
Références et types primitifs en java

Mickaël Péchaud

Mars 2008

Table des matières

1 Types primitifs 4
1.1 Petite liste . 4
1.2 Variables pour les types primitifs . 4

1.2.1 Déclaration/Initialisation . 4
1.2.2 Affection . 5

2 Références 7
2.1 Déclaration/Initialisation . 7
2.2 Affectation de références . 9
2.3 D’autres exemples . 10

3 Passage de paramètres 14
3.1 Types primitifs . 14
3.2 Références . 15

4 Retour de fonctions 19

5 Deux fausses exceptions 20
5.1 Tableau . 20
5.2 String . 20

6 Comparaisons 21

7 Exercices 23
7.1 Exercice 1 . 23
7.2 Exercice 2 . 23
7.3 Exercice 3 . 23

1

Ce document est sous licence Creative Commons ccpnc2.0 :
http ://creativecommons.org/licenses/by-nc/2.0/fr/
En gros, vous pouvez faire ce que bon vous semble avec ce document, y compris l’utiliser pour faire des

papillotes, ou faire une performance publique (gratuite) durant lequel vous le mangez feuille par feuille (ce
que je déconseille tout de même), aux conditions expresses que :

• vous en citiez l’auteur.
• vous n’en fassiez pas d’utilisation commerciale.

Par respect pour l’environnement, merci de ne pas imprimer ce document si ça n’est pas indispensable !

2

http://creativecommons.org/licenses/by-nc/2.0/fr/

Introdution

Ce document tente de donner quelques éclaircissements sur comment manipuler les variables en java,
point qui est souvent assez mal compris. Il s’adresse à un public déjà un peu familiarisé avec java, et
éventuellement ayant une connaissance d’autres langages de programmations impératifs ou orientés objet.
L’exposé est volontairement schématique, mais j’espère qu’il pourra permettre de mieux comprendre le
fonctionnement des variables en java.

3

1 Types primitifs

Les types primitifs sont des types natifs de java. Pour les gens habitués à des langages impératifs tels que
C, ils correspondent aux types de base dont on a besoin dans tout langage pour représenter les entiers, les
réels, les caractères, etc, etc. . .

Par convention d’écriture, les types primitifs commencent toujours par une minuscule.

1.1 Petite liste

Voici une liste non-exhaustive des types primitifs en java.

byte 8 bits : entiers relatifs courts

int 32 bits : entiers relatifs

char 16 bits : caractères

double 64 bits : rééls

boolean 1 bit : booléen - vrai (true) ou faux (false)

1.2 Variables pour les types primitifs

1.2.1 Déclaration/Initialisation

Considérons le bout de code suivant :

int i;

C’est ce qu’on appelle une déclaration de la variable de type int i.
À l’exécution de ce code, java réserve un espace mémoire de 32 bits, permettant de stocker un entier.

Cet espace mémoire correspond uniquement à la variable i.
Cet entier n’a pour l’instant pas de valeur, ce qui fait que si l’on écrit :

int i;

System.out.println(i);

pour essayer d’afficher la valeur de i, il va y avoir une erreur à la compilation. Java étant plus paranöıaque
que d’autres langages comme le C ou le C++, il empêche d’utiliser une variable dont il pense qu’elle a pu
ne pas être initialisée.

Initialisons donc. Il y a deux façons de faire ça.
• On peut initialiser lors de la déclaration en utilisant la syntaxe suivante :

int i=2;

System.out.println(i);

• On peut initialiser plus tard, en utilisant une affectation :
int i;

int i=2;

System.out.println(i);

et là, plus de problème.

4

1.2.2 Affection

L’affectation des types primitifs en java fonctionne par valeur.
Voyons ce que celà signifie sur un petit exemple.

int i = 1; // (1)

int j; // (2)

j = i; // (3)

Ce bout de programme a le comportement suivant :

1. Création et initialisation d’une variable i : un espace mémoire de 32 bits est associé à i. Dans cet espace
mémoire est écrit un encodage de l’entier « 1 ».

1 i

(dans tous les schémas qui suivent, un cercle indique un nom de variable, et un carré désigne une case
mémoire).

2. Création d’une variable j : un espace mémoire de 32 bits est associé à i.

1 i

? j

3. Affectation de la valeur de i à j : le bout d’espace mémoire correspondant à i est recopié dans le bout
d’espace mémoire correspondant à j.

1 i

1 j

Notez qu’il y a correspondance univoque entre i est son espace mémoire d’une part, et entre j et son
espace mémoire d’autre part.

