Références et types primitifs en java

Mickaél Péchaud
Mars 2008

Table des matieres

e

(L2 Variables pour les tvpes primitifd

14
14
15

19

20
20
20

21

Ce document est sous licence Creative Commons ccpnc2.0 :

http ://creativecommons.org/licenses/by-nc/2.0/fr/

En gros, vous pouvez faire ce que bon vous semble avec ce document, y compris 1'utiliser pour faire des
papillotes, ou faire une performance publique (gratuite) durant lequel vous le mangez feuille par feuille (ce
que je déconseille tout de méme), aux conditions expresses que :

e vous en citiez ’auteur.

e vous n’en fassiez pas d’utilisation commerciale.

Par respect pour 'environnement, merci de ne pas imprimer ce document si ¢a n’est pas indispensable !

http://creativecommons.org/licenses/by-nc/2.0/fr/

Introdution

Ce document tente de donner quelques éclaircissements sur comment manipuler les variables en java,
point qui est souvent assez mal compris. Il s’adresse a un public déja un peu familiarisé avec java, et
éventuellement ayant une connaissance d’autres langages de programmations impératifs ou orientés objet.
L’exposé est volontairement schématique, mais j'espere qu’il pourra permettre de mieux comprendre le
fonctionnement des variables en java.

1 Types primitifs

Les types primitifs sont des types natifs de java. Pour les gens habitués a des langages impératifs tels que
C, ils correspondent aux types de base dont on a besoin dans tout langage pour représenter les entiers, les
réels, les caracteres, etc, etc. ..

Par convention d’écriture, les types primitifs commencent toujours par une minuscule.

1.1 Petite liste

Voici une liste non-exhaustive des types primitifs en java.

byte 8 bits : entiers relatifs courts
int 32 bits : entiers relatifs

char 16 bits : caracteres

double 64 bits : rééls

boolean 1 bit : booléen - vrai (true) ou faux (false)

1.2 Variables pour les types primitifs
1.2.1 Déclaration/Initialisation

Considérons le bout de code suivant :

int i;

C’est ce qu’on appelle une déclaration de la variable de type int .

A Texécution de ce code, java réserve un espace mémoire de 32 bits, permettant de stocker un entier.
Cet espace mémoire correspond uniquement a la variable .

Cet entier n’a pour l'instant pas de valeur, ce qui fait que si I'on écrit :

int i;
System.out.println(i);

pour essayer d’afficher la valeur de i, il va y avoir une erreur a la compilation. Java étant plus paranoiaque
que d’autres langages comme le C' ou le C++, il empéche d’utiliser une variable dont il pense qu’elle a pu
ne pas étre initialisée.
Initialisons donc. Il y a deux fagons de faire ga.
e On peut initialiser lors de la déclaration en utilisant la syntaxe suivante :
int i=2;
System.out.println(i);

e On peut initialiser plus tard, en utilisant une affectation :
int i;
int i=2;
System.out.println(i);

et 1a, plus de probleme.

1.2.2 Affection

L’affectation des types primitifs en java fonctionne par valeur.
Voyons ce que cela signifie sur un petit exemple.

int i = 1; // (1)
int j; // (2)
j =i // (3)

Ce bout de programme a le comportement suivant :

1. Création et initialisation d’une variable ¢ : un espace mémoire de 32 bits est associé a i. Dans cet espace
mémoire est écrit un encodage de I'entier « 1 ».

é

(dans tous les schémas qui suivent, un cercle indique un nom de variable, et un carré désigne une case
mémoire).

2. Création d’une variable j : un espace mémoire de 32 bits est associé a 1.

]

3. Affectation de la valeur de i a j : le bout d’espace mémoire correspondant a i est recopié dans le bout
d’espace mémoire correspondant a j.

(]

Notez qu’il y a correspondance univoque entre i est son espace mémoire d'une part, et entre j et son
espace mémoire d’autre part.

Apres I’éxécution de ce code, il n’y a donc plus aucun lien entre i et j.
En particulier, si on écrit le code que voici :

int i = 1;

int j;
j=i
i=2; // (1)

System.out.println(i);
System.out.println(j);

apres (1), on a le schéma suivant :

()
—)

Le résultat affiché a ’écran est donc

2

Références

2.1 Déclaration/Initialisation

Java est un langage orienté objet : cela signifie en particulier que le programmeur peut définir un certain

nombre de classes, que I'on peut voir en premiere approche comme des types ou des structures de données
intelligentes. Une fois une classe définie, il est possible de créer des objets appartenant a la cette classe.
Chaque objet est appelé instance de la classe.

