCT'k->-D.OU

Lorsque l’utilisateur appuie sur le boulon Choisir des légumes (voir figure 13-38, repère O) :
• Un message éphémère s’affiche, confirmant que la rubrique Choisir des légumes a bien été

sélectionnée (voir figure 13-38, repère ©).
• L’activité C h o is ir un p ro d u it apparaît avec une série d’icônes représentant des légu­

mes. A chaque icône e.st associée une case à cocher.
• Lorsque Tutilisateur appuie sur le bouton Enregistrer, l’activité C h o is ir un p ro d u it

disparaît et la liste des légumes est mémorisée dans un fichier texte. L’activité principale
réapparaît.

• Si rutilisateur revient sur la mbrique Choisir des légumes, l ’activité C h o is ir un p ro d u it
affiche les cases cochées correspondant aux légumes déjà sélectionnés.

© Éditions Eyrolles 527

paiHc n° 3 outls et techniaues oheotés obiei

Mise en place des ressources (drawable et layout)

Vous trouverez tous les codes et fichiers ressources nécessaires à la réalisation de cette
application dans le répertoire S o u rces/ E xerc ice/ ch ap itre l3/ Su p p o rtP o u rR ea-
1 i s e r L esE xercices/ L isteD eC o u rses.

RTïïTiïïin 13.3
a. Ouvrez le projet L is te D e C o u rse sA ve cLe g u m e s .
b. Recherchez les fichiers images correspondant aux nouvelles icônes (voir répertoire images) et

déplacez ces dernières dans ie répertoire d raw ab le du projet de rapplication.

13.4
a. Créez un nouveau fichier legum es . xm i dans le répertoire la y o u t du projet de l’application.
b. Insérez les composants graphiques de façon à afficher la liste des icônes et leur case à cocher

verticalement. Une icône est placée sur la même ligne que la case à cocher qui lui correspond.
c. Définissez un identifiant pour chaque case à cocher. Il doit porter le nom du légume associé à

l'icône.
d. Créez un bouton Enregistrer avec saveLegum e comme nom d’identifiant.

L’activité RubriqueLegumes

13.5

v><u

m
uo
tHO
ru

®
JZ
gi
>■
a.OU

528

Il s’agit ici de créer la nouvelle activité RubriqueLegumes avec tous les composants définis
dans le fichier legumes . xml. Un message se construit en fonction de l’état des CheckBox
et s’affiche dans un Toast.

a. Créez une nouvelle activité au sein du projet ListeDeCoursesAvecLegvumes. Nommez-la
RubriqueLegumes.

b. Créez les différentes CheckBox. Grâce à la méthode f indView Byld () , associez-les aux
composants définis dans le fichier legumes .xml.

c. Créez un bouton b tn Save et associez-le au composant saveLegume défini dans le fichier
legum es. xml. Ajoutez un écouteur d’événements au bouton btnSave.

d. Écrivez la méthode o n C lic k {) qui vérifie l’état des cases à cocher. Dans le cas où elles sont
cochées, créez un message qui s’incrémente du nom du légume et du caractère +.

e. Affichez le message à l’aide d’un T o a s t en évitant d’afficher les caractères +.
f. Ouvrez le fichier A ndroidM anif e s t . xml et déclarez la nouvelle activité R ubrique

Legumes.

© Éditions Eyrolles

chapitre п° 13 Développer une щфПсаИоп Android

Remaniue Attention de ne pas oublier de déclarer la nouvelle activité au sein du projet, sous peine d’obte­
nir une erreur de compilation.

п т я т а 13 .6 Lactivité RubriqueLegumes s’affiche lorsque l'on clique sur le bouton Légumes de l’activité prin­
cipale.
a. Dans le fichier Main, java, repérez les instructions qui créent l’activité Choisir un

fruit. En vous inspirant de ces lignes de code, créez la nouvelle activité RubriqueLeguines.
b, Testez le projet et vérifiez que les composants de l’activité RubriqueLegumes et le message

s’affichent correctement.

13 .7 Les choix de l’utilisateur sont mémorisés dans un fichier de type texte.
a. Dans le fichier RubriqueLegumes. java, écrivez la méthode lireListeLegumes ()

qui crée un fichier nommé Legumes. txt, en MODE_PRlVATE pour stocker un message
passé en paramètre.

b. Dans la méthode onClick () , appelez la méthode lireListeLegumes () en passant en
paramètre le message construit à l’exercice 13.5.

1 3 .6 L’activité RubriqueLegumes s’efface lorsque l'utilisateur appuie sur le bouton Enregistrer.
a. Dans le fichier RubriqueLegumes . java, écrivez la méthode f ermerLesLegumes ()

qui termine et efface l’activité en cours.
b. Dans la méthode o n C lic k f) , appelez la méthode ferraerLesLegumes () juste après

l’enregistrement des données.

if)
Ô
>Ш
ЮrHOfN
@
л - tJZgi'k_>-Q.OU

n m iiïïa 1 3 .9 Lorsque l’utilisateur retourne sur la rubrique Légumes, les cases correspondant aux éléments précé­
demment sélectionnés sont cochées.
a. Dans le fichier RubriqueLegumes . ja v a , écrivez la méthode lireListeLegumes ()

qui retourne la chaîne de caractères mémorisée dans le fichier Legumes . txt.
b. Écrivez la méthode itia jC h e ckB o x () qui extrait d'un message les mots séparés par les carac­

tères +. Pour chaque mot extrait, la méthode modifie l’état des C heckB o x si ce mot correspond
à un nom de légumes.

c. Appelez la méthode ma j CheckBox () dans la méthode onCreate () , juste après avoir créé
les différentes CheckBox.

i Éditions EyroHes 529

inй)

:>■
ш
iû
TH
ОrN
@
Ol
>■Q.OU

Annexe

Guide d’installations
Vous trouverez dans cette annexe un guide pour tciéeharger tous les outils necessaires au déve­
loppement d’applications Java (section « Extension Web »). Toutes les informations concer­
nant rinstallation des différents outils de développement d’applications Java (JDK 8,
NetBeans) sous Windows, Mac OS X et Linux se trouvent à la section « Installation d’un envi­
ronnement de développement ».
Vous découvrirez à la section « Utilisation des outils de développement » comment déve­
lopper des applications Java en « mode commande » ou en utilisant l ’environnement de déve­
loppement NetBeans, L’installation de renvironnement nécessaire au développement
d’applications Android via NetBeans y sera aussi détaillée.

Extension Web
À l’adresse wiviv.annefasso.fr/Java, vous trouverez tous les liens utiles pour télécharger :
• quatre fichiers :

• Corriges . pdf contient les explications des corrections des exercices et du projet ;
• UnicodeO 0 0 OaO 07F . pdf donne la liste des 127 premiers caractères de la table Unictxle :
• U nicode0080a0 0F F .pdf liste les caractères compris entre les indices 128 et 255 de

la table Unicode ;
• Sources . zip contient tous les codes sources des exemples, des exercices corrigés et

du projet ;
• les environnements :

• Java ;
• NetBeans ;
• Android Studio.

ifiO
ÔU>-LU
rHOfN
@
SI
'l->•ClO
U

Le fich ie r Gorriges.pdf
Ce fichier, au format PDF (à lire avec le logiciel Acrobat Reader), fournit, pour chaque
chapitre du livre, le corrigé coinnieiité et expliqué des exercices et du projet.
La correction se présente sous la forme de codes sources commentés et d’explications
détaillées sur des points techniques demandant davantage de précisions. Ainsi, par exemple, la
correction de l’exercice 3.5 du chapitre 3, « Faire des choix », est exposée comme suit.

> Éditions Eyrolles 531

le livre de lava Diemler langage

Énoncé

3 .5 En utilisant la structure s w itc h , écrire un programme qui simule une machine à calculer dont les
opérations sont l'addition (+), la soustraction (-), la multiplication {*) et la division (/).
a. En cours d’exécution, le programme demande à l’utilisateur d'entrer deux valeurs numériques,

puis (e caractère correspondant à l’opération à effectuer. Suivant le caractère saisi (+, - , * ou /),
le programme affiche l’opération effectuée ainsi que le résultat.
L'exécution du programme peut, par exemple, avoir l’allure suivante (les valeurs grisées sont celles
saisies par l’utilisateur) ;
Entrez la prem ière v a le u r : 2
Entrez la seconde v a le u r : 3
Type de l 'o p é ra t io n (+, - , * , /) : *
C ette o p éra tio n a pour r é s u l t a t : 2 3 = 6

b. Après avoir écrit et exécuté le programme avec différentes valeurs, saisissez dans cet ordre les
valeurs suivantes : 2 , 0 , puis le caractère / . Que se passe-t-il ? Pourquoi ?

c. Modifiez le programme de façon à ne plus rencontrer cette situation en cours d’exécution.

V)
Ô
>LU
T~{0 fN
@
..UJx:01'k_>-ClOU

Corrigé
a. Le code source complet

import j a v a . u t i l ;
p u b lic c la s s C a lc u le t te {

p u b lic s t a t i c vo id mainC S tr in g [] argument) {
in t a, b;
char op éra teu r;
double c a lc u l = 0;
Scanner le c tu re C la v ie r = new S can n er(S ystem .in);
// L ire e t s to ck er l a prem ière v a le u r dans a
System .o u t . p r i n t ("Entrer l a prem ière v a le u r : ");
a - le c tu r e C la v ie r .n e x t in t () ;
// L ire e t s to ck er la prem ière v a le u r dans b
System .o u t .p r in t ["Entrer l a seconde v a le u r : ");
b = le c tu r e C la v ie r .n e x t in t () ;
// L ire e t s to ck er le signe de l'o p é ra t io n dans l 'o p é ra te u r
System .o u t .p r in t ("Type de l 'o p é ra t io n r (+, - , *, /) : ");
op éra teu r = le c tu r e C la v ie r .n e x t () . ch a rA t(0);
// su ivan t l e signe de l 'o p é ra t io n
sw itch (o p éra teu r) [

// S i c 'e s t le c a ra c tè re +,
case '+' ; c a lc u l = a + b;

break;
// S i c 'e s t le c a ra c tè re -,

f a i r e une a d d itio n

f a i r e une so u s tra c tio n

532 © Éditions Eyrolles

Guide d’btsianadons

case : c a lc u l = a - b;
b reak ;

/ / S i c 'e s t le c a ra c tè re n /, f a i r e une d iv is io n
case '/' : c a lc u l = a / b;

b reak ;
/ / S i c 'e s t le c a ra c tè re *, f a i r e une m u ltip lic a t io n
case '*' : c a lc u l = a * b ;

b reak ;
}
// A ff ic h e r le r é s u l ta t
System .o u t .p r in t ("Cette op éra tio n a pour r é s u l ta t ; ");
System .o u t ,p r in t ln { a + " "+ op éra teu r +" "+ b + " = " + c a lc u l) ;

1
1

b. Exécution du programme avec le jeu de valeurs 2, 0 et l

E n trer l a prem ière v a le u r : 2
E n trer l a seconde v a le u r : 0
Type de l'o p é ra t io n : {+, - , *, /) : /
ja v a . la n g .A rith m eticE xcep tion : / by zero
a t C a lc u le t te .m ain(C a lc u le t te . ja v a : 22)

L’interpréteur détecte une exception de type arithmétique. Il s’agit de la division par zéro.

(D

>-
LU
VU
O
fN

©
J“CT'l.>-
ClO
U

c. Correction du code source
L’eiTeur provient de la division. Il .suffit de vérifier que la valeur de b est non nulle pour
Péliquelle ' / ' de la structure sw itch . Examinons la correction ;

im port j a v a . u t i l . * ;
p u b lic c la s s C a lc u le t te {

p u b lic s t a t i c vo id main{ S tr in g [] argument) {
in t a, b;
char o p é ra te u r;
double c a lc u l = 0 ;
// D é fin ir e t i n i t i a l i s e r un booléen à tru e
boolean OK = tru e ;
Scanner le c tu re C la v ie r = new S can n er(System .in);
S y s te m .o u t .p r in t("Entrer la prem ière v a le u r : ");
a = le c tu re C la v ie r ,n e x tI n t () ;
System . o u t .p r i n t ("E ntrer la seconde v a le u r : ");
b = le c tu r e C la v le r .n e x tI n t() ;
S y s te m .o u t .p r in t("Type de l 'o p é ra t io n : (+, - , *, /) : ");
o p éra teu r = le c tu r e C la v ie r .n e x t () .c h a rA t(0);
sw itch (o pérateur) {

© Éditions EyroHes 533

Le uvre de lava premier langage

ifi<u

><LU
KOrHOfN
@
JZCT'k—>-Q.O
U

534

case ' + ' : c a lc u l = a + b,•
break;

case : c a lc u l = a - b;
break;

// s i c 'e s t le c a ra c tè re /, t e s te r la v a le u r de b
case ’ /' : i f (b ! = 0) c a lc u l = a / b;

e ls e
// s i b vau t 0, m ettre le booléen OK à fa ls e
OK = f a ls e ;
break;

case '* ' : c a lc u l = a * b;
break;

d e fa u lt : OK = fa ls e ;
}

// S i OK vaut tru e , a f f ic h e r l e r é s u l ta t
i f (OK) {

System .o u t .p r in t (“C ette op éra tio n a pour r é s u l t a t : ");
System . o u t .p r in t ln (a + " "+opérateur+ " "+ b + " = " + c a lc u l) ;

}
// S i OK vaut f a ls e , a f f ic h e r un message d 'e r re u r
e ls e System .o u t .p rin tln (" O p é ra tio n non conforme ! ");

}
}

À l’étiquette le programme vérifie si le contenu de la variable b est non nul. Si tel e.st le
cas, il exécute normalement l’instruetion réalisant la division. En revanche, si le contenu de la
variable b est nul, la division n’est pas effectuée mais la valeur f a l s e est affectée à la
variable OK de type booléen (initialisée par défaut à t r u e lors de la déclaration de la variable).
Ensuite, pour afficher le résultat du calcul, le programme vérifie la valeur de la variable OK. Si
elle vaut tru e , cela .signifie que l’opération a été effectuée sans rencontrer de difficulté parti­
culière ; sinon, cela signifie qu’aucune opération n’a pu être réalisée. Le programme signale
alors par un message que l’opération est non conforme.
Remarquez que la valeur false est aussi affectée à la variable OK pour l’étiquette d e fa u lt .
Ainsi, si l’utilisateur .saisi un caractère autre que +, -, / ou *, Je programme n’exécute aucun
calcul et signale par un message que l’opération e.st non conforme.
Dans le jargon informatique, on dit que la variable OK est un drapeau (flag en anglais). En
effet, il change d’état (de valeur) en fonction des instnictions exécutées. Ce ternie « drapeau »
fait allusion au système de fonctionnement des boîtes aux lettres américaines munies d'un
drapeau rouge. Lorsque le facteur dépose du courrier, le drapeau est relevé ; il l ’abais.se pour
indiquer la présence de courrier. Lorsque le destinataire récupère son counier, il relève le
drapeau, indiquant que la boîte est désormais vide. Ainsi, la position (état) du drapeau indique
la présence (drapeau abaissé) ou non (drapeau levé) de courrier dans la boîte aux lettres.

© Editions Eyrotles

6uMe d’hisiallailiMS

L’archive Sources.zip
Après avoir téléchargé et décompressé le fichier S o u rc e s .z ip , vous obtenez un dossier
S o u rces contenant trois sous-dossiers: Exemples, E x e rc ic e s et P ro je t . Ceux-ci
contiennent respectivement douze répertoires, un pour chacun des chapitres : In tro d u c tio n ,
C h a p itre l , C h a p itre 2 , C hapitres... C h a p itre l2 .
Chacun de ces répertoires contient les fichiers sources des programmes :
• correspondant aux exemples. Ainsi, pour retrouver les programmes donnés en exemples au

chapitre 1, rendez-vous dans le répertoire S o u rc e s/Exemples/ C h a p itre l.
• correspondant aux exercices corrigés. Ainsi, pour retrouver le progranune de l’exercice 2

du chapitre 4, allez dans le répertoire S o u rce s/ E x erc ice s/ C h a p itre4 .
• correspondant au projet. Ainsi, pour retrouver le corrigé du projet du chapitre 5, ouvrez le

réptertoire So u rces / Pro j e t / C hap itres.