Après l’éxécution de ce code, il n’y a donc plus aucun lien entre i et j.
En particulier, si on écrit le code que voici :

int i = 1;

int j;

j = i;

i = 2; //(1)

5

System.out.println(i);

System.out.println(j);

après (1), on a le schéma suivant :

2 i

1 j

Le résultat affiché à l’écran est donc

2

1

6

2 Références

2.1 Déclaration/Initialisation

Java est un langage orienté objet : celà signifie en particulier que le programmeur peut définir un certain
nombre de classes, que l’on peut voir en première approche comme des types ou des structures de données
intelligentes. Une fois une classe définie, il est possible de créer des objets appartenant à la cette classe.
Chaque objet est appelé instance de la classe.

Voici un petit exemple. Commençons par définir une classe très simple (et stupide à de nombreux points
de vue), permettant de décrire des pays.

public class Pays

{

public int nombreDHabitants;

public double superficie;

public Pays()

{

nombreDHabitant=0;

superficie=0;

}

public Pays(int nombreDHabitants, double superficie)

{

this.nombreDHabitants=nombreDHabitants;

this.superficie=superficie;

}

}

Cette classe comporte 2 champs correspondant au nombre d’habitants et à la superficie du pays.
Par ailleurs, elle dispose de deux constructeurs :
• un constructeur sans argument qui initialise les champs à zéro,
• un constructeur avec deux arguments, permettant d’initialiser les champs.
Supposons maintenant que l’on souhaite utiliser cette classe :

Pays p;

cette commande déclare une variable p correspondant à un objet de la classe Pays. Mais lors de son
éxécution :

• aucun objet (aucune instance) de la classe Pays n’est créée
• l’espace mémoire nécessaire à stocker un Pays n’est même pas réservé.
Que se passe-t-il alors ? La variable p correspond en fait à une référence. En première approximation,

une référence correspond à une adresse en mémoire.
Le code ci-dessus réserve donc un espace mémoire permettant de stocker une référence. Cet espace

mémoire n’est pas initialisé :

? p

Créons maintenant rééllement un objet qui instancie la classe Pays.

7

new Pays();

La commande permettant d’instancier un objet est new.
Lors de l’appel à new Pays(), il se passe 2 choses :
• Un espace mémoire est alloué permettant de stocker un objet de type de Pays.
• Un constructeur (ici le constructeur sans argument est appelé) pour initialiser l’objet.
On a donc quelquechose qui ressemble à ça :

nH=0

s=0

Remettons tout ceci ensemble :

Pays p;

p = new Pays();

qui pourrait aussi s’écrire

Pays p = new Pays();

il y a trois étapes principales dans l’exécution de ce code :

1. déclaration d’une référence :

? p

2. création d’un objet à l’aide de l’opérateur new :

nH=0

s=0

3. affectation : la référence (stocké dans l’espace mémoire reservé lors de la déclaration de p) prend la
valeur de l’adresse mémoire de l’objet créé avec new, ce que nous pouvons représenter de la façon
suivante :

p
nH=0

s=0

On dit que l’objet créé par new est référencé par la variable p.

8

2.2 Affectation de références

Nous sommes maintenant mieux armés pour comprendre le comportement des variables de références en
java.

Pays p1 = new Pays(300000, 14243); //(1)

Pays p2; //(2)

p2=p1; //(3)

Dans ce code, même si 2 variables correspondant à des pays sont crées, une seule instance de Pays
est créée. Une règle générale : une instance ne peut être créée que par new. Il n’y qu’un seul new appelé
lors de l’exécution de ce code, donc un seul objet créé.

Suivons l’exécution pas à pas :

1. Pays p1 = new Pays(300000, 14243); Création d’une instance de pays, référencée par la variable
p1. Cette fois-ci, c’est le constructeur avec 2 arguments qui est utilisé pour l’initialisation.

p1
nH=300000

s=14243

2. Pays p2; Déclaration d’une variable p2 : aucun pays n’est créé, on réserve juste un espace mémoire
pour une référence, sans l’initialiser

? p2

p1
nH=300000

s=14243

3. p2=p1; La valeur de la référence correspondant à p1 est recopiée dans l’espace mémoire correspondant
à p2 : p2 référence désormais l’objet qui était référencé par p1.

p2

p1
nH=300000

s=14243

J’insiste : à la suite de l’éxécution de ce code, un seul objet a été créé, et cet objet est référencé par les
2 variables p1 et p2. La ligne p2=p1 effectue une copie de références, et non pas une copie d’objets.