Voici un petit exemple. Commencons par définir une classe tres simple (et stupide a de nombreux points

de vue), permettant de décrire des pays.

public class Pays

{

}

P

public int nombreDHabitants;
public double superficie;

public Pays(Q)

{
nombreDHabitant=0;
superficie=0;

}

public Pays(int nombreDHabitants, double superficie)
{
this.nombreDHabitants=nombreDHabitants;
this.superficie=superficie;

}

Cette classe comporte 2 champs correspondant au nombre d’habitants et a la superficie du pays.
Par ailleurs, elle dispose de deux constructeurs :

e un constructeur sans argument qui initialise les champs a zéro,

e un constructeur avec deux arguments, permettant d’initialiser les champs.

Supposons maintenant que 1’on souhaite utiliser cette classe :

ays p;

cette commande déclare une variable p correspondant a un objet de la classe Pays. Mais lors de son

éxécution :

une

e aucun objet (aucune instance) de la classe Pays n’est créée

e ’espace mémoire nécessaire a stocker un Pays n’est méme pas réservé.

Que se passe-t-il alors? La variable p correspond en fait a une référence. En premiere approximation,
référence correspond a une adresse en mémoire.

Le code ci-dessus réserve donc un espace mémoire permettant de stocker une référence. Cet espace

mémoire n’est pas initialisé :

0

Créons maintenant rééllement un objet qui instancie la classe Pays.

new PaysQ);

La commande permettant d’instancier un objet est new.

Lors de 'appel a new Pays(), il se passe 2 choses :

e Un espace mémoire est alloué permettant de stocker un objet de type de Pays.

e Un constructeur (ici le constructeur sans argument est appelé) pour initialiser 'objet.
On a donc quelquechose qui ressemble a ca :

nH=0

s=0

Remettons tout ceci ensemble :

Pays p;
p = new Pays();

qui pourrait aussi s’écrire
Pays p = new Pays();

il y a trois étapes principales dans I’exécution de ce code :

1. déclaration d’une référence :

=)

2. création d’'un objet a l'aide de 'opérateur new :

nH=0

s=0

3. affectation : la référence (stocké dans lespace mémoire reservé lors de la déclaration de p) prend la
valeur de l'adresse mémoire de 'objet créé avec new, ce que nous pouvons représenter de la facon
suivante :

nH=0 :
s=0

On dit que 'objet créé par new est référencé par la variable p.

2.2 Affectation de références

Nous sommes maintenant mieux armés pour comprendre le comportement des variables de références en
java.

Pays pl = new Pays(300000, 14243); //(1)
Pays p2; //(2)
p2=p1l; //(3)

Dans ce code, méme si 2 variables correspondant a des pays sont crées, une seule instance de Pays
est créée. Une regle générale : une instance ne peut étre créée que par new. Il n’y qu’un seul new appelé
lors de I'exécution de ce code, donc un seul objet créé.

Suivons l'exécution pas a pas :

1. Pays pl = new Pays(300000, 14243); Création d’une instance de pays, référencée par la variable
pl. Cette fois-ci, c’est le constructeur avec 2 arguments qui est utilisé pour l'initialisation.

nH=300000 '
s=14243
2. Pays p2; Déclaration d’une variable p2 : aucun pays n’est créé, on réserve juste un espace mémoire
pour une référence, sans 'initialiser

nH=300000

s=14243

Lod

3. p2=p1; La valeur de la référence correspondant a pl est recopiée dans I’espace mémoire correspondant
a p2 : p2 référence désormais I'objet qui était référencé par pl.

nH=300000

s=14243

® ¢

Jinsiste : a la suite de I’éxécution de ce code, un seul objet a été créé, et cet objet est référencé par les
2 variables pl et p2. La ligne p2=p1 effectue une copie de références, et non pas une copie d’objets.

S’il y a toujours correspondance univoque entre pl et I'espace mémoire contenant la référence associé
d’une part, et p2 et ’espace mémoire contenant la référence associé d’autre part (fléches pleines), pl et p2
référencent maintenant un objet commun (fléches pointillées).