Le lien Java
En cliquant sur le lien Java, vous pouirez télécharger les programmes d’installation du JDK
Java pour Mac, Linux et Windows.
Pour installer le JDK (Java D evelopm en t Kit), reportez-vous à la section qui vous intéresse en
fonction de votre système d’exploitation : « Installation de Java SE Development Kit sous
Windows », « Installation de Java SE Development Kit sous Linux » ou encore « Installation
de Java SE Development Kit sous Mac OS X » ci-après.

Le lien NetBeans
En cliquant sur le lien NetBeans, vous pourrez télécharger les programmes d’installation de
l’environnement de développement NetBeans pour Mac, Linux et Windows.
Pour installer NetBeans, reportez-vous à la section « Installation de NetBeans sous
Windows », « Installation de NetBeans sous Linux » ou encore « In.stallation de NetBeans
sous Mac » en fonction de votre système d’exploitation.

<D

>•LU
KOrHOfN
@
JZgi
>-ClO
U

Le lien Android studio
En cliquant sur le lien Android Studio, vou.s pourrez télécharger les programmes d’installation
de l’environnement de développement Android Studio pour Mac, Linux et Windows.
Pour installer Android Studio, reportez-vous à la section « Développer des applications
Android avec Android Studio ».

© Éditions Eyrolles 535

le Uvre de lava oreinler langage

Installation d’nn environnement de développement
Java SE { J a v a S ta n d a rd E d itio n) est la plate-forme de base fournie par Sun pour l’exécution
des applications Java. Java SE intègre par défaut le JDK, environnement de développement
indispensable pour compiler les classes de vos applications.
Pour exécuter l’ensemble des exemples présentés dans cet ouvrage et réaliser les exercices
proposés à la fin de chaque chapitre, vous devez créer votre propre environnement de travail.
Pour cela, vous devez installer :
• le compilateur Java nécessaire à l’exécution des programmes donnés en exemples ou pour

réaliser les exercices ;
• l’environnement de développement NetBeans ;
• les outils permettant le développement d’applications Android.
Dans les sections suivantes, vous trouverez toutes les informations nécessaires à l’installation
de ces éléments sous Windows 2000, NT, XP, Vista, Windows 7 & 8, Mac OS X et Linux.

Insta lla tion de Jaua SE Doveiopment K it sous W indows
Dans la section suivante, nous détaillons la prœédure d’installation de la dernière version de
Java sur Windows 2000, XP, NT, Vista et 7.

La procédure d’installation
Une fois le fichier d’installation jdk-8u66-windows-x64-p.exe téléchargé depuis
l’extension Web, déplacez-le sur le Bureau de votre ordinateur.
Voici la marche à suivre pour installer l’environnement Java.
I. Double-cliquez sur le fichier jdk-8u66-windovis-x64-p.exe. Une fenêtre de prépa­

ration de l’installation apparaît. Laissez l’ordinateur charger l’assistant d’installation en
mémoire, puis cliquez sur le bouton Next.

(D

>-LU

OfN
@
CT
>-D.OU

536

Java SE Development Kit 8 Update 66 (64-bit) - Setup -------- C S 3 '

^ ja v a ’OPMCum

Wetcome to the Irstatetnn Wizard fa Java SE Developinent Kit 8 Update 66

Ths wizard w i guide you through the instalalion process for the Java SE Devetepment
Kits Update 66.

The Java Mission Control profirtg and dagnosbes tools suite is now available as part of
the JCK.

fJext > I Cancel |

Figure A-1

© Éditions Eyrolles

Game d’hisiaiiailoas

2. Vous pouvez chunger le répertoire d’instalîation de renvironnement en diquanl sur le
bouton Browse.

jg) Java St Devekipment Sit S Update 66 (64-bit) - Custom Setup I ^ '

Java-

Select (jptonai features to nstal from the list bdow. You can change your choice of features after
ins taxation by using the Add^emove Programs ubSity in the Control Panel

Feature DescrlpBon
Java SE Pevetopment Kit 8
Update 66 (646it), eidudng the
JavaFX SDK, a private JtE, and
the Java Mission Control tools
state. Thts w i require 1806® on
your hard drive.

DevelopmentTools
S i Source Code

PtijÎCjRE

Instai to:
Cproffan FilesUava\ii*l.8.0_66t Change.,

iBadt |r~ ttod > Cancel

Figure A-2

/iÏÏM ïïiT il Notez le répertoire d’installation de Java SE . Le chemin correspondant est utilisé pour définir la
variable d’environnement PATH (voir section « Les variables d’environnement » ci-après). Par
défaut, Java SE 1,8.0_66 s ’installe dans le répertoire C : \ Program F ile s V Java\ j dkl. 8.0_66.

3. Cliquez sur le bouton Next pour lancer l'installation.
4. Une baire de progression vous indique l’état d'avancement de l’installation.

ifi

>-LU
KO
•r~lOfN
@
JZCT'l->-ClOU

Figure A-3

© Éditions Eyroiles 537

le Hure de lava premier langage

5. Une fois l'installation terminée, cliquez sur le bouton Clo.se. Il n’est pas nécessaire de
redémarrer votre ordinateur.

^ Java SE Development Kit 8 Update 66 (64-bit) - Complete S3

^ l a v a 'OPACUS

Java SE Developnoent Kit 3 Update 66 (64q>0 Successftjly Instated

Ckk Next Steps to access tutorials, API documentation, devetoper guxJes, release notes
and more to help you get started vvith the JDK.

Next Steps

Close

Figure A-4

if)(U

LU
KOrHoÍN
@
JZCT'k—>-Q.O
U

6. Supprimez le fichier jdk-8u66-windows-x64-p.exe.

Im variable d’environnement PATH
Pour compiler et exécuter un programme Java, il est nécessaire d’utiliser la commande
de compilation javac fournie par Java SE. Elle est définie dans le répertoire par défaut,
C:\Program F i l e s \ J a v a \ j d k l . 8 - 0_65\bin ou bien dans le répertoire C:\
leRepertoire\deVotre\choix\ jdkl. 8 ,0_66\bin, déterminé au moment de
l’installation de Java SE.
Pour utiliser la commande de compilation javac depuis un autre réperioire, il est nécessaire
« d ’expliquer» à l’ordinateur par quel chemin y accéder via la variable d’environnement
PATH.

Sous Windows 2000, XP et NT
La mise en place de la variable d’environnement PATH s’effectue de la façon suivante :

I. Dans le menu Démarrer (puis l’onglet Paramètres sous Windows 2000), sélectionnez Pan­
neau de configuration.

538 © Éditions Eyrotles

биМе iTinsiallaiiofls

(Panneau ̂ conFíguratkbn
Fr^ SdtoQT Affiçhflçç Fewçfis C4jWs 1 яг

I P.Tiddenïe • ^ • ^ . y - ' FïeiJierdw Dossiers | : ; ;

Adresse jÔ Pameau de configuatton j a «

Afficbege
A ,

Ajout/Suppre-, de progranvnes
a f t i

ComptescTutiKsatevsBasculer vers Faf ficl%age des catégories
A)outdematériel Barre des tâches et menu Déma... Clavier

i> é rVoir aufsî A
^ Windows Upd̂e

Ĉmexiorrsréeeau Contrâeurs de jeu Date et heure Imprimarites et télécopieurs 3ava Pluĝ optonsdeccesŝ dlté
Aide et st4)porr % t . » «Optons d'aliment at ЮП Cpbonsde modems , Optons des dossiers Optons internet Options réçt̂ les. ■ Outilsd* administration

J % MPolices QuicKTme 5cameurs et îpareils photc Sorts et pèriphédq... Sound Effect Maruger Sourrs

» ÔSymantecLA«Update T&hesptartfiées Voix

Figure A-5

2. Double-cliquez sur Système et sélectionnez l’onglet Avancé.

1Л
ôL.>Ш
vOn~lO(N
@
.l-rJZgi'l->-Q.OU

Propiiétés système
R»st«j(üüondu$̂èine Mt:e$ i|0iiaiit>m4(iques

Gértèral Nomdefort^aleu Matéiiei j Avancé

Vous cteveif avoir üuveit une setsîon en tant qu'edrnrBslrateti afin (íelfectuei
la pàjpart de ces modñcaitions.

P«fo(n>anDei
Les effets visueb., la planification du ргкеззеш. Futisation rnémoâe et
la mémoire viriudle

PloM de$ utésateurs
Paramétrés du Bureau lés é votte ouvemaa de session

Paramèdes

Paremètrcï

Démanage et rèct̂atton
Irlormahons de démarrage du ̂ sterne., de détaittance du système ̂ de débogage

[Paamettes]

VenablesiJenvgQntiameréj I Rapport detreuis

OK Anmior Apcèque;

Figure A-6

© Éditions Eyroiies 539

Le Hure de lava premier langage

3. Cliquez sur le bouton Variables d’environnement.

Variables d'envirannement

Valables utiSsateur pour Anne
Variable Valeur
TEMP D;\Oocijmerts and 5ettings\Anne\Local...
TMP D;\Docunt*erbs and Setthgs\Anne\Local...

Nouveau Modifier |5upprinrisr

V»iables système
Variable Valeur ^1
NUMBER OF P,., 1
OS Windows_NT
■Path D;\WINDOWStsyiteni32;D;tWINDOW5;.. 1
pathe>:t .COM;,EXe;.BAT;.CMOj,VBSj.VeE;JS¡..„
PROCE5SOR_A... x86 V

Nouveau Modifier Supprimer

CK Annuler

Figure A-7

4 . Dans la rubrique Variables système, sélectionnez la variable PATH. Cliquez sur le bouton
Modifier, ajoutez la ligne C: \Program Files\Java\jdkl. 8 .0_66\bin; ou C : \
le\repertoire\de\votre\choix\ j d k l . 8 .0_ 66\bin; dans le champ Valeur de
la variable.

i/i<U

LU
uDrHOrvl
@
s :oi'k_
Q.OU

540

Modifier la variable système © S

Nom de ta variable ! Path
Valeuf de la variable ; CrVrogram FiesUava\)dkl.8.0_66V*n:.r

OK Annuler

Figure A-8

5. Cliquez sur les boutons O K des différentes fenêtres pour les fermer et valider la nouvelle
configuration.

© Éditions Eyrotles

Guide d'htsianadons

Remaraue Lorsque vous modifiez la variable p a t h du système, veillez à bien ajouter la nouvelle ligne
sans supprimer le contenu précédent. Pour cela, saisissez le signe à la fin de la ligne exis­
tante et ajoutez à la suite C; \ Program FilesX Java\ jdkl. 8.0_56 \bin;.
Attention, le fait de supprimer le contenu précédent peut nuire au bon fonctionnement des
autres applications installées sur votre ordinateur.

Sous Windows Vista et 7

La mise en place de la variable PATH s'effectue de la façon suivante :

I. Dans le menu Démarrer, sélectionnez Panneau de configuration.

i/i
ô
L_>LU
LOT—1OCM
@
J - f
JZgi
>.Q.O
U

PartoMu de corvf»gur»tion
d'KCMiJ du Pdnneiu de <orif(9unti-qp

AfFkhtg«

À’Nom Cotêgarie
□mAccueil Achat de mise â Ajout deWindows niveau Or ligne matér̂

%C lavier Cortrdfed'utilisa Leurs parerUI

■ . i llr>formattoni«l oulifs cfep«rf... Initiateur iSCSi Java

% i i i
Options Intcmel Opbaru Qutilsregionoles M. d'administration

Propriétés dy Rapports et Scanneurs «tVoW WindcuM solutiom appareils photo

t t
fi?r

Windows Windows Windows'CsrdSpace Oefender Update

I I Rechcn±ier

ÏL % ^Cintre de mobdit-'

Date et heure

Centre de sauvegarde et..

jeu
Exécutionautomatique

Optionsd'ergonomie Options de modems

Paramétres do

W aOptions (liimentation n

Pers

/

PoffieuWindows

Centre de séçvrrté

rrii
Gestion d£s couleurs

Options de reconnoissan...

Persofinalisotion Polices

Stylet et
pén^ériqu...

Synttiese vo«)c

y-
Centre de n̂chro msationCentre Réseau et partage

Gestionmirt de périphériques Imprirntriles

W
Options des dossiers Options d'in deration

QProgrammes etfonctionnalités Programmes par défaut

VoKinageimmédiat

Figure A-9

Remaraue Si la fenêtre Panneau de configuration ne s'affiche pas comme celle présentée en figure A-9,
cliquez sur le lien Affichage classique situé sur la partie gauche de la fenêtre.

© Editions Eyrolles 541

Le №ire de lava premier langage

2. Double-cliquez sur Système, puis cliquez sur le lien Paramètres système avancés situé à
gauche.

1̂ 3-1 Isl

»1^ P Penneau de configuration t Systems I Ягс/tfrrttr

(p Gstionniire de périphériques
!p Paramétres d'utilisatkin à

distance
(J Protection du système
9 Еаигайг.о svatrr.¿ д.'antes

■b

Windows Update
Centre de sécurité
Peiformances

Informations système générales

Édition Windows
W indows V ís t a Édition Fam iliale Basique

Copyright C 2006 Microsoft Corporation. Tous droits réservés.
Mettre á niveau Wirvdows Vista

Système
Fabncant:
Évaluation :
Processeur :
Mémoire vive ;
Type du système :

Dell
Indice de performarKC Windows

Irrtri(R) Pentium(R) M processor 1.70GHz 1,69 GHi
1024 Mo
Système d'ecplortation 32 bits

Paramétres de nom d'ordinateur, de domaine et de groupe de travail -----
Kom de l'ordinateur: softy
Nom complet : softy
Description de l'ordinateur :
Groupe de travail: WORKGROUP

Activation de Windows
Nombre de jours dvant l'activation: J). Activez Windows maintenant

Ю de produit : S9572-OEM-7332166-00096 M̂odifier la clé de produit

M̂odifter tes
paramètres

i/i<U

Figure A-7Ú

>-
Ш
KOrHOfN
@
JTCT'l—>-ClOU

542 © Édftions Eyrolles

Guide d’lftsialladons

ifi
OL->LU
T~iofN
@

3. Cliques sur le boulon Variables trenvironnement.

Propriétés système

NoBidel’ontriatetr Matériel
Paramétres système avances Protectiofi du système | UlBŝ ion à distance

Vous devez ouvrir une session d'admirristfatei^pour^eduerla plupart de
ces modificaüens-

Performances
9 d s visuels, planifîcation du processeur, utiliŝ ion de la mémoire et
mémoire virtuefle

Paramètres...

PtDfh des utflissleurs
Paramètres du Bureau liés â votre ouverture de session

Paramètres...

Démarrage et récupération
Informations de démarrage du système, de défaillance du système et de
débogage

Paramètres.

Varrdoles d'enviromement

OK irmief Appliquer

Figure A-11

oi'k_
Cl
O
U

I Éditions Eyrol/es 543

le Hvre de lava Dremler langage

4. Dans la rubrique Variables système, sélectionnez la variable PATH et. cliquez sur le bouton
Modifier.

VariaWes d'etvnronnement

Variables uUtsateLjr pour anr>e
Variable Valeur
TEMP
TMP

%USHtPRORLE %\AppOalaioeal \Temp
■ÎWJSERPROF[LE% VlppOa ta iflodtrenv

Nouvelle... Modifier... Supprinef

Variables système
Variable V^ur A
OS Whdowsjvr -
Iraîh C;\V,iindow5'tf ystem32;C; \Wmdov*s:Ct V..1
pATærr iCOM;,EXE;.BAT;.CMO;.VBS;.VBE;*JS;..,r
PROCESSOR_A... xS6 -

Nouvelle..7] I Modifier...̂ 1 | Sopprimg

I Ote I Aimuler

Figure A-12

5. Ajoutez la ligne C:\Program FilesVJava\ j d k l . 8 .0_66\bin; ou C;\le\
repertoire\dë\votre\choix\jdkl. 8 .0_ 6 6 \bin ; dans le champ Valeur de la
variable,

i/i(U

Modifier la variable système

Nom de la variable ;

Valeur delà variable :

Path
T;C: yvogram Fies\3ava\jdkl.8.0_66'|b*i;.