9

S’il y a toujours correspondance univoque entre p1 et l’espace mémoire contenant la référence associé
d’une part, et p2 et l’espace mémoire contenant la référence associé d’autre part (flêches pleines), p1 et p2
référencent maintenant un objet commun (flêches pointillées).

Ainsi, si l’on écrit le code suivant :

Pays p1 = new Pays(300000, 14243);

Pays p2;

p2=p1;

p2.surface = 400000; //(1)

System.our.println(p1.surface); //(2)

La ligne (1) modifie un champ de l’objet référencé par p2 :

p2

p1
nH=400000

s=14243

mais cet objet étant aussi référencé par p1, l’exécution de la ligne (2) affichera

400000

Une autre façon encore plus informelle de voir p2=p1 est de traduire cette ligne par : « p2 est un nouveau

nom pour l’objet référencé par p1 ».

2.3 D’autres exemples

Voici d’autres exemples, pour être sur que l’on comprend ce qui se passe :

Exemple 1

Pays p1 = new Pays(300000, 14243); //(1)

Pays p2 = new Pays(); //(2)

p2=p1; //(3)

2 objets sont créés dans ce bout de code.

1. Pays p1 = new Pays(300000, 14243); Création du premier objet, référencé par p1.

p1
nH=400000

s=14243

10

2. Pays p2 = new Pays(); Création du second objet, référencé par p2.

p2
nH=0

s=0

p1
nH=400000

s=14243

3. p2=p1; On recopie l’adresse de l’objet référencé par p1 dans l’espace mémoire aloué à p2, ce qui revient
à dire que p2 référence maintenant le même objet que p1. Graphiquement, on prend la flêche pointillée
partant de p2, et on la fait pointer vers le premier objet :

p2
nH=0

s=0

p1
nH=400000

s=14243

À l’issue de l’exécution de ce code, p1 et p2 référencent le même objet.
L’objet initialement référencé par p2 n’est plus référencé par personne. Il est désormais inaccessible : que

pourrait-on écrire pour modifier ces champs ? Plus aucune variable ne désigne cet objet. Il occupe donc une
place inutile en mémoire, et sera détruit par le ramasse-miette de java, dont le travail est exactement de
détruire les objets qui ne sont plus référencés par rien.

Exemple 2

Pays p1 = new Pays(300000, 14243); //(1)

Pays p2 = new Pays(); //(2)

Pays p3=p1; //(3)

p1=p2; //(4)

p2=p3; //(5)

Ici aussi, seul 2 objets sont créés. Même s’il y a 3 références.

1. Pays p1 = new Pays(300000, 14243); Création du premier objet, référencé par p1.

p1
nH=400000

s=14243

11

2. Pays p2 = new Pays(); Création du second objet, référencé par p2.

p2
nH=0

s=0

p1
nH=400000

s=14243

3. Pays p3=p1; On déclare une variable p3. On recopie l’adresse de l’objet référencé par p1 dans l’espace
mémoire aloué à p3.

p3

p2
nH=0

s=0

p1
nH=400000

s=14243

4. p1=p2; On recopie l’adresse de l’objet référencé par p1 dans l’espace mémoire aloué à p3.

p3

p2
nH=0

s=0

p1
nH=400000

s=14243

5. p2=p3; On recopie l’adresse de l’objet référencé par p1 dans l’espace mémoire aloué à p3.

12

p3

p2
nH=0

s=0

p1
nH=400000

s=14243

Résultat des courses :
• p2 et p3 référencent maintenant le même objet : celui qui était référencé par p1 au départ.
• p1 référence maintenant l’objet qui était référencé par p2 au départ.
En particulier, ce code permute les objets référencés par p1 et p2.

13

3 Passage de paramètres

En java, les passages de paramètres sont fait par valeur. Reste à savoir quelle valeur. . .

3.1 Types primitifs

Considérons la fonction suivante :

static void augmente(int i) // (2)

{

i=i+1; // (3)

}

et un appel de cette fonction :

int j=1; //(1)

augmente(j); //(2)

System.out.println(j); //(4)

1. int j=1; : nous avons déjà vu ce que celà donne.

1 j

2. augmente(j); . Lors de l’appel de la fonction, le passage de paramètre s’effectue par valeur. Celà
signifie qu’une variable i locale à fonction est créée, et que l’on recopie dans l’espace mémoire associé
à cette variable la valeur associée à la variable j :

1 j

1 i

Notez que la variable j n’est pas visible depuis la fonction.