Ainsi, si Pon écrit le code suivant :

Pays pl = new Pays(300000, 14243);

Pays p2;

p2=p1;

p2.surface = 400000; //7(1)
System.our.println(pl.surface); //(2)

La ligne (1) modifie un champ de I'objet référencé par p2 :

nH=400000

s=14243

® ¢

mais cet objet étant aussi référencé par pl, exécution de la ligne (2) affichera
400000

Une autre fagon encore plus informelle de voir p2=p1 est de traduire cette ligne par : « p2 est un nouveau
nom pour l'objet référencé par pl ».

2.3 D’autres exemples

Voici d’autres exemples, pour étre sur que 'on comprend ce qui se passe :

Exemple 1

Pays pl = new Pays(300000, 14243); //(1)
Pays p2 = new Pays(); //(2)
p2=p1; //(3)

2 objets sont créés dans ce bout de code.

1. Pays pl = new Pays(300000, 14243); Création du premier objet, référencé par pl.

nH=400000 .
s=14243

10

2. Pays p2 = new Pays(); Création du second objet, référencé par p2.

nH=400000 .
s=14243
nH=0 '
s=0

3. p2=pl; On recopie 'adresse de l'objet référencé par pl dans I'espace mémoire aloué a p2, ce qui revient
a dire que p2 référence maintenant le méme objet que pl. Graphiquement, on prend la fleche pointillée
partant de p2, et on la fait pointer vers le premier objet :

nH=400000 .
s=14243
AN
~
nH=0 h '
s=0

A Tissue de I'exécution de ce code, pl et p2 référencent le méme objet.

L’objet initialement référencé par p2 n’est plus référencé par personne. Il est désormais inaccessible : que
pourrait-on écrire pour modifier ces champs ? Plus aucune variable ne désigne cet objet. Il occupe donc une
place inutile en mémoire, et sera détruit par le ramasse-miette de java, dont le travail est exactement de
détruire les objets qui ne sont plus référencés par rien.

Exemple 2

Pays pl = new Pays(300000, 14243); //(1)
Pays p2 = new Pays(); //(2)
Pays p3=p1; //(3)
pl=p2; //(4)
p2=p3; //(5)

Ici aussi, seul 2 objets sont créés. Méme s’il y a 3 références.

1. Pays pl = new Pays(300000, 14243); Création du premier objet, référencé par pl.

s=14243

11

2. Pays p2 = new Pays(); Création du second objet, référencé par p2.

nH=400000 .
s=14243
nH=0 '
s=0

3. Pays p3=p1l; On déclare une variable p3. On recopie 'adresse de ’objet référencé par pl dans l'espace
mémoire aloué a p3.

s=14243
%
\
nH=0
-)
s=0 \
N\
\

4. p1=p2; On recopie I'adresse de 'objet référencé par pl dans I’espace mémoire aloué a p3.

nH=400000 .
s=14243 P
X .7
\
nH=0
<-4 02
s=0 \
\
\

5. p2=p3; On recopie 'adresse de 'objet référencé par pl dans 'espace mémoire aloué a p3.

12

DH:400000 @
s=14243 P .
X =<
\
nH=0 h
L
s=0 \

Résultat des courses :

e p2 et p3 référencent maintenant le méme objet : celui qui était référencé par pl au départ.
e pl référence maintenant 'objet qui était référencé par p2 au départ.
En particulier, ce code permute les objets référencés par pl et p2.

13

3 Passage de parametres

En java, les passages de parametres sont fait par valeur. Reste a savoir quelle valeur. ..

3.1 Types primitifs

Considérons la fonction suivante :

static void augmente(int i) // (2)

{

i=i+1; /7 (3)
}

et un appel de cette fonction :
int j=1; // (1)
augmente (j); //(2)

System.out.println(j); //(4)

1. int j=1; : nous avons déja vu ce que cela donne.

O

2. augmente(j); . Lors de 'appel de la fonction, le passage de parametre s’effectue par valeur. Cela
signifie qu’une variable i locale a fonction est créée, et que 'on recopie dans l’espace mémoire associé
a cette variable la valeur associée a la variable j :

[l

Notez que la variable j n’est pas visible depuis la fonction.

3. i=il;+. La valeur associée a ¢ est incrémentée de 1

14

[l

4. System.out.println(j); On sort de la fonction. La variable locale est effacée :

é

et le résultat
1

est affiché.