I N 11

>-LU
UDrHOfN
@
JZoi'k_>ClOU

544

Figure A-13

6. Cliquez sur les boulons O K des différentes fenêtres pour les fermer et valider la nouvelle
configuration.

© Éditions Eyrolles

Guide iThtsiaiiadons

Remaraue Lorsque vous modifiez la variable p a t h du système, veillez à bien ajouter la nouvelle ligne
sans supprimer le contenu précédent. Pour cela, insérez le signe ; à la fin de la ligne existante
et ajoutez à la suite C ; \ Program F i le s \ Java\j d k l . 8 . 0_2 5\bin ;,
Attention, le fait de supprimer le contenu précédent peut nuire au bon ionctionnement des
autres applications installées sur votre ordinateur.

La variable CLASSPATH

La variable CLASSPATH est utilisée au moment de la compilation d’applications composées
de plusieurs fichiers Java. La procédure de mise en place de cette variable est identique à celte
de PATH décrite précédemment. Dans la fenêtre Modifier la variable système, entrez comme
nom de variable CLASSPa t h et comme valeur C:\leRepertoire\ouSeTrouvent\
lesDifferentes\classes\aCompiler;.
Pour écrire, compiler et exécuter votre premier prograimne Java, reportez-vous à la section
« Utilisation de.s outils de développement » plus loin dans ce chapitre.

Insta lla tion de Java SE Development Kit 8 sous Mac OS X
La version de Java à installer dépend du système d’exploitation de votre Mac. Ainsi, Java SE 8
n’est disponible que pour les versions Mac O S X 10.7 et ultérieures.
Rendez-vous à l’adresse w w w .annetasso .fr/Java et téléchargez le fichier d’installation de Java
en cliquant sur le lien correspondant à votre système d’exploitation sous Mac :
• pour Mac OS X 10.7 et supérieur, vous obtenez le fichier j dk- 8u66-macosx-x64 . ditig ;
• pour Mac OS X 10.6, vous obtenez le fichier JavaForMacOSXlO . 6Updatel6 . dmg ;
• pour Mac OS X 10.5, vous obtenez le fichier JavaForM acO SX lO . B U pdatelO . dmg ;
• pour les versions antérieures à Mac O S X 10.5 et supérieures à la version lü.4,10, télé­

chargez le fichier d’installation JavaForMacOSXlO . 4Release9 , dmg, qui installe la
version JSE 5.0.

O
Ol_>
LU
KûrHOrvl
@
j : :gi
Q.OU

LTnstallation
Voici la marche à suivre pour installer renvironnemeni Java (Java SE 8).
1. Selon la version de votre système d’exploitation, copiez le fichier d’extension .dmg (ici,

jdk-8u66-macosx-x64 ,dmg) sur le Bureau de l’ordinateur, puis double-cliquez des­
sus.

t Éditions EyroHes 545

http://www.annetasso.fr/Java

Le livre de lava premier langage

2. Une fenêtre contenant l’icône JDK 8 Update 25.pkg apparaît : double-cliquez des­
sus.

O O G / _ JDK s Update 66

lava

Java Development Kit
Double-dick on icon to install

JDK 8 Update 66.pl<g

Figure A-14

3. La fenêtre d’installation de Java s’iiffiche. Cliquez sur le bouton Continuer.

» O fi

tf)
ôL_:>-LU

0
(N

@
sz01
C l
O
U

546

^ Installer JDK 8 Update 66

B Introduction

• Destination

• Type d'installation

• Installation
• Résumé

J a v a
O R A O j E*

Programme d’installation du logiciel JDK 8 Update 66

The Java Development Kit is a development environment
for building applications, applets, and components
using the Java programming language.

The Java Mission Control profiling and diagnostic tools
suite is now available as part of JDK.

Revenir Continuer

Figure A-15

© Éditions Eyrotles

Game d’HisuiiiaiiM s

4. Une fenêtre indiquant le mode d’installation et l'espace requis par Java apparaît. Cliquez
sur le bouton Installer pour lancer l’installation.

» O O V Installer JDK 8 Update 66

Installation standard sur « DD »

6 Introduction

B Destination

e Type d'installation
• Installation

• Résumé

Cela occupera 533,6 Mo d'espace disque sur
l’ordinateur.

Cliquez sur Installer pour procéder à une
installation standard de ce logiciel pour tous les
utilisateurs de cet ordinateur. Tous les utilisateurs
de cet ordinateur pourront utiliser ce logiciel.

OraAOjE' Revenir Installer ■

Figure A-16

5. Saisissez le mot de pas.se associé à votre compte utilisateur Mac pour autoriser l’installa­
tion de Java puis cliquez sur Installer le logiciel.

ifi
0i_>LU
T~ic?fN
@
..i-i

01'k_>-ClOU
> Éditions Eyrol/es

Figure A~17

547

Le Hure de lava preinler langage

6. L’installation démarre et son état d’avancement est indiqué par une barre de progression.

.XX-O- ______________________________y Installer jO K 8 Update 66______________________________________^

In sta lla tio n en co urs : jO K 3 Update 66

6 InCfoduction
6 Destination
0 Type d’installation
0 InsEallation
0 Rést mè

Validation des paquets..

Revenir Continuer

Figure A-1B

7. Une fois l’installation terminée, cliquez sur le bouton Fermer. Il n’est pas nécessaire de
redémaiTer votre ordinateur.

e O O

Lñ<D

>~UJ
SO
OfN
@
gi'i—>-Q.O
U

548

Installer JDK 8 Update 66

0 Introduction
0 Destination
0 Type d'installation
6 Installation
0 Résumé

j a v a '
ORAOje

L’installation a été réalisée avec succès.

Next Steps?
Access tutorials, API documentation, developer guides,

release notes and more to help you get started with the JDK.

Revenir Fermer

Figure A-19

) Éditions Eyrofles

Guide d’bisialladons

8. Éjectez le paquet JDK 8 Update 25 .p k g et supprimez le (idiier jd k -8 u 6 6 -
macosx-x64 .ditig.

Pour écrire, compiler et executer votre premier programme Java, reportez-vous à la section
«. Utilisation des outils de développement » plus loin dans ce chapitre.

Insta lla tion de Jaua SE Oeveloment K it 8 sous Linux
Afin d ’éviter tout problème de droit, il est conseillé d’effectuer l’installation de Java SE sous
rutilisateur root en tapant les commandes suivantes :

I sudo su - root
Password : *****

Remaruue Sous Ubuntu, vous trouverez directement le paquet sun-javaS-jdk par l'intermédiaire du
gestionnaire de paquets.

ifi<D

LU
KOrHOfN
@
x:Oi'k_>-Q.O
U

Uinstallation
Une fois le fichier d’installation jdk-8u66-linux-x64. tar ,gz téléchargé depuis
l’extension Web, déplacez-le sur le Bureau de l’ordinateur.
Pour installer l'environnement Java, la marche à suivre est la suivante :
1. Déplacez-vous dans le répertoire où vous souhaitez installer Java SE, par exemple à l'aide

de la commande :
I cd /usr/local/

2. Décompressez le fichier d’installation jdk-8u66-linux-x64, tar .gz grâce à la
commande :

I tar zxvf jdk-8u66-linux-x64.tar.gz

3. Les fichiers du kit de développement Java s’installent dans le répertoire /usr / local.
4. L’installation se termine par la création du répertoire j d k l . 8.0 et de ses sous-répertoires

sur le disque dur.
5. Pour simplifier l’appel aux commandes Java, créez un lien symbolique vers le répertoire

jdkl. 8 ,0, en utilisant la commande ;

I In -s jdkl.S.0 java

L’environnement d’exécution et de développement de Java est maintenant installe sur le
disque.

6. Supprimez enfin le fichier d’installation jdk-Su66-linux-x64 .tar.gz et fermez le
compte root.

© Éditions Eyrol/es 549

le Hvre de lava Dremler langage

Les variables d’environnement
La variable PATH
Pour compiler et exécuter un programme .lava, il est nécessaire d’utiliser la commande de
compilation javac fournie par J2SE. Elle est définie dans le répertoire par défaut /usr/
local/jdkl.8 .0 /bin.
Pour utiliser la commande de compilation javac depuis un autre répertoire, il est nécessaire
« d’expliquer » à l’ordinateur par quel chemin y accéder via la variable d’environnement
PATH.
La définition de cette variable s’effectue en modifiant le (ichier /home/votreCompte/
.bashrc de votre compte utilisateur, en y ajoutant la ligne suivante :

I PATH=$PATH :/usr/local/java/bin; export PATH

Exécutez, votre profil .bashrc en tapant la commande :
I . .bashrc

La variable CLASSPATH
La variable CLASSPATH e.st utilisée au moment de la compilation d’applications composées
de plusieurs lichiers Java. La délinition de celle variable s’effectue en modifiant le lichier
/home/vofcreCompte/.bashrc de votre compte utilisateur, en y ajoutant les lignes
suivantes :
CLASSPATH =\ leRepertoireXouSeTrouventMesDif f erentes\classes\
aCompilerV.
export CLASSPATH

Exécutez votre profil .bashrc en tapant la commande ;
I , .bashrc

Insta lla tion de HetBeans sous W indows 2000, HT, XP, Vista e t 7
NetBeans est un environnement de développement intégré (IDE pour In teg ra te d D eve lo p m en t

E m ’iw n m e iii} développé par Sun. La plate-forme NetBeans propose un espace de travail
mêlant les fonctions d’édition et de compilation de programmes écrits en Java.

t/ï

>-LU
KOrHOfN
@
x:Oi
>-Q.O

U
550

L’installation
Pour installer l’environnement NetBeans, la démarche est la suivante :
1. Une fois le fichier netbeans-S . 1-javase-windows . exe téléchargé depuis l’exten-

sion Web, déplaccz-lc sur le Bureau de votre ordinateur.
2. Lancez l’installation de l’enviionnement NetBeans en double-cliquant sur l’icône du

(ichier netbeans- 8 .1-javase-Windows . exe.

© Éditions Eyrofles

Guide iThtsiaiiadofls

3. La fenêtre de préparation de l’installaiion apparaît. Laissez l’ordinatear charger l’assistant
d’installation en mémoire.

4. Lorsque l’assistant d'installation est chargé et prêt, cliquez sur le bouton Next.

0 NetBeanî tOE Jjnrtatter

P̂WBeantiOE

Welcome to the NetBcaiw IDE 8,1 Instaler

Thi nstalcf wi №tal (he №tB«cs IDE with the >va SE pack.

Instalatioo Sue: 3'16,4MB

Cened

Figure A-20

5. Acceptez les termes de la licence, puis ceux de la licence JUnit avant de poursuivre l’ins-
tallation. Pour cela, cochez l'option I accept the terms,,, des deux fenêtres successives.
Cliquez ensuite sur le bouton Next.

\fiO
Oi_>LU
VûrH0
(N

@
JZ01
C l
O
U

Q N etBean: IDE Installer a ISI Xi

License Agreement
Please read the feiswaig tcense agreernent carefiiy.

0 1 accept the terms in the kense agreement

®NelBeiflsiDE

NETBEANS IDE 8.1 fProducr) LICBKE AGREMNT A

PLEASE READ Ttt FXXtOLVINC UCB3SE AWrahENT TERMS AND
CONOrnChtS CARBRJUT, INQUCINGIMTHOUT LMirATIO« THOSE
DISPLAYED aSEWI6!E (AS DEDICATED BV LINKS LISTH) BaOW),
BEFORE USING THE SOFTWARE. TFESE TERMS AND CONDniCMS
CONSTtrUTE A LEGAL AGREBdENT BETWEai YOU, OR THE BCTITT FOR
WHICH YOU ARE AN AUTHORIZED RffRESENTATIVE I'mH RJi
AUTHCRITYTO BTTBl INTTO THIS AGREBBTT, AND ORAOE. BY
CLICXINe 'ACCBn* Oft THE EQUtVALBir YOU AGBBE TO AU OF
TFETHIMS ANOCChOmONSOFTHIS LtCHJSEAGRE&tEMT. IFYOO
DO NOT A Q » TO TtflS LICENSE DO NOT dJOC'ACCHir OR
THE EQUrVALEOT At« DO NOT INSTAU OR USE THIS SOFTLVARE,

 ̂j

Copyright (c) 1997a 2015 a Orade and/or its afma№. A1
nghbreserved̂
QTKie and Jav« ore; r<gc;tered troden̂ arks gf erode and/or
Its afffaates. Other narnes mar be tradenwks of ther
respeettveoMrers.

-

1 cBack] I Next > [| Cancel

Figure A-21

© Editions Eyrolles 551

le livre de lava Diemier langage

6. Vous pouvez modifier le répertoire d’installuLion de F environnement en cliquant sur le
bouton Browse..., puis sur Next.

O MetSeani IDE Installer

NetSeans IDE 8,1 Installation
Choose the iretslation folder end X3KV*. I NetBnmiDE

Instal the №№ans IDE to:
C; Iprogram fiteslftetfleans 3.1

ЖЖ™ fcr the N elfleans Ю Е:

FileaV3avâ l̂.B.O_3£

Biowse...

I BKWse... I

[<6дск] Neict> ^ (Caned

7. Cliquez sur le bouton Install.

Figure A~22

[Л
О1_>Ш
ЮT~{огм
@

Ç3 NetBeans IDE Installer

Summary
Ckit Insty bi start the mstalabon.

NetBeans IDE Installation Folder;
C;Proffem FiesVMet8eans8.l

@ Check for Updates
The NetBeans rtstaBer can automaticaly check for updates of instaled plughs
usng yoir Internet connection.

TotaUnstaiation S ie ;
3-16,̂ t«

^NetBemitt

I
< Back Caned

Figure A-23

oi'k_>Cl
ОU

552 © £of/f/ons EyroHes

Bulde d’hisiallailoas

8. L’installation démarre et son état d’avaneement est indiqué par une barre de progression.

^ NetBeans IDE Installer

Installation
Please wait whíe the inslalef instáis NetBeans IDE and njntmes. ^ NetBeiiBiDE

Instalng Base IDE..

Extractng C:\program RIesVietBeans 8.iyJeVno<tiesl(ext\co»™nons-net-3.3.]ar.padc.!)í

Next I Cancel I

Figure A-24

9. Une fois rinstallation terminée, cliquez sur le bouton Finish et cochez ou décochez les
options proposées, il n’est pas nécessaire de redémarrer votre ordinateur.

<D

>-LU
O
tHOfN
@
JZOl
Cl
O
U

Ç NetBeans IDE Installer tHl

Setup Complete
CWt Ffïsh to frish the NetBeans IDE setiç. î HtetBniBIDE

InstaRatkH) completed successfully.
lO updates successfUy iistaled.

To taundi the IDE, use either the Start menu or the NetBeans dedttop icon.
To change nstaled components and add NetBeans plugns, use P^>n Marrager that is an ntegral part of NetBeans
IDE.

[?1 Contrtajte to the NetBeans project by providng anonymous usage data

• If you agree to parbopate, the IDE wd keep trade of the high-levd features you use
• The colected anonymous data wl be submitted to a usage stattstics database at netbeans.wg server

The usage statistics wi heip the development team to better understand user requirements and pnontae
■nprovements in future releases. We cannot and wd not reverse-engineer that colected data to find speofic
detafe concemrig ymr projects. See more rifbnnation.

Figure A-25

10. Pour finir, supprimez le fichier d’installatirm n e tb e a n s -8 . l -m l- ja v a s e -
w indow s. exe.

© Éditions Eyrolles 553

Le Uvre de lava Dremler langage

Lancement de Venvironnement NetBeans
Pour lancer NetBeans, il suffit de double-cliquer sur l'icône NetBeans située sur votre Bureau.
L’environnement NetBeans s'ouvre alors et la fenêtre de présentation de l’application apparaît.

NeiBeansiDE 8.1

Done loading modules.
№TBrans1D€>nd№Bfan»Platfoirr arebased onsoftviafefraTibetbeanswg, which has betn dual tcefised under ih« Commor Dev̂ loprnent and Distribution Ikeni« [CDDU ard thw GNU General P̂ lk License version 2 with Ctas$(»th«vception. For men mformatíon, pleasevisitwwwTietbeans.erg.

F ig u re A -2 6

Une fois lancé, NetBeans affiche à l’écran un ensemble de fenêtres vides, ainsi qu’une page
d’accueil.