3. i=i1 ;+. La valeur associée à i est incrémentée de 1

14

1 j

2 i

4. System.out.println(j); On sort de la fonction. La variable locale est effacée :

1 j

et le résultat

1

est affiché.

Conclusion : cette méthode ne fait rien.
Si on passe une variable correspondant à un type primitif à une fonction, sa valeur ne peut

être modifiée par la fonction.

3.2 Références

Faisons maintenant quelquechose de similaire avec des références :

static void augmenteSurface(Pays p) // (2)

{

p.surface=p.surface+1; // (3)

}

et un appel de cette fonction :

Pays p1=new Pays(); //(1)

augmenteSurface(p1); //(2)

System.out.println(p1.surface); //(4)

1. Pays p1=new Pays();

p1
nH=0

s=0

15

2. augmenteSurface(p); . Lors de l’appel de la fonction, le passage de paramètre s’effectue par valeur.
Mais cette fois-ci, c’est la référence qui est passée par valeur : une variable locale p est déclarée,
et la valeur de la référence correspondant à p1 est recopié dans l’espace mémoire associé à p :

p1

p

nH=0

s=0

3. p.surface=p.surface1;+. La valeur de la surface du pays référencé par p est incrémentée de 1 :

p1

p

nH=0

s=1

4. System.out.println(p1.surface); On sort de la fonction. La variable locale est effacée

p1
nH=0

s=1

et le résultat affiché est

1

Conclusion :
Si on passe une variable correspondant à une référence une fonction, l’objet référencé peut

être modifié par la fonction.

En revanche, comme va le montrer le dernier exemple suivant :
Si on passe une variable correspondant à une référence une fonction, la référence ne peut

être modifiée par la fonction.

static void nouveau(Pays p) // (2)

{

p=new Pays(); // (3)

}

16

et un appel de cette fonction :

Pays p1=new Pays(200000, 15000); //(1)

nouveau(p1); //(2)

System.out.println(p1.surface); //(4)

1. Pays p1=new Pays(200000, 15000);

p1
nH=200000

s=15000

2. nouveau(p1);. De même que précédemment :

p1

p

nH=200000

s=15000

3. p=new Pays();. Cette ligne créé un nouveau pays, et copie dans l’espace mémoire associé à p l’adresse
de ce nouvel objet. p référence désormais ce nouvel objet, mais on n’a pas touché à l’espace mémoire
associé à p1 :

p1

p

nH=200000

s=15000

nH=0

s=0

4. System.out.println(p1.surface); On sort de la fonction. La variable locale p est effacée

p1
nH=200000

s=15000

En particulier, l’objet créé à l’intérieur de la fonction n’est plus référencé par personne.

Le résultat affiché est

17

200000

On n’a donc pas modifié la référence associée à p1.

Si on passe une variable correspondant à une référence une fonction, la référence ne peut
être modifiée par la fonction.

18

4 Retour de fonctions

Considérons une fonction

Pays pouet()

{

Pays p = new Pays();

return p;

}

Qu’est-ce-qui est retourné par la fonction ? On a ici le même comportment que pour les passages d’argu-
ments : cette fonction retourne la valeur de la référence associée à la variable locale p.

Ainsi lors de l’appel suivant :

Pays p1=pouet();

1. Pays p=new Pays(); Création d’un objet, référencé par la variable locale p.

p
nH=0

s=0

2. Pays p1=pouet() ; la référence de l’objet est renvoyée par la fonction. p1 référence donc maintenant
l’objet créé dans la fonction :

p

p1

nH=0

s=0

et parallèlement, la variable locale p est supprimée, d’où le résultat final suivant :

p1
nH=0

s=0

La variable locale, par définition, n’a pas survécue après le retour de la fonction. En revanche, un objet
créé à l’intérieur d’une fonction peut très bien perdurer après l’appel de cette fonction.

19

5 Deux fausses exceptions

J’ai affirmé dans une section précédente que :
« Une règle générale : une instance ne peut être créée que par new. »

Il semble y avoir deux exceptions à cette règle, qui en fait n’en sont pas.

5.1 Tableau

En java, les tableaux sont des objets (que ce soients des tableaux de type primitifs, ou d’objets).
Écrivons le code suivant.

int[] t={1, 2, 3, 4};

Il semble que l’on ai créé un objet de type « tableau d’entiers »sans utiliser new.
C’est une illusion, le code écrit ci-dessus étant simplement un racourci pour :

int[] t= new int[4];

int[0]=1;

int[1]=2;

int[2]=3;

int[3]=4;

Il s’agit juste de sucre syntaxique, rendant moins pénible la création d’un tableau.