Conclusion : cette méthode ne fait rien.
Si on passe une variable correspondant a un type primitif & une fonction, sa valeur ne peut
étre modifiée par la fonction.

3.2 Références

Faisons maintenant quelquechose de similaire avec des références :

static void augmenteSurface(Pays p) // (2)

{
p.surface=p.surface+1; /7 (3)
}
et un appel de cette fonction :
Pays pl=new Pays(); // (D)
augmenteSurface(pl); //(2)

System.out.println(pl.surface); //(4)

1. Pays pl=new Pays();

DHZO .
s=0

15

2. augmenteSurface(p); . Lors de I'appel de la fonction, le passage de parametre s’effectue par valeur.
Mais cette fois-ci, c’est la référence qui est passée par valeur : une variable locale p est déclarée,
et la valeur de la référence correspondant a pl est recopié dans ’espace mémoire associé a p :

nH=0

s=0 v

DT

3. p.surface=p.surfacel;+. La valeur de la surface du pays référencé par p est incrémentée de 1 :

=

i
= o

A

\

\

\

1

4. System.out.println(pl.surface); On sort de la fonction. La variable locale est effacée

=
T
o

Y

[

[

[

|

et le résultat affiché est
1

Conclusion :
Si on passe une variable correspondant a une référence une fonction, I’objet référencé peut
étre modifié par la fonction.

En revanche, comme va le montrer le dernier exemple suivant :
Si on passe une variable correspondant a une référence une fonction, la référence ne peut
étre modifiée par la fonction.

static void nouveau(Pays p) // (2)
{

p=new Pays(); // (3)
}

16

et un appel de cette fonction :

Pays pl=new Pays(200000, 15000); //(1)
nouveau(p1); //(2)
System.out.println(pl.surface); //(4)

1. Pays pl=new Pays (200000, 15000);

nH=200000

!

s=15000

2. nouveau(pl) ;. De méme que précédemment :

nH=200000

s=15000

DT

3. p=new Pays() ;. Cette ligne créé un nouveau pays, et copie dans I’espace mémoire associé a p ’adresse
de ce nouvel objet. p référence désormais ce nouvel objet, mais on n’a pas touché a l’espace mémoire
associé a pl :

nH=200000

s=15000

DT

4. System.out.println(pl.surface); On sort de la fonction. La variable locale p est effacée

nH=200000

!

s=15000

En particulier, ’objet créé a 'intérieur de la fonction n’est plus référencé par personne.
Le résultat affiché est

17

200000

On n’a donc pas modifié la référence associée a pl.
Si on passe une variable correspondant & une référence une fonction, la référence ne peut
étre modifiée par la fonction.

18

4 Retour de fonctions
Considérons une fonction

Pays pouet()

{
Pays p = new Pays();
return p;

}

Qu’est-ce-qui est retourné par la fonction ? On a ici le méme comportment que pour les passages d’argu-
ments : cette fonction retourne la valeur de la référence associée a la variable locale p.
Ainsi lors de 'appel suivant :

Pays pl=pouet();

1. Pays p=new Pays(); Création d’'un objet, référencé par la variable locale p.

- O
s=0

2. Pays pl=pouet(); la référence de l'objet est renvoyée par la fonction. pl référence donc maintenant
I'objet créé dans la fonction :

nH=0

S:O v

ﬁ
6 ©

et parallelement, la variable locale p est supprimée, d’ou le résultat final suivant :

nH=0

!

s=0

La variable locale, par définition, n’a pas survécue apres le retour de la fonction. En revanche, un objet
créé a l’'intérieur d’une fonction peut trés bien perdurer apreés ’appel de cette fonction.

19

5 Deux fausses exceptions

J’ai affirmé dans une section précédente que :
« Une regle générale : une instance ne peut étre créée que par new. »
Il semble y avoir deux exceptions a cette regle, qui en fait n’en sont pas.

5.1 Tableau

En java, les tableaux sont des objets (que ce soients des tableaux de type primitifs, ou d’objets).
Ecrivons le code suivant.

int[] t={1, 2, 3, 4};

Il semble que I'on ai créé un objet de type « tableau d’entiers »sans utiliser new.
C’est une illusion, le code écrit ci-dessus étant simplement un racourci pour :

int[] t= new int[4];
int [0]=1;
int[1]=2;
int [2]=3;
int [3]=4;

Il s’agit juste de sucre syntazique, rendant moins pénible la création d’un tableau.