OJ
OL_>LU
VûrH0 (N
@
sz01'k_>ClOU

554

ftie Utr V№v isi«igite Vouec M kch Kun iMMg «eoMe luiit Teek WintfM Help 1(4* sordiCCtî n I

T ■# ► B • -
1 Start Pagi ■- L*à ».iraipií

 ̂ iSINetBeansiDE Laamit^eciMi M|/N̂ aA£ VMutaNew 3wir O' B
Á

Learn & Discover

rat« 1 TOW
TryaSamsitPicieci

Comrnimr Comet

□»m«s & Tutorials
iev* SE4*f« «V« J*«FX GU) Acp|ic«ton>
JTC EE 4 J M VND «<9011 canons

CC*‘̂C*CSV«n»
PHP and HTU.S .«ooiicNvt»«
Motjfi» an« £me«aOM ««olicitHna
An OflMw DocumeaUrtiH »

F ig u re A -2 7

Foatursd Dsme

G«{lnQ dtirted wA Oracle JET

© Éditions Eyrofles

6uMe dbisiallailons

La description et l'utilisation de l’environnement de développement d’applications Java seront
décrites à la section suivante « Utilisation des outils de développement - Développer avec
NetBeans ».

Insta lla tion de NetBeans sous Mac OS X 10.7 et supérieur
Une fois le fichier d’installation netbeans-8 .1 -javase-macosx.dmg téléchargé depuis
l’extension Web, déplacez-le sur le Bureau de votre ordinateur.

L’installation
Pour installer l’environnement NetBeans, la marche à suivre est la suivante :
1. Double-cliquez sur le fichier netbeans-8 .1 -javase-macosx. dmg.
2. Une fenêtre contenant une icône intitulée NetBeans 8 .1 .pkg apparmt ; double-cliquez

dessus.

© O O NetBeans 8,1

NetBeans 8 .1.pkg

Figure A-28

3. La fenêtre d’installation de NetBeans s’affiche. Cliquez .sur Continuer.

«(U

LJ
tHOfN

x:oi'k_
Cl
O
U

O O O

U nitteduci
• Licence
• OestinatiK
• Type d'Ini
e Irstallatlc
• Ftésumé

© Éditions Eyrolfes

^ Installer NetBeans 8.1

Ce paquet exige Texécution d’un
programme pour déterminer si
l’Installation est possible.
four préHiver la sécurité dé votre ordinateur. Il est
recommandé d'installer ou d'exécuter uniquement les
logiciels provenant d'une source fiable. Si vous n'etes
pas certain de l'origine de ce togidel. cliquez sur
Annuler pour arrêter le proçramme ainsi que
rinstallation.

Annuler Continuer

Revenir Continuer

Figure A-29
555

le Uvre de lava preinier langage

4. Le panneau suivant vous propose de sélectionner le disque sur lequel seront installées les
applications J D K et NetBeans. Cliquez sur le bouton Continuer.

O o e ^ Installer NetBeans 8.1

O Vntr
e Licc
m
• Typ
O Inst _
e Résumé

Pour poursuivre rinstallation du logiciel, vous devez accepter
les termes du contrat de licence du logiciel.
Cliquez soit sur Accepter pour continuer, soit sur Refuser pour
annuler l1n$tallation et quitter le programme d’installation.

Lire la licence [Refuser | | Accepter
U U N i ^ l l l U l b A ' L h ^ A L a L t H b b N I E t V I № 1 W t b N T H E -----
ENTITY FOR
WHICH YOU ARE AN AUTHORIZED REPRESEffTATIVE WITH FULL
AUTHORITY TO ENTER INTO THIS AGREEMENT, AND ORACLE BY
CLICKING "ACCEPT’ OR THE EQUIVALENT YOU AGREE TO ALL OF
THE TEFIMS AND CONDITIONS OFTHIS LICENSE AGREEMENT IF
YOU
DO NOT AGREE TO THIS LICENSE DO NOT CLICK "ACCEPT' OR
THE ECKJFVALENT AND DO NOT INSTALL OR USE THIS SOFTWARE.

Copyright {0) 1Q97, £015. Oracle and/or its affiliates. All rights raservscf.
■I l«i>n nm mAlnti* *uvui 4jVL.̂ Anr«Arlns isf p̂ y<4iAl■

I Imprimer.. Enregistrer... j Revenir J Continuer

Figure A-30

5. Une fenêtre indiquant le tniKie d’installation et l'espace requis par NetBeans apparaît.
Cliquez sur le bouton In,sta11er pour lancer l’installation.

« O e %t Installer NetBeans 8.1

U)<D

>-LU
LO
OfN
@
JZen'u.>•ClO
U

556

O Introduction
6 Licence
Destination

e» Type d*instaltation
• Installation
• Résumé

Installation standard sur « DD »

Cela occupera 301 Mo d'espace disque sur
l’ordinateur.
Cliquez sur Installer pour procéder à une installation
standard de ce logiciel sur le disque « DD >.

Changer l'emplacement de I'instaliation...

Revenir Installer

Figure A’31

) Éditions Eyrofles

Golde iThtsiallaiioiis

6. L’instaîlalion démarre et Mon étal d’avancement est indiqué par une barre de progression.

O <0 O *> Installer NctBeans a .1 â

Installation en cours : NetBeans S.l

O Introduction
O Licence
O Destination
d Type d’installation
D Installation
• Résumé

Exécution des scripts du paquet..

Temps d'installation restant : moins d'une minute

Revenir Continuer

Figure A-32

1 . Une fois rinstallation terminée, cliquez sur le bouton Fermer. Il n’est pas nécessaire de
redémarrer votre ordinateur.

{fi<D

>-LU
KOrHOfN
@
JZCT't—>-ClO
U

» Q V Installer NetBeans 8.1
L'installation a été réalisée avec succès.

0 Introduction
6 Licence
6 Destination
e Type d’In stall alien
O Installation
@ Resume

> Editions Eyrol/es

o
Llnsta llation a réussi.

Le logiciel a été installé.

Revenir |i Fermer ^

Figure A-33

557

le Hure de lava premier langage

8, Éjectez le paquet NetBeans S . l . p k g et supprimez le fichier n e tb e a n s -8 . 1 -
ja v a se -m a c o sx . dmg.

Lancement de renvironnement NetBeans
Pour lancer NelBcans, déplacez-'voHS dans le répertoire A pplications/W etB eans.
Double-cliquez sur l’icône NetBeans 8 . 1 .

r î|q iii;liiji[t j Pour simplifier le lancement de NetBeans, vous pouvez déplacer l’icône NetBeans 8 . 1 vers
le Dock.

Après avoir double-cliqué sur Picône, l’environnement NetBeans démarre et la fenêtre de
présentation de l’application apparaît.

N̂etBeans IDE 8.1

Done loading moduEes.
NetB«dns IDE and Net8«dns Platfonn are bas«d on sĉ twsfefromnetboan&org, whkh has bê ndual licensed
under tKe Common Development and Distribution License(CDDL) and the GNU General Public License
version 1 with Classpath exception. For more inform atton, plea se visit wwwjietbeans.org.

Figure A-34

ina>

Une fois lancé, NetBeans affiche à l’écran un ensemble de fenêtres vides ainsi qu’une page
d’accueil.
La description et l’utilisation de l’environnement de développement d’applications Java seront
décrites à la section « Utilisation des outils de développement - Développer avec NetBeans ».

>.UJ
soT-lOrN
@
J-gi’l.>•D.O
U

558 © Éditions Eyrolles

Guide iThtsialladofls

« o e

Learn & Discover

Take a Tour

Try a Sflmpte Proj&d
Whal's NeMV

Community Coriwr

Demos & Tutorials

Java SE Applications
Java and JsvaF^ GUI Applications
Java EE & Java Web Applications
CJC++ Applications
PHP and HTML5 ApplECSfioni
t̂od>le and Embedded Applications

All Online Documentation »

Featured Demo

Cening Started Oraci« JET

OF?ACI_e J.>java

Figure A-35

Charger le plug-in JUnit et/ou Hamcrest
Le plug-in JUnit n’est pas intégré par défaut dans le module d’installation de NetBeans 8.1.
Vous devez l’installer manuellement en suivant la procédure suivante.
• Sous NelBeans, sélectionnez l’item Open Project... du menu File. Le panneau Open Pro­

ject s’ouvre, parcourez l’arborescence des exemples de l’extension Web et choisissez le
projet Sources/Exemple/Chapitre 12/ NetBeansProjects/Cercle.

« O O. Open Project

ifi

>-LU
LOrHO(N
@
JZoi
Cl
O
U

U I NetBeans Projects

» Ed iteurExemple
► ^ GesticnClasseEKemple
► ^ PremierPrqjet

[M irê ia i
Project Name:
Cercle

Open Required Projects;

F ich ier : iS ourcesyExem p les/C h ap itre l2 /N etBean sP ro jeets/C erc le

Format cfe Fichier ; Project Folder______________________________________ 11

Figure A-36

Op>en Project |

Annuler

> Éditions Eyrolles 559

le livre de lava premier tangage □

• À l’ouverUire du projet Cercle, rapplication Netbeans indique qu’il y a un problème qu'il
est possible de résoudre en cliquant sur le bouton Resolve Problems...

» "̂1 O

O

Open Project

Project Problems
One or more project resources could not be found.
Right-click the project in the Projects window and choose
Resolve Project Problems to find the missing resources.

Q Do not show this message again

Resolve Problems...] [Close

F ig u re A -3 7

ifi
O
>

LU

T~{0(N
@
JZ01
>-
C lOU

560

Le panneau Resolve Project Problems suivant s’affiche, cliquez sur le bouton Resolve.

ft Q O ___________ Resolve Project Problems

Project Problems:

Resolve...

Descri ption:
jUnit 4.12 does not bundle hamcrest matchers librar/.

Click the resolve button to automatically add hamcrest as your
project's test dependency.

Close)

F ig u re A -3 8

) Editions Eyrofles

Game d’bisiallaiiDns

• L’interface Nelbeans trouve les solutions et installe les plug-ins requis. Le panneau
Resolve Project Problems affiche les résultats des corrections apportées.

« e Resolve Project Problems

Project Problems:
O Hamcrest binaries missing (in Cercle)
© JUnit 3.8.2 binaries missing, (in Cercle)

Resolve...

Description;

O Hamcrest library was added as test dependency.
O Test dependency was updated toJUnit 4.x library.

Figure A-39

^ Close

Insta lla tion do NetBeans sous Linux
Une fois le fichier d’installation netbeans-8 .1 -javase-linux. sh téléchargé depuis
l’extension Web, déplacez-le sur le Bureau de votre ordinateur. L’installation de NetBeans
s’effectue sous le compte utilisateur root.

fÏÏ^ lT fïliill [d Sous Ubuntu, vous trouverez directement le paquet n e tb ean s dans le gestionnaire de paquets.

if)<ü

>•LJ
KOtHofN

x:Oi'k_
C l
O
U

Uinstallation
1. Copiez le fichier n e t b e a n s - 8 . 1 - j a v a s e - l i n u x . s h dans le répertoire / tm p /in s -

t a l l a t i o n et déplacez-vous dans le répertoire / u s r / l o c a l à l'aide de la eonuntinde :

I cd /usr/local.
2. Lancez l’installation en lapant la commande :

I /tmp/installation/netbeans-8 .1 -javase-linux. sh

© Éditions Eyrolles 561

le Uvre de lava Dreinler langage

L’exécutable lance l’installation et affiche :
Configuring the installer...
Searching for JVM on the system.
Extracting installation data...
Running the installer wizard...

3. Suivez la procédure d’installation en cliquant sur le bouton Suivant,

Bienvenue dans le programme cnnstaliation de TIDE
NetBeans 8 .1

L« d'installation va installer llDE N«tBeans avec 1« pack Java

^NetBeiniDE Taille hinstaliatiûn: 257 J MB

I Suivagt > j [Annuler]

Figure A-40

4. Acceptez les termes de la licence en cochant l’option J’accepte les termes..., puis cliquez
.sur le bouton Suivant.

Contrât do licence
Veuillez tire awerttivement le contrat de licence suivant. I IMlamiDE

NETBEANS IDE 8.1 CProducf)
Oracle licenses NetBeans IDE under the CDDL v 1.0 (CDDL) or
GNU General Public License version 2 (GPL), both of which
are identified below. Tou may choose either license to govern
your use of NetBeans IDE onfy upon the condition that you
accept all of the terms of either the CDDL or GPL. Read
the terms carefully. If you are not witling to be bound by
these terms, do not download or use NetBeans iDE.

Third party technology that may be necessary for use with
NetBeans IDE is specified in THIRDPARTYLICENSE.txt. Such
third party technology is licensed to you under the terms
of the third party technology license agreement specified
and not under either the CDDL or GPL.

<U

>-LU
to
O(N
@
jrOl1—
a
ou

562

Please review the list of libranes and licenses provided
for use. This license file contains five distinct licenses.

J'accepte les termes de l'accord de licence

Figure A-41

I precedent |Suivailt > J | Annuler

© Éditions Eyrolles

Guide d’HtsiaHadons

5. Acceptez I’installution du framework JUnit en cliquant sur le boulon Suivant.

Contrat d e lice n ce JUnît
Veuillez lire attentfvement le contrat de licence suivant. P̂htBmiDE

jUnit

common Publie ukense - v 1.1
THE ACCOMPANVfNG PROGRAM IS PFtOVlDEO UMDER THE TERMS OF THIS COMMON PÜBUC
UCEN5E (‘ AGREEMENT"). AMY USE. REPRODUCTION OR DESTRIBUTION OF THE PROGRAM
CONSTFRJTES RECIPIENTS ACCEPTANCE OF THIS AGREEMENT,

1. DEFINITSONS

■Contribution' means:

a) in the case of the initial Contributor, the initial code and
documentation distnbuled under this Agreenwnt, and
b) in the c ase of each subsequent Contributor;

|Unit un framework ^ V A de tests unitaires
lî J ^accepte les termes du contrat de licence, installer JUnit

Ne pas installer JUnit

[< £racedent| \ Sutvagt > Annuler

Figure A-42

6. Dans la fenêtre suivante, modifiez si vous le souhaitez le répertoire d’installation de Net-
Beans, puis cliquez sur Installer.

7. Une nouvelle fenêtre vous indique ensuite que l’installation est terminée. Cliquez sur le
bouton Terminer. Il n’est pas nécessaire de redémarrer votre ordinateur.

Configuration terminée
cliquez Termirar pour finir la configuration de l'iDE NetBeans ^NelfcilSIDE

<ü

>■
LU
<£>
■pHOfN

JZoi'k_>'Q.OU

Lin&tallation se st term inée avec su ccès.

Pour lancer l'IDE, utilisez l’icône NetBeans sur le Bureau.

Pour changer les composants installés et afouter des plug-ins NetBeans. utilisez le Gestionnaire de
Plug-Ins put fait partie Integrante de l'IDE NetBeans,

Ü Contribuez su projet NetBeans en fournissant des données d'usage anonymes

« Si vous acceptez de participer, l'iDE garde une trace des fonctionnalités de haut niveau que vous
utilisez

« Les données anonymes sont coBectées dans une base de données de statistiques d'utilisation
sur un serveur du site netbeans.org

Les données statistiques d'utilisation aident l'equipe de développement a mieux comprendre les
exigences des utilisateurs et à prioiiser les améliorations des futures versions. Il ne nous est pas
possible (et nous n'essayerons pas} d'analyser les données collectées pourytrouver des détails
spécihques de vos pro|ets. Voir ici pour plus d'informations..

germiner

Figure A-43
> Éditions Eyrolles 563

I le Hure de lava premier langage

8, Supprimez le fichier trinsîtillalion netbeans-S . l-ml-javase-linux. sh.
9. Pour simplifier i’uppei li NetBeans, créez un lien symbolique vers netbeans-8 .0.2

grâce à la commande suivante :
I In -s netbeans-8.1 netbeans

10. Modifiez le fichier .''home/votreCompte/.bashrc de voire compte utilisateur en y
ajoutant la ligne suivante :

PATH=$PATH ;/usr/local/netbeans/bin; export PATH
! I. Exécutez votre profil . bashrc en Lapant la commande :

I . .bashrc

Remarque Sous Ubuntu, cliquez sur l’icône Ide NetBeans 8.0.2 qui apparaît sur le Bureau en fin
d’installation.