5.2 String

On a quelquechose de similaire avec les châınes de caractères :

String s=¨bonjour¨;

un objet instanciant la classe String a bien été créé, sans que l’on fasse appel à new.
C’est également une illusion, le code ci-dessus étant en fait équivalent à

char data[] = {’b’, ’o’, ’n’, ’j’, ’o’, ’u’, ’r’};

String str = new String(data);

20

6 Comparaisons

Un dernier point important, souvent source d’erreur.
Dans le code suivant,

int i1 = 3;

int i2 = 3;

if (i1 == i2) ... //(1)

le test en (1) renvoie vrai. Ce sont bien les valeurs de i1 et i2 qui sont comparées.

En revanche dans

Pays p1 = new Pays();

Pays p2 = new Pays();

if (p1 == p2) ... //(1)

quel va être le résultat du test en (1) ? Une autre façon de poser cette question est : qu’est-ce-qui est
comparé par ==?

p2
nH=0

s=0

p1
nH=0

s=0

il y a deux possibilités :
• si == compare les objets (valeurs des rectangles de gauche), le résultat va être vrai, les 2 objets ayant

la même description en mémoire.
• si == compare les références (valeurs des rectangles du milieu), le résultat va être faux, les 2 objets

ayant des emplacement différents en mémoire.
Le résultat est faux : == compare les références en java.

En revanche, dans le code suivant

Pays p1 = new Pays();

Pays p2 = p1;

if (p1 == p2) ... //(1)

correspondant au schéma suivant :

p2

p1
nH=0

s=0

21

Les adresses associées à p1 et p2 sont identiques (p1 et p2 référencent le même objet), et le résultat du
test va donc être vrai.

== effectue une comparaison des références, encore appelée comparaison superficielle. Pour effectuer une
comparaison profonde, comparant effectivement les objets, il va falloir créer une méthode dans la classe
Pays :

public boolean egal(Pays p)

{

if ((nombreDHabitants==p.nombreDHabitants) && surface==p.surface)

return true;

else

return false;

}

Si l’on écrit

Pays p1 = new Pays();

Pays p2 = new Pays();

if (p1.egal(p2)) ...

le test renverra alors vrai.

22

7 Exercices

7.1 Exercice 1

On définit la méthode suivante, sensée permuter deux pays :

static void permuter(Pays p1, Pays p2)

{

Pays tmp=p1;

p1=p2;

p2=tmp;

}

que l’on utilise dans le code suivant :

Pays p1 = new Pays(100000, 200000);

Pays p2 = new Pays(300000, 400000);

permute(p1, p2);

System.out.println(p1.surface);

System.out.println(p2.surface);

Pourquoi ce code affiche-t’il le résultat suivant ?

200000

400000

7.2 Exercice 2

En dessinant des schémas, justifiez que si permuter est écrit de la façon suivante

static void permuter(Pays p1, Pays p2)

{

Pays tmp=new Pays();

tmp.nombreDHabitants=p1.nombreDHabitants;

tmp.surface=p1.surface;

p1.nombreDHabitants=p2.nombreDHabitants;

p1.surface=p2.surface;

p2.nombreDHabitants=tmp.nombreDHabitants;

p2.surface=tmp.surface;

}

le code ci-dessus affiche

400000

200000

7.3 Exercice 3

On définit la méthode suivante :

23

Pays copie(Pays p)

{

Pays r = new Pays();

r.nombreDHabitants = p.nombreDHabitants;

r.surface = p.surface;

return r;

}

En dessinant des schémas, justifiez que le code suivant :

Pays p1=new Pays(100000, 20000);

Pays p2=p1.copie();

p2.surface=30000;

System.out.println(p1.surface);

System.out.println(p2.surface);

affiche

20000

30000

Combien d’instances de Pays sont-elles créées ?
On dit que Copie effectue une copie profonde de l’objet, par opposition à l’opérateur d’affectation = qui

n’effectue qu’une copie superficielle des références.

24

	Types primitifs
	Petite liste
	Variables pour les types primitifs
	Déclaration/Initialisation
	Affection

	Références
	Déclaration/Initialisation
	Affectation de références
	D'autres exemples

	Passage de paramètres
	Types primitifs
	Références

	Retour de fonctions
	Deux fausses exceptions
	Tableau
	String

	Comparaisons
	Exercices
	Exercice 1
	Exercice 2
	Exercice 3