5.2 String

On a quelquechose de similaire avec les chaines de caracteres :
String s="bonjour";

un objet instanciant la classe String a bien été créé, sans que 'on fasse appel a new.
C’est également une illusion, le code ci-dessus étant en fait équivalent a

char data[] - {’b’, ’0%, ’n’, JjJ’ ’07, Cu’,)r)};
String str = new String(data);

20

6 Comparaisons

Un dernier point important, souvent source d’erreur.
Dans le code suivant,

int i1l = 3;
int i2 = 3;
if (i1 == i2) ... // (1)

le test en (1) renvoie vrai. Ce sont bien les valeurs de i1 et 2 qui sont comparées.

En revanche dans

Pays pl = new Pays();
Pays p2 = new Pays();
if (p1l == p2) ... //7(1)

quel va étre le résultat du test en (1)? Une autre fagon de poser cette question est : qu’est-ce-qui est
comparé par ==7

nH=0 '
s=0
nH=0 '
s=0
il y a deux possibilités :
e si == compare les objets (valeurs des rectangles de gauche), le résultat va étre vrai, les 2 objets ayant
la méme description en mémoire.
e si == compare les références (valeurs des rectangles du milieu), le résultat va étre faux, les 2 objets
ayant des emplacement différents en mémoire.
Le résultat est faux : == compare les références en java.

En revanche, dans le code suivant

Pays pl = new Pays();
Pays p2 = pi;
if (p1 == p2) ... //7(1)

correspondant au schéma suivant :

nH=0

s=0

© ¢

21

Les adresses associées a pl et p2 sont identiques (pl et p2 référencent le méme objet), et le résultat du
test va donc étre vrai.

== effectue une comparaison des références, encore appelée comparaison superficielle. Pour effectuer une
comparaison profonde, comparant effectivement les objets, il va falloir créer une méthode dans la classe
Pays :

public boolean egal(Pays p)
{
if ((nombreDHabitants==p.nombreDHabitants) && surface==p.surface)
return true;
else
return false;

Si on écrit

Pays pl = new Pays();
Pays p2 = new Pays();
if (pl.egal(p2))

le test renverra alors vrai.

22

7 Exercices

7.1 Exercice 1

On définit la méthode suivante, sensée permuter deux pays :

static void permuter (Pays pl, Pays p2)
{
Pays tmp=pl;

p1=p2;
p2=tmp;

que l'on utilise dans le code suivant :

Pays pl = new Pays(100000, 200000) ;
Pays p2 = new Pays(300000, 400000) ;
permute(pl, p2);
System.out.println(pl.surface);
System.out.println(p2.surface);

Pourquoi ce code affiche-t’il le résultat suivant ?

200000
400000

7.2 Exercice 2

En dessinant des schémas, justifiez que si permuter est écrit de la fagon suivante
static void permuter (Pays pl, Pays p2)
{
Pays tmp=new Pays();

tmp.nombreDHabitants=pl.nombreDHabitants;
tmp.surface=pl.surface;

pl.nombreDHabitants=p2.nombreDHabitants;
pl.surface=p2.surface;

p2.nombreDHabitants=tmp.nombreDHabitants;
p2.surface=tmp.surface;

le code ci-dessus affiche

400000
200000

7.3 Exercice 3

On définit la méthode suivante :

23

Pays copie(Pays p)
{
Pays r = new Pays();
r.nombreDHabitants = p.nombreDHabitants;
r.surface = p.surface;
return r;

En dessinant des schémas, justifiez que le code suivant :

Pays pl=new Pays(100000, 20000);
Pays p2=pl.copie();
p2.surface=30000;
System.out.println(pl.surface);
System.out.println(p2.surface);

affiche

20000
30000

Combien d’instances de Pays sont-elles créées?

On dit que Copie effectue une copie profonde de I'objet, par opposition a 'opérateur d’affectation = qui
n’effectue qu’'une copie superficielle des références.

24

	Types primitifs
	Petite liste
	Variables pour les types primitifs
	Déclaration/Initialisation
	Affection

	Références
	Déclaration/Initialisation
	Affectation de références
	D'autres exemples

	Passage de paramètres
	Types primitifs
	Références

	Retour de fonctions
	Deux fausses exceptions
	Tableau
	String

	Comparaisons
	Exercices
	Exercice 1
	Exercice 2
	Exercice 3