Lancement de Venvironnement NetBeans
Pour lancer NctBeans, il suffît de taper la commande suivante dans une fenêtre de commandes :
I netbeans &.

L’environnement NetBeans s’exécute et affiche la fenêtre de présentation de l’application.

NeiBeansiK s.i

<D

LU
ViD•rHOrs|
@
x:Ol
>Q.OU

564

Done loading modules.

NetSe&ns IDC and N«t Beans Piatiorm ara based «i softvware from netbean&org. which tías been dual iBcenaed under tbe Convnon Dev«loprn«nt and Disirfbutlnn bc«nsa(CDDU and the GMU General PuUk License version 1 with dasspath eotception. Por more inlormatior. please visit www netbeans.org,

F ig u re A -4 4

© Éditions Eyrolles

Guide d’Htsianadons

U tic fois lancé, NelBeans affiche à l’écran un ensemble de fenêtres vides, ainsi qu’une page d'accueil.

■B t2 a % "a c ■ - «■
4« U*nwt»9« *

Cearn $ Oiacover
TMielWJ
Trr * Prai«i

Damas L Tulqftals
Jw S
JM M JMd̂ (Cu «wmant
JM £C-t iM M «S

Pealured Qdmo

GMnt 9UM awlA Oaetc JCÎ

Figure A-45

La description et l’utilisation de l’environnement de développement d’applications Java seront décri­
tes à la section « Utilisation des outils de développement - Développer avec NetBeans » ci-après.

Utilisation des outils de développement

Ins ia lle r la docum eatallon en ligne
La documentation en ligne i http://download.oracle.eom/javase/8/docs/api) est très utile lorsqu’on
développe des applications Java. Elle décrit l’ensemble des outils de développement proposés
par le langage.

(U

LU
LO
O<N
@
Ol
>O.OU

Développer en mode commande
Le développement d’applications passe par trois étapes qui se répètent tant que le programme
ne répond pas aux attentes du programmeur. Ces trois étapes sont :
1. L’édition, qui consiste à écrire un programme à l’aide d’un éditeur de texte. Le fichier

porte le nom de la classe qu’il définit, suivi de l’extension . java.
2. La compilation, qui permet la traduction du programme en un format compréhensible par

l’ordinateur. Si la compilation est exécutée sans avoir détecté d’erreurs, le fichier exécuta­
ble porte le même nom que celui du programme, suivi de l’extension . class.

3. L’exécution, qui permet de vérifier le bon fonctionnement du programme.

© Éditions Eyroltes 565

http://download.oracle.eom/javase/8/docs/api

le Uvre de lava Dremler langage

<D

LU
ViD
tHOrs|
@
x:Oi'k_>Q.OU

566

S’il subsiste des erreurs ou des incohérences en phase de compilation ou lors de l’exécution, il est
nécessaire de coiriger ou de modifier le programme à l’aide de l’éditeur de texte. Une fois les correc­
tions ou modifications réaüsées, le prograntmeur lance à nouveau la compilation, puis l’exécution.
Pütir éviter d’avoir à répéter les opérations d’ouverture du ficlûer contenant le programme avec
un éditeur de texte, de sortie de l’éditeur avec sauvegarde, de lancement de commandes de
compilation ou d’exécution du programme..., il convient d’ouvrir deux fenêtres de travail : une
pour éditer te programme, l’autre pour lancer les commandes de compilation ou d’exécution.

Les fenêtres de commandes
Les fenêtres de commandes sont utilisées pour lancer les commandes de compilation et
d’exécution des programmes Java.
Pour compiler un programme Java, la commande est la suivante :
I javac KFomDeLaClasse. j ava

où NomDeLaClasse correspond au nom du fichier (veillez à bien respecter Ponhographe,
ainsi que Les majuscules et les minuscules). L’utilisation de l’extension . java est obligatoire.
Pour exécuter un programme Java, la commande est la suivante :
I java NomDeLaClasse
Aucune extension ne doit être placée à la fin de la ligne de commande,
cmd.exe sous Windows 20f)0, XP, Vista et 7
Sous Windows 200Ü et versions ultérieures, la fenêtre Je commandes s’ouvre à l’appel du
programme cmd. exe. Voici comment appeler ce programme :
• Sous Windows 2ÜÜÜ et X P ;

• Dans le menu Démarrer, sélectionnez Exécuter.
• Tapez la commande cmd dans la boîte de dialogue.

• Sous Windows Vi.sta et 7 :
• Dans le menu Démaner, cliquez dans la zone de texte Rechercher située en bas à gauche du
menu.

• Tapez la commande cmd dan.s la boîte de dialogue.
Une fenêtre sur fond noir apparaît. Il s’agit de la fenêtre Invite de commandes.
Les commandes sont lancées ptu défaut à partir du répertoire C : \Documents and
Settings\NomUtilisateur (Windows 2000 à XP)et C:\Users\NomUtilisateur
(Windows Vista et 7). Pour que la fenêtre s’ouvre directement à partir du répertoire dans lequel
sont placées vos applications Java, il convient de modifier ses paramètres.
Modifier les paramètres de la fenêtre Invite de commandes
Pour modifier les paramètres de la fenêtre Invite de commandes, rendez-vous dans le réper­
toire C: \Windows\Systems2, puis effecmez un clic droit sur l’icône cmd.exe et choi­
sissez Créer un raccourci. Déplacez le raccourci sur le Bureau et cliquez droit dessus. Dans le
menu contextuel qui apparaît, sélectionnez Propriétés pour afficher la fenêtre suivante.

© Éditions Eyrofles

Guide dbisiallanons

F ig u re A -4 6

>-LU
KOrHOfN
@

Cliquez sur l’onglet Raccourci et dans le champ Démarrer dans, saisissez le chemin d’accès au
répertoire de travail soit, par exemple, D ; \ j ava.
Les autres onglets vous permettront, par exemple, de modifier la taille et la couleur de la
fenêtre, ainsi que celles de la police de caractères.
Validez les modifications effectuées en cliquant sur le bouton OK.

Terminal sous Mac OS X et Linux
Sous Mac OS X et Linux, la fenêtre de commandes s’appelle un terminal.
• Sous Mac O S X, double-cliquez sur l’icône Terminal du répertoire Applications/

utilitaires.
• Sous Linux, ouvrez une fenêtre Terminal en sélectionnant Terminal dans Applications/

Accessoires. Déplacez-vous ensuite dans le répertoire où sont enregistrés vos programmes
Java avec la commande suivante :
I cd nomDuDossier

Créer un environnement de travail
Pour créer un environnement de travail, vous devez ouvrir une « fenêtre d ’édition » pour écrire
vos programmes et « une fenêtre de commandes » pour les compiler et les exécuter.

Écrire un programme
Lancer un éditeur de texte de type Bloc-notes (Windows), emacs, vi, vim (Linux) ou encore
TextEdit (Mac), Au moment d’enregistrer votre fichier, veillez à ce que le format texte soit
bien sélectionné.

oi'k_>-Q.O
U

> Éditions Eyrolfes 567

Le Uvre de lava preinler langage

• Dans le Blix'-notes, allez dans le menu Fidiier>Enregistrer. La première fois que vous
enregistrez le programme, l’éditeur demande le nom du fichier à sauvegarder. Veillez à
sélectionner Tous les fichiers dans liste déroulante Type afin de pouvoir enregistrer le
fichier avec l’extension . java.

Enregistrer sous

« Disque local (DO > Java * I I I Rechen̂ er
 ̂ ^ ------------- -- - - - --N o m d u T i c h i e r ; * - t x t

T y p e : F l c h i e r s t e x t e ^ . t x t)

P x r r n t i n r Ik m m a m Ê Ê m m, , - ü - i !

F ig u re A -4 7

• Dans TextEdit, modifiez les préférences du logiciel en sélectionnant via le menu Text
Edit>Préférences. Dans la fenêtre Préférences, cochez l’option Format Texte. Enregistrez
ensuite le fichier au format UTF-8.

"■ P ré fé re n c e s

F ig u re A -4 8

ifi
OL_>
LU

T~{0 fN

x:01
>■ClOU

568

(N o u v e a u d o c u m e n t O u v e rtu re e t e n re g is t re m e n t

F o r m a i
Utilisez le menu Format pour modifter tes réglages des documents
indlvlduél$.
O Formai RTF □ Adapter i la page
0 Format Texte

Ta ille de ia fenêtre
Largeur : 175) caractères

Hauteur 30 lignes

Police
Police du formai Texte : fc ^ if ie r ... 3 Monaco 10
Police du formai RTF (^Modifier... j Helvetica 12

Propriétés
Les propriétés des docum ents ne peuvent être utilisées qu'avec des
Rdiiers au format RTT. Choisissez Fichier > Afficher tes propriétés pour
changer les propriétés des documents irKlividuels.

Auteur

Entreprise

Droits d'auteur ;

Options
M Vérifier i’oithographe lors de la frappe
G Vérifier la grammaire et l ’orthographe
^ Afficher la règle

fté ta b h r le s r é g la g e s p a r d é fa u t)

^ Copler-coller Intelligent
Q Guillemets courbes
G Li«hs Intelligents

© Éditions Eyroffes

Guide d’iitsiiiiiaaDfls

Vous n’avez pas besoin de sortir de l’éditeur pour compiler et exécuter votre programme ; il
suffit de ne pas oublier de l’enregistrer après chaque modification.

Compiler et exécuter un programme
Ouvrez une fenêtre Invite de commandes (en cliquant sur le raccourci créé précédemment)
ou un Terminal, selon votre système d’exploitation (respectivement Windows ou Mac,
Linux).
Cette fenêtre sert de fenêtre de compilation et d’exécution des programmes écrits à partir de
la « fenêtre d’édition ».
• Compilez le programme écrit à l’étape précédente en tapant la commande javac suivie

du nom du fichier et de Г extension . java, par exemple javac Cercle. java.
• Si des messages d’erreur de compilation apparaissent, notez la première erreur avant de

retourner à la «fenêtre d’édition». Corrigez l’erreur, puis enregistrez le fichier pour
prendre en compte la coiTection,

• Retournez dans la fenêtre de commandes et recompilez jusqu’à ce qu’il n’y ait plus
d’erre uns.

• Lorsque votre programme e.st correct (il n’y a plus d’erreurs de compilation), exécutez-
le en tapant la commande java suivie du nom du programme sans extension, par exem­
ple java Cercle.

Créer un répertoire commun
Lorsque l’on commence à écrire des applications utilisant plusieurs fichiers, il est intéressant
d’utiliser la variable d’environnement CLASSPATH.
En effet, certains fichiers (classes) sont utilisés par différents programmes. En plaçant ces
fichiers dans un dossier appelé, par exemple, commun et en initialisant la variable CLASS-
PATH à Un/répertoire/com m un, nous indiquons au compilateur comment il doit recher­
cher les classes qui ne sont pas définies dans le répertoire où se trouve le fichier qu’il
compile.

1Л
(U

>-
LU
LOtHOrs
@

Sous Windows 2000, NT, XP, Vista et 7
La définition de la variable CLASSPATH s’effectue par l’intermédiaire de l’outil Système
défini dans le Panneau de configuration.
En suivant les instructions de la section « Installation de J2SE SDK 7 sous Windows - Les
variables d’environnement », modifiez la variable système CLASSPATH et ajoutez, par
exemple, la valeur D: \Java\commun.

x:CT'k_>-
ClO
U

> Éditions Eyrolles 569

Le Uvre de lava premier langage

Sous Linux
La definition de la variable CLASSPATH s’effectue en modifiant le fichier /home/votre
Compte / .bashrc de votre compte utilisateur, en y ajoutant les lignes suivantes :
CLASSPATH =MeRepertoire\ouSeTrouvent\lesDi f f erentesXclassesN
aCompilerX.
export CLASSPATH

Exécutez, votre profil . bashrc en tapant la commande :
I . .bashrc

Exemple
Le fichier Compte. j ava est un bon exemple de programme utilise par des applications diffé­
rentes (voir à partir du chapitre 10, « Collectionner un nombre indéterminé d’objets », section
« Le projet : gestion d’un compte bancaire »). Pour éviter d’avoir à copier le fichier dans le
répertoire où se trouve l’application à développer, il est plus judicieux de le placer une seule
fois dans le dossier D:\Java\cortimun ou /horne/votreCompte/Java/commun selon
votre environnement.
De cette façon, lors de la compilation d’un programme utilisant un objet de type Compte, le
compilateur ne trouvant pas le fichier Compte . java dans le répertoire de l’application ira le
chercher automatiquement dans le re'pertoire commun.

ifiO
OL_>LU
T~{0 fN
@
,4-1
S I01
ClO
U

Développer avec NetBeans
Pour le lecteur débutant, nous conseillons vivement de commencer à développer vos
programmes Java en utilisant le mode commande avant d’utiliser NetBeans. En effet, avec
NetBeans, les programmes sont compilés au fur et à mesure que vous les écrivez. Cela facilite
bien évidemment le développement des applications, mais cela ne permet pas aux débutants de
bien maîtriser toutes les étapes de développement d’une application, notamment la partie
découverte des messages d’erreurs et leur cotTection.

Créer un projet Java
Sous NetBeans, toute application Java doit être écrite au sein d’un projet. Pour créer un projet,
sélectionnez le menu Fichier>Nouveau Projet de NetBeans.
Dans la boîte de dialogue qui apparaît, choisissez la catégorie Java et comme type de projet
Application Java. Cliquez ensuite sur le bouton Suivant.

570 © Éditions Eyrofles

Game d’lnsiailailoas

y)
OL_>
LU
LOrHOfN
®

N o u v e a u p ro je t

É t t p e s

1 . S é le c t io n n e r u n
p r o je t

2. . ..

A id e

S é le c t io n n e r u n p r o je t

C a té g o r ie s

Java
Maven
M odules N etb ean s
E x e m p le s

P ro je ts :

A o p ä sa ro n Java
â é Java D esktop A ppitcaiion

Bibliotnèque d e c la s se s Java
P ro jet Java avec d e s so u rces ex istan tes
Java Fre e -Fo rm Pro ject

D e s c r ip t io n :

C r é e u n e a p p i ic a t io n J a v a S E d a n s le p ro je t s ta n d a rd d e T ID E . V o u s p o u v e z
a u s s i g é n é re r u n e c la s s e p r in c ip a le d a n s le p ro je t. L e s p ro je ts s ta n d a rd s
u t il is e n t u n s c r ip t A n t p o u r c o n s t r u ire , la n c e r e t d e b u g g e r v o tre p ro je t.

f < P ré cé d e n t { S u iv a n t > ^ T e rm in e r (A n n u le r)

F ig u re A -49

Une nouvelle boîte de dialogue apparaît, nommée Nouveau Application Java (voir figure A-49),
1. Entrez le nom du projet en première ligne (ici, Cercle).
2. Spécifiez le répertoire d'enregistrement du projet en cliquant sur le boulon Parcourir, ou

conservez les valeurs par défaut proposées par NetBeans.
3. Créez la classe principale, nommée ici introduction.Cercle. Le premier terme

Introduction indique le nom du package au sein duquel est enregistrée la classe
Cercle.java.

Remarqiie La notion de package est abordée à la section « Où se trouvent les programmes créés sous
NetBeans ? » ci-après.

oi'k_5-
C lO
U

I Éditions Eyroües 571

le üure de la va p rem ier langage

A ~ n
E ta p e s

1. Sé lettionner un projet
2 . Nom et em p lacem en t

Nom et e m p lacem en t

Nom du projet. Cercle

Emplacement du projeti /Users/AnneTjN etBeansPrcijects

D ossie r du projet: /Users/AnneTyN etBeansPro jects/Ccrde

□ Use Dedicated Folder for Storing Libraries

Libraries Folder

D ifferent users and projects can share the same
com pilation libraries (see Help for details).

C Parcourir...)

Parcourir..

Créer une c la sse p r in c ip le | Intfoduction.Cercle

2 ! D éfin ir comme projet principal

(Aide) (< Précédent) ' Suivant > (Term iner) (Annuler)

F ig u re A -5 0

4. Cliquez enfin sur le bouton Terminer pour créer et enregistrer le projet. NetBeans affiche alors
un ensemble de panneaux (voir hgure A-51), dont celui correspondant à la clas.se Cercle.

t/i
(U

>-
LU
LO

O
rs|

@
J“
g i
>.Q.O

U

O-~1 flghrei'i I
r C e r c l e

r ^ P â c S f ïg e s d e s o u r c e s » Ëj iniroiitcMn
C e r d e . i a v e ̂Qg Bib*io№èques

572

Ol
ti ^

23
4 i-
5 E7 ̂e9

LO1112
13
1415
16
17
IS
1920

/*
* To c h a n g e t h i s t e m p l a t e , c h o o s e T o o ls | T e m p la t e s
* a n d o p e n t h e t e m p l a t e i n t h e e d i t o r .*/

p a c lc a g e i n t r o d u c t i o n ;

/**«
* V s u th o r AnneT

p u b l i c c l a s s C e r c l e {

/**
* i p a r a a a r g s t h e command l i n e a r g u m e n t s
•/

p u b l i c s t a t i c v o id a i a i o (S t r i n g !] a r g s) {
// “ ODD c o d e a p p l i c a t i o n ' . o g i c h e r e

}

F ig u re A -51

© Éditions Eyrolles

Game dbisiaiiaiiDns

Le panneau Projets, situé dans la partie gauche de renvironnemenU indique les noms des
fichiers inclus dans le projet en cours. Le panneau central constitue le panneau principal dans
lequel vous allez écrire votre programme.

Écrire un premier programme Java
Comme le montre la figure A-51, la fenêtre d’édition s’affiche au centre de l’espace de travail
avec quelques lignes de code. NetBeans a écrit pour vou.s le .squelette général de la classe
Cercle avec sa fonction main (), à vous de la compléter ensuite.
Si vous le souhaitez, vous pouvez supprimer les lignes de commentaires proposées par
NetBeans.
Nous vous proposons de recopier la classe Cercle décrite au chapitre introductif,
« Naissance d’un programme », section « Un premier programme Java ».
Lorsque vous saisissez les instructions observez que :
• si vous faites une faute, NetBeans vous la signale immédiatement en la soulignant d’un

trait rouge et en affichant une marque sur le côté gauche de la fenêtre d’édition. Si vous
passez le curseur de la souris sur cette marque, une infobulle apparaît avec la raison de
l’erreur (voir figure A-52) ;

• lorsque vous saisissez le signe . (point), ptu" exemple après System, et que vous marquez
une pause. NetBeans propose une liste dans laquelle vous pouvez choisir un nom de
méthode ou de variable ;

UJ
so
O
fN

@
JZCT'k->-Q.O
U

2
3
4

5
6
7
8
9

10
11
12
13
1 4
15
16
17
18
19

p a c k a g e c e r c l e ;

oN
22
2 3
2 4

© Éditions EyroHes

le
A .

S e c t i o n
i - t « e :

tr r-jer
Cer- _e

- d p-'0‘ -
o e j a a

i m p o r t j a v a . u t i l . * ;
p u b l i c c l a s s C e r c l e <

p u b l i c s t a t i c v o i d a a i a t S t r i n g | | a r g u m e n t) (
d o u b l e u n R a y o n , l e P e r i m e t r e ;
C f l a n n a r >«>"«• m r e C l a v i e r ■ n e w S c a n n e r (S y s t e m , i n) ;

n t (; y o r) ;
u r e C l a v i e r . n e x t D o u b l e () ;
2 * H a t h . P X * u n R a y o n ;

cannot find symbol
symbol : variable System
location: class java.utlLScanner

Ifçtur.içÇlsyier
S y s t e m . o u t . p r i n t { L o
S y s t e m . o u t . p r i n t l n (

r c _ e
p o r

u n R a y o n] ;
l e P e r i m e t r e) ,

F ig u re A -5 2

573

Le Bvre de lava Dremler langage

• lorsque vous cliquez sur une variable ou sur un nom de méthode, NetBeans surligne en
jaune toutes ses occurrences dans le fichier ;

• la sauvegarde du programme (CtrI+S) entraîne la compilation de l’application.

Exécuter une application Java
Pour exécuter une application, cliquez sur Picône représentant une flèche verte située au
centre de la boite à outils de NetBeans ou tapez sur la touche F6 de votre clavier.

l ï^ O m p u t - C e r t t e (r u n)
i n i t i
d e p s - j a r :

U c o m p i l e :
r u n :
V & le u r d u r a y o n : |

F ig u re A -5 3

L’exécution de l’application Cercle s’effectue dans la fenêtre Sortie qui apparaît au moment
de l’exécution (voir figure A-53). Il est possible de ;
• stopper l’exécution de l’application avant qu’elle ne se termine d’elle-mênie, en cli­

quant sur l’icone représentant un rectangle rouge .située sur le côté gauche de la fenêtre
Sortie ;

■ relancer l’exécution de l’application en cliquant sur les deux flèches vertes situées sur le
côté gauche de la fenêtre Sortie.

i/)
OL_>LU
T~{0 fN
@
..i-ix:01'k_>-Q.OU 574

OÙ se trouvent les programmes créés sous NetBeans ?
Lorsque vous créez un projet sous NetBeans, l’application crée d’elle-même un répertoire
portant le nom du projet, sous un répertoire de travail nommé NetBeansProjects. Ce
dernier est créé par défaut dans votre répertoire personnel.
Il est possible de modifier le dossier d’enregistrement du projet en cliquant sur le bouton
Parcourir de la fenêtre Nouveau Application Java (voir figure A-50).
NetBeans crée ensuite, à partir du répertoire racine du projet (par exemple, .../NetBeans
Projects/Cercle), une arborescence de fichiers contenant notamment les répertoires
build et src.
• Le répertoire build contient tous les fichiers compilés du projet, e’est-à-dire ceux

d’extension .class,
• Le répertoire src contient tous les fichiers sources du projet, e’est-â-dire ceux d’extension

. java.

© Éditions EyroHes

Guide d’bisialladons

ifiO
Ol_>LU
T~{0fN
@̂
<u-ix:01’k_
ClO
U

Ces fichiens sont enregistrés sous chacun des répertoires build et src, dans un sous-réper-
toire dont le nom correspond au nom du package au sein duquel ils ont été créés.
Ainsi, par exemple, le fichier Cercle .java défini au sein du projet Cercle et du package
introduction se trouvera dans le répertoire D:\NetBeansProjects\Cercle\src\
Introduction ou /hoine/votreCoitipte/NetBeansProjects/Cercle/src/
Introduction selon votre environnement.
Rien ne vous interdit d’utiliser ces fichiers pour les compiler ou les exécuter avec un autre
outil de développement.

Importer un fichier Java

À l’inverse, vous pouvez copier des fichiers de classe développée par ailleurs, dans un réper­
toire correspondant à un projet NetBeans. Il convient alors de :
• placer les fichiers d’extension . ja v a dans le répertoire nom DuProjet/src/

nomDuPackage;
• insérer au tout début des fichiers importés l’instruction définissant le nom du package où

ils sont enregistrés, par exemple :
I package Introduction;

Regénérer un projet Java (refactoring)

U est possible de modifier le nom d’une classe appartenant à un projet en cours de développement.
1. Effectuez un clic droit sur le nom de la classe à modifier dans la fenêtre Projets.
2. Dans le menu contextuel qui apparaîl, sélectionnez Refactorer, puis Renonmier.

^ Renommer Classe Cercle

Nouveau nom: CompterOesCercles

Appliquer Renommer aux commentaires

(Aperçu) Refactorer (Annuler ') (Aide)

F ig u re A -5 4

3. Dans la fenêtre Renommer NoniDeLaClasse qui s'affiche, saisissez le nouveau nom de la
classe et cliquer sur le bouton Refactt>rer.

Toutes les classes du projet qui utilisaient l’ancien nom de la classe vont être automatiquement
modifiées.

> Éditions Eyrolles 575

le livre de lava Diemler langage

l/>d)

>-
LU

OfN
@
JZCT

Grâce au refactarin g , il esl également possible de copier une classe d’un projet vers un autre
projet.

1. Effectuez un clic droit sur le nom de la classe dans la fenêtre Projets,
2. Dans le menu contextuel qui s’ouvre, sélectionnez Copier.
3. Dans la fenêtre Projets, effectuez un clic droit sur le nom du package associé au projet au

sein duquel vous souhaitez copier la classe,
4. Dans le menu contextuel, sélectionnez Coller, puis Refactorer Copier.
5. Modifiez éventuellement le nom de la classe Èi copier et cliquez sur le bouton Refactorer.

La classe fait ensuite intégralement partie du projet et du package correspondant.

Développer des applieations Android avec Android Studio
Grâce à l’IDE Android Studio proposé par Google, il esl possible de développer des applica-
tion,s Android de façon conviviale.

Installer VIDE Android Studio

Une fois le fichier d’installation and^raid-studio-ide con-espondant à votre sy.stème
d’exploitation téléchargé depuis l’extension Web, déplacez-le sur le Bureau de rordinateur.

Uinstallation

I, Double-cliquez sur le fichier d’installation, une fenêtre d’installation Android Studio
Setup apparaît, cliquez sur Next.

> Ar>droid Studio Setup

A n d r o i d
Studio

n

W e l c o m e t e A n d r o id S t u d i o S e t u p

Setup wfl gude you through the nstaletion of Arxlroid
Studio.

It s recoinniefxled that you dose e l other appketions
before starbng Setup. Ths wfl Rialte it possiile to update
relevant system fles without havng to reboot your
computer.

Okh Next to continue.

<Bdck Next> Caixxl

F ig u re A -5 5

ClO
U

576 © Éditions Eyrotles

Guide iThtsiaiiadofls

2. La fenêtre d'installation vous propose de choisir les composants que vous souhaitez ins­
taller. Choisissez les composants à installer par défaut en cliquant sur Next.

Andrwd Studio Setup I K
Choo«e Coinponenis

Owose whkh features ofArdroid Studu you want toinstal,

Oieck the components you want to inst^ erd i^Kheck the componenis /ou don't want to
ra ta l, didc f4ext to contirxie»

Select components to ra ta l:

Space reqwed: 4.3C6

Android Studio
E l AndrodSDtt
E l Android Vrlual Devks
E l Performance OntdiSHAX

Desmptbn
Pwiteft you- fftouse
pver a ciWHWcwi to
ic e rts (tescnption.

Next > Caned

F ig u re A -56

3. Acceptez les tenues de la licence en cliquant sur le bouton T Agréé.

Android StLufio SetupE d L icero e Agreement
Ptease review the ücense ternis before ra tah ^ Android S tu ^ .

ifi
Oi_>
LU

T~{O
(N

@

Presç Page D ow to see the rest of the a y cemen t

To get started with the Android S fX , you rnust agree to the fslowing tenr« and
condbons.

Ths B the Andfoid SDK Ucense Agreement Clf>e license Agreemenf).

1. Inlroducbon

L 1 The Am:k^ SOK [referred eq n the License Ayeement ad the *SOiC and spedfic^ly
rxiudng the Arxkoid systorn lies, packaged APIs, and SDK ttvary fles and tools, if and
when they are made avadable) is kcensed to you subject to the terms of the License
Ayeement. The License Agreement Ibnns a legalv betdeig contract between you and

If you accept the terms oF theagreefnent, d c k l Agree bo continue. You must accept the
ayeemen c to rata l Android S tu ^ .

<&ack ~][tAyee C«Kej

F ig u re A -5 7

oi'k_>
ClOU

> Éditions Eyrolfes 577

Le liv re de la va p rem ier langage

4. Vous pouvez changer le répertoire d’installation de l’environnement en cliquant sur le
bouton Browse...

5. Cliquez sur le bouton Next pour lancer l’installation.

Andr(><(i Stu<jio Setup S

m

C c r f ig m l io n SeMin g i
Instai Locaborts

Androd Studio Instaiation Location

The location specified ru s t have at least S(M№ of free space.
Ckfc Browse to customize:

C:tprogram fitesWidroidiAndroid Studio

Android SDK Instaiation Location

The location specified must have at least 3.2GB o f free space.
Click Browse to customize:

C:ipsers'Mc«t\AppOatai|.ocal\AndroidÍ5(k

< Bad i

[_ Browse.,

Browse...

Next > Caned

F ig u re A -58

6. Vous poLivez accélérer les performances de l’émulateur propose par TIDE en augmentant la
mémoire allouée par l’application. Un minimum de 2 Go est tecoinmandé. Cliquez sur Next.

I A rx jrr^ Studio Setup

ifi
Oi_>
LU

T~{0 fN
.4-1x:01'k_>
ClO

U
578

0 1

CM^KMVdion SeititMi*
Emulator Setup

We have detected that your system can run the Android enuiator n an accelerated
per formance mode.

Please set the ma»njTi amotrt of RAM avalable for the Intel Hardware Accelerated
Manager (HAXM) to use for al x86 emulator nstances.

you can change these settings at any tine. Please refer to the Intel HAXM Doounentalwn
for more information.

• ttecommended: 2 G8
■ Custom; 2 G8

•This vakie must be between 512 № and 5 GB

Mote: Setbng ahde a large memory reservatioo may cause other proyams to run skiwly
when usng the xS6 Android emolalor with HAXM,

<Back II Next> ~| | Cancel |

F ig u re A -59

© Éditions Eyroliss

баие d’hisiailailDns

7. Après avoir choisi votre répertoire de lancement de l’application, dans le menu Démarrer,
cliquez sur Install.

□ Ë t
S3

C h o o se Start М ели fo ld e r
C tw se a Stait Мели foWer Px the Anckod Studo shortcuts.

Select the Start Menu folder in which you would Uce to create the program's shortcuts. You
can also enter a name to a e a ts a new fblderr

Android Studio

7-Zp >
AK«sories
Attnnstrative Tcob ÉJ
Adobe UveCvd^ ES2
Adobe Master Cdecdon CS6
AefiaGames
BatSe.net
Belbeida Sofhwries
Bodi-Force
COeaner
Centre Souris et Claviers Microsoft
^ Do rKt create shortcuts

< Bade 1[In stjl i I Caned |

F ig u re A -6 0

8. Le programme d’installation démarre, cliquez sur le bouton Next lorsque l’installation est
terminée.

ifi<U

>-
Ш
KOrHOГМ
@
JZ
g i'u.>.Q.O
U

Ш Android Studio Setup

e n h sl ailing
Please well whée Android îtudo в berg nsialed.

Extractrg SOK.. 26% (962 / 36« ra)

Show de tails

■ B»dt If Neiit> 1 ! caned

F ig u re A-61

© Éditions Eyrolles 579

Le Hure de lava premier langage

9. L’installation est terminée, vous pouvez clk|uer sur Finish.

Android Studio Setup

 ̂ — C o m p le t in g A n d r o id S t u d i o S e t u p

Android Studto has been nstaled cxi your computer,

A X
Obdc firish t3 dose Setup.

Start Androtd Studki

A n d r o i d
n

Studio
1

1

1
(B ad ! 1 Finish | Cancel |

F ig u re A~62

10. L’application Android Studio lancée en fin d’installation propose d’importer les paramè­
tres d’une éventuelle version précédente. Sélectionnez La puce correspondant à votre
situation et cliquez sur O K.

A C o m p le te Insta llatio n ES

You can irv o r t yocY settm gi from a previous version of Stud« .

I w ant to ««port my settings from a custom location

Specify confrg folder or n sta lab on home o f the previous versian o f Studo:

o I do not have a previous version o f Studo or I do not w ant to m port my settings

U)<D F ig u re A -6 3

>-
LU

o
fN

@
gi'i_>-Q.Ou

580 © Éditions Eyrotles

Game d'Hisiaiiailons

L’applicalion met à jour un certain nombre de composants. Cette mise à jour prend quel­
ques minutes. Elle est terminée lorsque vous pouvez cliquer sur le bouton Finish.

^ Àndroid Studio Setup Wizard 10 @ a I

Downloading Components

A n d r o i d S D K w a a t n a t a l l a d t o C ' A U » e t a \ H o a o \ A p p D 4 c a \ L o c a l \ A n d r o i d \ d d k

I n d t a l l l f i g A r c h i v e s :
F r e p e r l n d t o I n s t a l l a r c h i v e s
I n s t a l l i n g S M C E l a t f o n s A n d r o i d € . 0 . A P I 2 3 , r e v i s i o n 2

F a i l a d CO r e n a m e d i r e c c o x v C A U » e r s \ H c s t \ A p t i ^ a c 4 \ L o c a l \ A t d r o i d \ s d k \ p l a t f o c s i s \ a a d r o i d - 2 3
t o C : \ U s e r s \ I l G a c \ A p p D a t a \ L o c a I \ A n d r o i i l \ a d l f \ t « s < ! \ R M i o t e P l a t ; c r « P l f g I n f o . o l t l 0 1 .

S D K K a n a g e r : f a i l e d t o i n s t a l l
- ■ W a r n i n g • * -
A f o l d e r f a i l e d t o b e m o v e d . O n K i n d o w s t h i s c y p i o a l i v m e a n s t h a t a p r o g r a m i s u s i n g

t h a t f o l d e r < £ o r e z a z p l e K r n d o w s E x p l o r e r o x y o u r a n r i - v i r u s s o f t w a r e .)

F ig u re A -6 4

Télécharger les SDK Android via Android Studio

Une Ibis installée etiancée, l’application Audroid Studio présente un écran d’accueil comme
ci-après (voir figure A-65). Pour accéder à TIDE de programmation, sélectionnez l’item
« Start a new Android Studio project ».

Remarque Tout comme avec TIDE NetBeans, le développement d’applications mobiles sous Android Stu­
dio s ’effectue en mode projet. La création d'un projet sous Android Studio est décrite
chapitre 13 « Développer une application mobile », section « Bonjour le monde : votre pre­
mière application mobile ».

ifi

>
LU
KO
OrN
@
oi'k_
Q.O
U

Android Studio est constitué d’une fenêtre d’édition du code avec coloration syntaxique et
surtout d’un éditeur graphique représentant le dispositif {smatphone, tablette, TC...) pour
lequel vous souhaitez développer une application (voir figure A-66). Vous pouvez passer en
mode Text et/ou Design en cliquant sur l’onglet (situé en bas au centre) correspondant.
Pour développer une application sur un dispositif en particulier, vous devez télécharger le
SDK correspondant, via Android Studio. Pour cela, rendez-vous dans le menu Tools et sélec­
tionnez Android SDK Manager.

> Éditions Eyrolfes 581

le üure de la va D rem ler langage

3 A n d r o id S tu d io S e lu p W iz a r d

m Welcome to Android Studio

1i«ent Prpjects

N o P ro je c t O p e n V e t

Q u ic k S ta r t

S ta r t a i w r A n d r o id S t u d t o p r o j r K t

O p e n i n a o t i n ç A n d r o id S t u d io p ro je c t

V C 5^ C ̂ 1 (<kj1 pf oiect from Vorston Controi

m rmpDit project (Eclipse ADT. etcj

s e Impod an Android codesarnpie

,4 ̂ Cmfîswt

1^ D o e s J i> d K o w - î o s

«
«

5lu<)ia Cn»ck ^ upd^:4 rvn.

F ig u re A -65

Remaraue Un SDK {S o ftw a re D e v e lo p m e n t K it o u Kit de développement logiciel) est une boîte à outils qui
faciiite le développement d’applications en proposant des bibliothèques de fonctions spécifi­
ques au matériei (fabiette ou smartphone) sur lequel elles seront exécutées.

v e s W in d o w H e lp

(J)<D

>-
LU

O
fN

@
JZCT
>-Q.O

U
582

T a s k s & C o n te x ts

G e n e r a t e J a v a D o c .. .

N e w S c ra tc h F i le .. .
ID E S c r ip t in g C o n s o le

*■ s]

ûâ8N

C r e a t e C o m m a n d - l in e L a u n c h e r .. .

G ro o v y C o n s o le . . .

» A n d ro id

Maven Projects

o i = I

There are no Maven pro

»% N a v ig a t io n E d ito r

i S y n c P ro je c t w ith C r a d le F i le s *
A n d ro id D e v ic e M o n ito r ,

18. A V D M a n a g e r

n S D K M a n a g e r

 ̂ </ E n a b le A D B In te g ra t io n
<5 T h e m e E d ito r

F ig u re A -66

© Editions Eyrolles

6uMe d’HisiallailDns

Le panneau Default Settings apparaît, cochez les cases correspondantes au SDK que vous
souhaitez installer (ici Android 6.0 et Android 2.2).

 ̂DeféMH
(5!

A p p « № H K e 6 i B e h a v i o r
A p p e a r a n c e
M e n u s a n d T o n l b a n
S y s t e m S e t t in g s

P e s f w g r d s
H T T P P r i3 « y
U p d a t e s
Usage Statnbes

N o t i f k a t io n s
Q u ic k L r r t s

K e y m a p
E c B t o r
P lu g in s
B ir l t d , C x e o r H o a D e p t o y m e n t
T o o k

A p p e a r a n c e & f i r i i a v i o r * S y s t e m S e t t i n g s » A n d r o id S D K

h t a n a g e r f o r t h e A n d r o id S D K a n d T o o ls u s e d b y A n d r o id S t u d io

A n d r o id iX>K L o c a t i o n : C : \ U s e r s \ N o s t \ A p p D a t a \ L o c a l\ A n d r c H d V s c lk

S D K P la t f o r m s S O K T o o h S D K U p d a t e S ire s

E a c h A n d r o id S D K P la t f o r m p a c k a g e in c lu d e s t h e A n d m ^ p la t f o r m a n d s o u r c e s p c r t a t r i l n g t o a n A P I le v e l b y
d e f a u l t . O n c e irv s ta t le d , A n d r o id S t u d io w i l l a u t o m a t i c a l l y c h e c k f o r u p d a t e s . C h e c k " s h o w p a c k a g e d e t a i l s ' t o
d i s p la y in d iv t d u a i S D K c o m p o n e n t s .

N a m e A P I L e v e l R e v w jo n
Q A n d r o id 6 J } 2 9 2 u p d a t e a v a i l a b le
O A n d r o id S i d 2 2 2 N o t in s t a l le d
D A n d r o id S D l 21 2 N o t in » t a l le d
□ A n d r o id M W . ; 2 0 2 N o t im ^ ta lle d
Q A n d r o id 4 A .2 1 0 4 N o t k t s t a l le d
r n A n d r o id 4 ,3 .1 1 8 3 N o t in s t a l le d
Q A n d r o id 4 1 7 3 N o t in s t a l le d
Q A r d r o i d 4 1 1 1 6 5 N e t i n s t i l l e d
Q A n d r o id 4 J } J 1 5 5 N o t in s t a l le d
1 1 A n d r o id 2 X 6 i N o t m e ta l le d
Q A n d r o id 2 2 8 3 N o t in s t a l le d

l a u n c h S t a n d a lo n e S O K M a n a g e

Q S h o w P a c k a g e D e t a i ls

P r e v ie w p a c k a g e s a v a i l a b le ! S w i t c h t o P r e v ie w C h a n n d t o s e e th e m

F ig u re A -6 7

Piitientez un certain temps (entre dix et vingt minutes). Lorsque la fenêtre confirmant
l’installation des differents SDK apparaît, il est temps de créer votre propre émulateur.

^ S D K Q u i c i c f ï x I m U l l a t i o f l £S

i/i<D

>-LU
r-HOfN
@
JZoi
ClO
U

© Éditions EyroUes

Installing Requested Components

SDK Path: C:\Users\Noit\AppDat4VL&C6M.ndroid\sdk

Leading SDK i a f o r u t l o n . . >

I n P T d l l i n g A r c h i v e s :
P r e p a r i n g t o i n a t a l L a r c h i v e s
I i L B C A l I i n g S D K P l a t f o r n A n d r o i d 2 . 2 r A P I G , r e v i s i o n S

I n s t a l l e d S D K P l a c f o r m A n d r o i d 2 . 2 , A P I d , r e v i s i o n
D o n e . 1 p e c k s g e i n a t e l L e d .

Figure A -68
583

le livre de lava premier langage

Créer un émulateur Android
Une fois les SDK installés, il convient de créer un énuilateiir Android afin de vérifier le bon
fonctionnement des applications que vous développerez sous Android Studio. Grâce à cet
émulateur, vous testerez vos applications sans avoir besoin de connecter un dispositif Android
(smartphone, tablette...) à rordinatcur.
Pour mettre en place l’émulateur Android, sélectionnez AVD Manager dans le menu Tools -
Android.

VCS Window Help
Tasks & Contexts

Save File as Template,.
Generate JavaDoc...

New Scratch File...
IDE Scripting Console

► tiel

■DSN

Create Command-line Launcher...

Groovy Console...
R' Android

.raaveuninina saveffinrcancedTOier t>(savedlnstanceState);UR.tayaut.s cti vit/_n»in) ;Jr = (Toolbar) firdViewByld(R. id.tooUisr) LonBarttootbar):

Navigation Editor
f Sync Project with Cradle Files

Android Device Monitor
^ AVD Manager
Q SDK Manager

iButtOFi fab = (FloatingActionButton) find V Enable ADB Integration
T h em *» F H itn r

F ig u re A -69

I. Le panneau AVD Manager apparaît. Pour créer votre propre émulateur, cliquez sur Create
Virtual Device...

«n o Android Virtual Device Manager

Your Virtual Devices
Android Studio

OL_>

T (p e M ârrte fte s o lu t ra n API T a r g e t CPÛ ASI S ia e o n D is k Actions

El E m u lâ t e u r . . . H 4 0 x 2 . . . 8 G o o g le A P f$ a r m 1 2 6 M B ►
t / iO E Nexus 5 . lO S O X 1 . . 2 3 G o o g le A P Is x 8 6 7 5 0 M B ► r »

cOT~{OfN
@
jT01'k_
Q.OU

584

-f C re«e VI rtual Device...

F ig u re A -70

a

© Éditions Eyrolles

Culile d'iitsiallailons

2. Le panneau Virtual Device Configuration apparaît. Sélectionnez le smartphone que vous
souhaitez émuler (ici Nexus S), puis cliquez sur Next.

« V l r T u a l D e v i c e C o n f lg u r & t iQ n

Select Hardware
C h c to & e a d e v t c e d e f ln l t E o n

T . . . N e x u s O r e

W . . N e x u s 6 P

T V N e x u s e

N e x u s S K

N e x u s 5

N e w H ard < A ia r& P r o E t le

Hesolütwn Ognsity
[7 J N e x u s S

4 f l 0 x 6 0 0 lid p E

1 4 4 [) x 2 . S B O d p i

37"

5,7"
5 , 9 6 '

57"

4 , 9 5 ' 1 0 8 0 x 1 , , , x x h d p i

Im p o r t H a r d w a r Ë P r o h J e s

1 4 4 0 x 2 . . - 5 - 6 0 d p i

1 0 8 0 x 1 4 2 0 d p i

0

S t z e n o r m a l
R a t io , io n g 800i№ Density: hdpi

IßJ I C l o n e P e v k g - . .

C a r e « ! i P r e v io u s - N e x t F i n i s h

F ig u re A~71

3. Choisissez T image system, sachant que celle con-espondant à la release Marshmallow est
la mieux adaptée.

« n fl Virtual Device Configuration

U)<D

>-
L U

VUrHO
(N

@
oi
ClO
U

System Image
S&kci a system image

Itelease Name

M a r s h m a l l o w 23 k86
Froyo 8
Proyo 8
éclair (Deprecated) 7
Eclair (Deprecated) 7

armeabi

a r m e a b i

armeabt
armeabi

S h o w d o w n l o a d a b l e s y s t e m i m a g e s

Target i

[A n d r o r d B .Q (w i t h a j M a r s h m a l l o w

Android 2.2
Android 2.2
Android 2.1
Android 2.1

AFi Lrwl
2 3

^ Android

6.0
G o o g le I n c

System Inwge

x 8 6

Q u e s t i o n s o n A P I l e v e l ?
See the API level distribution chart

V

C a n c e l

F ig u re A -7 2

© Editions EyroUes

F i n i s h

585

le liv re de la va p rem ier langage

4. Nommez voire émulateur (ici, <•< The Nexus S API 23 ») et choisissez les paramètres par
défaut pour l’orientatiou... Terminez en cliquant sur Finish.

V lr iL ia J O e v ic e C o n ñ c jL i f a t lo f l

^ Android Virtual Device (AVD)
/ ^ \ VerifyConflgurailûiii

N a m e S A P I 2 3

Nexus S 4,Cr 4S0x800 hdpi

Marshmallow Android 6.0 x86

C h a n g e . . .

C h a n g e . . .

S c a le ; A t t o

1)

Show A d v a iK e d S e t t in g s

AVD Naine

The name of this AVÜ-

F ig u re A -73

C a n c e l P r e v io u s N e x t ^ F t iv is h

Remaraue Le nom de l’émulateur ne doit pas contenir de caractères spéciaux (-, +, /...), ni d'espace.

5. La fenêtre Android Virtual Device Manager apparaît à nouveau avec l’item corresprmdant
à votre émulateur (ici, <-LThe Nexus S API 23 ») sélectionné. Fermez le panneau, pour
accéder à ITDE Android Studio.

6. Lors de la première compilation, le panneau Device Chooser apparaît. Sélectionnez la
puce Launch emulator et le dispositif The Nexus S API 23 dans la liste proposée. Pour
finir, cliquez sur OK.

ifiO
O
>

L U

T~{0 fN
@
x :01
>•
C lO

U
5B6

« n o Device Chooser

Choose a running device

Device

0 Launch emulator

State
Nothing to show

Compatible Serial Number

Android virtual device : Em ulateur Nexus avec Froyo
N exus S API 23 x86

Use sam e device fo r future The N e K u sS A P I Z3

? Cancel ■ (■— OK

F ig u re A -74

© Éditions Eyrotles

Guide d'htsianadons

7. La fenêtre d'émulation du smartphone apparaît, vous pouvez vérifier le bon fonctionne­
ment de votre application.

A i _______________________________^
! 6oj)jourLeMt)nde
I U n e t c u te p r e m iè r e lïp p Ifc s t io n d n tfr a id

F ig u re A -7 5

Votre environnement de programmation d’applications Android est prêt. Pour créer et déve­
lopper vos propres applications, reportez-vous au chapitre 13, «Développer une application
Android ».

tf)(U

>-
LJJ

T-tOfN
@
oi
ClO
U

© Éditions Eyrolles 587

inй)

:>■ш
iû
TH
ОrN
@
Ol
>■Q.OU

Index

Symboles
.class 25
•java 24
= 50

if)
ÔL->LU
T~{0fN
@
..i-ix:01'k_>Q.OU

accès
données 211
en consultation 238, 284, 313
en modificaiion 208, 238
méthode 212

accesseur 238
accumulation 112, 115, 122, 133
action 358
actionPerformed 408
adresse 10, 15, 192, 203, 233
affectation 47, 51,63
afficher 16
algorithme 5, 8, 31

paramétré 144, 161
analyse descendante 6
Android

AndroidManifesl 502
background 493
Bundle 487
CheckBox 499, 503
drawable 485
fiil_pai ent 482
finishO 505
id 493
Image View 499
Intent 501
isCheckedO 504
layout 483, 487
Lt>g.i() 505
opcnFileInpiit() 506
orientation 499

> Éditions Eyrol/es

readO 506
■setCheckedO 507
,setContentView() 487
setOnClickListenerO 496
tActivity 489
text 494
tfindViewByldf) 496
Toast 497
values 485
view 490
wrap_conteni 483
wrileO 505

Android Studio 476, 535
installation 576

A ndroid;padding Bottom 484
Android:paddingLeft 484
Android:paddingRighl 484
Android :paddingTop 484
application 209

exemple 212, 230,236, 239
multifichier 213

archivage 324
AtTayList 437

syntaxe 306
Voir liste 306

ASCII 42
attribut 216
AWT package 308

B
bibliothèque

Voir package 308
binaire

Voir code 22
bloc 21

iCdsc 98, 104
instruction 88, I 10, 143, 167, 171, 185

589

le livre de lava Diemier langage ImteH

l/i
Oi_>•LU
T~{0 fN
@̂
<u-isz01'k_>-Q.OU

Bbc-notes 329
boolean 40
boulon

Vb/>Classe Button 359
break 101, 104

Voir switch 98
BitltonGroup445

add() 446
byte 43, 100

Canvas Voir classe
exemple 352

case
meinoire 10, 15
Voir switch 98

cast 58, 61, 121, 129, 309, 332
exemple 58

caicli 336
Voir Exception 334

char 40,49, 63
classe 19

abstraite 407
Array List 307

add() 307, 308
clearO 307
getO 307, 309
indexOfO 307, 311
îastIndexOfO 307
removeO 307
sijieO 307

Bnffei-edReader 325
readLineO 328

BufreredWriter 325
close() 328
newLineO 327
writeO 327

Button 359
Canvas 352

exemple 357
paintO 353
setbackground() 353

590

setCursorO 353
setForegroundQ 353

Checkbox 381
Collection 315
Color

brighterO 356
darkerO 356
dilterentes couleurs 381
setColorO 357
white 353

définir 205
dérivée 247
Frame 35 L

add() 354
addWindowLislenerO 367
sctBackgroundO 351
setSizeO 351
setTîlleO 351
setVisibleO 35 !

Graphics 353
drawStringO 386
iillOvalO 381
fillPolygonO 354
fillrecK) 386

HashMap
get()3l2, 314
put()312, 314
remove!) 312, 315
sizeO 312
values!) 315

Integer
parselnt!) 124, 126, 281
loSlring 130

Iterator
liastiexL() 315
next!) 315

J Fra me
gelContentPaueO 371, 377

JPanel
paintComponentO 372,439

Locale 79
Malh

abs!) 145
ceilQ 145

© Éditions Eyroiies

Index le livre de Java premier langage

ôL_:>■
L U

L OT~{0 fN
@̂
<u-isz01'k_>-Q.O

U

cos() 145
exemple 146
cxpO 145
lloorO 145
logo 145
maxO 145
inin() 145
PI 17
powO 82, 145, 149
randomO 135, 145, 148, 296, 355
sinO 145
sqrtO 82, 105, 145, 148, 150
tan() 145

ObjecllnputSlream 331
closeO 332
reaclObjectO 332

ObjectOuipulSireaiii 331
closed 332
writeObjectO 331

Panel
addO 360
acldAclionListenerO 364
exemple 360
repaintO 366

Runnable 406
Scanner 16, 77, 120

nextO 81
nextIntO 81

String 122, 19 i
charAtO 194, 196,282,313
conipareToO 198. 200
concatO 201, 202
endsWithO 194, 196, 197
equals(l 198
equalslgnoreCaseO 198, 200
exemple 195, 198, 201
indexOfO 194, 196, 197
lastIndexOfO 194
lengthO 201.202. 327
region Matches!) 198, 199
replaced 201
starts WithO 194
siibstringd 194, 196,218
toLowerCaseQ 201, 202

> Éditions Eyrol/es

toUpperCascd 201,202,313
valueOfO 327

StringTokenizer 343
super 247, 439
System

.in.readO 120. 121

.oiit.printO 16, 71, SI

.out.printlnO 73, 81
err 70
exiLQ 84, 368,428

TextField 387
getTextd 387

U1 Manager
selLookAndFeelO 376

WindowAdapter
wirdowClosingO 368

CLASSPATH 213
Linux 550
Windows 545

clé
Vuir dictionnaire 311

cmd.exe 75
code

binaire 13, 22
page 42, 75
pseudo- 22, 24, 213,214, 226, 231
source 22, 134
Unicode 128, 129

code-point 41
collection

stream 322
commande 25

java 23, 25
Javac 23, 24

commentaire 18
compilateur 22, 31
compilation

multifichier 213
comportement 207, 216, 235, 2S3
comptage 112, 133
concaténation 72, 122
condition 90
constante 241,450

5 9 1

le livre de lava Diemler langage Indea

ifi

><Ш
KOrHOfN
@
JZCT'k—>-Q.O
U

conslrucleur 285, 289
exemple 244, 245
par défaut 243, 249
surcharge 250

conteneur
Uj/'/ classe Panel 360

contrôle des données
exemple 238

couleur 450
Cp 1252 42, 75

déclaration
objet 209
variables 15, 16

default 102, 104, 254, 256
Voir switch 98

Design 396, 402
dictionnaire 31 I

dé 312,321
exemple 319

créer un dictionnaire 313
créer une clé 313
rechercher un élément 314
supprimer un élément 314

disposée 433
do...while 111, 132, 310

choisir 131
exemple I 17
syntaxe 112

DOS 70, 75
Double

parse DoubleO 409
toStringO 409

double 16, 43, 63. 148
drapeau 459

E
échanger 289

des objets 229
des valeurs 51
exemple 5 I

5 9 2

EDI (Environnement de développement intégré) 389
encapsulation 235
entrée-sortie 12, 69, 81
erreur

cannot find symbol class scanner 20
class not found 213, 308
else without if 95
expected 158
FileNolFoundException 327, 334
Identifier expected 160
Incompatible type for =. Explicit cast... 58
Incompatible type for method 149
java.lang.ArrayIndexOutOfBoundsExceplion 276
Java.lang.NumberFormaiException 125, 126
java.util.InputMismatchException 79
no constructor matching 249
NotSeriali/ableExceplion 330
undefined variable 170
UnsupportedEncodingException 75
variable in class not accessible 250
variable is already defined 298
variable is already defined in this method 154
variable may not have been initialized 47
variable not accessible from class 237

etiquette 101, 104
Vi;/r switch 98

événement 358
Action 423
has niveau 362
gestionnaire 408, 410,423
haut niveau 363
mouseEntered 426,427
moLisePressed 440
mouseReleased 440
.stirvol 425
Vütr Interface 362

EventListener 362
exception

Cla,ssNotFoundException 332, 336
exemple de capture 335
TOException 75, 126, 326
plaf 376

© Éditions Eyrolles

Index le livre de Java premier langage

i/i
ôL_:>■
L U

L OT~{0 fN
@̂
<u-isz01'k_>-Q.O

U

exemple
afretwiion 48
calcul de statistiques 62
cast 58
compter des cercles 227
compteur de monnaie 1 17
constmcteur par défaut 244
contrôle du rayon 242
de cercle

contrôlé 238
et fonction 156
objet 207,212
protégé 235
simple 19

déclaration 46
déclaration de tableaux 273
fonction mas() 159
fonctions mathématiques 146
gestion d’exception 335, 336
héritage 247
la classe

Arbre 355
Cursus 285, 307
DesBoulons 360, 364
DesBoutotisSwing 373
Dessin 352, 357
Dessin Swing 372
Etudiant 283
Fenctrc 350, 359
FenetreSwing 369
GestionAction 364, 374
GeslionClasse 289
GeslionCursus 309, 319, 332
GestionFenetre 367
GestionFichier 328
String 195, 198, 201
Triangle 353, 356

ligne de commande 280
lire un entier 125
nombre de Jours par mois 100
passage par valeur 179
quel code Unicode ? 130
résultat d’une fonction 181

> Éditions Eyrol/es

trouver le plus grand nombre 94
un sapin en mode caractère 296
variable

de classe 173
locale 171

visibilité 169
exitO 102, 296, 367
extends 246, 248, 255, 352, 360

exemple 247

F
fenêtre 350
licbier

d’objets 329, 433
exemple 328, 332
ouvrir 325
texte 325,437, 453

File
getSelectedFiieO 423
toStringO 423

final 241
Float

parseFloatO 432
toStringO 432

lloal 43
flux 324

de ficliier 324
entrant/soriant 324, 325

fonction 144
appel 150
corps 152
définition 151
en-tête 153
exemple 156, 159, 160
mainO 19, 1.56,209,406

en-têle 278
nom 147, 152
paramètre 148, 153, 159, 185
résultat 148. 158, 185
sans paramètre 160
sans résultat 158
type 155, 161

593

le livre de lava Diemier langage ImteH

1Л
Oi_>•Ш
Ю
0
(N

@
Д-1sz01'k_>-Q.O
U

ior 127,133,275
choisir 132
exemple 130
imbrication 292, 297
syntaxe 127

trame
exemple 350

gestionnaire d’événemenls 408, 41Ü, 423, 440
gel 240
geiBytesQ 75
getPropenyC) 74
getSelectedFileQ 423
getSelectedlteniO 424
gelTextO 409,421
Graphics

fillOvalO 441

H
Hamcrest 559
Hash Map

exemple 319
syntaxe 312
Voir die lionnaire 311

héritage 246
hexadécimale 43, 129

I
i- 128
i4-f 128
if-eise 89, 103

bloc 98
choisir 102
erreur 95
exemple 94
imbrication 96
syntaxe 89

Imagelcon 430
implements 2,53, 36,5

Act ion Listener 374
Scriaîi/abic 330

594

import 20, 77, 35 i
incrémentation 50, 115, 127, 128. 133, 226, 229
indice

Voir tableau 275
initComponentsO 408
initialisation 49, 121
Inspecteur 399,402
installation

Android Studio 576
Java SE 536, 545
NelBeans 550. 555, 561

instance 211
instructions 9. 10
iiit43, 63, 1 14, 120
interface 252, 365, 407

ActionListener 363
actionPerformedO 363, 364, 366
exemple 364

default 254, 256
graphique 358, 389
ItemLîslener 381

iteiiiStateChangedÜ 382
MouseLislener 362

nioiiseClickedO 362
mouscEnteredO 362
mouseExitedO 362
mousePressedO 362
niouseRdeasedO 362

MouseMotionListener 362
mouseDraggedO 362
TnouseMoved() 362

WindowLLstener 363, 367
exemple 367
windowActivedO 363
windowClosedO 363
windowClosingO 363, 367
windowDeactivedO 363
windowDeiconitiedi) 363
windowIconifiedO 363
windowOpenedO 363

interpréteur 22, 31,2)4
invokeLaterO 406

© Éditions Eyroties

Index le livre de Java premier langage

if)
ôL_>
L U

L OT~{0 fN
@̂
<u-ix:01'k_>Q.O

U

J
Java

paramètre 279
java 214
Java SE

installation 536, 545
Java.ulil 20,77
javac 213
J B ntt on 404

exemple 374
setToolTipTextO 447

JComboBox 416,424. 459
gelSelectcclItemO 424
model 417
PnpupWillBecnmeVisible 459
PopupWillBecomlnvisible 46Ü
sçletLedIndex 417

JDK 23, 349, 535
jeu de caractères 74
JFüeChooser 421

APPR0VE_,0PT10N 423
sliowOpcnDialogO 422
showSaveDialogO 462

J Frame 394, 418
del'aultCloseOperation 414, 419
DISPOSE 419
disposeO 433
exemple 370
EXrT_ON_CLOSE414
title 398,414.419

JLabcl 401
background 415
font 415
seticon 430
setTextO 430
text 414

JMenuBar435,45I
JMenultem 451
J Panel 418,435,438

exemple 372, 373
paintComponentO 439
repaintO 439, 443

> Éditions Eyrol/es

JTexField
Right 403

JTextField 403
getTextQ 409,421
horizontal Alignment 403
setTextO 409

JToggleButlon 445
setIcünO 446
setSeleciedO 446

JTooIBar 435,445
JUnit 559
ATVr 22

L
layout 484
length 294

Voir tableau 274
lengtbO

Voir String 202
ligne de commande 278
Linux 23, 76

CLASSPATH 550
PATH 550

liste
exemple 307, 309

Locale.FRENCH 79
Locale. US 79
long 43

M
Mac os 23, 121,279

TextEdit 329
mainQ 406
mémoire centrale 9, 31
méthode 144, 194

d’implémentation 243
get 240
invisible 242, 284, 288

exemple 242
métier 243
nextO 79
nextLine() 79

5 9 5

le livre de lava Diemier langage ImteH

1Л
Oi_>•Ш
ЮT~{0 ГМ
@
Д-1sz01'k_>-Q.O
U

sel 240
useLocaleO 79

modulo 53
Mouse

mouseEntered 426
mouseEntered 426, 427,440
mouse Released 440

N
NeiBeans 390,535

aciionPertormed 408
Aligner 404
Anehor 404
Ancre 404
code généré 405
Design 396, 402
Événements 408
Event 408
initComponentsO 408
Inspecteur 399,402
installation 550, 555, 561
mainO 406
Même Taille 404
Palette 398
pkig-in 559
projet 391,392,570
Propriétés 398, 403
Source 396

new 210, 248,273, 285,291
null2IO, 314, 329

objet 210
definition 193

octet 39
opérateur 63

!, &&, Il 92
+, ^ /, % 52
logique 92, 103
priorité 53
relationnel 90, 103

override 487

package 20, 77, 308, 394
java.awt 351
java.awt.event 364
java.io 324
java.util 308, 315
javax.swing 370

paintComponeniO 439
Palette 398
panel, exemple 364
panneau

Design 396,402
Inspecteur 399, 402
Palette 398
Propriétés 398, 403
Source 396

paramètre 142
formel 154. 179. 181,230, 366
objet 232
passage

par référence 229, 234
par valeur 179, 181

réel 182
erfectif 154

pai'seDoubleO 409
parseFloatO 432
PATH

Linux 550
Windows 538

PC 121
piaf 372, 376
plug-in

Ha me rest 559
JUnit 559

polymorphisme 250
principe de fonctionnement

do... while 112
fonction 147
for 127
gestion d'un événement 368
if-else 89

imbriqués 96

596 © Édifions Eyrofles

Index le livre de Java premier langage

i/i
ôL_:>■
L U

L OT~{0 fN
@̂
<u-isz01'k_>-Q.O

U

ouvrir un (idiier
en éeriuire 327
en lecture 326

switch 98
tableau 274
try/catch 335
variable de classe 178
while 119

principe de notation
objet 205, 241, 420

priorité 63
programmation dynamique 305
propriété 216
Propriétés 398, 403
protected 250
protection des données

exemple 235
private 235, 242
protected 235
public 235

]3seudo-code
Voir code 24

public 278

raccourci clavier 452
réference 193, 203
relation est un 246, 258
RelativeLaynui 484
repainiO 439, 443
réservation d’un espace mémoire

Voir new 210
return 154, 158, 159, 161, 181, 184
Runnable 406

serialisation
Voir lichier d’objets 329

set 240
setTconO 446
setSelectedO 446
setText() 409

setToolTipTextO 447
short 43, 100
showOpenDialogO 422
showSaveDialogO 462
Source 396
static 174, 209,226, 27S, 330, 450
stream 322

Voir (lux 324
String 279

getBytes() 75
replaceO 504

StiingTokeni/.er 507
structure d’lin programme 20, 168
super 249, 251,267, 373,439
surcharge 245, 487

de constructeur 250
de méthodes 243, 313

swing
Voir package 308

switch 98, 100, 104, 115
choisir 102
exemple 100
String 99, 200
syntaxe 98

syntaxe
de'finition 14

System
exitO 102, 296,367, 428
getPropertyO 74
in.readO 76
out,priniln() 69, 130

tableau 272
2 dimensions 291
d’objets 285, 299
déelaraüon 272, 291,299
exemple 276, 285
indice 275, 292, 294
initialisation 277
length 274, 276, 291
taille 274, 281

> Éditions Eyrol/es 597

Le livre de leva premier langage kideM

taille
tableau 274

TextView 484
this 246, 365, 433
throws 334, 335

Voir Exception 75, 125, 326
title 414
toStringO 409, 423
tri par extraction 286
try

Voir Exception 334
type 204

choisir 44
conversion 57
définition 39
générique 437
objet 193, 209
simple 193
structuré 40, 206, 209

type de données 12

U
Unicode 41

code-point 41
Voir code 73

unité centrale 9, 31
Unix 22, 24, 25, 70, 121, 279

vi329

variable
d’instance 211, 227, 430
declasse 173, 175, 176, 177, 185, 227
déclaration 45, 48, 169, 272
définition 38, 63
invisible 170
locale 170, 172, 175, 185
static 174, 226, 450
tableau d’évolution 123, 171, 175, 234, 294
véritable nom 177

visibilité 185
void 159, 161, 278

w
while 119, 121, 133

choisir 131
exemple 125
syntaxe 119

Windows 23, 25, 279
Bloc-notes 329
CLASSPATH 545
PATH 538

X
XML 484

598 © Editions Eyroiies

